1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// output_c.cpp - Class CPP file output routines for architecture definition
26
27#include "adlc.hpp"
28
29// Utilities to characterize effect statements
30static bool is_def(int usedef) {
31  switch(usedef) {
32  case Component::DEF:
33  case Component::USE_DEF: return true; break;
34  }
35  return false;
36}
37
38// Define  an array containing the machine register names, strings.
39static void defineRegNames(FILE *fp, RegisterForm *registers) {
40  if (registers) {
41    fprintf(fp,"\n");
42    fprintf(fp,"// An array of character pointers to machine register names.\n");
43    fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
44
45    // Output the register name for each register in the allocation classes
46    RegDef *reg_def = NULL;
47    RegDef *next = NULL;
48    registers->reset_RegDefs();
49    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
50      next = registers->iter_RegDefs();
51      const char *comma = (next != NULL) ? "," : " // no trailing comma";
52      fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
53    }
54
55    // Finish defining enumeration
56    fprintf(fp,"};\n");
57
58    fprintf(fp,"\n");
59    fprintf(fp,"// An array of character pointers to machine register names.\n");
60    fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
61    reg_def = NULL;
62    next = NULL;
63    registers->reset_RegDefs();
64    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
65      next = registers->iter_RegDefs();
66      const char *comma = (next != NULL) ? "," : " // no trailing comma";
67      fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
68    }
69    // Finish defining array
70    fprintf(fp,"\t};\n");
71    fprintf(fp,"\n");
72
73    fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
74
75  }
76}
77
78// Define an array containing the machine register encoding values
79static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
80  if (registers) {
81    fprintf(fp,"\n");
82    fprintf(fp,"// An array of the machine register encode values\n");
83    fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
84
85    // Output the register encoding for each register in the allocation classes
86    RegDef *reg_def = NULL;
87    RegDef *next    = NULL;
88    registers->reset_RegDefs();
89    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
90      next = registers->iter_RegDefs();
91      const char* register_encode = reg_def->register_encode();
92      const char *comma = (next != NULL) ? "," : " // no trailing comma";
93      int encval;
94      if (!ADLParser::is_int_token(register_encode, encval)) {
95        fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
96      } else {
97        // Output known constants in hex char format (backward compatibility).
98        assert(encval < 256, "Exceeded supported width for register encoding");
99        fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
100      }
101    }
102    // Finish defining enumeration
103    fprintf(fp,"};\n");
104
105  } // Done defining array
106}
107
108// Output an enumeration of register class names
109static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
110  if (registers) {
111    // Output an enumeration of register class names
112    fprintf(fp,"\n");
113    fprintf(fp,"// Enumeration of register class names\n");
114    fprintf(fp, "enum machRegisterClass {\n");
115    registers->_rclasses.reset();
116    for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
117      const char * class_name_to_upper = toUpper(class_name);
118      fprintf(fp,"  %s,\n", class_name_to_upper);
119      delete[] class_name_to_upper;
120    }
121    // Finish defining enumeration
122    fprintf(fp, "  _last_Mach_Reg_Class\n");
123    fprintf(fp, "};\n");
124  }
125}
126
127// Declare an enumeration of user-defined register classes
128// and a list of register masks, one for each class.
129void ArchDesc::declare_register_masks(FILE *fp_hpp) {
130  const char  *rc_name;
131
132  if (_register) {
133    // Build enumeration of user-defined register classes.
134    defineRegClassEnum(fp_hpp, _register);
135
136    // Generate a list of register masks, one for each class.
137    fprintf(fp_hpp,"\n");
138    fprintf(fp_hpp,"// Register masks, one for each register class.\n");
139    _register->_rclasses.reset();
140    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
141      RegClass *reg_class = _register->getRegClass(rc_name);
142      assert(reg_class, "Using an undefined register class");
143      reg_class->declare_register_masks(fp_hpp);
144    }
145  }
146}
147
148// Generate an enumeration of user-defined register classes
149// and a list of register masks, one for each class.
150void ArchDesc::build_register_masks(FILE *fp_cpp) {
151  const char  *rc_name;
152
153  if (_register) {
154    // Generate a list of register masks, one for each class.
155    fprintf(fp_cpp,"\n");
156    fprintf(fp_cpp,"// Register masks, one for each register class.\n");
157    _register->_rclasses.reset();
158    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
159      RegClass *reg_class = _register->getRegClass(rc_name);
160      assert(reg_class, "Using an undefined register class");
161      reg_class->build_register_masks(fp_cpp);
162    }
163  }
164}
165
166// Compute an index for an array in the pipeline_reads_NNN arrays
167static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
168{
169  int templen = 1;
170  int paramcount = 0;
171  const char *paramname;
172
173  if (pipeclass->_parameters.count() == 0)
174    return -1;
175
176  pipeclass->_parameters.reset();
177  paramname = pipeclass->_parameters.iter();
178  const PipeClassOperandForm *pipeopnd =
179    (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
180  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
181    pipeclass->_parameters.reset();
182
183  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
184    const PipeClassOperandForm *tmppipeopnd =
185        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
186
187    if (tmppipeopnd)
188      templen += 10 + (int)strlen(tmppipeopnd->_stage);
189    else
190      templen += 19;
191
192    paramcount++;
193  }
194
195  // See if the count is zero
196  if (paramcount == 0) {
197    return -1;
198  }
199
200  char *operand_stages = new char [templen];
201  operand_stages[0] = 0;
202  int i = 0;
203  templen = 0;
204
205  pipeclass->_parameters.reset();
206  paramname = pipeclass->_parameters.iter();
207  pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
208  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
209    pipeclass->_parameters.reset();
210
211  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
212    const PipeClassOperandForm *tmppipeopnd =
213        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
214    templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
215      tmppipeopnd ? tmppipeopnd->_stage : "undefined",
216      (++i < paramcount ? ',' : ' ') );
217  }
218
219  // See if the same string is in the table
220  int ndx = pipeline_reads.index(operand_stages);
221
222  // No, add it to the table
223  if (ndx < 0) {
224    pipeline_reads.addName(operand_stages);
225    ndx = pipeline_reads.index(operand_stages);
226
227    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
228      ndx+1, paramcount, operand_stages);
229  }
230  else
231    delete [] operand_stages;
232
233  return (ndx);
234}
235
236// Compute an index for an array in the pipeline_res_stages_NNN arrays
237static int pipeline_res_stages_initializer(
238  FILE *fp_cpp,
239  PipelineForm *pipeline,
240  NameList &pipeline_res_stages,
241  PipeClassForm *pipeclass)
242{
243  const PipeClassResourceForm *piperesource;
244  int * res_stages = new int [pipeline->_rescount];
245  int i;
246
247  for (i = 0; i < pipeline->_rescount; i++)
248     res_stages[i] = 0;
249
250  for (pipeclass->_resUsage.reset();
251       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
252    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
253    for (i = 0; i < pipeline->_rescount; i++)
254      if ((1 << i) & used_mask) {
255        int stage = pipeline->_stages.index(piperesource->_stage);
256        if (res_stages[i] < stage+1)
257          res_stages[i] = stage+1;
258      }
259  }
260
261  // Compute the length needed for the resource list
262  int commentlen = 0;
263  int max_stage = 0;
264  for (i = 0; i < pipeline->_rescount; i++) {
265    if (res_stages[i] == 0) {
266      if (max_stage < 9)
267        max_stage = 9;
268    }
269    else {
270      int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
271      if (max_stage < stagelen)
272        max_stage = stagelen;
273    }
274
275    commentlen += (int)strlen(pipeline->_reslist.name(i));
276  }
277
278  int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
279
280  // Allocate space for the resource list
281  char * resource_stages = new char [templen];
282
283  templen = 0;
284  for (i = 0; i < pipeline->_rescount; i++) {
285    const char * const resname =
286      res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
287
288    templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
289      resname, max_stage - (int)strlen(resname) + 1,
290      (i < pipeline->_rescount-1) ? "," : "",
291      pipeline->_reslist.name(i));
292  }
293
294  // See if the same string is in the table
295  int ndx = pipeline_res_stages.index(resource_stages);
296
297  // No, add it to the table
298  if (ndx < 0) {
299    pipeline_res_stages.addName(resource_stages);
300    ndx = pipeline_res_stages.index(resource_stages);
301
302    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
303      ndx+1, pipeline->_rescount, resource_stages);
304  }
305  else
306    delete [] resource_stages;
307
308  delete [] res_stages;
309
310  return (ndx);
311}
312
313// Compute an index for an array in the pipeline_res_cycles_NNN arrays
314static int pipeline_res_cycles_initializer(
315  FILE *fp_cpp,
316  PipelineForm *pipeline,
317  NameList &pipeline_res_cycles,
318  PipeClassForm *pipeclass)
319{
320  const PipeClassResourceForm *piperesource;
321  int * res_cycles = new int [pipeline->_rescount];
322  int i;
323
324  for (i = 0; i < pipeline->_rescount; i++)
325     res_cycles[i] = 0;
326
327  for (pipeclass->_resUsage.reset();
328       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
329    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
330    for (i = 0; i < pipeline->_rescount; i++)
331      if ((1 << i) & used_mask) {
332        int cycles = piperesource->_cycles;
333        if (res_cycles[i] < cycles)
334          res_cycles[i] = cycles;
335      }
336  }
337
338  // Pre-compute the string length
339  int templen;
340  int cyclelen = 0, commentlen = 0;
341  int max_cycles = 0;
342  char temp[32];
343
344  for (i = 0; i < pipeline->_rescount; i++) {
345    if (max_cycles < res_cycles[i])
346      max_cycles = res_cycles[i];
347    templen = sprintf(temp, "%d", res_cycles[i]);
348    if (cyclelen < templen)
349      cyclelen = templen;
350    commentlen += (int)strlen(pipeline->_reslist.name(i));
351  }
352
353  templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
354
355  // Allocate space for the resource list
356  char * resource_cycles = new char [templen];
357
358  templen = 0;
359
360  for (i = 0; i < pipeline->_rescount; i++) {
361    templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
362      cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
363  }
364
365  // See if the same string is in the table
366  int ndx = pipeline_res_cycles.index(resource_cycles);
367
368  // No, add it to the table
369  if (ndx < 0) {
370    pipeline_res_cycles.addName(resource_cycles);
371    ndx = pipeline_res_cycles.index(resource_cycles);
372
373    fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
374      ndx+1, pipeline->_rescount, resource_cycles);
375  }
376  else
377    delete [] resource_cycles;
378
379  delete [] res_cycles;
380
381  return (ndx);
382}
383
384//typedef unsigned long long uint64_t;
385
386// Compute an index for an array in the pipeline_res_mask_NNN arrays
387static int pipeline_res_mask_initializer(
388  FILE *fp_cpp,
389  PipelineForm *pipeline,
390  NameList &pipeline_res_mask,
391  NameList &pipeline_res_args,
392  PipeClassForm *pipeclass)
393{
394  const PipeClassResourceForm *piperesource;
395  const uint rescount      = pipeline->_rescount;
396  const uint maxcycleused  = pipeline->_maxcycleused;
397  const uint cyclemasksize = (maxcycleused + 31) >> 5;
398
399  int i, j;
400  int element_count = 0;
401  uint *res_mask = new uint [cyclemasksize];
402  uint resources_used             = 0;
403  uint resources_used_exclusively = 0;
404
405  for (pipeclass->_resUsage.reset();
406       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
407    element_count++;
408  }
409
410  // Pre-compute the string length
411  int templen;
412  int commentlen = 0;
413  int max_cycles = 0;
414
415  int cyclelen = ((maxcycleused + 3) >> 2);
416  int masklen = (rescount + 3) >> 2;
417
418  int cycledigit = 0;
419  for (i = maxcycleused; i > 0; i /= 10)
420    cycledigit++;
421
422  int maskdigit = 0;
423  for (i = rescount; i > 0; i /= 10)
424    maskdigit++;
425
426  static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
427  static const char* pipeline_use_element    = "Pipeline_Use_Element";
428
429  templen = 1 +
430    (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
431     (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
432
433  // Allocate space for the resource list
434  char * resource_mask = new char [templen];
435  char * last_comma = NULL;
436
437  templen = 0;
438
439  for (pipeclass->_resUsage.reset();
440       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
441    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
442
443    if (!used_mask) {
444      fprintf(stderr, "*** used_mask is 0 ***\n");
445    }
446
447    resources_used |= used_mask;
448
449    uint lb, ub;
450
451    for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
452    for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
453
454    if (lb == ub) {
455      resources_used_exclusively |= used_mask;
456    }
457
458    int formatlen =
459      sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
460        pipeline_use_element,
461        masklen, used_mask,
462        cycledigit, lb, cycledigit, ub,
463        ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
464        pipeline_use_cycle_mask);
465
466    templen += formatlen;
467
468    memset(res_mask, 0, cyclemasksize * sizeof(uint));
469
470    int cycles = piperesource->_cycles;
471    uint stage          = pipeline->_stages.index(piperesource->_stage);
472    if ((uint)NameList::Not_in_list == stage) {
473      fprintf(stderr,
474              "pipeline_res_mask_initializer: "
475              "semantic error: "
476              "pipeline stage undeclared: %s\n",
477              piperesource->_stage);
478      exit(1);
479    }
480    uint upper_limit    = stage + cycles - 1;
481    uint lower_limit    = stage - 1;
482    uint upper_idx      = upper_limit >> 5;
483    uint lower_idx      = lower_limit >> 5;
484    uint upper_position = upper_limit & 0x1f;
485    uint lower_position = lower_limit & 0x1f;
486
487    uint mask = (((uint)1) << upper_position) - 1;
488
489    while (upper_idx > lower_idx) {
490      res_mask[upper_idx--] |= mask;
491      mask = (uint)-1;
492    }
493
494    mask -= (((uint)1) << lower_position) - 1;
495    res_mask[upper_idx] |= mask;
496
497    for (j = cyclemasksize-1; j >= 0; j--) {
498      formatlen =
499        sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
500      templen += formatlen;
501    }
502
503    resource_mask[templen++] = ')';
504    resource_mask[templen++] = ')';
505    last_comma = &resource_mask[templen];
506    resource_mask[templen++] = ',';
507    resource_mask[templen++] = '\n';
508  }
509
510  resource_mask[templen] = 0;
511  if (last_comma) {
512    last_comma[0] = ' ';
513  }
514
515  // See if the same string is in the table
516  int ndx = pipeline_res_mask.index(resource_mask);
517
518  // No, add it to the table
519  if (ndx < 0) {
520    pipeline_res_mask.addName(resource_mask);
521    ndx = pipeline_res_mask.index(resource_mask);
522
523    if (strlen(resource_mask) > 0)
524      fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
525        ndx+1, element_count, resource_mask);
526
527    char* args = new char [9 + 2*masklen + maskdigit];
528
529    sprintf(args, "0x%0*x, 0x%0*x, %*d",
530      masklen, resources_used,
531      masklen, resources_used_exclusively,
532      maskdigit, element_count);
533
534    pipeline_res_args.addName(args);
535  }
536  else {
537    delete [] resource_mask;
538  }
539
540  delete [] res_mask;
541//delete [] res_masks;
542
543  return (ndx);
544}
545
546void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
547  const char *classname;
548  const char *resourcename;
549  int resourcenamelen = 0;
550  NameList pipeline_reads;
551  NameList pipeline_res_stages;
552  NameList pipeline_res_cycles;
553  NameList pipeline_res_masks;
554  NameList pipeline_res_args;
555  const int default_latency = 1;
556  const int non_operand_latency = 0;
557  const int node_latency = 0;
558
559  if (!_pipeline) {
560    fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
561    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
562    fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
563    fprintf(fp_cpp, "}\n");
564    return;
565  }
566
567  fprintf(fp_cpp, "\n");
568  fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
569  fprintf(fp_cpp, "#ifndef PRODUCT\n");
570  fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
571  fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
572  fprintf(fp_cpp, "    \"undefined\"");
573
574  for (int s = 0; s < _pipeline->_stagecnt; s++)
575    fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
576
577  fprintf(fp_cpp, "\n  };\n\n");
578  fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
579    _pipeline->_stagecnt);
580  fprintf(fp_cpp, "}\n");
581  fprintf(fp_cpp, "#endif\n\n");
582
583  fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
584  fprintf(fp_cpp, "  // See if the functional units overlap\n");
585#if 0
586  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
587  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
588  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
589  fprintf(fp_cpp, "  }\n");
590  fprintf(fp_cpp, "#endif\n\n");
591#endif
592  fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
593  fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
594#if 0
595  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
596  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
597  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
598  fprintf(fp_cpp, "  }\n");
599  fprintf(fp_cpp, "#endif\n\n");
600#endif
601  fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
602  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
603  fprintf(fp_cpp, "    if (predUse->multiple())\n");
604  fprintf(fp_cpp, "      continue;\n\n");
605  fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
606  fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
607  fprintf(fp_cpp, "      if (currUse->multiple())\n");
608  fprintf(fp_cpp, "        continue;\n\n");
609  fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
610  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
611  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
612  fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
613  fprintf(fp_cpp, "          y <<= 1;\n");
614  fprintf(fp_cpp, "      }\n");
615  fprintf(fp_cpp, "    }\n");
616  fprintf(fp_cpp, "  }\n\n");
617  fprintf(fp_cpp, "  // There is the potential for overlap\n");
618  fprintf(fp_cpp, "  return (start);\n");
619  fprintf(fp_cpp, "}\n\n");
620  fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
621  fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
622  fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
623  fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
624  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
625  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
626  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
627  fprintf(fp_cpp, "      uint min_delay = %d;\n",
628    _pipeline->_maxcycleused+1);
629  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
630  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
631  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
632  fprintf(fp_cpp, "        uint curr_delay = delay;\n");
633  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
634  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
635  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
636  fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
637  fprintf(fp_cpp, "            y <<= 1;\n");
638  fprintf(fp_cpp, "        }\n");
639  fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
640  fprintf(fp_cpp, "      }\n");
641  fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
642  fprintf(fp_cpp, "    }\n");
643  fprintf(fp_cpp, "    else {\n");
644  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
645  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
646  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
647  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
648  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
649  fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
650  fprintf(fp_cpp, "            y <<= 1;\n");
651  fprintf(fp_cpp, "        }\n");
652  fprintf(fp_cpp, "      }\n");
653  fprintf(fp_cpp, "    }\n");
654  fprintf(fp_cpp, "  }\n\n");
655  fprintf(fp_cpp, "  return (delay);\n");
656  fprintf(fp_cpp, "}\n\n");
657  fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
658  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
659  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
660  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
661  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
662  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
663  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
664  fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
665  fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
666  fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
667  fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
668  fprintf(fp_cpp, "          break;\n");
669  fprintf(fp_cpp, "        }\n");
670  fprintf(fp_cpp, "      }\n");
671  fprintf(fp_cpp, "    }\n");
672  fprintf(fp_cpp, "    else {\n");
673  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
674  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
675  fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
676  fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
677  fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
678  fprintf(fp_cpp, "      }\n");
679  fprintf(fp_cpp, "    }\n");
680  fprintf(fp_cpp, "  }\n");
681  fprintf(fp_cpp, "}\n\n");
682
683  fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
684  fprintf(fp_cpp, "  int const default_latency = 1;\n");
685  fprintf(fp_cpp, "\n");
686#if 0
687  fprintf(fp_cpp, "#ifndef PRODUCT\n");
688  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
689  fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
690  fprintf(fp_cpp, "  }\n");
691  fprintf(fp_cpp, "#endif\n\n");
692#endif
693  fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
694  fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
695  fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
696  fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
697  fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
698  fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
699  fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
700#if 0
701  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
702  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
703  fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
704  fprintf(fp_cpp, "  }\n");
705  fprintf(fp_cpp, "#endif\n\n");
706#endif
707  fprintf(fp_cpp, "\n");
708  fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
709  fprintf(fp_cpp, "    return (default_latency);\n");
710  fprintf(fp_cpp, "\n");
711  fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
712  fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
713#if 0
714  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
715  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
716  fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
717  fprintf(fp_cpp, "  }\n");
718  fprintf(fp_cpp, "#endif\n\n");
719#endif
720  fprintf(fp_cpp, "  return (delta);\n");
721  fprintf(fp_cpp, "}\n\n");
722
723  if (!_pipeline)
724    /* Do Nothing */;
725
726  else if (_pipeline->_maxcycleused <=
727#ifdef SPARC
728    64
729#else
730    32
731#endif
732      ) {
733    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
734    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
735    fprintf(fp_cpp, "}\n\n");
736    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
737    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
738    fprintf(fp_cpp, "}\n\n");
739  }
740  else {
741    uint l;
742    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
743    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
744    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
745    for (l = 1; l <= masklen; l++)
746      fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
747    fprintf(fp_cpp, ");\n");
748    fprintf(fp_cpp, "}\n\n");
749    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
750    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
751    for (l = 1; l <= masklen; l++)
752      fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
753    fprintf(fp_cpp, ");\n");
754    fprintf(fp_cpp, "}\n\n");
755    fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
756    for (l = 1; l <= masklen; l++)
757      fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
758    fprintf(fp_cpp, "\n}\n\n");
759  }
760
761  /* Get the length of all the resource names */
762  for (_pipeline->_reslist.reset(), resourcenamelen = 0;
763       (resourcename = _pipeline->_reslist.iter()) != NULL;
764       resourcenamelen += (int)strlen(resourcename));
765
766  // Create the pipeline class description
767
768  fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
769  fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
770
771  fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
772  for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
773    fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
774    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
775    for (int i2 = masklen-1; i2 >= 0; i2--)
776      fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
777    fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
778  }
779  fprintf(fp_cpp, "};\n\n");
780
781  fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
782    _pipeline->_rescount);
783
784  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
785    fprintf(fp_cpp, "\n");
786    fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
787    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
788    int maxWriteStage = -1;
789    int maxMoreInstrs = 0;
790    int paramcount = 0;
791    int i = 0;
792    const char *paramname;
793    int resource_count = (_pipeline->_rescount + 3) >> 2;
794
795    // Scan the operands, looking for last output stage and number of inputs
796    for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
797      const PipeClassOperandForm *pipeopnd =
798          (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
799      if (pipeopnd) {
800        if (pipeopnd->_iswrite) {
801           int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
802           int moreinsts = pipeopnd->_more_instrs;
803          if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
804            maxWriteStage = stagenum;
805            maxMoreInstrs = moreinsts;
806          }
807        }
808      }
809
810      if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
811        paramcount++;
812    }
813
814    // Create the list of stages for the operands that are read
815    // Note that we will build a NameList to reduce the number of copies
816
817    int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
818
819    int pipeline_res_stages_index = pipeline_res_stages_initializer(
820      fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
821
822    int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
823      fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
824
825    int pipeline_res_mask_index = pipeline_res_mask_initializer(
826      fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
827
828#if 0
829    // Process the Resources
830    const PipeClassResourceForm *piperesource;
831
832    unsigned resources_used = 0;
833    unsigned exclusive_resources_used = 0;
834    unsigned resource_groups = 0;
835    for (pipeclass->_resUsage.reset();
836         (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
837      int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
838      if (used_mask)
839        resource_groups++;
840      resources_used |= used_mask;
841      if ((used_mask & (used_mask-1)) == 0)
842        exclusive_resources_used |= used_mask;
843    }
844
845    if (resource_groups > 0) {
846      fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
847        pipeclass->_num, resource_groups);
848      for (pipeclass->_resUsage.reset(), i = 1;
849           (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
850           i++ ) {
851        int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
852        if (used_mask) {
853          fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
854        }
855      }
856      fprintf(fp_cpp, "};\n\n");
857    }
858#endif
859
860    // Create the pipeline class description
861    fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
862      pipeclass->_num);
863    if (maxWriteStage < 0)
864      fprintf(fp_cpp, "(uint)stage_undefined");
865    else if (maxMoreInstrs == 0)
866      fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
867    else
868      fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
869    fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
870      paramcount,
871      pipeclass->hasFixedLatency() ? "true" : "false",
872      pipeclass->fixedLatency(),
873      pipeclass->InstructionCount(),
874      pipeclass->hasBranchDelay() ? "true" : "false",
875      pipeclass->hasMultipleBundles() ? "true" : "false",
876      pipeclass->forceSerialization() ? "true" : "false",
877      pipeclass->mayHaveNoCode() ? "true" : "false" );
878    if (paramcount > 0) {
879      fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
880        pipeline_reads_index+1);
881    }
882    else
883      fprintf(fp_cpp, " NULL,");
884    fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
885      pipeline_res_stages_index+1);
886    fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
887      pipeline_res_cycles_index+1);
888    fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
889      pipeline_res_args.name(pipeline_res_mask_index));
890    if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
891      fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
892        pipeline_res_mask_index+1);
893    else
894      fprintf(fp_cpp, "NULL");
895    fprintf(fp_cpp, "));\n");
896  }
897
898  // Generate the Node::latency method if _pipeline defined
899  fprintf(fp_cpp, "\n");
900  fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
901  fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
902  if (_pipeline) {
903#if 0
904    fprintf(fp_cpp, "#ifndef PRODUCT\n");
905    fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
906    fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
907    fprintf(fp_cpp, " }\n");
908    fprintf(fp_cpp, "#endif\n");
909#endif
910    fprintf(fp_cpp, "  uint j;\n");
911    fprintf(fp_cpp, "  // verify in legal range for inputs\n");
912    fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
913    fprintf(fp_cpp, "  // verify input is not null\n");
914    fprintf(fp_cpp, "  Node *pred = in(i);\n");
915    fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
916      non_operand_latency);
917    fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
918    fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
919    fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
920    fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
921    fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
922    fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
923    fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
924    fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
925      node_latency);
926    fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
927    fprintf(fp_cpp, "  j = m->oper_input_base();\n");
928    fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
929      non_operand_latency);
930    fprintf(fp_cpp, "  // determine which operand this is in\n");
931    fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
932    fprintf(fp_cpp, "  int delta = %d;\n\n",
933      non_operand_latency);
934    fprintf(fp_cpp, "  uint k;\n");
935    fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
936    fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
937    fprintf(fp_cpp, "    if (i < j)\n");
938    fprintf(fp_cpp, "      break;\n");
939    fprintf(fp_cpp, "  }\n");
940    fprintf(fp_cpp, "  if (k < n)\n");
941    fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
942    fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
943  }
944  else {
945    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
946    fprintf(fp_cpp, "  return %d;\n",
947      non_operand_latency);
948  }
949  fprintf(fp_cpp, "}\n\n");
950
951  // Output the list of nop nodes
952  fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
953  const char *nop;
954  int nopcnt = 0;
955  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
956
957  fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
958  int i = 0;
959  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
960    fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
961  }
962  fprintf(fp_cpp, "};\n\n");
963  fprintf(fp_cpp, "#ifndef PRODUCT\n");
964  fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
965  fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
966  fprintf(fp_cpp, "    \"\",\n");
967  fprintf(fp_cpp, "    \"use nop delay\",\n");
968  fprintf(fp_cpp, "    \"use unconditional delay\",\n");
969  fprintf(fp_cpp, "    \"use conditional delay\",\n");
970  fprintf(fp_cpp, "    \"used in conditional delay\",\n");
971  fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
972  fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
973  fprintf(fp_cpp, "  };\n\n");
974
975  fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
976  for (i = 0; i < _pipeline->_rescount; i++)
977    fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
978  fprintf(fp_cpp, "};\n\n");
979
980  // See if the same string is in the table
981  fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
982  fprintf(fp_cpp, "  if (_flags) {\n");
983  fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
984  fprintf(fp_cpp, "    needs_comma = true;\n");
985  fprintf(fp_cpp, "  };\n");
986  fprintf(fp_cpp, "  if (instr_count()) {\n");
987  fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
988  fprintf(fp_cpp, "    needs_comma = true;\n");
989  fprintf(fp_cpp, "  };\n");
990  fprintf(fp_cpp, "  uint r = resources_used();\n");
991  fprintf(fp_cpp, "  if (r) {\n");
992  fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
993  fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
994  fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
995  fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
996  fprintf(fp_cpp, "    needs_comma = true;\n");
997  fprintf(fp_cpp, "  };\n");
998  fprintf(fp_cpp, "  st->print(\"\\n\");\n");
999  fprintf(fp_cpp, "}\n");
1000  fprintf(fp_cpp, "#endif\n");
1001}
1002
1003// ---------------------------------------------------------------------------
1004//------------------------------Utilities to build Instruction Classes--------
1005// ---------------------------------------------------------------------------
1006
1007static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008  fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009          node, regMask);
1010}
1011
1012static void print_block_index(FILE *fp, int inst_position) {
1013  assert( inst_position >= 0, "Instruction number less than zero");
1014  fprintf(fp, "block_index");
1015  if( inst_position != 0 ) {
1016    fprintf(fp, " - %d", inst_position);
1017  }
1018}
1019
1020// Scan the peepmatch and output a test for each instruction
1021static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022  int         parent        = -1;
1023  int         inst_position = 0;
1024  const char* inst_name     = NULL;
1025  int         input         = 0;
1026  fprintf(fp, "  // Check instruction sub-tree\n");
1027  pmatch->reset();
1028  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029       inst_name != NULL;
1030       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031    // If this is not a placeholder
1032    if( ! pmatch->is_placeholder() ) {
1033      // Define temporaries 'inst#', based on parent and parent's input index
1034      if( parent != -1 ) {                // root was initialized
1035        fprintf(fp, "  // Identify previous instruction if inside this block\n");
1036        fprintf(fp, "  if( ");
1037        print_block_index(fp, inst_position);
1038        fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1039        print_block_index(fp, inst_position);
1040        fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1041        fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1042      }
1043
1044      // When not the root
1045      // Test we have the correct instruction by comparing the rule.
1046      if( parent != -1 ) {
1047        fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048                inst_position, inst_position, inst_name);
1049      }
1050    } else {
1051      // Check that user did not try to constrain a placeholder
1052      assert( ! pconstraint->constrains_instruction(inst_position),
1053              "fatal(): Can not constrain a placeholder instruction");
1054    }
1055  }
1056}
1057
1058// Build mapping for register indices, num_edges to input
1059static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060  int         parent        = -1;
1061  int         inst_position = 0;
1062  const char* inst_name     = NULL;
1063  int         input         = 0;
1064  fprintf(fp, "      // Build map to register info\n");
1065  pmatch->reset();
1066  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067       inst_name != NULL;
1068       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069    // If this is not a placeholder
1070    if( ! pmatch->is_placeholder() ) {
1071      // Define temporaries 'inst#', based on self's inst_position
1072      InstructForm *inst = globals[inst_name]->is_instruction();
1073      if( inst != NULL ) {
1074        char inst_prefix[]  = "instXXXX_";
1075        sprintf(inst_prefix, "inst%d_",   inst_position);
1076        char receiver[]     = "instXXXX->";
1077        sprintf(receiver,    "inst%d->", inst_position);
1078        inst->index_temps( fp, globals, inst_prefix, receiver );
1079      }
1080    }
1081  }
1082}
1083
1084// Generate tests for the constraints
1085static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086  fprintf(fp, "\n");
1087  fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1088
1089  // Build mapping from num_edges to local variables
1090  build_instruction_index_mapping( fp, globals, pmatch );
1091
1092  // Build constraint tests
1093  if( pconstraint != NULL ) {
1094    fprintf(fp, "      matches = matches &&");
1095    bool   first_constraint = true;
1096    while( pconstraint != NULL ) {
1097      // indentation and connecting '&&'
1098      const char *indentation = "      ";
1099      fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1100
1101      // Only have '==' relation implemented
1102      if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103        assert( false, "Unimplemented()" );
1104      }
1105
1106      // LEFT
1107      int left_index       = pconstraint->_left_inst;
1108      const char *left_op  = pconstraint->_left_op;
1109      // Access info on the instructions whose operands are compared
1110      InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111      assert( inst_left, "Parser should guaranty this is an instruction");
1112      int left_op_base  = inst_left->oper_input_base(globals);
1113      // Access info on the operands being compared
1114      int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1115      if( left_op_index == -1 ) {
1116        left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117        if( left_op_index == -1 ) {
1118          left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119        }
1120      }
1121      assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1122      ComponentList components_left = inst_left->_components;
1123      const char *left_comp_type = components_left.at(left_op_index)->_type;
1124      OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125      Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126
1127
1128      // RIGHT
1129      int right_op_index = -1;
1130      int right_index      = pconstraint->_right_inst;
1131      const char *right_op = pconstraint->_right_op;
1132      if( right_index != -1 ) { // Match operand
1133        // Access info on the instructions whose operands are compared
1134        InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135        assert( inst_right, "Parser should guaranty this is an instruction");
1136        int right_op_base = inst_right->oper_input_base(globals);
1137        // Access info on the operands being compared
1138        right_op_index = inst_right->operand_position(right_op, Component::USE);
1139        if( right_op_index == -1 ) {
1140          right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141          if( right_op_index == -1 ) {
1142            right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143          }
1144        }
1145        assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146        ComponentList components_right = inst_right->_components;
1147        const char *right_comp_type = components_right.at(right_op_index)->_type;
1148        OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149        Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150        assert( right_interface_type == left_interface_type, "Both must be same interface");
1151
1152      } else {                  // Else match register
1153        // assert( false, "should be a register" );
1154      }
1155
1156      //
1157      // Check for equivalence
1158      //
1159      // fprintf(fp, "phase->eqv( ");
1160      // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161      //         left_index,  left_op_base,  left_op_index,  left_op,
1162      //         right_index, right_op_base, right_op_index, right_op );
1163      // fprintf(fp, ")");
1164      //
1165      switch( left_interface_type ) {
1166      case Form::register_interface: {
1167        // Check that they are allocated to the same register
1168        // Need parameter for index position if not result operand
1169        char left_reg_index[] = ",instXXXX_idxXXXX";
1170        if( left_op_index != 0 ) {
1171          assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172          // Must have index into operands
1173          sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174        } else {
1175          strcpy(left_reg_index, "");
1176        }
1177        fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1178                left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1179        fprintf(fp, " == ");
1180
1181        if( right_index != -1 ) {
1182          char right_reg_index[18] = ",instXXXX_idxXXXX";
1183          if( right_op_index != 0 ) {
1184            assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185            // Must have index into operands
1186            sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187          } else {
1188            strcpy(right_reg_index, "");
1189          }
1190          fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191                  right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192        } else {
1193          fprintf(fp, "%s_enc", right_op );
1194        }
1195        fprintf(fp,")");
1196        break;
1197      }
1198      case Form::constant_interface: {
1199        // Compare the '->constant()' values
1200        fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1201                left_index,  left_op_index,  left_index, left_op );
1202        fprintf(fp, " == ");
1203        fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204                right_index, right_op, right_index, right_op_index );
1205        break;
1206      }
1207      case Form::memory_interface: {
1208        // Compare 'base', 'index', 'scale', and 'disp'
1209        // base
1210        fprintf(fp, "( \n");
1211        fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1212          left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213        fprintf(fp, " == ");
1214        fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216        // index
1217        fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1218                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219        fprintf(fp, " == ");
1220        fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222        // scale
1223        fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1224                left_index,  left_op_index,  left_index, left_op );
1225        fprintf(fp, " == ");
1226        fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227                right_index, right_op, right_index, right_op_index );
1228        // disp
1229        fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1230                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231        fprintf(fp, " == ");
1232        fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234        fprintf(fp, ") \n");
1235        break;
1236      }
1237      case Form::conditional_interface: {
1238        // Compare the condition code being tested
1239        assert( false, "Unimplemented()" );
1240        break;
1241      }
1242      default: {
1243        assert( false, "ShouldNotReachHere()" );
1244        break;
1245      }
1246      }
1247
1248      // Advance to next constraint
1249      pconstraint = pconstraint->next();
1250      first_constraint = false;
1251    }
1252
1253    fprintf(fp, ";\n");
1254  }
1255}
1256
1257// // EXPERIMENTAL -- TEMPORARY code
1258// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259//   int op_index = instr->operand_position(op_name, Component::USE);
1260//   if( op_index == -1 ) {
1261//     op_index = instr->operand_position(op_name, Component::DEF);
1262//     if( op_index == -1 ) {
1263//       op_index = instr->operand_position(op_name, Component::USE_DEF);
1264//     }
1265//   }
1266//   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267//
1268//   ComponentList components_right = instr->_components;
1269//   char *right_comp_type = components_right.at(op_index)->_type;
1270//   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271//   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1272//
1273//   return;
1274// }
1275
1276// Construct the new sub-tree
1277static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278  fprintf(fp, "      // IF instructions and constraints matched\n");
1279  fprintf(fp, "      if( matches ) {\n");
1280  fprintf(fp, "        // generate the new sub-tree\n");
1281  fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1282  if( preplace != NULL ) {
1283    // Get the root of the new sub-tree
1284    const char *root_inst = NULL;
1285    preplace->next_instruction(root_inst);
1286    InstructForm *root_form = globals[root_inst]->is_instruction();
1287    assert( root_form != NULL, "Replacement instruction was not previously defined");
1288    fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1289
1290    int         inst_num;
1291    const char *op_name;
1292    int         opnds_index = 0;            // define result operand
1293    // Then install the use-operands for the new sub-tree
1294    // preplace->reset();             // reset breaks iteration
1295    for( preplace->next_operand( inst_num, op_name );
1296         op_name != NULL;
1297         preplace->next_operand( inst_num, op_name ) ) {
1298      InstructForm *inst_form;
1299      inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300      assert( inst_form, "Parser should guaranty this is an instruction");
1301      int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302      if( inst_op_num == NameList::Not_in_list )
1303        inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304      assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305      // find the name of the OperandForm from the local name
1306      const Form *form   = inst_form->_localNames[op_name];
1307      OperandForm  *op_form = form->is_operand();
1308      if( opnds_index == 0 ) {
1309        // Initial setup of new instruction
1310        fprintf(fp, "        // ----- Initial setup -----\n");
1311        //
1312        // Add control edge for this node
1313        fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1314        // Add unmatched edges from root of match tree
1315        int op_base = root_form->oper_input_base(globals);
1316        for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317          fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1318                                          inst_num, unmatched_edge);
1319        }
1320        // If new instruction captures bottom type
1321        if( root_form->captures_bottom_type(globals) ) {
1322          // Get bottom type from instruction whose result we are replacing
1323          fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324        }
1325        // Define result register and result operand
1326        fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1327        fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328        fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329        fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1330        fprintf(fp, "        // ----- Done with initial setup -----\n");
1331      } else {
1332        if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333          // Do not have ideal edges for constants after matching
1334          fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335                  inst_op_num, inst_num, inst_op_num,
1336                  inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337          fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1338                  inst_num, inst_op_num );
1339        } else {
1340          fprintf(fp, "        // no ideal edge for constants after matching\n");
1341        }
1342        fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1343                opnds_index, inst_num, inst_op_num );
1344      }
1345      ++opnds_index;
1346    }
1347  }else {
1348    // Replacing subtree with empty-tree
1349    assert( false, "ShouldNotReachHere();");
1350  }
1351
1352  // Return the new sub-tree
1353  fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1354  fprintf(fp, "        return root;  // return new root;\n");
1355  fprintf(fp, "      }\n");
1356}
1357
1358
1359// Define the Peephole method for an instruction node
1360void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361  // Generate Peephole function header
1362  fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1363  fprintf(fp, "  bool  matches = true;\n");
1364
1365  // Identify the maximum instruction position,
1366  // generate temporaries that hold current instruction
1367  //
1368  //   MachNode  *inst0 = NULL;
1369  //   ...
1370  //   MachNode  *instMAX = NULL;
1371  //
1372  int max_position = 0;
1373  Peephole *peep;
1374  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375    PeepMatch *pmatch = peep->match();
1376    assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377    if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1378  }
1379  for( int i = 0; i <= max_position; ++i ) {
1380    if( i == 0 ) {
1381      fprintf(fp, "  MachNode *inst0 = this;\n");
1382    } else {
1383      fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1384    }
1385  }
1386
1387  // For each peephole rule in architecture description
1388  //   Construct a test for the desired instruction sub-tree
1389  //   then check the constraints
1390  //   If these match, Generate the new subtree
1391  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392    int         peephole_number = peep->peephole_number();
1393    PeepMatch      *pmatch      = peep->match();
1394    PeepConstraint *pconstraint = peep->constraints();
1395    PeepReplace    *preplace    = peep->replacement();
1396
1397    // Root of this peephole is the current MachNode
1398    assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399            "root of PeepMatch does not match instruction");
1400
1401    // Make each peephole rule individually selectable
1402    fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403    fprintf(fp, "    matches = true;\n");
1404    // Scan the peepmatch and output a test for each instruction
1405    check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406
1407    // Check constraints and build replacement inside scope
1408    fprintf(fp, "    // If instruction subtree matches\n");
1409    fprintf(fp, "    if( matches ) {\n");
1410
1411    // Generate tests for the constraints
1412    check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413
1414    // Construct the new sub-tree
1415    generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416
1417    // End of scope for this peephole's constraints
1418    fprintf(fp, "    }\n");
1419    // Closing brace '}' to make each peephole rule individually selectable
1420    fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1421    fprintf(fp, "\n");
1422  }
1423
1424  fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1425  fprintf(fp, "}\n");
1426  fprintf(fp, "\n");
1427}
1428
1429// Define the Expand method for an instruction node
1430void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431  unsigned      cnt  = 0;          // Count nodes we have expand into
1432  unsigned      i;
1433
1434  // Generate Expand function header
1435  fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436  fprintf(fp, "  Compile* C = Compile::current();\n");
1437  // Generate expand code
1438  if( node->expands() ) {
1439    const char   *opid;
1440    int           new_pos, exp_pos;
1441    const char   *new_id   = NULL;
1442    const Form   *frm      = NULL;
1443    InstructForm *new_inst = NULL;
1444    OperandForm  *new_oper = NULL;
1445    unsigned      numo     = node->num_opnds() +
1446                                node->_exprule->_newopers.count();
1447
1448    // If necessary, generate any operands created in expand rule
1449    if (node->_exprule->_newopers.count()) {
1450      for(node->_exprule->_newopers.reset();
1451          (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452        frm = node->_localNames[new_id];
1453        assert(frm, "Invalid entry in new operands list of expand rule");
1454        new_oper = frm->is_operand();
1455        char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456        if (tmp == NULL) {
1457          fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1458                  cnt, new_oper->_ident);
1459        }
1460        else {
1461          fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1462                  cnt, new_oper->_ident, tmp);
1463        }
1464      }
1465    }
1466    cnt = 0;
1467    // Generate the temps to use for DAG building
1468    for(i = 0; i < numo; i++) {
1469      if (i < node->num_opnds()) {
1470        fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1471      }
1472      else {
1473        fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1474      }
1475    }
1476    // Build mapping from num_edges to local variables
1477    fprintf(fp,"  unsigned num0 = 0;\n");
1478    for( i = 1; i < node->num_opnds(); i++ ) {
1479      fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480    }
1481
1482    // Build a mapping from operand index to input edges
1483    fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1484
1485    // The order in which the memory input is added to a node is very
1486    // strange.  Store nodes get a memory input before Expand is
1487    // called and other nodes get it afterwards or before depending on
1488    // match order so oper_input_base is wrong during expansion.  This
1489    // code adjusts it so that expansion will work correctly.
1490    int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491    if (has_memory_edge) {
1492      fprintf(fp,"  if (mem == (Node*)1) {\n");
1493      fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494      fprintf(fp,"  }\n");
1495    }
1496
1497    for( i = 0; i < node->num_opnds(); i++ ) {
1498      fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1499              i+1,i,i);
1500    }
1501
1502    // Declare variable to hold root of expansion
1503    fprintf(fp,"  MachNode *result = NULL;\n");
1504
1505    // Iterate over the instructions 'node' expands into
1506    ExpandRule  *expand       = node->_exprule;
1507    NameAndList *expand_instr = NULL;
1508    for (expand->reset_instructions();
1509         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510      new_id = expand_instr->name();
1511
1512      InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513
1514      if (!expand_instruction) {
1515        globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516                             node->_ident, new_id);
1517        continue;
1518      }
1519
1520      // Build the node for the instruction
1521      fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1522      // Add control edge for this node
1523      fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1524      // Build the operand for the value this node defines.
1525      Form *form = (Form*)_globalNames[new_id];
1526      assert(form, "'new_id' must be a defined form name");
1527      // Grab the InstructForm for the new instruction
1528      new_inst = form->is_instruction();
1529      assert(new_inst, "'new_id' must be an instruction name");
1530      if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1531        fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1532        fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1533      }
1534
1535      if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1536        fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1537        fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1538        fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1539      }
1540
1541      // Fill in the bottom_type where requested
1542      if (node->captures_bottom_type(_globalNames) &&
1543          new_inst->captures_bottom_type(_globalNames)) {
1544        fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1545      }
1546
1547      const char *resultOper = new_inst->reduce_result();
1548      fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1549              cnt, machOperEnum(resultOper));
1550
1551      // get the formal operand NameList
1552      NameList *formal_lst = &new_inst->_parameters;
1553      formal_lst->reset();
1554
1555      // Handle any memory operand
1556      int memory_operand = new_inst->memory_operand(_globalNames);
1557      if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1558        int node_mem_op = node->memory_operand(_globalNames);
1559        assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1560                "expand rule member needs memory but top-level inst doesn't have any" );
1561        if (has_memory_edge) {
1562          // Copy memory edge
1563          fprintf(fp,"  if (mem != (Node*)1) {\n");
1564          fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1565          fprintf(fp,"  }\n");
1566        }
1567      }
1568
1569      // Iterate over the new instruction's operands
1570      int prev_pos = -1;
1571      for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1572        // Use 'parameter' at current position in list of new instruction's formals
1573        // instead of 'opid' when looking up info internal to new_inst
1574        const char *parameter = formal_lst->iter();
1575        if (!parameter) {
1576          globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1577                               " no equivalent in new instruction %s.",
1578                               opid, node->_ident, new_inst->_ident);
1579          assert(0, "Wrong expand");
1580        }
1581
1582        // Check for an operand which is created in the expand rule
1583        if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1584          new_pos = new_inst->operand_position(parameter,Component::USE);
1585          exp_pos += node->num_opnds();
1586          // If there is no use of the created operand, just skip it
1587          if (new_pos != NameList::Not_in_list) {
1588            //Copy the operand from the original made above
1589            fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1590                    cnt, new_pos, exp_pos-node->num_opnds(), opid);
1591            // Check for who defines this operand & add edge if needed
1592            fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1593            fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1594          }
1595        }
1596        else {
1597          // Use operand name to get an index into instruction component list
1598          // ins = (InstructForm *) _globalNames[new_id];
1599          exp_pos = node->operand_position_format(opid);
1600          assert(exp_pos != -1, "Bad expand rule");
1601          if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1602            // For the add_req calls below to work correctly they need
1603            // to added in the same order that a match would add them.
1604            // This means that they would need to be in the order of
1605            // the components list instead of the formal parameters.
1606            // This is a sort of hidden invariant that previously
1607            // wasn't checked and could lead to incorrectly
1608            // constructed nodes.
1609            syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1610                       node->_ident, new_inst->_ident);
1611          }
1612          prev_pos = exp_pos;
1613
1614          new_pos = new_inst->operand_position(parameter,Component::USE);
1615          if (new_pos != -1) {
1616            // Copy the operand from the ExpandNode to the new node
1617            fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1618                    cnt, new_pos, exp_pos, opid);
1619            // For each operand add appropriate input edges by looking at tmp's
1620            fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1621            // Grab corresponding edges from ExpandNode and insert them here
1622            fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1623            fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1624            fprintf(fp,"    }\n");
1625            fprintf(fp,"  }\n");
1626            // This value is generated by one of the new instructions
1627            fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1628          }
1629        }
1630
1631        // Update the DAG tmp's for values defined by this instruction
1632        int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1633        Effect *eform = (Effect *)new_inst->_effects[parameter];
1634        // If this operand is a definition in either an effects rule
1635        // or a match rule
1636        if((eform) && (is_def(eform->_use_def))) {
1637          // Update the temp associated with this operand
1638          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1639        }
1640        else if( new_def_pos != -1 ) {
1641          // Instruction defines a value but user did not declare it
1642          // in the 'effect' clause
1643          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1644        }
1645      } // done iterating over a new instruction's operands
1646
1647      // Fix number of operands, as we do not generate redundant ones.
1648      // The matcher generates some redundant operands, which are removed
1649      // in the expand function (of the node we generate here). We don't
1650      // generate the redundant operands here, so set the correct _num_opnds.
1651      if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1652        fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1653                cnt, expand_instruction->num_unique_opnds());
1654      }
1655
1656      // Invoke Expand() for the newly created instruction.
1657      fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1658      assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1659    } // done iterating over new instructions
1660    fprintf(fp,"\n");
1661  } // done generating expand rule
1662
1663  // Generate projections for instruction's additional DEFs and KILLs
1664  if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1665    // Get string representing the MachNode that projections point at
1666    const char *machNode = "this";
1667    // Generate the projections
1668    fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1669
1670    // Examine each component to see if it is a DEF or KILL
1671    node->_components.reset();
1672    // Skip the first component, if already handled as (SET dst (...))
1673    Component *comp = NULL;
1674    // For kills, the choice of projection numbers is arbitrary
1675    int proj_no = 1;
1676    bool declared_def  = false;
1677    bool declared_kill = false;
1678
1679    while ((comp = node->_components.iter()) != NULL) {
1680      // Lookup register class associated with operand type
1681      Form *form = (Form*)_globalNames[comp->_type];
1682      assert(form, "component type must be a defined form");
1683      OperandForm *op = form->is_operand();
1684
1685      if (comp->is(Component::TEMP) ||
1686          comp->is(Component::TEMP_DEF)) {
1687        fprintf(fp, "  // TEMP %s\n", comp->_name);
1688        if (!declared_def) {
1689          // Define the variable "def" to hold new MachProjNodes
1690          fprintf(fp, "  MachTempNode *def;\n");
1691          declared_def = true;
1692        }
1693        if (op && op->_interface && op->_interface->is_RegInterface()) {
1694          fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1695                  machOperEnum(op->_ident));
1696          fprintf(fp,"  add_req(def);\n");
1697          // The operand for TEMP is already constructed during
1698          // this mach node construction, see buildMachNode().
1699          //
1700          // int idx  = node->operand_position_format(comp->_name);
1701          // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1702          //         idx, machOperEnum(op->_ident));
1703        } else {
1704          assert(false, "can't have temps which aren't registers");
1705        }
1706      } else if (comp->isa(Component::KILL)) {
1707        fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1708
1709        if (!declared_kill) {
1710          // Define the variable "kill" to hold new MachProjNodes
1711          fprintf(fp, "  MachProjNode *kill;\n");
1712          declared_kill = true;
1713        }
1714
1715        assert(op, "Support additional KILLS for base operands");
1716        const char *regmask    = reg_mask(*op);
1717        const char *ideal_type = op->ideal_type(_globalNames, _register);
1718
1719        if (!op->is_bound_register()) {
1720          syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1721                     node->_ident, comp->_type, comp->_name);
1722        }
1723
1724        fprintf(fp,"  kill = ");
1725        fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1726                machNode, proj_no++, regmask, ideal_type);
1727        fprintf(fp,"  proj_list.push(kill);\n");
1728      }
1729    }
1730  }
1731
1732  if( !node->expands() && node->_matrule != NULL ) {
1733    // Remove duplicated operands and inputs which use the same name.
1734    // Search through match operands for the same name usage.
1735    // The matcher generates these non-unique operands. If the node
1736    // was constructed by an expand rule, there are no unique operands.
1737    uint cur_num_opnds = node->num_opnds();
1738    if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1739      Component *comp = NULL;
1740      fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
1741      fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
1742      // Build mapping from num_edges to local variables
1743      fprintf(fp,"    unsigned num0 = 0;\n");
1744      for (i = 1; i < cur_num_opnds; i++) {
1745        fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1746        fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1747      }
1748      // Build a mapping from operand index to input edges
1749      fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
1750      for (i = 0; i < cur_num_opnds; i++) {
1751        fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1752      }
1753
1754      uint new_num_opnds = 1;
1755      node->_components.reset();
1756      // Skip first unique operands.
1757      for (i = 1; i < cur_num_opnds; i++) {
1758        comp = node->_components.iter();
1759        if (i != node->unique_opnds_idx(i)) {
1760          break;
1761        }
1762        new_num_opnds++;
1763      }
1764      // Replace not unique operands with next unique operands.
1765      for ( ; i < cur_num_opnds; i++) {
1766        comp = node->_components.iter();
1767        uint j = node->unique_opnds_idx(i);
1768        // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1769        if (j != node->unique_opnds_idx(j)) {
1770          fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1771                  new_num_opnds, i, comp->_name);
1772          // Delete not unique edges here.
1773          fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
1774          fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1775          fprintf(fp,"    }\n");
1776          fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
1777          fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1778          new_num_opnds++;
1779        }
1780      }
1781      // Delete the rest of edges.
1782      fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1783      fprintf(fp,"      del_req(i);\n");
1784      fprintf(fp,"    }\n");
1785      fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
1786      assert(new_num_opnds == node->num_unique_opnds(), "what?");
1787      fprintf(fp, "  } else {\n");
1788      fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1789                  new_num_opnds, new_num_opnds, cur_num_opnds);
1790      fprintf(fp, "  }\n");
1791    }
1792  }
1793
1794  // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1795  // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1796  // There are nodes that don't use $constantablebase, but still require that it
1797  // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1798  if (node->is_mach_constant() || node->needs_constant_base()) {
1799    if (node->is_ideal_call() != Form::invalid_type &&
1800        node->is_ideal_call() != Form::JAVA_LEAF) {
1801      fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1802      _needs_clone_jvms = true;
1803    } else {
1804      fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1805    }
1806  }
1807
1808  fprintf(fp, "\n");
1809  if (node->expands()) {
1810    fprintf(fp, "  return result;\n");
1811  } else {
1812    fprintf(fp, "  return this;\n");
1813  }
1814  fprintf(fp, "}\n");
1815  fprintf(fp, "\n");
1816}
1817
1818
1819//------------------------------Emit Routines----------------------------------
1820// Special classes and routines for defining node emit routines which output
1821// target specific instruction object encodings.
1822// Define the ___Node::emit() routine
1823//
1824// (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1825// (2)   // ...  encoding defined by user
1826// (3)
1827// (4) }
1828//
1829
1830class DefineEmitState {
1831private:
1832  enum reloc_format { RELOC_NONE        = -1,
1833                      RELOC_IMMEDIATE   =  0,
1834                      RELOC_DISP        =  1,
1835                      RELOC_CALL_DISP   =  2 };
1836  enum literal_status{ LITERAL_NOT_SEEN  = 0,
1837                       LITERAL_SEEN      = 1,
1838                       LITERAL_ACCESSED  = 2,
1839                       LITERAL_OUTPUT    = 3 };
1840  // Temporaries that describe current operand
1841  bool          _cleared;
1842  OpClassForm  *_opclass;
1843  OperandForm  *_operand;
1844  int           _operand_idx;
1845  const char   *_local_name;
1846  const char   *_operand_name;
1847  bool          _doing_disp;
1848  bool          _doing_constant;
1849  Form::DataType _constant_type;
1850  DefineEmitState::literal_status _constant_status;
1851  DefineEmitState::literal_status _reg_status;
1852  bool          _doing_emit8;
1853  bool          _doing_emit_d32;
1854  bool          _doing_emit_d16;
1855  bool          _doing_emit_hi;
1856  bool          _doing_emit_lo;
1857  bool          _may_reloc;
1858  reloc_format  _reloc_form;
1859  const char *  _reloc_type;
1860  bool          _processing_noninput;
1861
1862  NameList      _strings_to_emit;
1863
1864  // Stable state, set by constructor
1865  ArchDesc     &_AD;
1866  FILE         *_fp;
1867  EncClass     &_encoding;
1868  InsEncode    &_ins_encode;
1869  InstructForm &_inst;
1870
1871public:
1872  DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1873                  InsEncode &ins_encode, InstructForm &inst)
1874    : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1875      clear();
1876  }
1877
1878  void clear() {
1879    _cleared       = true;
1880    _opclass       = NULL;
1881    _operand       = NULL;
1882    _operand_idx   = 0;
1883    _local_name    = "";
1884    _operand_name  = "";
1885    _doing_disp    = false;
1886    _doing_constant= false;
1887    _constant_type = Form::none;
1888    _constant_status = LITERAL_NOT_SEEN;
1889    _reg_status      = LITERAL_NOT_SEEN;
1890    _doing_emit8   = false;
1891    _doing_emit_d32= false;
1892    _doing_emit_d16= false;
1893    _doing_emit_hi = false;
1894    _doing_emit_lo = false;
1895    _may_reloc     = false;
1896    _reloc_form    = RELOC_NONE;
1897    _reloc_type    = AdlcVMDeps::none_reloc_type();
1898    _strings_to_emit.clear();
1899  }
1900
1901  // Track necessary state when identifying a replacement variable
1902  // @arg rep_var: The formal parameter of the encoding.
1903  void update_state(const char *rep_var) {
1904    // A replacement variable or one of its subfields
1905    // Obtain replacement variable from list
1906    if ( (*rep_var) != '$' ) {
1907      // A replacement variable, '$' prefix
1908      // check_rep_var( rep_var );
1909      if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1910        // No state needed.
1911        assert( _opclass == NULL,
1912                "'primary', 'secondary' and 'tertiary' don't follow operand.");
1913      }
1914      else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1915               (strcmp(rep_var, "constantoffset")    == 0) ||
1916               (strcmp(rep_var, "constantaddress")   == 0)) {
1917        if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1918          _AD.syntax_err(_encoding._linenum,
1919                         "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1920                         rep_var, _encoding._name);
1921        }
1922      }
1923      else {
1924        // Lookup its position in (formal) parameter list of encoding
1925        int   param_no  = _encoding.rep_var_index(rep_var);
1926        if ( param_no == -1 ) {
1927          _AD.syntax_err( _encoding._linenum,
1928                          "Replacement variable %s not found in enc_class %s.\n",
1929                          rep_var, _encoding._name);
1930        }
1931
1932        // Lookup the corresponding ins_encode parameter
1933        // This is the argument (actual parameter) to the encoding.
1934        const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1935        if (inst_rep_var == NULL) {
1936          _AD.syntax_err( _ins_encode._linenum,
1937                          "Parameter %s not passed to enc_class %s from instruct %s.\n",
1938                          rep_var, _encoding._name, _inst._ident);
1939        }
1940
1941        // Check if instruction's actual parameter is a local name in the instruction
1942        const Form  *local     = _inst._localNames[inst_rep_var];
1943        OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1944        // Note: assert removed to allow constant and symbolic parameters
1945        // assert( opc, "replacement variable was not found in local names");
1946        // Lookup the index position iff the replacement variable is a localName
1947        int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1948
1949        if ( idx != -1 ) {
1950          // This is a local in the instruction
1951          // Update local state info.
1952          _opclass        = opc;
1953          _operand_idx    = idx;
1954          _local_name     = rep_var;
1955          _operand_name   = inst_rep_var;
1956
1957          // !!!!!
1958          // Do not support consecutive operands.
1959          assert( _operand == NULL, "Unimplemented()");
1960          _operand = opc->is_operand();
1961        }
1962        else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1963          // Instruction provided a constant expression
1964          // Check later that encoding specifies $$$constant to resolve as constant
1965          _constant_status   = LITERAL_SEEN;
1966        }
1967        else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1968          // Instruction provided an opcode: "primary", "secondary", "tertiary"
1969          // Check later that encoding specifies $$$constant to resolve as constant
1970          _constant_status   = LITERAL_SEEN;
1971        }
1972        else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1973          // Instruction provided a literal register name for this parameter
1974          // Check that encoding specifies $$$reg to resolve.as register.
1975          _reg_status        = LITERAL_SEEN;
1976        }
1977        else {
1978          // Check for unimplemented functionality before hard failure
1979          assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1980          assert( false, "ShouldNotReachHere()");
1981        }
1982      } // done checking which operand this is.
1983    } else {
1984      //
1985      // A subfield variable, '$$' prefix
1986      // Check for fields that may require relocation information.
1987      // Then check that literal register parameters are accessed with 'reg' or 'constant'
1988      //
1989      if ( strcmp(rep_var,"$disp") == 0 ) {
1990        _doing_disp = true;
1991        assert( _opclass, "Must use operand or operand class before '$disp'");
1992        if( _operand == NULL ) {
1993          // Only have an operand class, generate run-time check for relocation
1994          _may_reloc    = true;
1995          _reloc_form   = RELOC_DISP;
1996          _reloc_type   = AdlcVMDeps::oop_reloc_type();
1997        } else {
1998          // Do precise check on operand: is it a ConP or not
1999          //
2000          // Check interface for value of displacement
2001          assert( ( _operand->_interface != NULL ),
2002                  "$disp can only follow memory interface operand");
2003          MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2004          assert( mem_interface != NULL,
2005                  "$disp can only follow memory interface operand");
2006          const char *disp = mem_interface->_disp;
2007
2008          if( disp != NULL && (*disp == '$') ) {
2009            // MemInterface::disp contains a replacement variable,
2010            // Check if this matches a ConP
2011            //
2012            // Lookup replacement variable, in operand's component list
2013            const char *rep_var_name = disp + 1; // Skip '$'
2014            const Component *comp = _operand->_components.search(rep_var_name);
2015            assert( comp != NULL,"Replacement variable not found in components");
2016            const char      *type = comp->_type;
2017            // Lookup operand form for replacement variable's type
2018            const Form *form = _AD.globalNames()[type];
2019            assert( form != NULL, "Replacement variable's type not found");
2020            OperandForm *op = form->is_operand();
2021            assert( op, "Attempting to emit a non-register or non-constant");
2022            // Check if this is a constant
2023            if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2024              // Check which constant this name maps to: _c0, _c1, ..., _cn
2025              // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2026              // assert( idx != -1, "Constant component not found in operand");
2027              Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2028              if ( dtype == Form::idealP ) {
2029                _may_reloc    = true;
2030                // No longer true that idealP is always an oop
2031                _reloc_form   = RELOC_DISP;
2032                _reloc_type   = AdlcVMDeps::oop_reloc_type();
2033              }
2034            }
2035
2036            else if( _operand->is_user_name_for_sReg() != Form::none ) {
2037              // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2038              assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2039              _may_reloc   = false;
2040            } else {
2041              assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2042            }
2043          }
2044        } // finished with precise check of operand for relocation.
2045      } // finished with subfield variable
2046      else if ( strcmp(rep_var,"$constant") == 0 ) {
2047        _doing_constant = true;
2048        if ( _constant_status == LITERAL_NOT_SEEN ) {
2049          // Check operand for type of constant
2050          assert( _operand, "Must use operand before '$$constant'");
2051          Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2052          _constant_type = dtype;
2053          if ( dtype == Form::idealP ) {
2054            _may_reloc    = true;
2055            // No longer true that idealP is always an oop
2056            // // _must_reloc   = true;
2057            _reloc_form   = RELOC_IMMEDIATE;
2058            _reloc_type   = AdlcVMDeps::oop_reloc_type();
2059          } else {
2060            // No relocation information needed
2061          }
2062        } else {
2063          // User-provided literals may not require relocation information !!!!!
2064          assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2065        }
2066      }
2067      else if ( strcmp(rep_var,"$label") == 0 ) {
2068        // Calls containing labels require relocation
2069        if ( _inst.is_ideal_call() )  {
2070          _may_reloc    = true;
2071          // !!!!! !!!!!
2072          _reloc_type   = AdlcVMDeps::none_reloc_type();
2073        }
2074      }
2075
2076      // literal register parameter must be accessed as a 'reg' field.
2077      if ( _reg_status != LITERAL_NOT_SEEN ) {
2078        assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2079        if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2080          _reg_status  = LITERAL_ACCESSED;
2081        } else {
2082          _AD.syntax_err(_encoding._linenum,
2083                         "Invalid access to literal register parameter '%s' in %s.\n",
2084                         rep_var, _encoding._name);
2085          assert( false, "invalid access to literal register parameter");
2086        }
2087      }
2088      // literal constant parameters must be accessed as a 'constant' field
2089      if (_constant_status != LITERAL_NOT_SEEN) {
2090        assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2091        if (strcmp(rep_var,"$constant") == 0) {
2092          _constant_status = LITERAL_ACCESSED;
2093        } else {
2094          _AD.syntax_err(_encoding._linenum,
2095                         "Invalid access to literal constant parameter '%s' in %s.\n",
2096                         rep_var, _encoding._name);
2097        }
2098      }
2099    } // end replacement and/or subfield
2100
2101  }
2102
2103  void add_rep_var(const char *rep_var) {
2104    // Handle subfield and replacement variables.
2105    if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2106      // Check for emit prefix, '$$emit32'
2107      assert( _cleared, "Can not nest $$$emit32");
2108      if ( strcmp(rep_var,"$$emit32") == 0 ) {
2109        _doing_emit_d32 = true;
2110      }
2111      else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2112        _doing_emit_d16 = true;
2113      }
2114      else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2115        _doing_emit_hi  = true;
2116      }
2117      else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2118        _doing_emit_lo  = true;
2119      }
2120      else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2121        _doing_emit8    = true;
2122      }
2123      else {
2124        _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2125        assert( false, "fatal();");
2126      }
2127    }
2128    else {
2129      // Update state for replacement variables
2130      update_state( rep_var );
2131      _strings_to_emit.addName(rep_var);
2132    }
2133    _cleared  = false;
2134  }
2135
2136  void emit_replacement() {
2137    // A replacement variable or one of its subfields
2138    // Obtain replacement variable from list
2139    // const char *ec_rep_var = encoding->_rep_vars.iter();
2140    const char *rep_var;
2141    _strings_to_emit.reset();
2142    while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2143
2144      if ( (*rep_var) == '$' ) {
2145        // A subfield variable, '$$' prefix
2146        emit_field( rep_var );
2147      } else {
2148        if (_strings_to_emit.peek() != NULL &&
2149            strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2150          fprintf(_fp, "Address::make_raw(");
2151
2152          emit_rep_var( rep_var );
2153          fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2154
2155          _reg_status = LITERAL_ACCESSED;
2156          emit_rep_var( rep_var );
2157          fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2158
2159          _reg_status = LITERAL_ACCESSED;
2160          emit_rep_var( rep_var );
2161          fprintf(_fp,"->scale(), ");
2162
2163          _reg_status = LITERAL_ACCESSED;
2164          emit_rep_var( rep_var );
2165          Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2166          if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2167            fprintf(_fp,"->disp(ra_,this,0), ");
2168          } else {
2169            fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2170          }
2171
2172          _reg_status = LITERAL_ACCESSED;
2173          emit_rep_var( rep_var );
2174          fprintf(_fp,"->disp_reloc())");
2175
2176          // skip trailing $Address
2177          _strings_to_emit.iter();
2178        } else {
2179          // A replacement variable, '$' prefix
2180          const char* next = _strings_to_emit.peek();
2181          const char* next2 = _strings_to_emit.peek(2);
2182          if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2183              (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2184            // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2185            // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2186            fprintf(_fp, "as_Register(");
2187            // emit the operand reference
2188            emit_rep_var( rep_var );
2189            rep_var = _strings_to_emit.iter();
2190            assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2191            // handle base or index
2192            emit_field(rep_var);
2193            rep_var = _strings_to_emit.iter();
2194            assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2195            // close up the parens
2196            fprintf(_fp, ")");
2197          } else {
2198            emit_rep_var( rep_var );
2199          }
2200        }
2201      } // end replacement and/or subfield
2202    }
2203  }
2204
2205  void emit_reloc_type(const char* type) {
2206    fprintf(_fp, "%s", type)
2207      ;
2208  }
2209
2210
2211  void emit() {
2212    //
2213    //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2214    //
2215    // Emit the function name when generating an emit function
2216    if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2217      const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2218      // In general, relocatable isn't known at compiler compile time.
2219      // Check results of prior scan
2220      if ( ! _may_reloc ) {
2221        // Definitely don't need relocation information
2222        fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2223        emit_replacement(); fprintf(_fp, ")");
2224      }
2225      else {
2226        // Emit RUNTIME CHECK to see if value needs relocation info
2227        // If emitting a relocatable address, use 'emit_d32_reloc'
2228        const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2229        assert( (_doing_disp || _doing_constant)
2230                && !(_doing_disp && _doing_constant),
2231                "Must be emitting either a displacement or a constant");
2232        fprintf(_fp,"\n");
2233        fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2234                _operand_idx, disp_constant);
2235        fprintf(_fp,"  ");
2236        fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2237        emit_replacement();             fprintf(_fp,", ");
2238        fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2239                _operand_idx, disp_constant);
2240        fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2241        fprintf(_fp,"\n");
2242        fprintf(_fp,"} else {\n");
2243        fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2244        emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2245      }
2246    }
2247    else if ( _doing_emit_d16 ) {
2248      // Relocation of 16-bit values is not supported
2249      fprintf(_fp,"emit_d16(cbuf, ");
2250      emit_replacement(); fprintf(_fp, ")");
2251      // No relocation done for 16-bit values
2252    }
2253    else if ( _doing_emit8 ) {
2254      // Relocation of 8-bit values is not supported
2255      fprintf(_fp,"emit_d8(cbuf, ");
2256      emit_replacement(); fprintf(_fp, ")");
2257      // No relocation done for 8-bit values
2258    }
2259    else {
2260      // Not an emit# command, just output the replacement string.
2261      emit_replacement();
2262    }
2263
2264    // Get ready for next state collection.
2265    clear();
2266  }
2267
2268private:
2269
2270  // recognizes names which represent MacroAssembler register types
2271  // and return the conversion function to build them from OptoReg
2272  const char* reg_conversion(const char* rep_var) {
2273    if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2274    if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2275#if defined(IA32) || defined(AMD64)
2276    if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2277#endif
2278    if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2279    return NULL;
2280  }
2281
2282  void emit_field(const char *rep_var) {
2283    const char* reg_convert = reg_conversion(rep_var);
2284
2285    // A subfield variable, '$$subfield'
2286    if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2287      // $reg form or the $Register MacroAssembler type conversions
2288      assert( _operand_idx != -1,
2289              "Must use this subfield after operand");
2290      if( _reg_status == LITERAL_NOT_SEEN ) {
2291        if (_processing_noninput) {
2292          const Form  *local     = _inst._localNames[_operand_name];
2293          OperandForm *oper      = local->is_operand();
2294          const RegDef* first = oper->get_RegClass()->find_first_elem();
2295          if (reg_convert != NULL) {
2296            fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2297          } else {
2298            fprintf(_fp, "%s_enc", first->_regname);
2299          }
2300        } else {
2301          fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2302          // Add parameter for index position, if not result operand
2303          if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2304          fprintf(_fp,")");
2305          fprintf(_fp, "/* %s */", _operand_name);
2306        }
2307      } else {
2308        assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2309        // Register literal has already been sent to output file, nothing more needed
2310      }
2311    }
2312    else if ( strcmp(rep_var,"$base") == 0 ) {
2313      assert( _operand_idx != -1,
2314              "Must use this subfield after operand");
2315      assert( ! _may_reloc, "UnImplemented()");
2316      fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2317    }
2318    else if ( strcmp(rep_var,"$index") == 0 ) {
2319      assert( _operand_idx != -1,
2320              "Must use this subfield after operand");
2321      assert( ! _may_reloc, "UnImplemented()");
2322      fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2323    }
2324    else if ( strcmp(rep_var,"$scale") == 0 ) {
2325      assert( ! _may_reloc, "UnImplemented()");
2326      fprintf(_fp,"->scale()");
2327    }
2328    else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2329      assert( ! _may_reloc, "UnImplemented()");
2330      fprintf(_fp,"->ccode()");
2331    }
2332    else if ( strcmp(rep_var,"$constant") == 0 ) {
2333      if( _constant_status == LITERAL_NOT_SEEN ) {
2334        if ( _constant_type == Form::idealD ) {
2335          fprintf(_fp,"->constantD()");
2336        } else if ( _constant_type == Form::idealF ) {
2337          fprintf(_fp,"->constantF()");
2338        } else if ( _constant_type == Form::idealL ) {
2339          fprintf(_fp,"->constantL()");
2340        } else {
2341          fprintf(_fp,"->constant()");
2342        }
2343      } else {
2344        assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2345        // Constant literal has already been sent to output file, nothing more needed
2346      }
2347    }
2348    else if ( strcmp(rep_var,"$disp") == 0 ) {
2349      Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2350      if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2351        fprintf(_fp,"->disp(ra_,this,0)");
2352      } else {
2353        fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2354      }
2355    }
2356    else if ( strcmp(rep_var,"$label") == 0 ) {
2357      fprintf(_fp,"->label()");
2358    }
2359    else if ( strcmp(rep_var,"$method") == 0 ) {
2360      fprintf(_fp,"->method()");
2361    }
2362    else {
2363      printf("emit_field: %s\n",rep_var);
2364      globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2365                           rep_var, _inst._ident);
2366      assert( false, "UnImplemented()");
2367    }
2368  }
2369
2370
2371  void emit_rep_var(const char *rep_var) {
2372    _processing_noninput = false;
2373    // A replacement variable, originally '$'
2374    if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2375      if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2376        // Missing opcode
2377        _AD.syntax_err( _inst._linenum,
2378                        "Missing $%s opcode definition in %s, used by encoding %s\n",
2379                        rep_var, _inst._ident, _encoding._name);
2380      }
2381    }
2382    else if (strcmp(rep_var, "constanttablebase") == 0) {
2383      fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2384    }
2385    else if (strcmp(rep_var, "constantoffset") == 0) {
2386      fprintf(_fp, "constant_offset()");
2387    }
2388    else if (strcmp(rep_var, "constantaddress") == 0) {
2389      fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2390    }
2391    else {
2392      // Lookup its position in parameter list
2393      int   param_no  = _encoding.rep_var_index(rep_var);
2394      if ( param_no == -1 ) {
2395        _AD.syntax_err( _encoding._linenum,
2396                        "Replacement variable %s not found in enc_class %s.\n",
2397                        rep_var, _encoding._name);
2398      }
2399      // Lookup the corresponding ins_encode parameter
2400      const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2401
2402      // Check if instruction's actual parameter is a local name in the instruction
2403      const Form  *local     = _inst._localNames[inst_rep_var];
2404      OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2405      // Note: assert removed to allow constant and symbolic parameters
2406      // assert( opc, "replacement variable was not found in local names");
2407      // Lookup the index position iff the replacement variable is a localName
2408      int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2409      if( idx != -1 ) {
2410        if (_inst.is_noninput_operand(idx)) {
2411          // This operand isn't a normal input so printing it is done
2412          // specially.
2413          _processing_noninput = true;
2414        } else {
2415          // Output the emit code for this operand
2416          fprintf(_fp,"opnd_array(%d)",idx);
2417        }
2418        assert( _operand == opc->is_operand(),
2419                "Previous emit $operand does not match current");
2420      }
2421      else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2422        // else check if it is a constant expression
2423        // Removed following assert to allow primitive C types as arguments to encodings
2424        // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2425        fprintf(_fp,"(%s)", inst_rep_var);
2426        _constant_status = LITERAL_OUTPUT;
2427      }
2428      else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2429        // else check if "primary", "secondary", "tertiary"
2430        assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2431        if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2432          // Missing opcode
2433          _AD.syntax_err( _inst._linenum,
2434                          "Missing $%s opcode definition in %s\n",
2435                          rep_var, _inst._ident);
2436
2437        }
2438        _constant_status = LITERAL_OUTPUT;
2439      }
2440      else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2441        // Instruction provided a literal register name for this parameter
2442        // Check that encoding specifies $$$reg to resolve.as register.
2443        assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2444        fprintf(_fp,"(%s_enc)", inst_rep_var);
2445        _reg_status = LITERAL_OUTPUT;
2446      }
2447      else {
2448        // Check for unimplemented functionality before hard failure
2449        assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2450        assert( false, "ShouldNotReachHere()");
2451      }
2452      // all done
2453    }
2454  }
2455
2456};  // end class DefineEmitState
2457
2458
2459void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2460
2461  //(1)
2462  // Output instruction's emit prototype
2463  fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2464          inst._ident);
2465
2466  fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2467
2468  //(2)
2469  // Print the size
2470  fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2471
2472  // (3) and (4)
2473  fprintf(fp,"}\n\n");
2474}
2475
2476// Emit postalloc expand function.
2477void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2478  InsEncode *ins_encode = inst._insencode;
2479
2480  // Output instruction's postalloc_expand prototype.
2481  fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2482          inst._ident);
2483
2484  assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2485
2486  // Output each operand's offset into the array of registers.
2487  inst.index_temps(fp, _globalNames);
2488
2489  // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2490  // for each parameter <par_name> specified in the encoding.
2491  ins_encode->reset();
2492  const char *ec_name = ins_encode->encode_class_iter();
2493  assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2494
2495  EncClass *encoding = _encode->encClass(ec_name);
2496  if (encoding == NULL) {
2497    fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2498    abort();
2499  }
2500  if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2501    globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2502                         inst._ident, ins_encode->current_encoding_num_args(),
2503                         ec_name, encoding->num_args());
2504  }
2505
2506  fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2507  const int buflen = 2000;
2508  char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2509  char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2510  char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2511
2512  encoding->_parameter_type.reset();
2513  encoding->_parameter_name.reset();
2514  const char *type = encoding->_parameter_type.iter();
2515  const char *name = encoding->_parameter_name.iter();
2516  int param_no = 0;
2517  for (; (type != NULL) && (name != NULL);
2518       (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2519    const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2520    int idx = inst.operand_position_format(arg_name);
2521    if (strcmp(arg_name, "constanttablebase") == 0) {
2522      ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2523                    name, type, arg_name);
2524      nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2525      // There is no operand for the constanttablebase.
2526    } else if (inst.is_noninput_operand(idx)) {
2527      globalAD->syntax_err(inst._linenum,
2528                           "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2529                           inst._ident, arg_name);
2530    } else {
2531      ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2532                    name, idx, type, arg_name);
2533      nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2534      ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2535    }
2536    param_no++;
2537  }
2538  assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2539
2540  fprintf(fp, "%s", idxbuf);
2541  fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2542  fprintf(fp, "%s%s", nbuf, opbuf);
2543  fprintf(fp, "  Compile *C = ra_->C;\n");
2544
2545  // Output this instruction's encodings.
2546  fprintf(fp, "  {");
2547  const char *ec_code    = NULL;
2548  const char *ec_rep_var = NULL;
2549  assert(encoding == _encode->encClass(ec_name), "");
2550
2551  DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2552  encoding->_code.reset();
2553  encoding->_rep_vars.reset();
2554  // Process list of user-defined strings,
2555  // and occurrences of replacement variables.
2556  // Replacement Vars are pushed into a list and then output.
2557  while ((ec_code = encoding->_code.iter()) != NULL) {
2558    if (! encoding->_code.is_signal(ec_code)) {
2559      // Emit pending code.
2560      pending.emit();
2561      pending.clear();
2562      // Emit this code section.
2563      fprintf(fp, "%s", ec_code);
2564    } else {
2565      // A replacement variable or one of its subfields.
2566      // Obtain replacement variable from list.
2567      ec_rep_var = encoding->_rep_vars.iter();
2568      pending.add_rep_var(ec_rep_var);
2569    }
2570  }
2571  // Emit pending code.
2572  pending.emit();
2573  pending.clear();
2574  fprintf(fp, "  }\n");
2575
2576  fprintf(fp, "}\n\n");
2577
2578  ec_name = ins_encode->encode_class_iter();
2579  assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2580}
2581
2582// defineEmit -----------------------------------------------------------------
2583void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2584  InsEncode* encode = inst._insencode;
2585
2586  // (1)
2587  // Output instruction's emit prototype
2588  fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2589
2590  // If user did not define an encode section,
2591  // provide stub that does not generate any machine code.
2592  if( (_encode == NULL) || (encode == NULL) ) {
2593    fprintf(fp, "  // User did not define an encode section.\n");
2594    fprintf(fp, "}\n");
2595    return;
2596  }
2597
2598  // Save current instruction's starting address (helps with relocation).
2599  fprintf(fp, "  cbuf.set_insts_mark();\n");
2600
2601  // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2602  if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2603    fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2604  }
2605
2606  // Output each operand's offset into the array of registers.
2607  inst.index_temps(fp, _globalNames);
2608
2609  // Output this instruction's encodings
2610  const char *ec_name;
2611  bool        user_defined = false;
2612  encode->reset();
2613  while ((ec_name = encode->encode_class_iter()) != NULL) {
2614    fprintf(fp, "  {\n");
2615    // Output user-defined encoding
2616    user_defined           = true;
2617
2618    const char *ec_code    = NULL;
2619    const char *ec_rep_var = NULL;
2620    EncClass   *encoding   = _encode->encClass(ec_name);
2621    if (encoding == NULL) {
2622      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2623      abort();
2624    }
2625
2626    if (encode->current_encoding_num_args() != encoding->num_args()) {
2627      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2628                           inst._ident, encode->current_encoding_num_args(),
2629                           ec_name, encoding->num_args());
2630    }
2631
2632    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2633    encoding->_code.reset();
2634    encoding->_rep_vars.reset();
2635    // Process list of user-defined strings,
2636    // and occurrences of replacement variables.
2637    // Replacement Vars are pushed into a list and then output
2638    while ((ec_code = encoding->_code.iter()) != NULL) {
2639      if (!encoding->_code.is_signal(ec_code)) {
2640        // Emit pending code
2641        pending.emit();
2642        pending.clear();
2643        // Emit this code section
2644        fprintf(fp, "%s", ec_code);
2645      } else {
2646        // A replacement variable or one of its subfields
2647        // Obtain replacement variable from list
2648        ec_rep_var  = encoding->_rep_vars.iter();
2649        pending.add_rep_var(ec_rep_var);
2650      }
2651    }
2652    // Emit pending code
2653    pending.emit();
2654    pending.clear();
2655    fprintf(fp, "  }\n");
2656  } // end while instruction's encodings
2657
2658  // Check if user stated which encoding to user
2659  if ( user_defined == false ) {
2660    fprintf(fp, "  // User did not define which encode class to use.\n");
2661  }
2662
2663  // (3) and (4)
2664  fprintf(fp, "}\n\n");
2665}
2666
2667// defineEvalConstant ---------------------------------------------------------
2668void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2669  InsEncode* encode = inst._constant;
2670
2671  // (1)
2672  // Output instruction's emit prototype
2673  fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2674
2675  // For ideal jump nodes, add a jump-table entry.
2676  if (inst.is_ideal_jump()) {
2677    fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2678  }
2679
2680  // If user did not define an encode section,
2681  // provide stub that does not generate any machine code.
2682  if ((_encode == NULL) || (encode == NULL)) {
2683    fprintf(fp, "  // User did not define an encode section.\n");
2684    fprintf(fp, "}\n");
2685    return;
2686  }
2687
2688  // Output this instruction's encodings
2689  const char *ec_name;
2690  bool        user_defined = false;
2691  encode->reset();
2692  while ((ec_name = encode->encode_class_iter()) != NULL) {
2693    fprintf(fp, "  {\n");
2694    // Output user-defined encoding
2695    user_defined           = true;
2696
2697    const char *ec_code    = NULL;
2698    const char *ec_rep_var = NULL;
2699    EncClass   *encoding   = _encode->encClass(ec_name);
2700    if (encoding == NULL) {
2701      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2702      abort();
2703    }
2704
2705    if (encode->current_encoding_num_args() != encoding->num_args()) {
2706      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2707                           inst._ident, encode->current_encoding_num_args(),
2708                           ec_name, encoding->num_args());
2709    }
2710
2711    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2712    encoding->_code.reset();
2713    encoding->_rep_vars.reset();
2714    // Process list of user-defined strings,
2715    // and occurrences of replacement variables.
2716    // Replacement Vars are pushed into a list and then output
2717    while ((ec_code = encoding->_code.iter()) != NULL) {
2718      if (!encoding->_code.is_signal(ec_code)) {
2719        // Emit pending code
2720        pending.emit();
2721        pending.clear();
2722        // Emit this code section
2723        fprintf(fp, "%s", ec_code);
2724      } else {
2725        // A replacement variable or one of its subfields
2726        // Obtain replacement variable from list
2727        ec_rep_var  = encoding->_rep_vars.iter();
2728        pending.add_rep_var(ec_rep_var);
2729      }
2730    }
2731    // Emit pending code
2732    pending.emit();
2733    pending.clear();
2734    fprintf(fp, "  }\n");
2735  } // end while instruction's encodings
2736
2737  // Check if user stated which encoding to user
2738  if (user_defined == false) {
2739    fprintf(fp, "  // User did not define which encode class to use.\n");
2740  }
2741
2742  // (3) and (4)
2743  fprintf(fp, "}\n");
2744}
2745
2746// ---------------------------------------------------------------------------
2747//--------Utilities to build MachOper and MachNode derived Classes------------
2748// ---------------------------------------------------------------------------
2749
2750//------------------------------Utilities to build Operand Classes------------
2751static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2752  uint num_edges = oper.num_edges(globals);
2753  if( num_edges != 0 ) {
2754    // Method header
2755    fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2756            oper._ident);
2757
2758    // Assert that the index is in range.
2759    fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2760            num_edges);
2761
2762    // Figure out if all RegMasks are the same.
2763    const char* first_reg_class = oper.in_reg_class(0, globals);
2764    bool all_same = true;
2765    assert(first_reg_class != NULL, "did not find register mask");
2766
2767    for (uint index = 1; all_same && index < num_edges; index++) {
2768      const char* some_reg_class = oper.in_reg_class(index, globals);
2769      assert(some_reg_class != NULL, "did not find register mask");
2770      if (strcmp(first_reg_class, some_reg_class) != 0) {
2771        all_same = false;
2772      }
2773    }
2774
2775    if (all_same) {
2776      // Return the sole RegMask.
2777      if (strcmp(first_reg_class, "stack_slots") == 0) {
2778        fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2779      } else {
2780        const char* first_reg_class_to_upper = toUpper(first_reg_class);
2781        fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2782        delete[] first_reg_class_to_upper;
2783      }
2784    } else {
2785      // Build a switch statement to return the desired mask.
2786      fprintf(fp,"  switch (index) {\n");
2787
2788      for (uint index = 0; index < num_edges; index++) {
2789        const char *reg_class = oper.in_reg_class(index, globals);
2790        assert(reg_class != NULL, "did not find register mask");
2791        if( !strcmp(reg_class, "stack_slots") ) {
2792          fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2793        } else {
2794          const char* reg_class_to_upper = toUpper(reg_class);
2795          fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2796          delete[] reg_class_to_upper;
2797        }
2798      }
2799      fprintf(fp,"  }\n");
2800      fprintf(fp,"  ShouldNotReachHere();\n");
2801      fprintf(fp,"  return NULL;\n");
2802    }
2803
2804    // Method close
2805    fprintf(fp, "}\n\n");
2806  }
2807}
2808
2809// generate code to create a clone for a class derived from MachOper
2810//
2811// (0)  MachOper  *MachOperXOper::clone() const {
2812// (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2813// (2)  }
2814//
2815static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2816  fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2817  // Check for constants that need to be copied over
2818  const int  num_consts    = oper.num_consts(globalNames);
2819  const bool is_ideal_bool = oper.is_ideal_bool();
2820  if( (num_consts > 0) ) {
2821    fprintf(fp,"  return new %sOper(", oper._ident);
2822    // generate parameters for constants
2823    int i = 0;
2824    fprintf(fp,"_c%d", i);
2825    for( i = 1; i < num_consts; ++i) {
2826      fprintf(fp,", _c%d", i);
2827    }
2828    // finish line (1)
2829    fprintf(fp,");\n");
2830  }
2831  else {
2832    assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2833    fprintf(fp,"  return new %sOper();\n", oper._ident);
2834  }
2835  // finish method
2836  fprintf(fp,"}\n");
2837}
2838
2839// Helper functions for bug 4796752, abstracted with minimal modification
2840// from define_oper_interface()
2841OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2842  OperandForm *op = NULL;
2843  // Check for replacement variable
2844  if( *encoding == '$' ) {
2845    // Replacement variable
2846    const char *rep_var = encoding + 1;
2847    // Lookup replacement variable, rep_var, in operand's component list
2848    const Component *comp = oper._components.search(rep_var);
2849    assert( comp != NULL, "Replacement variable not found in components");
2850    // Lookup operand form for replacement variable's type
2851    const char      *type = comp->_type;
2852    Form            *form = (Form*)globals[type];
2853    assert( form != NULL, "Replacement variable's type not found");
2854    op = form->is_operand();
2855    assert( op, "Attempting to emit a non-register or non-constant");
2856  }
2857
2858  return op;
2859}
2860
2861int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2862  int idx = -1;
2863  // Check for replacement variable
2864  if( *encoding == '$' ) {
2865    // Replacement variable
2866    const char *rep_var = encoding + 1;
2867    // Lookup replacement variable, rep_var, in operand's component list
2868    const Component *comp = oper._components.search(rep_var);
2869    assert( comp != NULL, "Replacement variable not found in components");
2870    // Lookup operand form for replacement variable's type
2871    const char      *type = comp->_type;
2872    Form            *form = (Form*)globals[type];
2873    assert( form != NULL, "Replacement variable's type not found");
2874    OperandForm *op = form->is_operand();
2875    assert( op, "Attempting to emit a non-register or non-constant");
2876    // Check that this is a constant and find constant's index:
2877    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2878      idx  = oper.constant_position(globals, comp);
2879    }
2880  }
2881
2882  return idx;
2883}
2884
2885bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2886  bool is_regI = false;
2887
2888  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2889  if( op != NULL ) {
2890    // Check that this is a register
2891    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2892      // Register
2893      const char* ideal  = op->ideal_type(globals);
2894      is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2895    }
2896  }
2897
2898  return is_regI;
2899}
2900
2901bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2902  bool is_conP = false;
2903
2904  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2905  if( op != NULL ) {
2906    // Check that this is a constant pointer
2907    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2908      // Constant
2909      Form::DataType dtype = op->is_base_constant(globals);
2910      is_conP = (dtype == Form::idealP);
2911    }
2912  }
2913
2914  return is_conP;
2915}
2916
2917
2918// Define a MachOper interface methods
2919void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2920                                     const char *name, const char *encoding) {
2921  bool emit_position = false;
2922  int position = -1;
2923
2924  fprintf(fp,"  virtual int            %s", name);
2925  // Generate access method for base, index, scale, disp, ...
2926  if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2927    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2928    emit_position = true;
2929  } else if ( (strcmp(name,"disp") == 0) ) {
2930    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2931  } else {
2932    fprintf(fp, "() const {\n");
2933  }
2934
2935  // Check for hexadecimal value OR replacement variable
2936  if( *encoding == '$' ) {
2937    // Replacement variable
2938    const char *rep_var = encoding + 1;
2939    fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2940    // Lookup replacement variable, rep_var, in operand's component list
2941    const Component *comp = oper._components.search(rep_var);
2942    assert( comp != NULL, "Replacement variable not found in components");
2943    // Lookup operand form for replacement variable's type
2944    const char      *type = comp->_type;
2945    Form            *form = (Form*)globals[type];
2946    assert( form != NULL, "Replacement variable's type not found");
2947    OperandForm *op = form->is_operand();
2948    assert( op, "Attempting to emit a non-register or non-constant");
2949    // Check that this is a register or a constant and generate code:
2950    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2951      // Register
2952      int idx_offset = oper.register_position( globals, rep_var);
2953      position = idx_offset;
2954      fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2955      if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2956      fprintf(fp,"));\n");
2957    } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2958      // StackSlot for an sReg comes either from input node or from self, when idx==0
2959      fprintf(fp,"    if( idx != 0 ) {\n");
2960      fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2961      fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2962      fprintf(fp,"    }\n");
2963      fprintf(fp,"    // Access stack offset (register number) from myself\n");
2964      fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2965    } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2966      // Constant
2967      // Check which constant this name maps to: _c0, _c1, ..., _cn
2968      const int idx = oper.constant_position(globals, comp);
2969      assert( idx != -1, "Constant component not found in operand");
2970      // Output code for this constant, type dependent.
2971      fprintf(fp,"    return (int)" );
2972      oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2973      fprintf(fp,";\n");
2974    } else {
2975      assert( false, "Attempting to emit a non-register or non-constant");
2976    }
2977  }
2978  else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2979    // Hex value
2980    fprintf(fp,"    return %s;\n", encoding);
2981  } else {
2982    globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2983                         oper._ident, encoding, name);
2984    assert( false, "Do not support octal or decimal encode constants");
2985  }
2986  fprintf(fp,"  }\n");
2987
2988  if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2989    fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2990    MemInterface *mem_interface = oper._interface->is_MemInterface();
2991    const char *base = mem_interface->_base;
2992    const char *disp = mem_interface->_disp;
2993    if( emit_position && (strcmp(name,"base") == 0)
2994        && base != NULL && is_regI(base, oper, globals)
2995        && disp != NULL && is_conP(disp, oper, globals) ) {
2996      // Found a memory access using a constant pointer for a displacement
2997      // and a base register containing an integer offset.
2998      // In this case the base and disp are reversed with respect to what
2999      // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3000      // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3001      // to correctly compute the access type for alias analysis.
3002      //
3003      // See BugId 4796752, operand indOffset32X in i486.ad
3004      int idx = rep_var_to_constant_index(disp, oper, globals);
3005      fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3006    }
3007  }
3008}
3009
3010//
3011// Construct the method to copy _idx, inputs and operands to new node.
3012static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3013  fprintf(fp_cpp, "\n");
3014  fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3015  fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3016  if( !used ) {
3017    fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3018    fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3019    fprintf(fp_cpp, "}\n");
3020  } else {
3021    // New node must use same node index for access through allocator's tables
3022    fprintf(fp_cpp, "  // New node must use same node index\n");
3023    fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3024    // Copy machine-independent inputs
3025    fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3026    fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3027    fprintf(fp_cpp, "    node->add_req(in(j));\n");
3028    fprintf(fp_cpp, "  }\n");
3029    // Copy machine operands to new MachNode
3030    fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3031    fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3032    fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3033    fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3034    fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3035    fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3036    fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3037    fprintf(fp_cpp, "  }\n");
3038    fprintf(fp_cpp, "}\n");
3039  }
3040  fprintf(fp_cpp, "\n");
3041}
3042
3043//------------------------------defineClasses----------------------------------
3044// Define members of MachNode and MachOper classes based on
3045// operand and instruction lists
3046void ArchDesc::defineClasses(FILE *fp) {
3047
3048  // Define the contents of an array containing the machine register names
3049  defineRegNames(fp, _register);
3050  // Define an array containing the machine register encoding values
3051  defineRegEncodes(fp, _register);
3052  // Generate an enumeration of user-defined register classes
3053  // and a list of register masks, one for each class.
3054  // Only define the RegMask value objects in the expand file.
3055  // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3056  declare_register_masks(_HPP_file._fp);
3057  // build_register_masks(fp);
3058  build_register_masks(_CPP_EXPAND_file._fp);
3059  // Define the pipe_classes
3060  build_pipe_classes(_CPP_PIPELINE_file._fp);
3061
3062  // Generate Machine Classes for each operand defined in AD file
3063  fprintf(fp,"\n");
3064  fprintf(fp,"\n");
3065  fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3066  // Iterate through all operands
3067  _operands.reset();
3068  OperandForm *oper;
3069  for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3070    // Ensure this is a machine-world instruction
3071    if ( oper->ideal_only() ) continue;
3072    // !!!!!
3073    // The declaration of labelOper is in machine-independent file: machnode
3074    if ( strcmp(oper->_ident,"label") == 0 ) {
3075      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3076
3077      fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3078      fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3079      fprintf(fp,"}\n");
3080
3081      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3082              oper->_ident, machOperEnum(oper->_ident));
3083      // // Currently all XXXOper::Hash() methods are identical (990820)
3084      // define_hash(fp, oper->_ident);
3085      // // Currently all XXXOper::Cmp() methods are identical (990820)
3086      // define_cmp(fp, oper->_ident);
3087      fprintf(fp,"\n");
3088
3089      continue;
3090    }
3091
3092    // The declaration of methodOper is in machine-independent file: machnode
3093    if ( strcmp(oper->_ident,"method") == 0 ) {
3094      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3095
3096      fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3097      fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3098      fprintf(fp,"}\n");
3099
3100      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3101              oper->_ident, machOperEnum(oper->_ident));
3102      // // Currently all XXXOper::Hash() methods are identical (990820)
3103      // define_hash(fp, oper->_ident);
3104      // // Currently all XXXOper::Cmp() methods are identical (990820)
3105      // define_cmp(fp, oper->_ident);
3106      fprintf(fp,"\n");
3107
3108      continue;
3109    }
3110
3111    defineIn_RegMask(fp, _globalNames, *oper);
3112    defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3113    // // Currently all XXXOper::Hash() methods are identical (990820)
3114    // define_hash(fp, oper->_ident);
3115    // // Currently all XXXOper::Cmp() methods are identical (990820)
3116    // define_cmp(fp, oper->_ident);
3117
3118    // side-call to generate output that used to be in the header file:
3119    extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3120    gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3121
3122  }
3123
3124
3125  // Generate Machine Classes for each instruction defined in AD file
3126  fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3127  // Output the definitions for out_RegMask() // & kill_RegMask()
3128  _instructions.reset();
3129  InstructForm *instr;
3130  MachNodeForm *machnode;
3131  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3132    // Ensure this is a machine-world instruction
3133    if ( instr->ideal_only() ) continue;
3134
3135    defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3136  }
3137
3138  bool used = false;
3139  // Output the definitions for expand rules & peephole rules
3140  _instructions.reset();
3141  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3142    // Ensure this is a machine-world instruction
3143    if ( instr->ideal_only() ) continue;
3144    // If there are multiple defs/kills, or an explicit expand rule, build rule
3145    if( instr->expands() || instr->needs_projections() ||
3146        instr->has_temps() ||
3147        instr->is_mach_constant() ||
3148        instr->needs_constant_base() ||
3149        instr->_matrule != NULL &&
3150        instr->num_opnds() != instr->num_unique_opnds() )
3151      defineExpand(_CPP_EXPAND_file._fp, instr);
3152    // If there is an explicit peephole rule, build it
3153    if ( instr->peepholes() )
3154      definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3155
3156    // Output code to convert to the cisc version, if applicable
3157    used |= instr->define_cisc_version(*this, fp);
3158
3159    // Output code to convert to the short branch version, if applicable
3160    used |= instr->define_short_branch_methods(*this, fp);
3161  }
3162
3163  // Construct the method called by cisc_version() to copy inputs and operands.
3164  define_fill_new_machnode(used, fp);
3165
3166  // Output the definitions for labels
3167  _instructions.reset();
3168  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3169    // Ensure this is a machine-world instruction
3170    if ( instr->ideal_only() ) continue;
3171
3172    // Access the fields for operand Label
3173    int label_position = instr->label_position();
3174    if( label_position != -1 ) {
3175      // Set the label
3176      fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3177      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3178              label_position );
3179      fprintf(fp,"  oper->_label     = label;\n");
3180      fprintf(fp,"  oper->_block_num = block_num;\n");
3181      fprintf(fp,"}\n");
3182      // Save the label
3183      fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3184      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3185              label_position );
3186      fprintf(fp,"  *label = oper->_label;\n");
3187      fprintf(fp,"  *block_num = oper->_block_num;\n");
3188      fprintf(fp,"}\n");
3189    }
3190  }
3191
3192  // Output the definitions for methods
3193  _instructions.reset();
3194  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3195    // Ensure this is a machine-world instruction
3196    if ( instr->ideal_only() ) continue;
3197
3198    // Access the fields for operand Label
3199    int method_position = instr->method_position();
3200    if( method_position != -1 ) {
3201      // Access the method's address
3202      fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3203      fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3204              method_position );
3205      fprintf(fp,"}\n");
3206      fprintf(fp,"\n");
3207    }
3208  }
3209
3210  // Define this instruction's number of relocation entries, base is '0'
3211  _instructions.reset();
3212  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3213    // Output the definition for number of relocation entries
3214    uint reloc_size = instr->reloc(_globalNames);
3215    if ( reloc_size != 0 ) {
3216      fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3217      fprintf(fp,"  return %d;\n", reloc_size);
3218      fprintf(fp,"}\n");
3219      fprintf(fp,"\n");
3220    }
3221  }
3222  fprintf(fp,"\n");
3223
3224  // Output the definitions for code generation
3225  //
3226  // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3227  //   // ...  encoding defined by user
3228  //   return ptr;
3229  // }
3230  //
3231  _instructions.reset();
3232  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3233    // Ensure this is a machine-world instruction
3234    if ( instr->ideal_only() ) continue;
3235
3236    if (instr->_insencode) {
3237      if (instr->postalloc_expands()) {
3238        // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3239        // from code sections in ad file that is dumped to fp.
3240        define_postalloc_expand(fp, *instr);
3241      } else {
3242        defineEmit(fp, *instr);
3243      }
3244    }
3245    if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3246    if (instr->_size)              defineSize        (fp, *instr);
3247
3248    // side-call to generate output that used to be in the header file:
3249    extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3250    gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3251  }
3252
3253  // Output the definitions for alias analysis
3254  _instructions.reset();
3255  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3256    // Ensure this is a machine-world instruction
3257    if ( instr->ideal_only() ) continue;
3258
3259    // Analyze machine instructions that either USE or DEF memory.
3260    int memory_operand = instr->memory_operand(_globalNames);
3261    // Some guys kill all of memory
3262    if ( instr->is_wide_memory_kill(_globalNames) ) {
3263      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3264    }
3265
3266    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3267      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3268        fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3269        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3270      } else {
3271        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3272  }
3273    }
3274  }
3275
3276  // Get the length of the longest identifier
3277  int max_ident_len = 0;
3278  _instructions.reset();
3279
3280  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3281    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3282      int ident_len = (int)strlen(instr->_ident);
3283      if( max_ident_len < ident_len )
3284        max_ident_len = ident_len;
3285    }
3286  }
3287
3288  // Emit specifically for Node(s)
3289  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3290    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3291  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3292    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3293  fprintf(_CPP_PIPELINE_file._fp, "\n");
3294
3295  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3296    max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3297  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3298    max_ident_len, "MachNode");
3299  fprintf(_CPP_PIPELINE_file._fp, "\n");
3300
3301  // Output the definitions for machine node specific pipeline data
3302  _machnodes.reset();
3303
3304  for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3305    fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3306      machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3307  }
3308
3309  fprintf(_CPP_PIPELINE_file._fp, "\n");
3310
3311  // Output the definitions for instruction pipeline static data references
3312  _instructions.reset();
3313
3314  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3315    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3316      fprintf(_CPP_PIPELINE_file._fp, "\n");
3317      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3318        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3319      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3320        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3321    }
3322  }
3323}
3324
3325
3326// -------------------------------- maps ------------------------------------
3327
3328// Information needed to generate the ReduceOp mapping for the DFA
3329class OutputReduceOp : public OutputMap {
3330public:
3331  OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3332    : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3333
3334  void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3335  void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3336  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3337                       OutputMap::closing();
3338  }
3339  void map(OpClassForm &opc)  {
3340    const char *reduce = opc._ident;
3341    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3342    else          fprintf(_cpp, "  0");
3343  }
3344  void map(OperandForm &oper) {
3345    // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3346    const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3347    // operand stackSlot does not have a match rule, but produces a stackSlot
3348    if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3349    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3350    else          fprintf(_cpp, "  0");
3351  }
3352  void map(InstructForm &inst) {
3353    const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3354    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3355    else          fprintf(_cpp, "  0");
3356  }
3357  void map(char         *reduce) {
3358    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3359    else          fprintf(_cpp, "  0");
3360  }
3361};
3362
3363// Information needed to generate the LeftOp mapping for the DFA
3364class OutputLeftOp : public OutputMap {
3365public:
3366  OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3367    : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3368
3369  void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3370  void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3371  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3372                       OutputMap::closing();
3373  }
3374  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3375  void map(OperandForm &oper) {
3376    const char *reduce = oper.reduce_left(_globals);
3377    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3378    else          fprintf(_cpp, "  0");
3379  }
3380  void map(char        *name) {
3381    const char *reduce = _AD.reduceLeft(name);
3382    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3383    else          fprintf(_cpp, "  0");
3384  }
3385  void map(InstructForm &inst) {
3386    const char *reduce = inst.reduce_left(_globals);
3387    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3388    else          fprintf(_cpp, "  0");
3389  }
3390};
3391
3392
3393// Information needed to generate the RightOp mapping for the DFA
3394class OutputRightOp : public OutputMap {
3395public:
3396  OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3397    : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3398
3399  void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3400  void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3401  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3402                       OutputMap::closing();
3403  }
3404  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3405  void map(OperandForm &oper) {
3406    const char *reduce = oper.reduce_right(_globals);
3407    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3408    else          fprintf(_cpp, "  0");
3409  }
3410  void map(char        *name) {
3411    const char *reduce = _AD.reduceRight(name);
3412    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3413    else          fprintf(_cpp, "  0");
3414  }
3415  void map(InstructForm &inst) {
3416    const char *reduce = inst.reduce_right(_globals);
3417    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3418    else          fprintf(_cpp, "  0");
3419  }
3420};
3421
3422
3423// Information needed to generate the Rule names for the DFA
3424class OutputRuleName : public OutputMap {
3425public:
3426  OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3427    : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3428
3429  void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3430  void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3431  void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3432                       OutputMap::closing();
3433  }
3434  void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3435  void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3436  void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3437  void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3438};
3439
3440
3441// Information needed to generate the swallowed mapping for the DFA
3442class OutputSwallowed : public OutputMap {
3443public:
3444  OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3445    : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3446
3447  void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3448  void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3449  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3450                       OutputMap::closing();
3451  }
3452  void map(OperandForm &oper) { // Generate the entry for this opcode
3453    const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3454    fprintf(_cpp, "  %s", swallowed);
3455  }
3456  void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3457  void map(char        *name) { fprintf(_cpp, "  false"); }
3458  void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3459};
3460
3461
3462// Information needed to generate the decision array for instruction chain rule
3463class OutputInstChainRule : public OutputMap {
3464public:
3465  OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3466    : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3467
3468  void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3469  void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3470  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3471                       OutputMap::closing();
3472  }
3473  void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3474  void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3475  void map(char        *name)  { fprintf(_cpp, "  false"); }
3476  void map(InstructForm &inst) { // Check for simple chain rule
3477    const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3478    fprintf(_cpp, "  %s", chain);
3479  }
3480};
3481
3482
3483//---------------------------build_map------------------------------------
3484// Build  mapping from enumeration for densely packed operands
3485// TO result and child types.
3486void ArchDesc::build_map(OutputMap &map) {
3487  FILE         *fp_hpp = map.decl_file();
3488  FILE         *fp_cpp = map.def_file();
3489  int           idx    = 0;
3490  OperandForm  *op;
3491  OpClassForm  *opc;
3492  InstructForm *inst;
3493
3494  // Construct this mapping
3495  map.declaration();
3496  fprintf(fp_cpp,"\n");
3497  map.definition();
3498
3499  // Output the mapping for operands
3500  map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3501  _operands.reset();
3502  for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3503    // Ensure this is a machine-world instruction
3504    if ( op->ideal_only() )  continue;
3505
3506    // Generate the entry for this opcode
3507    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3508    ++idx;
3509  };
3510  fprintf(fp_cpp, "  // last operand\n");
3511
3512  // Place all user-defined operand classes into the mapping
3513  map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3514  _opclass.reset();
3515  for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3516    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3517    ++idx;
3518  };
3519  fprintf(fp_cpp, "  // last operand class\n");
3520
3521  // Place all internally defined operands into the mapping
3522  map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3523  _internalOpNames.reset();
3524  char *name = NULL;
3525  for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3526    fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3527    ++idx;
3528  };
3529  fprintf(fp_cpp, "  // last internally defined operand\n");
3530
3531  // Place all user-defined instructions into the mapping
3532  if( map.do_instructions() ) {
3533    map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3534    // Output all simple instruction chain rules first
3535    map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3536    {
3537      _instructions.reset();
3538      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3539        // Ensure this is a machine-world instruction
3540        if ( inst->ideal_only() )  continue;
3541        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3542        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3543
3544        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3545        ++idx;
3546      };
3547      map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3548      _instructions.reset();
3549      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3550        // Ensure this is a machine-world instruction
3551        if ( inst->ideal_only() )  continue;
3552        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3553        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3554
3555        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3556        ++idx;
3557      };
3558      map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3559    }
3560    // Output all instructions that are NOT simple chain rules
3561    {
3562      _instructions.reset();
3563      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3564        // Ensure this is a machine-world instruction
3565        if ( inst->ideal_only() )  continue;
3566        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3567        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3568
3569        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3570        ++idx;
3571      };
3572      map.record_position(OutputMap::END_REMATERIALIZE, idx );
3573      _instructions.reset();
3574      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3575        // Ensure this is a machine-world instruction
3576        if ( inst->ideal_only() )  continue;
3577        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3578        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3579
3580        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3581        ++idx;
3582      };
3583    }
3584    fprintf(fp_cpp, "  // last instruction\n");
3585    map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3586  }
3587  // Finish defining table
3588  map.closing();
3589};
3590
3591
3592// Helper function for buildReduceMaps
3593char reg_save_policy(const char *calling_convention) {
3594  char callconv;
3595
3596  if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3597  else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3598  else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3599  else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3600  else                                         callconv = 'Z';
3601
3602  return callconv;
3603}
3604
3605void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3606  fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3607          _needs_clone_jvms ? "true" : "false");
3608}
3609
3610//---------------------------generate_assertion_checks-------------------
3611void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3612  fprintf(fp_cpp, "\n");
3613
3614  fprintf(fp_cpp, "#ifndef PRODUCT\n");
3615  fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3616  globalDefs().print_asserts(fp_cpp);
3617  fprintf(fp_cpp, "}\n");
3618  fprintf(fp_cpp, "#endif\n");
3619  fprintf(fp_cpp, "\n");
3620}
3621
3622//---------------------------addSourceBlocks-----------------------------
3623void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3624  if (_source.count() > 0)
3625    _source.output(fp_cpp);
3626
3627  generate_adlc_verification(fp_cpp);
3628}
3629//---------------------------addHeaderBlocks-----------------------------
3630void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3631  if (_header.count() > 0)
3632    _header.output(fp_hpp);
3633}
3634//-------------------------addPreHeaderBlocks----------------------------
3635void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3636  // Output #defines from definition block
3637  globalDefs().print_defines(fp_hpp);
3638
3639  if (_pre_header.count() > 0)
3640    _pre_header.output(fp_hpp);
3641}
3642
3643//---------------------------buildReduceMaps-----------------------------
3644// Build  mapping from enumeration for densely packed operands
3645// TO result and child types.
3646void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3647  RegDef       *rdef;
3648  RegDef       *next;
3649
3650  // The emit bodies currently require functions defined in the source block.
3651
3652  // Build external declarations for mappings
3653  fprintf(fp_hpp, "\n");
3654  fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3655  fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3656  fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3657  fprintf(fp_hpp, "\n");
3658
3659  // Construct Save-Policy array
3660  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3661  fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3662  _register->reset_RegDefs();
3663  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3664    next              = _register->iter_RegDefs();
3665    char policy       = reg_save_policy(rdef->_callconv);
3666    const char *comma = (next != NULL) ? "," : " // no trailing comma";
3667    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3668  }
3669  fprintf(fp_cpp, "};\n\n");
3670
3671  // Construct Native Save-Policy array
3672  fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3673  fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3674  _register->reset_RegDefs();
3675  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3676    next        = _register->iter_RegDefs();
3677    char policy = reg_save_policy(rdef->_c_conv);
3678    const char *comma = (next != NULL) ? "," : " // no trailing comma";
3679    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3680  }
3681  fprintf(fp_cpp, "};\n\n");
3682
3683  // Construct Register Save Type array
3684  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3685  fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3686  _register->reset_RegDefs();
3687  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3688    next = _register->iter_RegDefs();
3689    const char *comma = (next != NULL) ? "," : " // no trailing comma";
3690    fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3691  }
3692  fprintf(fp_cpp, "};\n\n");
3693
3694  // Construct the table for reduceOp
3695  OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3696  build_map(output_reduce_op);
3697  // Construct the table for leftOp
3698  OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3699  build_map(output_left_op);
3700  // Construct the table for rightOp
3701  OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3702  build_map(output_right_op);
3703  // Construct the table of rule names
3704  OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3705  build_map(output_rule_name);
3706  // Construct the boolean table for subsumed operands
3707  OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3708  build_map(output_swallowed);
3709  // // // Preserve in case we decide to use this table instead of another
3710  //// Construct the boolean table for instruction chain rules
3711  //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3712  //build_map(output_inst_chain);
3713
3714}
3715
3716
3717//---------------------------buildMachOperGenerator---------------------------
3718
3719// Recurse through match tree, building path through corresponding state tree,
3720// Until we reach the constant we are looking for.
3721static void path_to_constant(FILE *fp, FormDict &globals,
3722                             MatchNode *mnode, uint idx) {
3723  if ( ! mnode) return;
3724
3725  unsigned    position = 0;
3726  const char *result   = NULL;
3727  const char *name     = NULL;
3728  const char *optype   = NULL;
3729
3730  // Base Case: access constant in ideal node linked to current state node
3731  // Each type of constant has its own access function
3732  if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3733       && mnode->base_operand(position, globals, result, name, optype) ) {
3734    if (         strcmp(optype,"ConI") == 0 ) {
3735      fprintf(fp, "_leaf->get_int()");
3736    } else if ( (strcmp(optype,"ConP") == 0) ) {
3737      fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3738    } else if ( (strcmp(optype,"ConN") == 0) ) {
3739      fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3740    } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3741      fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3742    } else if ( (strcmp(optype,"ConF") == 0) ) {
3743      fprintf(fp, "_leaf->getf()");
3744    } else if ( (strcmp(optype,"ConD") == 0) ) {
3745      fprintf(fp, "_leaf->getd()");
3746    } else if ( (strcmp(optype,"ConL") == 0) ) {
3747      fprintf(fp, "_leaf->get_long()");
3748    } else if ( (strcmp(optype,"Con")==0) ) {
3749      // !!!!! - Update if adding a machine-independent constant type
3750      fprintf(fp, "_leaf->get_int()");
3751      assert( false, "Unsupported constant type, pointer or indefinite");
3752    } else if ( (strcmp(optype,"Bool") == 0) ) {
3753      fprintf(fp, "_leaf->as_Bool()->_test._test");
3754    } else {
3755      assert( false, "Unsupported constant type");
3756    }
3757    return;
3758  }
3759
3760  // If constant is in left child, build path and recurse
3761  uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3762  uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3763  if ( (mnode->_lChild) && (lConsts > idx) ) {
3764    fprintf(fp, "_kids[0]->");
3765    path_to_constant(fp, globals, mnode->_lChild, idx);
3766    return;
3767  }
3768  // If constant is in right child, build path and recurse
3769  if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3770    idx = idx - lConsts;
3771    fprintf(fp, "_kids[1]->");
3772    path_to_constant(fp, globals, mnode->_rChild, idx);
3773    return;
3774  }
3775  assert( false, "ShouldNotReachHere()");
3776}
3777
3778// Generate code that is executed when generating a specific Machine Operand
3779static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3780                            OperandForm &op) {
3781  const char *opName         = op._ident;
3782  const char *opEnumName     = AD.machOperEnum(opName);
3783  uint        num_consts     = op.num_consts(globalNames);
3784
3785  // Generate the case statement for this opcode
3786  fprintf(fp, "  case %s:", opEnumName);
3787  fprintf(fp, "\n    return new %sOper(", opName);
3788  // Access parameters for constructor from the stat object
3789  //
3790  // Build access to condition code value
3791  if ( (num_consts > 0) ) {
3792    uint i = 0;
3793    path_to_constant(fp, globalNames, op._matrule, i);
3794    for ( i = 1; i < num_consts; ++i ) {
3795      fprintf(fp, ", ");
3796      path_to_constant(fp, globalNames, op._matrule, i);
3797    }
3798  }
3799  fprintf(fp, " );\n");
3800}
3801
3802
3803// Build switch to invoke "new" MachNode or MachOper
3804void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3805  int idx = 0;
3806
3807  // Build switch to invoke 'new' for a specific MachOper
3808  fprintf(fp_cpp, "\n");
3809  fprintf(fp_cpp, "\n");
3810  fprintf(fp_cpp,
3811          "//------------------------- MachOper Generator ---------------\n");
3812  fprintf(fp_cpp,
3813          "// A switch statement on the dense-packed user-defined type system\n"
3814          "// that invokes 'new' on the corresponding class constructor.\n");
3815  fprintf(fp_cpp, "\n");
3816  fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3817  fprintf(fp_cpp, "(int opcode)");
3818  fprintf(fp_cpp, "{\n");
3819  fprintf(fp_cpp, "\n");
3820  fprintf(fp_cpp, "  switch(opcode) {\n");
3821
3822  // Place all user-defined operands into the mapping
3823  _operands.reset();
3824  int  opIndex = 0;
3825  OperandForm *op;
3826  for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3827    // Ensure this is a machine-world instruction
3828    if ( op->ideal_only() )  continue;
3829
3830    genMachOperCase(fp_cpp, _globalNames, *this, *op);
3831  };
3832
3833  // Do not iterate over operand classes for the  operand generator!!!
3834
3835  // Place all internal operands into the mapping
3836  _internalOpNames.reset();
3837  const char *iopn;
3838  for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3839    const char *opEnumName = machOperEnum(iopn);
3840    // Generate the case statement for this opcode
3841    fprintf(fp_cpp, "  case %s:", opEnumName);
3842    fprintf(fp_cpp, "    return NULL;\n");
3843  };
3844
3845  // Generate the default case for switch(opcode)
3846  fprintf(fp_cpp, "  \n");
3847  fprintf(fp_cpp, "  default:\n");
3848  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3849  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3850  fprintf(fp_cpp, "    break;\n");
3851  fprintf(fp_cpp, "  }\n");
3852
3853  // Generate the closing for method Matcher::MachOperGenerator
3854  fprintf(fp_cpp, "  return NULL;\n");
3855  fprintf(fp_cpp, "};\n");
3856}
3857
3858
3859//---------------------------buildMachNode-------------------------------------
3860// Build a new MachNode, for MachNodeGenerator or cisc-spilling
3861void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3862  const char *opType  = NULL;
3863  const char *opClass = inst->_ident;
3864
3865  // Create the MachNode object
3866  fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3867
3868  if ( (inst->num_post_match_opnds() != 0) ) {
3869    // Instruction that contains operands which are not in match rule.
3870    //
3871    // Check if the first post-match component may be an interesting def
3872    bool           dont_care = false;
3873    ComponentList &comp_list = inst->_components;
3874    Component     *comp      = NULL;
3875    comp_list.reset();
3876    if ( comp_list.match_iter() != NULL )    dont_care = true;
3877
3878    // Insert operands that are not in match-rule.
3879    // Only insert a DEF if the do_care flag is set
3880    comp_list.reset();
3881    while ( comp = comp_list.post_match_iter() ) {
3882      // Check if we don't care about DEFs or KILLs that are not USEs
3883      if ( dont_care && (! comp->isa(Component::USE)) ) {
3884        continue;
3885      }
3886      dont_care = true;
3887      // For each operand not in the match rule, call MachOperGenerator
3888      // with the enum for the opcode that needs to be built.
3889      ComponentList clist = inst->_components;
3890      int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3891      const char *opcode = machOperEnum(comp->_type);
3892      fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3893      fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3894      }
3895  }
3896  else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3897    // An instruction that chains from a constant!
3898    // In this case, we need to subsume the constant into the node
3899    // at operand position, oper_input_base().
3900    //
3901    // Fill in the constant
3902    fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3903            inst->oper_input_base(_globalNames));
3904    // #####
3905    // Check for multiple constants and then fill them in.
3906    // Just like MachOperGenerator
3907    const char *opName = inst->_matrule->_rChild->_opType;
3908    fprintf(fp_cpp, "new %sOper(", opName);
3909    // Grab operand form
3910    OperandForm *op = (_globalNames[opName])->is_operand();
3911    // Look up the number of constants
3912    uint num_consts = op->num_consts(_globalNames);
3913    if ( (num_consts > 0) ) {
3914      uint i = 0;
3915      path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3916      for ( i = 1; i < num_consts; ++i ) {
3917        fprintf(fp_cpp, ", ");
3918        path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3919      }
3920    }
3921    fprintf(fp_cpp, " );\n");
3922    // #####
3923  }
3924
3925  // Fill in the bottom_type where requested
3926  if (inst->captures_bottom_type(_globalNames)) {
3927    if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3928      fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3929    }
3930  }
3931  if( inst->is_ideal_if() ) {
3932    fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3933    fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3934  }
3935  if( inst->is_ideal_fastlock() ) {
3936    fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3937    fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3938    fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3939  }
3940
3941}
3942
3943//---------------------------declare_cisc_version------------------------------
3944// Build CISC version of this instruction
3945void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3946  if( AD.can_cisc_spill() ) {
3947    InstructForm *inst_cisc = cisc_spill_alternate();
3948    if (inst_cisc != NULL) {
3949      fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3950      fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3951      fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3952      fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3953    }
3954  }
3955}
3956
3957//---------------------------define_cisc_version-------------------------------
3958// Build CISC version of this instruction
3959bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3960  InstructForm *inst_cisc = this->cisc_spill_alternate();
3961  if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3962    const char   *name      = inst_cisc->_ident;
3963    assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3964    OperandForm *cisc_oper = AD.cisc_spill_operand();
3965    assert( cisc_oper != NULL, "insanity check");
3966    const char *cisc_oper_name  = cisc_oper->_ident;
3967    assert( cisc_oper_name != NULL, "insanity check");
3968    //
3969    // Set the correct reg_mask_or_stack for the cisc operand
3970    fprintf(fp_cpp, "\n");
3971    fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3972    // Lookup the correct reg_mask_or_stack
3973    const char *reg_mask_name = cisc_reg_mask_name();
3974    fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3975    fprintf(fp_cpp, "}\n");
3976    //
3977    // Construct CISC version of this instruction
3978    fprintf(fp_cpp, "\n");
3979    fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3980    fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3981    // Create the MachNode object
3982    fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
3983    // Fill in the bottom_type where requested
3984    if ( this->captures_bottom_type(AD.globalNames()) ) {
3985      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3986    }
3987
3988    uint cur_num_opnds = num_opnds();
3989    if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3990      fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3991    }
3992
3993    fprintf(fp_cpp, "\n");
3994    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3995    fprintf(fp_cpp, "  fill_new_machnode(node);\n");
3996    // Construct operand to access [stack_pointer + offset]
3997    fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3998    fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
3999    fprintf(fp_cpp, "\n");
4000
4001    // Return result and exit scope
4002    fprintf(fp_cpp, "  return node;\n");
4003    fprintf(fp_cpp, "}\n");
4004    fprintf(fp_cpp, "\n");
4005    return true;
4006  }
4007  return false;
4008}
4009
4010//---------------------------declare_short_branch_methods----------------------
4011// Build prototypes for short branch methods
4012void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4013  if (has_short_branch_form()) {
4014    fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4015  }
4016}
4017
4018//---------------------------define_short_branch_methods-----------------------
4019// Build definitions for short branch methods
4020bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4021  if (has_short_branch_form()) {
4022    InstructForm *short_branch = short_branch_form();
4023    const char   *name         = short_branch->_ident;
4024
4025    // Construct short_branch_version() method.
4026    fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4027    fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4028    // Create the MachNode object
4029    fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4030    if( is_ideal_if() ) {
4031      fprintf(fp_cpp, "  node->_prob = _prob;\n");
4032      fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4033    }
4034    // Fill in the bottom_type where requested
4035    if ( this->captures_bottom_type(AD.globalNames()) ) {
4036      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4037    }
4038
4039    fprintf(fp_cpp, "\n");
4040    // Short branch version must use same node index for access
4041    // through allocator's tables
4042    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4043    fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4044
4045    // Return result and exit scope
4046    fprintf(fp_cpp, "  return node;\n");
4047    fprintf(fp_cpp, "}\n");
4048    fprintf(fp_cpp,"\n");
4049    return true;
4050  }
4051  return false;
4052}
4053
4054
4055//---------------------------buildMachNodeGenerator----------------------------
4056// Build switch to invoke appropriate "new" MachNode for an opcode
4057void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4058
4059  // Build switch to invoke 'new' for a specific MachNode
4060  fprintf(fp_cpp, "\n");
4061  fprintf(fp_cpp, "\n");
4062  fprintf(fp_cpp,
4063          "//------------------------- MachNode Generator ---------------\n");
4064  fprintf(fp_cpp,
4065          "// A switch statement on the dense-packed user-defined type system\n"
4066          "// that invokes 'new' on the corresponding class constructor.\n");
4067  fprintf(fp_cpp, "\n");
4068  fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4069  fprintf(fp_cpp, "(int opcode)");
4070  fprintf(fp_cpp, "{\n");
4071  fprintf(fp_cpp, "  switch(opcode) {\n");
4072
4073  // Provide constructor for all user-defined instructions
4074  _instructions.reset();
4075  int  opIndex = operandFormCount();
4076  InstructForm *inst;
4077  for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4078    // Ensure that matrule is defined.
4079    if ( inst->_matrule == NULL ) continue;
4080
4081    int         opcode  = opIndex++;
4082    const char *opClass = inst->_ident;
4083    char       *opType  = NULL;
4084
4085    // Generate the case statement for this instruction
4086    fprintf(fp_cpp, "  case %s_rule:", opClass);
4087
4088    // Start local scope
4089    fprintf(fp_cpp, " {\n");
4090    // Generate code to construct the new MachNode
4091    buildMachNode(fp_cpp, inst, "     ");
4092    // Return result and exit scope
4093    fprintf(fp_cpp, "      return node;\n");
4094    fprintf(fp_cpp, "    }\n");
4095  }
4096
4097  // Generate the default case for switch(opcode)
4098  fprintf(fp_cpp, "  \n");
4099  fprintf(fp_cpp, "  default:\n");
4100  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4101  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4102  fprintf(fp_cpp, "    break;\n");
4103  fprintf(fp_cpp, "  };\n");
4104
4105  // Generate the closing for method Matcher::MachNodeGenerator
4106  fprintf(fp_cpp, "  return NULL;\n");
4107  fprintf(fp_cpp, "}\n");
4108}
4109
4110
4111//---------------------------buildInstructMatchCheck--------------------------
4112// Output the method to Matcher which checks whether or not a specific
4113// instruction has a matching rule for the host architecture.
4114void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4115  fprintf(fp_cpp, "\n\n");
4116  fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4117  fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4118  fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4119  fprintf(fp_cpp, "}\n\n");
4120
4121  fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4122  int i;
4123  for (i = 0; i < _last_opcode - 1; i++) {
4124    fprintf(fp_cpp, "    %-5s,  // %s\n",
4125            _has_match_rule[i] ? "true" : "false",
4126            NodeClassNames[i]);
4127  }
4128  fprintf(fp_cpp, "    %-5s   // %s\n",
4129          _has_match_rule[i] ? "true" : "false",
4130          NodeClassNames[i]);
4131  fprintf(fp_cpp, "};\n");
4132}
4133
4134//---------------------------buildFrameMethods---------------------------------
4135// Output the methods to Matcher which specify frame behavior
4136void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4137  fprintf(fp_cpp,"\n\n");
4138  // Stack Direction
4139  fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4140          _frame->_direction ? "true" : "false");
4141  // Sync Stack Slots
4142  fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4143          _frame->_sync_stack_slots);
4144  // Java Stack Alignment
4145  fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4146          _frame->_alignment);
4147  // Java Return Address Location
4148  fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4149  if (_frame->_return_addr_loc) {
4150    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4151            _frame->_return_addr);
4152  }
4153  else {
4154    fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4155            _frame->_return_addr);
4156  }
4157  // Java Stack Slot Preservation
4158  fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4159  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4160  // Top Of Stack Slot Preservation, for both Java and C
4161  fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4162  fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4163  // varargs C out slots killed
4164  fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4165  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4166  // Java Argument Position
4167  fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4168  fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4169  fprintf(fp_cpp,"}\n\n");
4170  // Native Argument Position
4171  fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4172  fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4173  fprintf(fp_cpp,"}\n\n");
4174  // Java Return Value Location
4175  fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4176  fprintf(fp_cpp,"%s\n", _frame->_return_value);
4177  fprintf(fp_cpp,"}\n\n");
4178  // Native Return Value Location
4179  fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4180  fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4181  fprintf(fp_cpp,"}\n\n");
4182
4183  // Inline Cache Register, mask definition, and encoding
4184  fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4185  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4186          _frame->_inline_cache_reg);
4187  fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4188  fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4189
4190  // Interpreter's Method Oop Register, mask definition, and encoding
4191  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4192  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4193          _frame->_interpreter_method_oop_reg);
4194  fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4195  fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4196
4197  // Interpreter's Frame Pointer Register, mask definition, and encoding
4198  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4199  if (_frame->_interpreter_frame_pointer_reg == NULL)
4200    fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4201  else
4202    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4203            _frame->_interpreter_frame_pointer_reg);
4204
4205  // Frame Pointer definition
4206  /* CNC - I can not contemplate having a different frame pointer between
4207     Java and native code; makes my head hurt to think about it.
4208  fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4209  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4210          _frame->_frame_pointer);
4211  */
4212  // (Native) Frame Pointer definition
4213  fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4214  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4215          _frame->_frame_pointer);
4216
4217  // Number of callee-save + always-save registers for calling convention
4218  fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4219  fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4220  RegDef *rdef;
4221  int nof_saved_registers = 0;
4222  _register->reset_RegDefs();
4223  while( (rdef = _register->iter_RegDefs()) != NULL ) {
4224    if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4225      ++nof_saved_registers;
4226  }
4227  fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4228  fprintf(fp_cpp, "};\n\n");
4229}
4230
4231
4232
4233
4234static int PrintAdlcCisc = 0;
4235//---------------------------identify_cisc_spilling----------------------------
4236// Get info for the CISC_oracle and MachNode::cisc_version()
4237void ArchDesc::identify_cisc_spill_instructions() {
4238
4239  if (_frame == NULL)
4240    return;
4241
4242  // Find the user-defined operand for cisc-spilling
4243  if( _frame->_cisc_spilling_operand_name != NULL ) {
4244    const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4245    OperandForm *oper = form ? form->is_operand() : NULL;
4246    // Verify the user's suggestion
4247    if( oper != NULL ) {
4248      // Ensure that match field is defined.
4249      if ( oper->_matrule != NULL )  {
4250        MatchRule &mrule = *oper->_matrule;
4251        if( strcmp(mrule._opType,"AddP") == 0 ) {
4252          MatchNode *left = mrule._lChild;
4253          MatchNode *right= mrule._rChild;
4254          if( left != NULL && right != NULL ) {
4255            const Form *left_op  = _globalNames[left->_opType]->is_operand();
4256            const Form *right_op = _globalNames[right->_opType]->is_operand();
4257            if(  (left_op != NULL && right_op != NULL)
4258              && (left_op->interface_type(_globalNames) == Form::register_interface)
4259              && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4260              // Successfully verified operand
4261              set_cisc_spill_operand( oper );
4262              if( _cisc_spill_debug ) {
4263                fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4264             }
4265            }
4266          }
4267        }
4268      }
4269    }
4270  }
4271
4272  if( cisc_spill_operand() != NULL ) {
4273    // N^2 comparison of instructions looking for a cisc-spilling version
4274    _instructions.reset();
4275    InstructForm *instr;
4276    for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4277      // Ensure that match field is defined.
4278      if ( instr->_matrule == NULL )  continue;
4279
4280      MatchRule &mrule = *instr->_matrule;
4281      Predicate *pred  =  instr->build_predicate();
4282
4283      // Grab the machine type of the operand
4284      const char *rootOp = instr->_ident;
4285      mrule._machType    = rootOp;
4286
4287      // Find result type for match
4288      const char *result = instr->reduce_result();
4289
4290      if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4291      bool  found_cisc_alternate = false;
4292      _instructions.reset2();
4293      InstructForm *instr2;
4294      for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4295        // Ensure that match field is defined.
4296        if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4297        if ( instr2->_matrule != NULL
4298            && (instr != instr2 )                // Skip self
4299            && (instr2->reduce_result() != NULL) // want same result
4300            && (strcmp(result, instr2->reduce_result()) == 0)) {
4301          MatchRule &mrule2 = *instr2->_matrule;
4302          Predicate *pred2  =  instr2->build_predicate();
4303          found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4304        }
4305      }
4306    }
4307  }
4308}
4309
4310//---------------------------build_cisc_spilling-------------------------------
4311// Get info for the CISC_oracle and MachNode::cisc_version()
4312void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4313  // Output the table for cisc spilling
4314  fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4315  _instructions.reset();
4316  InstructForm *inst = NULL;
4317  for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4318    // Ensure this is a machine-world instruction
4319    if ( inst->ideal_only() )  continue;
4320    const char *inst_name = inst->_ident;
4321    int   operand   = inst->cisc_spill_operand();
4322    if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4323      InstructForm *inst2 = inst->cisc_spill_alternate();
4324      fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4325    }
4326  }
4327  fprintf(fp_cpp, "\n\n");
4328}
4329
4330//---------------------------identify_short_branches----------------------------
4331// Get info for our short branch replacement oracle.
4332void ArchDesc::identify_short_branches() {
4333  // Walk over all instructions, checking to see if they match a short
4334  // branching alternate.
4335  _instructions.reset();
4336  InstructForm *instr;
4337  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4338    // The instruction must have a match rule.
4339    if (instr->_matrule != NULL &&
4340        instr->is_short_branch()) {
4341
4342      _instructions.reset2();
4343      InstructForm *instr2;
4344      while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4345        instr2->check_branch_variant(*this, instr);
4346      }
4347    }
4348  }
4349}
4350
4351
4352//---------------------------identify_unique_operands---------------------------
4353// Identify unique operands.
4354void ArchDesc::identify_unique_operands() {
4355  // Walk over all instructions.
4356  _instructions.reset();
4357  InstructForm *instr;
4358  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4359    // Ensure this is a machine-world instruction
4360    if (!instr->ideal_only()) {
4361      instr->set_unique_opnds();
4362    }
4363  }
4364}
4365