1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// output_h.cpp - Class HPP file output routines for architecture definition
26#include "adlc.hpp"
27
28// The comment delimiter used in format statements after assembler instructions.
29#if defined(PPC64)
30#define commentSeperator "\t//"
31#else
32#define commentSeperator "!"
33#endif
34
35// Generate the #define that describes the number of registers.
36static void defineRegCount(FILE *fp, RegisterForm *registers) {
37  if (registers) {
38    int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
39    fprintf(fp,"\n");
40    fprintf(fp,"// the number of reserved registers + machine registers.\n");
41    fprintf(fp,"#define REG_COUNT    %d\n", regCount);
42  }
43}
44
45// Output enumeration of machine register numbers
46// (1)
47// // Enumerate machine registers starting after reserved regs.
48// // in the order of occurrence in the register block.
49// enum MachRegisterNumbers {
50//   EAX_num = 0,
51//   ...
52//   _last_Mach_Reg
53// }
54void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
55  if (_register) {
56    RegDef *reg_def = NULL;
57
58    // Output a #define for the number of machine registers
59    defineRegCount(fp_hpp, _register);
60
61    // Count all the Save_On_Entry and Always_Save registers
62    int    saved_on_entry = 0;
63    int  c_saved_on_entry = 0;
64    _register->reset_RegDefs();
65    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
66      if( strcmp(reg_def->_callconv,"SOE") == 0 ||
67          strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
68      if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
69          strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
70    }
71    fprintf(fp_hpp, "\n");
72    fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
73    fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
74    fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
75    fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
76
77    // (1)
78    // Build definition for enumeration of register numbers
79    fprintf(fp_hpp, "\n");
80    fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
81    fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
82    fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
83
84    // Output the register number for each register in the allocation classes
85    _register->reset_RegDefs();
86    int i = 0;
87    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
88      fprintf(fp_hpp,"  %s_num,", reg_def->_regname);
89      for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
90      fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
91              i++,
92              reg_def->register_num(),
93              reg_def->register_encode());
94    }
95    // Finish defining enumeration
96    fprintf(fp_hpp, "  _last_Mach_Reg            // %d\n", i);
97    fprintf(fp_hpp, "};\n");
98  }
99
100  fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
101  fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
102  fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
103  fprintf(fp_hpp, "#define FORALL_BODY ");
104  int len = RegisterForm::RegMask_Size();
105  for( int i = 0; i < len; i++ )
106    fprintf(fp_hpp, "BODY(%d) ",i);
107  fprintf(fp_hpp, "\n\n");
108
109  fprintf(fp_hpp,"class RegMask;\n");
110  // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
111  // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
112}
113
114
115// Output enumeration of machine register encodings
116// (2)
117// // Enumerate machine registers starting after reserved regs.
118// // in the order of occurrence in the alloc_class(es).
119// enum MachRegisterEncodes {
120//   EAX_enc = 0x00,
121//   ...
122// }
123void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
124  if (_register) {
125    RegDef *reg_def = NULL;
126    RegDef *reg_def_next = NULL;
127
128    // (2)
129    // Build definition for enumeration of encode values
130    fprintf(fp_hpp, "\n");
131    fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
132    fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
133    fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
134
135    // Find max enum string length.
136    size_t maxlen = 0;
137    _register->reset_RegDefs();
138    reg_def = _register->iter_RegDefs();
139    while (reg_def != NULL) {
140      size_t len = strlen(reg_def->_regname);
141      if (len > maxlen) maxlen = len;
142      reg_def = _register->iter_RegDefs();
143    }
144
145    // Output the register encoding for each register in the allocation classes
146    _register->reset_RegDefs();
147    reg_def_next = _register->iter_RegDefs();
148    while( (reg_def = reg_def_next) != NULL ) {
149      reg_def_next = _register->iter_RegDefs();
150      fprintf(fp_hpp,"  %s_enc", reg_def->_regname);
151      for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
152      fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
153    }
154    // Finish defining enumeration
155    fprintf(fp_hpp, "};\n");
156
157  } // Done with register form
158}
159
160
161// Declare an array containing the machine register names, strings.
162static void declareRegNames(FILE *fp, RegisterForm *registers) {
163  if (registers) {
164//    fprintf(fp,"\n");
165//    fprintf(fp,"// An array of character pointers to machine register names.\n");
166//    fprintf(fp,"extern const char *regName[];\n");
167  }
168}
169
170// Declare an array containing the machine register sizes in 32-bit words.
171void ArchDesc::declareRegSizes(FILE *fp) {
172// regSize[] is not used
173}
174
175// Declare an array containing the machine register encoding values
176static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
177  if (registers) {
178    // // //
179    // fprintf(fp,"\n");
180    // fprintf(fp,"// An array containing the machine register encode values\n");
181    // fprintf(fp,"extern const char  regEncode[];\n");
182  }
183}
184
185
186// ---------------------------------------------------------------------------
187//------------------------------Utilities to build Instruction Classes--------
188// ---------------------------------------------------------------------------
189static void out_RegMask(FILE *fp) {
190  fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
191}
192
193// ---------------------------------------------------------------------------
194//--------Utilities to build MachOper and MachNode derived Classes------------
195// ---------------------------------------------------------------------------
196
197//------------------------------Utilities to build Operand Classes------------
198static void in_RegMask(FILE *fp) {
199  fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
200}
201
202static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
203  int i = 0;
204  Component *comp;
205
206  if (oper->num_consts(globals) == 0) return;
207  // Iterate over the component list looking for constants
208  oper->_components.reset();
209  if ((comp = oper->_components.iter()) == NULL) {
210    assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
211    const char *type = oper->ideal_type(globals);
212    if (!strcmp(type, "ConI")) {
213      if (i > 0) fprintf(fp,", ");
214      fprintf(fp,"  int32_t        _c%d;\n", i);
215    }
216    else if (!strcmp(type, "ConP")) {
217      if (i > 0) fprintf(fp,", ");
218      fprintf(fp,"  const TypePtr *_c%d;\n", i);
219    }
220    else if (!strcmp(type, "ConN")) {
221      if (i > 0) fprintf(fp,", ");
222      fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
223    }
224    else if (!strcmp(type, "ConNKlass")) {
225      if (i > 0) fprintf(fp,", ");
226      fprintf(fp,"  const TypeNarrowKlass *_c%d;\n", i);
227    }
228    else if (!strcmp(type, "ConL")) {
229      if (i > 0) fprintf(fp,", ");
230      fprintf(fp,"  jlong          _c%d;\n", i);
231    }
232    else if (!strcmp(type, "ConF")) {
233      if (i > 0) fprintf(fp,", ");
234      fprintf(fp,"  jfloat         _c%d;\n", i);
235    }
236    else if (!strcmp(type, "ConD")) {
237      if (i > 0) fprintf(fp,", ");
238      fprintf(fp,"  jdouble        _c%d;\n", i);
239    }
240    else if (!strcmp(type, "Bool")) {
241      fprintf(fp,"private:\n");
242      fprintf(fp,"  BoolTest::mask _c%d;\n", i);
243      fprintf(fp,"public:\n");
244    }
245    else {
246      assert(0, "Non-constant operand lacks component list.");
247    }
248  } // end if NULL
249  else {
250    oper->_components.reset();
251    while ((comp = oper->_components.iter()) != NULL) {
252      if (!strcmp(comp->base_type(globals), "ConI")) {
253        fprintf(fp,"  jint             _c%d;\n", i);
254        i++;
255      }
256      else if (!strcmp(comp->base_type(globals), "ConP")) {
257        fprintf(fp,"  const TypePtr *_c%d;\n", i);
258        i++;
259      }
260      else if (!strcmp(comp->base_type(globals), "ConN")) {
261        fprintf(fp,"  const TypePtr *_c%d;\n", i);
262        i++;
263      }
264      else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
265        fprintf(fp,"  const TypePtr *_c%d;\n", i);
266        i++;
267      }
268      else if (!strcmp(comp->base_type(globals), "ConL")) {
269        fprintf(fp,"  jlong            _c%d;\n", i);
270        i++;
271      }
272      else if (!strcmp(comp->base_type(globals), "ConF")) {
273        fprintf(fp,"  jfloat           _c%d;\n", i);
274        i++;
275      }
276      else if (!strcmp(comp->base_type(globals), "ConD")) {
277        fprintf(fp,"  jdouble          _c%d;\n", i);
278        i++;
279      }
280    }
281  }
282}
283
284// Declare constructor.
285// Parameters start with condition code, then all other constants
286//
287// (0) public:
288// (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
289// (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
290//
291static void defineConstructor(FILE *fp, const char *name, uint num_consts,
292                              ComponentList &lst, bool is_ideal_bool,
293                              Form::DataType constant_type, FormDict &globals) {
294  fprintf(fp,"public:\n");
295  // generate line (1)
296  fprintf(fp,"  %sOper(", name);
297  if( num_consts == 0 ) {
298    fprintf(fp,") {}\n");
299    return;
300  }
301
302  // generate parameters for constants
303  uint i = 0;
304  Component *comp;
305  lst.reset();
306  if ((comp = lst.iter()) == NULL) {
307    assert(num_consts == 1, "Bad component list detected.\n");
308    switch( constant_type ) {
309    case Form::idealI : {
310      fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32_t c%d", i);
311      break;
312    }
313    case Form::idealN :      { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
314    case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
315    case Form::idealP :      { fprintf(fp,"const TypePtr *c%d", i); break; }
316    case Form::idealL :      { fprintf(fp,"jlong c%d", i);   break;        }
317    case Form::idealF :      { fprintf(fp,"jfloat c%d", i);  break;        }
318    case Form::idealD :      { fprintf(fp,"jdouble c%d", i); break;        }
319    default:
320      assert(!is_ideal_bool, "Non-constant operand lacks component list.");
321      break;
322    }
323  } // end if NULL
324  else {
325    lst.reset();
326    while((comp = lst.iter()) != NULL) {
327      if (!strcmp(comp->base_type(globals), "ConI")) {
328        if (i > 0) fprintf(fp,", ");
329        fprintf(fp,"int32_t c%d", i);
330        i++;
331      }
332      else if (!strcmp(comp->base_type(globals), "ConP")) {
333        if (i > 0) fprintf(fp,", ");
334        fprintf(fp,"const TypePtr *c%d", i);
335        i++;
336      }
337      else if (!strcmp(comp->base_type(globals), "ConN")) {
338        if (i > 0) fprintf(fp,", ");
339        fprintf(fp,"const TypePtr *c%d", i);
340        i++;
341      }
342      else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
343        if (i > 0) fprintf(fp,", ");
344        fprintf(fp,"const TypePtr *c%d", i);
345        i++;
346      }
347      else if (!strcmp(comp->base_type(globals), "ConL")) {
348        if (i > 0) fprintf(fp,", ");
349        fprintf(fp,"jlong c%d", i);
350        i++;
351      }
352      else if (!strcmp(comp->base_type(globals), "ConF")) {
353        if (i > 0) fprintf(fp,", ");
354        fprintf(fp,"jfloat c%d", i);
355        i++;
356      }
357      else if (!strcmp(comp->base_type(globals), "ConD")) {
358        if (i > 0) fprintf(fp,", ");
359        fprintf(fp,"jdouble c%d", i);
360        i++;
361      }
362      else if (!strcmp(comp->base_type(globals), "Bool")) {
363        if (i > 0) fprintf(fp,", ");
364        fprintf(fp,"BoolTest::mask c%d", i);
365        i++;
366      }
367    }
368  }
369  // finish line (1) and start line (2)
370  fprintf(fp,")  : ");
371  // generate initializers for constants
372  i = 0;
373  fprintf(fp,"_c%d(c%d)", i, i);
374  for( i = 1; i < num_consts; ++i) {
375    fprintf(fp,", _c%d(c%d)", i, i);
376  }
377  // The body for the constructor is empty
378  fprintf(fp," {}\n");
379}
380
381// ---------------------------------------------------------------------------
382// Utilities to generate format rules for machine operands and instructions
383// ---------------------------------------------------------------------------
384
385// Generate the format rule for condition codes
386static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
387  assert(oper != NULL, "what");
388  CondInterface* cond = oper->_interface->is_CondInterface();
389  fprintf(fp, "       if( _c%d == BoolTest::eq ) st->print_raw(\"%s\");\n",i,cond->_equal_format);
390  fprintf(fp, "  else if( _c%d == BoolTest::ne ) st->print_raw(\"%s\");\n",i,cond->_not_equal_format);
391  fprintf(fp, "  else if( _c%d == BoolTest::le ) st->print_raw(\"%s\");\n",i,cond->_less_equal_format);
392  fprintf(fp, "  else if( _c%d == BoolTest::ge ) st->print_raw(\"%s\");\n",i,cond->_greater_equal_format);
393  fprintf(fp, "  else if( _c%d == BoolTest::lt ) st->print_raw(\"%s\");\n",i,cond->_less_format);
394  fprintf(fp, "  else if( _c%d == BoolTest::gt ) st->print_raw(\"%s\");\n",i,cond->_greater_format);
395  fprintf(fp, "  else if( _c%d == BoolTest::overflow ) st->print_raw(\"%s\");\n",i,cond->_overflow_format);
396  fprintf(fp, "  else if( _c%d == BoolTest::no_overflow ) st->print_raw(\"%s\");\n",i,cond->_no_overflow_format);
397}
398
399// Output code that dumps constant values, increment "i" if type is constant
400static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
401  if (!strcmp(ideal_type, "ConI")) {
402    fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
403    fprintf(fp,"   st->print(\"/0x%%08x\", _c%d);\n", i);
404    ++i;
405  }
406  else if (!strcmp(ideal_type, "ConP")) {
407    fprintf(fp,"    _c%d->dump_on(st);\n", i);
408    ++i;
409  }
410  else if (!strcmp(ideal_type, "ConN")) {
411    fprintf(fp,"    _c%d->dump_on(st);\n", i);
412    ++i;
413  }
414  else if (!strcmp(ideal_type, "ConNKlass")) {
415    fprintf(fp,"    _c%d->dump_on(st);\n", i);
416    ++i;
417  }
418  else if (!strcmp(ideal_type, "ConL")) {
419    fprintf(fp,"    st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", i);
420    fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%d);\n", i);
421    ++i;
422  }
423  else if (!strcmp(ideal_type, "ConF")) {
424    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
425    fprintf(fp,"    jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
426    fprintf(fp,"    st->print(\"/0x%%x/\", _c%di);\n", i);
427    ++i;
428  }
429  else if (!strcmp(ideal_type, "ConD")) {
430    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
431    fprintf(fp,"    jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
432    fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%dl);\n", i);
433    ++i;
434  }
435  else if (!strcmp(ideal_type, "Bool")) {
436    defineCCodeDump(oper, fp,i);
437    ++i;
438  }
439
440  return i;
441}
442
443// Generate the format rule for an operand
444void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
445  if (!for_c_file) {
446    // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
447    // compile the bodies separately, to cut down on recompilations
448    fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
449    fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
450    return;
451  }
452
453  // Local pointer indicates remaining part of format rule
454  int idx = 0;                   // position of operand in match rule
455
456  // Generate internal format function, used when stored locally
457  fprintf(fp, "\n#ifndef PRODUCT\n");
458  fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
459  // Generate the user-defined portion of the format
460  if (oper._format) {
461    if ( oper._format->_strings.count() != 0 ) {
462      // No initialization code for int_format
463
464      // Build the format from the entries in strings and rep_vars
465      const char  *string  = NULL;
466      oper._format->_rep_vars.reset();
467      oper._format->_strings.reset();
468      while ( (string = oper._format->_strings.iter()) != NULL ) {
469
470        // Check if this is a standard string or a replacement variable
471        if ( string != NameList::_signal ) {
472          // Normal string
473          // Pass through to st->print
474          fprintf(fp,"  st->print_raw(\"%s\");\n", string);
475        } else {
476          // Replacement variable
477          const char *rep_var = oper._format->_rep_vars.iter();
478          // Check that it is a local name, and an operand
479          const Form* form = oper._localNames[rep_var];
480          if (form == NULL) {
481            globalAD->syntax_err(oper._linenum,
482                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
483            assert(form, "replacement variable was not found in local names");
484          }
485          OperandForm *op      = form->is_operand();
486          // Get index if register or constant
487          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
488            idx  = oper.register_position( globals, rep_var);
489          }
490          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
491            idx  = oper.constant_position( globals, rep_var);
492          } else {
493            idx = 0;
494          }
495
496          // output invocation of "$..."s format function
497          if ( op != NULL ) op->int_format(fp, globals, idx);
498
499          if ( idx == -1 ) {
500            fprintf(stderr,
501                    "Using a name, %s, that isn't in match rule\n", rep_var);
502            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
503          }
504        } // Done with a replacement variable
505      } // Done with all format strings
506    } else {
507      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
508      oper.int_format(fp, globals, 0);
509    }
510
511  } else { // oper._format == NULL
512    // Provide a few special case formats where the AD writer cannot.
513    if ( strcmp(oper._ident,"Universe")==0 ) {
514      fprintf(fp, "  st->print(\"$$univ\");\n");
515    }
516    // labelOper::int_format is defined in ad_<...>.cpp
517  }
518  // ALWAYS! Provide a special case output for condition codes.
519  if( oper.is_ideal_bool() ) {
520    defineCCodeDump(&oper, fp,0);
521  }
522  fprintf(fp,"}\n");
523
524  // Generate external format function, when data is stored externally
525  fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
526  // Generate the user-defined portion of the format
527  if (oper._format) {
528    if ( oper._format->_strings.count() != 0 ) {
529
530      // Check for a replacement string "$..."
531      if ( oper._format->_rep_vars.count() != 0 ) {
532        // Initialization code for ext_format
533      }
534
535      // Build the format from the entries in strings and rep_vars
536      const char  *string  = NULL;
537      oper._format->_rep_vars.reset();
538      oper._format->_strings.reset();
539      while ( (string = oper._format->_strings.iter()) != NULL ) {
540
541        // Check if this is a standard string or a replacement variable
542        if ( string != NameList::_signal ) {
543          // Normal string
544          // Pass through to st->print
545          fprintf(fp,"  st->print_raw(\"%s\");\n", string);
546        } else {
547          // Replacement variable
548          const char *rep_var = oper._format->_rep_vars.iter();
549         // Check that it is a local name, and an operand
550          const Form* form = oper._localNames[rep_var];
551          if (form == NULL) {
552            globalAD->syntax_err(oper._linenum,
553                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
554            assert(form, "replacement variable was not found in local names");
555          }
556          OperandForm *op      = form->is_operand();
557          // Get index if register or constant
558          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
559            idx  = oper.register_position( globals, rep_var);
560          }
561          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
562            idx  = oper.constant_position( globals, rep_var);
563          } else {
564            idx = 0;
565          }
566          // output invocation of "$..."s format function
567          if ( op != NULL )   op->ext_format(fp, globals, idx);
568
569          // Lookup the index position of the replacement variable
570          idx      = oper._components.operand_position_format(rep_var, &oper);
571          if ( idx == -1 ) {
572            fprintf(stderr,
573                    "Using a name, %s, that isn't in match rule\n", rep_var);
574            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
575          }
576        } // Done with a replacement variable
577      } // Done with all format strings
578
579    } else {
580      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
581      oper.ext_format(fp, globals, 0);
582    }
583  } else { // oper._format == NULL
584    // Provide a few special case formats where the AD writer cannot.
585    if ( strcmp(oper._ident,"Universe")==0 ) {
586      fprintf(fp, "  st->print(\"$$univ\");\n");
587    }
588    // labelOper::ext_format is defined in ad_<...>.cpp
589  }
590  // ALWAYS! Provide a special case output for condition codes.
591  if( oper.is_ideal_bool() ) {
592    defineCCodeDump(&oper, fp,0);
593  }
594  fprintf(fp, "}\n");
595  fprintf(fp, "#endif\n");
596}
597
598
599// Generate the format rule for an instruction
600void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
601  if (!for_c_file) {
602    // compile the bodies separately, to cut down on recompilations
603    // #ifndef PRODUCT region generated by caller
604    fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
605    return;
606  }
607
608  // Define the format function
609  fprintf(fp, "#ifndef PRODUCT\n");
610  fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
611
612  // Generate the user-defined portion of the format
613  if( inst._format ) {
614    // If there are replacement variables,
615    // Generate index values needed for determining the operand position
616    if( inst._format->_rep_vars.count() )
617      inst.index_temps(fp, globals);
618
619    // Build the format from the entries in strings and rep_vars
620    const char  *string  = NULL;
621    inst._format->_rep_vars.reset();
622    inst._format->_strings.reset();
623    while( (string = inst._format->_strings.iter()) != NULL ) {
624      fprintf(fp,"  ");
625      // Check if this is a standard string or a replacement variable
626      if( string == NameList::_signal ) { // Replacement variable
627        const char* rep_var =  inst._format->_rep_vars.iter();
628        inst.rep_var_format( fp, rep_var);
629      } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
630        const char* rep_var =  inst._format->_rep_vars.iter();
631        const Form *form   = inst._localNames[rep_var];
632        if (form == NULL) {
633          fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
634          assert(false, "ShouldNotReachHere()");
635        }
636        OpClassForm *opc   = form->is_opclass();
637        assert( opc, "replacement variable was not found in local names");
638        // Lookup the index position of the replacement variable
639        int idx  = inst.operand_position_format(rep_var);
640        if ( idx == -1 ) {
641          assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
642          assert( false, "ShouldNotReachHere()");
643        }
644
645        if (inst.is_noninput_operand(idx)) {
646          assert( false, "ShouldNotReachHere()");
647        } else {
648          // Output the format call for this operand
649          fprintf(fp,"opnd_array(%d)",idx);
650        }
651        rep_var =  inst._format->_rep_vars.iter();
652        inst._format->_strings.iter();
653        if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
654          Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
655          if ( constant_type == Form::idealD ) {
656            fprintf(fp,"->constantD()");
657          } else if ( constant_type == Form::idealF ) {
658            fprintf(fp,"->constantF()");
659          } else if ( constant_type == Form::idealL ) {
660            fprintf(fp,"->constantL()");
661          } else {
662            fprintf(fp,"->constant()");
663          }
664        } else if ( strcmp(rep_var,"$cmpcode") == 0) {
665            fprintf(fp,"->ccode()");
666        } else {
667          assert( false, "ShouldNotReachHere()");
668        }
669      } else if( string == NameList::_signal2 ) // Raw program text
670        fputs(inst._format->_strings.iter(), fp);
671      else
672        fprintf(fp,"st->print_raw(\"%s\");\n", string);
673    } // Done with all format strings
674  } // Done generating the user-defined portion of the format
675
676  // Add call debug info automatically
677  Form::CallType call_type = inst.is_ideal_call();
678  if( call_type != Form::invalid_type ) {
679    switch( call_type ) {
680    case Form::JAVA_DYNAMIC:
681      fprintf(fp,"  _method->print_short_name(st);\n");
682      break;
683    case Form::JAVA_STATIC:
684      fprintf(fp,"  if( _method ) _method->print_short_name(st);\n");
685      fprintf(fp,"  else st->print(\" wrapper for: %%s\", _name);\n");
686      fprintf(fp,"  if( !_method ) dump_trap_args(st);\n");
687      break;
688    case Form::JAVA_COMPILED:
689    case Form::JAVA_INTERP:
690      break;
691    case Form::JAVA_RUNTIME:
692    case Form::JAVA_LEAF:
693    case Form::JAVA_NATIVE:
694      fprintf(fp,"  st->print(\" %%s\", _name);");
695      break;
696    default:
697      assert(0,"ShouldNotReachHere");
698    }
699    fprintf(fp,  "  st->cr();\n" );
700    fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
701    fprintf(fp,  "  st->print(\"        # \");\n" );
702    fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
703  }
704  else if(inst.is_ideal_safepoint()) {
705    fprintf(fp,  "  st->print_raw(\"\");\n" );
706    fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
707    fprintf(fp,  "  st->print(\"        # \");\n" );
708    fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
709  }
710  else if( inst.is_ideal_if() ) {
711    fprintf(fp,  "  st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
712  }
713  else if( inst.is_ideal_mem() ) {
714    // Print out the field name if available to improve readability
715    fprintf(fp,  "  if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
716    fprintf(fp,  "    ciField* f = ra->C->alias_type(adr_type())->field();\n");
717    fprintf(fp,  "    st->print(\" %s Field: \");\n", commentSeperator);
718    fprintf(fp,  "    if (f->is_volatile())\n");
719    fprintf(fp,  "      st->print(\"volatile \");\n");
720    fprintf(fp,  "    f->holder()->name()->print_symbol_on(st);\n");
721    fprintf(fp,  "    st->print(\".\");\n");
722    fprintf(fp,  "    f->name()->print_symbol_on(st);\n");
723    fprintf(fp,  "    if (f->is_constant())\n");
724    fprintf(fp,  "      st->print(\" (constant)\");\n");
725    fprintf(fp,  "  } else {\n");
726    // Make sure 'Volatile' gets printed out
727    fprintf(fp,  "    if (ra->C->alias_type(adr_type())->is_volatile())\n");
728    fprintf(fp,  "      st->print(\" volatile!\");\n");
729    fprintf(fp,  "  }\n");
730  }
731
732  // Complete the definition of the format function
733  fprintf(fp, "}\n#endif\n");
734}
735
736void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
737  if (!_pipeline)
738    return;
739
740  fprintf(fp_hpp, "\n");
741  fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
742  fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
743
744  if (_pipeline->_maxcycleused <=
745#ifdef SPARC
746    64
747#else
748    32
749#endif
750      ) {
751    fprintf(fp_hpp, "protected:\n");
752    fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
753    fprintf(fp_hpp, "public:\n");
754    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
755    if (_pipeline->_maxcycleused <= 32)
756      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
757    else {
758      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
759      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
760    }
761    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
762    fprintf(fp_hpp, "    _mask = in._mask;\n");
763    fprintf(fp_hpp, "    return *this;\n");
764    fprintf(fp_hpp, "  }\n\n");
765    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
766    fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
767    fprintf(fp_hpp, "  }\n\n");
768    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
769    fprintf(fp_hpp, "    _mask <<= n;\n");
770    fprintf(fp_hpp, "    return *this;\n");
771    fprintf(fp_hpp, "  }\n\n");
772    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
773    fprintf(fp_hpp, "    _mask |= in2._mask;\n");
774    fprintf(fp_hpp, "  }\n\n");
775    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
776    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
777  }
778  else {
779    fprintf(fp_hpp, "protected:\n");
780    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
781    uint l;
782    fprintf(fp_hpp, "  uint ");
783    for (l = 1; l <= masklen; l++)
784      fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
785    fprintf(fp_hpp, "public:\n");
786    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
787    for (l = 1; l <= masklen; l++)
788      fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
789    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
790    for (l = 1; l <= masklen; l++)
791      fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
792    for (l = 1; l <= masklen; l++)
793      fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
794
795    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
796    for (l = 1; l <= masklen; l++)
797      fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
798    fprintf(fp_hpp, "    return *this;\n");
799    fprintf(fp_hpp, "  }\n\n");
800    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
801    fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
802    for (l = 1; l <= masklen; l++)
803      fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
804    fprintf(fp_hpp, "    return out;\n");
805    fprintf(fp_hpp, "  }\n\n");
806    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
807    fprintf(fp_hpp, "    return (");
808    for (l = 1; l <= masklen; l++)
809      fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
810    fprintf(fp_hpp, ") ? true : false;\n");
811    fprintf(fp_hpp, "  }\n\n");
812    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
813    fprintf(fp_hpp, "    if (n >= 32)\n");
814    fprintf(fp_hpp, "      do {\n       ");
815    for (l = masklen; l > 1; l--)
816      fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
817    fprintf(fp_hpp, " _mask%d = 0;\n", 1);
818    fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
819    fprintf(fp_hpp, "    if (n > 0) {\n");
820    fprintf(fp_hpp, "      uint m = 32 - n;\n");
821    fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
822    fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
823    for (l = 2; l < masklen; l++) {
824      fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
825    }
826    fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
827    fprintf(fp_hpp, "    }\n");
828
829    fprintf(fp_hpp, "    return *this;\n");
830    fprintf(fp_hpp, "  }\n\n");
831    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
832    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
833    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
834  }
835
836  fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
837  fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
838  fprintf(fp_hpp, "};\n\n");
839
840  uint rescount = 0;
841  const char *resource;
842
843  for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
844      int mask = _pipeline->_resdict[resource]->is_resource()->mask();
845      if ((mask & (mask-1)) == 0)
846        rescount++;
847    }
848
849  fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
850  fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
851  fprintf(fp_hpp, "protected:\n");
852  fprintf(fp_hpp, "  // Mask of used functional units\n");
853  fprintf(fp_hpp, "  uint _used;\n\n");
854  fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
855  fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
856  fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
857  fprintf(fp_hpp, "  bool _multiple;\n\n");
858  fprintf(fp_hpp, "  // Mask of specific used cycles\n");
859  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
860  fprintf(fp_hpp, "public:\n");
861  fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
862  fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
863  fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
864  fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
865  fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
866  fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
867  fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
868  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
869  fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
870  fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
871  fprintf(fp_hpp, "  }\n\n");
872  fprintf(fp_hpp, "  void step(uint cycles) {\n");
873  fprintf(fp_hpp, "    _used = 0;\n");
874  fprintf(fp_hpp, "    _mask <<= cycles;\n");
875  fprintf(fp_hpp, "  }\n\n");
876  fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
877  fprintf(fp_hpp, "};\n\n");
878
879  fprintf(fp_hpp, "// Pipeline_Use Class\n");
880  fprintf(fp_hpp, "class Pipeline_Use {\n");
881  fprintf(fp_hpp, "protected:\n");
882  fprintf(fp_hpp, "  // These resources can be used\n");
883  fprintf(fp_hpp, "  uint _resources_used;\n\n");
884  fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
885  fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
886  fprintf(fp_hpp, "  // Number of elements\n");
887  fprintf(fp_hpp, "  uint _count;\n\n");
888  fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
889  fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
890  fprintf(fp_hpp, "public:\n");
891  fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
892  fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
893  fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
894  fprintf(fp_hpp, "  , _count(count)\n");
895  fprintf(fp_hpp, "  , _elements(elements)\n");
896  fprintf(fp_hpp, "  {}\n\n");
897  fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
898  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
899  fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
900  fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
901  fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
902  fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
903  fprintf(fp_hpp, "  void reset() {\n");
904  fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
905  fprintf(fp_hpp, "  };\n\n");
906  fprintf(fp_hpp, "  void step(uint cycles) {\n");
907  fprintf(fp_hpp, "    reset();\n");
908  fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
909    rescount);
910  fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
911  fprintf(fp_hpp, "  };\n\n");
912  fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
913  fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
914    rescount);
915  fprintf(fp_hpp, "  friend class Pipeline;\n");
916  fprintf(fp_hpp, "};\n\n");
917
918  fprintf(fp_hpp, "// Pipeline Class\n");
919  fprintf(fp_hpp, "class Pipeline {\n");
920  fprintf(fp_hpp, "public:\n");
921
922  fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
923    _pipeline ? "true" : "false" );
924
925  assert( _pipeline->_maxInstrsPerBundle &&
926        ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
927          _pipeline->_instrFetchUnitSize &&
928          _pipeline->_instrFetchUnits,
929    "unspecified pipeline architecture units");
930
931  uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
932
933  fprintf(fp_hpp, "  enum {\n");
934  fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
935    _pipeline->_variableSizeInstrs ? 1 : 0);
936  fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
937    _pipeline->_variableSizeInstrs ? 0 : 1);
938  fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
939    _pipeline->_branchHasDelaySlot ? 1 : 0);
940  fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
941    _pipeline->_maxInstrsPerBundle);
942  fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
943    _pipeline->_maxBundlesPerCycle);
944  fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
945    _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
946  fprintf(fp_hpp, "  };\n\n");
947
948  fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
949    _pipeline->_instrUnitSize != 0 ? "true" : "false" );
950  if( _pipeline->_bundleUnitSize != 0 )
951    if( _pipeline->_instrUnitSize != 0 )
952      fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
953    else
954      fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
955  else
956    fprintf(fp_hpp, "// Bundling is not supported\n\n");
957  if( _pipeline->_instrUnitSize != 0 )
958    fprintf(fp_hpp, "  // Size of an instruction\n");
959  else
960    fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
961  fprintf(fp_hpp, "  static uint instr_unit_size() {");
962  if( _pipeline->_instrUnitSize == 0 )
963    fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
964  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
965
966  if( _pipeline->_bundleUnitSize != 0 )
967    fprintf(fp_hpp, "  // Size of a bundle\n");
968  else
969    fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
970  fprintf(fp_hpp, "  static uint bundle_unit_size() {");
971  if( _pipeline->_bundleUnitSize == 0 )
972    fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
973  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
974
975  fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
976    _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
977
978  fprintf(fp_hpp, "private:\n");
979  fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
980  fprintf(fp_hpp, "\n");
981  fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
982  fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
983  fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
984  fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
985  fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
986  fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
987  fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
988  fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
989  fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
990  fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
991  fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
992  fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
993  fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
994  fprintf(fp_hpp, "\n");
995  fprintf(fp_hpp, "public:\n");
996  fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
997  fprintf(fp_hpp, "           uint                            count,\n");
998  fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
999  fprintf(fp_hpp, "           uint                            fixed_latency,\n");
1000  fprintf(fp_hpp, "           uint                            instruction_count,\n");
1001  fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
1002  fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
1003  fprintf(fp_hpp, "           bool                            force_serialization,\n");
1004  fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
1005  fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
1006  fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
1007  fprintf(fp_hpp, "           uint                    * const cycles,\n");
1008  fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
1009  fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
1010  fprintf(fp_hpp, "  , _read_stage_count(count)\n");
1011  fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
1012  fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
1013  fprintf(fp_hpp, "  , _read_stages(dst)\n");
1014  fprintf(fp_hpp, "  , _resource_stage(stage)\n");
1015  fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
1016  fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
1017  fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
1018  fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
1019  fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
1020  fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
1021  fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
1022  fprintf(fp_hpp, "  {};\n");
1023  fprintf(fp_hpp, "\n");
1024  fprintf(fp_hpp, "  uint writeStage() const {\n");
1025  fprintf(fp_hpp, "    return (_write_stage);\n");
1026  fprintf(fp_hpp, "  }\n");
1027  fprintf(fp_hpp, "\n");
1028  fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
1029  fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
1030  fprintf(fp_hpp, "  }\n\n");
1031  fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
1032  fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
1033  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
1034  fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
1035  fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
1036  fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
1037  fprintf(fp_hpp, "  uint fixedLatency() const {\n");
1038  fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
1039  fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1040  fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1041  fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
1042  fprintf(fp_hpp, "    return (_resource_use); }\n\n");
1043  fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1044  fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
1045  fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
1046  fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
1047  fprintf(fp_hpp, "  uint instructionCount() const {\n");
1048  fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
1049  fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
1050  fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
1051  fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
1052  fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
1053  fprintf(fp_hpp, "  bool forceSerialization() const {\n");
1054  fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
1055  fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
1056  fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
1057  fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1058  fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
1059  fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1060  fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
1061  fprintf(fp_hpp, "#endif\n");
1062  fprintf(fp_hpp, "};\n\n");
1063
1064  fprintf(fp_hpp, "// Bundle class\n");
1065  fprintf(fp_hpp, "class Bundle {\n");
1066
1067  uint mshift = 0;
1068  for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1069    mshift++;
1070
1071  uint rshift = rescount;
1072
1073  fprintf(fp_hpp, "protected:\n");
1074  fprintf(fp_hpp, "  enum {\n");
1075  fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
1076  fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
1077  fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
1078  fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
1079  fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
1080  fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1081  fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1082  fprintf(fp_hpp, "\n");
1083  fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1084  fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1085  fprintf(fp_hpp, "  };\n\n");
1086  fprintf(fp_hpp, "  uint _flags          : 3,\n");
1087  fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1088  fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1089  fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1090  fprintf(fp_hpp, "public:\n");
1091  fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1092  fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1093  fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1094  fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1095  fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1096
1097  fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1098  fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1099  fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1100  fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1101
1102  fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1103  fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1104  fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1105  fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1106  fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1107  fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1108
1109  fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1110  fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1111  fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1112  fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1113  fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1114  fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1115  fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1116  fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1117
1118  fprintf(fp_hpp, "  enum {\n");
1119  fprintf(fp_hpp, "    _nop_count = %d\n",
1120    _pipeline->_nopcnt);
1121  fprintf(fp_hpp, "  };\n\n");
1122  fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d]);\n\n",
1123    _pipeline->_nopcnt);
1124  fprintf(fp_hpp, "#ifndef PRODUCT\n");
1125  fprintf(fp_hpp, "  void dump(outputStream *st = tty) const;\n");
1126  fprintf(fp_hpp, "#endif\n");
1127  fprintf(fp_hpp, "};\n\n");
1128
1129//  const char *classname;
1130//  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1131//    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1132//    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1133//  }
1134}
1135
1136//------------------------------declareClasses---------------------------------
1137// Construct the class hierarchy of MachNode classes from the instruction &
1138// operand lists
1139void ArchDesc::declareClasses(FILE *fp) {
1140
1141  // Declare an array containing the machine register names, strings.
1142  declareRegNames(fp, _register);
1143
1144  // Declare an array containing the machine register encoding values
1145  declareRegEncodes(fp, _register);
1146
1147  // Generate declarations for the total number of operands
1148  fprintf(fp,"\n");
1149  fprintf(fp,"// Total number of operands defined in architecture definition\n");
1150  int num_operands = 0;
1151  OperandForm *op;
1152  for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1153    // Ensure this is a machine-world instruction
1154    if (op->ideal_only()) continue;
1155
1156    ++num_operands;
1157  }
1158  int first_operand_class = num_operands;
1159  OpClassForm *opc;
1160  for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1161    // Ensure this is a machine-world instruction
1162    if (opc->ideal_only()) continue;
1163
1164    ++num_operands;
1165  }
1166  fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1167  fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1168  fprintf(fp,"\n");
1169  // Generate declarations for the total number of instructions
1170  fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1171  fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1172
1173
1174  // Generate Machine Classes for each operand defined in AD file
1175  fprintf(fp,"\n");
1176  fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1177  // Iterate through all operands
1178  _operands.reset();
1179  OperandForm *oper;
1180  for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1181    // Ensure this is a machine-world instruction
1182    if (oper->ideal_only() ) continue;
1183    // The declaration of labelOper is in machine-independent file: machnode
1184    if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1185    // The declaration of methodOper is in machine-independent file: machnode
1186    if ( strcmp(oper->_ident,"method") == 0 ) continue;
1187
1188    // Build class definition for this operand
1189    fprintf(fp,"\n");
1190    fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1191    fprintf(fp,"private:\n");
1192    // Operand definitions that depend upon number of input edges
1193    {
1194      uint num_edges = oper->num_edges(_globalNames);
1195      if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1196        fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1197              num_edges );
1198      }
1199      if( num_edges > 0 ) {
1200        in_RegMask(fp);
1201      }
1202    }
1203
1204    // Support storing constants inside the MachOper
1205    declareConstStorage(fp,_globalNames,oper);
1206
1207    // Support storage of the condition codes
1208    if( oper->is_ideal_bool() ) {
1209      fprintf(fp,"  virtual int ccode() const { \n");
1210      fprintf(fp,"    switch (_c0) {\n");
1211      fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1212      fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1213      fprintf(fp,"    case  BoolTest::lt : return less();\n");
1214      fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1215      fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1216      fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1217      fprintf(fp,"    case  BoolTest::overflow : return overflow();\n");
1218      fprintf(fp,"    case  BoolTest::no_overflow: return no_overflow();\n");
1219      fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1220      fprintf(fp,"    }\n");
1221      fprintf(fp,"  };\n");
1222    }
1223
1224    // Support storage of the condition codes
1225    if( oper->is_ideal_bool() ) {
1226      fprintf(fp,"  virtual void negate() { \n");
1227      fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1228      fprintf(fp,"  };\n");
1229    }
1230
1231    // Declare constructor.
1232    // Parameters start with condition code, then all other constants
1233    //
1234    // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1235    // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1236    //
1237    Form::DataType constant_type = oper->simple_type(_globalNames);
1238    defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1239                      oper->_components, oper->is_ideal_bool(),
1240                      constant_type, _globalNames);
1241
1242    // Clone function
1243    fprintf(fp,"  virtual MachOper      *clone() const;\n");
1244
1245    // Support setting a spill offset into a constant operand.
1246    // We only support setting an 'int' offset, while in the
1247    // LP64 build spill offsets are added with an AddP which
1248    // requires a long constant.  Thus we don't support spilling
1249    // in frames larger than 4Gig.
1250    if( oper->has_conI(_globalNames) ||
1251        oper->has_conL(_globalNames) )
1252      fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1253
1254    // virtual functions for encoding and format
1255    //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1256    //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1257    // Check the interface type, and generate the correct query functions
1258    // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1259
1260    fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1261            machOperEnum(oper->_ident));
1262
1263    // virtual function to look up ideal return type of machine instruction
1264    //
1265    // (1)  virtual const Type    *type() const { return .....; }
1266    //
1267    if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1268        (oper->_matrule->_rChild == NULL)) {
1269      unsigned int position = 0;
1270      const char  *opret, *opname, *optype;
1271      oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1272      fprintf(fp,"  virtual const Type    *type() const {");
1273      const char *type = getIdealType(optype);
1274      if( type != NULL ) {
1275        Form::DataType data_type = oper->is_base_constant(_globalNames);
1276        // Check if we are an ideal pointer type
1277        if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
1278          // Return the ideal type we already have: <TypePtr *>
1279          fprintf(fp," return _c0;");
1280        } else {
1281          // Return the appropriate bottom type
1282          fprintf(fp," return %s;", getIdealType(optype));
1283        }
1284      } else {
1285        fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1286      }
1287      fprintf(fp," }\n");
1288    } else {
1289      // Check for user-defined stack slots, based upon sRegX
1290      Form::DataType data_type = oper->is_user_name_for_sReg();
1291      if( data_type != Form::none ){
1292        const char *type = NULL;
1293        switch( data_type ) {
1294        case Form::idealI: type = "TypeInt::INT";   break;
1295        case Form::idealP: type = "TypePtr::BOTTOM";break;
1296        case Form::idealF: type = "Type::FLOAT";    break;
1297        case Form::idealD: type = "Type::DOUBLE";   break;
1298        case Form::idealL: type = "TypeLong::LONG"; break;
1299        case Form::none: // fall through
1300        default:
1301          assert( false, "No support for this type of stackSlot");
1302        }
1303        fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1304      }
1305    }
1306
1307
1308    //
1309    // virtual functions for defining the encoding interface.
1310    //
1311    // Access the linearized ideal register mask,
1312    // map to physical register encoding
1313    if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1314      // Just use the default virtual 'reg' call
1315    } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1316      // Special handling for operand 'sReg', a Stack Slot Register.
1317      // Map linearized ideal register mask to stack slot number
1318      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1319      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1320      fprintf(fp,"  }\n");
1321      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1322      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1323      fprintf(fp,"  }\n");
1324    }
1325
1326    // Output the operand specific access functions used by an enc_class
1327    // These are only defined when we want to override the default virtual func
1328    if (oper->_interface != NULL) {
1329      fprintf(fp,"\n");
1330      // Check if it is a Memory Interface
1331      if ( oper->_interface->is_MemInterface() != NULL ) {
1332        MemInterface *mem_interface = oper->_interface->is_MemInterface();
1333        const char *base = mem_interface->_base;
1334        if( base != NULL ) {
1335          define_oper_interface(fp, *oper, _globalNames, "base", base);
1336        }
1337        char *index = mem_interface->_index;
1338        if( index != NULL ) {
1339          define_oper_interface(fp, *oper, _globalNames, "index", index);
1340        }
1341        const char *scale = mem_interface->_scale;
1342        if( scale != NULL ) {
1343          define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1344        }
1345        const char *disp = mem_interface->_disp;
1346        if( disp != NULL ) {
1347          define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1348          oper->disp_is_oop(fp, _globalNames);
1349        }
1350        if( oper->stack_slots_only(_globalNames) ) {
1351          // should not call this:
1352          fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1353        } else if ( disp != NULL ) {
1354          define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1355        }
1356      } // end Memory Interface
1357      // Check if it is a Conditional Interface
1358      else if (oper->_interface->is_CondInterface() != NULL) {
1359        CondInterface *cInterface = oper->_interface->is_CondInterface();
1360        const char *equal = cInterface->_equal;
1361        if( equal != NULL ) {
1362          define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1363        }
1364        const char *not_equal = cInterface->_not_equal;
1365        if( not_equal != NULL ) {
1366          define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1367        }
1368        const char *less = cInterface->_less;
1369        if( less != NULL ) {
1370          define_oper_interface(fp, *oper, _globalNames, "less", less);
1371        }
1372        const char *greater_equal = cInterface->_greater_equal;
1373        if( greater_equal != NULL ) {
1374          define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1375        }
1376        const char *less_equal = cInterface->_less_equal;
1377        if( less_equal != NULL ) {
1378          define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1379        }
1380        const char *greater = cInterface->_greater;
1381        if( greater != NULL ) {
1382          define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1383        }
1384        const char *overflow = cInterface->_overflow;
1385        if( overflow != NULL ) {
1386          define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
1387        }
1388        const char *no_overflow = cInterface->_no_overflow;
1389        if( no_overflow != NULL ) {
1390          define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
1391        }
1392      } // end Conditional Interface
1393      // Check if it is a Constant Interface
1394      else if (oper->_interface->is_ConstInterface() != NULL ) {
1395        assert( oper->num_consts(_globalNames) == 1,
1396                "Must have one constant when using CONST_INTER encoding");
1397        if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1398          // Access the locally stored constant
1399          fprintf(fp,"  virtual intptr_t       constant() const {");
1400          fprintf(fp,   " return (intptr_t)_c0;");
1401          fprintf(fp,"  }\n");
1402        }
1403        else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1404          // Access the locally stored constant
1405          fprintf(fp,"  virtual intptr_t       constant() const {");
1406          fprintf(fp,   " return _c0->get_con();");
1407          fprintf(fp, " }\n");
1408          // Generate query to determine if this pointer is an oop
1409          fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1410          fprintf(fp,   " return _c0->reloc();");
1411          fprintf(fp, " }\n");
1412        }
1413        else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1414          // Access the locally stored constant
1415          fprintf(fp,"  virtual intptr_t       constant() const {");
1416          fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1417          fprintf(fp, " }\n");
1418          // Generate query to determine if this pointer is an oop
1419          fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1420          fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1421          fprintf(fp, " }\n");
1422        }
1423        else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
1424          // Access the locally stored constant
1425          fprintf(fp,"  virtual intptr_t       constant() const {");
1426          fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1427          fprintf(fp, " }\n");
1428          // Generate query to determine if this pointer is an oop
1429          fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1430          fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1431          fprintf(fp, " }\n");
1432        }
1433        else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1434          fprintf(fp,"  virtual intptr_t       constant() const {");
1435          // We don't support addressing modes with > 4Gig offsets.
1436          // Truncate to int.
1437          fprintf(fp,   "  return (intptr_t)_c0;");
1438          fprintf(fp, " }\n");
1439          fprintf(fp,"  virtual jlong          constantL() const {");
1440          fprintf(fp,   " return _c0;");
1441          fprintf(fp, " }\n");
1442        }
1443        else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1444          fprintf(fp,"  virtual intptr_t       constant() const {");
1445          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1446          fprintf(fp, " }\n");
1447          fprintf(fp,"  virtual jfloat         constantF() const {");
1448          fprintf(fp,   " return (jfloat)_c0;");
1449          fprintf(fp, " }\n");
1450        }
1451        else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1452          fprintf(fp,"  virtual intptr_t       constant() const {");
1453          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1454          fprintf(fp, " }\n");
1455          fprintf(fp,"  virtual jdouble        constantD() const {");
1456          fprintf(fp,   " return _c0;");
1457          fprintf(fp, " }\n");
1458        }
1459      }
1460      else if (oper->_interface->is_RegInterface() != NULL) {
1461        // make sure that a fixed format string isn't used for an
1462        // operand which might be assiged to multiple registers.
1463        // Otherwise the opto assembly output could be misleading.
1464        if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1465          syntax_err(oper->_linenum,
1466                     "Only bound registers can have fixed formats: %s\n",
1467                     oper->_ident);
1468        }
1469      }
1470      else {
1471        assert( false, "ShouldNotReachHere();");
1472      }
1473    }
1474
1475    fprintf(fp,"\n");
1476    // // Currently all XXXOper::hash() methods are identical (990820)
1477    // declare_hash(fp);
1478    // // Currently all XXXOper::Cmp() methods are identical (990820)
1479    // declare_cmp(fp);
1480
1481    // Do not place dump_spec() and Name() into PRODUCT code
1482    // int_format and ext_format are not needed in PRODUCT code either
1483    fprintf(fp, "#ifndef PRODUCT\n");
1484
1485    // Declare int_format() and ext_format()
1486    gen_oper_format(fp, _globalNames, *oper);
1487
1488    // Machine independent print functionality for debugging
1489    // IF we have constants, create a dump_spec function for the derived class
1490    //
1491    // (1)  virtual void           dump_spec() const {
1492    // (2)    st->print("#%d", _c#);        // Constant != ConP
1493    //  OR    _c#->dump_on(st);             // Type ConP
1494    //  ...
1495    // (3)  }
1496    uint num_consts = oper->num_consts(_globalNames);
1497    if( num_consts > 0 ) {
1498      // line (1)
1499      fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1500      // generate format string for st->print
1501      // Iterate over the component list & spit out the right thing
1502      uint i = 0;
1503      const char *type = oper->ideal_type(_globalNames);
1504      Component  *comp;
1505      oper->_components.reset();
1506      if ((comp = oper->_components.iter()) == NULL) {
1507        assert(num_consts == 1, "Bad component list detected.\n");
1508        i = dump_spec_constant( fp, type, i, oper );
1509        // Check that type actually matched
1510        assert( i != 0, "Non-constant operand lacks component list.");
1511      } // end if NULL
1512      else {
1513        // line (2)
1514        // dump all components
1515        oper->_components.reset();
1516        while((comp = oper->_components.iter()) != NULL) {
1517          type = comp->base_type(_globalNames);
1518          i = dump_spec_constant( fp, type, i, NULL );
1519        }
1520      }
1521      // finish line (3)
1522      fprintf(fp,"  }\n");
1523    }
1524
1525    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1526            oper->_ident);
1527
1528    fprintf(fp,"#endif\n");
1529
1530    // Close definition of this XxxMachOper
1531    fprintf(fp,"};\n");
1532  }
1533
1534
1535  // Generate Machine Classes for each instruction defined in AD file
1536  fprintf(fp,"\n");
1537  fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1538  declare_pipe_classes(fp);
1539
1540  // Generate Machine Classes for each instruction defined in AD file
1541  fprintf(fp,"\n");
1542  fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1543  _instructions.reset();
1544  InstructForm *instr;
1545  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1546    // Ensure this is a machine-world instruction
1547    if ( instr->ideal_only() ) continue;
1548
1549    // Build class definition for this instruction
1550    fprintf(fp,"\n");
1551    fprintf(fp,"class %sNode : public %s { \n",
1552            instr->_ident, instr->mach_base_class(_globalNames) );
1553    fprintf(fp,"private:\n");
1554    fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1555    if ( instr->is_ideal_jump() ) {
1556      fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1557    }
1558
1559    fprintf(fp, "public:\n");
1560
1561    Attribute *att = instr->_attribs;
1562    // Fields of the node specified in the ad file.
1563    while (att != NULL) {
1564      if (strncmp(att->_ident, "ins_field_", 10) == 0) {
1565        const char *field_name = att->_ident+10;
1566        const char *field_type = att->_val;
1567        fprintf(fp, "  %s _%s;\n", field_type, field_name);
1568      }
1569      att = (Attribute *)att->_next;
1570    }
1571
1572    fprintf(fp,"  MachOper *opnd_array(uint operand_index) const {\n");
1573    fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1574    fprintf(fp,"    return _opnd_array[operand_index];\n");
1575    fprintf(fp,"  }\n");
1576    fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) {\n");
1577    fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1578    fprintf(fp,"    _opnd_array[operand_index] = operand;\n");
1579    fprintf(fp,"  }\n");
1580    fprintf(fp,"private:\n");
1581    if ( instr->is_ideal_jump() ) {
1582      fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1583      fprintf(fp,"    _index2label.at_put_grow(index_num, blockLabel);\n");
1584      fprintf(fp,"  }\n");
1585    }
1586    if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1587      fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1588    }
1589
1590    out_RegMask(fp);                      // output register mask
1591    fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1592            instr->_ident);
1593
1594    // If this instruction contains a labelOper
1595    // Declare Node::methods that set operand Label's contents
1596    int label_position = instr->label_position();
1597    if( label_position != -1 ) {
1598      // Set/Save the label, stored in labelOper::_branch_label
1599      fprintf(fp,"  virtual void           label_set( Label* label, uint block_num );\n");
1600      fprintf(fp,"  virtual void           save_label( Label** label, uint* block_num );\n");
1601    }
1602
1603    // If this instruction contains a methodOper
1604    // Declare Node::methods that set operand method's contents
1605    int method_position = instr->method_position();
1606    if( method_position != -1 ) {
1607      // Set the address method, stored in methodOper::_method
1608      fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1609    }
1610
1611    // virtual functions for attributes
1612    //
1613    // Each instruction attribute results in a virtual call of same name.
1614    // The ins_cost is not handled here.
1615    Attribute *attr = instr->_attribs;
1616    Attribute *avoid_back_to_back_attr = NULL;
1617    while (attr != NULL) {
1618      if (strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") == 0) {
1619        fprintf(fp, "  virtual bool           is_TrapBasedCheckNode() const { return %s; }\n", attr->_val);
1620      } else if (strcmp (attr->_ident, "ins_cost") != 0 &&
1621          strncmp(attr->_ident, "ins_field_", 10) != 0 &&
1622          // Must match function in node.hpp: return type bool, no prefix "ins_".
1623          strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") != 0 &&
1624          strcmp (attr->_ident, "ins_short_branch") != 0) {
1625        fprintf(fp, "  virtual int            %s() const { return %s; }\n", attr->_ident, attr->_val);
1626      }
1627      if (strcmp(attr->_ident, "ins_avoid_back_to_back") == 0) {
1628        avoid_back_to_back_attr = attr;
1629      }
1630      attr = (Attribute *)attr->_next;
1631    }
1632
1633    // virtual functions for encode and format
1634
1635    // Virtual function for evaluating the constant.
1636    if (instr->is_mach_constant()) {
1637      fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
1638    }
1639
1640    // Output the opcode function and the encode function here using the
1641    // encoding class information in the _insencode slot.
1642    if ( instr->_insencode ) {
1643      if (instr->postalloc_expands()) {
1644        fprintf(fp,"  virtual bool           requires_postalloc_expand() const { return true; }\n");
1645        fprintf(fp,"  virtual void           postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);\n");
1646      } else {
1647        fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1648      }
1649    }
1650
1651    // virtual function for getting the size of an instruction
1652    if ( instr->_size ) {
1653      fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1654    }
1655
1656    // Return the top-level ideal opcode.
1657    // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1658    // if the ideal_Opcode == Op_Node.
1659    if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1660         strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1661      fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1662            instr->ideal_Opcode(_globalNames) );
1663    }
1664
1665    if (instr->needs_constant_base() &&
1666        !instr->is_mach_constant()) {  // These inherit the funcion from MachConstantNode.
1667      fprintf(fp,"  virtual uint           mach_constant_base_node_input() const { ");
1668      if (instr->is_ideal_call() != Form::invalid_type &&
1669          instr->is_ideal_call() != Form::JAVA_LEAF) {
1670        // MachConstantBase goes behind arguments, but before jvms.
1671        fprintf(fp,"assert(tf() && tf()->domain(), \"\"); return tf()->domain()->cnt();");
1672      } else {
1673        fprintf(fp,"return req()-1;");
1674      }
1675      fprintf(fp," }\n");
1676    }
1677
1678    // Allow machine-independent optimization, invert the sense of the IF test
1679    if( instr->is_ideal_if() ) {
1680      fprintf(fp,"  virtual void           negate() { \n");
1681      // Identify which operand contains the negate(able) ideal condition code
1682      int   idx = 0;
1683      instr->_components.reset();
1684      for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1685        // Check that component is an operand
1686        Form *form = (Form*)_globalNames[comp->_type];
1687        OperandForm *opForm = form ? form->is_operand() : NULL;
1688        if( opForm == NULL ) continue;
1689
1690        // Lookup the position of the operand in the instruction.
1691        if( opForm->is_ideal_bool() ) {
1692          idx = instr->operand_position(comp->_name, comp->_usedef);
1693          assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1694          break;
1695        }
1696      }
1697      fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1698      fprintf(fp,"    _prob = 1.0f - _prob;\n");
1699      fprintf(fp,"  };\n");
1700    }
1701
1702
1703    // Identify which input register matches the input register.
1704    uint  matching_input = instr->two_address(_globalNames);
1705
1706    // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1707    if( matching_input != 0 ) {
1708      fprintf(fp,"  virtual uint           two_adr() const  ");
1709      fprintf(fp,"{ return oper_input_base()");
1710      for( uint i = 2; i <= matching_input; i++ )
1711        fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1712      fprintf(fp,"; }\n");
1713    }
1714
1715    // Declare cisc_version, if applicable
1716    //   MachNode *cisc_version( int offset /* ,... */ );
1717    instr->declare_cisc_version(*this, fp);
1718
1719    // If there is an explicit peephole rule, build it
1720    if ( instr->peepholes() != NULL ) {
1721      fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted);\n");
1722    }
1723
1724    // Output the declaration for number of relocation entries
1725    if ( instr->reloc(_globalNames) != 0 ) {
1726      fprintf(fp,"  virtual int            reloc() const;\n");
1727    }
1728
1729    if (instr->alignment() != 1) {
1730      fprintf(fp,"  virtual int            alignment_required() const { return %d; }\n", instr->alignment());
1731      fprintf(fp,"  virtual int            compute_padding(int current_offset) const;\n");
1732    }
1733
1734    // Starting point for inputs matcher wants.
1735    // Use MachNode::oper_input_base() for nodes based on MachNode class
1736    // if the base == 1.
1737    if ( instr->oper_input_base(_globalNames) != 1 ||
1738         strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1739      fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1740            instr->oper_input_base(_globalNames));
1741    }
1742
1743    // Make the constructor and following methods 'public:'
1744    fprintf(fp,"public:\n");
1745
1746    // Constructor
1747    if ( instr->is_ideal_jump() ) {
1748      fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1749    } else {
1750      fprintf(fp,"  %sNode() { ", instr->_ident);
1751      if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1752        fprintf(fp,"_cisc_RegMask = NULL; ");
1753      }
1754    }
1755
1756    fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1757
1758    bool node_flags_set = false;
1759    // flag: if this instruction matches an ideal 'Copy*' node
1760    if ( instr->is_ideal_copy() != 0 ) {
1761      fprintf(fp,"init_flags(Flag_is_Copy");
1762      node_flags_set = true;
1763    }
1764
1765    // Is an instruction is a constant?  If so, get its type
1766    Form::DataType  data_type;
1767    const char     *opType = NULL;
1768    const char     *result = NULL;
1769    data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1770    // Check if this instruction is a constant
1771    if ( data_type != Form::none ) {
1772      if ( node_flags_set ) {
1773        fprintf(fp," | Flag_is_Con");
1774      } else {
1775        fprintf(fp,"init_flags(Flag_is_Con");
1776        node_flags_set = true;
1777      }
1778    }
1779
1780    // flag: if this instruction is cisc alternate
1781    if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1782      if ( node_flags_set ) {
1783        fprintf(fp," | Flag_is_cisc_alternate");
1784      } else {
1785        fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1786        node_flags_set = true;
1787      }
1788    }
1789
1790    // flag: if this instruction has short branch form
1791    if ( instr->has_short_branch_form() ) {
1792      if ( node_flags_set ) {
1793        fprintf(fp," | Flag_may_be_short_branch");
1794      } else {
1795        fprintf(fp,"init_flags(Flag_may_be_short_branch");
1796        node_flags_set = true;
1797      }
1798    }
1799
1800    // flag: if this instruction should not be generated back to back.
1801    if (avoid_back_to_back_attr != NULL) {
1802      if (node_flags_set) {
1803        fprintf(fp," | (%s)", avoid_back_to_back_attr->_val);
1804      } else {
1805        fprintf(fp,"init_flags((%s)", avoid_back_to_back_attr->_val);
1806        node_flags_set = true;
1807      }
1808    }
1809
1810    // Check if machine instructions that USE memory, but do not DEF memory,
1811    // depend upon a node that defines memory in machine-independent graph.
1812    if ( instr->needs_anti_dependence_check(_globalNames) ) {
1813      if ( node_flags_set ) {
1814        fprintf(fp," | Flag_needs_anti_dependence_check");
1815      } else {
1816        fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1817        node_flags_set = true;
1818      }
1819    }
1820
1821    // flag: if this instruction is implemented with a call
1822    if ( instr->_has_call ) {
1823      if ( node_flags_set ) {
1824        fprintf(fp," | Flag_has_call");
1825      } else {
1826        fprintf(fp,"init_flags(Flag_has_call");
1827        node_flags_set = true;
1828      }
1829    }
1830
1831    if ( node_flags_set ) {
1832      fprintf(fp,"); ");
1833    }
1834
1835    fprintf(fp,"}\n");
1836
1837    // size_of, used by base class's clone to obtain the correct size.
1838    fprintf(fp,"  virtual uint           size_of() const {");
1839    fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1840    fprintf(fp, " }\n");
1841
1842    // Virtual methods which are only generated to override base class
1843    if( instr->expands() || instr->needs_projections() ||
1844        instr->has_temps() ||
1845        instr->is_mach_constant() ||
1846        instr->needs_constant_base() ||
1847        instr->_matrule != NULL &&
1848        instr->num_opnds() != instr->num_unique_opnds() ) {
1849      fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1850    }
1851
1852    if (instr->is_pinned(_globalNames)) {
1853      fprintf(fp,"  virtual bool           pinned() const { return ");
1854      if (instr->is_parm(_globalNames)) {
1855        fprintf(fp,"_in[0]->pinned();");
1856      } else {
1857        fprintf(fp,"true;");
1858      }
1859      fprintf(fp," }\n");
1860    }
1861    if (instr->is_projection(_globalNames)) {
1862      fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1863    }
1864    if ( instr->num_post_match_opnds() != 0
1865         || instr->is_chain_of_constant(_globalNames) ) {
1866      fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode);\n");
1867    }
1868    if ( instr->rematerialize(_globalNames, get_registers()) ) {
1869      fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1870    }
1871
1872    // Declare short branch methods, if applicable
1873    instr->declare_short_branch_methods(fp);
1874
1875    // See if there is an "ins_pipe" declaration for this instruction
1876    if (instr->_ins_pipe) {
1877      fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1878      fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1879    }
1880
1881    // Generate virtual function for MachNodeX::bottom_type when necessary
1882    //
1883    // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1884    // or else alias analysis on the matched graph may produce bad code.
1885    // Moreover, the aliasing decisions made on machine-node graph must be
1886    // no less accurate than those made on the ideal graph, or else the graph
1887    // may fail to schedule.  (Reason:  Memory ops which are reordered in
1888    // the ideal graph might look interdependent in the machine graph,
1889    // thereby removing degrees of scheduling freedom that the optimizer
1890    // assumed would be available.)
1891    //
1892    // %%% We should handle many of these cases with an explicit ADL clause:
1893    // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1894    if( data_type != Form::none ) {
1895      // A constant's bottom_type returns a Type containing its constant value
1896
1897      // !!!!!
1898      // Convert all ints, floats, ... to machine-independent TypeXs
1899      // as is done for pointers
1900      //
1901      // Construct appropriate constant type containing the constant value.
1902      fprintf(fp,"  virtual const class Type *bottom_type() const {\n");
1903      switch( data_type ) {
1904      case Form::idealI:
1905        fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1906        break;
1907      case Form::idealP:
1908      case Form::idealN:
1909      case Form::idealNKlass:
1910        fprintf(fp,"    return  opnd_array(1)->type();\n");
1911        break;
1912      case Form::idealD:
1913        fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1914        break;
1915      case Form::idealF:
1916        fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1917        break;
1918      case Form::idealL:
1919        fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1920        break;
1921      default:
1922        assert( false, "Unimplemented()" );
1923        break;
1924      }
1925      fprintf(fp,"  };\n");
1926    }
1927/*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1928        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1929        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1930      // !!!!! !!!!!
1931      // Provide explicit bottom type for conversions to int
1932      // On Intel the result operand is a stackSlot, untyped.
1933      fprintf(fp,"  virtual const class Type *bottom_type() const {");
1934      fprintf(fp,   " return  TypeInt::INT;");
1935      fprintf(fp, " };\n");
1936    }*/
1937    else if( instr->is_ideal_copy() &&
1938              !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1939      // !!!!!
1940      // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1941      fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1942    }
1943    else if( instr->is_ideal_loadPC() ) {
1944      // LoadPCNode provides the return address of a call to native code.
1945      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1946      // since it is a pointer to an internal VM location and must have a zero offset.
1947      // Allocation detects derived pointers, in part, by their non-zero offsets.
1948      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1949    }
1950    else if( instr->is_ideal_box() ) {
1951      // BoxNode provides the address of a stack slot.
1952      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1953      // This prevent s insert_anti_dependencies from complaining. It will
1954      // complain if it sees that the pointer base is TypePtr::BOTTOM since
1955      // it doesn't understand what that might alias.
1956      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1957    }
1958    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1959      int offset = 1;
1960      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1961      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1962      if( rl && !strcmp(rl->_opType, "Binary") ) {
1963          MatchNode *rlr = rl->_rChild;
1964          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1965            offset = 2;
1966      }
1967      // Special hack for ideal CMoveP; ideal type depends on inputs
1968      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1969        offset, offset+1, offset+1);
1970    }
1971    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1972      int offset = 1;
1973      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1974      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1975      if( rl && !strcmp(rl->_opType, "Binary") ) {
1976          MatchNode *rlr = rl->_rChild;
1977          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1978            offset = 2;
1979      }
1980      // Special hack for ideal CMoveN; ideal type depends on inputs
1981      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1982        offset, offset+1, offset+1);
1983    }
1984    else if (instr->is_tls_instruction()) {
1985      // Special hack for tlsLoadP
1986      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1987    }
1988    else if ( instr->is_ideal_if() ) {
1989      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1990    }
1991    else if ( instr->is_ideal_membar() ) {
1992      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1993    }
1994
1995    // Check where 'ideal_type' must be customized
1996    /*
1997    if ( instr->_matrule && instr->_matrule->_rChild &&
1998        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1999        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
2000      fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
2001    }*/
2002
2003    // Analyze machine instructions that either USE or DEF memory.
2004    int memory_operand = instr->memory_operand(_globalNames);
2005    // Some guys kill all of memory
2006    if ( instr->is_wide_memory_kill(_globalNames) ) {
2007      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
2008    }
2009    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
2010      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
2011        fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
2012      }
2013      fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
2014    }
2015
2016    fprintf(fp, "#ifndef PRODUCT\n");
2017
2018    // virtual function for generating the user's assembler output
2019    gen_inst_format(fp, _globalNames,*instr);
2020
2021    // Machine independent print functionality for debugging
2022    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
2023            instr->_ident);
2024
2025    fprintf(fp, "#endif\n");
2026
2027    // Close definition of this XxxMachNode
2028    fprintf(fp,"};\n");
2029  };
2030
2031}
2032
2033void ArchDesc::defineStateClass(FILE *fp) {
2034  static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
2035  static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
2036
2037  fprintf(fp,"\n");
2038  fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
2039  fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
2040  fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
2041  fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
2042  fprintf(fp,"#define STATE__VALID(index) ");
2043  fprintf(fp,"    (%s)\n", state__valid);
2044  fprintf(fp,"\n");
2045  fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
2046  fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
2047  fprintf(fp,"\n");
2048  fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
2049  fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
2050  fprintf(fp,"\n");
2051  fprintf(fp,"#define STATE__SET_VALID(index) ");
2052  fprintf(fp,"  (%s)\n", state__set_valid);
2053  fprintf(fp,"\n");
2054  fprintf(fp,
2055          "//---------------------------State-------------------------------------------\n");
2056  fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
2057  fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
2058  fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
2059  fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
2060  fprintf(fp,"// two for convenience, but this could change).\n");
2061  fprintf(fp,"class State : public ResourceObj {\n");
2062  fprintf(fp,"public:\n");
2063  fprintf(fp,"  int    _id;         // State identifier\n");
2064  fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
2065  fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
2066  fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
2067  fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
2068  fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
2069  fprintf(fp,"\n");
2070  fprintf(fp,"  State(void);                      // Constructor\n");
2071  fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
2072  fprintf(fp,"\n");
2073  fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
2074  fprintf(fp,"  MachOper *MachOperGenerator(int opcode);\n");
2075  fprintf(fp,"  MachNode *MachNodeGenerator(int opcode);\n");
2076  fprintf(fp,"\n");
2077  fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
2078  fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
2079  fprintf(fp,"\n");
2080  fprintf(fp,"  // Access function for _valid bit vector\n");
2081  fprintf(fp,"  bool valid(uint index) {\n");
2082  fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
2083  fprintf(fp,"  }\n");
2084  fprintf(fp,"\n");
2085  fprintf(fp,"  // Set function for _valid bit vector\n");
2086  fprintf(fp,"  void set_valid(uint index) {\n");
2087  fprintf(fp,"    STATE__SET_VALID(index);\n");
2088  fprintf(fp,"  }\n");
2089  fprintf(fp,"\n");
2090  fprintf(fp,"#ifndef PRODUCT\n");
2091  fprintf(fp,"  void dump();                // Debugging prints\n");
2092  fprintf(fp,"  void dump(int depth);\n");
2093  fprintf(fp,"#endif\n");
2094  if (_dfa_small) {
2095    // Generate the routine name we'll need
2096    for (int i = 1; i < _last_opcode; i++) {
2097      if (_mlistab[i] == NULL) continue;
2098      fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2099    }
2100  }
2101  fprintf(fp,"};\n");
2102  fprintf(fp,"\n");
2103  fprintf(fp,"\n");
2104
2105}
2106
2107
2108//---------------------------buildMachOperEnum---------------------------------
2109// Build enumeration for densely packed operands.
2110// This enumeration is used to index into the arrays in the State objects
2111// that indicate cost and a successfull rule match.
2112
2113// Information needed to generate the ReduceOp mapping for the DFA
2114class OutputMachOperands : public OutputMap {
2115public:
2116  OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2117    : OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
2118
2119  void declaration() { }
2120  void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
2121  void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
2122                       OutputMap::closing();
2123  }
2124  void map(OpClassForm &opc)  {
2125    const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
2126    fprintf(_cpp, "  %s", opc_ident_to_upper);
2127    delete[] opc_ident_to_upper;
2128  }
2129  void map(OperandForm &oper) {
2130    const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
2131    fprintf(_cpp, "  %s", oper_ident_to_upper);
2132    delete[] oper_ident_to_upper;
2133  }
2134  void map(char *name) {
2135    const char* name_to_upper = _AD.machOperEnum(name);
2136    fprintf(_cpp, "  %s", name_to_upper);
2137    delete[] name_to_upper;
2138  }
2139
2140  bool do_instructions()      { return false; }
2141  void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2142};
2143
2144
2145void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2146  // Construct the table for MachOpcodes
2147  OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2148  build_map(output_mach_operands);
2149}
2150
2151
2152//---------------------------buildMachEnum----------------------------------
2153// Build enumeration for all MachOpers and all MachNodes
2154
2155// Information needed to generate the ReduceOp mapping for the DFA
2156class OutputMachOpcodes : public OutputMap {
2157  int begin_inst_chain_rule;
2158  int end_inst_chain_rule;
2159  int begin_rematerialize;
2160  int end_rematerialize;
2161  int end_instructions;
2162public:
2163  OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2164    : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
2165      begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2166  {};
2167
2168  void declaration() { }
2169  void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2170  void closing()     {
2171    if( begin_inst_chain_rule != -1 )
2172      fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2173    if( end_inst_chain_rule   != -1 )
2174      fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2175    if( begin_rematerialize   != -1 )
2176      fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2177    if( end_rematerialize     != -1 )
2178      fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2179    // always execute since do_instructions() is true, and avoids trailing comma
2180    fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2181    OutputMap::closing();
2182  }
2183  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2184  void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2185  void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2186                                else      fprintf(_cpp, "  0"); }
2187  void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2188
2189  void record_position(OutputMap::position place, int idx ) {
2190    switch(place) {
2191    case OutputMap::BEGIN_INST_CHAIN_RULES :
2192      begin_inst_chain_rule = idx;
2193      break;
2194    case OutputMap::END_INST_CHAIN_RULES :
2195      end_inst_chain_rule   = idx;
2196      break;
2197    case OutputMap::BEGIN_REMATERIALIZE :
2198      begin_rematerialize   = idx;
2199      break;
2200    case OutputMap::END_REMATERIALIZE :
2201      end_rematerialize     = idx;
2202      break;
2203    case OutputMap::END_INSTRUCTIONS :
2204      end_instructions      = idx;
2205      break;
2206    default:
2207      break;
2208    }
2209  }
2210};
2211
2212
2213void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2214  // Construct the table for MachOpcodes
2215  OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2216  build_map(output_mach_opcodes);
2217}
2218
2219
2220// Generate an enumeration of the pipeline states, and both
2221// the functional units (resources) and the masks for
2222// specifying resources
2223void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2224  int stagelen = (int)strlen("undefined");
2225  int stagenum = 0;
2226
2227  if (_pipeline) {              // Find max enum string length
2228    const char *stage;
2229    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2230      int len = (int)strlen(stage);
2231      if (stagelen < len) stagelen = len;
2232    }
2233  }
2234
2235  // Generate a list of stages
2236  fprintf(fp_hpp, "\n");
2237  fprintf(fp_hpp, "// Pipeline Stages\n");
2238  fprintf(fp_hpp, "enum machPipelineStages {\n");
2239  fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2240
2241  if( _pipeline ) {
2242    const char *stage;
2243    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2244      fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2245  }
2246
2247  fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2248  fprintf(fp_hpp, "};\n");
2249
2250  fprintf(fp_hpp, "\n");
2251  fprintf(fp_hpp, "// Pipeline Resources\n");
2252  fprintf(fp_hpp, "enum machPipelineResources {\n");
2253  int rescount = 0;
2254
2255  if( _pipeline ) {
2256    const char *resource;
2257    int reslen = 0;
2258
2259    // Generate a list of resources, and masks
2260    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2261      int len = (int)strlen(resource);
2262      if (reslen < len)
2263        reslen = len;
2264    }
2265
2266    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2267      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2268      int mask = resform->mask();
2269      if ((mask & (mask-1)) == 0)
2270        fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2271    }
2272    fprintf(fp_hpp, "\n");
2273    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2274      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2275      fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2276    }
2277    fprintf(fp_hpp, "\n");
2278  }
2279  fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2280  fprintf(fp_hpp, "};\n");
2281}
2282