1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "asm/macroAssembler.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "code/nativeInst.hpp"
35#include "interpreter/interpreter.hpp"
36#include "jvm_linux.h"
37#include "memory/allocation.inline.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/timer.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56#ifdef BUILTIN_SIM
57#include "../../../../../../simulator/simulator.hpp"
58#endif
59
60// put OS-includes here
61# include <sys/types.h>
62# include <sys/mman.h>
63# include <pthread.h>
64# include <signal.h>
65# include <errno.h>
66# include <dlfcn.h>
67# include <stdlib.h>
68# include <stdio.h>
69# include <unistd.h>
70# include <sys/resource.h>
71# include <pthread.h>
72# include <sys/stat.h>
73# include <sys/time.h>
74# include <sys/utsname.h>
75# include <sys/socket.h>
76# include <sys/wait.h>
77# include <pwd.h>
78# include <poll.h>
79# include <ucontext.h>
80# include <fpu_control.h>
81
82#ifdef BUILTIN_SIM
83#define REG_SP REG_RSP
84#define REG_PC REG_RIP
85#define REG_FP REG_RBP
86#define SPELL_REG_SP "rsp"
87#define SPELL_REG_FP "rbp"
88#else
89#define REG_FP 29
90#define REG_LR 30
91
92#define SPELL_REG_SP "sp"
93#define SPELL_REG_FP "x29"
94#endif
95
96address os::current_stack_pointer() {
97  register void *esp __asm__ (SPELL_REG_SP);
98  return (address) esp;
99}
100
101char* os::non_memory_address_word() {
102  // Must never look like an address returned by reserve_memory,
103  // even in its subfields (as defined by the CPU immediate fields,
104  // if the CPU splits constants across multiple instructions).
105
106  return (char*) 0xffffffffffff;
107}
108
109void os::initialize_thread(Thread *thr) {
110}
111
112address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
113#ifdef BUILTIN_SIM
114  return (address)uc->uc_mcontext.gregs[REG_PC];
115#else
116  return (address)uc->uc_mcontext.pc;
117#endif
118}
119
120void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
121#ifdef BUILTIN_SIM
122  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
123#else
124  uc->uc_mcontext.pc = (intptr_t)pc;
125#endif
126}
127
128intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
129#ifdef BUILTIN_SIM
130  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
131#else
132  return (intptr_t*)uc->uc_mcontext.sp;
133#endif
134}
135
136intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
137#ifdef BUILTIN_SIM
138  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
139#else
140  return (intptr_t*)uc->uc_mcontext.regs[REG_FP];
141#endif
142}
143
144// For Forte Analyzer AsyncGetCallTrace profiling support - thread
145// is currently interrupted by SIGPROF.
146// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
147// frames. Currently we don't do that on Linux, so it's the same as
148// os::fetch_frame_from_context().
149ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
150  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
151
152  assert(thread != NULL, "just checking");
153  assert(ret_sp != NULL, "just checking");
154  assert(ret_fp != NULL, "just checking");
155
156  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
157}
158
159ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
160                    intptr_t** ret_sp, intptr_t** ret_fp) {
161
162  ExtendedPC  epc;
163  const ucontext_t* uc = (const ucontext_t*)ucVoid;
164
165  if (uc != NULL) {
166    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
167    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
168    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
169  } else {
170    // construct empty ExtendedPC for return value checking
171    epc = ExtendedPC(NULL);
172    if (ret_sp) *ret_sp = (intptr_t *)NULL;
173    if (ret_fp) *ret_fp = (intptr_t *)NULL;
174  }
175
176  return epc;
177}
178
179frame os::fetch_frame_from_context(const void* ucVoid) {
180  intptr_t* sp;
181  intptr_t* fp;
182  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
183  return frame(sp, fp, epc.pc());
184}
185
186bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
187  address pc = (address) os::Linux::ucontext_get_pc(uc);
188  if (Interpreter::contains(pc)) {
189    // interpreter performs stack banging after the fixed frame header has
190    // been generated while the compilers perform it before. To maintain
191    // semantic consistency between interpreted and compiled frames, the
192    // method returns the Java sender of the current frame.
193    *fr = os::fetch_frame_from_context(uc);
194    if (!fr->is_first_java_frame()) {
195      assert(fr->safe_for_sender(thread), "Safety check");
196      *fr = fr->java_sender();
197    }
198  } else {
199    // more complex code with compiled code
200    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
201    CodeBlob* cb = CodeCache::find_blob(pc);
202    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
203      // Not sure where the pc points to, fallback to default
204      // stack overflow handling
205      return false;
206    } else {
207      // In compiled code, the stack banging is performed before LR
208      // has been saved in the frame.  LR is live, and SP and FP
209      // belong to the caller.
210      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
211      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
212      address pc = (address)(uc->uc_mcontext.regs[REG_LR]
213                         - NativeInstruction::instruction_size);
214      *fr = frame(sp, fp, pc);
215      if (!fr->is_java_frame()) {
216        assert(fr->safe_for_sender(thread), "Safety check");
217        assert(!fr->is_first_frame(), "Safety check");
218        *fr = fr->java_sender();
219      }
220    }
221  }
222  assert(fr->is_java_frame(), "Safety check");
223  return true;
224}
225
226// By default, gcc always saves frame pointer rfp on this stack. This
227// may get turned off by -fomit-frame-pointer.
228frame os::get_sender_for_C_frame(frame* fr) {
229#ifdef BUILTIN_SIM
230  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
231#else
232  return frame(fr->link(), fr->link(), fr->sender_pc());
233#endif
234}
235
236intptr_t* _get_previous_fp() {
237  register intptr_t **ebp __asm__ (SPELL_REG_FP);
238  return (intptr_t*) *ebp;   // we want what it points to.
239}
240
241
242frame os::current_frame() {
243  intptr_t* fp = _get_previous_fp();
244  frame myframe((intptr_t*)os::current_stack_pointer(),
245                (intptr_t*)fp,
246                CAST_FROM_FN_PTR(address, os::current_frame));
247  if (os::is_first_C_frame(&myframe)) {
248    // stack is not walkable
249    return frame();
250  } else {
251    return os::get_sender_for_C_frame(&myframe);
252  }
253}
254
255// Utility functions
256
257// From IA32 System Programming Guide
258enum {
259  trap_page_fault = 0xE
260};
261
262#ifdef BUILTIN_SIM
263extern "C" void Fetch32PFI () ;
264extern "C" void Fetch32Resume () ;
265extern "C" void FetchNPFI () ;
266extern "C" void FetchNResume () ;
267#endif
268
269extern "C" JNIEXPORT int
270JVM_handle_linux_signal(int sig,
271                        siginfo_t* info,
272                        void* ucVoid,
273                        int abort_if_unrecognized) {
274  ucontext_t* uc = (ucontext_t*) ucVoid;
275
276  Thread* t = Thread::current_or_null_safe();
277
278  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
279  // (no destructors can be run)
280  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
281
282  SignalHandlerMark shm(t);
283
284  // Note: it's not uncommon that JNI code uses signal/sigset to install
285  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
286  // or have a SIGILL handler when detecting CPU type). When that happens,
287  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
288  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
289  // that do not require siginfo/ucontext first.
290
291  if (sig == SIGPIPE || sig == SIGXFSZ) {
292    // allow chained handler to go first
293    if (os::Linux::chained_handler(sig, info, ucVoid)) {
294      return true;
295    } else {
296      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
297      return true;
298    }
299  }
300
301  JavaThread* thread = NULL;
302  VMThread* vmthread = NULL;
303  if (os::Linux::signal_handlers_are_installed) {
304    if (t != NULL ){
305      if(t->is_Java_thread()) {
306        thread = (JavaThread*)t;
307      }
308      else if(t->is_VM_thread()){
309        vmthread = (VMThread *)t;
310      }
311    }
312  }
313/*
314  NOTE: does not seem to work on linux.
315  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
316    // can't decode this kind of signal
317    info = NULL;
318  } else {
319    assert(sig == info->si_signo, "bad siginfo");
320  }
321*/
322  // decide if this trap can be handled by a stub
323  address stub = NULL;
324
325  address pc          = NULL;
326
327  //%note os_trap_1
328  if (info != NULL && uc != NULL && thread != NULL) {
329    pc = (address) os::Linux::ucontext_get_pc(uc);
330
331#ifdef BUILTIN_SIM
332    if (pc == (address) Fetch32PFI) {
333       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
334       return 1 ;
335    }
336    if (pc == (address) FetchNPFI) {
337       uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
338       return 1 ;
339    }
340#else
341    if (StubRoutines::is_safefetch_fault(pc)) {
342      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
343      return 1;
344    }
345#endif
346
347    // Handle ALL stack overflow variations here
348    if (sig == SIGSEGV) {
349      address addr = (address) info->si_addr;
350
351      // check if fault address is within thread stack
352      if (thread->on_local_stack(addr)) {
353        // stack overflow
354        if (thread->in_stack_yellow_reserved_zone(addr)) {
355          thread->disable_stack_yellow_reserved_zone();
356          if (thread->thread_state() == _thread_in_Java) {
357            if (thread->in_stack_reserved_zone(addr)) {
358              frame fr;
359              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
360                assert(fr.is_java_frame(), "Must be a Java frame");
361                frame activation =
362                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
363                if (activation.sp() != NULL) {
364                  thread->disable_stack_reserved_zone();
365                  if (activation.is_interpreted_frame()) {
366                    thread->set_reserved_stack_activation((address)(
367                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
368                  } else {
369                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
370                  }
371                  return 1;
372                }
373              }
374            }
375            // Throw a stack overflow exception.  Guard pages will be reenabled
376            // while unwinding the stack.
377            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
378          } else {
379            // Thread was in the vm or native code.  Return and try to finish.
380            return 1;
381          }
382        } else if (thread->in_stack_red_zone(addr)) {
383          // Fatal red zone violation.  Disable the guard pages and fall through
384          // to handle_unexpected_exception way down below.
385          thread->disable_stack_red_zone();
386          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
387
388          // This is a likely cause, but hard to verify. Let's just print
389          // it as a hint.
390          tty->print_raw_cr("Please check if any of your loaded .so files has "
391                            "enabled executable stack (see man page execstack(8))");
392        } else {
393          // Accessing stack address below sp may cause SEGV if current
394          // thread has MAP_GROWSDOWN stack. This should only happen when
395          // current thread was created by user code with MAP_GROWSDOWN flag
396          // and then attached to VM. See notes in os_linux.cpp.
397          if (thread->osthread()->expanding_stack() == 0) {
398             thread->osthread()->set_expanding_stack();
399             if (os::Linux::manually_expand_stack(thread, addr)) {
400               thread->osthread()->clear_expanding_stack();
401               return 1;
402             }
403             thread->osthread()->clear_expanding_stack();
404          } else {
405             fatal("recursive segv. expanding stack.");
406          }
407        }
408      }
409    }
410
411    if (thread->thread_state() == _thread_in_Java) {
412      // Java thread running in Java code => find exception handler if any
413      // a fault inside compiled code, the interpreter, or a stub
414
415      // Handle signal from NativeJump::patch_verified_entry().
416      if ((sig == SIGILL || sig == SIGTRAP)
417          && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
418        if (TraceTraps) {
419          tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
420        }
421        stub = SharedRuntime::get_handle_wrong_method_stub();
422      } else if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
423        stub = SharedRuntime::get_poll_stub(pc);
424      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
425        // BugId 4454115: A read from a MappedByteBuffer can fault
426        // here if the underlying file has been truncated.
427        // Do not crash the VM in such a case.
428        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
429        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
430        if (nm != NULL && nm->has_unsafe_access()) {
431          address next_pc = pc + NativeCall::instruction_size;
432          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
433        }
434      }
435      else
436
437      if (sig == SIGFPE  &&
438          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
439        stub =
440          SharedRuntime::
441          continuation_for_implicit_exception(thread,
442                                              pc,
443                                              SharedRuntime::
444                                              IMPLICIT_DIVIDE_BY_ZERO);
445      } else if (sig == SIGSEGV &&
446               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
447          // Determination of interpreter/vtable stub/compiled code null exception
448          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
449      }
450    } else if (thread->thread_state() == _thread_in_vm &&
451               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
452               thread->doing_unsafe_access()) {
453      address next_pc = pc + NativeCall::instruction_size;
454      stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
455    }
456
457    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
458    // and the heap gets shrunk before the field access.
459    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
460      address addr = JNI_FastGetField::find_slowcase_pc(pc);
461      if (addr != (address)-1) {
462        stub = addr;
463      }
464    }
465
466    // Check to see if we caught the safepoint code in the
467    // process of write protecting the memory serialization page.
468    // It write enables the page immediately after protecting it
469    // so we can just return to retry the write.
470    if ((sig == SIGSEGV) &&
471        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
472      // Block current thread until the memory serialize page permission restored.
473      os::block_on_serialize_page_trap();
474      return true;
475    }
476  }
477
478  if (stub != NULL) {
479    // save all thread context in case we need to restore it
480    if (thread != NULL) thread->set_saved_exception_pc(pc);
481
482    os::Linux::ucontext_set_pc(uc, stub);
483    return true;
484  }
485
486  // signal-chaining
487  if (os::Linux::chained_handler(sig, info, ucVoid)) {
488     return true;
489  }
490
491  if (!abort_if_unrecognized) {
492    // caller wants another chance, so give it to him
493    return false;
494  }
495
496  if (pc == NULL && uc != NULL) {
497    pc = os::Linux::ucontext_get_pc(uc);
498  }
499
500  // unmask current signal
501  sigset_t newset;
502  sigemptyset(&newset);
503  sigaddset(&newset, sig);
504  sigprocmask(SIG_UNBLOCK, &newset, NULL);
505
506  VMError::report_and_die(t, sig, pc, info, ucVoid);
507
508  ShouldNotReachHere();
509  return true; // Mute compiler
510}
511
512void os::Linux::init_thread_fpu_state(void) {
513}
514
515int os::Linux::get_fpu_control_word(void) {
516  return 0;
517}
518
519void os::Linux::set_fpu_control_word(int fpu_control) {
520}
521
522// Check that the linux kernel version is 2.4 or higher since earlier
523// versions do not support SSE without patches.
524bool os::supports_sse() {
525  return true;
526}
527
528bool os::is_allocatable(size_t bytes) {
529  return true;
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// thread stack
534
535// Minimum usable stack sizes required to get to user code. Space for
536// HotSpot guard pages is added later.
537size_t os::Posix::_compiler_thread_min_stack_allowed = 72 * K;
538size_t os::Posix::_java_thread_min_stack_allowed = 72 * K;
539size_t os::Posix::_vm_internal_thread_min_stack_allowed = 72 * K;
540
541// return default stack size for thr_type
542size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
543  // default stack size (compiler thread needs larger stack)
544  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
545  return s;
546}
547
548/////////////////////////////////////////////////////////////////////////////
549// helper functions for fatal error handler
550
551void os::print_context(outputStream *st, const void *context) {
552  if (context == NULL) return;
553
554  const ucontext_t *uc = (const ucontext_t*)context;
555  st->print_cr("Registers:");
556#ifdef BUILTIN_SIM
557  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
558  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
559  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
560  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
561  st->cr();
562  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
563  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
564  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
565  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
566  st->cr();
567  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
568  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
569  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
570  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
571  st->cr();
572  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
573  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
574  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
575  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
576  st->cr();
577  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
578  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
579  st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
580  st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
581  st->cr();
582  st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
583  st->cr();
584#else
585  for (int r = 0; r < 31; r++) {
586    st->print("R%-2d=", r);
587    print_location(st, uc->uc_mcontext.regs[r]);
588  }
589#endif
590  st->cr();
591
592  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
593  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
594  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
595  st->cr();
596
597  // Note: it may be unsafe to inspect memory near pc. For example, pc may
598  // point to garbage if entry point in an nmethod is corrupted. Leave
599  // this at the end, and hope for the best.
600  address pc = os::Linux::ucontext_get_pc(uc);
601  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
602  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
603}
604
605void os::print_register_info(outputStream *st, const void *context) {
606  if (context == NULL) return;
607
608  const ucontext_t *uc = (const ucontext_t*)context;
609
610  st->print_cr("Register to memory mapping:");
611  st->cr();
612
613  // this is horrendously verbose but the layout of the registers in the
614  // context does not match how we defined our abstract Register set, so
615  // we can't just iterate through the gregs area
616
617  // this is only for the "general purpose" registers
618
619#ifdef BUILTIN_SIM
620  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
621  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
622  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
623  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
624  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
625  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
626  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
627  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
628  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
629  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
630  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
631  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
632  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
633  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
634  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
635  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
636#else
637  for (int r = 0; r < 31; r++)
638    st->print_cr(  "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]);
639#endif
640  st->cr();
641}
642
643void os::setup_fpu() {
644}
645
646#ifndef PRODUCT
647void os::verify_stack_alignment() {
648  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
649}
650#endif
651
652int os::extra_bang_size_in_bytes() {
653  // AArch64 does not require the additional stack bang.
654  return 0;
655}
656
657extern "C" {
658  int SpinPause() {
659    return 0;
660  }
661
662  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
663    if (from > to) {
664      jshort *end = from + count;
665      while (from < end)
666        *(to++) = *(from++);
667    }
668    else if (from < to) {
669      jshort *end = from;
670      from += count - 1;
671      to   += count - 1;
672      while (from >= end)
673        *(to--) = *(from--);
674    }
675  }
676  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
677    if (from > to) {
678      jint *end = from + count;
679      while (from < end)
680        *(to++) = *(from++);
681    }
682    else if (from < to) {
683      jint *end = from;
684      from += count - 1;
685      to   += count - 1;
686      while (from >= end)
687        *(to--) = *(from--);
688    }
689  }
690  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
691    if (from > to) {
692      jlong *end = from + count;
693      while (from < end)
694        os::atomic_copy64(from++, to++);
695    }
696    else if (from < to) {
697      jlong *end = from;
698      from += count - 1;
699      to   += count - 1;
700      while (from >= end)
701        os::atomic_copy64(from--, to--);
702    }
703  }
704
705  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
706                                    HeapWord* to,
707                                    size_t    count) {
708    memmove(to, from, count);
709  }
710  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
711                                      HeapWord* to,
712                                      size_t    count) {
713    memmove(to, from, count * 2);
714  }
715  void _Copy_arrayof_conjoint_jints(HeapWord* from,
716                                    HeapWord* to,
717                                    size_t    count) {
718    memmove(to, from, count * 4);
719  }
720  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
721                                     HeapWord* to,
722                                     size_t    count) {
723    memmove(to, from, count * 8);
724  }
725};
726