os_solaris.cpp revision 7371:f18a1b5cbf0b
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <dlfcn.h>
74# include <errno.h>
75# include <exception>
76# include <link.h>
77# include <poll.h>
78# include <pthread.h>
79# include <pwd.h>
80# include <schedctl.h>
81# include <setjmp.h>
82# include <signal.h>
83# include <stdio.h>
84# include <alloca.h>
85# include <sys/filio.h>
86# include <sys/ipc.h>
87# include <sys/lwp.h>
88# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
89# include <sys/mman.h>
90# include <sys/processor.h>
91# include <sys/procset.h>
92# include <sys/pset.h>
93# include <sys/resource.h>
94# include <sys/shm.h>
95# include <sys/socket.h>
96# include <sys/stat.h>
97# include <sys/systeminfo.h>
98# include <sys/time.h>
99# include <sys/times.h>
100# include <sys/types.h>
101# include <sys/wait.h>
102# include <sys/utsname.h>
103# include <thread.h>
104# include <unistd.h>
105# include <sys/priocntl.h>
106# include <sys/rtpriocntl.h>
107# include <sys/tspriocntl.h>
108# include <sys/iapriocntl.h>
109# include <sys/fxpriocntl.h>
110# include <sys/loadavg.h>
111# include <string.h>
112# include <stdio.h>
113
114# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
115# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
116
117#define MAX_PATH (2 * K)
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122
123// Here are some liblgrp types from sys/lgrp_user.h to be able to
124// compile on older systems without this header file.
125
126#ifndef MADV_ACCESS_LWP
127  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
128#endif
129#ifndef MADV_ACCESS_MANY
130  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
131#endif
132
133#ifndef LGRP_RSRC_CPU
134  #define LGRP_RSRC_CPU      0       /* CPU resources */
135#endif
136#ifndef LGRP_RSRC_MEM
137  #define LGRP_RSRC_MEM      1       /* memory resources */
138#endif
139
140// see thr_setprio(3T) for the basis of these numbers
141#define MinimumPriority 0
142#define NormalPriority  64
143#define MaximumPriority 127
144
145// Values for ThreadPriorityPolicy == 1
146int prio_policy1[CriticalPriority+1] = {
147  -99999,  0, 16,  32,  48,  64,
148          80, 96, 112, 124, 127, 127 };
149
150// System parameters used internally
151static clock_t clock_tics_per_sec = 100;
152
153// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
154static bool enabled_extended_FILE_stdio = false;
155
156// For diagnostics to print a message once. see run_periodic_checks
157static bool check_addr0_done = false;
158static sigset_t check_signal_done;
159static bool check_signals = true;
160
161address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
162address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
163
164address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
165
166
167// "default" initializers for missing libc APIs
168extern "C" {
169  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
170  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
171
172  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
173  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
174}
175
176// "default" initializers for pthread-based synchronization
177extern "C" {
178  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
179  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
180}
181
182static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
183
184// Thread Local Storage
185// This is common to all Solaris platforms so it is defined here,
186// in this common file.
187// The declarations are in the os_cpu threadLS*.hpp files.
188//
189// Static member initialization for TLS
190Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
191
192#ifndef PRODUCT
193  #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
194
195int ThreadLocalStorage::_tcacheHit = 0;
196int ThreadLocalStorage::_tcacheMiss = 0;
197
198void ThreadLocalStorage::print_statistics() {
199  int total = _tcacheMiss+_tcacheHit;
200  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
201                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
202}
203  #undef _PCT
204#endif // PRODUCT
205
206Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
207                                                        int index) {
208  Thread *thread = get_thread_slow();
209  if (thread != NULL) {
210    address sp = os::current_stack_pointer();
211    guarantee(thread->_stack_base == NULL ||
212              (sp <= thread->_stack_base &&
213              sp >= thread->_stack_base - thread->_stack_size) ||
214              is_error_reported(),
215              "sp must be inside of selected thread stack");
216
217    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
218    _get_thread_cache[index] = thread;
219  }
220  return thread;
221}
222
223
224static const double all_zero[sizeof(Thread) / sizeof(double) + 1] = {0};
225#define NO_CACHED_THREAD ((Thread*)all_zero)
226
227void ThreadLocalStorage::pd_set_thread(Thread* thread) {
228
229  // Store the new value before updating the cache to prevent a race
230  // between get_thread_via_cache_slowly() and this store operation.
231  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
232
233  // Update thread cache with new thread if setting on thread create,
234  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
235  uintptr_t raw = pd_raw_thread_id();
236  int ix = pd_cache_index(raw);
237  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
238}
239
240void ThreadLocalStorage::pd_init() {
241  for (int i = 0; i < _pd_cache_size; i++) {
242    _get_thread_cache[i] = NO_CACHED_THREAD;
243  }
244}
245
246// Invalidate all the caches (happens to be the same as pd_init).
247void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
248
249#undef NO_CACHED_THREAD
250
251// END Thread Local Storage
252
253static inline size_t adjust_stack_size(address base, size_t size) {
254  if ((ssize_t)size < 0) {
255    // 4759953: Compensate for ridiculous stack size.
256    size = max_intx;
257  }
258  if (size > (size_t)base) {
259    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
260    size = (size_t)base;
261  }
262  return size;
263}
264
265static inline stack_t get_stack_info() {
266  stack_t st;
267  int retval = thr_stksegment(&st);
268  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
269  assert(retval == 0, "incorrect return value from thr_stksegment");
270  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
271  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
272  return st;
273}
274
275address os::current_stack_base() {
276  int r = thr_main();
277  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
278  bool is_primordial_thread = r;
279
280  // Workaround 4352906, avoid calls to thr_stksegment by
281  // thr_main after the first one (it looks like we trash
282  // some data, causing the value for ss_sp to be incorrect).
283  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
284    stack_t st = get_stack_info();
285    if (is_primordial_thread) {
286      // cache initial value of stack base
287      os::Solaris::_main_stack_base = (address)st.ss_sp;
288    }
289    return (address)st.ss_sp;
290  } else {
291    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
292    return os::Solaris::_main_stack_base;
293  }
294}
295
296size_t os::current_stack_size() {
297  size_t size;
298
299  int r = thr_main();
300  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
301  if (!r) {
302    size = get_stack_info().ss_size;
303  } else {
304    struct rlimit limits;
305    getrlimit(RLIMIT_STACK, &limits);
306    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
307  }
308  // base may not be page aligned
309  address base = current_stack_base();
310  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
311  return (size_t)(base - bottom);
312}
313
314struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
315  return localtime_r(clock, res);
316}
317
318void os::Solaris::try_enable_extended_io() {
319  typedef int (*enable_extended_FILE_stdio_t)(int, int);
320
321  if (!UseExtendedFileIO) {
322    return;
323  }
324
325  enable_extended_FILE_stdio_t enabler =
326    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
327                                         "enable_extended_FILE_stdio");
328  if (enabler) {
329    enabler(-1, -1);
330  }
331}
332
333static int _processors_online = 0;
334
335jint os::Solaris::_os_thread_limit = 0;
336volatile jint os::Solaris::_os_thread_count = 0;
337
338julong os::available_memory() {
339  return Solaris::available_memory();
340}
341
342julong os::Solaris::available_memory() {
343  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
344}
345
346julong os::Solaris::_physical_memory = 0;
347
348julong os::physical_memory() {
349  return Solaris::physical_memory();
350}
351
352static hrtime_t first_hrtime = 0;
353static const hrtime_t hrtime_hz = 1000*1000*1000;
354static volatile hrtime_t max_hrtime = 0;
355
356
357void os::Solaris::initialize_system_info() {
358  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
359  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
360  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
361                                     (julong)sysconf(_SC_PAGESIZE);
362}
363
364int os::active_processor_count() {
365  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
366  pid_t pid = getpid();
367  psetid_t pset = PS_NONE;
368  // Are we running in a processor set or is there any processor set around?
369  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
370    uint_t pset_cpus;
371    // Query the number of cpus available to us.
372    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
373      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
374      _processors_online = pset_cpus;
375      return pset_cpus;
376    }
377  }
378  // Otherwise return number of online cpus
379  return online_cpus;
380}
381
382static bool find_processors_in_pset(psetid_t        pset,
383                                    processorid_t** id_array,
384                                    uint_t*         id_length) {
385  bool result = false;
386  // Find the number of processors in the processor set.
387  if (pset_info(pset, NULL, id_length, NULL) == 0) {
388    // Make up an array to hold their ids.
389    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
390    // Fill in the array with their processor ids.
391    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
392      result = true;
393    }
394  }
395  return result;
396}
397
398// Callers of find_processors_online() must tolerate imprecise results --
399// the system configuration can change asynchronously because of DR
400// or explicit psradm operations.
401//
402// We also need to take care that the loop (below) terminates as the
403// number of processors online can change between the _SC_NPROCESSORS_ONLN
404// request and the loop that builds the list of processor ids.   Unfortunately
405// there's no reliable way to determine the maximum valid processor id,
406// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
407// man pages, which claim the processor id set is "sparse, but
408// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
409// exit the loop.
410//
411// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
412// not available on S8.0.
413
414static bool find_processors_online(processorid_t** id_array,
415                                   uint*           id_length) {
416  const processorid_t MAX_PROCESSOR_ID = 100000;
417  // Find the number of processors online.
418  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
419  // Make up an array to hold their ids.
420  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
421  // Processors need not be numbered consecutively.
422  long found = 0;
423  processorid_t next = 0;
424  while (found < *id_length && next < MAX_PROCESSOR_ID) {
425    processor_info_t info;
426    if (processor_info(next, &info) == 0) {
427      // NB, PI_NOINTR processors are effectively online ...
428      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
429        (*id_array)[found] = next;
430        found += 1;
431      }
432    }
433    next += 1;
434  }
435  if (found < *id_length) {
436    // The loop above didn't identify the expected number of processors.
437    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
438    // and re-running the loop, above, but there's no guarantee of progress
439    // if the system configuration is in flux.  Instead, we just return what
440    // we've got.  Note that in the worst case find_processors_online() could
441    // return an empty set.  (As a fall-back in the case of the empty set we
442    // could just return the ID of the current processor).
443    *id_length = found;
444  }
445
446  return true;
447}
448
449static bool assign_distribution(processorid_t* id_array,
450                                uint           id_length,
451                                uint*          distribution,
452                                uint           distribution_length) {
453  // We assume we can assign processorid_t's to uint's.
454  assert(sizeof(processorid_t) == sizeof(uint),
455         "can't convert processorid_t to uint");
456  // Quick check to see if we won't succeed.
457  if (id_length < distribution_length) {
458    return false;
459  }
460  // Assign processor ids to the distribution.
461  // Try to shuffle processors to distribute work across boards,
462  // assuming 4 processors per board.
463  const uint processors_per_board = ProcessDistributionStride;
464  // Find the maximum processor id.
465  processorid_t max_id = 0;
466  for (uint m = 0; m < id_length; m += 1) {
467    max_id = MAX2(max_id, id_array[m]);
468  }
469  // The next id, to limit loops.
470  const processorid_t limit_id = max_id + 1;
471  // Make up markers for available processors.
472  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
473  for (uint c = 0; c < limit_id; c += 1) {
474    available_id[c] = false;
475  }
476  for (uint a = 0; a < id_length; a += 1) {
477    available_id[id_array[a]] = true;
478  }
479  // Step by "boards", then by "slot", copying to "assigned".
480  // NEEDS_CLEANUP: The assignment of processors should be stateful,
481  //                remembering which processors have been assigned by
482  //                previous calls, etc., so as to distribute several
483  //                independent calls of this method.  What we'd like is
484  //                It would be nice to have an API that let us ask
485  //                how many processes are bound to a processor,
486  //                but we don't have that, either.
487  //                In the short term, "board" is static so that
488  //                subsequent distributions don't all start at board 0.
489  static uint board = 0;
490  uint assigned = 0;
491  // Until we've found enough processors ....
492  while (assigned < distribution_length) {
493    // ... find the next available processor in the board.
494    for (uint slot = 0; slot < processors_per_board; slot += 1) {
495      uint try_id = board * processors_per_board + slot;
496      if ((try_id < limit_id) && (available_id[try_id] == true)) {
497        distribution[assigned] = try_id;
498        available_id[try_id] = false;
499        assigned += 1;
500        break;
501      }
502    }
503    board += 1;
504    if (board * processors_per_board + 0 >= limit_id) {
505      board = 0;
506    }
507  }
508  if (available_id != NULL) {
509    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
510  }
511  return true;
512}
513
514void os::set_native_thread_name(const char *name) {
515  // Not yet implemented.
516  return;
517}
518
519bool os::distribute_processes(uint length, uint* distribution) {
520  bool result = false;
521  // Find the processor id's of all the available CPUs.
522  processorid_t* id_array  = NULL;
523  uint           id_length = 0;
524  // There are some races between querying information and using it,
525  // since processor sets can change dynamically.
526  psetid_t pset = PS_NONE;
527  // Are we running in a processor set?
528  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
529    result = find_processors_in_pset(pset, &id_array, &id_length);
530  } else {
531    result = find_processors_online(&id_array, &id_length);
532  }
533  if (result == true) {
534    if (id_length >= length) {
535      result = assign_distribution(id_array, id_length, distribution, length);
536    } else {
537      result = false;
538    }
539  }
540  if (id_array != NULL) {
541    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
542  }
543  return result;
544}
545
546bool os::bind_to_processor(uint processor_id) {
547  // We assume that a processorid_t can be stored in a uint.
548  assert(sizeof(uint) == sizeof(processorid_t),
549         "can't convert uint to processorid_t");
550  int bind_result =
551    processor_bind(P_LWPID,                       // bind LWP.
552                   P_MYID,                        // bind current LWP.
553                   (processorid_t) processor_id,  // id.
554                   NULL);                         // don't return old binding.
555  return (bind_result == 0);
556}
557
558bool os::getenv(const char* name, char* buffer, int len) {
559  char* val = ::getenv(name);
560  if (val == NULL || strlen(val) + 1 > len) {
561    if (len > 0) buffer[0] = 0; // return a null string
562    return false;
563  }
564  strcpy(buffer, val);
565  return true;
566}
567
568
569// Return true if user is running as root.
570
571bool os::have_special_privileges() {
572  static bool init = false;
573  static bool privileges = false;
574  if (!init) {
575    privileges = (getuid() != geteuid()) || (getgid() != getegid());
576    init = true;
577  }
578  return privileges;
579}
580
581
582void os::init_system_properties_values() {
583  // The next steps are taken in the product version:
584  //
585  // Obtain the JAVA_HOME value from the location of libjvm.so.
586  // This library should be located at:
587  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
588  //
589  // If "/jre/lib/" appears at the right place in the path, then we
590  // assume libjvm.so is installed in a JDK and we use this path.
591  //
592  // Otherwise exit with message: "Could not create the Java virtual machine."
593  //
594  // The following extra steps are taken in the debugging version:
595  //
596  // If "/jre/lib/" does NOT appear at the right place in the path
597  // instead of exit check for $JAVA_HOME environment variable.
598  //
599  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
600  // then we append a fake suffix "hotspot/libjvm.so" to this path so
601  // it looks like libjvm.so is installed there
602  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
603  //
604  // Otherwise exit.
605  //
606  // Important note: if the location of libjvm.so changes this
607  // code needs to be changed accordingly.
608
609// Base path of extensions installed on the system.
610#define SYS_EXT_DIR     "/usr/jdk/packages"
611#define EXTENSIONS_DIR  "/lib/ext"
612#define ENDORSED_DIR    "/lib/endorsed"
613
614  char cpu_arch[12];
615  // Buffer that fits several sprintfs.
616  // Note that the space for the colon and the trailing null are provided
617  // by the nulls included by the sizeof operator.
618  const size_t bufsize =
619    MAX4((size_t)MAXPATHLEN,  // For dll_dir & friends.
620         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
621         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
622         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
623  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
624
625  // sysclasspath, java_home, dll_dir
626  {
627    char *pslash;
628    os::jvm_path(buf, bufsize);
629
630    // Found the full path to libjvm.so.
631    // Now cut the path to <java_home>/jre if we can.
632    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
633    pslash = strrchr(buf, '/');
634    if (pslash != NULL) {
635      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
636    }
637    Arguments::set_dll_dir(buf);
638
639    if (pslash != NULL) {
640      pslash = strrchr(buf, '/');
641      if (pslash != NULL) {
642        *pslash = '\0';          // Get rid of /<arch>.
643        pslash = strrchr(buf, '/');
644        if (pslash != NULL) {
645          *pslash = '\0';        // Get rid of /lib.
646        }
647      }
648    }
649    Arguments::set_java_home(buf);
650    set_boot_path('/', ':');
651  }
652
653  // Where to look for native libraries.
654  {
655    // Use dlinfo() to determine the correct java.library.path.
656    //
657    // If we're launched by the Java launcher, and the user
658    // does not set java.library.path explicitly on the commandline,
659    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
660    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
661    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
662    // /usr/lib), which is exactly what we want.
663    //
664    // If the user does set java.library.path, it completely
665    // overwrites this setting, and always has.
666    //
667    // If we're not launched by the Java launcher, we may
668    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
669    // settings.  Again, dlinfo does exactly what we want.
670
671    Dl_serinfo     info_sz, *info = &info_sz;
672    Dl_serpath     *path;
673    char           *library_path;
674    char           *common_path = buf;
675
676    // Determine search path count and required buffer size.
677    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
678      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
679      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
680    }
681
682    // Allocate new buffer and initialize.
683    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
684    info->dls_size = info_sz.dls_size;
685    info->dls_cnt = info_sz.dls_cnt;
686
687    // Obtain search path information.
688    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
689      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
690      FREE_C_HEAP_ARRAY(char, info, mtInternal);
691      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
692    }
693
694    path = &info->dls_serpath[0];
695
696    // Note: Due to a legacy implementation, most of the library path
697    // is set in the launcher. This was to accomodate linking restrictions
698    // on legacy Solaris implementations (which are no longer supported).
699    // Eventually, all the library path setting will be done here.
700    //
701    // However, to prevent the proliferation of improperly built native
702    // libraries, the new path component /usr/jdk/packages is added here.
703
704    // Determine the actual CPU architecture.
705    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
706#ifdef _LP64
707    // If we are a 64-bit vm, perform the following translations:
708    //   sparc   -> sparcv9
709    //   i386    -> amd64
710    if (strcmp(cpu_arch, "sparc") == 0) {
711      strcat(cpu_arch, "v9");
712    } else if (strcmp(cpu_arch, "i386") == 0) {
713      strcpy(cpu_arch, "amd64");
714    }
715#endif
716
717    // Construct the invariant part of ld_library_path.
718    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
719
720    // Struct size is more than sufficient for the path components obtained
721    // through the dlinfo() call, so only add additional space for the path
722    // components explicitly added here.
723    size_t library_path_size = info->dls_size + strlen(common_path);
724    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
725    library_path[0] = '\0';
726
727    // Construct the desired Java library path from the linker's library
728    // search path.
729    //
730    // For compatibility, it is optimal that we insert the additional path
731    // components specific to the Java VM after those components specified
732    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
733    // infrastructure.
734    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
735      strcpy(library_path, common_path);
736    } else {
737      int inserted = 0;
738      int i;
739      for (i = 0; i < info->dls_cnt; i++, path++) {
740        uint_t flags = path->dls_flags & LA_SER_MASK;
741        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
742          strcat(library_path, common_path);
743          strcat(library_path, os::path_separator());
744          inserted = 1;
745        }
746        strcat(library_path, path->dls_name);
747        strcat(library_path, os::path_separator());
748      }
749      // Eliminate trailing path separator.
750      library_path[strlen(library_path)-1] = '\0';
751    }
752
753    // happens before argument parsing - can't use a trace flag
754    // tty->print_raw("init_system_properties_values: native lib path: ");
755    // tty->print_raw_cr(library_path);
756
757    // Callee copies into its own buffer.
758    Arguments::set_library_path(library_path);
759
760    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
761    FREE_C_HEAP_ARRAY(char, info, mtInternal);
762  }
763
764  // Extensions directories.
765  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
766  Arguments::set_ext_dirs(buf);
767
768  // Endorsed standards default directory.
769  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
770  Arguments::set_endorsed_dirs(buf);
771
772  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
773
774#undef SYS_EXT_DIR
775#undef EXTENSIONS_DIR
776#undef ENDORSED_DIR
777}
778
779void os::breakpoint() {
780  BREAKPOINT;
781}
782
783bool os::obsolete_option(const JavaVMOption *option) {
784  if (!strncmp(option->optionString, "-Xt", 3)) {
785    return true;
786  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
787    return true;
788  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
789    return true;
790  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
791    return true;
792  }
793  return false;
794}
795
796bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
797  address  stackStart  = (address)thread->stack_base();
798  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
799  if (sp < stackStart && sp >= stackEnd) return true;
800  return false;
801}
802
803extern "C" void breakpoint() {
804  // use debugger to set breakpoint here
805}
806
807static thread_t main_thread;
808
809// Thread start routine for all new Java threads
810extern "C" void* java_start(void* thread_addr) {
811  // Try to randomize the cache line index of hot stack frames.
812  // This helps when threads of the same stack traces evict each other's
813  // cache lines. The threads can be either from the same JVM instance, or
814  // from different JVM instances. The benefit is especially true for
815  // processors with hyperthreading technology.
816  static int counter = 0;
817  int pid = os::current_process_id();
818  alloca(((pid ^ counter++) & 7) * 128);
819
820  int prio;
821  Thread* thread = (Thread*)thread_addr;
822  OSThread* osthr = thread->osthread();
823
824  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
825  thread->_schedctl = (void *) schedctl_init();
826
827  if (UseNUMA) {
828    int lgrp_id = os::numa_get_group_id();
829    if (lgrp_id != -1) {
830      thread->set_lgrp_id(lgrp_id);
831    }
832  }
833
834  // If the creator called set priority before we started,
835  // we need to call set_native_priority now that we have an lwp.
836  // We used to get the priority from thr_getprio (we called
837  // thr_setprio way back in create_thread) and pass it to
838  // set_native_priority, but Solaris scales the priority
839  // in java_to_os_priority, so when we read it back here,
840  // we pass trash to set_native_priority instead of what's
841  // in java_to_os_priority. So we save the native priority
842  // in the osThread and recall it here.
843
844  if (osthr->thread_id() != -1) {
845    if (UseThreadPriorities) {
846      int prio = osthr->native_priority();
847      if (ThreadPriorityVerbose) {
848        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
849                      INTPTR_FORMAT ", setting priority: %d\n",
850                      osthr->thread_id(), osthr->lwp_id(), prio);
851      }
852      os::set_native_priority(thread, prio);
853    }
854  } else if (ThreadPriorityVerbose) {
855    warning("Can't set priority in _start routine, thread id hasn't been set\n");
856  }
857
858  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
859
860  // initialize signal mask for this thread
861  os::Solaris::hotspot_sigmask(thread);
862
863  thread->run();
864
865  // One less thread is executing
866  // When the VMThread gets here, the main thread may have already exited
867  // which frees the CodeHeap containing the Atomic::dec code
868  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
869    Atomic::dec(&os::Solaris::_os_thread_count);
870  }
871
872  if (UseDetachedThreads) {
873    thr_exit(NULL);
874    ShouldNotReachHere();
875  }
876  return NULL;
877}
878
879static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
880  // Allocate the OSThread object
881  OSThread* osthread = new OSThread(NULL, NULL);
882  if (osthread == NULL) return NULL;
883
884  // Store info on the Solaris thread into the OSThread
885  osthread->set_thread_id(thread_id);
886  osthread->set_lwp_id(_lwp_self());
887  thread->_schedctl = (void *) schedctl_init();
888
889  if (UseNUMA) {
890    int lgrp_id = os::numa_get_group_id();
891    if (lgrp_id != -1) {
892      thread->set_lgrp_id(lgrp_id);
893    }
894  }
895
896  if (ThreadPriorityVerbose) {
897    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
898                  osthread->thread_id(), osthread->lwp_id());
899  }
900
901  // Initial thread state is INITIALIZED, not SUSPENDED
902  osthread->set_state(INITIALIZED);
903
904  return osthread;
905}
906
907void os::Solaris::hotspot_sigmask(Thread* thread) {
908  //Save caller's signal mask
909  sigset_t sigmask;
910  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
911  OSThread *osthread = thread->osthread();
912  osthread->set_caller_sigmask(sigmask);
913
914  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
915  if (!ReduceSignalUsage) {
916    if (thread->is_VM_thread()) {
917      // Only the VM thread handles BREAK_SIGNAL ...
918      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
919    } else {
920      // ... all other threads block BREAK_SIGNAL
921      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
922      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
923    }
924  }
925}
926
927bool os::create_attached_thread(JavaThread* thread) {
928#ifdef ASSERT
929  thread->verify_not_published();
930#endif
931  OSThread* osthread = create_os_thread(thread, thr_self());
932  if (osthread == NULL) {
933    return false;
934  }
935
936  // Initial thread state is RUNNABLE
937  osthread->set_state(RUNNABLE);
938  thread->set_osthread(osthread);
939
940  // initialize signal mask for this thread
941  // and save the caller's signal mask
942  os::Solaris::hotspot_sigmask(thread);
943
944  return true;
945}
946
947bool os::create_main_thread(JavaThread* thread) {
948#ifdef ASSERT
949  thread->verify_not_published();
950#endif
951  if (_starting_thread == NULL) {
952    _starting_thread = create_os_thread(thread, main_thread);
953    if (_starting_thread == NULL) {
954      return false;
955    }
956  }
957
958  // The primodial thread is runnable from the start
959  _starting_thread->set_state(RUNNABLE);
960
961  thread->set_osthread(_starting_thread);
962
963  // initialize signal mask for this thread
964  // and save the caller's signal mask
965  os::Solaris::hotspot_sigmask(thread);
966
967  return true;
968}
969
970
971bool os::create_thread(Thread* thread, ThreadType thr_type,
972                       size_t stack_size) {
973  // Allocate the OSThread object
974  OSThread* osthread = new OSThread(NULL, NULL);
975  if (osthread == NULL) {
976    return false;
977  }
978
979  if (ThreadPriorityVerbose) {
980    char *thrtyp;
981    switch (thr_type) {
982    case vm_thread:
983      thrtyp = (char *)"vm";
984      break;
985    case cgc_thread:
986      thrtyp = (char *)"cgc";
987      break;
988    case pgc_thread:
989      thrtyp = (char *)"pgc";
990      break;
991    case java_thread:
992      thrtyp = (char *)"java";
993      break;
994    case compiler_thread:
995      thrtyp = (char *)"compiler";
996      break;
997    case watcher_thread:
998      thrtyp = (char *)"watcher";
999      break;
1000    default:
1001      thrtyp = (char *)"unknown";
1002      break;
1003    }
1004    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1005  }
1006
1007  // Calculate stack size if it's not specified by caller.
1008  if (stack_size == 0) {
1009    // The default stack size 1M (2M for LP64).
1010    stack_size = (BytesPerWord >> 2) * K * K;
1011
1012    switch (thr_type) {
1013    case os::java_thread:
1014      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1015      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1016      break;
1017    case os::compiler_thread:
1018      if (CompilerThreadStackSize > 0) {
1019        stack_size = (size_t)(CompilerThreadStackSize * K);
1020        break;
1021      } // else fall through:
1022        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1023    case os::vm_thread:
1024    case os::pgc_thread:
1025    case os::cgc_thread:
1026    case os::watcher_thread:
1027      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1028      break;
1029    }
1030  }
1031  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1032
1033  // Initial state is ALLOCATED but not INITIALIZED
1034  osthread->set_state(ALLOCATED);
1035
1036  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1037    // We got lots of threads. Check if we still have some address space left.
1038    // Need to be at least 5Mb of unreserved address space. We do check by
1039    // trying to reserve some.
1040    const size_t VirtualMemoryBangSize = 20*K*K;
1041    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1042    if (mem == NULL) {
1043      delete osthread;
1044      return false;
1045    } else {
1046      // Release the memory again
1047      os::release_memory(mem, VirtualMemoryBangSize);
1048    }
1049  }
1050
1051  // Setup osthread because the child thread may need it.
1052  thread->set_osthread(osthread);
1053
1054  // Create the Solaris thread
1055  thread_t tid = 0;
1056  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1057  int      status;
1058
1059  // Mark that we don't have an lwp or thread id yet.
1060  // In case we attempt to set the priority before the thread starts.
1061  osthread->set_lwp_id(-1);
1062  osthread->set_thread_id(-1);
1063
1064  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1065  if (status != 0) {
1066    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1067      perror("os::create_thread");
1068    }
1069    thread->set_osthread(NULL);
1070    // Need to clean up stuff we've allocated so far
1071    delete osthread;
1072    return false;
1073  }
1074
1075  Atomic::inc(&os::Solaris::_os_thread_count);
1076
1077  // Store info on the Solaris thread into the OSThread
1078  osthread->set_thread_id(tid);
1079
1080  // Remember that we created this thread so we can set priority on it
1081  osthread->set_vm_created();
1082
1083  // Initial thread state is INITIALIZED, not SUSPENDED
1084  osthread->set_state(INITIALIZED);
1085
1086  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1087  return true;
1088}
1089
1090// defined for >= Solaris 10. This allows builds on earlier versions
1091// of Solaris to take advantage of the newly reserved Solaris JVM signals
1092// With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1093// and -XX:+UseAltSigs does nothing since these should have no conflict
1094//
1095#if !defined(SIGJVM1)
1096  #define SIGJVM1 39
1097  #define SIGJVM2 40
1098#endif
1099
1100debug_only(static bool signal_sets_initialized = false);
1101static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1102int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1103int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1104
1105bool os::Solaris::is_sig_ignored(int sig) {
1106  struct sigaction oact;
1107  sigaction(sig, (struct sigaction*)NULL, &oact);
1108  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1109                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1110  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1111    return true;
1112  } else {
1113    return false;
1114  }
1115}
1116
1117// Note: SIGRTMIN is a macro that calls sysconf() so it will
1118// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1119static bool isJVM1available() {
1120  return SIGJVM1 < SIGRTMIN;
1121}
1122
1123void os::Solaris::signal_sets_init() {
1124  // Should also have an assertion stating we are still single-threaded.
1125  assert(!signal_sets_initialized, "Already initialized");
1126  // Fill in signals that are necessarily unblocked for all threads in
1127  // the VM. Currently, we unblock the following signals:
1128  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1129  //                         by -Xrs (=ReduceSignalUsage));
1130  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1131  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1132  // the dispositions or masks wrt these signals.
1133  // Programs embedding the VM that want to use the above signals for their
1134  // own purposes must, at this time, use the "-Xrs" option to prevent
1135  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1136  // (See bug 4345157, and other related bugs).
1137  // In reality, though, unblocking these signals is really a nop, since
1138  // these signals are not blocked by default.
1139  sigemptyset(&unblocked_sigs);
1140  sigemptyset(&allowdebug_blocked_sigs);
1141  sigaddset(&unblocked_sigs, SIGILL);
1142  sigaddset(&unblocked_sigs, SIGSEGV);
1143  sigaddset(&unblocked_sigs, SIGBUS);
1144  sigaddset(&unblocked_sigs, SIGFPE);
1145
1146  if (isJVM1available) {
1147    os::Solaris::set_SIGinterrupt(SIGJVM1);
1148    os::Solaris::set_SIGasync(SIGJVM2);
1149  } else if (UseAltSigs) {
1150    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1151    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1152  } else {
1153    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1154    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1155  }
1156
1157  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1158  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1159
1160  if (!ReduceSignalUsage) {
1161    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1162      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1163      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1164    }
1165    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1166      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1167      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1168    }
1169    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1170      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1171      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1172    }
1173  }
1174  // Fill in signals that are blocked by all but the VM thread.
1175  sigemptyset(&vm_sigs);
1176  if (!ReduceSignalUsage) {
1177    sigaddset(&vm_sigs, BREAK_SIGNAL);
1178  }
1179  debug_only(signal_sets_initialized = true);
1180
1181  // For diagnostics only used in run_periodic_checks
1182  sigemptyset(&check_signal_done);
1183}
1184
1185// These are signals that are unblocked while a thread is running Java.
1186// (For some reason, they get blocked by default.)
1187sigset_t* os::Solaris::unblocked_signals() {
1188  assert(signal_sets_initialized, "Not initialized");
1189  return &unblocked_sigs;
1190}
1191
1192// These are the signals that are blocked while a (non-VM) thread is
1193// running Java. Only the VM thread handles these signals.
1194sigset_t* os::Solaris::vm_signals() {
1195  assert(signal_sets_initialized, "Not initialized");
1196  return &vm_sigs;
1197}
1198
1199// These are signals that are blocked during cond_wait to allow debugger in
1200sigset_t* os::Solaris::allowdebug_blocked_signals() {
1201  assert(signal_sets_initialized, "Not initialized");
1202  return &allowdebug_blocked_sigs;
1203}
1204
1205
1206void _handle_uncaught_cxx_exception() {
1207  VMError err("An uncaught C++ exception");
1208  err.report_and_die();
1209}
1210
1211
1212// First crack at OS-specific initialization, from inside the new thread.
1213void os::initialize_thread(Thread* thr) {
1214  int r = thr_main();
1215  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1216  if (r) {
1217    JavaThread* jt = (JavaThread *)thr;
1218    assert(jt != NULL, "Sanity check");
1219    size_t stack_size;
1220    address base = jt->stack_base();
1221    if (Arguments::created_by_java_launcher()) {
1222      // Use 2MB to allow for Solaris 7 64 bit mode.
1223      stack_size = JavaThread::stack_size_at_create() == 0
1224        ? 2048*K : JavaThread::stack_size_at_create();
1225
1226      // There are rare cases when we may have already used more than
1227      // the basic stack size allotment before this method is invoked.
1228      // Attempt to allow for a normally sized java_stack.
1229      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1230      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1231    } else {
1232      // 6269555: If we were not created by a Java launcher, i.e. if we are
1233      // running embedded in a native application, treat the primordial thread
1234      // as much like a native attached thread as possible.  This means using
1235      // the current stack size from thr_stksegment(), unless it is too large
1236      // to reliably setup guard pages.  A reasonable max size is 8MB.
1237      size_t current_size = current_stack_size();
1238      // This should never happen, but just in case....
1239      if (current_size == 0) current_size = 2 * K * K;
1240      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1241    }
1242    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1243    stack_size = (size_t)(base - bottom);
1244
1245    assert(stack_size > 0, "Stack size calculation problem");
1246
1247    if (stack_size > jt->stack_size()) {
1248#ifndef PRODUCT
1249      struct rlimit limits;
1250      getrlimit(RLIMIT_STACK, &limits);
1251      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1252      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1253#endif
1254      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1255                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1256                    "See limit(1) to increase the stack size limit.",
1257                    stack_size / K, jt->stack_size() / K);
1258      vm_exit(1);
1259    }
1260    assert(jt->stack_size() >= stack_size,
1261           "Attempt to map more stack than was allocated");
1262    jt->set_stack_size(stack_size);
1263  }
1264
1265  // With the T2 libthread (T1 is no longer supported) threads are always bound
1266  // and we use stackbanging in all cases.
1267
1268  os::Solaris::init_thread_fpu_state();
1269  std::set_terminate(_handle_uncaught_cxx_exception);
1270}
1271
1272
1273
1274// Free Solaris resources related to the OSThread
1275void os::free_thread(OSThread* osthread) {
1276  assert(osthread != NULL, "os::free_thread but osthread not set");
1277
1278
1279  // We are told to free resources of the argument thread,
1280  // but we can only really operate on the current thread.
1281  // The main thread must take the VMThread down synchronously
1282  // before the main thread exits and frees up CodeHeap
1283  guarantee((Thread::current()->osthread() == osthread
1284             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1285  if (Thread::current()->osthread() == osthread) {
1286    // Restore caller's signal mask
1287    sigset_t sigmask = osthread->caller_sigmask();
1288    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1289  }
1290  delete osthread;
1291}
1292
1293void os::pd_start_thread(Thread* thread) {
1294  int status = thr_continue(thread->osthread()->thread_id());
1295  assert_status(status == 0, status, "thr_continue failed");
1296}
1297
1298
1299intx os::current_thread_id() {
1300  return (intx)thr_self();
1301}
1302
1303static pid_t _initial_pid = 0;
1304
1305int os::current_process_id() {
1306  return (int)(_initial_pid ? _initial_pid : getpid());
1307}
1308
1309int os::allocate_thread_local_storage() {
1310  // %%%       in Win32 this allocates a memory segment pointed to by a
1311  //           register.  Dan Stein can implement a similar feature in
1312  //           Solaris.  Alternatively, the VM can do the same thing
1313  //           explicitly: malloc some storage and keep the pointer in a
1314  //           register (which is part of the thread's context) (or keep it
1315  //           in TLS).
1316  // %%%       In current versions of Solaris, thr_self and TSD can
1317  //           be accessed via short sequences of displaced indirections.
1318  //           The value of thr_self is available as %g7(36).
1319  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1320  //           assuming that the current thread already has a value bound to k.
1321  //           It may be worth experimenting with such access patterns,
1322  //           and later having the parameters formally exported from a Solaris
1323  //           interface.  I think, however, that it will be faster to
1324  //           maintain the invariant that %g2 always contains the
1325  //           JavaThread in Java code, and have stubs simply
1326  //           treat %g2 as a caller-save register, preserving it in a %lN.
1327  thread_key_t tk;
1328  if (thr_keycreate(&tk, NULL)) {
1329    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1330                  "(%s)", strerror(errno)));
1331  }
1332  return int(tk);
1333}
1334
1335void os::free_thread_local_storage(int index) {
1336  // %%% don't think we need anything here
1337  // if (pthread_key_delete((pthread_key_t) tk)) {
1338  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1339  // }
1340}
1341
1342// libthread allocate for tsd_common is a version specific
1343// small number - point is NO swap space available
1344#define SMALLINT 32
1345void os::thread_local_storage_at_put(int index, void* value) {
1346  // %%% this is used only in threadLocalStorage.cpp
1347  if (thr_setspecific((thread_key_t)index, value)) {
1348    if (errno == ENOMEM) {
1349      vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1350                            "thr_setspecific: out of swap space");
1351    } else {
1352      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1353                    "(%s)", strerror(errno)));
1354    }
1355  } else {
1356    ThreadLocalStorage::set_thread_in_slot((Thread *) value);
1357  }
1358}
1359
1360// This function could be called before TLS is initialized, for example, when
1361// VM receives an async signal or when VM causes a fatal error during
1362// initialization. Return NULL if thr_getspecific() fails.
1363void* os::thread_local_storage_at(int index) {
1364  // %%% this is used only in threadLocalStorage.cpp
1365  void* r = NULL;
1366  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1367}
1368
1369
1370// gethrtime() should be monotonic according to the documentation,
1371// but some virtualized platforms are known to break this guarantee.
1372// getTimeNanos() must be guaranteed not to move backwards, so we
1373// are forced to add a check here.
1374inline hrtime_t getTimeNanos() {
1375  const hrtime_t now = gethrtime();
1376  const hrtime_t prev = max_hrtime;
1377  if (now <= prev) {
1378    return prev;   // same or retrograde time;
1379  }
1380  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1381  assert(obsv >= prev, "invariant");   // Monotonicity
1382  // If the CAS succeeded then we're done and return "now".
1383  // If the CAS failed and the observed value "obsv" is >= now then
1384  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1385  // some other thread raced this thread and installed a new value, in which case
1386  // we could either (a) retry the entire operation, (b) retry trying to install now
1387  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1388  // we might discard a higher "now" value in deference to a slightly lower but freshly
1389  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1390  // to (a) or (b) -- and greatly reduces coherence traffic.
1391  // We might also condition (c) on the magnitude of the delta between obsv and now.
1392  // Avoiding excessive CAS operations to hot RW locations is critical.
1393  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1394  return (prev == obsv) ? now : obsv;
1395}
1396
1397// Time since start-up in seconds to a fine granularity.
1398// Used by VMSelfDestructTimer and the MemProfiler.
1399double os::elapsedTime() {
1400  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1401}
1402
1403jlong os::elapsed_counter() {
1404  return (jlong)(getTimeNanos() - first_hrtime);
1405}
1406
1407jlong os::elapsed_frequency() {
1408  return hrtime_hz;
1409}
1410
1411// Return the real, user, and system times in seconds from an
1412// arbitrary fixed point in the past.
1413bool os::getTimesSecs(double* process_real_time,
1414                      double* process_user_time,
1415                      double* process_system_time) {
1416  struct tms ticks;
1417  clock_t real_ticks = times(&ticks);
1418
1419  if (real_ticks == (clock_t) (-1)) {
1420    return false;
1421  } else {
1422    double ticks_per_second = (double) clock_tics_per_sec;
1423    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1424    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1425    // For consistency return the real time from getTimeNanos()
1426    // converted to seconds.
1427    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1428
1429    return true;
1430  }
1431}
1432
1433bool os::supports_vtime() { return true; }
1434
1435bool os::enable_vtime() {
1436  int fd = ::open("/proc/self/ctl", O_WRONLY);
1437  if (fd == -1) {
1438    return false;
1439  }
1440
1441  long cmd[] = { PCSET, PR_MSACCT };
1442  int res = ::write(fd, cmd, sizeof(long) * 2);
1443  ::close(fd);
1444  if (res != sizeof(long) * 2) {
1445    return false;
1446  }
1447  return true;
1448}
1449
1450bool os::vtime_enabled() {
1451  int fd = ::open("/proc/self/status", O_RDONLY);
1452  if (fd == -1) {
1453    return false;
1454  }
1455
1456  pstatus_t status;
1457  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1458  ::close(fd);
1459  if (res != sizeof(pstatus_t)) {
1460    return false;
1461  }
1462  return status.pr_flags & PR_MSACCT;
1463}
1464
1465double os::elapsedVTime() {
1466  return (double)gethrvtime() / (double)hrtime_hz;
1467}
1468
1469// Used internally for comparisons only
1470// getTimeMillis guaranteed to not move backwards on Solaris
1471jlong getTimeMillis() {
1472  jlong nanotime = getTimeNanos();
1473  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1474}
1475
1476// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1477jlong os::javaTimeMillis() {
1478  timeval t;
1479  if (gettimeofday(&t, NULL) == -1) {
1480    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1481  }
1482  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1483}
1484
1485jlong os::javaTimeNanos() {
1486  return (jlong)getTimeNanos();
1487}
1488
1489void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1490  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1491  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1492  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1493  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1494}
1495
1496char * os::local_time_string(char *buf, size_t buflen) {
1497  struct tm t;
1498  time_t long_time;
1499  time(&long_time);
1500  localtime_r(&long_time, &t);
1501  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1502               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1503               t.tm_hour, t.tm_min, t.tm_sec);
1504  return buf;
1505}
1506
1507// Note: os::shutdown() might be called very early during initialization, or
1508// called from signal handler. Before adding something to os::shutdown(), make
1509// sure it is async-safe and can handle partially initialized VM.
1510void os::shutdown() {
1511
1512  // allow PerfMemory to attempt cleanup of any persistent resources
1513  perfMemory_exit();
1514
1515  // needs to remove object in file system
1516  AttachListener::abort();
1517
1518  // flush buffered output, finish log files
1519  ostream_abort();
1520
1521  // Check for abort hook
1522  abort_hook_t abort_hook = Arguments::abort_hook();
1523  if (abort_hook != NULL) {
1524    abort_hook();
1525  }
1526}
1527
1528// Note: os::abort() might be called very early during initialization, or
1529// called from signal handler. Before adding something to os::abort(), make
1530// sure it is async-safe and can handle partially initialized VM.
1531void os::abort(bool dump_core) {
1532  os::shutdown();
1533  if (dump_core) {
1534#ifndef PRODUCT
1535    fdStream out(defaultStream::output_fd());
1536    out.print_raw("Current thread is ");
1537    char buf[16];
1538    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1539    out.print_raw_cr(buf);
1540    out.print_raw_cr("Dumping core ...");
1541#endif
1542    ::abort(); // dump core (for debugging)
1543  }
1544
1545  ::exit(1);
1546}
1547
1548// Die immediately, no exit hook, no abort hook, no cleanup.
1549void os::die() {
1550  ::abort(); // dump core (for debugging)
1551}
1552
1553// DLL functions
1554
1555const char* os::dll_file_extension() { return ".so"; }
1556
1557// This must be hard coded because it's the system's temporary
1558// directory not the java application's temp directory, ala java.io.tmpdir.
1559const char* os::get_temp_directory() { return "/tmp"; }
1560
1561static bool file_exists(const char* filename) {
1562  struct stat statbuf;
1563  if (filename == NULL || strlen(filename) == 0) {
1564    return false;
1565  }
1566  return os::stat(filename, &statbuf) == 0;
1567}
1568
1569bool os::dll_build_name(char* buffer, size_t buflen,
1570                        const char* pname, const char* fname) {
1571  bool retval = false;
1572  const size_t pnamelen = pname ? strlen(pname) : 0;
1573
1574  // Return error on buffer overflow.
1575  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1576    return retval;
1577  }
1578
1579  if (pnamelen == 0) {
1580    snprintf(buffer, buflen, "lib%s.so", fname);
1581    retval = true;
1582  } else if (strchr(pname, *os::path_separator()) != NULL) {
1583    int n;
1584    char** pelements = split_path(pname, &n);
1585    if (pelements == NULL) {
1586      return false;
1587    }
1588    for (int i = 0; i < n; i++) {
1589      // really shouldn't be NULL but what the heck, check can't hurt
1590      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1591        continue; // skip the empty path values
1592      }
1593      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1594      if (file_exists(buffer)) {
1595        retval = true;
1596        break;
1597      }
1598    }
1599    // release the storage
1600    for (int i = 0; i < n; i++) {
1601      if (pelements[i] != NULL) {
1602        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1603      }
1604    }
1605    if (pelements != NULL) {
1606      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1607    }
1608  } else {
1609    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1610    retval = true;
1611  }
1612  return retval;
1613}
1614
1615// check if addr is inside libjvm.so
1616bool os::address_is_in_vm(address addr) {
1617  static address libjvm_base_addr;
1618  Dl_info dlinfo;
1619
1620  if (libjvm_base_addr == NULL) {
1621    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1622      libjvm_base_addr = (address)dlinfo.dli_fbase;
1623    }
1624    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1625  }
1626
1627  if (dladdr((void *)addr, &dlinfo) != 0) {
1628    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1629  }
1630
1631  return false;
1632}
1633
1634typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1635static dladdr1_func_type dladdr1_func = NULL;
1636
1637bool os::dll_address_to_function_name(address addr, char *buf,
1638                                      int buflen, int * offset) {
1639  // buf is not optional, but offset is optional
1640  assert(buf != NULL, "sanity check");
1641
1642  Dl_info dlinfo;
1643
1644  // dladdr1_func was initialized in os::init()
1645  if (dladdr1_func != NULL) {
1646    // yes, we have dladdr1
1647
1648    // Support for dladdr1 is checked at runtime; it may be
1649    // available even if the vm is built on a machine that does
1650    // not have dladdr1 support.  Make sure there is a value for
1651    // RTLD_DL_SYMENT.
1652#ifndef RTLD_DL_SYMENT
1653  #define RTLD_DL_SYMENT 1
1654#endif
1655#ifdef _LP64
1656    Elf64_Sym * info;
1657#else
1658    Elf32_Sym * info;
1659#endif
1660    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1661                     RTLD_DL_SYMENT) != 0) {
1662      // see if we have a matching symbol that covers our address
1663      if (dlinfo.dli_saddr != NULL &&
1664          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1665        if (dlinfo.dli_sname != NULL) {
1666          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1667            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1668          }
1669          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1670          return true;
1671        }
1672      }
1673      // no matching symbol so try for just file info
1674      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1675        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1676                            buf, buflen, offset, dlinfo.dli_fname)) {
1677          return true;
1678        }
1679      }
1680    }
1681    buf[0] = '\0';
1682    if (offset != NULL) *offset  = -1;
1683    return false;
1684  }
1685
1686  // no, only dladdr is available
1687  if (dladdr((void *)addr, &dlinfo) != 0) {
1688    // see if we have a matching symbol
1689    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1692      }
1693      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694      return true;
1695    }
1696    // no matching symbol so try for just file info
1697    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                          buf, buflen, offset, dlinfo.dli_fname)) {
1700        return true;
1701      }
1702    }
1703  }
1704  buf[0] = '\0';
1705  if (offset != NULL) *offset  = -1;
1706  return false;
1707}
1708
1709bool os::dll_address_to_library_name(address addr, char* buf,
1710                                     int buflen, int* offset) {
1711  // buf is not optional, but offset is optional
1712  assert(buf != NULL, "sanity check");
1713
1714  Dl_info dlinfo;
1715
1716  if (dladdr((void*)addr, &dlinfo) != 0) {
1717    if (dlinfo.dli_fname != NULL) {
1718      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1719    }
1720    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1721      *offset = addr - (address)dlinfo.dli_fbase;
1722    }
1723    return true;
1724  }
1725
1726  buf[0] = '\0';
1727  if (offset) *offset = -1;
1728  return false;
1729}
1730
1731int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1732  Dl_info dli;
1733  // Sanity check?
1734  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1735      dli.dli_fname == NULL) {
1736    return 1;
1737  }
1738
1739  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1740  if (handle == NULL) {
1741    return 1;
1742  }
1743
1744  Link_map *map;
1745  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1746  if (map == NULL) {
1747    dlclose(handle);
1748    return 1;
1749  }
1750
1751  while (map->l_prev != NULL) {
1752    map = map->l_prev;
1753  }
1754
1755  while (map != NULL) {
1756    // Iterate through all map entries and call callback with fields of interest
1757    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1758      dlclose(handle);
1759      return 1;
1760    }
1761    map = map->l_next;
1762  }
1763
1764  dlclose(handle);
1765  return 0;
1766}
1767
1768int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1769  outputStream * out = (outputStream *) param;
1770  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1771  return 0;
1772}
1773
1774void os::print_dll_info(outputStream * st) {
1775  st->print_cr("Dynamic libraries:"); st->flush();
1776  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1777    st->print_cr("Error: Cannot print dynamic libraries.");
1778  }
1779}
1780
1781// Loads .dll/.so and
1782// in case of error it checks if .dll/.so was built for the
1783// same architecture as Hotspot is running on
1784
1785void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1786  void * result= ::dlopen(filename, RTLD_LAZY);
1787  if (result != NULL) {
1788    // Successful loading
1789    return result;
1790  }
1791
1792  Elf32_Ehdr elf_head;
1793
1794  // Read system error message into ebuf
1795  // It may or may not be overwritten below
1796  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1797  ebuf[ebuflen-1]='\0';
1798  int diag_msg_max_length=ebuflen-strlen(ebuf);
1799  char* diag_msg_buf=ebuf+strlen(ebuf);
1800
1801  if (diag_msg_max_length==0) {
1802    // No more space in ebuf for additional diagnostics message
1803    return NULL;
1804  }
1805
1806
1807  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1808
1809  if (file_descriptor < 0) {
1810    // Can't open library, report dlerror() message
1811    return NULL;
1812  }
1813
1814  bool failed_to_read_elf_head=
1815    (sizeof(elf_head)!=
1816     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1817
1818  ::close(file_descriptor);
1819  if (failed_to_read_elf_head) {
1820    // file i/o error - report dlerror() msg
1821    return NULL;
1822  }
1823
1824  typedef struct {
1825    Elf32_Half  code;         // Actual value as defined in elf.h
1826    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1827    char        elf_class;    // 32 or 64 bit
1828    char        endianess;    // MSB or LSB
1829    char*       name;         // String representation
1830  } arch_t;
1831
1832  static const arch_t arch_array[]={
1833    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1834    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1835    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1836    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1837    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1838    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1839    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1840    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1841    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1842    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1843  };
1844
1845#if  (defined IA32)
1846  static  Elf32_Half running_arch_code=EM_386;
1847#elif   (defined AMD64)
1848  static  Elf32_Half running_arch_code=EM_X86_64;
1849#elif  (defined IA64)
1850  static  Elf32_Half running_arch_code=EM_IA_64;
1851#elif  (defined __sparc) && (defined _LP64)
1852  static  Elf32_Half running_arch_code=EM_SPARCV9;
1853#elif  (defined __sparc) && (!defined _LP64)
1854  static  Elf32_Half running_arch_code=EM_SPARC;
1855#elif  (defined __powerpc64__)
1856  static  Elf32_Half running_arch_code=EM_PPC64;
1857#elif  (defined __powerpc__)
1858  static  Elf32_Half running_arch_code=EM_PPC;
1859#elif (defined ARM)
1860  static  Elf32_Half running_arch_code=EM_ARM;
1861#else
1862  #error Method os::dll_load requires that one of following is defined:\
1863       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1864#endif
1865
1866  // Identify compatability class for VM's architecture and library's architecture
1867  // Obtain string descriptions for architectures
1868
1869  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1870  int running_arch_index=-1;
1871
1872  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1873    if (running_arch_code == arch_array[i].code) {
1874      running_arch_index    = i;
1875    }
1876    if (lib_arch.code == arch_array[i].code) {
1877      lib_arch.compat_class = arch_array[i].compat_class;
1878      lib_arch.name         = arch_array[i].name;
1879    }
1880  }
1881
1882  assert(running_arch_index != -1,
1883         "Didn't find running architecture code (running_arch_code) in arch_array");
1884  if (running_arch_index == -1) {
1885    // Even though running architecture detection failed
1886    // we may still continue with reporting dlerror() message
1887    return NULL;
1888  }
1889
1890  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1891    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1892    return NULL;
1893  }
1894
1895  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1896    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1897    return NULL;
1898  }
1899
1900  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1901    if (lib_arch.name!=NULL) {
1902      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1903                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1904                 lib_arch.name, arch_array[running_arch_index].name);
1905    } else {
1906      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1907                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1908                 lib_arch.code,
1909                 arch_array[running_arch_index].name);
1910    }
1911  }
1912
1913  return NULL;
1914}
1915
1916void* os::dll_lookup(void* handle, const char* name) {
1917  return dlsym(handle, name);
1918}
1919
1920void* os::get_default_process_handle() {
1921  return (void*)::dlopen(NULL, RTLD_LAZY);
1922}
1923
1924int os::stat(const char *path, struct stat *sbuf) {
1925  char pathbuf[MAX_PATH];
1926  if (strlen(path) > MAX_PATH - 1) {
1927    errno = ENAMETOOLONG;
1928    return -1;
1929  }
1930  os::native_path(strcpy(pathbuf, path));
1931  return ::stat(pathbuf, sbuf);
1932}
1933
1934static bool _print_ascii_file(const char* filename, outputStream* st) {
1935  int fd = ::open(filename, O_RDONLY);
1936  if (fd == -1) {
1937    return false;
1938  }
1939
1940  char buf[32];
1941  int bytes;
1942  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1943    st->print_raw(buf, bytes);
1944  }
1945
1946  ::close(fd);
1947
1948  return true;
1949}
1950
1951void os::print_os_info_brief(outputStream* st) {
1952  os::Solaris::print_distro_info(st);
1953
1954  os::Posix::print_uname_info(st);
1955
1956  os::Solaris::print_libversion_info(st);
1957}
1958
1959void os::print_os_info(outputStream* st) {
1960  st->print("OS:");
1961
1962  os::Solaris::print_distro_info(st);
1963
1964  os::Posix::print_uname_info(st);
1965
1966  os::Solaris::print_libversion_info(st);
1967
1968  os::Posix::print_rlimit_info(st);
1969
1970  os::Posix::print_load_average(st);
1971}
1972
1973void os::Solaris::print_distro_info(outputStream* st) {
1974  if (!_print_ascii_file("/etc/release", st)) {
1975    st->print("Solaris");
1976  }
1977  st->cr();
1978}
1979
1980void os::Solaris::print_libversion_info(outputStream* st) {
1981  st->print("  (T2 libthread)");
1982  st->cr();
1983}
1984
1985static bool check_addr0(outputStream* st) {
1986  jboolean status = false;
1987  int fd = ::open("/proc/self/map",O_RDONLY);
1988  if (fd >= 0) {
1989    prmap_t p;
1990    while (::read(fd, &p, sizeof(p)) > 0) {
1991      if (p.pr_vaddr == 0x0) {
1992        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1993        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1994        st->print("Access:");
1995        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1996        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1997        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1998        st->cr();
1999        status = true;
2000      }
2001    }
2002    ::close(fd);
2003  }
2004  return status;
2005}
2006
2007void os::pd_print_cpu_info(outputStream* st) {
2008  // Nothing to do for now.
2009}
2010
2011void os::print_memory_info(outputStream* st) {
2012  st->print("Memory:");
2013  st->print(" %dk page", os::vm_page_size()>>10);
2014  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2015  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2016  st->cr();
2017  (void) check_addr0(st);
2018}
2019
2020void os::print_siginfo(outputStream* st, void* siginfo) {
2021  const siginfo_t* si = (const siginfo_t*)siginfo;
2022
2023  os::Posix::print_siginfo_brief(st, si);
2024
2025  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2026      UseSharedSpaces) {
2027    FileMapInfo* mapinfo = FileMapInfo::current_info();
2028    if (mapinfo->is_in_shared_space(si->si_addr)) {
2029      st->print("\n\nError accessing class data sharing archive."   \
2030                " Mapped file inaccessible during execution, "      \
2031                " possible disk/network problem.");
2032    }
2033  }
2034  st->cr();
2035}
2036
2037// Moved from whole group, because we need them here for diagnostic
2038// prints.
2039#define OLDMAXSIGNUM 32
2040static int Maxsignum = 0;
2041static int *ourSigFlags = NULL;
2042
2043extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2044
2045int os::Solaris::get_our_sigflags(int sig) {
2046  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2047  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2048  return ourSigFlags[sig];
2049}
2050
2051void os::Solaris::set_our_sigflags(int sig, int flags) {
2052  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2053  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2054  ourSigFlags[sig] = flags;
2055}
2056
2057
2058static const char* get_signal_handler_name(address handler,
2059                                           char* buf, int buflen) {
2060  int offset;
2061  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2062  if (found) {
2063    // skip directory names
2064    const char *p1, *p2;
2065    p1 = buf;
2066    size_t len = strlen(os::file_separator());
2067    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2068    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2069  } else {
2070    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2071  }
2072  return buf;
2073}
2074
2075static void print_signal_handler(outputStream* st, int sig,
2076                                 char* buf, size_t buflen) {
2077  struct sigaction sa;
2078
2079  sigaction(sig, NULL, &sa);
2080
2081  st->print("%s: ", os::exception_name(sig, buf, buflen));
2082
2083  address handler = (sa.sa_flags & SA_SIGINFO)
2084                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2085                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2086
2087  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2088    st->print("SIG_DFL");
2089  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2090    st->print("SIG_IGN");
2091  } else {
2092    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2093  }
2094
2095  st->print(", sa_mask[0]=");
2096  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2097
2098  address rh = VMError::get_resetted_sighandler(sig);
2099  // May be, handler was resetted by VMError?
2100  if (rh != NULL) {
2101    handler = rh;
2102    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2103  }
2104
2105  st->print(", sa_flags=");
2106  os::Posix::print_sa_flags(st, sa.sa_flags);
2107
2108  // Check: is it our handler?
2109  if (handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2110      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2111    // It is our signal handler
2112    // check for flags
2113    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2114      st->print(
2115                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2116                os::Solaris::get_our_sigflags(sig));
2117    }
2118  }
2119  st->cr();
2120}
2121
2122void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2123  st->print_cr("Signal Handlers:");
2124  print_signal_handler(st, SIGSEGV, buf, buflen);
2125  print_signal_handler(st, SIGBUS , buf, buflen);
2126  print_signal_handler(st, SIGFPE , buf, buflen);
2127  print_signal_handler(st, SIGPIPE, buf, buflen);
2128  print_signal_handler(st, SIGXFSZ, buf, buflen);
2129  print_signal_handler(st, SIGILL , buf, buflen);
2130  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2131  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2132  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2133  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2134  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2135  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2136  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2137  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2138}
2139
2140static char saved_jvm_path[MAXPATHLEN] = { 0 };
2141
2142// Find the full path to the current module, libjvm.so
2143void os::jvm_path(char *buf, jint buflen) {
2144  // Error checking.
2145  if (buflen < MAXPATHLEN) {
2146    assert(false, "must use a large-enough buffer");
2147    buf[0] = '\0';
2148    return;
2149  }
2150  // Lazy resolve the path to current module.
2151  if (saved_jvm_path[0] != 0) {
2152    strcpy(buf, saved_jvm_path);
2153    return;
2154  }
2155
2156  Dl_info dlinfo;
2157  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2158  assert(ret != 0, "cannot locate libjvm");
2159  if (ret != 0 && dlinfo.dli_fname != NULL) {
2160    realpath((char *)dlinfo.dli_fname, buf);
2161  } else {
2162    buf[0] = '\0';
2163    return;
2164  }
2165
2166  if (Arguments::sun_java_launcher_is_altjvm()) {
2167    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2168    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2169    // If "/jre/lib/" appears at the right place in the string, then
2170    // assume we are installed in a JDK and we're done.  Otherwise, check
2171    // for a JAVA_HOME environment variable and fix up the path so it
2172    // looks like libjvm.so is installed there (append a fake suffix
2173    // hotspot/libjvm.so).
2174    const char *p = buf + strlen(buf) - 1;
2175    for (int count = 0; p > buf && count < 5; ++count) {
2176      for (--p; p > buf && *p != '/'; --p)
2177        /* empty */ ;
2178    }
2179
2180    if (strncmp(p, "/jre/lib/", 9) != 0) {
2181      // Look for JAVA_HOME in the environment.
2182      char* java_home_var = ::getenv("JAVA_HOME");
2183      if (java_home_var != NULL && java_home_var[0] != 0) {
2184        char cpu_arch[12];
2185        char* jrelib_p;
2186        int   len;
2187        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2188#ifdef _LP64
2189        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2190        if (strcmp(cpu_arch, "sparc") == 0) {
2191          strcat(cpu_arch, "v9");
2192        } else if (strcmp(cpu_arch, "i386") == 0) {
2193          strcpy(cpu_arch, "amd64");
2194        }
2195#endif
2196        // Check the current module name "libjvm.so".
2197        p = strrchr(buf, '/');
2198        assert(strstr(p, "/libjvm") == p, "invalid library name");
2199
2200        realpath(java_home_var, buf);
2201        // determine if this is a legacy image or modules image
2202        // modules image doesn't have "jre" subdirectory
2203        len = strlen(buf);
2204        assert(len < buflen, "Ran out of buffer space");
2205        jrelib_p = buf + len;
2206        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2207        if (0 != access(buf, F_OK)) {
2208          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2209        }
2210
2211        if (0 == access(buf, F_OK)) {
2212          // Use current module name "libjvm.so"
2213          len = strlen(buf);
2214          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2215        } else {
2216          // Go back to path of .so
2217          realpath((char *)dlinfo.dli_fname, buf);
2218        }
2219      }
2220    }
2221  }
2222
2223  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2224}
2225
2226
2227void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2228  // no prefix required, not even "_"
2229}
2230
2231
2232void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2233  // no suffix required
2234}
2235
2236// This method is a copy of JDK's sysGetLastErrorString
2237// from src/solaris/hpi/src/system_md.c
2238
2239size_t os::lasterror(char *buf, size_t len) {
2240  if (errno == 0)  return 0;
2241
2242  const char *s = ::strerror(errno);
2243  size_t n = ::strlen(s);
2244  if (n >= len) {
2245    n = len - 1;
2246  }
2247  ::strncpy(buf, s, n);
2248  buf[n] = '\0';
2249  return n;
2250}
2251
2252
2253// sun.misc.Signal
2254
2255extern "C" {
2256  static void UserHandler(int sig, void *siginfo, void *context) {
2257    // Ctrl-C is pressed during error reporting, likely because the error
2258    // handler fails to abort. Let VM die immediately.
2259    if (sig == SIGINT && is_error_reported()) {
2260      os::die();
2261    }
2262
2263    os::signal_notify(sig);
2264    // We do not need to reinstate the signal handler each time...
2265  }
2266}
2267
2268void* os::user_handler() {
2269  return CAST_FROM_FN_PTR(void*, UserHandler);
2270}
2271
2272class Semaphore : public StackObj {
2273 public:
2274  Semaphore();
2275  ~Semaphore();
2276  void signal();
2277  void wait();
2278  bool trywait();
2279  bool timedwait(unsigned int sec, int nsec);
2280 private:
2281  sema_t _semaphore;
2282};
2283
2284
2285Semaphore::Semaphore() {
2286  sema_init(&_semaphore, 0, NULL, NULL);
2287}
2288
2289Semaphore::~Semaphore() {
2290  sema_destroy(&_semaphore);
2291}
2292
2293void Semaphore::signal() {
2294  sema_post(&_semaphore);
2295}
2296
2297void Semaphore::wait() {
2298  sema_wait(&_semaphore);
2299}
2300
2301bool Semaphore::trywait() {
2302  return sema_trywait(&_semaphore) == 0;
2303}
2304
2305bool Semaphore::timedwait(unsigned int sec, int nsec) {
2306  struct timespec ts;
2307  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2308
2309  while (1) {
2310    int result = sema_timedwait(&_semaphore, &ts);
2311    if (result == 0) {
2312      return true;
2313    } else if (errno == EINTR) {
2314      continue;
2315    } else if (errno == ETIME) {
2316      return false;
2317    } else {
2318      return false;
2319    }
2320  }
2321}
2322
2323extern "C" {
2324  typedef void (*sa_handler_t)(int);
2325  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2326}
2327
2328void* os::signal(int signal_number, void* handler) {
2329  struct sigaction sigAct, oldSigAct;
2330  sigfillset(&(sigAct.sa_mask));
2331  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2332  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2333
2334  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2335    // -1 means registration failed
2336    return (void *)-1;
2337  }
2338
2339  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2340}
2341
2342void os::signal_raise(int signal_number) {
2343  raise(signal_number);
2344}
2345
2346// The following code is moved from os.cpp for making this
2347// code platform specific, which it is by its very nature.
2348
2349// a counter for each possible signal value
2350static int Sigexit = 0;
2351static int Maxlibjsigsigs;
2352static jint *pending_signals = NULL;
2353static int *preinstalled_sigs = NULL;
2354static struct sigaction *chainedsigactions = NULL;
2355static sema_t sig_sem;
2356typedef int (*version_getting_t)();
2357version_getting_t os::Solaris::get_libjsig_version = NULL;
2358static int libjsigversion = NULL;
2359
2360int os::sigexitnum_pd() {
2361  assert(Sigexit > 0, "signal memory not yet initialized");
2362  return Sigexit;
2363}
2364
2365void os::Solaris::init_signal_mem() {
2366  // Initialize signal structures
2367  Maxsignum = SIGRTMAX;
2368  Sigexit = Maxsignum+1;
2369  assert(Maxsignum >0, "Unable to obtain max signal number");
2370
2371  Maxlibjsigsigs = Maxsignum;
2372
2373  // pending_signals has one int per signal
2374  // The additional signal is for SIGEXIT - exit signal to signal_thread
2375  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2376  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2377
2378  if (UseSignalChaining) {
2379    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2380                                                   * (Maxsignum + 1), mtInternal);
2381    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2382    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2383    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2384  }
2385  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2386  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2387}
2388
2389void os::signal_init_pd() {
2390  int ret;
2391
2392  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2393  assert(ret == 0, "sema_init() failed");
2394}
2395
2396void os::signal_notify(int signal_number) {
2397  int ret;
2398
2399  Atomic::inc(&pending_signals[signal_number]);
2400  ret = ::sema_post(&sig_sem);
2401  assert(ret == 0, "sema_post() failed");
2402}
2403
2404static int check_pending_signals(bool wait_for_signal) {
2405  int ret;
2406  while (true) {
2407    for (int i = 0; i < Sigexit + 1; i++) {
2408      jint n = pending_signals[i];
2409      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2410        return i;
2411      }
2412    }
2413    if (!wait_for_signal) {
2414      return -1;
2415    }
2416    JavaThread *thread = JavaThread::current();
2417    ThreadBlockInVM tbivm(thread);
2418
2419    bool threadIsSuspended;
2420    do {
2421      thread->set_suspend_equivalent();
2422      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2423      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2424        ;
2425      assert(ret == 0, "sema_wait() failed");
2426
2427      // were we externally suspended while we were waiting?
2428      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2429      if (threadIsSuspended) {
2430        // The semaphore has been incremented, but while we were waiting
2431        // another thread suspended us. We don't want to continue running
2432        // while suspended because that would surprise the thread that
2433        // suspended us.
2434        ret = ::sema_post(&sig_sem);
2435        assert(ret == 0, "sema_post() failed");
2436
2437        thread->java_suspend_self();
2438      }
2439    } while (threadIsSuspended);
2440  }
2441}
2442
2443int os::signal_lookup() {
2444  return check_pending_signals(false);
2445}
2446
2447int os::signal_wait() {
2448  return check_pending_signals(true);
2449}
2450
2451////////////////////////////////////////////////////////////////////////////////
2452// Virtual Memory
2453
2454static int page_size = -1;
2455
2456// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2457// clear this var if support is not available.
2458static bool has_map_align = true;
2459
2460int os::vm_page_size() {
2461  assert(page_size != -1, "must call os::init");
2462  return page_size;
2463}
2464
2465// Solaris allocates memory by pages.
2466int os::vm_allocation_granularity() {
2467  assert(page_size != -1, "must call os::init");
2468  return page_size;
2469}
2470
2471static bool recoverable_mmap_error(int err) {
2472  // See if the error is one we can let the caller handle. This
2473  // list of errno values comes from the Solaris mmap(2) man page.
2474  switch (err) {
2475  case EBADF:
2476  case EINVAL:
2477  case ENOTSUP:
2478    // let the caller deal with these errors
2479    return true;
2480
2481  default:
2482    // Any remaining errors on this OS can cause our reserved mapping
2483    // to be lost. That can cause confusion where different data
2484    // structures think they have the same memory mapped. The worst
2485    // scenario is if both the VM and a library think they have the
2486    // same memory mapped.
2487    return false;
2488  }
2489}
2490
2491static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2492                                    int err) {
2493  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2494          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2495          strerror(err), err);
2496}
2497
2498static void warn_fail_commit_memory(char* addr, size_t bytes,
2499                                    size_t alignment_hint, bool exec,
2500                                    int err) {
2501  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2502          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2503          alignment_hint, exec, strerror(err), err);
2504}
2505
2506int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2507  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2508  size_t size = bytes;
2509  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2510  if (res != NULL) {
2511    if (UseNUMAInterleaving) {
2512      numa_make_global(addr, bytes);
2513    }
2514    return 0;
2515  }
2516
2517  int err = errno;  // save errno from mmap() call in mmap_chunk()
2518
2519  if (!recoverable_mmap_error(err)) {
2520    warn_fail_commit_memory(addr, bytes, exec, err);
2521    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2522  }
2523
2524  return err;
2525}
2526
2527bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2528  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2529}
2530
2531void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2532                                  const char* mesg) {
2533  assert(mesg != NULL, "mesg must be specified");
2534  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2535  if (err != 0) {
2536    // the caller wants all commit errors to exit with the specified mesg:
2537    warn_fail_commit_memory(addr, bytes, exec, err);
2538    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2539  }
2540}
2541
2542size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2543  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2544         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2545                 alignment, (size_t) vm_page_size()));
2546
2547  for (int i = 0; _page_sizes[i] != 0; i++) {
2548    if (is_size_aligned(alignment, _page_sizes[i])) {
2549      return _page_sizes[i];
2550    }
2551  }
2552
2553  return (size_t) vm_page_size();
2554}
2555
2556int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2557                                    size_t alignment_hint, bool exec) {
2558  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2559  if (err == 0 && UseLargePages && alignment_hint > 0) {
2560    assert(is_size_aligned(bytes, alignment_hint),
2561           err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint));
2562
2563    // The syscall memcntl requires an exact page size (see man memcntl for details).
2564    size_t page_size = page_size_for_alignment(alignment_hint);
2565    if (page_size > (size_t) vm_page_size()) {
2566      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2567    }
2568  }
2569  return err;
2570}
2571
2572bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2573                          bool exec) {
2574  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2575}
2576
2577void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2578                                  size_t alignment_hint, bool exec,
2579                                  const char* mesg) {
2580  assert(mesg != NULL, "mesg must be specified");
2581  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2582  if (err != 0) {
2583    // the caller wants all commit errors to exit with the specified mesg:
2584    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2585    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2586  }
2587}
2588
2589// Uncommit the pages in a specified region.
2590void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2591  if (madvise(addr, bytes, MADV_FREE) < 0) {
2592    debug_only(warning("MADV_FREE failed."));
2593    return;
2594  }
2595}
2596
2597bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2598  return os::commit_memory(addr, size, !ExecMem);
2599}
2600
2601bool os::remove_stack_guard_pages(char* addr, size_t size) {
2602  return os::uncommit_memory(addr, size);
2603}
2604
2605// Change the page size in a given range.
2606void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2607  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2608  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2609  if (UseLargePages) {
2610    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2611    if (page_size > (size_t) vm_page_size()) {
2612      Solaris::setup_large_pages(addr, bytes, page_size);
2613    }
2614  }
2615}
2616
2617// Tell the OS to make the range local to the first-touching LWP
2618void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2619  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2620  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2621    debug_only(warning("MADV_ACCESS_LWP failed."));
2622  }
2623}
2624
2625// Tell the OS that this range would be accessed from different LWPs.
2626void os::numa_make_global(char *addr, size_t bytes) {
2627  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2628  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2629    debug_only(warning("MADV_ACCESS_MANY failed."));
2630  }
2631}
2632
2633// Get the number of the locality groups.
2634size_t os::numa_get_groups_num() {
2635  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2636  return n != -1 ? n : 1;
2637}
2638
2639// Get a list of leaf locality groups. A leaf lgroup is group that
2640// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2641// board. An LWP is assigned to one of these groups upon creation.
2642size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2643  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2644    ids[0] = 0;
2645    return 1;
2646  }
2647  int result_size = 0, top = 1, bottom = 0, cur = 0;
2648  for (int k = 0; k < size; k++) {
2649    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2650                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2651    if (r == -1) {
2652      ids[0] = 0;
2653      return 1;
2654    }
2655    if (!r) {
2656      // That's a leaf node.
2657      assert(bottom <= cur, "Sanity check");
2658      // Check if the node has memory
2659      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2660                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2661        ids[bottom++] = ids[cur];
2662      }
2663    }
2664    top += r;
2665    cur++;
2666  }
2667  if (bottom == 0) {
2668    // Handle a situation, when the OS reports no memory available.
2669    // Assume UMA architecture.
2670    ids[0] = 0;
2671    return 1;
2672  }
2673  return bottom;
2674}
2675
2676// Detect the topology change. Typically happens during CPU plugging-unplugging.
2677bool os::numa_topology_changed() {
2678  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2679  if (is_stale != -1 && is_stale) {
2680    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2681    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2682    assert(c != 0, "Failure to initialize LGRP API");
2683    Solaris::set_lgrp_cookie(c);
2684    return true;
2685  }
2686  return false;
2687}
2688
2689// Get the group id of the current LWP.
2690int os::numa_get_group_id() {
2691  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2692  if (lgrp_id == -1) {
2693    return 0;
2694  }
2695  const int size = os::numa_get_groups_num();
2696  int *ids = (int*)alloca(size * sizeof(int));
2697
2698  // Get the ids of all lgroups with memory; r is the count.
2699  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2700                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2701  if (r <= 0) {
2702    return 0;
2703  }
2704  return ids[os::random() % r];
2705}
2706
2707// Request information about the page.
2708bool os::get_page_info(char *start, page_info* info) {
2709  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2710  uint64_t addr = (uintptr_t)start;
2711  uint64_t outdata[2];
2712  uint_t validity = 0;
2713
2714  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2715    return false;
2716  }
2717
2718  info->size = 0;
2719  info->lgrp_id = -1;
2720
2721  if ((validity & 1) != 0) {
2722    if ((validity & 2) != 0) {
2723      info->lgrp_id = outdata[0];
2724    }
2725    if ((validity & 4) != 0) {
2726      info->size = outdata[1];
2727    }
2728    return true;
2729  }
2730  return false;
2731}
2732
2733// Scan the pages from start to end until a page different than
2734// the one described in the info parameter is encountered.
2735char *os::scan_pages(char *start, char* end, page_info* page_expected,
2736                     page_info* page_found) {
2737  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2738  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2739  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2740  uint_t validity[MAX_MEMINFO_CNT];
2741
2742  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2743  uint64_t p = (uint64_t)start;
2744  while (p < (uint64_t)end) {
2745    addrs[0] = p;
2746    size_t addrs_count = 1;
2747    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2748      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2749      addrs_count++;
2750    }
2751
2752    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2753      return NULL;
2754    }
2755
2756    size_t i = 0;
2757    for (; i < addrs_count; i++) {
2758      if ((validity[i] & 1) != 0) {
2759        if ((validity[i] & 4) != 0) {
2760          if (outdata[types * i + 1] != page_expected->size) {
2761            break;
2762          }
2763        } else if (page_expected->size != 0) {
2764          break;
2765        }
2766
2767        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2768          if (outdata[types * i] != page_expected->lgrp_id) {
2769            break;
2770          }
2771        }
2772      } else {
2773        return NULL;
2774      }
2775    }
2776
2777    if (i < addrs_count) {
2778      if ((validity[i] & 2) != 0) {
2779        page_found->lgrp_id = outdata[types * i];
2780      } else {
2781        page_found->lgrp_id = -1;
2782      }
2783      if ((validity[i] & 4) != 0) {
2784        page_found->size = outdata[types * i + 1];
2785      } else {
2786        page_found->size = 0;
2787      }
2788      return (char*)addrs[i];
2789    }
2790
2791    p = addrs[addrs_count - 1] + page_size;
2792  }
2793  return end;
2794}
2795
2796bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2797  size_t size = bytes;
2798  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2799  // uncommitted page. Otherwise, the read/write might succeed if we
2800  // have enough swap space to back the physical page.
2801  return
2802    NULL != Solaris::mmap_chunk(addr, size,
2803                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2804                                PROT_NONE);
2805}
2806
2807char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2808  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2809
2810  if (b == MAP_FAILED) {
2811    return NULL;
2812  }
2813  return b;
2814}
2815
2816char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2817                             size_t alignment_hint, bool fixed) {
2818  char* addr = requested_addr;
2819  int flags = MAP_PRIVATE | MAP_NORESERVE;
2820
2821  assert(!(fixed && (alignment_hint > 0)),
2822         "alignment hint meaningless with fixed mmap");
2823
2824  if (fixed) {
2825    flags |= MAP_FIXED;
2826  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2827    flags |= MAP_ALIGN;
2828    addr = (char*) alignment_hint;
2829  }
2830
2831  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2832  // uncommitted page. Otherwise, the read/write might succeed if we
2833  // have enough swap space to back the physical page.
2834  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2835}
2836
2837char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2838                            size_t alignment_hint) {
2839  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2840                                  (requested_addr != NULL));
2841
2842  guarantee(requested_addr == NULL || requested_addr == addr,
2843            "OS failed to return requested mmap address.");
2844  return addr;
2845}
2846
2847// Reserve memory at an arbitrary address, only if that area is
2848// available (and not reserved for something else).
2849
2850char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2851  const int max_tries = 10;
2852  char* base[max_tries];
2853  size_t size[max_tries];
2854
2855  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2856  // is dependent on the requested size and the MMU.  Our initial gap
2857  // value here is just a guess and will be corrected later.
2858  bool had_top_overlap = false;
2859  bool have_adjusted_gap = false;
2860  size_t gap = 0x400000;
2861
2862  // Assert only that the size is a multiple of the page size, since
2863  // that's all that mmap requires, and since that's all we really know
2864  // about at this low abstraction level.  If we need higher alignment,
2865  // we can either pass an alignment to this method or verify alignment
2866  // in one of the methods further up the call chain.  See bug 5044738.
2867  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2868
2869  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2870  // Give it a try, if the kernel honors the hint we can return immediately.
2871  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2872
2873  volatile int err = errno;
2874  if (addr == requested_addr) {
2875    return addr;
2876  } else if (addr != NULL) {
2877    pd_unmap_memory(addr, bytes);
2878  }
2879
2880  if (PrintMiscellaneous && Verbose) {
2881    char buf[256];
2882    buf[0] = '\0';
2883    if (addr == NULL) {
2884      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2885    }
2886    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2887            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2888            "%s", bytes, requested_addr, addr, buf);
2889  }
2890
2891  // Address hint method didn't work.  Fall back to the old method.
2892  // In theory, once SNV becomes our oldest supported platform, this
2893  // code will no longer be needed.
2894  //
2895  // Repeatedly allocate blocks until the block is allocated at the
2896  // right spot. Give up after max_tries.
2897  int i;
2898  for (i = 0; i < max_tries; ++i) {
2899    base[i] = reserve_memory(bytes);
2900
2901    if (base[i] != NULL) {
2902      // Is this the block we wanted?
2903      if (base[i] == requested_addr) {
2904        size[i] = bytes;
2905        break;
2906      }
2907
2908      // check that the gap value is right
2909      if (had_top_overlap && !have_adjusted_gap) {
2910        size_t actual_gap = base[i-1] - base[i] - bytes;
2911        if (gap != actual_gap) {
2912          // adjust the gap value and retry the last 2 allocations
2913          assert(i > 0, "gap adjustment code problem");
2914          have_adjusted_gap = true;  // adjust the gap only once, just in case
2915          gap = actual_gap;
2916          if (PrintMiscellaneous && Verbose) {
2917            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2918          }
2919          unmap_memory(base[i], bytes);
2920          unmap_memory(base[i-1], size[i-1]);
2921          i-=2;
2922          continue;
2923        }
2924      }
2925
2926      // Does this overlap the block we wanted? Give back the overlapped
2927      // parts and try again.
2928      //
2929      // There is still a bug in this code: if top_overlap == bytes,
2930      // the overlap is offset from requested region by the value of gap.
2931      // In this case giving back the overlapped part will not work,
2932      // because we'll give back the entire block at base[i] and
2933      // therefore the subsequent allocation will not generate a new gap.
2934      // This could be fixed with a new algorithm that used larger
2935      // or variable size chunks to find the requested region -
2936      // but such a change would introduce additional complications.
2937      // It's rare enough that the planets align for this bug,
2938      // so we'll just wait for a fix for 6204603/5003415 which
2939      // will provide a mmap flag to allow us to avoid this business.
2940
2941      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2942      if (top_overlap >= 0 && top_overlap < bytes) {
2943        had_top_overlap = true;
2944        unmap_memory(base[i], top_overlap);
2945        base[i] += top_overlap;
2946        size[i] = bytes - top_overlap;
2947      } else {
2948        size_t bottom_overlap = base[i] + bytes - requested_addr;
2949        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2950          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2951            warning("attempt_reserve_memory_at: possible alignment bug");
2952          }
2953          unmap_memory(requested_addr, bottom_overlap);
2954          size[i] = bytes - bottom_overlap;
2955        } else {
2956          size[i] = bytes;
2957        }
2958      }
2959    }
2960  }
2961
2962  // Give back the unused reserved pieces.
2963
2964  for (int j = 0; j < i; ++j) {
2965    if (base[j] != NULL) {
2966      unmap_memory(base[j], size[j]);
2967    }
2968  }
2969
2970  return (i < max_tries) ? requested_addr : NULL;
2971}
2972
2973bool os::pd_release_memory(char* addr, size_t bytes) {
2974  size_t size = bytes;
2975  return munmap(addr, size) == 0;
2976}
2977
2978static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2979  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2980         "addr must be page aligned");
2981  int retVal = mprotect(addr, bytes, prot);
2982  return retVal == 0;
2983}
2984
2985// Protect memory (Used to pass readonly pages through
2986// JNI GetArray<type>Elements with empty arrays.)
2987// Also, used for serialization page and for compressed oops null pointer
2988// checking.
2989bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2990                        bool is_committed) {
2991  unsigned int p = 0;
2992  switch (prot) {
2993  case MEM_PROT_NONE: p = PROT_NONE; break;
2994  case MEM_PROT_READ: p = PROT_READ; break;
2995  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2996  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2997  default:
2998    ShouldNotReachHere();
2999  }
3000  // is_committed is unused.
3001  return solaris_mprotect(addr, bytes, p);
3002}
3003
3004// guard_memory and unguard_memory only happens within stack guard pages.
3005// Since ISM pertains only to the heap, guard and unguard memory should not
3006/// happen with an ISM region.
3007bool os::guard_memory(char* addr, size_t bytes) {
3008  return solaris_mprotect(addr, bytes, PROT_NONE);
3009}
3010
3011bool os::unguard_memory(char* addr, size_t bytes) {
3012  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3013}
3014
3015// Large page support
3016static size_t _large_page_size = 0;
3017
3018// Insertion sort for small arrays (descending order).
3019static void insertion_sort_descending(size_t* array, int len) {
3020  for (int i = 0; i < len; i++) {
3021    size_t val = array[i];
3022    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3023      size_t tmp = array[key];
3024      array[key] = array[key - 1];
3025      array[key - 1] = tmp;
3026    }
3027  }
3028}
3029
3030bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
3031  const unsigned int usable_count = VM_Version::page_size_count();
3032  if (usable_count == 1) {
3033    return false;
3034  }
3035
3036  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3037  // build platform, getpagesizes() (without the '2') can be called directly.
3038  typedef int (*gps_t)(size_t[], int);
3039  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3040  if (gps_func == NULL) {
3041    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3042    if (gps_func == NULL) {
3043      if (warn) {
3044        warning("MPSS is not supported by the operating system.");
3045      }
3046      return false;
3047    }
3048  }
3049
3050  // Fill the array of page sizes.
3051  int n = (*gps_func)(_page_sizes, page_sizes_max);
3052  assert(n > 0, "Solaris bug?");
3053
3054  if (n == page_sizes_max) {
3055    // Add a sentinel value (necessary only if the array was completely filled
3056    // since it is static (zeroed at initialization)).
3057    _page_sizes[--n] = 0;
3058    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3059  }
3060  assert(_page_sizes[n] == 0, "missing sentinel");
3061  trace_page_sizes("available page sizes", _page_sizes, n);
3062
3063  if (n == 1) return false;     // Only one page size available.
3064
3065  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3066  // select up to usable_count elements.  First sort the array, find the first
3067  // acceptable value, then copy the usable sizes to the top of the array and
3068  // trim the rest.  Make sure to include the default page size :-).
3069  //
3070  // A better policy could get rid of the 4M limit by taking the sizes of the
3071  // important VM memory regions (java heap and possibly the code cache) into
3072  // account.
3073  insertion_sort_descending(_page_sizes, n);
3074  const size_t size_limit =
3075    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3076  int beg;
3077  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
3078  const int end = MIN2((int)usable_count, n) - 1;
3079  for (int cur = 0; cur < end; ++cur, ++beg) {
3080    _page_sizes[cur] = _page_sizes[beg];
3081  }
3082  _page_sizes[end] = vm_page_size();
3083  _page_sizes[end + 1] = 0;
3084
3085  if (_page_sizes[end] > _page_sizes[end - 1]) {
3086    // Default page size is not the smallest; sort again.
3087    insertion_sort_descending(_page_sizes, end + 1);
3088  }
3089  *page_size = _page_sizes[0];
3090
3091  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3092  return true;
3093}
3094
3095void os::large_page_init() {
3096  if (UseLargePages) {
3097    // print a warning if any large page related flag is specified on command line
3098    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3099                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3100
3101    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3102  }
3103}
3104
3105bool os::Solaris::is_valid_page_size(size_t bytes) {
3106  for (int i = 0; _page_sizes[i] != 0; i++) {
3107    if (_page_sizes[i] == bytes) {
3108      return true;
3109    }
3110  }
3111  return false;
3112}
3113
3114bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3115  assert(is_valid_page_size(align), err_msg(SIZE_FORMAT " is not a valid page size", align));
3116  assert(is_ptr_aligned((void*) start, align),
3117         err_msg(PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align));
3118  assert(is_size_aligned(bytes, align),
3119         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align));
3120
3121  // Signal to OS that we want large pages for addresses
3122  // from addr, addr + bytes
3123  struct memcntl_mha mpss_struct;
3124  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3125  mpss_struct.mha_pagesize = align;
3126  mpss_struct.mha_flags = 0;
3127  // Upon successful completion, memcntl() returns 0
3128  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3129    debug_only(warning("Attempt to use MPSS failed."));
3130    return false;
3131  }
3132  return true;
3133}
3134
3135char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3136  fatal("os::reserve_memory_special should not be called on Solaris.");
3137  return NULL;
3138}
3139
3140bool os::release_memory_special(char* base, size_t bytes) {
3141  fatal("os::release_memory_special should not be called on Solaris.");
3142  return false;
3143}
3144
3145size_t os::large_page_size() {
3146  return _large_page_size;
3147}
3148
3149// MPSS allows application to commit large page memory on demand; with ISM
3150// the entire memory region must be allocated as shared memory.
3151bool os::can_commit_large_page_memory() {
3152  return true;
3153}
3154
3155bool os::can_execute_large_page_memory() {
3156  return true;
3157}
3158
3159// Read calls from inside the vm need to perform state transitions
3160size_t os::read(int fd, void *buf, unsigned int nBytes) {
3161  size_t res;
3162  JavaThread* thread = (JavaThread*)Thread::current();
3163  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3164  ThreadBlockInVM tbiv(thread);
3165  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3166  return res;
3167}
3168
3169size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3170  size_t res;
3171  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3172         "Assumed _thread_in_native");
3173  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3174  return res;
3175}
3176
3177void os::naked_short_sleep(jlong ms) {
3178  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3179
3180  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3181  // Solaris requires -lrt for this.
3182  usleep((ms * 1000));
3183
3184  return;
3185}
3186
3187// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3188void os::infinite_sleep() {
3189  while (true) {    // sleep forever ...
3190    ::sleep(100);   // ... 100 seconds at a time
3191  }
3192}
3193
3194// Used to convert frequent JVM_Yield() to nops
3195bool os::dont_yield() {
3196  if (DontYieldALot) {
3197    static hrtime_t last_time = 0;
3198    hrtime_t diff = getTimeNanos() - last_time;
3199
3200    if (diff < DontYieldALotInterval * 1000000) {
3201      return true;
3202    }
3203
3204    last_time += diff;
3205
3206    return false;
3207  } else {
3208    return false;
3209  }
3210}
3211
3212// Note that yield semantics are defined by the scheduling class to which
3213// the thread currently belongs.  Typically, yield will _not yield to
3214// other equal or higher priority threads that reside on the dispatch queues
3215// of other CPUs.
3216
3217void os::naked_yield() {
3218  thr_yield();
3219}
3220
3221// Interface for setting lwp priorities.  If we are using T2 libthread,
3222// which forces the use of BoundThreads or we manually set UseBoundThreads,
3223// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3224// function is meaningless in this mode so we must adjust the real lwp's priority
3225// The routines below implement the getting and setting of lwp priorities.
3226//
3227// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3228//       being deprecated and all threads are now BoundThreads
3229//
3230// Note: There are three priority scales used on Solaris.  Java priotities
3231//       which range from 1 to 10, libthread "thr_setprio" scale which range
3232//       from 0 to 127, and the current scheduling class of the process we
3233//       are running in.  This is typically from -60 to +60.
3234//       The setting of the lwp priorities in done after a call to thr_setprio
3235//       so Java priorities are mapped to libthread priorities and we map from
3236//       the latter to lwp priorities.  We don't keep priorities stored in
3237//       Java priorities since some of our worker threads want to set priorities
3238//       higher than all Java threads.
3239//
3240// For related information:
3241// (1)  man -s 2 priocntl
3242// (2)  man -s 4 priocntl
3243// (3)  man dispadmin
3244// =    librt.so
3245// =    libthread/common/rtsched.c - thrp_setlwpprio().
3246// =    ps -cL <pid> ... to validate priority.
3247// =    sched_get_priority_min and _max
3248//              pthread_create
3249//              sched_setparam
3250//              pthread_setschedparam
3251//
3252// Assumptions:
3253// +    We assume that all threads in the process belong to the same
3254//              scheduling class.   IE. an homogenous process.
3255// +    Must be root or in IA group to change change "interactive" attribute.
3256//              Priocntl() will fail silently.  The only indication of failure is when
3257//              we read-back the value and notice that it hasn't changed.
3258// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3259// +    For RT, change timeslice as well.  Invariant:
3260//              constant "priority integral"
3261//              Konst == TimeSlice * (60-Priority)
3262//              Given a priority, compute appropriate timeslice.
3263// +    Higher numerical values have higher priority.
3264
3265// sched class attributes
3266typedef struct {
3267  int   schedPolicy;              // classID
3268  int   maxPrio;
3269  int   minPrio;
3270} SchedInfo;
3271
3272
3273static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3274
3275#ifdef ASSERT
3276static int  ReadBackValidate = 1;
3277#endif
3278static int  myClass     = 0;
3279static int  myMin       = 0;
3280static int  myMax       = 0;
3281static int  myCur       = 0;
3282static bool priocntl_enable = false;
3283
3284static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3285static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3286
3287
3288// lwp_priocntl_init
3289//
3290// Try to determine the priority scale for our process.
3291//
3292// Return errno or 0 if OK.
3293//
3294static int lwp_priocntl_init() {
3295  int rslt;
3296  pcinfo_t ClassInfo;
3297  pcparms_t ParmInfo;
3298  int i;
3299
3300  if (!UseThreadPriorities) return 0;
3301
3302  // If ThreadPriorityPolicy is 1, switch tables
3303  if (ThreadPriorityPolicy == 1) {
3304    for (i = 0; i < CriticalPriority+1; i++)
3305      os::java_to_os_priority[i] = prio_policy1[i];
3306  }
3307  if (UseCriticalJavaThreadPriority) {
3308    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3309    // See set_native_priority() and set_lwp_class_and_priority().
3310    // Save original MaxPriority mapping in case attempt to
3311    // use critical priority fails.
3312    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3313    // Set negative to distinguish from other priorities
3314    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3315  }
3316
3317  // Get IDs for a set of well-known scheduling classes.
3318  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3319  // the system.  We should have a loop that iterates over the
3320  // classID values, which are known to be "small" integers.
3321
3322  strcpy(ClassInfo.pc_clname, "TS");
3323  ClassInfo.pc_cid = -1;
3324  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3325  if (rslt < 0) return errno;
3326  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3327  tsLimits.schedPolicy = ClassInfo.pc_cid;
3328  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3329  tsLimits.minPrio = -tsLimits.maxPrio;
3330
3331  strcpy(ClassInfo.pc_clname, "IA");
3332  ClassInfo.pc_cid = -1;
3333  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3334  if (rslt < 0) return errno;
3335  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3336  iaLimits.schedPolicy = ClassInfo.pc_cid;
3337  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3338  iaLimits.minPrio = -iaLimits.maxPrio;
3339
3340  strcpy(ClassInfo.pc_clname, "RT");
3341  ClassInfo.pc_cid = -1;
3342  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3343  if (rslt < 0) return errno;
3344  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3345  rtLimits.schedPolicy = ClassInfo.pc_cid;
3346  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3347  rtLimits.minPrio = 0;
3348
3349  strcpy(ClassInfo.pc_clname, "FX");
3350  ClassInfo.pc_cid = -1;
3351  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3352  if (rslt < 0) return errno;
3353  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3354  fxLimits.schedPolicy = ClassInfo.pc_cid;
3355  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3356  fxLimits.minPrio = 0;
3357
3358  // Query our "current" scheduling class.
3359  // This will normally be IA, TS or, rarely, FX or RT.
3360  memset(&ParmInfo, 0, sizeof(ParmInfo));
3361  ParmInfo.pc_cid = PC_CLNULL;
3362  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3363  if (rslt < 0) return errno;
3364  myClass = ParmInfo.pc_cid;
3365
3366  // We now know our scheduling classId, get specific information
3367  // about the class.
3368  ClassInfo.pc_cid = myClass;
3369  ClassInfo.pc_clname[0] = 0;
3370  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3371  if (rslt < 0) return errno;
3372
3373  if (ThreadPriorityVerbose) {
3374    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3375  }
3376
3377  memset(&ParmInfo, 0, sizeof(pcparms_t));
3378  ParmInfo.pc_cid = PC_CLNULL;
3379  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3380  if (rslt < 0) return errno;
3381
3382  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3383    myMin = rtLimits.minPrio;
3384    myMax = rtLimits.maxPrio;
3385  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3386    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3387    myMin = iaLimits.minPrio;
3388    myMax = iaLimits.maxPrio;
3389    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3390  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3391    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3392    myMin = tsLimits.minPrio;
3393    myMax = tsLimits.maxPrio;
3394    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3395  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3396    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3397    myMin = fxLimits.minPrio;
3398    myMax = fxLimits.maxPrio;
3399    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3400  } else {
3401    // No clue - punt
3402    if (ThreadPriorityVerbose) {
3403      tty->print_cr("Unknown scheduling class: %s ... \n",
3404                    ClassInfo.pc_clname);
3405    }
3406    return EINVAL;      // no clue, punt
3407  }
3408
3409  if (ThreadPriorityVerbose) {
3410    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3411  }
3412
3413  priocntl_enable = true;  // Enable changing priorities
3414  return 0;
3415}
3416
3417#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3418#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3419#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3420#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3421
3422
3423// scale_to_lwp_priority
3424//
3425// Convert from the libthread "thr_setprio" scale to our current
3426// lwp scheduling class scale.
3427//
3428static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3429  int v;
3430
3431  if (x == 127) return rMax;            // avoid round-down
3432  v = (((x*(rMax-rMin)))/128)+rMin;
3433  return v;
3434}
3435
3436
3437// set_lwp_class_and_priority
3438int set_lwp_class_and_priority(int ThreadID, int lwpid,
3439                               int newPrio, int new_class, bool scale) {
3440  int rslt;
3441  int Actual, Expected, prv;
3442  pcparms_t ParmInfo;                   // for GET-SET
3443#ifdef ASSERT
3444  pcparms_t ReadBack;                   // for readback
3445#endif
3446
3447  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3448  // Query current values.
3449  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3450  // Cache "pcparms_t" in global ParmCache.
3451  // TODO: elide set-to-same-value
3452
3453  // If something went wrong on init, don't change priorities.
3454  if (!priocntl_enable) {
3455    if (ThreadPriorityVerbose) {
3456      tty->print_cr("Trying to set priority but init failed, ignoring");
3457    }
3458    return EINVAL;
3459  }
3460
3461  // If lwp hasn't started yet, just return
3462  // the _start routine will call us again.
3463  if (lwpid <= 0) {
3464    if (ThreadPriorityVerbose) {
3465      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3466                    INTPTR_FORMAT " to %d, lwpid not set",
3467                    ThreadID, newPrio);
3468    }
3469    return 0;
3470  }
3471
3472  if (ThreadPriorityVerbose) {
3473    tty->print_cr ("set_lwp_class_and_priority("
3474                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3475                   ThreadID, lwpid, newPrio);
3476  }
3477
3478  memset(&ParmInfo, 0, sizeof(pcparms_t));
3479  ParmInfo.pc_cid = PC_CLNULL;
3480  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3481  if (rslt < 0) return errno;
3482
3483  int cur_class = ParmInfo.pc_cid;
3484  ParmInfo.pc_cid = (id_t)new_class;
3485
3486  if (new_class == rtLimits.schedPolicy) {
3487    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3488    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3489                                                       rtLimits.maxPrio, newPrio)
3490                               : newPrio;
3491    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3492    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3493    if (ThreadPriorityVerbose) {
3494      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3495    }
3496  } else if (new_class == iaLimits.schedPolicy) {
3497    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3498    int maxClamped     = MIN2(iaLimits.maxPrio,
3499                              cur_class == new_class
3500                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3501    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3502                                                       maxClamped, newPrio)
3503                               : newPrio;
3504    iaInfo->ia_uprilim = cur_class == new_class
3505                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3506    iaInfo->ia_mode    = IA_NOCHANGE;
3507    if (ThreadPriorityVerbose) {
3508      tty->print_cr("IA: [%d...%d] %d->%d\n",
3509                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3510    }
3511  } else if (new_class == tsLimits.schedPolicy) {
3512    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3513    int maxClamped     = MIN2(tsLimits.maxPrio,
3514                              cur_class == new_class
3515                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3516    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3517                                                       maxClamped, newPrio)
3518                               : newPrio;
3519    tsInfo->ts_uprilim = cur_class == new_class
3520                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3521    if (ThreadPriorityVerbose) {
3522      tty->print_cr("TS: [%d...%d] %d->%d\n",
3523                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3524    }
3525  } else if (new_class == fxLimits.schedPolicy) {
3526    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3527    int maxClamped     = MIN2(fxLimits.maxPrio,
3528                              cur_class == new_class
3529                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3530    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3531                                                       maxClamped, newPrio)
3532                               : newPrio;
3533    fxInfo->fx_uprilim = cur_class == new_class
3534                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3535    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3536    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3537    if (ThreadPriorityVerbose) {
3538      tty->print_cr("FX: [%d...%d] %d->%d\n",
3539                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3540    }
3541  } else {
3542    if (ThreadPriorityVerbose) {
3543      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3544    }
3545    return EINVAL;    // no clue, punt
3546  }
3547
3548  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3549  if (ThreadPriorityVerbose && rslt) {
3550    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3551  }
3552  if (rslt < 0) return errno;
3553
3554#ifdef ASSERT
3555  // Sanity check: read back what we just attempted to set.
3556  // In theory it could have changed in the interim ...
3557  //
3558  // The priocntl system call is tricky.
3559  // Sometimes it'll validate the priority value argument and
3560  // return EINVAL if unhappy.  At other times it fails silently.
3561  // Readbacks are prudent.
3562
3563  if (!ReadBackValidate) return 0;
3564
3565  memset(&ReadBack, 0, sizeof(pcparms_t));
3566  ReadBack.pc_cid = PC_CLNULL;
3567  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3568  assert(rslt >= 0, "priocntl failed");
3569  Actual = Expected = 0xBAD;
3570  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3571  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3572    Actual   = RTPRI(ReadBack)->rt_pri;
3573    Expected = RTPRI(ParmInfo)->rt_pri;
3574  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3575    Actual   = IAPRI(ReadBack)->ia_upri;
3576    Expected = IAPRI(ParmInfo)->ia_upri;
3577  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3578    Actual   = TSPRI(ReadBack)->ts_upri;
3579    Expected = TSPRI(ParmInfo)->ts_upri;
3580  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3581    Actual   = FXPRI(ReadBack)->fx_upri;
3582    Expected = FXPRI(ParmInfo)->fx_upri;
3583  } else {
3584    if (ThreadPriorityVerbose) {
3585      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3586                    ParmInfo.pc_cid);
3587    }
3588  }
3589
3590  if (Actual != Expected) {
3591    if (ThreadPriorityVerbose) {
3592      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3593                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3594    }
3595  }
3596#endif
3597
3598  return 0;
3599}
3600
3601// Solaris only gives access to 128 real priorities at a time,
3602// so we expand Java's ten to fill this range.  This would be better
3603// if we dynamically adjusted relative priorities.
3604//
3605// The ThreadPriorityPolicy option allows us to select 2 different
3606// priority scales.
3607//
3608// ThreadPriorityPolicy=0
3609// Since the Solaris' default priority is MaximumPriority, we do not
3610// set a priority lower than Max unless a priority lower than
3611// NormPriority is requested.
3612//
3613// ThreadPriorityPolicy=1
3614// This mode causes the priority table to get filled with
3615// linear values.  NormPriority get's mapped to 50% of the
3616// Maximum priority an so on.  This will cause VM threads
3617// to get unfair treatment against other Solaris processes
3618// which do not explicitly alter their thread priorities.
3619
3620int os::java_to_os_priority[CriticalPriority + 1] = {
3621  -99999,         // 0 Entry should never be used
3622
3623  0,              // 1 MinPriority
3624  32,             // 2
3625  64,             // 3
3626
3627  96,             // 4
3628  127,            // 5 NormPriority
3629  127,            // 6
3630
3631  127,            // 7
3632  127,            // 8
3633  127,            // 9 NearMaxPriority
3634
3635  127,            // 10 MaxPriority
3636
3637  -criticalPrio   // 11 CriticalPriority
3638};
3639
3640OSReturn os::set_native_priority(Thread* thread, int newpri) {
3641  OSThread* osthread = thread->osthread();
3642
3643  // Save requested priority in case the thread hasn't been started
3644  osthread->set_native_priority(newpri);
3645
3646  // Check for critical priority request
3647  bool fxcritical = false;
3648  if (newpri == -criticalPrio) {
3649    fxcritical = true;
3650    newpri = criticalPrio;
3651  }
3652
3653  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3654  if (!UseThreadPriorities) return OS_OK;
3655
3656  int status = 0;
3657
3658  if (!fxcritical) {
3659    // Use thr_setprio only if we have a priority that thr_setprio understands
3660    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3661  }
3662
3663  int lwp_status =
3664          set_lwp_class_and_priority(osthread->thread_id(),
3665                                     osthread->lwp_id(),
3666                                     newpri,
3667                                     fxcritical ? fxLimits.schedPolicy : myClass,
3668                                     !fxcritical);
3669  if (lwp_status != 0 && fxcritical) {
3670    // Try again, this time without changing the scheduling class
3671    newpri = java_MaxPriority_to_os_priority;
3672    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3673                                            osthread->lwp_id(),
3674                                            newpri, myClass, false);
3675  }
3676  status |= lwp_status;
3677  return (status == 0) ? OS_OK : OS_ERR;
3678}
3679
3680
3681OSReturn os::get_native_priority(const Thread* const thread,
3682                                 int *priority_ptr) {
3683  int p;
3684  if (!UseThreadPriorities) {
3685    *priority_ptr = NormalPriority;
3686    return OS_OK;
3687  }
3688  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3689  if (status != 0) {
3690    return OS_ERR;
3691  }
3692  *priority_ptr = p;
3693  return OS_OK;
3694}
3695
3696
3697// Hint to the underlying OS that a task switch would not be good.
3698// Void return because it's a hint and can fail.
3699void os::hint_no_preempt() {
3700  schedctl_start(schedctl_init());
3701}
3702
3703static void resume_clear_context(OSThread *osthread) {
3704  osthread->set_ucontext(NULL);
3705}
3706
3707static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3708  osthread->set_ucontext(context);
3709}
3710
3711static Semaphore sr_semaphore;
3712
3713void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3714  // Save and restore errno to avoid confusing native code with EINTR
3715  // after sigsuspend.
3716  int old_errno = errno;
3717
3718  OSThread* osthread = thread->osthread();
3719  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3720
3721  os::SuspendResume::State current = osthread->sr.state();
3722  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3723    suspend_save_context(osthread, uc);
3724
3725    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3726    os::SuspendResume::State state = osthread->sr.suspended();
3727    if (state == os::SuspendResume::SR_SUSPENDED) {
3728      sigset_t suspend_set;  // signals for sigsuspend()
3729
3730      // get current set of blocked signals and unblock resume signal
3731      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
3732      sigdelset(&suspend_set, os::Solaris::SIGasync());
3733
3734      sr_semaphore.signal();
3735      // wait here until we are resumed
3736      while (1) {
3737        sigsuspend(&suspend_set);
3738
3739        os::SuspendResume::State result = osthread->sr.running();
3740        if (result == os::SuspendResume::SR_RUNNING) {
3741          sr_semaphore.signal();
3742          break;
3743        }
3744      }
3745
3746    } else if (state == os::SuspendResume::SR_RUNNING) {
3747      // request was cancelled, continue
3748    } else {
3749      ShouldNotReachHere();
3750    }
3751
3752    resume_clear_context(osthread);
3753  } else if (current == os::SuspendResume::SR_RUNNING) {
3754    // request was cancelled, continue
3755  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3756    // ignore
3757  } else {
3758    // ignore
3759  }
3760
3761  errno = old_errno;
3762}
3763
3764void os::print_statistics() {
3765}
3766
3767int os::message_box(const char* title, const char* message) {
3768  int i;
3769  fdStream err(defaultStream::error_fd());
3770  for (i = 0; i < 78; i++) err.print_raw("=");
3771  err.cr();
3772  err.print_raw_cr(title);
3773  for (i = 0; i < 78; i++) err.print_raw("-");
3774  err.cr();
3775  err.print_raw_cr(message);
3776  for (i = 0; i < 78; i++) err.print_raw("=");
3777  err.cr();
3778
3779  char buf[16];
3780  // Prevent process from exiting upon "read error" without consuming all CPU
3781  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3782
3783  return buf[0] == 'y' || buf[0] == 'Y';
3784}
3785
3786static int sr_notify(OSThread* osthread) {
3787  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3788  assert_status(status == 0, status, "thr_kill");
3789  return status;
3790}
3791
3792// "Randomly" selected value for how long we want to spin
3793// before bailing out on suspending a thread, also how often
3794// we send a signal to a thread we want to resume
3795static const int RANDOMLY_LARGE_INTEGER = 1000000;
3796static const int RANDOMLY_LARGE_INTEGER2 = 100;
3797
3798static bool do_suspend(OSThread* osthread) {
3799  assert(osthread->sr.is_running(), "thread should be running");
3800  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3801
3802  // mark as suspended and send signal
3803  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3804    // failed to switch, state wasn't running?
3805    ShouldNotReachHere();
3806    return false;
3807  }
3808
3809  if (sr_notify(osthread) != 0) {
3810    ShouldNotReachHere();
3811  }
3812
3813  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3814  while (true) {
3815    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3816      break;
3817    } else {
3818      // timeout
3819      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3820      if (cancelled == os::SuspendResume::SR_RUNNING) {
3821        return false;
3822      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3823        // make sure that we consume the signal on the semaphore as well
3824        sr_semaphore.wait();
3825        break;
3826      } else {
3827        ShouldNotReachHere();
3828        return false;
3829      }
3830    }
3831  }
3832
3833  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3834  return true;
3835}
3836
3837static void do_resume(OSThread* osthread) {
3838  assert(osthread->sr.is_suspended(), "thread should be suspended");
3839  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3840
3841  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3842    // failed to switch to WAKEUP_REQUEST
3843    ShouldNotReachHere();
3844    return;
3845  }
3846
3847  while (true) {
3848    if (sr_notify(osthread) == 0) {
3849      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3850        if (osthread->sr.is_running()) {
3851          return;
3852        }
3853      }
3854    } else {
3855      ShouldNotReachHere();
3856    }
3857  }
3858
3859  guarantee(osthread->sr.is_running(), "Must be running!");
3860}
3861
3862void os::SuspendedThreadTask::internal_do_task() {
3863  if (do_suspend(_thread->osthread())) {
3864    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3865    do_task(context);
3866    do_resume(_thread->osthread());
3867  }
3868}
3869
3870class PcFetcher : public os::SuspendedThreadTask {
3871 public:
3872  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3873  ExtendedPC result();
3874 protected:
3875  void do_task(const os::SuspendedThreadTaskContext& context);
3876 private:
3877  ExtendedPC _epc;
3878};
3879
3880ExtendedPC PcFetcher::result() {
3881  guarantee(is_done(), "task is not done yet.");
3882  return _epc;
3883}
3884
3885void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3886  Thread* thread = context.thread();
3887  OSThread* osthread = thread->osthread();
3888  if (osthread->ucontext() != NULL) {
3889    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
3890  } else {
3891    // NULL context is unexpected, double-check this is the VMThread
3892    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3893  }
3894}
3895
3896// A lightweight implementation that does not suspend the target thread and
3897// thus returns only a hint. Used for profiling only!
3898ExtendedPC os::get_thread_pc(Thread* thread) {
3899  // Make sure that it is called by the watcher and the Threads lock is owned.
3900  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3901  // For now, is only used to profile the VM Thread
3902  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3903  PcFetcher fetcher(thread);
3904  fetcher.run();
3905  return fetcher.result();
3906}
3907
3908
3909// This does not do anything on Solaris. This is basically a hook for being
3910// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3911void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3912                              methodHandle* method, JavaCallArguments* args,
3913                              Thread* thread) {
3914  f(value, method, args, thread);
3915}
3916
3917// This routine may be used by user applications as a "hook" to catch signals.
3918// The user-defined signal handler must pass unrecognized signals to this
3919// routine, and if it returns true (non-zero), then the signal handler must
3920// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3921// routine will never retun false (zero), but instead will execute a VM panic
3922// routine kill the process.
3923//
3924// If this routine returns false, it is OK to call it again.  This allows
3925// the user-defined signal handler to perform checks either before or after
3926// the VM performs its own checks.  Naturally, the user code would be making
3927// a serious error if it tried to handle an exception (such as a null check
3928// or breakpoint) that the VM was generating for its own correct operation.
3929//
3930// This routine may recognize any of the following kinds of signals:
3931// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3932// os::Solaris::SIGasync
3933// It should be consulted by handlers for any of those signals.
3934// It explicitly does not recognize os::Solaris::SIGinterrupt
3935//
3936// The caller of this routine must pass in the three arguments supplied
3937// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3938// field of the structure passed to sigaction().  This routine assumes that
3939// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3940//
3941// Note that the VM will print warnings if it detects conflicting signal
3942// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3943//
3944extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3945                                                   siginfo_t* siginfo,
3946                                                   void* ucontext,
3947                                                   int abort_if_unrecognized);
3948
3949
3950void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3951  int orig_errno = errno;  // Preserve errno value over signal handler.
3952  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3953  errno = orig_errno;
3954}
3955
3956// Do not delete - if guarantee is ever removed,  a signal handler (even empty)
3957// is needed to provoke threads blocked on IO to return an EINTR
3958// Note: this explicitly does NOT call JVM_handle_solaris_signal and
3959// does NOT participate in signal chaining due to requirement for
3960// NOT setting SA_RESTART to make EINTR work.
3961extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
3962  if (UseSignalChaining) {
3963    struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
3964    if (actp && actp->sa_handler) {
3965      vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
3966    }
3967  }
3968}
3969
3970// This boolean allows users to forward their own non-matching signals
3971// to JVM_handle_solaris_signal, harmlessly.
3972bool os::Solaris::signal_handlers_are_installed = false;
3973
3974// For signal-chaining
3975bool os::Solaris::libjsig_is_loaded = false;
3976typedef struct sigaction *(*get_signal_t)(int);
3977get_signal_t os::Solaris::get_signal_action = NULL;
3978
3979struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3980  struct sigaction *actp = NULL;
3981
3982  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3983    // Retrieve the old signal handler from libjsig
3984    actp = (*get_signal_action)(sig);
3985  }
3986  if (actp == NULL) {
3987    // Retrieve the preinstalled signal handler from jvm
3988    actp = get_preinstalled_handler(sig);
3989  }
3990
3991  return actp;
3992}
3993
3994static bool call_chained_handler(struct sigaction *actp, int sig,
3995                                 siginfo_t *siginfo, void *context) {
3996  // Call the old signal handler
3997  if (actp->sa_handler == SIG_DFL) {
3998    // It's more reasonable to let jvm treat it as an unexpected exception
3999    // instead of taking the default action.
4000    return false;
4001  } else if (actp->sa_handler != SIG_IGN) {
4002    if ((actp->sa_flags & SA_NODEFER) == 0) {
4003      // automaticlly block the signal
4004      sigaddset(&(actp->sa_mask), sig);
4005    }
4006
4007    sa_handler_t hand;
4008    sa_sigaction_t sa;
4009    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4010    // retrieve the chained handler
4011    if (siginfo_flag_set) {
4012      sa = actp->sa_sigaction;
4013    } else {
4014      hand = actp->sa_handler;
4015    }
4016
4017    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4018      actp->sa_handler = SIG_DFL;
4019    }
4020
4021    // try to honor the signal mask
4022    sigset_t oset;
4023    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4024
4025    // call into the chained handler
4026    if (siginfo_flag_set) {
4027      (*sa)(sig, siginfo, context);
4028    } else {
4029      (*hand)(sig);
4030    }
4031
4032    // restore the signal mask
4033    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4034  }
4035  // Tell jvm's signal handler the signal is taken care of.
4036  return true;
4037}
4038
4039bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4040  bool chained = false;
4041  // signal-chaining
4042  if (UseSignalChaining) {
4043    struct sigaction *actp = get_chained_signal_action(sig);
4044    if (actp != NULL) {
4045      chained = call_chained_handler(actp, sig, siginfo, context);
4046    }
4047  }
4048  return chained;
4049}
4050
4051struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4052  assert((chainedsigactions != (struct sigaction *)NULL) &&
4053         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4054  if (preinstalled_sigs[sig] != 0) {
4055    return &chainedsigactions[sig];
4056  }
4057  return NULL;
4058}
4059
4060void os::Solaris::save_preinstalled_handler(int sig,
4061                                            struct sigaction& oldAct) {
4062  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4063  assert((chainedsigactions != (struct sigaction *)NULL) &&
4064         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4065  chainedsigactions[sig] = oldAct;
4066  preinstalled_sigs[sig] = 1;
4067}
4068
4069void os::Solaris::set_signal_handler(int sig, bool set_installed,
4070                                     bool oktochain) {
4071  // Check for overwrite.
4072  struct sigaction oldAct;
4073  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4074  void* oldhand =
4075      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4076                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4077  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4078      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4079      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4080    if (AllowUserSignalHandlers || !set_installed) {
4081      // Do not overwrite; user takes responsibility to forward to us.
4082      return;
4083    } else if (UseSignalChaining) {
4084      if (oktochain) {
4085        // save the old handler in jvm
4086        save_preinstalled_handler(sig, oldAct);
4087      } else {
4088        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4089      }
4090      // libjsig also interposes the sigaction() call below and saves the
4091      // old sigaction on it own.
4092    } else {
4093      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4094                    "%#lx for signal %d.", (long)oldhand, sig));
4095    }
4096  }
4097
4098  struct sigaction sigAct;
4099  sigfillset(&(sigAct.sa_mask));
4100  sigAct.sa_handler = SIG_DFL;
4101
4102  sigAct.sa_sigaction = signalHandler;
4103  // Handle SIGSEGV on alternate signal stack if
4104  // not using stack banging
4105  if (!UseStackBanging && sig == SIGSEGV) {
4106    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4107  } else if (sig == os::Solaris::SIGinterrupt()) {
4108    // Interruptible i/o requires SA_RESTART cleared so EINTR
4109    // is returned instead of restarting system calls
4110    sigemptyset(&sigAct.sa_mask);
4111    sigAct.sa_handler = NULL;
4112    sigAct.sa_flags = SA_SIGINFO;
4113    sigAct.sa_sigaction = sigINTRHandler;
4114  } else {
4115    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4116  }
4117  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4118
4119  sigaction(sig, &sigAct, &oldAct);
4120
4121  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4122                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4123  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4124}
4125
4126
4127#define DO_SIGNAL_CHECK(sig)                      \
4128  do {                                            \
4129    if (!sigismember(&check_signal_done, sig)) {  \
4130      os::Solaris::check_signal_handler(sig);     \
4131    }                                             \
4132  } while (0)
4133
4134// This method is a periodic task to check for misbehaving JNI applications
4135// under CheckJNI, we can add any periodic checks here
4136
4137void os::run_periodic_checks() {
4138  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4139  // thereby preventing a NULL checks.
4140  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4141
4142  if (check_signals == false) return;
4143
4144  // SEGV and BUS if overridden could potentially prevent
4145  // generation of hs*.log in the event of a crash, debugging
4146  // such a case can be very challenging, so we absolutely
4147  // check for the following for a good measure:
4148  DO_SIGNAL_CHECK(SIGSEGV);
4149  DO_SIGNAL_CHECK(SIGILL);
4150  DO_SIGNAL_CHECK(SIGFPE);
4151  DO_SIGNAL_CHECK(SIGBUS);
4152  DO_SIGNAL_CHECK(SIGPIPE);
4153  DO_SIGNAL_CHECK(SIGXFSZ);
4154
4155  // ReduceSignalUsage allows the user to override these handlers
4156  // see comments at the very top and jvm_solaris.h
4157  if (!ReduceSignalUsage) {
4158    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4159    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4160    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4161    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4162  }
4163
4164  // See comments above for using JVM1/JVM2 and UseAltSigs
4165  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4166  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4167
4168}
4169
4170typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4171
4172static os_sigaction_t os_sigaction = NULL;
4173
4174void os::Solaris::check_signal_handler(int sig) {
4175  char buf[O_BUFLEN];
4176  address jvmHandler = NULL;
4177
4178  struct sigaction act;
4179  if (os_sigaction == NULL) {
4180    // only trust the default sigaction, in case it has been interposed
4181    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4182    if (os_sigaction == NULL) return;
4183  }
4184
4185  os_sigaction(sig, (struct sigaction*)NULL, &act);
4186
4187  address thisHandler = (act.sa_flags & SA_SIGINFO)
4188    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4189    : CAST_FROM_FN_PTR(address, act.sa_handler);
4190
4191
4192  switch (sig) {
4193  case SIGSEGV:
4194  case SIGBUS:
4195  case SIGFPE:
4196  case SIGPIPE:
4197  case SIGXFSZ:
4198  case SIGILL:
4199    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4200    break;
4201
4202  case SHUTDOWN1_SIGNAL:
4203  case SHUTDOWN2_SIGNAL:
4204  case SHUTDOWN3_SIGNAL:
4205  case BREAK_SIGNAL:
4206    jvmHandler = (address)user_handler();
4207    break;
4208
4209  default:
4210    int intrsig = os::Solaris::SIGinterrupt();
4211    int asynsig = os::Solaris::SIGasync();
4212
4213    if (sig == intrsig) {
4214      jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4215    } else if (sig == asynsig) {
4216      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4217    } else {
4218      return;
4219    }
4220    break;
4221  }
4222
4223
4224  if (thisHandler != jvmHandler) {
4225    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4226    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4227    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4228    // No need to check this sig any longer
4229    sigaddset(&check_signal_done, sig);
4230    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4231    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4232      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4233                    exception_name(sig, buf, O_BUFLEN));
4234    }
4235  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4236    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4237    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4238    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4239    // No need to check this sig any longer
4240    sigaddset(&check_signal_done, sig);
4241  }
4242
4243  // Print all the signal handler state
4244  if (sigismember(&check_signal_done, sig)) {
4245    print_signal_handlers(tty, buf, O_BUFLEN);
4246  }
4247
4248}
4249
4250void os::Solaris::install_signal_handlers() {
4251  bool libjsigdone = false;
4252  signal_handlers_are_installed = true;
4253
4254  // signal-chaining
4255  typedef void (*signal_setting_t)();
4256  signal_setting_t begin_signal_setting = NULL;
4257  signal_setting_t end_signal_setting = NULL;
4258  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4259                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4260  if (begin_signal_setting != NULL) {
4261    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4262                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4263    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4264                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4265    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4266                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4267    libjsig_is_loaded = true;
4268    if (os::Solaris::get_libjsig_version != NULL) {
4269      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4270    }
4271    assert(UseSignalChaining, "should enable signal-chaining");
4272  }
4273  if (libjsig_is_loaded) {
4274    // Tell libjsig jvm is setting signal handlers
4275    (*begin_signal_setting)();
4276  }
4277
4278  set_signal_handler(SIGSEGV, true, true);
4279  set_signal_handler(SIGPIPE, true, true);
4280  set_signal_handler(SIGXFSZ, true, true);
4281  set_signal_handler(SIGBUS, true, true);
4282  set_signal_handler(SIGILL, true, true);
4283  set_signal_handler(SIGFPE, true, true);
4284
4285
4286  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4287
4288    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4289    // can not register overridable signals which might be > 32
4290    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4291      // Tell libjsig jvm has finished setting signal handlers
4292      (*end_signal_setting)();
4293      libjsigdone = true;
4294    }
4295  }
4296
4297  // Never ok to chain our SIGinterrupt
4298  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4299  set_signal_handler(os::Solaris::SIGasync(), true, true);
4300
4301  if (libjsig_is_loaded && !libjsigdone) {
4302    // Tell libjsig jvm finishes setting signal handlers
4303    (*end_signal_setting)();
4304  }
4305
4306  // We don't activate signal checker if libjsig is in place, we trust ourselves
4307  // and if UserSignalHandler is installed all bets are off.
4308  // Log that signal checking is off only if -verbose:jni is specified.
4309  if (CheckJNICalls) {
4310    if (libjsig_is_loaded) {
4311      if (PrintJNIResolving) {
4312        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4313      }
4314      check_signals = false;
4315    }
4316    if (AllowUserSignalHandlers) {
4317      if (PrintJNIResolving) {
4318        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4319      }
4320      check_signals = false;
4321    }
4322  }
4323}
4324
4325
4326void report_error(const char* file_name, int line_no, const char* title,
4327                  const char* format, ...);
4328
4329const char * signames[] = {
4330  "SIG0",
4331  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4332  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4333  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4334  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4335  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4336  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4337  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4338  "SIGCANCEL", "SIGLOST"
4339};
4340
4341const char* os::exception_name(int exception_code, char* buf, size_t size) {
4342  if (0 < exception_code && exception_code <= SIGRTMAX) {
4343    // signal
4344    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4345      jio_snprintf(buf, size, "%s", signames[exception_code]);
4346    } else {
4347      jio_snprintf(buf, size, "SIG%d", exception_code);
4348    }
4349    return buf;
4350  } else {
4351    return NULL;
4352  }
4353}
4354
4355// (Static) wrapper for getisax(2) call.
4356os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4357
4358// (Static) wrappers for the liblgrp API
4359os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4360os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4361os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4362os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4363os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4364os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4365os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4366os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4367os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4368
4369// (Static) wrapper for meminfo() call.
4370os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4371
4372static address resolve_symbol_lazy(const char* name) {
4373  address addr = (address) dlsym(RTLD_DEFAULT, name);
4374  if (addr == NULL) {
4375    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4376    addr = (address) dlsym(RTLD_NEXT, name);
4377  }
4378  return addr;
4379}
4380
4381static address resolve_symbol(const char* name) {
4382  address addr = resolve_symbol_lazy(name);
4383  if (addr == NULL) {
4384    fatal(dlerror());
4385  }
4386  return addr;
4387}
4388
4389void os::Solaris::libthread_init() {
4390  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4391
4392  lwp_priocntl_init();
4393
4394  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4395  if (func == NULL) {
4396    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4397    // Guarantee that this VM is running on an new enough OS (5.6 or
4398    // later) that it will have a new enough libthread.so.
4399    guarantee(func != NULL, "libthread.so is too old.");
4400  }
4401
4402  int size;
4403  void (*handler_info_func)(address *, int *);
4404  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4405  handler_info_func(&handler_start, &size);
4406  handler_end = handler_start + size;
4407}
4408
4409
4410int_fnP_mutex_tP os::Solaris::_mutex_lock;
4411int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4412int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4413int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4414int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4415int os::Solaris::_mutex_scope = USYNC_THREAD;
4416
4417int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4418int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4419int_fnP_cond_tP os::Solaris::_cond_signal;
4420int_fnP_cond_tP os::Solaris::_cond_broadcast;
4421int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4422int_fnP_cond_tP os::Solaris::_cond_destroy;
4423int os::Solaris::_cond_scope = USYNC_THREAD;
4424
4425void os::Solaris::synchronization_init() {
4426  if (UseLWPSynchronization) {
4427    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4428    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4429    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4430    os::Solaris::set_mutex_init(lwp_mutex_init);
4431    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4432    os::Solaris::set_mutex_scope(USYNC_THREAD);
4433
4434    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4435    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4436    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4437    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4438    os::Solaris::set_cond_init(lwp_cond_init);
4439    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4440    os::Solaris::set_cond_scope(USYNC_THREAD);
4441  } else {
4442    os::Solaris::set_mutex_scope(USYNC_THREAD);
4443    os::Solaris::set_cond_scope(USYNC_THREAD);
4444
4445    if (UsePthreads) {
4446      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4447      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4448      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4449      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4450      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4451
4452      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4453      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4454      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4455      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4456      os::Solaris::set_cond_init(pthread_cond_default_init);
4457      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4458    } else {
4459      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4460      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4461      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4462      os::Solaris::set_mutex_init(::mutex_init);
4463      os::Solaris::set_mutex_destroy(::mutex_destroy);
4464
4465      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4466      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4467      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4468      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4469      os::Solaris::set_cond_init(::cond_init);
4470      os::Solaris::set_cond_destroy(::cond_destroy);
4471    }
4472  }
4473}
4474
4475bool os::Solaris::liblgrp_init() {
4476  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4477  if (handle != NULL) {
4478    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4479    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4480    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4481    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4482    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4483    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4484    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4485    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4486                                                      dlsym(handle, "lgrp_cookie_stale")));
4487
4488    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4489    set_lgrp_cookie(c);
4490    return true;
4491  }
4492  return false;
4493}
4494
4495void os::Solaris::misc_sym_init() {
4496  address func;
4497
4498  // getisax
4499  func = resolve_symbol_lazy("getisax");
4500  if (func != NULL) {
4501    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4502  }
4503
4504  // meminfo
4505  func = resolve_symbol_lazy("meminfo");
4506  if (func != NULL) {
4507    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4508  }
4509}
4510
4511uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4512  assert(_getisax != NULL, "_getisax not set");
4513  return _getisax(array, n);
4514}
4515
4516// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4517typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4518static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4519
4520void init_pset_getloadavg_ptr(void) {
4521  pset_getloadavg_ptr =
4522    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4523  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4524    warning("pset_getloadavg function not found");
4525  }
4526}
4527
4528int os::Solaris::_dev_zero_fd = -1;
4529
4530// this is called _before_ the global arguments have been parsed
4531void os::init(void) {
4532  _initial_pid = getpid();
4533
4534  max_hrtime = first_hrtime = gethrtime();
4535
4536  init_random(1234567);
4537
4538  page_size = sysconf(_SC_PAGESIZE);
4539  if (page_size == -1) {
4540    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
4541                  strerror(errno)));
4542  }
4543  init_page_sizes((size_t) page_size);
4544
4545  Solaris::initialize_system_info();
4546
4547  // Initialize misc. symbols as soon as possible, so we can use them
4548  // if we need them.
4549  Solaris::misc_sym_init();
4550
4551  int fd = ::open("/dev/zero", O_RDWR);
4552  if (fd < 0) {
4553    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
4554  } else {
4555    Solaris::set_dev_zero_fd(fd);
4556
4557    // Close on exec, child won't inherit.
4558    fcntl(fd, F_SETFD, FD_CLOEXEC);
4559  }
4560
4561  clock_tics_per_sec = CLK_TCK;
4562
4563  // check if dladdr1() exists; dladdr1 can provide more information than
4564  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4565  // and is available on linker patches for 5.7 and 5.8.
4566  // libdl.so must have been loaded, this call is just an entry lookup
4567  void * hdl = dlopen("libdl.so", RTLD_NOW);
4568  if (hdl) {
4569    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4570  }
4571
4572  // (Solaris only) this switches to calls that actually do locking.
4573  ThreadCritical::initialize();
4574
4575  main_thread = thr_self();
4576
4577  // Constant minimum stack size allowed. It must be at least
4578  // the minimum of what the OS supports (thr_min_stack()), and
4579  // enough to allow the thread to get to user bytecode execution.
4580  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4581  // If the pagesize of the VM is greater than 8K determine the appropriate
4582  // number of initial guard pages.  The user can change this with the
4583  // command line arguments, if needed.
4584  if (vm_page_size() > 8*K) {
4585    StackYellowPages = 1;
4586    StackRedPages = 1;
4587    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4588  }
4589}
4590
4591// To install functions for atexit system call
4592extern "C" {
4593  static void perfMemory_exit_helper() {
4594    perfMemory_exit();
4595  }
4596}
4597
4598// this is called _after_ the global arguments have been parsed
4599jint os::init_2(void) {
4600  // try to enable extended file IO ASAP, see 6431278
4601  os::Solaris::try_enable_extended_io();
4602
4603  // Allocate a single page and mark it as readable for safepoint polling.  Also
4604  // use this first mmap call to check support for MAP_ALIGN.
4605  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4606                                                      page_size,
4607                                                      MAP_PRIVATE | MAP_ALIGN,
4608                                                      PROT_READ);
4609  if (polling_page == NULL) {
4610    has_map_align = false;
4611    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4612                                                PROT_READ);
4613  }
4614
4615  os::set_polling_page(polling_page);
4616
4617#ifndef PRODUCT
4618  if (Verbose && PrintMiscellaneous) {
4619    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4620               (intptr_t)polling_page);
4621  }
4622#endif
4623
4624  if (!UseMembar) {
4625    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4626    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4627    os::set_memory_serialize_page(mem_serialize_page);
4628
4629#ifndef PRODUCT
4630    if (Verbose && PrintMiscellaneous) {
4631      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4632                 (intptr_t)mem_serialize_page);
4633    }
4634#endif
4635  }
4636
4637  // Check minimum allowable stack size for thread creation and to initialize
4638  // the java system classes, including StackOverflowError - depends on page
4639  // size.  Add a page for compiler2 recursion in main thread.
4640  // Add in 2*BytesPerWord times page size to account for VM stack during
4641  // class initialization depending on 32 or 64 bit VM.
4642  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4643                                        (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4644                                        2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4645
4646  size_t threadStackSizeInBytes = ThreadStackSize * K;
4647  if (threadStackSizeInBytes != 0 &&
4648      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4649    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4650                  os::Solaris::min_stack_allowed/K);
4651    return JNI_ERR;
4652  }
4653
4654  // For 64kbps there will be a 64kb page size, which makes
4655  // the usable default stack size quite a bit less.  Increase the
4656  // stack for 64kb (or any > than 8kb) pages, this increases
4657  // virtual memory fragmentation (since we're not creating the
4658  // stack on a power of 2 boundary.  The real fix for this
4659  // should be to fix the guard page mechanism.
4660
4661  if (vm_page_size() > 8*K) {
4662    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4663       ? threadStackSizeInBytes +
4664         ((StackYellowPages + StackRedPages) * vm_page_size())
4665       : 0;
4666    ThreadStackSize = threadStackSizeInBytes/K;
4667  }
4668
4669  // Make the stack size a multiple of the page size so that
4670  // the yellow/red zones can be guarded.
4671  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4672                                                vm_page_size()));
4673
4674  Solaris::libthread_init();
4675
4676  if (UseNUMA) {
4677    if (!Solaris::liblgrp_init()) {
4678      UseNUMA = false;
4679    } else {
4680      size_t lgrp_limit = os::numa_get_groups_num();
4681      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4682      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4683      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
4684      if (lgrp_num < 2) {
4685        // There's only one locality group, disable NUMA.
4686        UseNUMA = false;
4687      }
4688    }
4689    if (!UseNUMA && ForceNUMA) {
4690      UseNUMA = true;
4691    }
4692  }
4693
4694  Solaris::signal_sets_init();
4695  Solaris::init_signal_mem();
4696  Solaris::install_signal_handlers();
4697
4698  if (libjsigversion < JSIG_VERSION_1_4_1) {
4699    Maxlibjsigsigs = OLDMAXSIGNUM;
4700  }
4701
4702  // initialize synchronization primitives to use either thread or
4703  // lwp synchronization (controlled by UseLWPSynchronization)
4704  Solaris::synchronization_init();
4705
4706  if (MaxFDLimit) {
4707    // set the number of file descriptors to max. print out error
4708    // if getrlimit/setrlimit fails but continue regardless.
4709    struct rlimit nbr_files;
4710    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4711    if (status != 0) {
4712      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4713        perror("os::init_2 getrlimit failed");
4714      }
4715    } else {
4716      nbr_files.rlim_cur = nbr_files.rlim_max;
4717      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4718      if (status != 0) {
4719        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4720          perror("os::init_2 setrlimit failed");
4721        }
4722      }
4723    }
4724  }
4725
4726  // Calculate theoretical max. size of Threads to guard gainst
4727  // artifical out-of-memory situations, where all available address-
4728  // space has been reserved by thread stacks. Default stack size is 1Mb.
4729  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4730    JavaThread::stack_size_at_create() : (1*K*K);
4731  assert(pre_thread_stack_size != 0, "Must have a stack");
4732  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4733  // we should start doing Virtual Memory banging. Currently when the threads will
4734  // have used all but 200Mb of space.
4735  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4736  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4737
4738  // at-exit methods are called in the reverse order of their registration.
4739  // In Solaris 7 and earlier, atexit functions are called on return from
4740  // main or as a result of a call to exit(3C). There can be only 32 of
4741  // these functions registered and atexit() does not set errno. In Solaris
4742  // 8 and later, there is no limit to the number of functions registered
4743  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4744  // functions are called upon dlclose(3DL) in addition to return from main
4745  // and exit(3C).
4746
4747  if (PerfAllowAtExitRegistration) {
4748    // only register atexit functions if PerfAllowAtExitRegistration is set.
4749    // atexit functions can be delayed until process exit time, which
4750    // can be problematic for embedded VM situations. Embedded VMs should
4751    // call DestroyJavaVM() to assure that VM resources are released.
4752
4753    // note: perfMemory_exit_helper atexit function may be removed in
4754    // the future if the appropriate cleanup code can be added to the
4755    // VM_Exit VMOperation's doit method.
4756    if (atexit(perfMemory_exit_helper) != 0) {
4757      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4758    }
4759  }
4760
4761  // Init pset_loadavg function pointer
4762  init_pset_getloadavg_ptr();
4763
4764  return JNI_OK;
4765}
4766
4767void os::init_3(void) {
4768  return;
4769}
4770
4771// Mark the polling page as unreadable
4772void os::make_polling_page_unreadable(void) {
4773  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4774    fatal("Could not disable polling page");
4775  }
4776}
4777
4778// Mark the polling page as readable
4779void os::make_polling_page_readable(void) {
4780  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4781    fatal("Could not enable polling page");
4782  }
4783}
4784
4785// OS interface.
4786
4787bool os::check_heap(bool force) { return true; }
4788
4789// Is a (classpath) directory empty?
4790bool os::dir_is_empty(const char* path) {
4791  DIR *dir = NULL;
4792  struct dirent *ptr;
4793
4794  dir = opendir(path);
4795  if (dir == NULL) return true;
4796
4797  // Scan the directory
4798  bool result = true;
4799  char buf[sizeof(struct dirent) + MAX_PATH];
4800  struct dirent *dbuf = (struct dirent *) buf;
4801  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4802    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4803      result = false;
4804    }
4805  }
4806  closedir(dir);
4807  return result;
4808}
4809
4810// This code originates from JDK's sysOpen and open64_w
4811// from src/solaris/hpi/src/system_md.c
4812
4813int os::open(const char *path, int oflag, int mode) {
4814  if (strlen(path) > MAX_PATH - 1) {
4815    errno = ENAMETOOLONG;
4816    return -1;
4817  }
4818  int fd;
4819
4820  fd = ::open64(path, oflag, mode);
4821  if (fd == -1) return -1;
4822
4823  // If the open succeeded, the file might still be a directory
4824  {
4825    struct stat64 buf64;
4826    int ret = ::fstat64(fd, &buf64);
4827    int st_mode = buf64.st_mode;
4828
4829    if (ret != -1) {
4830      if ((st_mode & S_IFMT) == S_IFDIR) {
4831        errno = EISDIR;
4832        ::close(fd);
4833        return -1;
4834      }
4835    } else {
4836      ::close(fd);
4837      return -1;
4838    }
4839  }
4840
4841  // 32-bit Solaris systems suffer from:
4842  //
4843  // - an historical default soft limit of 256 per-process file
4844  //   descriptors that is too low for many Java programs.
4845  //
4846  // - a design flaw where file descriptors created using stdio
4847  //   fopen must be less than 256, _even_ when the first limit above
4848  //   has been raised.  This can cause calls to fopen (but not calls to
4849  //   open, for example) to fail mysteriously, perhaps in 3rd party
4850  //   native code (although the JDK itself uses fopen).  One can hardly
4851  //   criticize them for using this most standard of all functions.
4852  //
4853  // We attempt to make everything work anyways by:
4854  //
4855  // - raising the soft limit on per-process file descriptors beyond
4856  //   256
4857  //
4858  // - As of Solaris 10u4, we can request that Solaris raise the 256
4859  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4860  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4861  //
4862  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4863  //   workaround the bug by remapping non-stdio file descriptors below
4864  //   256 to ones beyond 256, which is done below.
4865  //
4866  // See:
4867  // 1085341: 32-bit stdio routines should support file descriptors >255
4868  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4869  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4870  //          enable_extended_FILE_stdio() in VM initialisation
4871  // Giri Mandalika's blog
4872  // http://technopark02.blogspot.com/2005_05_01_archive.html
4873  //
4874#ifndef  _LP64
4875  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4876    int newfd = ::fcntl(fd, F_DUPFD, 256);
4877    if (newfd != -1) {
4878      ::close(fd);
4879      fd = newfd;
4880    }
4881  }
4882#endif // 32-bit Solaris
4883
4884  // All file descriptors that are opened in the JVM and not
4885  // specifically destined for a subprocess should have the
4886  // close-on-exec flag set.  If we don't set it, then careless 3rd
4887  // party native code might fork and exec without closing all
4888  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4889  // UNIXProcess.c), and this in turn might:
4890  //
4891  // - cause end-of-file to fail to be detected on some file
4892  //   descriptors, resulting in mysterious hangs, or
4893  //
4894  // - might cause an fopen in the subprocess to fail on a system
4895  //   suffering from bug 1085341.
4896  //
4897  // (Yes, the default setting of the close-on-exec flag is a Unix
4898  // design flaw)
4899  //
4900  // See:
4901  // 1085341: 32-bit stdio routines should support file descriptors >255
4902  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4903  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4904  //
4905#ifdef FD_CLOEXEC
4906  {
4907    int flags = ::fcntl(fd, F_GETFD);
4908    if (flags != -1) {
4909      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4910    }
4911  }
4912#endif
4913
4914  return fd;
4915}
4916
4917// create binary file, rewriting existing file if required
4918int os::create_binary_file(const char* path, bool rewrite_existing) {
4919  int oflags = O_WRONLY | O_CREAT;
4920  if (!rewrite_existing) {
4921    oflags |= O_EXCL;
4922  }
4923  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4924}
4925
4926// return current position of file pointer
4927jlong os::current_file_offset(int fd) {
4928  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4929}
4930
4931// move file pointer to the specified offset
4932jlong os::seek_to_file_offset(int fd, jlong offset) {
4933  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4934}
4935
4936jlong os::lseek(int fd, jlong offset, int whence) {
4937  return (jlong) ::lseek64(fd, offset, whence);
4938}
4939
4940char * os::native_path(char *path) {
4941  return path;
4942}
4943
4944int os::ftruncate(int fd, jlong length) {
4945  return ::ftruncate64(fd, length);
4946}
4947
4948int os::fsync(int fd)  {
4949  RESTARTABLE_RETURN_INT(::fsync(fd));
4950}
4951
4952int os::available(int fd, jlong *bytes) {
4953  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4954         "Assumed _thread_in_native");
4955  jlong cur, end;
4956  int mode;
4957  struct stat64 buf64;
4958
4959  if (::fstat64(fd, &buf64) >= 0) {
4960    mode = buf64.st_mode;
4961    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4962      int n,ioctl_return;
4963
4964      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4965      if (ioctl_return>= 0) {
4966        *bytes = n;
4967        return 1;
4968      }
4969    }
4970  }
4971  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4972    return 0;
4973  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4974    return 0;
4975  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4976    return 0;
4977  }
4978  *bytes = end - cur;
4979  return 1;
4980}
4981
4982// Map a block of memory.
4983char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4984                        char *addr, size_t bytes, bool read_only,
4985                        bool allow_exec) {
4986  int prot;
4987  int flags;
4988
4989  if (read_only) {
4990    prot = PROT_READ;
4991    flags = MAP_SHARED;
4992  } else {
4993    prot = PROT_READ | PROT_WRITE;
4994    flags = MAP_PRIVATE;
4995  }
4996
4997  if (allow_exec) {
4998    prot |= PROT_EXEC;
4999  }
5000
5001  if (addr != NULL) {
5002    flags |= MAP_FIXED;
5003  }
5004
5005  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5006                                     fd, file_offset);
5007  if (mapped_address == MAP_FAILED) {
5008    return NULL;
5009  }
5010  return mapped_address;
5011}
5012
5013
5014// Remap a block of memory.
5015char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5016                          char *addr, size_t bytes, bool read_only,
5017                          bool allow_exec) {
5018  // same as map_memory() on this OS
5019  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5020                        allow_exec);
5021}
5022
5023
5024// Unmap a block of memory.
5025bool os::pd_unmap_memory(char* addr, size_t bytes) {
5026  return munmap(addr, bytes) == 0;
5027}
5028
5029void os::pause() {
5030  char filename[MAX_PATH];
5031  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5032    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5033  } else {
5034    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5035  }
5036
5037  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5038  if (fd != -1) {
5039    struct stat buf;
5040    ::close(fd);
5041    while (::stat(filename, &buf) == 0) {
5042      (void)::poll(NULL, 0, 100);
5043    }
5044  } else {
5045    jio_fprintf(stderr,
5046                "Could not open pause file '%s', continuing immediately.\n", filename);
5047  }
5048}
5049
5050#ifndef PRODUCT
5051#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5052// Turn this on if you need to trace synch operations.
5053// Set RECORD_SYNCH_LIMIT to a large-enough value,
5054// and call record_synch_enable and record_synch_disable
5055// around the computation of interest.
5056
5057void record_synch(char* name, bool returning);  // defined below
5058
5059class RecordSynch {
5060  char* _name;
5061 public:
5062  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
5063  ~RecordSynch()                       { record_synch(_name, true); }
5064};
5065
5066#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5067extern "C" ret name params {                                    \
5068  typedef ret name##_t params;                                  \
5069  static name##_t* implem = NULL;                               \
5070  static int callcount = 0;                                     \
5071  if (implem == NULL) {                                         \
5072    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5073    if (implem == NULL)  fatal(dlerror());                      \
5074  }                                                             \
5075  ++callcount;                                                  \
5076  RecordSynch _rs(#name);                                       \
5077  inner;                                                        \
5078  return implem args;                                           \
5079}
5080// in dbx, examine callcounts this way:
5081// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5082
5083#define CHECK_POINTER_OK(p) \
5084  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5085#define CHECK_MU \
5086  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5087#define CHECK_CV \
5088  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5089#define CHECK_P(p) \
5090  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5091
5092#define CHECK_MUTEX(mutex_op) \
5093  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5094
5095CHECK_MUTEX(   mutex_lock)
5096CHECK_MUTEX(  _mutex_lock)
5097CHECK_MUTEX( mutex_unlock)
5098CHECK_MUTEX(_mutex_unlock)
5099CHECK_MUTEX( mutex_trylock)
5100CHECK_MUTEX(_mutex_trylock)
5101
5102#define CHECK_COND(cond_op) \
5103  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
5104
5105CHECK_COND( cond_wait);
5106CHECK_COND(_cond_wait);
5107CHECK_COND(_cond_wait_cancel);
5108
5109#define CHECK_COND2(cond_op) \
5110  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
5111
5112CHECK_COND2( cond_timedwait);
5113CHECK_COND2(_cond_timedwait);
5114CHECK_COND2(_cond_timedwait_cancel);
5115
5116// do the _lwp_* versions too
5117#define mutex_t lwp_mutex_t
5118#define cond_t  lwp_cond_t
5119CHECK_MUTEX(  _lwp_mutex_lock)
5120CHECK_MUTEX(  _lwp_mutex_unlock)
5121CHECK_MUTEX(  _lwp_mutex_trylock)
5122CHECK_MUTEX( __lwp_mutex_lock)
5123CHECK_MUTEX( __lwp_mutex_unlock)
5124CHECK_MUTEX( __lwp_mutex_trylock)
5125CHECK_MUTEX(___lwp_mutex_lock)
5126CHECK_MUTEX(___lwp_mutex_unlock)
5127
5128CHECK_COND(  _lwp_cond_wait);
5129CHECK_COND( __lwp_cond_wait);
5130CHECK_COND(___lwp_cond_wait);
5131
5132CHECK_COND2(  _lwp_cond_timedwait);
5133CHECK_COND2( __lwp_cond_timedwait);
5134#undef mutex_t
5135#undef cond_t
5136
5137CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5138CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5139CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5140CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5141CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5142CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5143CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5144CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5145
5146
5147// recording machinery:
5148
5149enum { RECORD_SYNCH_LIMIT = 200 };
5150char* record_synch_name[RECORD_SYNCH_LIMIT];
5151void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5152bool record_synch_returning[RECORD_SYNCH_LIMIT];
5153thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5154int record_synch_count = 0;
5155bool record_synch_enabled = false;
5156
5157// in dbx, examine recorded data this way:
5158// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5159
5160void record_synch(char* name, bool returning) {
5161  if (record_synch_enabled) {
5162    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5163      record_synch_name[record_synch_count] = name;
5164      record_synch_returning[record_synch_count] = returning;
5165      record_synch_thread[record_synch_count] = thr_self();
5166      record_synch_arg0ptr[record_synch_count] = &name;
5167      record_synch_count++;
5168    }
5169    // put more checking code here:
5170    // ...
5171  }
5172}
5173
5174void record_synch_enable() {
5175  // start collecting trace data, if not already doing so
5176  if (!record_synch_enabled)  record_synch_count = 0;
5177  record_synch_enabled = true;
5178}
5179
5180void record_synch_disable() {
5181  // stop collecting trace data
5182  record_synch_enabled = false;
5183}
5184
5185#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5186#endif // PRODUCT
5187
5188const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5189const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5190                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5191
5192
5193// JVMTI & JVM monitoring and management support
5194// The thread_cpu_time() and current_thread_cpu_time() are only
5195// supported if is_thread_cpu_time_supported() returns true.
5196// They are not supported on Solaris T1.
5197
5198// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5199// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5200// of a thread.
5201//
5202// current_thread_cpu_time() and thread_cpu_time(Thread *)
5203// returns the fast estimate available on the platform.
5204
5205// hrtime_t gethrvtime() return value includes
5206// user time but does not include system time
5207jlong os::current_thread_cpu_time() {
5208  return (jlong) gethrvtime();
5209}
5210
5211jlong os::thread_cpu_time(Thread *thread) {
5212  // return user level CPU time only to be consistent with
5213  // what current_thread_cpu_time returns.
5214  // thread_cpu_time_info() must be changed if this changes
5215  return os::thread_cpu_time(thread, false /* user time only */);
5216}
5217
5218jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5219  if (user_sys_cpu_time) {
5220    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5221  } else {
5222    return os::current_thread_cpu_time();
5223  }
5224}
5225
5226jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5227  char proc_name[64];
5228  int count;
5229  prusage_t prusage;
5230  jlong lwp_time;
5231  int fd;
5232
5233  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5234          getpid(),
5235          thread->osthread()->lwp_id());
5236  fd = ::open(proc_name, O_RDONLY);
5237  if (fd == -1) return -1;
5238
5239  do {
5240    count = ::pread(fd,
5241                    (void *)&prusage.pr_utime,
5242                    thr_time_size,
5243                    thr_time_off);
5244  } while (count < 0 && errno == EINTR);
5245  ::close(fd);
5246  if (count < 0) return -1;
5247
5248  if (user_sys_cpu_time) {
5249    // user + system CPU time
5250    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5251                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5252                 (jlong)prusage.pr_stime.tv_nsec +
5253                 (jlong)prusage.pr_utime.tv_nsec;
5254  } else {
5255    // user level CPU time only
5256    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5257                (jlong)prusage.pr_utime.tv_nsec;
5258  }
5259
5260  return (lwp_time);
5261}
5262
5263void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5264  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5265  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5266  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5267  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5268}
5269
5270void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5271  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5272  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5273  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5274  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5275}
5276
5277bool os::is_thread_cpu_time_supported() {
5278  return true;
5279}
5280
5281// System loadavg support.  Returns -1 if load average cannot be obtained.
5282// Return the load average for our processor set if the primitive exists
5283// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5284int os::loadavg(double loadavg[], int nelem) {
5285  if (pset_getloadavg_ptr != NULL) {
5286    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5287  } else {
5288    return ::getloadavg(loadavg, nelem);
5289  }
5290}
5291
5292//---------------------------------------------------------------------------------
5293
5294bool os::find(address addr, outputStream* st) {
5295  Dl_info dlinfo;
5296  memset(&dlinfo, 0, sizeof(dlinfo));
5297  if (dladdr(addr, &dlinfo) != 0) {
5298    st->print(PTR_FORMAT ": ", addr);
5299    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5300      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5301    } else if (dlinfo.dli_fbase != NULL) {
5302      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5303    } else {
5304      st->print("<absolute address>");
5305    }
5306    if (dlinfo.dli_fname != NULL) {
5307      st->print(" in %s", dlinfo.dli_fname);
5308    }
5309    if (dlinfo.dli_fbase != NULL) {
5310      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5311    }
5312    st->cr();
5313
5314    if (Verbose) {
5315      // decode some bytes around the PC
5316      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5317      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5318      address       lowest = (address) dlinfo.dli_sname;
5319      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5320      if (begin < lowest)  begin = lowest;
5321      Dl_info dlinfo2;
5322      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5323          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5324        end = (address) dlinfo2.dli_saddr;
5325      }
5326      Disassembler::decode(begin, end, st);
5327    }
5328    return true;
5329  }
5330  return false;
5331}
5332
5333// Following function has been added to support HotSparc's libjvm.so running
5334// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5335// src/solaris/hpi/native_threads in the EVM codebase.
5336//
5337// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5338// libraries and should thus be removed. We will leave it behind for a while
5339// until we no longer want to able to run on top of 1.3.0 Solaris production
5340// JDK. See 4341971.
5341
5342#define STACK_SLACK 0x800
5343
5344extern "C" {
5345  intptr_t sysThreadAvailableStackWithSlack() {
5346    stack_t st;
5347    intptr_t retval, stack_top;
5348    retval = thr_stksegment(&st);
5349    assert(retval == 0, "incorrect return value from thr_stksegment");
5350    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5351    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5352    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5353    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5354  }
5355}
5356
5357// ObjectMonitor park-unpark infrastructure ...
5358//
5359// We implement Solaris and Linux PlatformEvents with the
5360// obvious condvar-mutex-flag triple.
5361// Another alternative that works quite well is pipes:
5362// Each PlatformEvent consists of a pipe-pair.
5363// The thread associated with the PlatformEvent
5364// calls park(), which reads from the input end of the pipe.
5365// Unpark() writes into the other end of the pipe.
5366// The write-side of the pipe must be set NDELAY.
5367// Unfortunately pipes consume a large # of handles.
5368// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5369// Using pipes for the 1st few threads might be workable, however.
5370//
5371// park() is permitted to return spuriously.
5372// Callers of park() should wrap the call to park() in
5373// an appropriate loop.  A litmus test for the correct
5374// usage of park is the following: if park() were modified
5375// to immediately return 0 your code should still work,
5376// albeit degenerating to a spin loop.
5377//
5378// An interesting optimization for park() is to use a trylock()
5379// to attempt to acquire the mutex.  If the trylock() fails
5380// then we know that a concurrent unpark() operation is in-progress.
5381// in that case the park() code could simply set _count to 0
5382// and return immediately.  The subsequent park() operation *might*
5383// return immediately.  That's harmless as the caller of park() is
5384// expected to loop.  By using trylock() we will have avoided a
5385// avoided a context switch caused by contention on the per-thread mutex.
5386//
5387// TODO-FIXME:
5388// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5389//     objectmonitor implementation.
5390// 2.  Collapse the JSR166 parker event, and the
5391//     objectmonitor ParkEvent into a single "Event" construct.
5392// 3.  In park() and unpark() add:
5393//     assert (Thread::current() == AssociatedWith).
5394// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5395//     1-out-of-N park() operations will return immediately.
5396//
5397// _Event transitions in park()
5398//   -1 => -1 : illegal
5399//    1 =>  0 : pass - return immediately
5400//    0 => -1 : block
5401//
5402// _Event serves as a restricted-range semaphore.
5403//
5404// Another possible encoding of _Event would be with
5405// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5406//
5407// TODO-FIXME: add DTRACE probes for:
5408// 1.   Tx parks
5409// 2.   Ty unparks Tx
5410// 3.   Tx resumes from park
5411
5412
5413// value determined through experimentation
5414#define ROUNDINGFIX 11
5415
5416// utility to compute the abstime argument to timedwait.
5417// TODO-FIXME: switch from compute_abstime() to unpackTime().
5418
5419static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5420  // millis is the relative timeout time
5421  // abstime will be the absolute timeout time
5422  if (millis < 0)  millis = 0;
5423  struct timeval now;
5424  int status = gettimeofday(&now, NULL);
5425  assert(status == 0, "gettimeofday");
5426  jlong seconds = millis / 1000;
5427  jlong max_wait_period;
5428
5429  if (UseLWPSynchronization) {
5430    // forward port of fix for 4275818 (not sleeping long enough)
5431    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5432    // _lwp_cond_timedwait() used a round_down algorithm rather
5433    // than a round_up. For millis less than our roundfactor
5434    // it rounded down to 0 which doesn't meet the spec.
5435    // For millis > roundfactor we may return a bit sooner, but
5436    // since we can not accurately identify the patch level and
5437    // this has already been fixed in Solaris 9 and 8 we will
5438    // leave it alone rather than always rounding down.
5439
5440    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5441    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5442    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5443    max_wait_period = 21000000;
5444  } else {
5445    max_wait_period = 50000000;
5446  }
5447  millis %= 1000;
5448  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5449    seconds = max_wait_period;
5450  }
5451  abstime->tv_sec = now.tv_sec  + seconds;
5452  long       usec = now.tv_usec + millis * 1000;
5453  if (usec >= 1000000) {
5454    abstime->tv_sec += 1;
5455    usec -= 1000000;
5456  }
5457  abstime->tv_nsec = usec * 1000;
5458  return abstime;
5459}
5460
5461void os::PlatformEvent::park() {           // AKA: down()
5462  // Invariant: Only the thread associated with the Event/PlatformEvent
5463  // may call park().
5464  assert(_nParked == 0, "invariant");
5465
5466  int v;
5467  for (;;) {
5468    v = _Event;
5469    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5470  }
5471  guarantee(v >= 0, "invariant");
5472  if (v == 0) {
5473    // Do this the hard way by blocking ...
5474    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5475    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5476    // Only for SPARC >= V8PlusA
5477#if defined(__sparc) && defined(COMPILER2)
5478    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5479#endif
5480    int status = os::Solaris::mutex_lock(_mutex);
5481    assert_status(status == 0, status, "mutex_lock");
5482    guarantee(_nParked == 0, "invariant");
5483    ++_nParked;
5484    while (_Event < 0) {
5485      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5486      // Treat this the same as if the wait was interrupted
5487      // With usr/lib/lwp going to kernel, always handle ETIME
5488      status = os::Solaris::cond_wait(_cond, _mutex);
5489      if (status == ETIME) status = EINTR;
5490      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5491    }
5492    --_nParked;
5493    _Event = 0;
5494    status = os::Solaris::mutex_unlock(_mutex);
5495    assert_status(status == 0, status, "mutex_unlock");
5496    // Paranoia to ensure our locked and lock-free paths interact
5497    // correctly with each other.
5498    OrderAccess::fence();
5499  }
5500}
5501
5502int os::PlatformEvent::park(jlong millis) {
5503  guarantee(_nParked == 0, "invariant");
5504  int v;
5505  for (;;) {
5506    v = _Event;
5507    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5508  }
5509  guarantee(v >= 0, "invariant");
5510  if (v != 0) return OS_OK;
5511
5512  int ret = OS_TIMEOUT;
5513  timestruc_t abst;
5514  compute_abstime(&abst, millis);
5515
5516  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5517  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5518  // Only for SPARC >= V8PlusA
5519#if defined(__sparc) && defined(COMPILER2)
5520  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5521#endif
5522  int status = os::Solaris::mutex_lock(_mutex);
5523  assert_status(status == 0, status, "mutex_lock");
5524  guarantee(_nParked == 0, "invariant");
5525  ++_nParked;
5526  while (_Event < 0) {
5527    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5528    assert_status(status == 0 || status == EINTR ||
5529                  status == ETIME || status == ETIMEDOUT,
5530                  status, "cond_timedwait");
5531    if (!FilterSpuriousWakeups) break;                // previous semantics
5532    if (status == ETIME || status == ETIMEDOUT) break;
5533    // We consume and ignore EINTR and spurious wakeups.
5534  }
5535  --_nParked;
5536  if (_Event >= 0) ret = OS_OK;
5537  _Event = 0;
5538  status = os::Solaris::mutex_unlock(_mutex);
5539  assert_status(status == 0, status, "mutex_unlock");
5540  // Paranoia to ensure our locked and lock-free paths interact
5541  // correctly with each other.
5542  OrderAccess::fence();
5543  return ret;
5544}
5545
5546void os::PlatformEvent::unpark() {
5547  // Transitions for _Event:
5548  //    0 :=> 1
5549  //    1 :=> 1
5550  //   -1 :=> either 0 or 1; must signal target thread
5551  //          That is, we can safely transition _Event from -1 to either
5552  //          0 or 1.
5553  // See also: "Semaphores in Plan 9" by Mullender & Cox
5554  //
5555  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5556  // that it will take two back-to-back park() calls for the owning
5557  // thread to block. This has the benefit of forcing a spurious return
5558  // from the first park() call after an unpark() call which will help
5559  // shake out uses of park() and unpark() without condition variables.
5560
5561  if (Atomic::xchg(1, &_Event) >= 0) return;
5562
5563  // If the thread associated with the event was parked, wake it.
5564  // Wait for the thread assoc with the PlatformEvent to vacate.
5565  int status = os::Solaris::mutex_lock(_mutex);
5566  assert_status(status == 0, status, "mutex_lock");
5567  int AnyWaiters = _nParked;
5568  status = os::Solaris::mutex_unlock(_mutex);
5569  assert_status(status == 0, status, "mutex_unlock");
5570  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5571  if (AnyWaiters != 0) {
5572    // We intentional signal *after* dropping the lock
5573    // to avoid a common class of futile wakeups.
5574    status = os::Solaris::cond_signal(_cond);
5575    assert_status(status == 0, status, "cond_signal");
5576  }
5577}
5578
5579// JSR166
5580// -------------------------------------------------------
5581
5582// The solaris and linux implementations of park/unpark are fairly
5583// conservative for now, but can be improved. They currently use a
5584// mutex/condvar pair, plus _counter.
5585// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5586// sets count to 1 and signals condvar.  Only one thread ever waits
5587// on the condvar. Contention seen when trying to park implies that someone
5588// is unparking you, so don't wait. And spurious returns are fine, so there
5589// is no need to track notifications.
5590
5591#define MAX_SECS 100000000
5592
5593// This code is common to linux and solaris and will be moved to a
5594// common place in dolphin.
5595//
5596// The passed in time value is either a relative time in nanoseconds
5597// or an absolute time in milliseconds. Either way it has to be unpacked
5598// into suitable seconds and nanoseconds components and stored in the
5599// given timespec structure.
5600// Given time is a 64-bit value and the time_t used in the timespec is only
5601// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5602// overflow if times way in the future are given. Further on Solaris versions
5603// prior to 10 there is a restriction (see cond_timedwait) that the specified
5604// number of seconds, in abstime, is less than current_time  + 100,000,000.
5605// As it will be 28 years before "now + 100000000" will overflow we can
5606// ignore overflow and just impose a hard-limit on seconds using the value
5607// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5608// years from "now".
5609//
5610static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5611  assert(time > 0, "convertTime");
5612
5613  struct timeval now;
5614  int status = gettimeofday(&now, NULL);
5615  assert(status == 0, "gettimeofday");
5616
5617  time_t max_secs = now.tv_sec + MAX_SECS;
5618
5619  if (isAbsolute) {
5620    jlong secs = time / 1000;
5621    if (secs > max_secs) {
5622      absTime->tv_sec = max_secs;
5623    } else {
5624      absTime->tv_sec = secs;
5625    }
5626    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5627  } else {
5628    jlong secs = time / NANOSECS_PER_SEC;
5629    if (secs >= MAX_SECS) {
5630      absTime->tv_sec = max_secs;
5631      absTime->tv_nsec = 0;
5632    } else {
5633      absTime->tv_sec = now.tv_sec + secs;
5634      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5635      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5636        absTime->tv_nsec -= NANOSECS_PER_SEC;
5637        ++absTime->tv_sec; // note: this must be <= max_secs
5638      }
5639    }
5640  }
5641  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5642  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5643  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5644  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5645}
5646
5647void Parker::park(bool isAbsolute, jlong time) {
5648  // Ideally we'd do something useful while spinning, such
5649  // as calling unpackTime().
5650
5651  // Optional fast-path check:
5652  // Return immediately if a permit is available.
5653  // We depend on Atomic::xchg() having full barrier semantics
5654  // since we are doing a lock-free update to _counter.
5655  if (Atomic::xchg(0, &_counter) > 0) return;
5656
5657  // Optional fast-exit: Check interrupt before trying to wait
5658  Thread* thread = Thread::current();
5659  assert(thread->is_Java_thread(), "Must be JavaThread");
5660  JavaThread *jt = (JavaThread *)thread;
5661  if (Thread::is_interrupted(thread, false)) {
5662    return;
5663  }
5664
5665  // First, demultiplex/decode time arguments
5666  timespec absTime;
5667  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5668    return;
5669  }
5670  if (time > 0) {
5671    // Warning: this code might be exposed to the old Solaris time
5672    // round-down bugs.  Grep "roundingFix" for details.
5673    unpackTime(&absTime, isAbsolute, time);
5674  }
5675
5676  // Enter safepoint region
5677  // Beware of deadlocks such as 6317397.
5678  // The per-thread Parker:: _mutex is a classic leaf-lock.
5679  // In particular a thread must never block on the Threads_lock while
5680  // holding the Parker:: mutex.  If safepoints are pending both the
5681  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5682  ThreadBlockInVM tbivm(jt);
5683
5684  // Don't wait if cannot get lock since interference arises from
5685  // unblocking.  Also. check interrupt before trying wait
5686  if (Thread::is_interrupted(thread, false) ||
5687      os::Solaris::mutex_trylock(_mutex) != 0) {
5688    return;
5689  }
5690
5691  int status;
5692
5693  if (_counter > 0)  { // no wait needed
5694    _counter = 0;
5695    status = os::Solaris::mutex_unlock(_mutex);
5696    assert(status == 0, "invariant");
5697    // Paranoia to ensure our locked and lock-free paths interact
5698    // correctly with each other and Java-level accesses.
5699    OrderAccess::fence();
5700    return;
5701  }
5702
5703#ifdef ASSERT
5704  // Don't catch signals while blocked; let the running threads have the signals.
5705  // (This allows a debugger to break into the running thread.)
5706  sigset_t oldsigs;
5707  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5708  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5709#endif
5710
5711  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5712  jt->set_suspend_equivalent();
5713  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5714
5715  // Do this the hard way by blocking ...
5716  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5717  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5718  // Only for SPARC >= V8PlusA
5719#if defined(__sparc) && defined(COMPILER2)
5720  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5721#endif
5722
5723  if (time == 0) {
5724    status = os::Solaris::cond_wait(_cond, _mutex);
5725  } else {
5726    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5727  }
5728  // Note that an untimed cond_wait() can sometimes return ETIME on older
5729  // versions of the Solaris.
5730  assert_status(status == 0 || status == EINTR ||
5731                status == ETIME || status == ETIMEDOUT,
5732                status, "cond_timedwait");
5733
5734#ifdef ASSERT
5735  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5736#endif
5737  _counter = 0;
5738  status = os::Solaris::mutex_unlock(_mutex);
5739  assert_status(status == 0, status, "mutex_unlock");
5740  // Paranoia to ensure our locked and lock-free paths interact
5741  // correctly with each other and Java-level accesses.
5742  OrderAccess::fence();
5743
5744  // If externally suspended while waiting, re-suspend
5745  if (jt->handle_special_suspend_equivalent_condition()) {
5746    jt->java_suspend_self();
5747  }
5748}
5749
5750void Parker::unpark() {
5751  int status = os::Solaris::mutex_lock(_mutex);
5752  assert(status == 0, "invariant");
5753  const int s = _counter;
5754  _counter = 1;
5755  status = os::Solaris::mutex_unlock(_mutex);
5756  assert(status == 0, "invariant");
5757
5758  if (s < 1) {
5759    status = os::Solaris::cond_signal(_cond);
5760    assert(status == 0, "invariant");
5761  }
5762}
5763
5764extern char** environ;
5765
5766// Run the specified command in a separate process. Return its exit value,
5767// or -1 on failure (e.g. can't fork a new process).
5768// Unlike system(), this function can be called from signal handler. It
5769// doesn't block SIGINT et al.
5770int os::fork_and_exec(char* cmd) {
5771  char * argv[4];
5772  argv[0] = (char *)"sh";
5773  argv[1] = (char *)"-c";
5774  argv[2] = cmd;
5775  argv[3] = NULL;
5776
5777  // fork is async-safe, fork1 is not so can't use in signal handler
5778  pid_t pid;
5779  Thread* t = ThreadLocalStorage::get_thread_slow();
5780  if (t != NULL && t->is_inside_signal_handler()) {
5781    pid = fork();
5782  } else {
5783    pid = fork1();
5784  }
5785
5786  if (pid < 0) {
5787    // fork failed
5788    warning("fork failed: %s", strerror(errno));
5789    return -1;
5790
5791  } else if (pid == 0) {
5792    // child process
5793
5794    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5795    execve("/usr/bin/sh", argv, environ);
5796
5797    // execve failed
5798    _exit(-1);
5799
5800  } else  {
5801    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5802    // care about the actual exit code, for now.
5803
5804    int status;
5805
5806    // Wait for the child process to exit.  This returns immediately if
5807    // the child has already exited. */
5808    while (waitpid(pid, &status, 0) < 0) {
5809      switch (errno) {
5810      case ECHILD: return 0;
5811      case EINTR: break;
5812      default: return -1;
5813      }
5814    }
5815
5816    if (WIFEXITED(status)) {
5817      // The child exited normally; get its exit code.
5818      return WEXITSTATUS(status);
5819    } else if (WIFSIGNALED(status)) {
5820      // The child exited because of a signal
5821      // The best value to return is 0x80 + signal number,
5822      // because that is what all Unix shells do, and because
5823      // it allows callers to distinguish between process exit and
5824      // process death by signal.
5825      return 0x80 + WTERMSIG(status);
5826    } else {
5827      // Unknown exit code; pass it through
5828      return status;
5829    }
5830  }
5831}
5832
5833// is_headless_jre()
5834//
5835// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5836// in order to report if we are running in a headless jre
5837//
5838// Since JDK8 xawt/libmawt.so was moved into the same directory
5839// as libawt.so, and renamed libawt_xawt.so
5840//
5841bool os::is_headless_jre() {
5842  struct stat statbuf;
5843  char buf[MAXPATHLEN];
5844  char libmawtpath[MAXPATHLEN];
5845  const char *xawtstr  = "/xawt/libmawt.so";
5846  const char *new_xawtstr = "/libawt_xawt.so";
5847  char *p;
5848
5849  // Get path to libjvm.so
5850  os::jvm_path(buf, sizeof(buf));
5851
5852  // Get rid of libjvm.so
5853  p = strrchr(buf, '/');
5854  if (p == NULL) {
5855    return false;
5856  } else {
5857    *p = '\0';
5858  }
5859
5860  // Get rid of client or server
5861  p = strrchr(buf, '/');
5862  if (p == NULL) {
5863    return false;
5864  } else {
5865    *p = '\0';
5866  }
5867
5868  // check xawt/libmawt.so
5869  strcpy(libmawtpath, buf);
5870  strcat(libmawtpath, xawtstr);
5871  if (::stat(libmawtpath, &statbuf) == 0) return false;
5872
5873  // check libawt_xawt.so
5874  strcpy(libmawtpath, buf);
5875  strcat(libmawtpath, new_xawtstr);
5876  if (::stat(libmawtpath, &statbuf) == 0) return false;
5877
5878  return true;
5879}
5880
5881size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5882  size_t res;
5883  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5884         "Assumed _thread_in_native");
5885  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5886  return res;
5887}
5888
5889int os::close(int fd) {
5890  return ::close(fd);
5891}
5892
5893int os::socket_close(int fd) {
5894  return ::close(fd);
5895}
5896
5897int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5898  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5899         "Assumed _thread_in_native");
5900  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5901}
5902
5903int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5904  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5905         "Assumed _thread_in_native");
5906  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5907}
5908
5909int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5910  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5911}
5912
5913// As both poll and select can be interrupted by signals, we have to be
5914// prepared to restart the system call after updating the timeout, unless
5915// a poll() is done with timeout == -1, in which case we repeat with this
5916// "wait forever" value.
5917
5918int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5919  int _result;
5920  _result = ::connect(fd, him, len);
5921
5922  // On Solaris, when a connect() call is interrupted, the connection
5923  // can be established asynchronously (see 6343810). Subsequent calls
5924  // to connect() must check the errno value which has the semantic
5925  // described below (copied from the connect() man page). Handling
5926  // of asynchronously established connections is required for both
5927  // blocking and non-blocking sockets.
5928  //     EINTR            The  connection  attempt  was   interrupted
5929  //                      before  any data arrived by the delivery of
5930  //                      a signal. The connection, however, will  be
5931  //                      established asynchronously.
5932  //
5933  //     EINPROGRESS      The socket is non-blocking, and the connec-
5934  //                      tion  cannot  be completed immediately.
5935  //
5936  //     EALREADY         The socket is non-blocking,  and a previous
5937  //                      connection  attempt  has  not yet been com-
5938  //                      pleted.
5939  //
5940  //     EISCONN          The socket is already connected.
5941  if (_result == OS_ERR && errno == EINTR) {
5942    // restarting a connect() changes its errno semantics
5943    RESTARTABLE(::connect(fd, him, len), _result);
5944    // undo these changes
5945    if (_result == OS_ERR) {
5946      if (errno == EALREADY) {
5947        errno = EINPROGRESS; // fall through
5948      } else if (errno == EISCONN) {
5949        errno = 0;
5950        return OS_OK;
5951      }
5952    }
5953  }
5954  return _result;
5955}
5956
5957// Get the default path to the core file
5958// Returns the length of the string
5959int os::get_core_path(char* buffer, size_t bufferSize) {
5960  const char* p = get_current_directory(buffer, bufferSize);
5961
5962  if (p == NULL) {
5963    assert(p != NULL, "failed to get current directory");
5964    return 0;
5965  }
5966
5967  return strlen(buffer);
5968}
5969
5970#ifndef PRODUCT
5971void TestReserveMemorySpecial_test() {
5972  // No tests available for this platform
5973}
5974#endif
5975