1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Dictionaries - An Abstract Data Type
26
27#include "adlc.hpp"
28
29// #include "dict.hpp"
30
31
32//------------------------------data-----------------------------------------
33// String hash tables
34#define MAXID 20
35static char initflag = 0;       // True after 1st initialization
36static char shft[MAXID + 1] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};
37static short xsum[MAXID];
38
39//------------------------------bucket---------------------------------------
40class bucket {
41public:
42  int          _cnt, _max;      // Size of bucket
43  const void **_keyvals;        // Array of keys and values
44};
45
46//------------------------------Dict-----------------------------------------
47// The dictionary is kept has a hash table.  The hash table is a even power
48// of two, for nice modulo operations.  Each bucket in the hash table points
49// to a linear list of key-value pairs; each key & value is just a (void *).
50// The list starts with a count.  A hash lookup finds the list head, then a
51// simple linear scan finds the key.  If the table gets too full, it's
52// doubled in size; the total amount of EXTRA times all hash functions are
53// computed for the doubling is no more than the current size - thus the
54// doubling in size costs no more than a constant factor in speed.
55Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(NULL) {
56  init();
57}
58
59Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) {
60  init();
61}
62
63void Dict::init() {
64  int i;
65
66  // Precompute table of null character hashes
67  if (!initflag) {              // Not initializated yet?
68    xsum[0] = (short) ((1 << shft[0]) + 1);  // Initialize
69    for( i = 1; i < MAXID; i++) {
70      xsum[i] = (short) ((1 << shft[i]) + 1 + xsum[i-1]);
71    }
72    initflag = 1;               // Never again
73  }
74
75  _size = 16;                   // Size is a power of 2
76  _cnt = 0;                     // Dictionary is empty
77  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket) * _size);
78  memset(_bin, 0, sizeof(bucket) * _size);
79}
80
81//------------------------------~Dict------------------------------------------
82// Delete an existing dictionary.
83Dict::~Dict() {
84}
85
86//------------------------------Clear----------------------------------------
87// Zap to empty; ready for re-use
88void Dict::Clear() {
89  _cnt = 0;                     // Empty contents
90  for( int i=0; i<_size; i++ )
91    _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
92  // Leave _size & _bin alone, under the assumption that dictionary will
93  // grow to this size again.
94}
95
96//------------------------------doubhash---------------------------------------
97// Double hash table size.  If can't do so, just suffer.  If can, then run
98// thru old hash table, moving things to new table.  Note that since hash
99// table doubled, exactly 1 new bit is exposed in the mask - so everything
100// in the old table ends up on 1 of two lists in the new table; a hi and a
101// lo list depending on the value of the bit.
102void Dict::doubhash(void) {
103  int oldsize = _size;
104  _size <<= 1;                  // Double in size
105  _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
106  memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
107  // Rehash things to spread into new table
108  for( int i=0; i < oldsize; i++) { // For complete OLD table do
109    bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
110    if( !b->_keyvals ) continue;        // Skip empties fast
111
112    bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
113    int j = b->_max;                // Trim new bucket to nearest power of 2
114    while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
115    if( !j ) j = 1;             // Handle zero-sized buckets
116    nb->_max = j<<1;
117    // Allocate worst case space for key-value pairs
118    nb->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
119    int nbcnt = 0;
120
121    for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
122      const void *key = b->_keyvals[j+j];
123      if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
124        nb->_keyvals[nbcnt+nbcnt] = key;
125        nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
126        nb->_cnt = nbcnt = nbcnt+1;
127        b->_cnt--;              // Remove key/value from lo bucket
128        b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
129        b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
130        j--;                    // Hash compacted element also
131      }
132    } // End of for all key-value pairs in bucket
133  } // End of for all buckets
134
135
136}
137
138//------------------------------Dict-----------------------------------------
139// Deep copy a dictionary.
140Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
141  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
142  memcpy( _bin, d._bin, sizeof(bucket)*_size );
143  for( int i=0; i<_size; i++ ) {
144    if( !_bin[i]._keyvals ) continue;
145    _bin[i]._keyvals=(const void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
146    memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
147  }
148}
149
150//------------------------------Dict-----------------------------------------
151// Deep copy a dictionary.
152Dict &Dict::operator =( const Dict &d ) {
153  if( _size < d._size ) {       // If must have more buckets
154    _arena = d._arena;
155    _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
156    memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
157    _size = d._size;
158  }
159  for( int i=0; i<_size; i++ ) // All buckets are empty
160    _bin[i]._cnt = 0;           // But leave bucket allocations alone
161  _cnt = d._cnt;
162  *(Hash*)(&_hash) = d._hash;
163  *(CmpKey*)(&_cmp) = d._cmp;
164  for(int k=0; k<_size; k++ ) {
165    bucket *b = &d._bin[k];     // Shortcut to source bucket
166    for( int j=0; j<b->_cnt; j++ )
167      Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
168  }
169  return *this;
170}
171
172//------------------------------Insert---------------------------------------
173// Insert or replace a key/value pair in the given dictionary.  If the
174// dictionary is too full, it's size is doubled.  The prior value being
175// replaced is returned (NULL if this is a 1st insertion of that key).  If
176// an old value is found, it's swapped with the prior key-value pair on the
177// list.  This moves a commonly searched-for value towards the list head.
178const void *Dict::Insert(const void *key, const void *val) {
179  int hash = _hash( key );      // Get hash key
180  int i = hash & (_size-1);     // Get hash key, corrected for size
181  bucket *b = &_bin[i];         // Handy shortcut
182  for( int j=0; j<b->_cnt; j++ )
183    if( !_cmp(key,b->_keyvals[j+j]) ) {
184      const void *prior = b->_keyvals[j+j+1];
185      b->_keyvals[j+j  ] = key; // Insert current key-value
186      b->_keyvals[j+j+1] = val;
187      return prior;             // Return prior
188    }
189
190  if( ++_cnt > _size ) {        // Hash table is full
191    doubhash();                 // Grow whole table if too full
192    i = hash & (_size-1);       // Rehash
193    b = &_bin[i];               // Handy shortcut
194  }
195  if( b->_cnt == b->_max ) {    // Must grow bucket?
196    if( !b->_keyvals ) {
197      b->_max = 2;              // Initial bucket size
198      b->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*b->_max*2 );
199    } else {
200      b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 );
201      b->_max <<= 1;            // Double bucket
202    }
203  }
204  b->_keyvals[b->_cnt+b->_cnt  ] = key;
205  b->_keyvals[b->_cnt+b->_cnt+1] = val;
206  b->_cnt++;
207  return NULL;                  // Nothing found prior
208}
209
210//------------------------------Delete---------------------------------------
211// Find & remove a value from dictionary. Return old value.
212const void *Dict::Delete(void *key) {
213  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
214  bucket *b = &_bin[i];         // Handy shortcut
215  for( int j=0; j<b->_cnt; j++ )
216    if( !_cmp(key,b->_keyvals[j+j]) ) {
217      const void *prior = b->_keyvals[j+j+1];
218      b->_cnt--;                // Remove key/value from lo bucket
219      b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
220      b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
221      _cnt--;                   // One less thing in table
222      return prior;
223    }
224  return NULL;
225}
226
227//------------------------------FindDict-------------------------------------
228// Find a key-value pair in the given dictionary.  If not found, return NULL.
229// If found, move key-value pair towards head of list.
230const void *Dict::operator [](const void *key) const {
231  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
232  bucket *b = &_bin[i];         // Handy shortcut
233  for( int j=0; j<b->_cnt; j++ )
234    if( !_cmp(key,b->_keyvals[j+j]) )
235      return b->_keyvals[j+j+1];
236  return NULL;
237}
238
239//------------------------------CmpDict--------------------------------------
240// CmpDict compares two dictionaries; they must have the same keys (their
241// keys must match using CmpKey) and they must have the same values (pointer
242// comparison).  If so 1 is returned, if not 0 is returned.
243int Dict::operator ==(const Dict &d2) const {
244  if( _cnt != d2._cnt ) return 0;
245  if( _hash != d2._hash ) return 0;
246  if( _cmp != d2._cmp ) return 0;
247  for( int i=0; i < _size; i++) {       // For complete hash table do
248    bucket *b = &_bin[i];       // Handy shortcut
249    if( b->_cnt != d2._bin[i]._cnt ) return 0;
250    if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
251      return 0;                 // Key-value pairs must match
252  }
253  return 1;                     // All match, is OK
254}
255
256
257//------------------------------print----------------------------------------
258static void printvoid(const void* x) { printf("%p", x);  }
259void Dict::print() {
260  print(printvoid, printvoid);
261}
262void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) {
263  for( int i=0; i < _size; i++) {       // For complete hash table do
264    bucket *b = &_bin[i];       // Handy shortcut
265    for( int j=0; j<b->_cnt; j++ ) {
266      print_key(  b->_keyvals[j+j  ]);
267      printf(" -> ");
268      print_value(b->_keyvals[j+j+1]);
269      printf("\n");
270    }
271  }
272}
273
274//------------------------------Hashing Functions----------------------------
275// Convert string to hash key.  This algorithm implements a universal hash
276// function with the multipliers frozen (ok, so it's not universal).  The
277// multipliers (and allowable characters) are all odd, so the resultant sum
278// is odd - guaranteed not divisible by any power of two, so the hash tables
279// can be any power of two with good results.  Also, I choose multipliers
280// that have only 2 bits set (the low is always set to be odd) so
281// multiplication requires only shifts and adds.  Characters are required to
282// be in the range 0-127 (I double & add 1 to force oddness).  Keys are
283// limited to MAXID characters in length.  Experimental evidence on 150K of
284// C text shows excellent spreading of values for any size hash table.
285int hashstr(const void *t) {
286  register char c, k = 0;
287  register int sum = 0;
288  register const char *s = (const char *)t;
289
290  while (((c = s[k]) != '\0') && (k < MAXID-1)) { // Get characters till nul
291    c = (char) ((c << 1) + 1);    // Characters are always odd!
292    sum += c + (c << shft[k++]);  // Universal hash function
293  }
294  assert(k < (MAXID), "Exceeded maximum name length");
295  return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
296}
297
298//------------------------------hashptr--------------------------------------
299// Slimey cheap hash function; no guaranteed performance.  Better than the
300// default for pointers, especially on MS-DOS machines.
301int hashptr(const void *key) {
302#ifdef __TURBOC__
303    return (int)((intptr_t)key >> 16);
304#else  // __TURBOC__
305    return (int)((intptr_t)key >> 2);
306#endif
307}
308
309// Slimey cheap hash function; no guaranteed performance.
310int hashkey(const void *key) {
311  return (int)((intptr_t)key);
312}
313
314//------------------------------Key Comparator Functions---------------------
315int cmpstr(const void *k1, const void *k2) {
316  return strcmp((const char *)k1,(const char *)k2);
317}
318
319// Cheap key comparator.
320int cmpkey(const void *key1, const void *key2) {
321  if (key1 == key2) return 0;
322  intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
323  if (delta > 0) return 1;
324  return -1;
325}
326
327//=============================================================================
328//------------------------------reset------------------------------------------
329// Create an iterator and initialize the first variables.
330void DictI::reset( const Dict *dict ) {
331  _d = dict;                    // The dictionary
332  _i = (int)-1;         // Before the first bin
333  _j = 0;                       // Nothing left in the current bin
334  ++(*this);                    // Step to first real value
335}
336
337//------------------------------next-------------------------------------------
338// Find the next key-value pair in the dictionary, or return a NULL key and
339// value.
340void DictI::operator ++(void) {
341  if( _j-- ) {                  // Still working in current bin?
342    _key   = _d->_bin[_i]._keyvals[_j+_j];
343    _value = _d->_bin[_i]._keyvals[_j+_j+1];
344    return;
345  }
346
347  while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
348    _j = _d->_bin[_i]._cnt;
349    if( !_j ) continue;
350    _j--;
351    _key   = _d->_bin[_i]._keyvals[_j+_j];
352    _value = _d->_bin[_i]._keyvals[_j+_j+1];
353    return;
354  }
355  _key = _value = NULL;
356}
357