1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_GraphBuilder.hpp"
29#include "c1/c1_IR.hpp"
30#include "c1/c1_InstructionPrinter.hpp"
31#include "c1/c1_Optimizer.hpp"
32#include "memory/resourceArea.hpp"
33#include "utilities/bitMap.inline.hpp"
34
35
36// Implementation of XHandlers
37//
38// Note: This code could eventually go away if we are
39//       just using the ciExceptionHandlerStream.
40
41XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
42  ciExceptionHandlerStream s(method);
43  while (!s.is_done()) {
44    _list.append(new XHandler(s.handler()));
45    s.next();
46  }
47  assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
48}
49
50// deep copy of all XHandler contained in list
51XHandlers::XHandlers(XHandlers* other) :
52  _list(other->length())
53{
54  for (int i = 0; i < other->length(); i++) {
55    _list.append(new XHandler(other->handler_at(i)));
56  }
57}
58
59// Returns whether a particular exception type can be caught.  Also
60// returns true if klass is unloaded or any exception handler
61// classes are unloaded.  type_is_exact indicates whether the throw
62// is known to be exactly that class or it might throw a subtype.
63bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
64  // the type is unknown so be conservative
65  if (!klass->is_loaded()) {
66    return true;
67  }
68
69  for (int i = 0; i < length(); i++) {
70    XHandler* handler = handler_at(i);
71    if (handler->is_catch_all()) {
72      // catch of ANY
73      return true;
74    }
75    ciInstanceKlass* handler_klass = handler->catch_klass();
76    // if it's unknown it might be catchable
77    if (!handler_klass->is_loaded()) {
78      return true;
79    }
80    // if the throw type is definitely a subtype of the catch type
81    // then it can be caught.
82    if (klass->is_subtype_of(handler_klass)) {
83      return true;
84    }
85    if (!type_is_exact) {
86      // If the type isn't exactly known then it can also be caught by
87      // catch statements where the inexact type is a subtype of the
88      // catch type.
89      // given: foo extends bar extends Exception
90      // throw bar can be caught by catch foo, catch bar, and catch
91      // Exception, however it can't be caught by any handlers without
92      // bar in its type hierarchy.
93      if (handler_klass->is_subtype_of(klass)) {
94        return true;
95      }
96    }
97  }
98
99  return false;
100}
101
102
103bool XHandlers::equals(XHandlers* others) const {
104  if (others == NULL) return false;
105  if (length() != others->length()) return false;
106
107  for (int i = 0; i < length(); i++) {
108    if (!handler_at(i)->equals(others->handler_at(i))) return false;
109  }
110  return true;
111}
112
113bool XHandler::equals(XHandler* other) const {
114  assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
115
116  if (entry_pco() != other->entry_pco()) return false;
117  if (scope_count() != other->scope_count()) return false;
118  if (_desc != other->_desc) return false;
119
120  assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
121  return true;
122}
123
124
125// Implementation of IRScope
126BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
127  GraphBuilder gm(compilation, this);
128  NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
129  if (compilation->bailed_out()) return NULL;
130  return gm.start();
131}
132
133
134IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
135: _callees(2)
136, _compilation(compilation)
137, _requires_phi_function(method->max_locals())
138{
139  _caller             = caller;
140  _level              = caller == NULL ?  0 : caller->level() + 1;
141  _method             = method;
142  _xhandlers          = new XHandlers(method);
143  _number_of_locks    = 0;
144  _monitor_pairing_ok = method->has_balanced_monitors();
145  _wrote_final        = false;
146  _wrote_fields       = false;
147  _wrote_volatile     = false;
148  _start              = NULL;
149
150  if (osr_bci != -1) {
151    // selective creation of phi functions is not possibel in osr-methods
152    _requires_phi_function.set_range(0, method->max_locals());
153  }
154
155  assert(method->holder()->is_loaded() , "method holder must be loaded");
156
157  // build graph if monitor pairing is ok
158  if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
159}
160
161
162int IRScope::max_stack() const {
163  int my_max = method()->max_stack();
164  int callee_max = 0;
165  for (int i = 0; i < number_of_callees(); i++) {
166    callee_max = MAX2(callee_max, callee_no(i)->max_stack());
167  }
168  return my_max + callee_max;
169}
170
171
172bool IRScopeDebugInfo::should_reexecute() {
173  ciMethod* cur_method = scope()->method();
174  int       cur_bci    = bci();
175  if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
176    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
177    return Interpreter::bytecode_should_reexecute(code);
178  } else
179    return false;
180}
181
182
183// Implementation of CodeEmitInfo
184
185// Stack must be NON-null
186CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
187  : _scope(stack->scope())
188  , _scope_debug_info(NULL)
189  , _oop_map(NULL)
190  , _stack(stack)
191  , _exception_handlers(exception_handlers)
192  , _is_method_handle_invoke(false)
193  , _deoptimize_on_exception(deoptimize_on_exception) {
194  assert(_stack != NULL, "must be non null");
195}
196
197
198CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
199  : _scope(info->_scope)
200  , _exception_handlers(NULL)
201  , _scope_debug_info(NULL)
202  , _oop_map(NULL)
203  , _stack(stack == NULL ? info->_stack : stack)
204  , _is_method_handle_invoke(info->_is_method_handle_invoke)
205  , _deoptimize_on_exception(info->_deoptimize_on_exception) {
206
207  // deep copy of exception handlers
208  if (info->_exception_handlers != NULL) {
209    _exception_handlers = new XHandlers(info->_exception_handlers);
210  }
211}
212
213
214void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
215  // record the safepoint before recording the debug info for enclosing scopes
216  recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
217  _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
218  recorder->end_safepoint(pc_offset);
219}
220
221
222void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
223  assert(_oop_map != NULL, "oop map must already exist");
224  assert(opr->is_single_cpu(), "should not call otherwise");
225
226  VMReg name = frame_map()->regname(opr);
227  _oop_map->set_oop(name);
228}
229
230// Mirror the stack size calculation in the deopt code
231// How much stack space would we need at this point in the program in
232// case of deoptimization?
233int CodeEmitInfo::interpreter_frame_size() const {
234  ValueStack* state = _stack;
235  int size = 0;
236  int callee_parameters = 0;
237  int callee_locals = 0;
238  int extra_args = state->scope()->method()->max_stack() - state->stack_size();
239
240  while (state != NULL) {
241    int locks = state->locks_size();
242    int temps = state->stack_size();
243    bool is_top_frame = (state == _stack);
244    ciMethod* method = state->scope()->method();
245
246    int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
247                                                                 temps + callee_parameters,
248                                                                 extra_args,
249                                                                 locks,
250                                                                 callee_parameters,
251                                                                 callee_locals,
252                                                                 is_top_frame);
253    size += frame_size;
254
255    callee_parameters = method->size_of_parameters();
256    callee_locals = method->max_locals();
257    extra_args = 0;
258    state = state->caller_state();
259  }
260  return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
261}
262
263// Implementation of IR
264
265IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
266  _num_loops(0) {
267  // setup IR fields
268  _compilation = compilation;
269  _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
270  _code        = NULL;
271}
272
273
274void IR::optimize_blocks() {
275  Optimizer opt(this);
276  if (!compilation()->profile_branches()) {
277    if (DoCEE) {
278      opt.eliminate_conditional_expressions();
279#ifndef PRODUCT
280      if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
281      if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
282#endif
283    }
284    if (EliminateBlocks) {
285      opt.eliminate_blocks();
286#ifndef PRODUCT
287      if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
288      if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
289#endif
290    }
291  }
292}
293
294void IR::eliminate_null_checks() {
295  Optimizer opt(this);
296  if (EliminateNullChecks) {
297    opt.eliminate_null_checks();
298#ifndef PRODUCT
299    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
300    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
301#endif
302  }
303}
304
305
306static int sort_pairs(BlockPair** a, BlockPair** b) {
307  if ((*a)->from() == (*b)->from()) {
308    return (*a)->to()->block_id() - (*b)->to()->block_id();
309  } else {
310    return (*a)->from()->block_id() - (*b)->from()->block_id();
311  }
312}
313
314
315class CriticalEdgeFinder: public BlockClosure {
316  BlockPairList blocks;
317  IR*       _ir;
318
319 public:
320  CriticalEdgeFinder(IR* ir): _ir(ir) {}
321  void block_do(BlockBegin* bb) {
322    BlockEnd* be = bb->end();
323    int nos = be->number_of_sux();
324    if (nos >= 2) {
325      for (int i = 0; i < nos; i++) {
326        BlockBegin* sux = be->sux_at(i);
327        if (sux->number_of_preds() >= 2) {
328          blocks.append(new BlockPair(bb, sux));
329        }
330      }
331    }
332  }
333
334  void split_edges() {
335    BlockPair* last_pair = NULL;
336    blocks.sort(sort_pairs);
337    for (int i = 0; i < blocks.length(); i++) {
338      BlockPair* pair = blocks.at(i);
339      if (last_pair != NULL && pair->is_same(last_pair)) continue;
340      BlockBegin* from = pair->from();
341      BlockBegin* to = pair->to();
342      BlockBegin* split = from->insert_block_between(to);
343#ifndef PRODUCT
344      if ((PrintIR || PrintIR1) && Verbose) {
345        tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
346                      from->block_id(), to->block_id(), split->block_id());
347      }
348#endif
349      last_pair = pair;
350    }
351  }
352};
353
354void IR::split_critical_edges() {
355  CriticalEdgeFinder cef(this);
356
357  iterate_preorder(&cef);
358  cef.split_edges();
359}
360
361
362class UseCountComputer: public ValueVisitor, BlockClosure {
363 private:
364  void visit(Value* n) {
365    // Local instructions and Phis for expression stack values at the
366    // start of basic blocks are not added to the instruction list
367    if (!(*n)->is_linked() && (*n)->can_be_linked()) {
368      assert(false, "a node was not appended to the graph");
369      Compilation::current()->bailout("a node was not appended to the graph");
370    }
371    // use n's input if not visited before
372    if (!(*n)->is_pinned() && !(*n)->has_uses()) {
373      // note: a) if the instruction is pinned, it will be handled by compute_use_count
374      //       b) if the instruction has uses, it was touched before
375      //       => in both cases we don't need to update n's values
376      uses_do(n);
377    }
378    // use n
379    (*n)->_use_count++;
380  }
381
382  Values* worklist;
383  int depth;
384  enum {
385    max_recurse_depth = 20
386  };
387
388  void uses_do(Value* n) {
389    depth++;
390    if (depth > max_recurse_depth) {
391      // don't allow the traversal to recurse too deeply
392      worklist->push(*n);
393    } else {
394      (*n)->input_values_do(this);
395      // special handling for some instructions
396      if ((*n)->as_BlockEnd() != NULL) {
397        // note on BlockEnd:
398        //   must 'use' the stack only if the method doesn't
399        //   terminate, however, in those cases stack is empty
400        (*n)->state_values_do(this);
401      }
402    }
403    depth--;
404  }
405
406  void block_do(BlockBegin* b) {
407    depth = 0;
408    // process all pinned nodes as the roots of expression trees
409    for (Instruction* n = b; n != NULL; n = n->next()) {
410      if (n->is_pinned()) uses_do(&n);
411    }
412    assert(depth == 0, "should have counted back down");
413
414    // now process any unpinned nodes which recursed too deeply
415    while (worklist->length() > 0) {
416      Value t = worklist->pop();
417      if (!t->is_pinned()) {
418        // compute the use count
419        uses_do(&t);
420
421        // pin the instruction so that LIRGenerator doesn't recurse
422        // too deeply during it's evaluation.
423        t->pin();
424      }
425    }
426    assert(depth == 0, "should have counted back down");
427  }
428
429  UseCountComputer() {
430    worklist = new Values();
431    depth = 0;
432  }
433
434 public:
435  static void compute(BlockList* blocks) {
436    UseCountComputer ucc;
437    blocks->iterate_backward(&ucc);
438  }
439};
440
441
442// helper macro for short definition of trace-output inside code
443#ifndef PRODUCT
444  #define TRACE_LINEAR_SCAN(level, code)       \
445    if (TraceLinearScanLevel >= level) {       \
446      code;                                    \
447    }
448#else
449  #define TRACE_LINEAR_SCAN(level, code)
450#endif
451
452class ComputeLinearScanOrder : public StackObj {
453 private:
454  int        _max_block_id;        // the highest block_id of a block
455  int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
456  int        _num_loops;           // total number of loops
457  bool       _iterative_dominators;// method requires iterative computation of dominatiors
458
459  BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
460
461  ResourceBitMap _visited_blocks;   // used for recursive processing of blocks
462  ResourceBitMap _active_blocks;    // used for recursive processing of blocks
463  ResourceBitMap _dominator_blocks; // temproary BitMap used for computation of dominator
464  intArray       _forward_branches; // number of incoming forward branches for each block
465  BlockList      _loop_end_blocks;  // list of all loop end blocks collected during count_edges
466  BitMap2D       _loop_map;         // two-dimensional bit set: a bit is set if a block is contained in a loop
467  BlockList      _work_list;        // temporary list (used in mark_loops and compute_order)
468  BlockList      _loop_headers;
469
470  Compilation* _compilation;
471
472  // accessors for _visited_blocks and _active_blocks
473  void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
474  bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
475  bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
476  void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
477  void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
478  void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
479
480  // accessors for _forward_branches
481  void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
482  int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
483
484  // accessors for _loop_map
485  bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
486  void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
487  void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
488
489  // count edges between blocks
490  void count_edges(BlockBegin* cur, BlockBegin* parent);
491
492  // loop detection
493  void mark_loops();
494  void clear_non_natural_loops(BlockBegin* start_block);
495  void assign_loop_depth(BlockBegin* start_block);
496
497  // computation of final block order
498  BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
499  void compute_dominator(BlockBegin* cur, BlockBegin* parent);
500  int  compute_weight(BlockBegin* cur);
501  bool ready_for_processing(BlockBegin* cur);
502  void sort_into_work_list(BlockBegin* b);
503  void append_block(BlockBegin* cur);
504  void compute_order(BlockBegin* start_block);
505
506  // fixup of dominators for non-natural loops
507  bool compute_dominators_iter();
508  void compute_dominators();
509
510  // debug functions
511  NOT_PRODUCT(void print_blocks();)
512  DEBUG_ONLY(void verify();)
513
514  Compilation* compilation() const { return _compilation; }
515 public:
516  ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
517
518  // accessors for final result
519  BlockList* linear_scan_order() const    { return _linear_scan_order; }
520  int        num_loops() const            { return _num_loops; }
521};
522
523
524ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
525  _max_block_id(BlockBegin::number_of_blocks()),
526  _num_blocks(0),
527  _num_loops(0),
528  _iterative_dominators(false),
529  _visited_blocks(_max_block_id),
530  _active_blocks(_max_block_id),
531  _dominator_blocks(_max_block_id),
532  _forward_branches(_max_block_id, _max_block_id, 0),
533  _loop_end_blocks(8),
534  _work_list(8),
535  _linear_scan_order(NULL), // initialized later with correct size
536  _loop_map(0),             // initialized later with correct size
537  _compilation(c)
538{
539  TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
540
541  count_edges(start_block, NULL);
542
543  if (compilation()->is_profiling()) {
544    ciMethod *method = compilation()->method();
545    if (!method->is_accessor()) {
546      ciMethodData* md = method->method_data_or_null();
547      assert(md != NULL, "Sanity");
548      md->set_compilation_stats(_num_loops, _num_blocks);
549    }
550  }
551
552  if (_num_loops > 0) {
553    mark_loops();
554    clear_non_natural_loops(start_block);
555    assign_loop_depth(start_block);
556  }
557
558  compute_order(start_block);
559  compute_dominators();
560
561  NOT_PRODUCT(print_blocks());
562  DEBUG_ONLY(verify());
563}
564
565
566// Traverse the CFG:
567// * count total number of blocks
568// * count all incoming edges and backward incoming edges
569// * number loop header blocks
570// * create a list with all loop end blocks
571void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
572  TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
573  assert(cur->dominator() == NULL, "dominator already initialized");
574
575  if (is_active(cur)) {
576    TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
577    assert(is_visited(cur), "block must be visisted when block is active");
578    assert(parent != NULL, "must have parent");
579
580    cur->set(BlockBegin::backward_branch_target_flag);
581
582    // When a loop header is also the start of an exception handler, then the backward branch is
583    // an exception edge. Because such edges are usually critical edges which cannot be split, the
584    // loop must be excluded here from processing.
585    if (cur->is_set(BlockBegin::exception_entry_flag)) {
586      // Make sure that dominators are correct in this weird situation
587      _iterative_dominators = true;
588      return;
589    }
590
591    cur->set(BlockBegin::linear_scan_loop_header_flag);
592    parent->set(BlockBegin::linear_scan_loop_end_flag);
593
594    assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
595           "loop end blocks must have one successor (critical edges are split)");
596
597    _loop_end_blocks.append(parent);
598    return;
599  }
600
601  // increment number of incoming forward branches
602  inc_forward_branches(cur);
603
604  if (is_visited(cur)) {
605    TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
606    return;
607  }
608
609  _num_blocks++;
610  set_visited(cur);
611  set_active(cur);
612
613  // recursive call for all successors
614  int i;
615  for (i = cur->number_of_sux() - 1; i >= 0; i--) {
616    count_edges(cur->sux_at(i), cur);
617  }
618  for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
619    count_edges(cur->exception_handler_at(i), cur);
620  }
621
622  clear_active(cur);
623
624  // Each loop has a unique number.
625  // When multiple loops are nested, assign_loop_depth assumes that the
626  // innermost loop has the lowest number. This is guaranteed by setting
627  // the loop number after the recursive calls for the successors above
628  // have returned.
629  if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
630    assert(cur->loop_index() == -1, "cannot set loop-index twice");
631    TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
632
633    cur->set_loop_index(_num_loops);
634    _loop_headers.append(cur);
635    _num_loops++;
636  }
637
638  TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
639}
640
641
642void ComputeLinearScanOrder::mark_loops() {
643  TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
644
645  _loop_map = BitMap2D(_num_loops, _max_block_id);
646
647  for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
648    BlockBegin* loop_end   = _loop_end_blocks.at(i);
649    BlockBegin* loop_start = loop_end->sux_at(0);
650    int         loop_idx   = loop_start->loop_index();
651
652    TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
653    assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
654    assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
655    assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
656    assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
657    assert(_work_list.is_empty(), "work list must be empty before processing");
658
659    // add the end-block of the loop to the working list
660    _work_list.push(loop_end);
661    set_block_in_loop(loop_idx, loop_end);
662    do {
663      BlockBegin* cur = _work_list.pop();
664
665      TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
666      assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
667
668      // recursive processing of all predecessors ends when start block of loop is reached
669      if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
670        for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
671          BlockBegin* pred = cur->pred_at(j);
672
673          if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
674            // this predecessor has not been processed yet, so add it to work list
675            TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
676            _work_list.push(pred);
677            set_block_in_loop(loop_idx, pred);
678          }
679        }
680      }
681    } while (!_work_list.is_empty());
682  }
683}
684
685
686// check for non-natural loops (loops where the loop header does not dominate
687// all other loop blocks = loops with mulitple entries).
688// such loops are ignored
689void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
690  for (int i = _num_loops - 1; i >= 0; i--) {
691    if (is_block_in_loop(i, start_block)) {
692      // loop i contains the entry block of the method
693      // -> this is not a natural loop, so ignore it
694      TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
695
696      BlockBegin *loop_header = _loop_headers.at(i);
697      assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
698
699      for (int j = 0; j < loop_header->number_of_preds(); j++) {
700        BlockBegin *pred = loop_header->pred_at(j);
701        pred->clear(BlockBegin::linear_scan_loop_end_flag);
702      }
703
704      loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
705
706      for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
707        clear_block_in_loop(i, block_id);
708      }
709      _iterative_dominators = true;
710    }
711  }
712}
713
714void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
715  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
716  init_visited();
717
718  assert(_work_list.is_empty(), "work list must be empty before processing");
719  _work_list.append(start_block);
720
721  do {
722    BlockBegin* cur = _work_list.pop();
723
724    if (!is_visited(cur)) {
725      set_visited(cur);
726      TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
727
728      // compute loop-depth and loop-index for the block
729      assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
730      int i;
731      int loop_depth = 0;
732      int min_loop_idx = -1;
733      for (i = _num_loops - 1; i >= 0; i--) {
734        if (is_block_in_loop(i, cur)) {
735          loop_depth++;
736          min_loop_idx = i;
737        }
738      }
739      cur->set_loop_depth(loop_depth);
740      cur->set_loop_index(min_loop_idx);
741
742      // append all unvisited successors to work list
743      for (i = cur->number_of_sux() - 1; i >= 0; i--) {
744        _work_list.append(cur->sux_at(i));
745      }
746      for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
747        _work_list.append(cur->exception_handler_at(i));
748      }
749    }
750  } while (!_work_list.is_empty());
751}
752
753
754BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
755  assert(a != NULL && b != NULL, "must have input blocks");
756
757  _dominator_blocks.clear();
758  while (a != NULL) {
759    _dominator_blocks.set_bit(a->block_id());
760    assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
761    a = a->dominator();
762  }
763  while (b != NULL && !_dominator_blocks.at(b->block_id())) {
764    assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
765    b = b->dominator();
766  }
767
768  assert(b != NULL, "could not find dominator");
769  return b;
770}
771
772void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
773  if (cur->dominator() == NULL) {
774    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
775    cur->set_dominator(parent);
776
777  } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
778    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
779    // Does not hold for exception blocks
780    assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
781    cur->set_dominator(common_dominator(cur->dominator(), parent));
782  }
783
784  // Additional edge to xhandler of all our successors
785  // range check elimination needs that the state at the end of a
786  // block be valid in every block it dominates so cur must dominate
787  // the exception handlers of its successors.
788  int num_cur_xhandler = cur->number_of_exception_handlers();
789  for (int j = 0; j < num_cur_xhandler; j++) {
790    BlockBegin* xhandler = cur->exception_handler_at(j);
791    compute_dominator(xhandler, parent);
792  }
793}
794
795
796int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
797  BlockBegin* single_sux = NULL;
798  if (cur->number_of_sux() == 1) {
799    single_sux = cur->sux_at(0);
800  }
801
802  // limit loop-depth to 15 bit (only for security reason, it will never be so big)
803  int weight = (cur->loop_depth() & 0x7FFF) << 16;
804
805  // general macro for short definition of weight flags
806  // the first instance of INC_WEIGHT_IF has the highest priority
807  int cur_bit = 15;
808  #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
809
810  // this is necessery for the (very rare) case that two successing blocks have
811  // the same loop depth, but a different loop index (can happen for endless loops
812  // with exception handlers)
813  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
814
815  // loop end blocks (blocks that end with a backward branch) are added
816  // after all other blocks of the loop.
817  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
818
819  // critical edge split blocks are prefered because than they have a bigger
820  // proability to be completely empty
821  INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
822
823  // exceptions should not be thrown in normal control flow, so these blocks
824  // are added as late as possible
825  INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
826  INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
827
828  // exceptions handlers are added as late as possible
829  INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
830
831  // guarantee that weight is > 0
832  weight |= 1;
833
834  #undef INC_WEIGHT_IF
835  assert(cur_bit >= 0, "too many flags");
836  assert(weight > 0, "weight cannot become negative");
837
838  return weight;
839}
840
841bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
842  // Discount the edge just traveled.
843  // When the number drops to zero, all forward branches were processed
844  if (dec_forward_branches(cur) != 0) {
845    return false;
846  }
847
848  assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)");
849  assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)");
850  return true;
851}
852
853void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
854  assert(_work_list.find(cur) == -1, "block already in work list");
855
856  int cur_weight = compute_weight(cur);
857
858  // the linear_scan_number is used to cache the weight of a block
859  cur->set_linear_scan_number(cur_weight);
860
861#ifndef PRODUCT
862  if (StressLinearScan) {
863    _work_list.insert_before(0, cur);
864    return;
865  }
866#endif
867
868  _work_list.append(NULL); // provide space for new element
869
870  int insert_idx = _work_list.length() - 1;
871  while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
872    _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
873    insert_idx--;
874  }
875  _work_list.at_put(insert_idx, cur);
876
877  TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
878  TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
879
880#ifdef ASSERT
881  for (int i = 0; i < _work_list.length(); i++) {
882    assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
883    assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
884  }
885#endif
886}
887
888void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
889  TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
890  assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice");
891
892  // currently, the linear scan order and code emit order are equal.
893  // therefore the linear_scan_number and the weight of a block must also
894  // be equal.
895  cur->set_linear_scan_number(_linear_scan_order->length());
896  _linear_scan_order->append(cur);
897}
898
899void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
900  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
901
902  // the start block is always the first block in the linear scan order
903  _linear_scan_order = new BlockList(_num_blocks);
904  append_block(start_block);
905
906  assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
907  BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
908  BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
909
910  BlockBegin* sux_of_osr_entry = NULL;
911  if (osr_entry != NULL) {
912    // special handling for osr entry:
913    // ignore the edge between the osr entry and its successor for processing
914    // the osr entry block is added manually below
915    assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
916    assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
917
918    sux_of_osr_entry = osr_entry->sux_at(0);
919    dec_forward_branches(sux_of_osr_entry);
920
921    compute_dominator(osr_entry, start_block);
922    _iterative_dominators = true;
923  }
924  compute_dominator(std_entry, start_block);
925
926  // start processing with standard entry block
927  assert(_work_list.is_empty(), "list must be empty before processing");
928
929  if (ready_for_processing(std_entry)) {
930    sort_into_work_list(std_entry);
931  } else {
932    assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
933  }
934
935  do {
936    BlockBegin* cur = _work_list.pop();
937
938    if (cur == sux_of_osr_entry) {
939      // the osr entry block is ignored in normal processing, it is never added to the
940      // work list. Instead, it is added as late as possible manually here.
941      append_block(osr_entry);
942      compute_dominator(cur, osr_entry);
943    }
944    append_block(cur);
945
946    int i;
947    int num_sux = cur->number_of_sux();
948    // changed loop order to get "intuitive" order of if- and else-blocks
949    for (i = 0; i < num_sux; i++) {
950      BlockBegin* sux = cur->sux_at(i);
951      compute_dominator(sux, cur);
952      if (ready_for_processing(sux)) {
953        sort_into_work_list(sux);
954      }
955    }
956    num_sux = cur->number_of_exception_handlers();
957    for (i = 0; i < num_sux; i++) {
958      BlockBegin* sux = cur->exception_handler_at(i);
959      if (ready_for_processing(sux)) {
960        sort_into_work_list(sux);
961      }
962    }
963  } while (_work_list.length() > 0);
964}
965
966
967bool ComputeLinearScanOrder::compute_dominators_iter() {
968  bool changed = false;
969  int num_blocks = _linear_scan_order->length();
970
971  assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
972  assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
973  for (int i = 1; i < num_blocks; i++) {
974    BlockBegin* block = _linear_scan_order->at(i);
975
976    BlockBegin* dominator = block->pred_at(0);
977    int num_preds = block->number_of_preds();
978
979    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
980
981    for (int j = 0; j < num_preds; j++) {
982
983      BlockBegin *pred = block->pred_at(j);
984      TRACE_LINEAR_SCAN(4, tty->print_cr("   DOM: Subrocessing B%d", pred->block_id()));
985
986      if (block->is_set(BlockBegin::exception_entry_flag)) {
987        dominator = common_dominator(dominator, pred);
988        int num_pred_preds = pred->number_of_preds();
989        for (int k = 0; k < num_pred_preds; k++) {
990          dominator = common_dominator(dominator, pred->pred_at(k));
991        }
992      } else {
993        dominator = common_dominator(dominator, pred);
994      }
995    }
996
997    if (dominator != block->dominator()) {
998      TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
999
1000      block->set_dominator(dominator);
1001      changed = true;
1002    }
1003  }
1004  return changed;
1005}
1006
1007void ComputeLinearScanOrder::compute_dominators() {
1008  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1009
1010  // iterative computation of dominators is only required for methods with non-natural loops
1011  // and OSR-methods. For all other methods, the dominators computed when generating the
1012  // linear scan block order are correct.
1013  if (_iterative_dominators) {
1014    do {
1015      TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1016    } while (compute_dominators_iter());
1017  }
1018
1019  // check that dominators are correct
1020  assert(!compute_dominators_iter(), "fix point not reached");
1021
1022  // Add Blocks to dominates-Array
1023  int num_blocks = _linear_scan_order->length();
1024  for (int i = 0; i < num_blocks; i++) {
1025    BlockBegin* block = _linear_scan_order->at(i);
1026
1027    BlockBegin *dom = block->dominator();
1028    if (dom) {
1029      assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1030      dom->dominates()->append(block);
1031      block->set_dominator_depth(dom->dominator_depth() + 1);
1032    } else {
1033      block->set_dominator_depth(0);
1034    }
1035  }
1036}
1037
1038
1039#ifndef PRODUCT
1040void ComputeLinearScanOrder::print_blocks() {
1041  if (TraceLinearScanLevel >= 2) {
1042    tty->print_cr("----- loop information:");
1043    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1044      BlockBegin* cur = _linear_scan_order->at(block_idx);
1045
1046      tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1047      for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1048        tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1049      }
1050      tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1051    }
1052  }
1053
1054  if (TraceLinearScanLevel >= 1) {
1055    tty->print_cr("----- linear-scan block order:");
1056    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1057      BlockBegin* cur = _linear_scan_order->at(block_idx);
1058      tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1059
1060      tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1061      tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1062      tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1063      tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1064
1065      if (cur->dominator() != NULL) {
1066        tty->print("    dom: B%d ", cur->dominator()->block_id());
1067      } else {
1068        tty->print("    dom: NULL ");
1069      }
1070
1071      if (cur->number_of_preds() > 0) {
1072        tty->print("    preds: ");
1073        for (int j = 0; j < cur->number_of_preds(); j++) {
1074          BlockBegin* pred = cur->pred_at(j);
1075          tty->print("B%d ", pred->block_id());
1076        }
1077      }
1078      if (cur->number_of_sux() > 0) {
1079        tty->print("    sux: ");
1080        for (int j = 0; j < cur->number_of_sux(); j++) {
1081          BlockBegin* sux = cur->sux_at(j);
1082          tty->print("B%d ", sux->block_id());
1083        }
1084      }
1085      if (cur->number_of_exception_handlers() > 0) {
1086        tty->print("    ex: ");
1087        for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1088          BlockBegin* ex = cur->exception_handler_at(j);
1089          tty->print("B%d ", ex->block_id());
1090        }
1091      }
1092      tty->cr();
1093    }
1094  }
1095}
1096#endif
1097
1098#ifdef ASSERT
1099void ComputeLinearScanOrder::verify() {
1100  assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1101
1102  if (StressLinearScan) {
1103    // blocks are scrambled when StressLinearScan is used
1104    return;
1105  }
1106
1107  // check that all successors of a block have a higher linear-scan-number
1108  // and that all predecessors of a block have a lower linear-scan-number
1109  // (only backward branches of loops are ignored)
1110  int i;
1111  for (i = 0; i < _linear_scan_order->length(); i++) {
1112    BlockBegin* cur = _linear_scan_order->at(i);
1113
1114    assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1115    assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number");
1116
1117    int j;
1118    for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1119      BlockBegin* sux = cur->sux_at(j);
1120
1121      assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number");
1122      if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1123        assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1124      }
1125      if (cur->loop_depth() == sux->loop_depth()) {
1126        assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1127      }
1128    }
1129
1130    for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1131      BlockBegin* pred = cur->pred_at(j);
1132
1133      assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number");
1134      if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1135        assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1136      }
1137      if (cur->loop_depth() == pred->loop_depth()) {
1138        assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1139      }
1140
1141      assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1142    }
1143
1144    // check dominator
1145    if (i == 0) {
1146      assert(cur->dominator() == NULL, "first block has no dominator");
1147    } else {
1148      assert(cur->dominator() != NULL, "all but first block must have dominator");
1149    }
1150    // Assertion does not hold for exception handlers
1151    assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1152  }
1153
1154  // check that all loops are continuous
1155  for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1156    int block_idx = 0;
1157    assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1158
1159    // skip blocks before the loop
1160    while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1161      block_idx++;
1162    }
1163    // skip blocks of loop
1164    while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1165      block_idx++;
1166    }
1167    // after the first non-loop block, there must not be another loop-block
1168    while (block_idx < _num_blocks) {
1169      assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1170      block_idx++;
1171    }
1172  }
1173}
1174#endif
1175
1176
1177void IR::compute_code() {
1178  assert(is_valid(), "IR must be valid");
1179
1180  ComputeLinearScanOrder compute_order(compilation(), start());
1181  _num_loops = compute_order.num_loops();
1182  _code = compute_order.linear_scan_order();
1183}
1184
1185
1186void IR::compute_use_counts() {
1187  // make sure all values coming out of this block get evaluated.
1188  int num_blocks = _code->length();
1189  for (int i = 0; i < num_blocks; i++) {
1190    _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1191  }
1192
1193  // compute use counts
1194  UseCountComputer::compute(_code);
1195}
1196
1197
1198void IR::iterate_preorder(BlockClosure* closure) {
1199  assert(is_valid(), "IR must be valid");
1200  start()->iterate_preorder(closure);
1201}
1202
1203
1204void IR::iterate_postorder(BlockClosure* closure) {
1205  assert(is_valid(), "IR must be valid");
1206  start()->iterate_postorder(closure);
1207}
1208
1209void IR::iterate_linear_scan_order(BlockClosure* closure) {
1210  linear_scan_order()->iterate_forward(closure);
1211}
1212
1213
1214#ifndef PRODUCT
1215class BlockPrinter: public BlockClosure {
1216 private:
1217  InstructionPrinter* _ip;
1218  bool                _cfg_only;
1219  bool                _live_only;
1220
1221 public:
1222  BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1223    _ip       = ip;
1224    _cfg_only = cfg_only;
1225    _live_only = live_only;
1226  }
1227
1228  virtual void block_do(BlockBegin* block) {
1229    if (_cfg_only) {
1230      _ip->print_instr(block); tty->cr();
1231    } else {
1232      block->print_block(*_ip, _live_only);
1233    }
1234  }
1235};
1236
1237
1238void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1239  ttyLocker ttyl;
1240  InstructionPrinter ip(!cfg_only);
1241  BlockPrinter bp(&ip, cfg_only, live_only);
1242  start->iterate_preorder(&bp);
1243  tty->cr();
1244}
1245
1246void IR::print(bool cfg_only, bool live_only) {
1247  if (is_valid()) {
1248    print(start(), cfg_only, live_only);
1249  } else {
1250    tty->print_cr("invalid IR");
1251  }
1252}
1253
1254
1255typedef GrowableArray<BlockList*> BlockListList;
1256
1257class PredecessorValidator : public BlockClosure {
1258 private:
1259  BlockListList* _predecessors;
1260  BlockList*     _blocks;
1261
1262  static int cmp(BlockBegin** a, BlockBegin** b) {
1263    return (*a)->block_id() - (*b)->block_id();
1264  }
1265
1266 public:
1267  PredecessorValidator(IR* hir) {
1268    ResourceMark rm;
1269    _predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL);
1270    _blocks = new BlockList();
1271
1272    int i;
1273    hir->start()->iterate_preorder(this);
1274    if (hir->code() != NULL) {
1275      assert(hir->code()->length() == _blocks->length(), "must match");
1276      for (i = 0; i < _blocks->length(); i++) {
1277        assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1278      }
1279    }
1280
1281    for (i = 0; i < _blocks->length(); i++) {
1282      BlockBegin* block = _blocks->at(i);
1283      BlockList* preds = _predecessors->at(block->block_id());
1284      if (preds == NULL) {
1285        assert(block->number_of_preds() == 0, "should be the same");
1286        continue;
1287      }
1288
1289      // clone the pred list so we can mutate it
1290      BlockList* pred_copy = new BlockList();
1291      int j;
1292      for (j = 0; j < block->number_of_preds(); j++) {
1293        pred_copy->append(block->pred_at(j));
1294      }
1295      // sort them in the same order
1296      preds->sort(cmp);
1297      pred_copy->sort(cmp);
1298      int length = MIN2(preds->length(), block->number_of_preds());
1299      for (j = 0; j < block->number_of_preds(); j++) {
1300        assert(preds->at(j) == pred_copy->at(j), "must match");
1301      }
1302
1303      assert(preds->length() == block->number_of_preds(), "should be the same");
1304    }
1305  }
1306
1307  virtual void block_do(BlockBegin* block) {
1308    _blocks->append(block);
1309    BlockEnd* be = block->end();
1310    int n = be->number_of_sux();
1311    int i;
1312    for (i = 0; i < n; i++) {
1313      BlockBegin* sux = be->sux_at(i);
1314      assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1315
1316      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1317      if (preds == NULL) {
1318        preds = new BlockList();
1319        _predecessors->at_put(sux->block_id(), preds);
1320      }
1321      preds->append(block);
1322    }
1323
1324    n = block->number_of_exception_handlers();
1325    for (i = 0; i < n; i++) {
1326      BlockBegin* sux = block->exception_handler_at(i);
1327      assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1328
1329      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1330      if (preds == NULL) {
1331        preds = new BlockList();
1332        _predecessors->at_put(sux->block_id(), preds);
1333      }
1334      preds->append(block);
1335    }
1336  }
1337};
1338
1339class VerifyBlockBeginField : public BlockClosure {
1340
1341public:
1342
1343  virtual void block_do(BlockBegin *block) {
1344    for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1345      assert(cur->block() == block, "Block begin is not correct");
1346    }
1347  }
1348};
1349
1350void IR::verify() {
1351#ifdef ASSERT
1352  PredecessorValidator pv(this);
1353  VerifyBlockBeginField verifier;
1354  this->iterate_postorder(&verifier);
1355#endif
1356}
1357
1358#endif // PRODUCT
1359
1360void SubstitutionResolver::visit(Value* v) {
1361  Value v0 = *v;
1362  if (v0) {
1363    Value vs = v0->subst();
1364    if (vs != v0) {
1365      *v = v0->subst();
1366    }
1367  }
1368}
1369
1370#ifdef ASSERT
1371class SubstitutionChecker: public ValueVisitor {
1372  void visit(Value* v) {
1373    Value v0 = *v;
1374    if (v0) {
1375      Value vs = v0->subst();
1376      assert(vs == v0, "missed substitution");
1377    }
1378  }
1379};
1380#endif
1381
1382
1383void SubstitutionResolver::block_do(BlockBegin* block) {
1384  Instruction* last = NULL;
1385  for (Instruction* n = block; n != NULL;) {
1386    n->values_do(this);
1387    // need to remove this instruction from the instruction stream
1388    if (n->subst() != n) {
1389      assert(last != NULL, "must have last");
1390      last->set_next(n->next());
1391    } else {
1392      last = n;
1393    }
1394    n = last->next();
1395  }
1396
1397#ifdef ASSERT
1398  SubstitutionChecker check_substitute;
1399  if (block->state()) block->state()->values_do(&check_substitute);
1400  block->block_values_do(&check_substitute);
1401  if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1402#endif
1403}
1404