c1_IR.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_IR.cpp.incl"
27
28
29// Implementation of XHandlers
30//
31// Note: This code could eventually go away if we are
32//       just using the ciExceptionHandlerStream.
33
34XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
35  ciExceptionHandlerStream s(method);
36  while (!s.is_done()) {
37    _list.append(new XHandler(s.handler()));
38    s.next();
39  }
40  assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
41}
42
43// deep copy of all XHandler contained in list
44XHandlers::XHandlers(XHandlers* other) :
45  _list(other->length())
46{
47  for (int i = 0; i < other->length(); i++) {
48    _list.append(new XHandler(other->handler_at(i)));
49  }
50}
51
52// Returns whether a particular exception type can be caught.  Also
53// returns true if klass is unloaded or any exception handler
54// classes are unloaded.  type_is_exact indicates whether the throw
55// is known to be exactly that class or it might throw a subtype.
56bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
57  // the type is unknown so be conservative
58  if (!klass->is_loaded()) {
59    return true;
60  }
61
62  for (int i = 0; i < length(); i++) {
63    XHandler* handler = handler_at(i);
64    if (handler->is_catch_all()) {
65      // catch of ANY
66      return true;
67    }
68    ciInstanceKlass* handler_klass = handler->catch_klass();
69    // if it's unknown it might be catchable
70    if (!handler_klass->is_loaded()) {
71      return true;
72    }
73    // if the throw type is definitely a subtype of the catch type
74    // then it can be caught.
75    if (klass->is_subtype_of(handler_klass)) {
76      return true;
77    }
78    if (!type_is_exact) {
79      // If the type isn't exactly known then it can also be caught by
80      // catch statements where the inexact type is a subtype of the
81      // catch type.
82      // given: foo extends bar extends Exception
83      // throw bar can be caught by catch foo, catch bar, and catch
84      // Exception, however it can't be caught by any handlers without
85      // bar in its type hierarchy.
86      if (handler_klass->is_subtype_of(klass)) {
87        return true;
88      }
89    }
90  }
91
92  return false;
93}
94
95
96bool XHandlers::equals(XHandlers* others) const {
97  if (others == NULL) return false;
98  if (length() != others->length()) return false;
99
100  for (int i = 0; i < length(); i++) {
101    if (!handler_at(i)->equals(others->handler_at(i))) return false;
102  }
103  return true;
104}
105
106bool XHandler::equals(XHandler* other) const {
107  assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
108
109  if (entry_pco() != other->entry_pco()) return false;
110  if (scope_count() != other->scope_count()) return false;
111  if (_desc != other->_desc) return false;
112
113  assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
114  return true;
115}
116
117
118// Implementation of IRScope
119
120BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
121  if (entry == NULL) return NULL;
122  assert(entry->is_set(f), "entry/flag mismatch");
123  // create header block
124  BlockBegin* h = new BlockBegin(entry->bci());
125  BlockEnd* g = new Goto(entry, false);
126  h->set_next(g, entry->bci());
127  h->set_end(g);
128  h->set(f);
129  // setup header block end state
130  ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
131  assert(s->stack_is_empty(), "must have empty stack at entry point");
132  g->set_state(s);
133  return h;
134}
135
136
137BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
138  GraphBuilder gm(compilation, this);
139  NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
140  if (compilation->bailed_out()) return NULL;
141  return gm.start();
142}
143
144
145IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
146: _callees(2)
147, _compilation(compilation)
148, _lock_stack_size(-1)
149, _requires_phi_function(method->max_locals())
150{
151  _caller             = caller;
152  _caller_bci         = caller == NULL ? -1 : caller_bci;
153  _caller_state       = NULL; // Must be set later if needed
154  _level              = caller == NULL ?  0 : caller->level() + 1;
155  _method             = method;
156  _xhandlers          = new XHandlers(method);
157  _number_of_locks    = 0;
158  _monitor_pairing_ok = method->has_balanced_monitors();
159  _start              = NULL;
160
161  if (osr_bci == -1) {
162    _requires_phi_function.clear();
163  } else {
164        // selective creation of phi functions is not possibel in osr-methods
165    _requires_phi_function.set_range(0, method->max_locals());
166  }
167
168  assert(method->holder()->is_loaded() , "method holder must be loaded");
169
170  // build graph if monitor pairing is ok
171  if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
172}
173
174
175int IRScope::max_stack() const {
176  int my_max = method()->max_stack();
177  int callee_max = 0;
178  for (int i = 0; i < number_of_callees(); i++) {
179    callee_max = MAX2(callee_max, callee_no(i)->max_stack());
180  }
181  return my_max + callee_max;
182}
183
184
185void IRScope::compute_lock_stack_size() {
186  if (!InlineMethodsWithExceptionHandlers) {
187    _lock_stack_size = 0;
188    return;
189  }
190
191  // Figure out whether we have to preserve expression stack elements
192  // for parent scopes, and if so, how many
193  IRScope* cur_scope = this;
194  while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
195    cur_scope = cur_scope->caller();
196  }
197  _lock_stack_size = (cur_scope == NULL ? 0 :
198                      (cur_scope->caller_state() == NULL ? 0 :
199                       cur_scope->caller_state()->stack_size()));
200}
201
202int IRScope::top_scope_bci() const {
203  assert(!is_top_scope(), "no correct answer for top scope possible");
204  const IRScope* scope = this;
205  while (!scope->caller()->is_top_scope()) {
206    scope = scope->caller();
207  }
208  return scope->caller_bci();
209}
210
211bool IRScopeDebugInfo::should_reexecute() {
212  ciMethod* cur_method = scope()->method();
213  int       cur_bci    = bci();
214  if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
215    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
216    return Interpreter::bytecode_should_reexecute(code);
217  } else
218    return false;
219}
220
221
222// Implementation of CodeEmitInfo
223
224// Stack must be NON-null
225CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
226  : _scope(stack->scope())
227  , _bci(bci)
228  , _scope_debug_info(NULL)
229  , _oop_map(NULL)
230  , _stack(stack)
231  , _exception_handlers(exception_handlers)
232  , _next(NULL)
233  , _id(-1) {
234  assert(_stack != NULL, "must be non null");
235  assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
236}
237
238
239CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
240  : _scope(info->_scope)
241  , _exception_handlers(NULL)
242  , _bci(info->_bci)
243  , _scope_debug_info(NULL)
244  , _oop_map(NULL) {
245  if (lock_stack_only) {
246    if (info->_stack != NULL) {
247      _stack = info->_stack->copy_locks();
248    } else {
249      _stack = NULL;
250    }
251  } else {
252    _stack = info->_stack;
253  }
254
255  // deep copy of exception handlers
256  if (info->_exception_handlers != NULL) {
257    _exception_handlers = new XHandlers(info->_exception_handlers);
258  }
259}
260
261
262void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset, bool is_method_handle_invoke) {
263  // record the safepoint before recording the debug info for enclosing scopes
264  recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
265  _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, is_method_handle_invoke);
266  recorder->end_safepoint(pc_offset);
267}
268
269
270void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
271  assert(_oop_map != NULL, "oop map must already exist");
272  assert(opr->is_single_cpu(), "should not call otherwise");
273
274  int frame_size = frame_map()->framesize();
275  int arg_count = frame_map()->oop_map_arg_count();
276  VMReg name = frame_map()->regname(opr);
277  _oop_map->set_oop(name);
278}
279
280
281
282
283// Implementation of IR
284
285IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
286    _locals_size(in_WordSize(-1))
287  , _num_loops(0) {
288  // initialize data structures
289  ValueType::initialize();
290  Instruction::initialize();
291  BlockBegin::initialize();
292  GraphBuilder::initialize();
293  // setup IR fields
294  _compilation = compilation;
295  _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
296  _code        = NULL;
297}
298
299
300void IR::optimize() {
301  Optimizer opt(this);
302  if (DoCEE) {
303    opt.eliminate_conditional_expressions();
304#ifndef PRODUCT
305    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
306    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
307#endif
308  }
309  if (EliminateBlocks) {
310    opt.eliminate_blocks();
311#ifndef PRODUCT
312    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
313    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
314#endif
315  }
316  if (EliminateNullChecks) {
317    opt.eliminate_null_checks();
318#ifndef PRODUCT
319    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
320    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
321#endif
322  }
323}
324
325
326static int sort_pairs(BlockPair** a, BlockPair** b) {
327  if ((*a)->from() == (*b)->from()) {
328    return (*a)->to()->block_id() - (*b)->to()->block_id();
329  } else {
330    return (*a)->from()->block_id() - (*b)->from()->block_id();
331  }
332}
333
334
335class CriticalEdgeFinder: public BlockClosure {
336  BlockPairList blocks;
337  IR*       _ir;
338
339 public:
340  CriticalEdgeFinder(IR* ir): _ir(ir) {}
341  void block_do(BlockBegin* bb) {
342    BlockEnd* be = bb->end();
343    int nos = be->number_of_sux();
344    if (nos >= 2) {
345      for (int i = 0; i < nos; i++) {
346        BlockBegin* sux = be->sux_at(i);
347        if (sux->number_of_preds() >= 2) {
348          blocks.append(new BlockPair(bb, sux));
349        }
350      }
351    }
352  }
353
354  void split_edges() {
355    BlockPair* last_pair = NULL;
356    blocks.sort(sort_pairs);
357    for (int i = 0; i < blocks.length(); i++) {
358      BlockPair* pair = blocks.at(i);
359      if (last_pair != NULL && pair->is_same(last_pair)) continue;
360      BlockBegin* from = pair->from();
361      BlockBegin* to = pair->to();
362      BlockBegin* split = from->insert_block_between(to);
363#ifndef PRODUCT
364      if ((PrintIR || PrintIR1) && Verbose) {
365        tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
366                      from->block_id(), to->block_id(), split->block_id());
367      }
368#endif
369      last_pair = pair;
370    }
371  }
372};
373
374void IR::split_critical_edges() {
375  CriticalEdgeFinder cef(this);
376
377  iterate_preorder(&cef);
378  cef.split_edges();
379}
380
381
382class UseCountComputer: public AllStatic {
383 private:
384  static void update_use_count(Value* n) {
385    // Local instructions and Phis for expression stack values at the
386    // start of basic blocks are not added to the instruction list
387    if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
388        (*n)->as_Phi() == NULL) {
389      assert(false, "a node was not appended to the graph");
390      Compilation::current_compilation()->bailout("a node was not appended to the graph");
391    }
392    // use n's input if not visited before
393    if (!(*n)->is_pinned() && !(*n)->has_uses()) {
394      // note: a) if the instruction is pinned, it will be handled by compute_use_count
395      //       b) if the instruction has uses, it was touched before
396      //       => in both cases we don't need to update n's values
397      uses_do(n);
398    }
399    // use n
400    (*n)->_use_count++;
401  }
402
403  static Values* worklist;
404  static int depth;
405  enum {
406    max_recurse_depth = 20
407  };
408
409  static void uses_do(Value* n) {
410    depth++;
411    if (depth > max_recurse_depth) {
412      // don't allow the traversal to recurse too deeply
413      worklist->push(*n);
414    } else {
415      (*n)->input_values_do(update_use_count);
416      // special handling for some instructions
417      if ((*n)->as_BlockEnd() != NULL) {
418        // note on BlockEnd:
419        //   must 'use' the stack only if the method doesn't
420        //   terminate, however, in those cases stack is empty
421        (*n)->state_values_do(update_use_count);
422      }
423    }
424    depth--;
425  }
426
427  static void basic_compute_use_count(BlockBegin* b) {
428    depth = 0;
429    // process all pinned nodes as the roots of expression trees
430    for (Instruction* n = b; n != NULL; n = n->next()) {
431      if (n->is_pinned()) uses_do(&n);
432    }
433    assert(depth == 0, "should have counted back down");
434
435    // now process any unpinned nodes which recursed too deeply
436    while (worklist->length() > 0) {
437      Value t = worklist->pop();
438      if (!t->is_pinned()) {
439        // compute the use count
440        uses_do(&t);
441
442        // pin the instruction so that LIRGenerator doesn't recurse
443        // too deeply during it's evaluation.
444        t->pin();
445      }
446    }
447    assert(depth == 0, "should have counted back down");
448  }
449
450 public:
451  static void compute(BlockList* blocks) {
452    worklist = new Values();
453    blocks->blocks_do(basic_compute_use_count);
454    worklist = NULL;
455  }
456};
457
458
459Values* UseCountComputer::worklist = NULL;
460int UseCountComputer::depth = 0;
461
462// helper macro for short definition of trace-output inside code
463#ifndef PRODUCT
464  #define TRACE_LINEAR_SCAN(level, code)       \
465    if (TraceLinearScanLevel >= level) {       \
466      code;                                    \
467    }
468#else
469  #define TRACE_LINEAR_SCAN(level, code)
470#endif
471
472class ComputeLinearScanOrder : public StackObj {
473 private:
474  int        _max_block_id;        // the highest block_id of a block
475  int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
476  int        _num_loops;           // total number of loops
477  bool       _iterative_dominators;// method requires iterative computation of dominatiors
478
479  BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
480
481  BitMap     _visited_blocks;      // used for recursive processing of blocks
482  BitMap     _active_blocks;       // used for recursive processing of blocks
483  BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
484  intArray   _forward_branches;    // number of incoming forward branches for each block
485  BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
486  BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
487  BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
488
489  // accessors for _visited_blocks and _active_blocks
490  void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
491  bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
492  bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
493  void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
494  void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
495  void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
496
497  // accessors for _forward_branches
498  void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
499  int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
500
501  // accessors for _loop_map
502  bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
503  void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
504  void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
505
506  // count edges between blocks
507  void count_edges(BlockBegin* cur, BlockBegin* parent);
508
509  // loop detection
510  void mark_loops();
511  void clear_non_natural_loops(BlockBegin* start_block);
512  void assign_loop_depth(BlockBegin* start_block);
513
514  // computation of final block order
515  BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
516  void compute_dominator(BlockBegin* cur, BlockBegin* parent);
517  int  compute_weight(BlockBegin* cur);
518  bool ready_for_processing(BlockBegin* cur);
519  void sort_into_work_list(BlockBegin* b);
520  void append_block(BlockBegin* cur);
521  void compute_order(BlockBegin* start_block);
522
523  // fixup of dominators for non-natural loops
524  bool compute_dominators_iter();
525  void compute_dominators();
526
527  // debug functions
528  NOT_PRODUCT(void print_blocks();)
529  DEBUG_ONLY(void verify();)
530
531 public:
532  ComputeLinearScanOrder(BlockBegin* start_block);
533
534  // accessors for final result
535  BlockList* linear_scan_order() const    { return _linear_scan_order; }
536  int        num_loops() const            { return _num_loops; }
537};
538
539
540ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
541  _max_block_id(BlockBegin::number_of_blocks()),
542  _num_blocks(0),
543  _num_loops(0),
544  _iterative_dominators(false),
545  _visited_blocks(_max_block_id),
546  _active_blocks(_max_block_id),
547  _dominator_blocks(_max_block_id),
548  _forward_branches(_max_block_id, 0),
549  _loop_end_blocks(8),
550  _work_list(8),
551  _linear_scan_order(NULL), // initialized later with correct size
552  _loop_map(0, 0)           // initialized later with correct size
553{
554  TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
555
556  init_visited();
557  count_edges(start_block, NULL);
558
559  if (_num_loops > 0) {
560    mark_loops();
561    clear_non_natural_loops(start_block);
562    assign_loop_depth(start_block);
563  }
564
565  compute_order(start_block);
566  compute_dominators();
567
568  NOT_PRODUCT(print_blocks());
569  DEBUG_ONLY(verify());
570}
571
572
573// Traverse the CFG:
574// * count total number of blocks
575// * count all incoming edges and backward incoming edges
576// * number loop header blocks
577// * create a list with all loop end blocks
578void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
579  TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
580  assert(cur->dominator() == NULL, "dominator already initialized");
581
582  if (is_active(cur)) {
583    TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
584    assert(is_visited(cur), "block must be visisted when block is active");
585    assert(parent != NULL, "must have parent");
586
587    cur->set(BlockBegin::linear_scan_loop_header_flag);
588    cur->set(BlockBegin::backward_branch_target_flag);
589
590    parent->set(BlockBegin::linear_scan_loop_end_flag);
591
592    // When a loop header is also the start of an exception handler, then the backward branch is
593    // an exception edge. Because such edges are usually critical edges which cannot be split, the
594    // loop must be excluded here from processing.
595    if (cur->is_set(BlockBegin::exception_entry_flag)) {
596      // Make sure that dominators are correct in this weird situation
597      _iterative_dominators = true;
598      return;
599    }
600    assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
601           "loop end blocks must have one successor (critical edges are split)");
602
603    _loop_end_blocks.append(parent);
604    return;
605  }
606
607  // increment number of incoming forward branches
608  inc_forward_branches(cur);
609
610  if (is_visited(cur)) {
611    TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
612    return;
613  }
614
615  _num_blocks++;
616  set_visited(cur);
617  set_active(cur);
618
619  // recursive call for all successors
620  int i;
621  for (i = cur->number_of_sux() - 1; i >= 0; i--) {
622    count_edges(cur->sux_at(i), cur);
623  }
624  for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
625    count_edges(cur->exception_handler_at(i), cur);
626  }
627
628  clear_active(cur);
629
630  // Each loop has a unique number.
631  // When multiple loops are nested, assign_loop_depth assumes that the
632  // innermost loop has the lowest number. This is guaranteed by setting
633  // the loop number after the recursive calls for the successors above
634  // have returned.
635  if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
636    assert(cur->loop_index() == -1, "cannot set loop-index twice");
637    TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
638
639    cur->set_loop_index(_num_loops);
640    _num_loops++;
641  }
642
643  TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
644}
645
646
647void ComputeLinearScanOrder::mark_loops() {
648  TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
649
650  _loop_map = BitMap2D(_num_loops, _max_block_id);
651  _loop_map.clear();
652
653  for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
654    BlockBegin* loop_end   = _loop_end_blocks.at(i);
655    BlockBegin* loop_start = loop_end->sux_at(0);
656    int         loop_idx   = loop_start->loop_index();
657
658    TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
659    assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
660    assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
661    assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
662    assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
663    assert(_work_list.is_empty(), "work list must be empty before processing");
664
665    // add the end-block of the loop to the working list
666    _work_list.push(loop_end);
667    set_block_in_loop(loop_idx, loop_end);
668    do {
669      BlockBegin* cur = _work_list.pop();
670
671      TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
672      assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
673
674      // recursive processing of all predecessors ends when start block of loop is reached
675      if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
676        for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
677          BlockBegin* pred = cur->pred_at(j);
678
679          if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
680            // this predecessor has not been processed yet, so add it to work list
681            TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
682            _work_list.push(pred);
683            set_block_in_loop(loop_idx, pred);
684          }
685        }
686      }
687    } while (!_work_list.is_empty());
688  }
689}
690
691
692// check for non-natural loops (loops where the loop header does not dominate
693// all other loop blocks = loops with mulitple entries).
694// such loops are ignored
695void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
696  for (int i = _num_loops - 1; i >= 0; i--) {
697    if (is_block_in_loop(i, start_block)) {
698      // loop i contains the entry block of the method
699      // -> this is not a natural loop, so ignore it
700      TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
701
702      for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
703        clear_block_in_loop(i, block_id);
704      }
705      _iterative_dominators = true;
706    }
707  }
708}
709
710void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
711  TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
712  init_visited();
713
714  assert(_work_list.is_empty(), "work list must be empty before processing");
715  _work_list.append(start_block);
716
717  do {
718    BlockBegin* cur = _work_list.pop();
719
720    if (!is_visited(cur)) {
721      set_visited(cur);
722      TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
723
724      // compute loop-depth and loop-index for the block
725      assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
726      int i;
727      int loop_depth = 0;
728      int min_loop_idx = -1;
729      for (i = _num_loops - 1; i >= 0; i--) {
730        if (is_block_in_loop(i, cur)) {
731          loop_depth++;
732          min_loop_idx = i;
733        }
734      }
735      cur->set_loop_depth(loop_depth);
736      cur->set_loop_index(min_loop_idx);
737
738      // append all unvisited successors to work list
739      for (i = cur->number_of_sux() - 1; i >= 0; i--) {
740        _work_list.append(cur->sux_at(i));
741      }
742      for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
743        _work_list.append(cur->exception_handler_at(i));
744      }
745    }
746  } while (!_work_list.is_empty());
747}
748
749
750BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
751  assert(a != NULL && b != NULL, "must have input blocks");
752
753  _dominator_blocks.clear();
754  while (a != NULL) {
755    _dominator_blocks.set_bit(a->block_id());
756    assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
757    a = a->dominator();
758  }
759  while (b != NULL && !_dominator_blocks.at(b->block_id())) {
760    assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
761    b = b->dominator();
762  }
763
764  assert(b != NULL, "could not find dominator");
765  return b;
766}
767
768void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
769  if (cur->dominator() == NULL) {
770    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
771    cur->set_dominator(parent);
772
773  } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
774    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
775    assert(cur->number_of_preds() > 1, "");
776    cur->set_dominator(common_dominator(cur->dominator(), parent));
777  }
778}
779
780
781int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
782  BlockBegin* single_sux = NULL;
783  if (cur->number_of_sux() == 1) {
784    single_sux = cur->sux_at(0);
785  }
786
787  // limit loop-depth to 15 bit (only for security reason, it will never be so big)
788  int weight = (cur->loop_depth() & 0x7FFF) << 16;
789
790  // general macro for short definition of weight flags
791  // the first instance of INC_WEIGHT_IF has the highest priority
792  int cur_bit = 15;
793  #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
794
795  // this is necessery for the (very rare) case that two successing blocks have
796  // the same loop depth, but a different loop index (can happen for endless loops
797  // with exception handlers)
798  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
799
800  // loop end blocks (blocks that end with a backward branch) are added
801  // after all other blocks of the loop.
802  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
803
804  // critical edge split blocks are prefered because than they have a bigger
805  // proability to be completely empty
806  INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
807
808  // exceptions should not be thrown in normal control flow, so these blocks
809  // are added as late as possible
810  INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
811  INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
812
813  // exceptions handlers are added as late as possible
814  INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
815
816  // guarantee that weight is > 0
817  weight |= 1;
818
819  #undef INC_WEIGHT_IF
820  assert(cur_bit >= 0, "too many flags");
821  assert(weight > 0, "weight cannot become negative");
822
823  return weight;
824}
825
826bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
827  // Discount the edge just traveled.
828  // When the number drops to zero, all forward branches were processed
829  if (dec_forward_branches(cur) != 0) {
830    return false;
831  }
832
833  assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
834  assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
835  return true;
836}
837
838void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
839  assert(_work_list.index_of(cur) == -1, "block already in work list");
840
841  int cur_weight = compute_weight(cur);
842
843  // the linear_scan_number is used to cache the weight of a block
844  cur->set_linear_scan_number(cur_weight);
845
846#ifndef PRODUCT
847  if (StressLinearScan) {
848    _work_list.insert_before(0, cur);
849    return;
850  }
851#endif
852
853  _work_list.append(NULL); // provide space for new element
854
855  int insert_idx = _work_list.length() - 1;
856  while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
857    _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
858    insert_idx--;
859  }
860  _work_list.at_put(insert_idx, cur);
861
862  TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
863  TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
864
865#ifdef ASSERT
866  for (int i = 0; i < _work_list.length(); i++) {
867    assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
868    assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
869  }
870#endif
871}
872
873void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
874  TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
875  assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
876
877  // currently, the linear scan order and code emit order are equal.
878  // therefore the linear_scan_number and the weight of a block must also
879  // be equal.
880  cur->set_linear_scan_number(_linear_scan_order->length());
881  _linear_scan_order->append(cur);
882}
883
884void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
885  TRACE_LINEAR_SCAN(3, "----- computing final block order");
886
887  // the start block is always the first block in the linear scan order
888  _linear_scan_order = new BlockList(_num_blocks);
889  append_block(start_block);
890
891  assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
892  BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
893  BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
894
895  BlockBegin* sux_of_osr_entry = NULL;
896  if (osr_entry != NULL) {
897    // special handling for osr entry:
898    // ignore the edge between the osr entry and its successor for processing
899    // the osr entry block is added manually below
900    assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
901    assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
902
903    sux_of_osr_entry = osr_entry->sux_at(0);
904    dec_forward_branches(sux_of_osr_entry);
905
906    compute_dominator(osr_entry, start_block);
907    _iterative_dominators = true;
908  }
909  compute_dominator(std_entry, start_block);
910
911  // start processing with standard entry block
912  assert(_work_list.is_empty(), "list must be empty before processing");
913
914  if (ready_for_processing(std_entry)) {
915    sort_into_work_list(std_entry);
916  } else {
917    assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
918  }
919
920  do {
921    BlockBegin* cur = _work_list.pop();
922
923    if (cur == sux_of_osr_entry) {
924      // the osr entry block is ignored in normal processing, it is never added to the
925      // work list. Instead, it is added as late as possible manually here.
926      append_block(osr_entry);
927      compute_dominator(cur, osr_entry);
928    }
929    append_block(cur);
930
931    int i;
932    int num_sux = cur->number_of_sux();
933    // changed loop order to get "intuitive" order of if- and else-blocks
934    for (i = 0; i < num_sux; i++) {
935      BlockBegin* sux = cur->sux_at(i);
936      compute_dominator(sux, cur);
937      if (ready_for_processing(sux)) {
938        sort_into_work_list(sux);
939      }
940    }
941    num_sux = cur->number_of_exception_handlers();
942    for (i = 0; i < num_sux; i++) {
943      BlockBegin* sux = cur->exception_handler_at(i);
944      compute_dominator(sux, cur);
945      if (ready_for_processing(sux)) {
946        sort_into_work_list(sux);
947      }
948    }
949  } while (_work_list.length() > 0);
950}
951
952
953bool ComputeLinearScanOrder::compute_dominators_iter() {
954  bool changed = false;
955  int num_blocks = _linear_scan_order->length();
956
957  assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
958  assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
959  for (int i = 1; i < num_blocks; i++) {
960    BlockBegin* block = _linear_scan_order->at(i);
961
962    BlockBegin* dominator = block->pred_at(0);
963    int num_preds = block->number_of_preds();
964    for (int i = 1; i < num_preds; i++) {
965      dominator = common_dominator(dominator, block->pred_at(i));
966    }
967
968    if (dominator != block->dominator()) {
969      TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
970
971      block->set_dominator(dominator);
972      changed = true;
973    }
974  }
975  return changed;
976}
977
978void ComputeLinearScanOrder::compute_dominators() {
979  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
980
981  // iterative computation of dominators is only required for methods with non-natural loops
982  // and OSR-methods. For all other methods, the dominators computed when generating the
983  // linear scan block order are correct.
984  if (_iterative_dominators) {
985    do {
986      TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
987    } while (compute_dominators_iter());
988  }
989
990  // check that dominators are correct
991  assert(!compute_dominators_iter(), "fix point not reached");
992}
993
994
995#ifndef PRODUCT
996void ComputeLinearScanOrder::print_blocks() {
997  if (TraceLinearScanLevel >= 2) {
998    tty->print_cr("----- loop information:");
999    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1000      BlockBegin* cur = _linear_scan_order->at(block_idx);
1001
1002      tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1003      for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1004        tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1005      }
1006      tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1007    }
1008  }
1009
1010  if (TraceLinearScanLevel >= 1) {
1011    tty->print_cr("----- linear-scan block order:");
1012    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1013      BlockBegin* cur = _linear_scan_order->at(block_idx);
1014      tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1015
1016      tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1017      tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1018      tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1019      tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1020
1021      if (cur->dominator() != NULL) {
1022        tty->print("    dom: B%d ", cur->dominator()->block_id());
1023      } else {
1024        tty->print("    dom: NULL ");
1025      }
1026
1027      if (cur->number_of_preds() > 0) {
1028        tty->print("    preds: ");
1029        for (int j = 0; j < cur->number_of_preds(); j++) {
1030          BlockBegin* pred = cur->pred_at(j);
1031          tty->print("B%d ", pred->block_id());
1032        }
1033      }
1034      if (cur->number_of_sux() > 0) {
1035        tty->print("    sux: ");
1036        for (int j = 0; j < cur->number_of_sux(); j++) {
1037          BlockBegin* sux = cur->sux_at(j);
1038          tty->print("B%d ", sux->block_id());
1039        }
1040      }
1041      if (cur->number_of_exception_handlers() > 0) {
1042        tty->print("    ex: ");
1043        for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1044          BlockBegin* ex = cur->exception_handler_at(j);
1045          tty->print("B%d ", ex->block_id());
1046        }
1047      }
1048      tty->cr();
1049    }
1050  }
1051}
1052#endif
1053
1054#ifdef ASSERT
1055void ComputeLinearScanOrder::verify() {
1056  assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1057
1058  if (StressLinearScan) {
1059    // blocks are scrambled when StressLinearScan is used
1060    return;
1061  }
1062
1063  // check that all successors of a block have a higher linear-scan-number
1064  // and that all predecessors of a block have a lower linear-scan-number
1065  // (only backward branches of loops are ignored)
1066  int i;
1067  for (i = 0; i < _linear_scan_order->length(); i++) {
1068    BlockBegin* cur = _linear_scan_order->at(i);
1069
1070    assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1071    assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1072
1073    int j;
1074    for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1075      BlockBegin* sux = cur->sux_at(j);
1076
1077      assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1078      if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1079        assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1080      }
1081      if (cur->loop_depth() == sux->loop_depth()) {
1082        assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1083      }
1084    }
1085
1086    for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1087      BlockBegin* pred = cur->pred_at(j);
1088
1089      assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1090      if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1091        assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1092      }
1093      if (cur->loop_depth() == pred->loop_depth()) {
1094        assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1095      }
1096
1097      assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1098    }
1099
1100    // check dominator
1101    if (i == 0) {
1102      assert(cur->dominator() == NULL, "first block has no dominator");
1103    } else {
1104      assert(cur->dominator() != NULL, "all but first block must have dominator");
1105    }
1106    assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1107  }
1108
1109  // check that all loops are continuous
1110  for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1111    int block_idx = 0;
1112    assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1113
1114    // skip blocks before the loop
1115    while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1116      block_idx++;
1117    }
1118    // skip blocks of loop
1119    while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1120      block_idx++;
1121    }
1122    // after the first non-loop block, there must not be another loop-block
1123    while (block_idx < _num_blocks) {
1124      assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1125      block_idx++;
1126    }
1127  }
1128}
1129#endif
1130
1131
1132void IR::compute_code() {
1133  assert(is_valid(), "IR must be valid");
1134
1135  ComputeLinearScanOrder compute_order(start());
1136  _num_loops = compute_order.num_loops();
1137  _code = compute_order.linear_scan_order();
1138}
1139
1140
1141void IR::compute_use_counts() {
1142  // make sure all values coming out of this block get evaluated.
1143  int num_blocks = _code->length();
1144  for (int i = 0; i < num_blocks; i++) {
1145    _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1146  }
1147
1148  // compute use counts
1149  UseCountComputer::compute(_code);
1150}
1151
1152
1153void IR::iterate_preorder(BlockClosure* closure) {
1154  assert(is_valid(), "IR must be valid");
1155  start()->iterate_preorder(closure);
1156}
1157
1158
1159void IR::iterate_postorder(BlockClosure* closure) {
1160  assert(is_valid(), "IR must be valid");
1161  start()->iterate_postorder(closure);
1162}
1163
1164void IR::iterate_linear_scan_order(BlockClosure* closure) {
1165  linear_scan_order()->iterate_forward(closure);
1166}
1167
1168
1169#ifndef PRODUCT
1170class BlockPrinter: public BlockClosure {
1171 private:
1172  InstructionPrinter* _ip;
1173  bool                _cfg_only;
1174  bool                _live_only;
1175
1176 public:
1177  BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1178    _ip       = ip;
1179    _cfg_only = cfg_only;
1180    _live_only = live_only;
1181  }
1182
1183  virtual void block_do(BlockBegin* block) {
1184    if (_cfg_only) {
1185      _ip->print_instr(block); tty->cr();
1186    } else {
1187      block->print_block(*_ip, _live_only);
1188    }
1189  }
1190};
1191
1192
1193void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1194  ttyLocker ttyl;
1195  InstructionPrinter ip(!cfg_only);
1196  BlockPrinter bp(&ip, cfg_only, live_only);
1197  start->iterate_preorder(&bp);
1198  tty->cr();
1199}
1200
1201void IR::print(bool cfg_only, bool live_only) {
1202  if (is_valid()) {
1203    print(start(), cfg_only, live_only);
1204  } else {
1205    tty->print_cr("invalid IR");
1206  }
1207}
1208
1209
1210define_array(BlockListArray, BlockList*)
1211define_stack(BlockListList, BlockListArray)
1212
1213class PredecessorValidator : public BlockClosure {
1214 private:
1215  BlockListList* _predecessors;
1216  BlockList*     _blocks;
1217
1218  static int cmp(BlockBegin** a, BlockBegin** b) {
1219    return (*a)->block_id() - (*b)->block_id();
1220  }
1221
1222 public:
1223  PredecessorValidator(IR* hir) {
1224    ResourceMark rm;
1225    _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1226    _blocks = new BlockList();
1227
1228    int i;
1229    hir->start()->iterate_preorder(this);
1230    if (hir->code() != NULL) {
1231      assert(hir->code()->length() == _blocks->length(), "must match");
1232      for (i = 0; i < _blocks->length(); i++) {
1233        assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1234      }
1235    }
1236
1237    for (i = 0; i < _blocks->length(); i++) {
1238      BlockBegin* block = _blocks->at(i);
1239      BlockList* preds = _predecessors->at(block->block_id());
1240      if (preds == NULL) {
1241        assert(block->number_of_preds() == 0, "should be the same");
1242        continue;
1243      }
1244
1245      // clone the pred list so we can mutate it
1246      BlockList* pred_copy = new BlockList();
1247      int j;
1248      for (j = 0; j < block->number_of_preds(); j++) {
1249        pred_copy->append(block->pred_at(j));
1250      }
1251      // sort them in the same order
1252      preds->sort(cmp);
1253      pred_copy->sort(cmp);
1254      int length = MIN2(preds->length(), block->number_of_preds());
1255      for (j = 0; j < block->number_of_preds(); j++) {
1256        assert(preds->at(j) == pred_copy->at(j), "must match");
1257      }
1258
1259      assert(preds->length() == block->number_of_preds(), "should be the same");
1260    }
1261  }
1262
1263  virtual void block_do(BlockBegin* block) {
1264    _blocks->append(block);
1265    BlockEnd* be = block->end();
1266    int n = be->number_of_sux();
1267    int i;
1268    for (i = 0; i < n; i++) {
1269      BlockBegin* sux = be->sux_at(i);
1270      assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1271
1272      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1273      if (preds == NULL) {
1274        preds = new BlockList();
1275        _predecessors->at_put(sux->block_id(), preds);
1276      }
1277      preds->append(block);
1278    }
1279
1280    n = block->number_of_exception_handlers();
1281    for (i = 0; i < n; i++) {
1282      BlockBegin* sux = block->exception_handler_at(i);
1283      assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1284
1285      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1286      if (preds == NULL) {
1287        preds = new BlockList();
1288        _predecessors->at_put(sux->block_id(), preds);
1289      }
1290      preds->append(block);
1291    }
1292  }
1293};
1294
1295void IR::verify() {
1296#ifdef ASSERT
1297  PredecessorValidator pv(this);
1298#endif
1299}
1300
1301#endif // PRODUCT
1302
1303void SubstitutionResolver::substitute(Value* v) {
1304  Value v0 = *v;
1305  if (v0) {
1306    Value vs = v0->subst();
1307    if (vs != v0) {
1308      *v = v0->subst();
1309    }
1310  }
1311}
1312
1313#ifdef ASSERT
1314void check_substitute(Value* v) {
1315  Value v0 = *v;
1316  if (v0) {
1317    Value vs = v0->subst();
1318    assert(vs == v0, "missed substitution");
1319  }
1320}
1321#endif
1322
1323
1324void SubstitutionResolver::block_do(BlockBegin* block) {
1325  Instruction* last = NULL;
1326  for (Instruction* n = block; n != NULL;) {
1327    n->values_do(substitute);
1328    // need to remove this instruction from the instruction stream
1329    if (n->subst() != n) {
1330      assert(last != NULL, "must have last");
1331      last->set_next(n->next(), n->next()->bci());
1332    } else {
1333      last = n;
1334    }
1335    n = last->next();
1336  }
1337
1338#ifdef ASSERT
1339  if (block->state()) block->state()->values_do(check_substitute);
1340  block->block_values_do(check_substitute);
1341  if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
1342#endif
1343}
1344