1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26// no precompiled headers
27#include "asm/assembler.inline.hpp"
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_aix.h"
36#include "memory/allocation.inline.hpp"
37#include "nativeInst_ppc.hpp"
38#include "os_share_aix.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "porting_aix.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/frame.inline.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/sharedRuntime.hpp"
52#include "runtime/stubRoutines.hpp"
53#include "runtime/thread.inline.hpp"
54#include "runtime/timer.hpp"
55#include "utilities/events.hpp"
56#include "utilities/vmError.hpp"
57#ifdef COMPILER1
58#include "c1/c1_Runtime1.hpp"
59#endif
60#ifdef COMPILER2
61#include "opto/runtime.hpp"
62#endif
63
64// put OS-includes here
65# include <ucontext.h>
66
67address os::current_stack_pointer() {
68  address csp;
69
70#if !defined(USE_XLC_BUILTINS)
71  // inline assembly for `mr regno(csp), R1_SP':
72  __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
73#else
74  csp = (address) __builtin_frame_address(0);
75#endif
76
77  return csp;
78}
79
80char* os::non_memory_address_word() {
81  // Must never look like an address returned by reserve_memory,
82  // even in its subfields (as defined by the CPU immediate fields,
83  // if the CPU splits constants across multiple instructions).
84
85  return (char*) -1;
86}
87
88// OS specific thread initialization
89//
90// Calculate and store the limits of the memory stack.
91void os::initialize_thread(Thread *thread) { }
92
93// Frame information (pc, sp, fp) retrieved via ucontext
94// always looks like a C-frame according to the frame
95// conventions in frame_ppc.hpp.
96
97address os::Aix::ucontext_get_pc(const ucontext_t * uc) {
98  return (address)uc->uc_mcontext.jmp_context.iar;
99}
100
101intptr_t* os::Aix::ucontext_get_sp(const ucontext_t * uc) {
102  // gpr1 holds the stack pointer on aix
103  return (intptr_t*)uc->uc_mcontext.jmp_context.gpr[1/*REG_SP*/];
104}
105
106intptr_t* os::Aix::ucontext_get_fp(const ucontext_t * uc) {
107  return NULL;
108}
109
110void os::Aix::ucontext_set_pc(ucontext_t* uc, address new_pc) {
111  uc->uc_mcontext.jmp_context.iar = (uint64_t) new_pc;
112}
113
114ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
115                                        intptr_t** ret_sp, intptr_t** ret_fp) {
116
117  ExtendedPC  epc;
118  const ucontext_t* uc = (const ucontext_t*)ucVoid;
119
120  if (uc != NULL) {
121    epc = ExtendedPC(os::Aix::ucontext_get_pc(uc));
122    if (ret_sp) *ret_sp = os::Aix::ucontext_get_sp(uc);
123    if (ret_fp) *ret_fp = os::Aix::ucontext_get_fp(uc);
124  } else {
125    // construct empty ExtendedPC for return value checking
126    epc = ExtendedPC(NULL);
127    if (ret_sp) *ret_sp = (intptr_t *)NULL;
128    if (ret_fp) *ret_fp = (intptr_t *)NULL;
129  }
130
131  return epc;
132}
133
134frame os::fetch_frame_from_context(const void* ucVoid) {
135  intptr_t* sp;
136  intptr_t* fp;
137  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
138  // Avoid crash during crash if pc broken.
139  if (epc.pc()) {
140    frame fr(sp, epc.pc());
141    return fr;
142  }
143  frame fr(sp);
144  return fr;
145}
146
147bool os::Aix::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
148  address pc = (address) os::Aix::ucontext_get_pc(uc);
149  if (Interpreter::contains(pc)) {
150    // Interpreter performs stack banging after the fixed frame header has
151    // been generated while the compilers perform it before. To maintain
152    // semantic consistency between interpreted and compiled frames, the
153    // method returns the Java sender of the current frame.
154    *fr = os::fetch_frame_from_context(uc);
155    if (!fr->is_first_java_frame()) {
156      assert(fr->safe_for_sender(thread), "Safety check");
157      *fr = fr->java_sender();
158    }
159  } else {
160    // More complex code with compiled code.
161    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
162    CodeBlob* cb = CodeCache::find_blob(pc);
163    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
164      // Not sure where the pc points to, fallback to default
165      // stack overflow handling. In compiled code, we bang before
166      // the frame is complete.
167      return false;
168    } else {
169      intptr_t* sp = os::Aix::ucontext_get_sp(uc);
170      *fr = frame(sp, (address)*sp);
171      if (!fr->is_java_frame()) {
172        assert(fr->safe_for_sender(thread), "Safety check");
173        assert(!fr->is_first_frame(), "Safety check");
174        *fr = fr->java_sender();
175      }
176    }
177  }
178  assert(fr->is_java_frame(), "Safety check");
179  return true;
180}
181
182frame os::get_sender_for_C_frame(frame* fr) {
183  if (*fr->sp() == NULL) {
184    // fr is the last C frame
185    return frame(NULL, NULL);
186  }
187  return frame(fr->sender_sp(), fr->sender_pc());
188}
189
190
191frame os::current_frame() {
192  intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
193  // hack.
194  frame topframe(csp, (address)0x8);
195  // Return sender of sender of current topframe which hopefully
196  // both have pc != NULL.
197  frame tmp = os::get_sender_for_C_frame(&topframe);
198  return os::get_sender_for_C_frame(&tmp);
199}
200
201// Utility functions
202
203extern "C" JNIEXPORT int
204JVM_handle_aix_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
205
206  ucontext_t* uc = (ucontext_t*) ucVoid;
207
208  Thread* t = Thread::current_or_null_safe();
209
210  SignalHandlerMark shm(t);
211
212  // Note: it's not uncommon that JNI code uses signal/sigset to install
213  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
214  // or have a SIGILL handler when detecting CPU type). When that happens,
215  // JVM_handle_aix_signal() might be invoked with junk info/ucVoid. To
216  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
217  // that do not require siginfo/ucontext first.
218
219  if (sig == SIGPIPE) {
220    if (os::Aix::chained_handler(sig, info, ucVoid)) {
221      return 1;
222    } else {
223      // Ignoring SIGPIPE - see bugs 4229104
224      return 1;
225    }
226  }
227
228  JavaThread* thread = NULL;
229  VMThread* vmthread = NULL;
230  if (os::Aix::signal_handlers_are_installed) {
231    if (t != NULL) {
232      if(t->is_Java_thread()) {
233        thread = (JavaThread*)t;
234      }
235      else if(t->is_VM_thread()) {
236        vmthread = (VMThread *)t;
237      }
238    }
239  }
240
241  // Decide if this trap can be handled by a stub.
242  address stub = NULL;
243
244  // retrieve program counter
245  address const pc = uc ? os::Aix::ucontext_get_pc(uc) : NULL;
246
247  // retrieve crash address
248  address const addr = info ? (const address) info->si_addr : NULL;
249
250  // SafeFetch 32 handling:
251  // - make it work if _thread is null
252  // - make it use the standard os::...::ucontext_get/set_pc APIs
253  if (uc) {
254    address const pc = os::Aix::ucontext_get_pc(uc);
255    if (pc && StubRoutines::is_safefetch_fault(pc)) {
256      os::Aix::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
257      return true;
258    }
259  }
260
261  if (info == NULL || uc == NULL || thread == NULL && vmthread == NULL) {
262    goto run_chained_handler;
263  }
264
265  // If we are a java thread...
266  if (thread != NULL) {
267
268    // Handle ALL stack overflow variations here
269    if (sig == SIGSEGV && thread->on_local_stack(addr)) {
270      // stack overflow
271      //
272      // If we are in a yellow zone and we are inside java, we disable the yellow zone and
273      // throw a stack overflow exception.
274      // If we are in native code or VM C code, we report-and-die. The original coding tried
275      // to continue with yellow zone disabled, but that doesn't buy us much and prevents
276      // hs_err_pid files.
277      if (thread->in_stack_yellow_reserved_zone(addr)) {
278        if (thread->thread_state() == _thread_in_Java) {
279            if (thread->in_stack_reserved_zone(addr)) {
280              frame fr;
281              if (os::Aix::get_frame_at_stack_banging_point(thread, uc, &fr)) {
282                assert(fr.is_java_frame(), "Must be a Javac frame");
283                frame activation =
284                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
285                if (activation.sp() != NULL) {
286                  thread->disable_stack_reserved_zone();
287                  if (activation.is_interpreted_frame()) {
288                    thread->set_reserved_stack_activation((address)activation.fp());
289                  } else {
290                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
291                  }
292                  return 1;
293                }
294              }
295            }
296          // Throw a stack overflow exception.
297          // Guard pages will be reenabled while unwinding the stack.
298          thread->disable_stack_yellow_reserved_zone();
299          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
300          goto run_stub;
301        } else {
302          // Thread was in the vm or native code. Return and try to finish.
303          thread->disable_stack_yellow_reserved_zone();
304          return 1;
305        }
306      } else if (thread->in_stack_red_zone(addr)) {
307        // Fatal red zone violation. Disable the guard pages and fall through
308        // to handle_unexpected_exception way down below.
309        thread->disable_stack_red_zone();
310        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
311        goto report_and_die;
312      } else {
313        // This means a segv happened inside our stack, but not in
314        // the guarded zone. I'd like to know when this happens,
315        tty->print_raw_cr("SIGSEGV happened inside stack but outside yellow and red zone.");
316        goto report_and_die;
317      }
318
319    } // end handle SIGSEGV inside stack boundaries
320
321    if (thread->thread_state() == _thread_in_Java) {
322      // Java thread running in Java code
323
324      // The following signals are used for communicating VM events:
325      //
326      // SIGILL: the compiler generates illegal opcodes
327      //   at places where it wishes to interrupt the VM:
328      //   Safepoints, Unreachable Code, Entry points of Zombie methods,
329      //    This results in a SIGILL with (*pc) == inserted illegal instruction.
330      //
331      //   (so, SIGILLs with a pc inside the zero page are real errors)
332      //
333      // SIGTRAP:
334      //   The ppc trap instruction raises a SIGTRAP and is very efficient if it
335      //   does not trap. It is used for conditional branches that are expected
336      //   to be never taken. These are:
337      //     - zombie methods
338      //     - IC (inline cache) misses.
339      //     - null checks leading to UncommonTraps.
340      //     - range checks leading to Uncommon Traps.
341      //   On Aix, these are especially null checks, as the ImplicitNullCheck
342      //   optimization works only in rare cases, as the page at address 0 is only
343      //   write protected.      //
344      //   Note: !UseSIGTRAP is used to prevent SIGTRAPS altogether, to facilitate debugging.
345      //
346      // SIGSEGV:
347      //   used for safe point polling:
348      //     To notify all threads that they have to reach a safe point, safe point polling is used:
349      //     All threads poll a certain mapped memory page. Normally, this page has read access.
350      //     If the VM wants to inform the threads about impending safe points, it puts this
351      //     page to read only ("poisens" the page), and the threads then reach a safe point.
352      //   used for null checks:
353      //     If the compiler finds a store it uses it for a null check. Unfortunately this
354      //     happens rarely.  In heap based and disjoint base compressd oop modes also loads
355      //     are used for null checks.
356
357      // A VM-related SIGILL may only occur if we are not in the zero page.
358      // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
359      // in the zero page, because it is filled with 0x0. We ignore
360      // explicit SIGILLs in the zero page.
361      if (sig == SIGILL && (pc < (address) 0x200)) {
362        if (TraceTraps) {
363          tty->print_raw_cr("SIGILL happened inside zero page.");
364        }
365        goto report_and_die;
366      }
367
368      // Handle signal from NativeJump::patch_verified_entry().
369      if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
370          (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
371        if (TraceTraps) {
372          tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
373        }
374        stub = SharedRuntime::get_handle_wrong_method_stub();
375        goto run_stub;
376      }
377
378      else if (sig == SIGSEGV && os::is_poll_address(addr)) {
379        if (TraceTraps) {
380          tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", pc);
381        }
382        stub = SharedRuntime::get_poll_stub(pc);
383        goto run_stub;
384      }
385
386      // SIGTRAP-based ic miss check in compiled code.
387      else if (sig == SIGTRAP && TrapBasedICMissChecks &&
388               nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
389        if (TraceTraps) {
390          tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
391        }
392        stub = SharedRuntime::get_ic_miss_stub();
393        goto run_stub;
394      }
395
396      // SIGTRAP-based implicit null check in compiled code.
397      else if (sig == SIGTRAP && TrapBasedNullChecks &&
398               nativeInstruction_at(pc)->is_sigtrap_null_check()) {
399        if (TraceTraps) {
400          tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
401        }
402        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
403        goto run_stub;
404      }
405
406      // SIGSEGV-based implicit null check in compiled code.
407      else if (sig == SIGSEGV && ImplicitNullChecks &&
408               CodeCache::contains((void*) pc) &&
409               !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
410        if (TraceTraps) {
411          tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc);
412        }
413        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
414      }
415
416#ifdef COMPILER2
417      // SIGTRAP-based implicit range check in compiled code.
418      else if (sig == SIGTRAP && TrapBasedRangeChecks &&
419               nativeInstruction_at(pc)->is_sigtrap_range_check()) {
420        if (TraceTraps) {
421          tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
422        }
423        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
424        goto run_stub;
425      }
426#endif
427
428      else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
429        if (TraceTraps) {
430          tty->print_raw_cr("Fix SIGFPE handler, trying divide by zero handler.");
431        }
432        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
433        goto run_stub;
434      }
435
436      else if (sig == SIGBUS) {
437        // BugId 4454115: A read from a MappedByteBuffer can fault here if the
438        // underlying file has been truncated. Do not crash the VM in such a case.
439        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
440        CompiledMethod* nm = cb->as_compiled_method_or_null();
441        if (nm != NULL && nm->has_unsafe_access()) {
442          address next_pc = pc + 4;
443          next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
444          os::Aix::ucontext_set_pc(uc, next_pc);
445          return 1;
446        }
447      }
448    }
449
450    else { // thread->thread_state() != _thread_in_Java
451      // Detect CPU features. This is only done at the very start of the VM. Later, the
452      // VM_Version::is_determine_features_test_running() flag should be false.
453
454      if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
455        // SIGILL must be caused by VM_Version::determine_features().
456        *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
457                        // flushing of icache is not necessary.
458        stub = pc + 4;  // continue with next instruction.
459        goto run_stub;
460      }
461      else if (thread->thread_state() == _thread_in_vm &&
462               sig == SIGBUS && thread->doing_unsafe_access()) {
463        address next_pc = pc + 4;
464        next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
465        os::Aix::ucontext_set_pc(uc, next_pc);
466        return 1;
467      }
468    }
469
470    // Check to see if we caught the safepoint code in the
471    // process of write protecting the memory serialization page.
472    // It write enables the page immediately after protecting it
473    // so we can just return to retry the write.
474    if ((sig == SIGSEGV) &&
475        os::is_memory_serialize_page(thread, addr)) {
476      // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
477      // Block current thread until the memory serialize page permission restored.
478      os::block_on_serialize_page_trap();
479      return true;
480    }
481  }
482
483run_stub:
484
485  // One of the above code blocks ininitalized the stub, so we want to
486  // delegate control to that stub.
487  if (stub != NULL) {
488    // Save all thread context in case we need to restore it.
489    if (thread != NULL) thread->set_saved_exception_pc(pc);
490    os::Aix::ucontext_set_pc(uc, stub);
491    return 1;
492  }
493
494run_chained_handler:
495
496  // signal-chaining
497  if (os::Aix::chained_handler(sig, info, ucVoid)) {
498    return 1;
499  }
500  if (!abort_if_unrecognized) {
501    // caller wants another chance, so give it to him
502    return 0;
503  }
504
505report_and_die:
506
507  // Use sigthreadmask instead of sigprocmask on AIX and unmask current signal.
508  sigset_t newset;
509  sigemptyset(&newset);
510  sigaddset(&newset, sig);
511  sigthreadmask(SIG_UNBLOCK, &newset, NULL);
512
513  VMError::report_and_die(t, sig, pc, info, ucVoid);
514
515  ShouldNotReachHere();
516  return 0;
517}
518
519void os::Aix::init_thread_fpu_state(void) {
520#if !defined(USE_XLC_BUILTINS)
521  // Disable FP exceptions.
522  __asm__ __volatile__ ("mtfsfi 6,0");
523#else
524  __mtfsfi(6, 0);
525#endif
526}
527
528////////////////////////////////////////////////////////////////////////////////
529// thread stack
530
531// Minimum usable stack sizes required to get to user code. Space for
532// HotSpot guard pages is added later.
533size_t os::Posix::_compiler_thread_min_stack_allowed = 192 * K;
534size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
535size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
536
537// Return default stack size for thr_type.
538size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
539  // Default stack size (compiler thread needs larger stack).
540  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
541  return s;
542}
543
544/////////////////////////////////////////////////////////////////////////////
545// helper functions for fatal error handler
546
547void os::print_context(outputStream *st, const void *context) {
548  if (context == NULL) return;
549
550  const ucontext_t* uc = (const ucontext_t*)context;
551
552  st->print_cr("Registers:");
553  st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.iar);
554  st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.lr);
555  st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.jmp_context.ctr);
556  st->cr();
557  for (int i = 0; i < 32; i++) {
558    st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.jmp_context.gpr[i]);
559    if (i % 3 == 2) st->cr();
560  }
561  st->cr();
562  st->cr();
563
564  intptr_t *sp = (intptr_t *)os::Aix::ucontext_get_sp(uc);
565  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
566  print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
567  st->cr();
568
569  // Note: it may be unsafe to inspect memory near pc. For example, pc may
570  // point to garbage if entry point in an nmethod is corrupted. Leave
571  // this at the end, and hope for the best.
572  address pc = os::Aix::ucontext_get_pc(uc);
573  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
574  print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
575  st->cr();
576
577  // Try to decode the instructions.
578  st->print_cr("Decoded instructions: (pc=" PTR_FORMAT ")", pc);
579  st->print("<TODO: PPC port - print_context>");
580  // TODO: PPC port Disassembler::decode(pc, 16, 16, st);
581  st->cr();
582}
583
584void os::print_register_info(outputStream *st, const void *context) {
585  if (context == NULL) return;
586
587  ucontext_t *uc = (ucontext_t*)context;
588
589  st->print_cr("Register to memory mapping:");
590  st->cr();
591
592  st->print("pc ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.iar);
593  st->print("lr ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.lr);
594  st->print("sp ="); print_location(st, (intptr_t)os::Aix::ucontext_get_sp(uc));
595  for (int i = 0; i < 32; i++) {
596    st->print("r%-2d=", i);
597    print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.gpr[i]);
598  }
599
600  st->cr();
601}
602
603extern "C" {
604  int SpinPause() {
605    return 0;
606  }
607}
608
609#ifndef PRODUCT
610void os::verify_stack_alignment() {
611  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
612}
613#endif
614
615int os::extra_bang_size_in_bytes() {
616  // PPC does not require the additional stack bang.
617  return 0;
618}
619
620bool os::platform_print_native_stack(outputStream* st, void* context, char *buf, int buf_size) {
621  AixNativeCallstack::print_callstack_for_context(st, (const ucontext_t*)context, true, buf, (size_t) buf_size);
622  return true;
623}
624
625
626