1/*
2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_CI_CITYPEFLOW_HPP
26#define SHARE_VM_CI_CITYPEFLOW_HPP
27
28#ifdef COMPILER2
29#include "ci/ciEnv.hpp"
30#include "ci/ciKlass.hpp"
31#include "ci/ciMethodBlocks.hpp"
32#endif
33#ifdef SHARK
34#include "ci/ciEnv.hpp"
35#include "ci/ciKlass.hpp"
36#include "ci/ciMethodBlocks.hpp"
37#include "shark/shark_globals.hpp"
38#endif
39
40
41class ciTypeFlow : public ResourceObj {
42private:
43  ciEnv*    _env;
44  ciMethod* _method;
45  ciMethodBlocks* _methodBlocks;
46  int       _osr_bci;
47
48  // information cached from the method:
49  int _max_locals;
50  int _max_stack;
51  int _code_size;
52  bool      _has_irreducible_entry;
53
54  const char* _failure_reason;
55
56public:
57  class StateVector;
58  class Loop;
59  class Block;
60
61  // Build a type flow analyzer
62  // Do an OSR analysis if osr_bci >= 0.
63  ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci = InvocationEntryBci);
64
65  // Accessors
66  ciMethod* method() const     { return _method; }
67  ciEnv*    env()              { return _env; }
68  Arena*    arena()            { return _env->arena(); }
69  bool      is_osr_flow() const{ return _osr_bci != InvocationEntryBci; }
70  int       start_bci() const  { return is_osr_flow()? _osr_bci: 0; }
71  int       max_locals() const { return _max_locals; }
72  int       max_stack() const  { return _max_stack; }
73  int       max_cells() const  { return _max_locals + _max_stack; }
74  int       code_size() const  { return _code_size; }
75  bool      has_irreducible_entry() const { return _has_irreducible_entry; }
76
77  // Represents information about an "active" jsr call.  This
78  // class represents a call to the routine at some entry address
79  // with some distinct return address.
80  class JsrRecord : public ResourceObj {
81  private:
82    int _entry_address;
83    int _return_address;
84  public:
85    JsrRecord(int entry_address, int return_address) {
86      _entry_address = entry_address;
87      _return_address = return_address;
88    }
89
90    int entry_address() const  { return _entry_address; }
91    int return_address() const { return _return_address; }
92
93    void print_on(outputStream* st) const {
94#ifndef PRODUCT
95      st->print("%d->%d", entry_address(), return_address());
96#endif
97    }
98  };
99
100  // A JsrSet represents some set of JsrRecords.  This class
101  // is used to record a set of all jsr routines which we permit
102  // execution to return (ret) from.
103  //
104  // During abstract interpretation, JsrSets are used to determine
105  // whether two paths which reach a given block are unique, and
106  // should be cloned apart, or are compatible, and should merge
107  // together.
108  //
109  // Note that different amounts of effort can be expended determining
110  // if paths are compatible.  <DISCUSSION>
111  class JsrSet : public ResourceObj {
112  private:
113    GrowableArray<JsrRecord*>* _set;
114
115    JsrRecord* record_at(int i) {
116      return _set->at(i);
117    }
118
119    // Insert the given JsrRecord into the JsrSet, maintaining the order
120    // of the set and replacing any element with the same entry address.
121    void insert_jsr_record(JsrRecord* record);
122
123    // Remove the JsrRecord with the given return address from the JsrSet.
124    void remove_jsr_record(int return_address);
125
126  public:
127    JsrSet(Arena* arena, int default_len = 4);
128
129    // Copy this JsrSet.
130    void copy_into(JsrSet* jsrs);
131
132    // Is this JsrSet compatible with some other JsrSet?
133    bool is_compatible_with(JsrSet* other);
134
135    // Apply the effect of a single bytecode to the JsrSet.
136    void apply_control(ciTypeFlow* analyzer,
137                       ciBytecodeStream* str,
138                       StateVector* state);
139
140    // What is the cardinality of this set?
141    int size() const { return _set->length(); }
142
143    void print_on(outputStream* st) const PRODUCT_RETURN;
144  };
145
146  class LocalSet VALUE_OBJ_CLASS_SPEC {
147  private:
148    enum Constants { max = 63 };
149    uint64_t _bits;
150  public:
151    LocalSet() : _bits(0) {}
152    void add(uint32_t i)        { if (i < (uint32_t)max) _bits |=  (1LL << i); }
153    void add(LocalSet* ls)      { _bits |= ls->_bits; }
154    bool test(uint32_t i) const { return i < (uint32_t)max ? (_bits>>i)&1U : true; }
155    void clear()                { _bits = 0; }
156    void print_on(outputStream* st, int limit) const  PRODUCT_RETURN;
157  };
158
159  // Used as a combined index for locals and temps
160  enum Cell {
161    Cell_0, Cell_max = INT_MAX
162  };
163
164  // A StateVector summarizes the type information at some
165  // point in the program
166  class StateVector : public ResourceObj {
167  private:
168    ciType**    _types;
169    int         _stack_size;
170    int         _monitor_count;
171    ciTypeFlow* _outer;
172
173    int         _trap_bci;
174    int         _trap_index;
175
176    LocalSet    _def_locals;  // For entire block
177
178    static ciType* type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer);
179
180  public:
181    // Special elements in our type lattice.
182    enum {
183      T_TOP     = T_VOID,      // why not?
184      T_BOTTOM  = T_CONFLICT,
185      T_LONG2   = T_SHORT,     // 2nd word of T_LONG
186      T_DOUBLE2 = T_CHAR,      // 2nd word of T_DOUBLE
187      T_NULL    = T_BYTE       // for now.
188    };
189    static ciType* top_type()    { return ciType::make((BasicType)T_TOP); }
190    static ciType* bottom_type() { return ciType::make((BasicType)T_BOTTOM); }
191    static ciType* long2_type()  { return ciType::make((BasicType)T_LONG2); }
192    static ciType* double2_type(){ return ciType::make((BasicType)T_DOUBLE2); }
193    static ciType* null_type()   { return ciType::make((BasicType)T_NULL); }
194
195    static ciType* half_type(ciType* t) {
196      switch (t->basic_type()) {
197      case T_LONG:    return long2_type();
198      case T_DOUBLE:  return double2_type();
199      default:        ShouldNotReachHere(); return NULL;
200      }
201    }
202
203    // The meet operation for our type lattice.
204    ciType* type_meet(ciType* t1, ciType* t2) {
205      return type_meet_internal(t1, t2, outer());
206    }
207
208    // Accessors
209    ciTypeFlow* outer() const          { return _outer; }
210
211    int         stack_size() const     { return _stack_size; }
212    void    set_stack_size(int ss)     { _stack_size = ss; }
213
214    int         monitor_count() const  { return _monitor_count; }
215    void    set_monitor_count(int mc)  { _monitor_count = mc; }
216
217    LocalSet* def_locals() { return &_def_locals; }
218    const LocalSet* def_locals() const { return &_def_locals; }
219
220    static Cell start_cell()           { return (Cell)0; }
221    static Cell next_cell(Cell c)      { return (Cell)(((int)c) + 1); }
222    Cell        limit_cell() const {
223      return (Cell)(outer()->max_locals() + stack_size());
224    }
225
226    // Cell creation
227    Cell      local(int lnum) const {
228      assert(lnum < outer()->max_locals(), "index check");
229      return (Cell)(lnum);
230    }
231
232    Cell      stack(int snum) const {
233      assert(snum < stack_size(), "index check");
234      return (Cell)(outer()->max_locals() + snum);
235    }
236
237    Cell      tos() const { return stack(stack_size()-1); }
238
239    // For external use only:
240    ciType* local_type_at(int i) const { return type_at(local(i)); }
241    ciType* stack_type_at(int i) const { return type_at(stack(i)); }
242
243    // Accessors for the type of some Cell c
244    ciType*   type_at(Cell c) const {
245      assert(start_cell() <= c && c < limit_cell(), "out of bounds");
246      return _types[c];
247    }
248
249    void      set_type_at(Cell c, ciType* type) {
250      assert(start_cell() <= c && c < limit_cell(), "out of bounds");
251      _types[c] = type;
252    }
253
254    // Top-of-stack operations.
255    void      set_type_at_tos(ciType* type) { set_type_at(tos(), type); }
256    ciType*   type_at_tos() const           { return type_at(tos()); }
257
258    void      push(ciType* type) {
259      _stack_size++;
260      set_type_at_tos(type);
261    }
262    void      pop() {
263      debug_only(set_type_at_tos(bottom_type()));
264      _stack_size--;
265    }
266    ciType*   pop_value() {
267      ciType* t = type_at_tos();
268      pop();
269      return t;
270    }
271
272    // Convenience operations.
273    bool      is_reference(ciType* type) const {
274      return type == null_type() || !type->is_primitive_type();
275    }
276    bool      is_int(ciType* type) const {
277      return type->basic_type() == T_INT;
278    }
279    bool      is_long(ciType* type) const {
280      return type->basic_type() == T_LONG;
281    }
282    bool      is_float(ciType* type) const {
283      return type->basic_type() == T_FLOAT;
284    }
285    bool      is_double(ciType* type) const {
286      return type->basic_type() == T_DOUBLE;
287    }
288
289    void store_to_local(int lnum) {
290      _def_locals.add((uint) lnum);
291    }
292
293    void      push_translate(ciType* type);
294
295    void      push_int() {
296      push(ciType::make(T_INT));
297    }
298    void      pop_int() {
299      assert(is_int(type_at_tos()), "must be integer");
300      pop();
301    }
302    void      check_int(Cell c) {
303      assert(is_int(type_at(c)), "must be integer");
304    }
305    void      push_double() {
306      push(ciType::make(T_DOUBLE));
307      push(double2_type());
308    }
309    void      pop_double() {
310      assert(type_at_tos() == double2_type(), "must be 2nd half");
311      pop();
312      assert(is_double(type_at_tos()), "must be double");
313      pop();
314    }
315    void      push_float() {
316      push(ciType::make(T_FLOAT));
317    }
318    void      pop_float() {
319      assert(is_float(type_at_tos()), "must be float");
320      pop();
321    }
322    void      push_long() {
323      push(ciType::make(T_LONG));
324      push(long2_type());
325    }
326    void      pop_long() {
327      assert(type_at_tos() == long2_type(), "must be 2nd half");
328      pop();
329      assert(is_long(type_at_tos()), "must be long");
330      pop();
331    }
332    void      push_object(ciKlass* klass) {
333      push(klass);
334    }
335    void      pop_object() {
336      assert(is_reference(type_at_tos()), "must be reference type");
337      pop();
338    }
339    void      pop_array() {
340      assert(type_at_tos() == null_type() ||
341             type_at_tos()->is_array_klass(), "must be array type");
342      pop();
343    }
344    // pop_objArray and pop_typeArray narrow the tos to ciObjArrayKlass
345    // or ciTypeArrayKlass (resp.).  In the rare case that an explicit
346    // null is popped from the stack, we return NULL.  Caller beware.
347    ciObjArrayKlass* pop_objArray() {
348      ciType* array = pop_value();
349      if (array == null_type())  return NULL;
350      assert(array->is_obj_array_klass(), "must be object array type");
351      return array->as_obj_array_klass();
352    }
353    ciTypeArrayKlass* pop_typeArray() {
354      ciType* array = pop_value();
355      if (array == null_type())  return NULL;
356      assert(array->is_type_array_klass(), "must be prim array type");
357      return array->as_type_array_klass();
358    }
359    void      push_null() {
360      push(null_type());
361    }
362    void      do_null_assert(ciKlass* unloaded_klass);
363
364    // Helper convenience routines.
365    void do_aaload(ciBytecodeStream* str);
366    void do_checkcast(ciBytecodeStream* str);
367    void do_getfield(ciBytecodeStream* str);
368    void do_getstatic(ciBytecodeStream* str);
369    void do_invoke(ciBytecodeStream* str, bool has_receiver);
370    void do_jsr(ciBytecodeStream* str);
371    void do_ldc(ciBytecodeStream* str);
372    void do_multianewarray(ciBytecodeStream* str);
373    void do_new(ciBytecodeStream* str);
374    void do_newarray(ciBytecodeStream* str);
375    void do_putfield(ciBytecodeStream* str);
376    void do_putstatic(ciBytecodeStream* str);
377    void do_ret(ciBytecodeStream* str);
378
379    void overwrite_local_double_long(int index) {
380      // Invalidate the previous local if it contains first half of
381      // a double or long value since it's seconf half is being overwritten.
382      int prev_index = index - 1;
383      if (prev_index >= 0 &&
384          (is_double(type_at(local(prev_index))) ||
385           is_long(type_at(local(prev_index))))) {
386        set_type_at(local(prev_index), bottom_type());
387      }
388    }
389
390    void load_local_object(int index) {
391      ciType* type = type_at(local(index));
392      assert(is_reference(type), "must be reference type");
393      push(type);
394    }
395    void store_local_object(int index) {
396      ciType* type = pop_value();
397      assert(is_reference(type) || type->is_return_address(),
398             "must be reference type or return address");
399      overwrite_local_double_long(index);
400      set_type_at(local(index), type);
401      store_to_local(index);
402    }
403
404    void load_local_double(int index) {
405      ciType* type = type_at(local(index));
406      ciType* type2 = type_at(local(index+1));
407      assert(is_double(type), "must be double type");
408      assert(type2 == double2_type(), "must be 2nd half");
409      push(type);
410      push(double2_type());
411    }
412    void store_local_double(int index) {
413      ciType* type2 = pop_value();
414      ciType* type = pop_value();
415      assert(is_double(type), "must be double");
416      assert(type2 == double2_type(), "must be 2nd half");
417      overwrite_local_double_long(index);
418      set_type_at(local(index), type);
419      set_type_at(local(index+1), type2);
420      store_to_local(index);
421      store_to_local(index+1);
422    }
423
424    void load_local_float(int index) {
425      ciType* type = type_at(local(index));
426      assert(is_float(type), "must be float type");
427      push(type);
428    }
429    void store_local_float(int index) {
430      ciType* type = pop_value();
431      assert(is_float(type), "must be float type");
432      overwrite_local_double_long(index);
433      set_type_at(local(index), type);
434      store_to_local(index);
435    }
436
437    void load_local_int(int index) {
438      ciType* type = type_at(local(index));
439      assert(is_int(type), "must be int type");
440      push(type);
441    }
442    void store_local_int(int index) {
443      ciType* type = pop_value();
444      assert(is_int(type), "must be int type");
445      overwrite_local_double_long(index);
446      set_type_at(local(index), type);
447      store_to_local(index);
448    }
449
450    void load_local_long(int index) {
451      ciType* type = type_at(local(index));
452      ciType* type2 = type_at(local(index+1));
453      assert(is_long(type), "must be long type");
454      assert(type2 == long2_type(), "must be 2nd half");
455      push(type);
456      push(long2_type());
457    }
458    void store_local_long(int index) {
459      ciType* type2 = pop_value();
460      ciType* type = pop_value();
461      assert(is_long(type), "must be long");
462      assert(type2 == long2_type(), "must be 2nd half");
463      overwrite_local_double_long(index);
464      set_type_at(local(index), type);
465      set_type_at(local(index+1), type2);
466      store_to_local(index);
467      store_to_local(index+1);
468    }
469
470    // Stop interpretation of this path with a trap.
471    void trap(ciBytecodeStream* str, ciKlass* klass, int index);
472
473  public:
474    StateVector(ciTypeFlow* outer);
475
476    // Copy our value into some other StateVector
477    void copy_into(StateVector* copy) const;
478
479    // Meets this StateVector with another, destructively modifying this
480    // one.  Returns true if any modification takes place.
481    bool meet(const StateVector* incoming);
482
483    // Ditto, except that the incoming state is coming from an exception.
484    bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming);
485
486    // Apply the effect of one bytecode to this StateVector
487    bool apply_one_bytecode(ciBytecodeStream* stream);
488
489    // What is the bci of the trap?
490    int  trap_bci() { return _trap_bci; }
491
492    // What is the index associated with the trap?
493    int  trap_index() { return _trap_index; }
494
495    void print_cell_on(outputStream* st, Cell c) const PRODUCT_RETURN;
496    void print_on(outputStream* st) const              PRODUCT_RETURN;
497  };
498
499  // Parameter for "find_block" calls:
500  // Describes the difference between a public and backedge copy.
501  enum CreateOption {
502    create_public_copy,
503    create_backedge_copy,
504    no_create
505  };
506
507  // Successor iterator
508  class SuccIter : public StackObj {
509  private:
510    Block* _pred;
511    int    _index;
512    Block* _succ;
513  public:
514    SuccIter()                        : _pred(NULL), _index(-1), _succ(NULL) {}
515    SuccIter(Block* pred)             : _pred(pred), _index(-1), _succ(NULL) { next(); }
516    int    index()     { return _index; }
517    Block* pred()      { return _pred; }           // Return predecessor
518    bool   done()      { return _index < 0; }      // Finished?
519    Block* succ()      { return _succ; }           // Return current successor
520    void   next();                                 // Advance
521    void   set_succ(Block* succ);                  // Update current successor
522    bool   is_normal_ctrl() { return index() < _pred->successors()->length(); }
523  };
524
525  // A basic block
526  class Block : public ResourceObj {
527  private:
528    ciBlock*                          _ciblock;
529    GrowableArray<Block*>*           _exceptions;
530    GrowableArray<ciInstanceKlass*>* _exc_klasses;
531    GrowableArray<Block*>*           _successors;
532    GrowableArray<Block*>*           _predecessors;
533    StateVector*                     _state;
534    JsrSet*                          _jsrs;
535
536    int                              _trap_bci;
537    int                              _trap_index;
538
539    // pre_order, assigned at first visit. Used as block ID and "visited" tag
540    int                              _pre_order;
541
542    // A post-order, used to compute the reverse post order (RPO) provided to the client
543    int                              _post_order;  // used to compute rpo
544
545    // Has this block been cloned for a loop backedge?
546    bool                             _backedge_copy;
547
548    // This block is entry to irreducible loop.
549    bool                             _irreducible_entry;
550
551    // This block has monitor entry point.
552    bool                             _has_monitorenter;
553
554    // A pointer used for our internal work list
555    bool                             _on_work_list;      // on the work list
556    Block*                           _next;
557    Block*                           _rpo_next;          // Reverse post order list
558
559    // Loop info
560    Loop*                            _loop;              // nearest loop
561
562    ciBlock*     ciblock() const     { return _ciblock; }
563    StateVector* state() const     { return _state; }
564
565    // Compute the exceptional successors and types for this Block.
566    void compute_exceptions();
567
568  public:
569    // constructors
570    Block(ciTypeFlow* outer, ciBlock* ciblk, JsrSet* jsrs);
571
572    void set_trap(int trap_bci, int trap_index) {
573      _trap_bci = trap_bci;
574      _trap_index = trap_index;
575      assert(has_trap(), "");
576    }
577    bool has_trap()   const  { return _trap_bci != -1; }
578    int  trap_bci()   const  { assert(has_trap(), ""); return _trap_bci; }
579    int  trap_index() const  { assert(has_trap(), ""); return _trap_index; }
580
581    // accessors
582    ciTypeFlow* outer() const { return state()->outer(); }
583    int start() const         { return _ciblock->start_bci(); }
584    int limit() const         { return _ciblock->limit_bci(); }
585    int control() const       { return _ciblock->control_bci(); }
586    JsrSet* jsrs() const      { return _jsrs; }
587
588    bool    is_backedge_copy() const       { return _backedge_copy; }
589    void   set_backedge_copy(bool z);
590    int        backedge_copy_count() const { return outer()->backedge_copy_count(ciblock()->index(), _jsrs); }
591
592    // access to entry state
593    int     stack_size() const         { return _state->stack_size(); }
594    int     monitor_count() const      { return _state->monitor_count(); }
595    ciType* local_type_at(int i) const { return _state->local_type_at(i); }
596    ciType* stack_type_at(int i) const { return _state->stack_type_at(i); }
597
598    // Data flow on locals
599    bool is_invariant_local(uint v) const {
600      assert(is_loop_head(), "only loop heads");
601      // Find outermost loop with same loop head
602      Loop* lp = loop();
603      while (lp->parent() != NULL) {
604        if (lp->parent()->head() != lp->head()) break;
605        lp = lp->parent();
606      }
607      return !lp->def_locals()->test(v);
608    }
609    LocalSet* def_locals() { return _state->def_locals(); }
610    const LocalSet* def_locals() const { return _state->def_locals(); }
611
612    // Get the successors for this Block.
613    GrowableArray<Block*>* successors(ciBytecodeStream* str,
614                                      StateVector* state,
615                                      JsrSet* jsrs);
616    GrowableArray<Block*>* successors() {
617      assert(_successors != NULL, "must be filled in");
618      return _successors;
619    }
620
621    // Predecessors of this block (including exception edges)
622    GrowableArray<Block*>* predecessors() {
623      assert(_predecessors != NULL, "must be filled in");
624      return _predecessors;
625    }
626
627    // Get the exceptional successors for this Block.
628    GrowableArray<Block*>* exceptions() {
629      if (_exceptions == NULL) {
630        compute_exceptions();
631      }
632      return _exceptions;
633    }
634
635    // Get the exception klasses corresponding to the
636    // exceptional successors for this Block.
637    GrowableArray<ciInstanceKlass*>* exc_klasses() {
638      if (_exc_klasses == NULL) {
639        compute_exceptions();
640      }
641      return _exc_klasses;
642    }
643
644    // Is this Block compatible with a given JsrSet?
645    bool is_compatible_with(JsrSet* other) {
646      return _jsrs->is_compatible_with(other);
647    }
648
649    // Copy the value of our state vector into another.
650    void copy_state_into(StateVector* copy) const {
651      _state->copy_into(copy);
652    }
653
654    // Copy the value of our JsrSet into another
655    void copy_jsrs_into(JsrSet* copy) const {
656      _jsrs->copy_into(copy);
657    }
658
659    // Meets the start state of this block with another state, destructively
660    // modifying this one.  Returns true if any modification takes place.
661    bool meet(const StateVector* incoming) {
662      return state()->meet(incoming);
663    }
664
665    // Ditto, except that the incoming state is coming from an
666    // exception path.  This means the stack is replaced by the
667    // appropriate exception type.
668    bool meet_exception(ciInstanceKlass* exc, const StateVector* incoming) {
669      return state()->meet_exception(exc, incoming);
670    }
671
672    // Work list manipulation
673    void   set_next(Block* block) { _next = block; }
674    Block* next() const           { return _next; }
675
676    void   set_on_work_list(bool c) { _on_work_list = c; }
677    bool   is_on_work_list() const  { return _on_work_list; }
678
679    bool   has_pre_order() const  { return _pre_order >= 0; }
680    void   set_pre_order(int po)  { assert(!has_pre_order(), ""); _pre_order = po; }
681    int    pre_order() const      { assert(has_pre_order(), ""); return _pre_order; }
682    void   set_next_pre_order()   { set_pre_order(outer()->inc_next_pre_order()); }
683    bool   is_start() const       { return _pre_order == outer()->start_block_num(); }
684
685    // Reverse post order
686    void   df_init();
687    bool   has_post_order() const { return _post_order >= 0; }
688    void   set_post_order(int po) { assert(!has_post_order() && po >= 0, ""); _post_order = po; }
689    void   reset_post_order(int o){ _post_order = o; }
690    int    post_order() const     { assert(has_post_order(), ""); return _post_order; }
691
692    bool   has_rpo() const        { return has_post_order() && outer()->have_block_count(); }
693    int    rpo() const            { assert(has_rpo(), ""); return outer()->block_count() - post_order() - 1; }
694    void   set_rpo_next(Block* b) { _rpo_next = b; }
695    Block* rpo_next()             { return _rpo_next; }
696
697    // Loops
698    Loop*  loop() const                  { return _loop; }
699    void   set_loop(Loop* lp)            { _loop = lp; }
700    bool   is_loop_head() const          { return _loop && _loop->head() == this; }
701    void   set_irreducible_entry(bool c) { _irreducible_entry = c; }
702    bool   is_irreducible_entry() const  { return _irreducible_entry; }
703    void   set_has_monitorenter()        { _has_monitorenter = true; }
704    bool   has_monitorenter() const      { return _has_monitorenter; }
705    bool   is_visited() const            { return has_pre_order(); }
706    bool   is_post_visited() const       { return has_post_order(); }
707    bool   is_clonable_exit(Loop* lp);
708    Block* looping_succ(Loop* lp);       // Successor inside of loop
709    bool   is_single_entry_loop_head() const {
710      if (!is_loop_head()) return false;
711      for (Loop* lp = loop(); lp != NULL && lp->head() == this; lp = lp->parent())
712        if (lp->is_irreducible()) return false;
713      return true;
714    }
715
716    void   print_value_on(outputStream* st) const PRODUCT_RETURN;
717    void   print_on(outputStream* st) const       PRODUCT_RETURN;
718  };
719
720  // Loop
721  class Loop : public ResourceObj {
722  private:
723    Loop* _parent;
724    Loop* _sibling;  // List of siblings, null terminated
725    Loop* _child;    // Head of child list threaded thru sibling pointer
726    Block* _head;    // Head of loop
727    Block* _tail;    // Tail of loop
728    bool   _irreducible;
729    LocalSet _def_locals;
730
731  public:
732    Loop(Block* head, Block* tail) :
733      _head(head),   _tail(tail),
734      _parent(NULL), _sibling(NULL), _child(NULL),
735      _irreducible(false), _def_locals() {}
736
737    Loop* parent()  const { return _parent; }
738    Loop* sibling() const { return _sibling; }
739    Loop* child()   const { return _child; }
740    Block* head()   const { return _head; }
741    Block* tail()   const { return _tail; }
742    void set_parent(Loop* p)  { _parent = p; }
743    void set_sibling(Loop* s) { _sibling = s; }
744    void set_child(Loop* c)   { _child = c; }
745    void set_head(Block* hd)  { _head = hd; }
746    void set_tail(Block* tl)  { _tail = tl; }
747
748    int depth() const;              // nesting depth
749
750    // Returns true if lp is a nested loop or us.
751    bool contains(Loop* lp) const;
752    bool contains(Block* blk) const { return contains(blk->loop()); }
753
754    // Data flow on locals
755    LocalSet* def_locals() { return &_def_locals; }
756    const LocalSet* def_locals() const { return &_def_locals; }
757
758    // Merge the branch lp into this branch, sorting on the loop head
759    // pre_orders. Returns the new branch.
760    Loop* sorted_merge(Loop* lp);
761
762    // Mark non-single entry to loop
763    void set_irreducible(Block* entry) {
764      _irreducible = true;
765      entry->set_irreducible_entry(true);
766    }
767    bool is_irreducible() const { return _irreducible; }
768
769    bool is_root() const { return _tail->pre_order() == max_jint; }
770
771    void print(outputStream* st = tty, int indent = 0) const PRODUCT_RETURN;
772  };
773
774  // Postorder iteration over the loop tree.
775  class PostorderLoops : public StackObj {
776  private:
777    Loop* _root;
778    Loop* _current;
779  public:
780    PostorderLoops(Loop* root) : _root(root), _current(root) {
781      while (_current->child() != NULL) {
782        _current = _current->child();
783      }
784    }
785    bool done() { return _current == NULL; }  // Finished iterating?
786    void next();                            // Advance to next loop
787    Loop* current() { return _current; }      // Return current loop.
788  };
789
790  // Preorder iteration over the loop tree.
791  class PreorderLoops : public StackObj {
792  private:
793    Loop* _root;
794    Loop* _current;
795  public:
796    PreorderLoops(Loop* root) : _root(root), _current(root) {}
797    bool done() { return _current == NULL; }  // Finished iterating?
798    void next();                            // Advance to next loop
799    Loop* current() { return _current; }      // Return current loop.
800  };
801
802  // Standard indexes of successors, for various bytecodes.
803  enum {
804    FALL_THROUGH   = 0,  // normal control
805    IF_NOT_TAKEN   = 0,  // the not-taken branch of an if (i.e., fall-through)
806    IF_TAKEN       = 1,  // the taken branch of an if
807    GOTO_TARGET    = 0,  // unique successor for goto, jsr, or ret
808    SWITCH_DEFAULT = 0,  // default branch of a switch
809    SWITCH_CASES   = 1   // first index for any non-default switch branches
810    // Unlike in other blocks, the successors of a switch are listed uniquely.
811  };
812
813private:
814  // A mapping from pre_order to Blocks.  This array is created
815  // only at the end of the flow.
816  Block** _block_map;
817
818  // For each ciBlock index, a list of Blocks which share this ciBlock.
819  GrowableArray<Block*>** _idx_to_blocklist;
820  // count of ciBlocks
821  int _ciblock_count;
822
823  // Tells if a given instruction is able to generate an exception edge.
824  bool can_trap(ciBytecodeStream& str);
825
826  // Clone the loop heads. Returns true if any cloning occurred.
827  bool clone_loop_heads(Loop* lp, StateVector* temp_vector, JsrSet* temp_set);
828
829  // Clone lp's head and replace tail's successors with clone.
830  Block* clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set);
831
832public:
833  // Return the block beginning at bci which has a JsrSet compatible
834  // with jsrs.
835  Block* block_at(int bci, JsrSet* set, CreateOption option = create_public_copy);
836
837  // block factory
838  Block* get_block_for(int ciBlockIndex, JsrSet* jsrs, CreateOption option = create_public_copy);
839
840  // How many of the blocks have the backedge_copy bit set?
841  int backedge_copy_count(int ciBlockIndex, JsrSet* jsrs) const;
842
843  // Return an existing block containing bci which has a JsrSet compatible
844  // with jsrs, or NULL if there is none.
845  Block* existing_block_at(int bci, JsrSet* set) { return block_at(bci, set, no_create); }
846
847  // Tell whether the flow analysis has encountered an error of some sort.
848  bool failing() { return env()->failing() || _failure_reason != NULL; }
849
850  // Reason this compilation is failing, such as "too many basic blocks".
851  const char* failure_reason() { return _failure_reason; }
852
853  // Note a failure.
854  void record_failure(const char* reason);
855
856  // Return the block of a given pre-order number.
857  int have_block_count() const      { return _block_map != NULL; }
858  int block_count() const           { assert(have_block_count(), "");
859                                      return _next_pre_order; }
860  Block* pre_order_at(int po) const { assert(0 <= po && po < block_count(), "out of bounds");
861                                      return _block_map[po]; }
862  Block* start_block() const        { return pre_order_at(start_block_num()); }
863  int start_block_num() const       { return 0; }
864  Block* rpo_at(int rpo) const      { assert(0 <= rpo && rpo < block_count(), "out of bounds");
865                                      return _block_map[rpo]; }
866  int next_pre_order()              { return _next_pre_order; }
867  int inc_next_pre_order()          { return _next_pre_order++; }
868
869private:
870  // A work list used during flow analysis.
871  Block* _work_list;
872
873  // List of blocks in reverse post order
874  Block* _rpo_list;
875
876  // Next Block::_pre_order.  After mapping, doubles as block_count.
877  int _next_pre_order;
878
879  // Are there more blocks on the work list?
880  bool work_list_empty() { return _work_list == NULL; }
881
882  // Get the next basic block from our work list.
883  Block* work_list_next();
884
885  // Add a basic block to our work list.
886  void add_to_work_list(Block* block);
887
888  // Prepend a basic block to rpo list.
889  void prepend_to_rpo_list(Block* blk) {
890    blk->set_rpo_next(_rpo_list);
891    _rpo_list = blk;
892  }
893
894  // Root of the loop tree
895  Loop* _loop_tree_root;
896
897  // State used for make_jsr_record
898  int _jsr_count;
899  GrowableArray<JsrRecord*>* _jsr_records;
900
901public:
902  // Make a JsrRecord for a given (entry, return) pair, if such a record
903  // does not already exist.
904  JsrRecord* make_jsr_record(int entry_address, int return_address);
905
906  void  set_loop_tree_root(Loop* ltr) { _loop_tree_root = ltr; }
907  Loop* loop_tree_root()              { return _loop_tree_root; }
908
909private:
910  // Get the initial state for start_bci:
911  const StateVector* get_start_state();
912
913  // Merge the current state into all exceptional successors at the
914  // current point in the code.
915  void flow_exceptions(GrowableArray<Block*>* exceptions,
916                       GrowableArray<ciInstanceKlass*>* exc_klasses,
917                       StateVector* state);
918
919  // Merge the current state into all successors at the current point
920  // in the code.
921  void flow_successors(GrowableArray<Block*>* successors,
922                       StateVector* state);
923
924  // Interpret the effects of the bytecodes on the incoming state
925  // vector of a basic block.  Push the changed state to succeeding
926  // basic blocks.
927  void flow_block(Block* block,
928                  StateVector* scratch_state,
929                  JsrSet* scratch_jsrs);
930
931  // Perform the type flow analysis, creating and cloning Blocks as
932  // necessary.
933  void flow_types();
934
935  // Perform the depth first type flow analysis. Helper for flow_types.
936  void df_flow_types(Block* start,
937                     bool do_flow,
938                     StateVector* temp_vector,
939                     JsrSet* temp_set);
940
941  // Incrementally build loop tree.
942  void build_loop_tree(Block* blk);
943
944  // Create the block map, which indexes blocks in pre_order.
945  void map_blocks();
946
947public:
948  // Perform type inference flow analysis.
949  void do_flow();
950
951  // Determine if bci is dominated by dom_bci
952  bool is_dominated_by(int bci, int dom_bci);
953
954  void print_on(outputStream* st) const PRODUCT_RETURN;
955
956  void rpo_print_on(outputStream* st) const PRODUCT_RETURN;
957};
958
959#endif // SHARE_VM_CI_CITYPEFLOW_HPP
960