1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <dlfcn.h>
76# include <errno.h>
77# include <exception>
78# include <link.h>
79# include <poll.h>
80# include <pthread.h>
81# include <schedctl.h>
82# include <setjmp.h>
83# include <signal.h>
84# include <stdio.h>
85# include <alloca.h>
86# include <sys/filio.h>
87# include <sys/ipc.h>
88# include <sys/lwp.h>
89# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
90# include <sys/mman.h>
91# include <sys/processor.h>
92# include <sys/procset.h>
93# include <sys/pset.h>
94# include <sys/resource.h>
95# include <sys/shm.h>
96# include <sys/socket.h>
97# include <sys/stat.h>
98# include <sys/systeminfo.h>
99# include <sys/time.h>
100# include <sys/times.h>
101# include <sys/types.h>
102# include <sys/wait.h>
103# include <sys/utsname.h>
104# include <thread.h>
105# include <unistd.h>
106# include <sys/priocntl.h>
107# include <sys/rtpriocntl.h>
108# include <sys/tspriocntl.h>
109# include <sys/iapriocntl.h>
110# include <sys/fxpriocntl.h>
111# include <sys/loadavg.h>
112# include <string.h>
113# include <stdio.h>
114
115# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
116# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
117
118#define MAX_PATH (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123
124// Here are some liblgrp types from sys/lgrp_user.h to be able to
125// compile on older systems without this header file.
126
127#ifndef MADV_ACCESS_LWP
128  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
129#endif
130#ifndef MADV_ACCESS_MANY
131  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
132#endif
133
134#ifndef LGRP_RSRC_CPU
135  #define LGRP_RSRC_CPU      0       /* CPU resources */
136#endif
137#ifndef LGRP_RSRC_MEM
138  #define LGRP_RSRC_MEM      1       /* memory resources */
139#endif
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
163
164// "default" initializers for missing libc APIs
165extern "C" {
166  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
167  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
168
169  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
170  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
171}
172
173// "default" initializers for pthread-based synchronization
174extern "C" {
175  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
176  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
177}
178
179static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
180
181static inline size_t adjust_stack_size(address base, size_t size) {
182  if ((ssize_t)size < 0) {
183    // 4759953: Compensate for ridiculous stack size.
184    size = max_intx;
185  }
186  if (size > (size_t)base) {
187    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
188    size = (size_t)base;
189  }
190  return size;
191}
192
193static inline stack_t get_stack_info() {
194  stack_t st;
195  int retval = thr_stksegment(&st);
196  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
197  assert(retval == 0, "incorrect return value from thr_stksegment");
198  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
199  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
200  return st;
201}
202
203address os::current_stack_base() {
204  int r = thr_main();
205  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
206  bool is_primordial_thread = r;
207
208  // Workaround 4352906, avoid calls to thr_stksegment by
209  // thr_main after the first one (it looks like we trash
210  // some data, causing the value for ss_sp to be incorrect).
211  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
212    stack_t st = get_stack_info();
213    if (is_primordial_thread) {
214      // cache initial value of stack base
215      os::Solaris::_main_stack_base = (address)st.ss_sp;
216    }
217    return (address)st.ss_sp;
218  } else {
219    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
220    return os::Solaris::_main_stack_base;
221  }
222}
223
224size_t os::current_stack_size() {
225  size_t size;
226
227  int r = thr_main();
228  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
229  if (!r) {
230    size = get_stack_info().ss_size;
231  } else {
232    struct rlimit limits;
233    getrlimit(RLIMIT_STACK, &limits);
234    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
235  }
236  // base may not be page aligned
237  address base = current_stack_base();
238  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
239  return (size_t)(base - bottom);
240}
241
242struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
243  return localtime_r(clock, res);
244}
245
246void os::Solaris::try_enable_extended_io() {
247  typedef int (*enable_extended_FILE_stdio_t)(int, int);
248
249  if (!UseExtendedFileIO) {
250    return;
251  }
252
253  enable_extended_FILE_stdio_t enabler =
254    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
255                                         "enable_extended_FILE_stdio");
256  if (enabler) {
257    enabler(-1, -1);
258  }
259}
260
261static int _processors_online = 0;
262
263jint os::Solaris::_os_thread_limit = 0;
264volatile jint os::Solaris::_os_thread_count = 0;
265
266julong os::available_memory() {
267  return Solaris::available_memory();
268}
269
270julong os::Solaris::available_memory() {
271  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
272}
273
274julong os::Solaris::_physical_memory = 0;
275
276julong os::physical_memory() {
277  return Solaris::physical_memory();
278}
279
280static hrtime_t first_hrtime = 0;
281static const hrtime_t hrtime_hz = 1000*1000*1000;
282static volatile hrtime_t max_hrtime = 0;
283
284
285void os::Solaris::initialize_system_info() {
286  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
287  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
288  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
289                                     (julong)sysconf(_SC_PAGESIZE);
290}
291
292int os::active_processor_count() {
293  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
294  pid_t pid = getpid();
295  psetid_t pset = PS_NONE;
296  // Are we running in a processor set or is there any processor set around?
297  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
298    uint_t pset_cpus;
299    // Query the number of cpus available to us.
300    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
301      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
302      _processors_online = pset_cpus;
303      return pset_cpus;
304    }
305  }
306  // Otherwise return number of online cpus
307  return online_cpus;
308}
309
310static bool find_processors_in_pset(psetid_t        pset,
311                                    processorid_t** id_array,
312                                    uint_t*         id_length) {
313  bool result = false;
314  // Find the number of processors in the processor set.
315  if (pset_info(pset, NULL, id_length, NULL) == 0) {
316    // Make up an array to hold their ids.
317    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
318    // Fill in the array with their processor ids.
319    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
320      result = true;
321    }
322  }
323  return result;
324}
325
326// Callers of find_processors_online() must tolerate imprecise results --
327// the system configuration can change asynchronously because of DR
328// or explicit psradm operations.
329//
330// We also need to take care that the loop (below) terminates as the
331// number of processors online can change between the _SC_NPROCESSORS_ONLN
332// request and the loop that builds the list of processor ids.   Unfortunately
333// there's no reliable way to determine the maximum valid processor id,
334// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
335// man pages, which claim the processor id set is "sparse, but
336// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
337// exit the loop.
338//
339// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
340// not available on S8.0.
341
342static bool find_processors_online(processorid_t** id_array,
343                                   uint*           id_length) {
344  const processorid_t MAX_PROCESSOR_ID = 100000;
345  // Find the number of processors online.
346  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
347  // Make up an array to hold their ids.
348  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
349  // Processors need not be numbered consecutively.
350  long found = 0;
351  processorid_t next = 0;
352  while (found < *id_length && next < MAX_PROCESSOR_ID) {
353    processor_info_t info;
354    if (processor_info(next, &info) == 0) {
355      // NB, PI_NOINTR processors are effectively online ...
356      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
357        (*id_array)[found] = next;
358        found += 1;
359      }
360    }
361    next += 1;
362  }
363  if (found < *id_length) {
364    // The loop above didn't identify the expected number of processors.
365    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
366    // and re-running the loop, above, but there's no guarantee of progress
367    // if the system configuration is in flux.  Instead, we just return what
368    // we've got.  Note that in the worst case find_processors_online() could
369    // return an empty set.  (As a fall-back in the case of the empty set we
370    // could just return the ID of the current processor).
371    *id_length = found;
372  }
373
374  return true;
375}
376
377static bool assign_distribution(processorid_t* id_array,
378                                uint           id_length,
379                                uint*          distribution,
380                                uint           distribution_length) {
381  // We assume we can assign processorid_t's to uint's.
382  assert(sizeof(processorid_t) == sizeof(uint),
383         "can't convert processorid_t to uint");
384  // Quick check to see if we won't succeed.
385  if (id_length < distribution_length) {
386    return false;
387  }
388  // Assign processor ids to the distribution.
389  // Try to shuffle processors to distribute work across boards,
390  // assuming 4 processors per board.
391  const uint processors_per_board = ProcessDistributionStride;
392  // Find the maximum processor id.
393  processorid_t max_id = 0;
394  for (uint m = 0; m < id_length; m += 1) {
395    max_id = MAX2(max_id, id_array[m]);
396  }
397  // The next id, to limit loops.
398  const processorid_t limit_id = max_id + 1;
399  // Make up markers for available processors.
400  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
401  for (uint c = 0; c < limit_id; c += 1) {
402    available_id[c] = false;
403  }
404  for (uint a = 0; a < id_length; a += 1) {
405    available_id[id_array[a]] = true;
406  }
407  // Step by "boards", then by "slot", copying to "assigned".
408  // NEEDS_CLEANUP: The assignment of processors should be stateful,
409  //                remembering which processors have been assigned by
410  //                previous calls, etc., so as to distribute several
411  //                independent calls of this method.  What we'd like is
412  //                It would be nice to have an API that let us ask
413  //                how many processes are bound to a processor,
414  //                but we don't have that, either.
415  //                In the short term, "board" is static so that
416  //                subsequent distributions don't all start at board 0.
417  static uint board = 0;
418  uint assigned = 0;
419  // Until we've found enough processors ....
420  while (assigned < distribution_length) {
421    // ... find the next available processor in the board.
422    for (uint slot = 0; slot < processors_per_board; slot += 1) {
423      uint try_id = board * processors_per_board + slot;
424      if ((try_id < limit_id) && (available_id[try_id] == true)) {
425        distribution[assigned] = try_id;
426        available_id[try_id] = false;
427        assigned += 1;
428        break;
429      }
430    }
431    board += 1;
432    if (board * processors_per_board + 0 >= limit_id) {
433      board = 0;
434    }
435  }
436  if (available_id != NULL) {
437    FREE_C_HEAP_ARRAY(bool, available_id);
438  }
439  return true;
440}
441
442void os::set_native_thread_name(const char *name) {
443  if (Solaris::_pthread_setname_np != NULL) {
444    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
445    // but we explicitly copy into a size-limited buffer to avoid any
446    // possible overflow.
447    char buf[32];
448    snprintf(buf, sizeof(buf), "%s", name);
449    buf[sizeof(buf) - 1] = '\0';
450    Solaris::_pthread_setname_np(pthread_self(), buf);
451  }
452}
453
454bool os::distribute_processes(uint length, uint* distribution) {
455  bool result = false;
456  // Find the processor id's of all the available CPUs.
457  processorid_t* id_array  = NULL;
458  uint           id_length = 0;
459  // There are some races between querying information and using it,
460  // since processor sets can change dynamically.
461  psetid_t pset = PS_NONE;
462  // Are we running in a processor set?
463  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
464    result = find_processors_in_pset(pset, &id_array, &id_length);
465  } else {
466    result = find_processors_online(&id_array, &id_length);
467  }
468  if (result == true) {
469    if (id_length >= length) {
470      result = assign_distribution(id_array, id_length, distribution, length);
471    } else {
472      result = false;
473    }
474  }
475  if (id_array != NULL) {
476    FREE_C_HEAP_ARRAY(processorid_t, id_array);
477  }
478  return result;
479}
480
481bool os::bind_to_processor(uint processor_id) {
482  // We assume that a processorid_t can be stored in a uint.
483  assert(sizeof(uint) == sizeof(processorid_t),
484         "can't convert uint to processorid_t");
485  int bind_result =
486    processor_bind(P_LWPID,                       // bind LWP.
487                   P_MYID,                        // bind current LWP.
488                   (processorid_t) processor_id,  // id.
489                   NULL);                         // don't return old binding.
490  return (bind_result == 0);
491}
492
493// Return true if user is running as root.
494
495bool os::have_special_privileges() {
496  static bool init = false;
497  static bool privileges = false;
498  if (!init) {
499    privileges = (getuid() != geteuid()) || (getgid() != getegid());
500    init = true;
501  }
502  return privileges;
503}
504
505
506void os::init_system_properties_values() {
507  // The next steps are taken in the product version:
508  //
509  // Obtain the JAVA_HOME value from the location of libjvm.so.
510  // This library should be located at:
511  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
512  //
513  // If "/jre/lib/" appears at the right place in the path, then we
514  // assume libjvm.so is installed in a JDK and we use this path.
515  //
516  // Otherwise exit with message: "Could not create the Java virtual machine."
517  //
518  // The following extra steps are taken in the debugging version:
519  //
520  // If "/jre/lib/" does NOT appear at the right place in the path
521  // instead of exit check for $JAVA_HOME environment variable.
522  //
523  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
524  // then we append a fake suffix "hotspot/libjvm.so" to this path so
525  // it looks like libjvm.so is installed there
526  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
527  //
528  // Otherwise exit.
529  //
530  // Important note: if the location of libjvm.so changes this
531  // code needs to be changed accordingly.
532
533// Base path of extensions installed on the system.
534#define SYS_EXT_DIR     "/usr/jdk/packages"
535#define EXTENSIONS_DIR  "/lib/ext"
536
537  // Buffer that fits several sprintfs.
538  // Note that the space for the colon and the trailing null are provided
539  // by the nulls included by the sizeof operator.
540  const size_t bufsize =
541    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
542         sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
543         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
544  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
545
546  // sysclasspath, java_home, dll_dir
547  {
548    char *pslash;
549    os::jvm_path(buf, bufsize);
550
551    // Found the full path to libjvm.so.
552    // Now cut the path to <java_home>/jre if we can.
553    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
554    pslash = strrchr(buf, '/');
555    if (pslash != NULL) {
556      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
557    }
558    Arguments::set_dll_dir(buf);
559
560    if (pslash != NULL) {
561      pslash = strrchr(buf, '/');
562      if (pslash != NULL) {
563        *pslash = '\0';        // Get rid of /lib.
564      }
565    }
566    Arguments::set_java_home(buf);
567    set_boot_path('/', ':');
568  }
569
570  // Where to look for native libraries.
571  {
572    // Use dlinfo() to determine the correct java.library.path.
573    //
574    // If we're launched by the Java launcher, and the user
575    // does not set java.library.path explicitly on the commandline,
576    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
577    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
578    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
579    // /usr/lib), which is exactly what we want.
580    //
581    // If the user does set java.library.path, it completely
582    // overwrites this setting, and always has.
583    //
584    // If we're not launched by the Java launcher, we may
585    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
586    // settings.  Again, dlinfo does exactly what we want.
587
588    Dl_serinfo     info_sz, *info = &info_sz;
589    Dl_serpath     *path;
590    char           *library_path;
591    char           *common_path = buf;
592
593    // Determine search path count and required buffer size.
594    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
595      FREE_C_HEAP_ARRAY(char, buf);
596      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
597    }
598
599    // Allocate new buffer and initialize.
600    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
601    info->dls_size = info_sz.dls_size;
602    info->dls_cnt = info_sz.dls_cnt;
603
604    // Obtain search path information.
605    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
606      FREE_C_HEAP_ARRAY(char, buf);
607      FREE_C_HEAP_ARRAY(char, info);
608      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
609    }
610
611    path = &info->dls_serpath[0];
612
613    // Note: Due to a legacy implementation, most of the library path
614    // is set in the launcher. This was to accomodate linking restrictions
615    // on legacy Solaris implementations (which are no longer supported).
616    // Eventually, all the library path setting will be done here.
617    //
618    // However, to prevent the proliferation of improperly built native
619    // libraries, the new path component /usr/jdk/packages is added here.
620
621    // Construct the invariant part of ld_library_path.
622    sprintf(common_path, SYS_EXT_DIR "/lib");
623
624    // Struct size is more than sufficient for the path components obtained
625    // through the dlinfo() call, so only add additional space for the path
626    // components explicitly added here.
627    size_t library_path_size = info->dls_size + strlen(common_path);
628    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
629    library_path[0] = '\0';
630
631    // Construct the desired Java library path from the linker's library
632    // search path.
633    //
634    // For compatibility, it is optimal that we insert the additional path
635    // components specific to the Java VM after those components specified
636    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
637    // infrastructure.
638    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
639      strcpy(library_path, common_path);
640    } else {
641      int inserted = 0;
642      int i;
643      for (i = 0; i < info->dls_cnt; i++, path++) {
644        uint_t flags = path->dls_flags & LA_SER_MASK;
645        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
646          strcat(library_path, common_path);
647          strcat(library_path, os::path_separator());
648          inserted = 1;
649        }
650        strcat(library_path, path->dls_name);
651        strcat(library_path, os::path_separator());
652      }
653      // Eliminate trailing path separator.
654      library_path[strlen(library_path)-1] = '\0';
655    }
656
657    // happens before argument parsing - can't use a trace flag
658    // tty->print_raw("init_system_properties_values: native lib path: ");
659    // tty->print_raw_cr(library_path);
660
661    // Callee copies into its own buffer.
662    Arguments::set_library_path(library_path);
663
664    FREE_C_HEAP_ARRAY(char, library_path);
665    FREE_C_HEAP_ARRAY(char, info);
666  }
667
668  // Extensions directories.
669  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
670  Arguments::set_ext_dirs(buf);
671
672  FREE_C_HEAP_ARRAY(char, buf);
673
674#undef SYS_EXT_DIR
675#undef EXTENSIONS_DIR
676}
677
678void os::breakpoint() {
679  BREAKPOINT;
680}
681
682bool os::obsolete_option(const JavaVMOption *option) {
683  if (!strncmp(option->optionString, "-Xt", 3)) {
684    return true;
685  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
686    return true;
687  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
688    return true;
689  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
690    return true;
691  }
692  return false;
693}
694
695bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
696  address  stackStart  = (address)thread->stack_base();
697  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
698  if (sp < stackStart && sp >= stackEnd) return true;
699  return false;
700}
701
702extern "C" void breakpoint() {
703  // use debugger to set breakpoint here
704}
705
706static thread_t main_thread;
707
708// Thread start routine for all newly created threads
709extern "C" void* thread_native_entry(void* thread_addr) {
710  // Try to randomize the cache line index of hot stack frames.
711  // This helps when threads of the same stack traces evict each other's
712  // cache lines. The threads can be either from the same JVM instance, or
713  // from different JVM instances. The benefit is especially true for
714  // processors with hyperthreading technology.
715  static int counter = 0;
716  int pid = os::current_process_id();
717  alloca(((pid ^ counter++) & 7) * 128);
718
719  int prio;
720  Thread* thread = (Thread*)thread_addr;
721
722  thread->initialize_thread_current();
723
724  OSThread* osthr = thread->osthread();
725
726  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
727  thread->_schedctl = (void *) schedctl_init();
728
729  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
730    os::current_thread_id());
731
732  if (UseNUMA) {
733    int lgrp_id = os::numa_get_group_id();
734    if (lgrp_id != -1) {
735      thread->set_lgrp_id(lgrp_id);
736    }
737  }
738
739  // Our priority was set when we were created, and stored in the
740  // osthread, but couldn't be passed through to our LWP until now.
741  // So read back the priority and set it again.
742
743  if (osthr->thread_id() != -1) {
744    if (UseThreadPriorities) {
745      int prio = osthr->native_priority();
746      if (ThreadPriorityVerbose) {
747        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
748                      INTPTR_FORMAT ", setting priority: %d\n",
749                      osthr->thread_id(), osthr->lwp_id(), prio);
750      }
751      os::set_native_priority(thread, prio);
752    }
753  } else if (ThreadPriorityVerbose) {
754    warning("Can't set priority in _start routine, thread id hasn't been set\n");
755  }
756
757  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
758
759  // initialize signal mask for this thread
760  os::Solaris::hotspot_sigmask(thread);
761
762  thread->run();
763
764  // One less thread is executing
765  // When the VMThread gets here, the main thread may have already exited
766  // which frees the CodeHeap containing the Atomic::dec code
767  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
768    Atomic::dec(&os::Solaris::_os_thread_count);
769  }
770
771  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
772
773  // If a thread has not deleted itself ("delete this") as part of its
774  // termination sequence, we have to ensure thread-local-storage is
775  // cleared before we actually terminate. No threads should ever be
776  // deleted asynchronously with respect to their termination.
777  if (Thread::current_or_null_safe() != NULL) {
778    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
779    thread->clear_thread_current();
780  }
781
782  if (UseDetachedThreads) {
783    thr_exit(NULL);
784    ShouldNotReachHere();
785  }
786  return NULL;
787}
788
789static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
790  // Allocate the OSThread object
791  OSThread* osthread = new OSThread(NULL, NULL);
792  if (osthread == NULL) return NULL;
793
794  // Store info on the Solaris thread into the OSThread
795  osthread->set_thread_id(thread_id);
796  osthread->set_lwp_id(_lwp_self());
797  thread->_schedctl = (void *) schedctl_init();
798
799  if (UseNUMA) {
800    int lgrp_id = os::numa_get_group_id();
801    if (lgrp_id != -1) {
802      thread->set_lgrp_id(lgrp_id);
803    }
804  }
805
806  if (ThreadPriorityVerbose) {
807    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
808                  osthread->thread_id(), osthread->lwp_id());
809  }
810
811  // Initial thread state is INITIALIZED, not SUSPENDED
812  osthread->set_state(INITIALIZED);
813
814  return osthread;
815}
816
817void os::Solaris::hotspot_sigmask(Thread* thread) {
818  //Save caller's signal mask
819  sigset_t sigmask;
820  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
821  OSThread *osthread = thread->osthread();
822  osthread->set_caller_sigmask(sigmask);
823
824  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
825  if (!ReduceSignalUsage) {
826    if (thread->is_VM_thread()) {
827      // Only the VM thread handles BREAK_SIGNAL ...
828      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
829    } else {
830      // ... all other threads block BREAK_SIGNAL
831      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
832      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
833    }
834  }
835}
836
837bool os::create_attached_thread(JavaThread* thread) {
838#ifdef ASSERT
839  thread->verify_not_published();
840#endif
841  OSThread* osthread = create_os_thread(thread, thr_self());
842  if (osthread == NULL) {
843    return false;
844  }
845
846  // Initial thread state is RUNNABLE
847  osthread->set_state(RUNNABLE);
848  thread->set_osthread(osthread);
849
850  // initialize signal mask for this thread
851  // and save the caller's signal mask
852  os::Solaris::hotspot_sigmask(thread);
853
854  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
855    os::current_thread_id());
856
857  return true;
858}
859
860bool os::create_main_thread(JavaThread* thread) {
861#ifdef ASSERT
862  thread->verify_not_published();
863#endif
864  if (_starting_thread == NULL) {
865    _starting_thread = create_os_thread(thread, main_thread);
866    if (_starting_thread == NULL) {
867      return false;
868    }
869  }
870
871  // The primodial thread is runnable from the start
872  _starting_thread->set_state(RUNNABLE);
873
874  thread->set_osthread(_starting_thread);
875
876  // initialize signal mask for this thread
877  // and save the caller's signal mask
878  os::Solaris::hotspot_sigmask(thread);
879
880  return true;
881}
882
883// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
884static char* describe_thr_create_attributes(char* buf, size_t buflen,
885                                            size_t stacksize, long flags) {
886  stringStream ss(buf, buflen);
887  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
888  ss.print("flags: ");
889  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
890  #define ALL(X) \
891    X(THR_SUSPENDED) \
892    X(THR_DETACHED) \
893    X(THR_BOUND) \
894    X(THR_NEW_LWP) \
895    X(THR_DAEMON)
896  ALL(PRINT_FLAG)
897  #undef ALL
898  #undef PRINT_FLAG
899  return buf;
900}
901
902// return default stack size for thr_type
903size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
904  // default stack size when not specified by caller is 1M (2M for LP64)
905  size_t s = (BytesPerWord >> 2) * K * K;
906  return s;
907}
908
909bool os::create_thread(Thread* thread, ThreadType thr_type,
910                       size_t req_stack_size) {
911  // Allocate the OSThread object
912  OSThread* osthread = new OSThread(NULL, NULL);
913  if (osthread == NULL) {
914    return false;
915  }
916
917  if (ThreadPriorityVerbose) {
918    char *thrtyp;
919    switch (thr_type) {
920    case vm_thread:
921      thrtyp = (char *)"vm";
922      break;
923    case cgc_thread:
924      thrtyp = (char *)"cgc";
925      break;
926    case pgc_thread:
927      thrtyp = (char *)"pgc";
928      break;
929    case java_thread:
930      thrtyp = (char *)"java";
931      break;
932    case compiler_thread:
933      thrtyp = (char *)"compiler";
934      break;
935    case watcher_thread:
936      thrtyp = (char *)"watcher";
937      break;
938    default:
939      thrtyp = (char *)"unknown";
940      break;
941    }
942    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
943  }
944
945  // calculate stack size if it's not specified by caller
946  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
947
948  // Initial state is ALLOCATED but not INITIALIZED
949  osthread->set_state(ALLOCATED);
950
951  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
952    // We got lots of threads. Check if we still have some address space left.
953    // Need to be at least 5Mb of unreserved address space. We do check by
954    // trying to reserve some.
955    const size_t VirtualMemoryBangSize = 20*K*K;
956    char* mem = os::reserve_memory(VirtualMemoryBangSize);
957    if (mem == NULL) {
958      delete osthread;
959      return false;
960    } else {
961      // Release the memory again
962      os::release_memory(mem, VirtualMemoryBangSize);
963    }
964  }
965
966  // Setup osthread because the child thread may need it.
967  thread->set_osthread(osthread);
968
969  // Create the Solaris thread
970  thread_t tid = 0;
971  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
972  int      status;
973
974  // Mark that we don't have an lwp or thread id yet.
975  // In case we attempt to set the priority before the thread starts.
976  osthread->set_lwp_id(-1);
977  osthread->set_thread_id(-1);
978
979  status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
980
981  char buf[64];
982  if (status == 0) {
983    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
984      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
985  } else {
986    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
987      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
988  }
989
990  if (status != 0) {
991    thread->set_osthread(NULL);
992    // Need to clean up stuff we've allocated so far
993    delete osthread;
994    return false;
995  }
996
997  Atomic::inc(&os::Solaris::_os_thread_count);
998
999  // Store info on the Solaris thread into the OSThread
1000  osthread->set_thread_id(tid);
1001
1002  // Remember that we created this thread so we can set priority on it
1003  osthread->set_vm_created();
1004
1005  // Most thread types will set an explicit priority before starting the thread,
1006  // but for those that don't we need a valid value to read back in thread_native_entry.
1007  osthread->set_native_priority(NormPriority);
1008
1009  // Initial thread state is INITIALIZED, not SUSPENDED
1010  osthread->set_state(INITIALIZED);
1011
1012  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1013  return true;
1014}
1015
1016// defined for >= Solaris 10. This allows builds on earlier versions
1017// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1018// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1019// was SIGJVM1.
1020//
1021#if !defined(SIGJVM1)
1022  #define SIGJVM1 39
1023  #define SIGJVM2 40
1024#endif
1025
1026debug_only(static bool signal_sets_initialized = false);
1027static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1028
1029int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1030
1031bool os::Solaris::is_sig_ignored(int sig) {
1032  struct sigaction oact;
1033  sigaction(sig, (struct sigaction*)NULL, &oact);
1034  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1035                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1036  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1037    return true;
1038  } else {
1039    return false;
1040  }
1041}
1042
1043// Note: SIGRTMIN is a macro that calls sysconf() so it will
1044// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1045static bool isJVM1available() {
1046  return SIGJVM1 < SIGRTMIN;
1047}
1048
1049void os::Solaris::signal_sets_init() {
1050  // Should also have an assertion stating we are still single-threaded.
1051  assert(!signal_sets_initialized, "Already initialized");
1052  // Fill in signals that are necessarily unblocked for all threads in
1053  // the VM. Currently, we unblock the following signals:
1054  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1055  //                         by -Xrs (=ReduceSignalUsage));
1056  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1057  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1058  // the dispositions or masks wrt these signals.
1059  // Programs embedding the VM that want to use the above signals for their
1060  // own purposes must, at this time, use the "-Xrs" option to prevent
1061  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1062  // (See bug 4345157, and other related bugs).
1063  // In reality, though, unblocking these signals is really a nop, since
1064  // these signals are not blocked by default.
1065  sigemptyset(&unblocked_sigs);
1066  sigemptyset(&allowdebug_blocked_sigs);
1067  sigaddset(&unblocked_sigs, SIGILL);
1068  sigaddset(&unblocked_sigs, SIGSEGV);
1069  sigaddset(&unblocked_sigs, SIGBUS);
1070  sigaddset(&unblocked_sigs, SIGFPE);
1071
1072  // Always true on Solaris 10+
1073  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1074  os::Solaris::set_SIGasync(SIGJVM2);
1075
1076  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1077
1078  if (!ReduceSignalUsage) {
1079    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1080      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1081      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1082    }
1083    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1084      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1085      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1086    }
1087    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1088      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1089      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1090    }
1091  }
1092  // Fill in signals that are blocked by all but the VM thread.
1093  sigemptyset(&vm_sigs);
1094  if (!ReduceSignalUsage) {
1095    sigaddset(&vm_sigs, BREAK_SIGNAL);
1096  }
1097  debug_only(signal_sets_initialized = true);
1098
1099  // For diagnostics only used in run_periodic_checks
1100  sigemptyset(&check_signal_done);
1101}
1102
1103// These are signals that are unblocked while a thread is running Java.
1104// (For some reason, they get blocked by default.)
1105sigset_t* os::Solaris::unblocked_signals() {
1106  assert(signal_sets_initialized, "Not initialized");
1107  return &unblocked_sigs;
1108}
1109
1110// These are the signals that are blocked while a (non-VM) thread is
1111// running Java. Only the VM thread handles these signals.
1112sigset_t* os::Solaris::vm_signals() {
1113  assert(signal_sets_initialized, "Not initialized");
1114  return &vm_sigs;
1115}
1116
1117// These are signals that are blocked during cond_wait to allow debugger in
1118sigset_t* os::Solaris::allowdebug_blocked_signals() {
1119  assert(signal_sets_initialized, "Not initialized");
1120  return &allowdebug_blocked_sigs;
1121}
1122
1123
1124void _handle_uncaught_cxx_exception() {
1125  VMError::report_and_die("An uncaught C++ exception");
1126}
1127
1128
1129// First crack at OS-specific initialization, from inside the new thread.
1130void os::initialize_thread(Thread* thr) {
1131  int r = thr_main();
1132  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1133  if (r) {
1134    JavaThread* jt = (JavaThread *)thr;
1135    assert(jt != NULL, "Sanity check");
1136    size_t stack_size;
1137    address base = jt->stack_base();
1138    if (Arguments::created_by_java_launcher()) {
1139      // Use 2MB to allow for Solaris 7 64 bit mode.
1140      stack_size = JavaThread::stack_size_at_create() == 0
1141        ? 2048*K : JavaThread::stack_size_at_create();
1142
1143      // There are rare cases when we may have already used more than
1144      // the basic stack size allotment before this method is invoked.
1145      // Attempt to allow for a normally sized java_stack.
1146      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1147      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1148    } else {
1149      // 6269555: If we were not created by a Java launcher, i.e. if we are
1150      // running embedded in a native application, treat the primordial thread
1151      // as much like a native attached thread as possible.  This means using
1152      // the current stack size from thr_stksegment(), unless it is too large
1153      // to reliably setup guard pages.  A reasonable max size is 8MB.
1154      size_t current_size = current_stack_size();
1155      // This should never happen, but just in case....
1156      if (current_size == 0) current_size = 2 * K * K;
1157      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1158    }
1159    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1160    stack_size = (size_t)(base - bottom);
1161
1162    assert(stack_size > 0, "Stack size calculation problem");
1163
1164    if (stack_size > jt->stack_size()) {
1165#ifndef PRODUCT
1166      struct rlimit limits;
1167      getrlimit(RLIMIT_STACK, &limits);
1168      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1169      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1170#endif
1171      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1172                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1173                    "See limit(1) to increase the stack size limit.",
1174                    stack_size / K, jt->stack_size() / K);
1175      vm_exit(1);
1176    }
1177    assert(jt->stack_size() >= stack_size,
1178           "Attempt to map more stack than was allocated");
1179    jt->set_stack_size(stack_size);
1180  }
1181
1182  // With the T2 libthread (T1 is no longer supported) threads are always bound
1183  // and we use stackbanging in all cases.
1184
1185  os::Solaris::init_thread_fpu_state();
1186  std::set_terminate(_handle_uncaught_cxx_exception);
1187}
1188
1189
1190
1191// Free Solaris resources related to the OSThread
1192void os::free_thread(OSThread* osthread) {
1193  assert(osthread != NULL, "os::free_thread but osthread not set");
1194
1195  // We are told to free resources of the argument thread,
1196  // but we can only really operate on the current thread.
1197  assert(Thread::current()->osthread() == osthread,
1198         "os::free_thread but not current thread");
1199
1200  // Restore caller's signal mask
1201  sigset_t sigmask = osthread->caller_sigmask();
1202  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1203
1204  delete osthread;
1205}
1206
1207void os::pd_start_thread(Thread* thread) {
1208  int status = thr_continue(thread->osthread()->thread_id());
1209  assert_status(status == 0, status, "thr_continue failed");
1210}
1211
1212
1213intx os::current_thread_id() {
1214  return (intx)thr_self();
1215}
1216
1217static pid_t _initial_pid = 0;
1218
1219int os::current_process_id() {
1220  return (int)(_initial_pid ? _initial_pid : getpid());
1221}
1222
1223// gethrtime() should be monotonic according to the documentation,
1224// but some virtualized platforms are known to break this guarantee.
1225// getTimeNanos() must be guaranteed not to move backwards, so we
1226// are forced to add a check here.
1227inline hrtime_t getTimeNanos() {
1228  const hrtime_t now = gethrtime();
1229  const hrtime_t prev = max_hrtime;
1230  if (now <= prev) {
1231    return prev;   // same or retrograde time;
1232  }
1233  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1234  assert(obsv >= prev, "invariant");   // Monotonicity
1235  // If the CAS succeeded then we're done and return "now".
1236  // If the CAS failed and the observed value "obsv" is >= now then
1237  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1238  // some other thread raced this thread and installed a new value, in which case
1239  // we could either (a) retry the entire operation, (b) retry trying to install now
1240  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1241  // we might discard a higher "now" value in deference to a slightly lower but freshly
1242  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1243  // to (a) or (b) -- and greatly reduces coherence traffic.
1244  // We might also condition (c) on the magnitude of the delta between obsv and now.
1245  // Avoiding excessive CAS operations to hot RW locations is critical.
1246  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1247  return (prev == obsv) ? now : obsv;
1248}
1249
1250// Time since start-up in seconds to a fine granularity.
1251// Used by VMSelfDestructTimer and the MemProfiler.
1252double os::elapsedTime() {
1253  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1254}
1255
1256jlong os::elapsed_counter() {
1257  return (jlong)(getTimeNanos() - first_hrtime);
1258}
1259
1260jlong os::elapsed_frequency() {
1261  return hrtime_hz;
1262}
1263
1264// Return the real, user, and system times in seconds from an
1265// arbitrary fixed point in the past.
1266bool os::getTimesSecs(double* process_real_time,
1267                      double* process_user_time,
1268                      double* process_system_time) {
1269  struct tms ticks;
1270  clock_t real_ticks = times(&ticks);
1271
1272  if (real_ticks == (clock_t) (-1)) {
1273    return false;
1274  } else {
1275    double ticks_per_second = (double) clock_tics_per_sec;
1276    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1277    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1278    // For consistency return the real time from getTimeNanos()
1279    // converted to seconds.
1280    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1281
1282    return true;
1283  }
1284}
1285
1286bool os::supports_vtime() { return true; }
1287bool os::enable_vtime() { return false; }
1288bool os::vtime_enabled() { return false; }
1289
1290double os::elapsedVTime() {
1291  return (double)gethrvtime() / (double)hrtime_hz;
1292}
1293
1294// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1295jlong os::javaTimeMillis() {
1296  timeval t;
1297  if (gettimeofday(&t, NULL) == -1) {
1298    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1299  }
1300  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1301}
1302
1303// Must return seconds+nanos since Jan 1 1970. This must use the same
1304// time source as javaTimeMillis and can't use get_nsec_fromepoch as
1305// we need better than 1ms accuracy
1306void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1307  timeval t;
1308  if (gettimeofday(&t, NULL) == -1) {
1309    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1310  }
1311  seconds = jlong(t.tv_sec);
1312  nanos = jlong(t.tv_usec) * 1000;
1313}
1314
1315
1316jlong os::javaTimeNanos() {
1317  return (jlong)getTimeNanos();
1318}
1319
1320void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1321  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1322  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1323  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1324  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1325}
1326
1327char * os::local_time_string(char *buf, size_t buflen) {
1328  struct tm t;
1329  time_t long_time;
1330  time(&long_time);
1331  localtime_r(&long_time, &t);
1332  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1333               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1334               t.tm_hour, t.tm_min, t.tm_sec);
1335  return buf;
1336}
1337
1338// Note: os::shutdown() might be called very early during initialization, or
1339// called from signal handler. Before adding something to os::shutdown(), make
1340// sure it is async-safe and can handle partially initialized VM.
1341void os::shutdown() {
1342
1343  // allow PerfMemory to attempt cleanup of any persistent resources
1344  perfMemory_exit();
1345
1346  // needs to remove object in file system
1347  AttachListener::abort();
1348
1349  // flush buffered output, finish log files
1350  ostream_abort();
1351
1352  // Check for abort hook
1353  abort_hook_t abort_hook = Arguments::abort_hook();
1354  if (abort_hook != NULL) {
1355    abort_hook();
1356  }
1357}
1358
1359// Note: os::abort() might be called very early during initialization, or
1360// called from signal handler. Before adding something to os::abort(), make
1361// sure it is async-safe and can handle partially initialized VM.
1362void os::abort(bool dump_core, void* siginfo, const void* context) {
1363  os::shutdown();
1364  if (dump_core) {
1365#ifndef PRODUCT
1366    fdStream out(defaultStream::output_fd());
1367    out.print_raw("Current thread is ");
1368    char buf[16];
1369    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1370    out.print_raw_cr(buf);
1371    out.print_raw_cr("Dumping core ...");
1372#endif
1373    ::abort(); // dump core (for debugging)
1374  }
1375
1376  ::exit(1);
1377}
1378
1379// Die immediately, no exit hook, no abort hook, no cleanup.
1380void os::die() {
1381  ::abort(); // dump core (for debugging)
1382}
1383
1384// DLL functions
1385
1386const char* os::dll_file_extension() { return ".so"; }
1387
1388// This must be hard coded because it's the system's temporary
1389// directory not the java application's temp directory, ala java.io.tmpdir.
1390const char* os::get_temp_directory() { return "/tmp"; }
1391
1392static bool file_exists(const char* filename) {
1393  struct stat statbuf;
1394  if (filename == NULL || strlen(filename) == 0) {
1395    return false;
1396  }
1397  return os::stat(filename, &statbuf) == 0;
1398}
1399
1400bool os::dll_build_name(char* buffer, size_t buflen,
1401                        const char* pname, const char* fname) {
1402  bool retval = false;
1403  const size_t pnamelen = pname ? strlen(pname) : 0;
1404
1405  // Return error on buffer overflow.
1406  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1407    return retval;
1408  }
1409
1410  if (pnamelen == 0) {
1411    snprintf(buffer, buflen, "lib%s.so", fname);
1412    retval = true;
1413  } else if (strchr(pname, *os::path_separator()) != NULL) {
1414    int n;
1415    char** pelements = split_path(pname, &n);
1416    if (pelements == NULL) {
1417      return false;
1418    }
1419    for (int i = 0; i < n; i++) {
1420      // really shouldn't be NULL but what the heck, check can't hurt
1421      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1422        continue; // skip the empty path values
1423      }
1424      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1425      if (file_exists(buffer)) {
1426        retval = true;
1427        break;
1428      }
1429    }
1430    // release the storage
1431    for (int i = 0; i < n; i++) {
1432      if (pelements[i] != NULL) {
1433        FREE_C_HEAP_ARRAY(char, pelements[i]);
1434      }
1435    }
1436    if (pelements != NULL) {
1437      FREE_C_HEAP_ARRAY(char*, pelements);
1438    }
1439  } else {
1440    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1441    retval = true;
1442  }
1443  return retval;
1444}
1445
1446// check if addr is inside libjvm.so
1447bool os::address_is_in_vm(address addr) {
1448  static address libjvm_base_addr;
1449  Dl_info dlinfo;
1450
1451  if (libjvm_base_addr == NULL) {
1452    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1453      libjvm_base_addr = (address)dlinfo.dli_fbase;
1454    }
1455    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1456  }
1457
1458  if (dladdr((void *)addr, &dlinfo) != 0) {
1459    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1460  }
1461
1462  return false;
1463}
1464
1465typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1466static dladdr1_func_type dladdr1_func = NULL;
1467
1468bool os::dll_address_to_function_name(address addr, char *buf,
1469                                      int buflen, int * offset,
1470                                      bool demangle) {
1471  // buf is not optional, but offset is optional
1472  assert(buf != NULL, "sanity check");
1473
1474  Dl_info dlinfo;
1475
1476  // dladdr1_func was initialized in os::init()
1477  if (dladdr1_func != NULL) {
1478    // yes, we have dladdr1
1479
1480    // Support for dladdr1 is checked at runtime; it may be
1481    // available even if the vm is built on a machine that does
1482    // not have dladdr1 support.  Make sure there is a value for
1483    // RTLD_DL_SYMENT.
1484#ifndef RTLD_DL_SYMENT
1485  #define RTLD_DL_SYMENT 1
1486#endif
1487#ifdef _LP64
1488    Elf64_Sym * info;
1489#else
1490    Elf32_Sym * info;
1491#endif
1492    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1493                     RTLD_DL_SYMENT) != 0) {
1494      // see if we have a matching symbol that covers our address
1495      if (dlinfo.dli_saddr != NULL &&
1496          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1497        if (dlinfo.dli_sname != NULL) {
1498          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1499            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1500          }
1501          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1502          return true;
1503        }
1504      }
1505      // no matching symbol so try for just file info
1506      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1507        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1508                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1509          return true;
1510        }
1511      }
1512    }
1513    buf[0] = '\0';
1514    if (offset != NULL) *offset  = -1;
1515    return false;
1516  }
1517
1518  // no, only dladdr is available
1519  if (dladdr((void *)addr, &dlinfo) != 0) {
1520    // see if we have a matching symbol
1521    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1522      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1523        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1524      }
1525      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1526      return true;
1527    }
1528    // no matching symbol so try for just file info
1529    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1530      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1531                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1532        return true;
1533      }
1534    }
1535  }
1536  buf[0] = '\0';
1537  if (offset != NULL) *offset  = -1;
1538  return false;
1539}
1540
1541bool os::dll_address_to_library_name(address addr, char* buf,
1542                                     int buflen, int* offset) {
1543  // buf is not optional, but offset is optional
1544  assert(buf != NULL, "sanity check");
1545
1546  Dl_info dlinfo;
1547
1548  if (dladdr((void*)addr, &dlinfo) != 0) {
1549    if (dlinfo.dli_fname != NULL) {
1550      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1551    }
1552    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1553      *offset = addr - (address)dlinfo.dli_fbase;
1554    }
1555    return true;
1556  }
1557
1558  buf[0] = '\0';
1559  if (offset) *offset = -1;
1560  return false;
1561}
1562
1563int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1564  Dl_info dli;
1565  // Sanity check?
1566  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1567      dli.dli_fname == NULL) {
1568    return 1;
1569  }
1570
1571  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1572  if (handle == NULL) {
1573    return 1;
1574  }
1575
1576  Link_map *map;
1577  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1578  if (map == NULL) {
1579    dlclose(handle);
1580    return 1;
1581  }
1582
1583  while (map->l_prev != NULL) {
1584    map = map->l_prev;
1585  }
1586
1587  while (map != NULL) {
1588    // Iterate through all map entries and call callback with fields of interest
1589    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1590      dlclose(handle);
1591      return 1;
1592    }
1593    map = map->l_next;
1594  }
1595
1596  dlclose(handle);
1597  return 0;
1598}
1599
1600int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1601  outputStream * out = (outputStream *) param;
1602  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1603  return 0;
1604}
1605
1606void os::print_dll_info(outputStream * st) {
1607  st->print_cr("Dynamic libraries:"); st->flush();
1608  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1609    st->print_cr("Error: Cannot print dynamic libraries.");
1610  }
1611}
1612
1613// Loads .dll/.so and
1614// in case of error it checks if .dll/.so was built for the
1615// same architecture as Hotspot is running on
1616
1617void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1618  void * result= ::dlopen(filename, RTLD_LAZY);
1619  if (result != NULL) {
1620    // Successful loading
1621    return result;
1622  }
1623
1624  Elf32_Ehdr elf_head;
1625
1626  // Read system error message into ebuf
1627  // It may or may not be overwritten below
1628  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1629  ebuf[ebuflen-1]='\0';
1630  int diag_msg_max_length=ebuflen-strlen(ebuf);
1631  char* diag_msg_buf=ebuf+strlen(ebuf);
1632
1633  if (diag_msg_max_length==0) {
1634    // No more space in ebuf for additional diagnostics message
1635    return NULL;
1636  }
1637
1638
1639  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1640
1641  if (file_descriptor < 0) {
1642    // Can't open library, report dlerror() message
1643    return NULL;
1644  }
1645
1646  bool failed_to_read_elf_head=
1647    (sizeof(elf_head)!=
1648     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1649
1650  ::close(file_descriptor);
1651  if (failed_to_read_elf_head) {
1652    // file i/o error - report dlerror() msg
1653    return NULL;
1654  }
1655
1656  typedef struct {
1657    Elf32_Half  code;         // Actual value as defined in elf.h
1658    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1659    char        elf_class;    // 32 or 64 bit
1660    char        endianess;    // MSB or LSB
1661    char*       name;         // String representation
1662  } arch_t;
1663
1664  static const arch_t arch_array[]={
1665    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1666    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1667    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1668    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1669    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1670    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1671    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1672    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1673    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1674    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1675  };
1676
1677#if  (defined IA32)
1678  static  Elf32_Half running_arch_code=EM_386;
1679#elif   (defined AMD64)
1680  static  Elf32_Half running_arch_code=EM_X86_64;
1681#elif  (defined IA64)
1682  static  Elf32_Half running_arch_code=EM_IA_64;
1683#elif  (defined __sparc) && (defined _LP64)
1684  static  Elf32_Half running_arch_code=EM_SPARCV9;
1685#elif  (defined __sparc) && (!defined _LP64)
1686  static  Elf32_Half running_arch_code=EM_SPARC;
1687#elif  (defined __powerpc64__)
1688  static  Elf32_Half running_arch_code=EM_PPC64;
1689#elif  (defined __powerpc__)
1690  static  Elf32_Half running_arch_code=EM_PPC;
1691#elif (defined ARM)
1692  static  Elf32_Half running_arch_code=EM_ARM;
1693#else
1694  #error Method os::dll_load requires that one of following is defined:\
1695       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1696#endif
1697
1698  // Identify compatability class for VM's architecture and library's architecture
1699  // Obtain string descriptions for architectures
1700
1701  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1702  int running_arch_index=-1;
1703
1704  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1705    if (running_arch_code == arch_array[i].code) {
1706      running_arch_index    = i;
1707    }
1708    if (lib_arch.code == arch_array[i].code) {
1709      lib_arch.compat_class = arch_array[i].compat_class;
1710      lib_arch.name         = arch_array[i].name;
1711    }
1712  }
1713
1714  assert(running_arch_index != -1,
1715         "Didn't find running architecture code (running_arch_code) in arch_array");
1716  if (running_arch_index == -1) {
1717    // Even though running architecture detection failed
1718    // we may still continue with reporting dlerror() message
1719    return NULL;
1720  }
1721
1722  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1723    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1724    return NULL;
1725  }
1726
1727  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1728    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1729    return NULL;
1730  }
1731
1732  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1733    if (lib_arch.name!=NULL) {
1734      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1735                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1736                 lib_arch.name, arch_array[running_arch_index].name);
1737    } else {
1738      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1739                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1740                 lib_arch.code,
1741                 arch_array[running_arch_index].name);
1742    }
1743  }
1744
1745  return NULL;
1746}
1747
1748void* os::dll_lookup(void* handle, const char* name) {
1749  return dlsym(handle, name);
1750}
1751
1752void* os::get_default_process_handle() {
1753  return (void*)::dlopen(NULL, RTLD_LAZY);
1754}
1755
1756int os::stat(const char *path, struct stat *sbuf) {
1757  char pathbuf[MAX_PATH];
1758  if (strlen(path) > MAX_PATH - 1) {
1759    errno = ENAMETOOLONG;
1760    return -1;
1761  }
1762  os::native_path(strcpy(pathbuf, path));
1763  return ::stat(pathbuf, sbuf);
1764}
1765
1766static inline time_t get_mtime(const char* filename) {
1767  struct stat st;
1768  int ret = os::stat(filename, &st);
1769  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1770  return st.st_mtime;
1771}
1772
1773int os::compare_file_modified_times(const char* file1, const char* file2) {
1774  time_t t1 = get_mtime(file1);
1775  time_t t2 = get_mtime(file2);
1776  return t1 - t2;
1777}
1778
1779static bool _print_ascii_file(const char* filename, outputStream* st) {
1780  int fd = ::open(filename, O_RDONLY);
1781  if (fd == -1) {
1782    return false;
1783  }
1784
1785  char buf[32];
1786  int bytes;
1787  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1788    st->print_raw(buf, bytes);
1789  }
1790
1791  ::close(fd);
1792
1793  return true;
1794}
1795
1796void os::print_os_info_brief(outputStream* st) {
1797  os::Solaris::print_distro_info(st);
1798
1799  os::Posix::print_uname_info(st);
1800
1801  os::Solaris::print_libversion_info(st);
1802}
1803
1804void os::print_os_info(outputStream* st) {
1805  st->print("OS:");
1806
1807  os::Solaris::print_distro_info(st);
1808
1809  os::Posix::print_uname_info(st);
1810
1811  os::Solaris::print_libversion_info(st);
1812
1813  os::Posix::print_rlimit_info(st);
1814
1815  os::Posix::print_load_average(st);
1816}
1817
1818void os::Solaris::print_distro_info(outputStream* st) {
1819  if (!_print_ascii_file("/etc/release", st)) {
1820    st->print("Solaris");
1821  }
1822  st->cr();
1823}
1824
1825void os::get_summary_os_info(char* buf, size_t buflen) {
1826  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1827  FILE* fp = fopen("/etc/release", "r");
1828  if (fp != NULL) {
1829    char tmp[256];
1830    // Only get the first line and chop out everything but the os name.
1831    if (fgets(tmp, sizeof(tmp), fp)) {
1832      char* ptr = tmp;
1833      // skip past whitespace characters
1834      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1835      if (*ptr != '\0') {
1836        char* nl = strchr(ptr, '\n');
1837        if (nl != NULL) *nl = '\0';
1838        strncpy(buf, ptr, buflen);
1839      }
1840    }
1841    fclose(fp);
1842  }
1843}
1844
1845void os::Solaris::print_libversion_info(outputStream* st) {
1846  st->print("  (T2 libthread)");
1847  st->cr();
1848}
1849
1850static bool check_addr0(outputStream* st) {
1851  jboolean status = false;
1852  const int read_chunk = 200;
1853  int ret = 0;
1854  int nmap = 0;
1855  int fd = ::open("/proc/self/map",O_RDONLY);
1856  if (fd >= 0) {
1857    prmap_t *p = NULL;
1858    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1859    if (NULL == mbuff) {
1860      ::close(fd);
1861      return status;
1862    }
1863    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1864      //check if read() has not read partial data
1865      if( 0 != ret % sizeof(prmap_t)){
1866        break;
1867      }
1868      nmap = ret / sizeof(prmap_t);
1869      p = (prmap_t *)mbuff;
1870      for(int i = 0; i < nmap; i++){
1871        if (p->pr_vaddr == 0x0) {
1872          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1873          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1874          st->print("Access: ");
1875          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1876          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1877          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1878          st->cr();
1879          status = true;
1880        }
1881        p++;
1882      }
1883    }
1884    free(mbuff);
1885    ::close(fd);
1886  }
1887  return status;
1888}
1889
1890void os::get_summary_cpu_info(char* buf, size_t buflen) {
1891  // Get MHz with system call. We don't seem to already have this.
1892  processor_info_t stats;
1893  processorid_t id = getcpuid();
1894  int clock = 0;
1895  if (processor_info(id, &stats) != -1) {
1896    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1897  }
1898#ifdef AMD64
1899  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1900#else
1901  // must be sparc
1902  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1903#endif
1904}
1905
1906void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1907  // Nothing to do for now.
1908}
1909
1910void os::print_memory_info(outputStream* st) {
1911  st->print("Memory:");
1912  st->print(" %dk page", os::vm_page_size()>>10);
1913  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1914  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1915  st->cr();
1916  (void) check_addr0(st);
1917}
1918
1919// Moved from whole group, because we need them here for diagnostic
1920// prints.
1921#define OLDMAXSIGNUM 32
1922static int Maxsignum = 0;
1923static int *ourSigFlags = NULL;
1924
1925int os::Solaris::get_our_sigflags(int sig) {
1926  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1927  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1928  return ourSigFlags[sig];
1929}
1930
1931void os::Solaris::set_our_sigflags(int sig, int flags) {
1932  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1933  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1934  ourSigFlags[sig] = flags;
1935}
1936
1937
1938static const char* get_signal_handler_name(address handler,
1939                                           char* buf, int buflen) {
1940  int offset;
1941  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1942  if (found) {
1943    // skip directory names
1944    const char *p1, *p2;
1945    p1 = buf;
1946    size_t len = strlen(os::file_separator());
1947    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1948    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1949  } else {
1950    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1951  }
1952  return buf;
1953}
1954
1955static void print_signal_handler(outputStream* st, int sig,
1956                                 char* buf, size_t buflen) {
1957  struct sigaction sa;
1958
1959  sigaction(sig, NULL, &sa);
1960
1961  st->print("%s: ", os::exception_name(sig, buf, buflen));
1962
1963  address handler = (sa.sa_flags & SA_SIGINFO)
1964                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1965                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1966
1967  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1968    st->print("SIG_DFL");
1969  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1970    st->print("SIG_IGN");
1971  } else {
1972    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1973  }
1974
1975  st->print(", sa_mask[0]=");
1976  os::Posix::print_signal_set_short(st, &sa.sa_mask);
1977
1978  address rh = VMError::get_resetted_sighandler(sig);
1979  // May be, handler was resetted by VMError?
1980  if (rh != NULL) {
1981    handler = rh;
1982    sa.sa_flags = VMError::get_resetted_sigflags(sig);
1983  }
1984
1985  st->print(", sa_flags=");
1986  os::Posix::print_sa_flags(st, sa.sa_flags);
1987
1988  // Check: is it our handler?
1989  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1990    // It is our signal handler
1991    // check for flags
1992    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1993      st->print(
1994                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1995                os::Solaris::get_our_sigflags(sig));
1996    }
1997  }
1998  st->cr();
1999}
2000
2001void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2002  st->print_cr("Signal Handlers:");
2003  print_signal_handler(st, SIGSEGV, buf, buflen);
2004  print_signal_handler(st, SIGBUS , buf, buflen);
2005  print_signal_handler(st, SIGFPE , buf, buflen);
2006  print_signal_handler(st, SIGPIPE, buf, buflen);
2007  print_signal_handler(st, SIGXFSZ, buf, buflen);
2008  print_signal_handler(st, SIGILL , buf, buflen);
2009  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2010  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2011  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2012  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2013  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2014  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2015}
2016
2017static char saved_jvm_path[MAXPATHLEN] = { 0 };
2018
2019// Find the full path to the current module, libjvm.so
2020void os::jvm_path(char *buf, jint buflen) {
2021  // Error checking.
2022  if (buflen < MAXPATHLEN) {
2023    assert(false, "must use a large-enough buffer");
2024    buf[0] = '\0';
2025    return;
2026  }
2027  // Lazy resolve the path to current module.
2028  if (saved_jvm_path[0] != 0) {
2029    strcpy(buf, saved_jvm_path);
2030    return;
2031  }
2032
2033  Dl_info dlinfo;
2034  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2035  assert(ret != 0, "cannot locate libjvm");
2036  if (ret != 0 && dlinfo.dli_fname != NULL) {
2037    realpath((char *)dlinfo.dli_fname, buf);
2038  } else {
2039    buf[0] = '\0';
2040    return;
2041  }
2042
2043  if (Arguments::sun_java_launcher_is_altjvm()) {
2044    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2045    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2046    // If "/jre/lib/" appears at the right place in the string, then
2047    // assume we are installed in a JDK and we're done.  Otherwise, check
2048    // for a JAVA_HOME environment variable and fix up the path so it
2049    // looks like libjvm.so is installed there (append a fake suffix
2050    // hotspot/libjvm.so).
2051    const char *p = buf + strlen(buf) - 1;
2052    for (int count = 0; p > buf && count < 5; ++count) {
2053      for (--p; p > buf && *p != '/'; --p)
2054        /* empty */ ;
2055    }
2056
2057    if (strncmp(p, "/jre/lib/", 9) != 0) {
2058      // Look for JAVA_HOME in the environment.
2059      char* java_home_var = ::getenv("JAVA_HOME");
2060      if (java_home_var != NULL && java_home_var[0] != 0) {
2061        char* jrelib_p;
2062        int   len;
2063
2064        // Check the current module name "libjvm.so".
2065        p = strrchr(buf, '/');
2066        assert(strstr(p, "/libjvm") == p, "invalid library name");
2067
2068        realpath(java_home_var, buf);
2069        // determine if this is a legacy image or modules image
2070        // modules image doesn't have "jre" subdirectory
2071        len = strlen(buf);
2072        assert(len < buflen, "Ran out of buffer space");
2073        jrelib_p = buf + len;
2074        snprintf(jrelib_p, buflen-len, "/jre/lib");
2075        if (0 != access(buf, F_OK)) {
2076          snprintf(jrelib_p, buflen-len, "/lib");
2077        }
2078
2079        if (0 == access(buf, F_OK)) {
2080          // Use current module name "libjvm.so"
2081          len = strlen(buf);
2082          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2083        } else {
2084          // Go back to path of .so
2085          realpath((char *)dlinfo.dli_fname, buf);
2086        }
2087      }
2088    }
2089  }
2090
2091  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2092  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2093}
2094
2095
2096void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2097  // no prefix required, not even "_"
2098}
2099
2100
2101void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2102  // no suffix required
2103}
2104
2105// This method is a copy of JDK's sysGetLastErrorString
2106// from src/solaris/hpi/src/system_md.c
2107
2108size_t os::lasterror(char *buf, size_t len) {
2109  if (errno == 0)  return 0;
2110
2111  const char *s = os::strerror(errno);
2112  size_t n = ::strlen(s);
2113  if (n >= len) {
2114    n = len - 1;
2115  }
2116  ::strncpy(buf, s, n);
2117  buf[n] = '\0';
2118  return n;
2119}
2120
2121
2122// sun.misc.Signal
2123
2124extern "C" {
2125  static void UserHandler(int sig, void *siginfo, void *context) {
2126    // Ctrl-C is pressed during error reporting, likely because the error
2127    // handler fails to abort. Let VM die immediately.
2128    if (sig == SIGINT && is_error_reported()) {
2129      os::die();
2130    }
2131
2132    os::signal_notify(sig);
2133    // We do not need to reinstate the signal handler each time...
2134  }
2135}
2136
2137void* os::user_handler() {
2138  return CAST_FROM_FN_PTR(void*, UserHandler);
2139}
2140
2141struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2142  struct timespec ts;
2143  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2144
2145  return ts;
2146}
2147
2148extern "C" {
2149  typedef void (*sa_handler_t)(int);
2150  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2151}
2152
2153void* os::signal(int signal_number, void* handler) {
2154  struct sigaction sigAct, oldSigAct;
2155  sigfillset(&(sigAct.sa_mask));
2156  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2157  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2158
2159  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2160    // -1 means registration failed
2161    return (void *)-1;
2162  }
2163
2164  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2165}
2166
2167void os::signal_raise(int signal_number) {
2168  raise(signal_number);
2169}
2170
2171// The following code is moved from os.cpp for making this
2172// code platform specific, which it is by its very nature.
2173
2174// a counter for each possible signal value
2175static int Sigexit = 0;
2176static int Maxlibjsigsigs;
2177static jint *pending_signals = NULL;
2178static int *preinstalled_sigs = NULL;
2179static struct sigaction *chainedsigactions = NULL;
2180static sema_t sig_sem;
2181typedef int (*version_getting_t)();
2182version_getting_t os::Solaris::get_libjsig_version = NULL;
2183static int libjsigversion = NULL;
2184
2185int os::sigexitnum_pd() {
2186  assert(Sigexit > 0, "signal memory not yet initialized");
2187  return Sigexit;
2188}
2189
2190void os::Solaris::init_signal_mem() {
2191  // Initialize signal structures
2192  Maxsignum = SIGRTMAX;
2193  Sigexit = Maxsignum+1;
2194  assert(Maxsignum >0, "Unable to obtain max signal number");
2195
2196  Maxlibjsigsigs = Maxsignum;
2197
2198  // pending_signals has one int per signal
2199  // The additional signal is for SIGEXIT - exit signal to signal_thread
2200  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2201  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2202
2203  if (UseSignalChaining) {
2204    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2205                                                   * (Maxsignum + 1), mtInternal);
2206    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2207    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2208    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2209  }
2210  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2211  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2212}
2213
2214void os::signal_init_pd() {
2215  int ret;
2216
2217  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2218  assert(ret == 0, "sema_init() failed");
2219}
2220
2221void os::signal_notify(int signal_number) {
2222  int ret;
2223
2224  Atomic::inc(&pending_signals[signal_number]);
2225  ret = ::sema_post(&sig_sem);
2226  assert(ret == 0, "sema_post() failed");
2227}
2228
2229static int check_pending_signals(bool wait_for_signal) {
2230  int ret;
2231  while (true) {
2232    for (int i = 0; i < Sigexit + 1; i++) {
2233      jint n = pending_signals[i];
2234      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2235        return i;
2236      }
2237    }
2238    if (!wait_for_signal) {
2239      return -1;
2240    }
2241    JavaThread *thread = JavaThread::current();
2242    ThreadBlockInVM tbivm(thread);
2243
2244    bool threadIsSuspended;
2245    do {
2246      thread->set_suspend_equivalent();
2247      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2248      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2249        ;
2250      assert(ret == 0, "sema_wait() failed");
2251
2252      // were we externally suspended while we were waiting?
2253      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2254      if (threadIsSuspended) {
2255        // The semaphore has been incremented, but while we were waiting
2256        // another thread suspended us. We don't want to continue running
2257        // while suspended because that would surprise the thread that
2258        // suspended us.
2259        ret = ::sema_post(&sig_sem);
2260        assert(ret == 0, "sema_post() failed");
2261
2262        thread->java_suspend_self();
2263      }
2264    } while (threadIsSuspended);
2265  }
2266}
2267
2268int os::signal_lookup() {
2269  return check_pending_signals(false);
2270}
2271
2272int os::signal_wait() {
2273  return check_pending_signals(true);
2274}
2275
2276////////////////////////////////////////////////////////////////////////////////
2277// Virtual Memory
2278
2279static int page_size = -1;
2280
2281// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2282// clear this var if support is not available.
2283static bool has_map_align = true;
2284
2285int os::vm_page_size() {
2286  assert(page_size != -1, "must call os::init");
2287  return page_size;
2288}
2289
2290// Solaris allocates memory by pages.
2291int os::vm_allocation_granularity() {
2292  assert(page_size != -1, "must call os::init");
2293  return page_size;
2294}
2295
2296static bool recoverable_mmap_error(int err) {
2297  // See if the error is one we can let the caller handle. This
2298  // list of errno values comes from the Solaris mmap(2) man page.
2299  switch (err) {
2300  case EBADF:
2301  case EINVAL:
2302  case ENOTSUP:
2303    // let the caller deal with these errors
2304    return true;
2305
2306  default:
2307    // Any remaining errors on this OS can cause our reserved mapping
2308    // to be lost. That can cause confusion where different data
2309    // structures think they have the same memory mapped. The worst
2310    // scenario is if both the VM and a library think they have the
2311    // same memory mapped.
2312    return false;
2313  }
2314}
2315
2316static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2317                                    int err) {
2318  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2319          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2320          os::strerror(err), err);
2321}
2322
2323static void warn_fail_commit_memory(char* addr, size_t bytes,
2324                                    size_t alignment_hint, bool exec,
2325                                    int err) {
2326  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2327          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2328          alignment_hint, exec, os::strerror(err), err);
2329}
2330
2331int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2332  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2333  size_t size = bytes;
2334  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2335  if (res != NULL) {
2336    if (UseNUMAInterleaving) {
2337      numa_make_global(addr, bytes);
2338    }
2339    return 0;
2340  }
2341
2342  int err = errno;  // save errno from mmap() call in mmap_chunk()
2343
2344  if (!recoverable_mmap_error(err)) {
2345    warn_fail_commit_memory(addr, bytes, exec, err);
2346    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2347  }
2348
2349  return err;
2350}
2351
2352bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2353  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2354}
2355
2356void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2357                                  const char* mesg) {
2358  assert(mesg != NULL, "mesg must be specified");
2359  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2360  if (err != 0) {
2361    // the caller wants all commit errors to exit with the specified mesg:
2362    warn_fail_commit_memory(addr, bytes, exec, err);
2363    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2364  }
2365}
2366
2367size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2368  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2369         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2370         alignment, (size_t) vm_page_size());
2371
2372  for (int i = 0; _page_sizes[i] != 0; i++) {
2373    if (is_size_aligned(alignment, _page_sizes[i])) {
2374      return _page_sizes[i];
2375    }
2376  }
2377
2378  return (size_t) vm_page_size();
2379}
2380
2381int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2382                                    size_t alignment_hint, bool exec) {
2383  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2384  if (err == 0 && UseLargePages && alignment_hint > 0) {
2385    assert(is_size_aligned(bytes, alignment_hint),
2386           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2387
2388    // The syscall memcntl requires an exact page size (see man memcntl for details).
2389    size_t page_size = page_size_for_alignment(alignment_hint);
2390    if (page_size > (size_t) vm_page_size()) {
2391      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2392    }
2393  }
2394  return err;
2395}
2396
2397bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2398                          bool exec) {
2399  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2400}
2401
2402void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2403                                  size_t alignment_hint, bool exec,
2404                                  const char* mesg) {
2405  assert(mesg != NULL, "mesg must be specified");
2406  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2407  if (err != 0) {
2408    // the caller wants all commit errors to exit with the specified mesg:
2409    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2410    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2411  }
2412}
2413
2414// Uncommit the pages in a specified region.
2415void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2416  if (madvise(addr, bytes, MADV_FREE) < 0) {
2417    debug_only(warning("MADV_FREE failed."));
2418    return;
2419  }
2420}
2421
2422bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2423  return os::commit_memory(addr, size, !ExecMem);
2424}
2425
2426bool os::remove_stack_guard_pages(char* addr, size_t size) {
2427  return os::uncommit_memory(addr, size);
2428}
2429
2430// Change the page size in a given range.
2431void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2432  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2433  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2434  if (UseLargePages) {
2435    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2436    if (page_size > (size_t) vm_page_size()) {
2437      Solaris::setup_large_pages(addr, bytes, page_size);
2438    }
2439  }
2440}
2441
2442// Tell the OS to make the range local to the first-touching LWP
2443void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2444  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2445  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2446    debug_only(warning("MADV_ACCESS_LWP failed."));
2447  }
2448}
2449
2450// Tell the OS that this range would be accessed from different LWPs.
2451void os::numa_make_global(char *addr, size_t bytes) {
2452  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2453  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2454    debug_only(warning("MADV_ACCESS_MANY failed."));
2455  }
2456}
2457
2458// Get the number of the locality groups.
2459size_t os::numa_get_groups_num() {
2460  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2461  return n != -1 ? n : 1;
2462}
2463
2464// Get a list of leaf locality groups. A leaf lgroup is group that
2465// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2466// board. An LWP is assigned to one of these groups upon creation.
2467size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2468  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2469    ids[0] = 0;
2470    return 1;
2471  }
2472  int result_size = 0, top = 1, bottom = 0, cur = 0;
2473  for (int k = 0; k < size; k++) {
2474    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2475                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2476    if (r == -1) {
2477      ids[0] = 0;
2478      return 1;
2479    }
2480    if (!r) {
2481      // That's a leaf node.
2482      assert(bottom <= cur, "Sanity check");
2483      // Check if the node has memory
2484      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2485                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2486        ids[bottom++] = ids[cur];
2487      }
2488    }
2489    top += r;
2490    cur++;
2491  }
2492  if (bottom == 0) {
2493    // Handle a situation, when the OS reports no memory available.
2494    // Assume UMA architecture.
2495    ids[0] = 0;
2496    return 1;
2497  }
2498  return bottom;
2499}
2500
2501// Detect the topology change. Typically happens during CPU plugging-unplugging.
2502bool os::numa_topology_changed() {
2503  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2504  if (is_stale != -1 && is_stale) {
2505    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2506    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2507    assert(c != 0, "Failure to initialize LGRP API");
2508    Solaris::set_lgrp_cookie(c);
2509    return true;
2510  }
2511  return false;
2512}
2513
2514// Get the group id of the current LWP.
2515int os::numa_get_group_id() {
2516  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2517  if (lgrp_id == -1) {
2518    return 0;
2519  }
2520  const int size = os::numa_get_groups_num();
2521  int *ids = (int*)alloca(size * sizeof(int));
2522
2523  // Get the ids of all lgroups with memory; r is the count.
2524  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2525                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2526  if (r <= 0) {
2527    return 0;
2528  }
2529  return ids[os::random() % r];
2530}
2531
2532// Request information about the page.
2533bool os::get_page_info(char *start, page_info* info) {
2534  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2535  uint64_t addr = (uintptr_t)start;
2536  uint64_t outdata[2];
2537  uint_t validity = 0;
2538
2539  if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2540    return false;
2541  }
2542
2543  info->size = 0;
2544  info->lgrp_id = -1;
2545
2546  if ((validity & 1) != 0) {
2547    if ((validity & 2) != 0) {
2548      info->lgrp_id = outdata[0];
2549    }
2550    if ((validity & 4) != 0) {
2551      info->size = outdata[1];
2552    }
2553    return true;
2554  }
2555  return false;
2556}
2557
2558// Scan the pages from start to end until a page different than
2559// the one described in the info parameter is encountered.
2560char *os::scan_pages(char *start, char* end, page_info* page_expected,
2561                     page_info* page_found) {
2562  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2563  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2564  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2565  uint_t validity[MAX_MEMINFO_CNT];
2566
2567  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2568  uint64_t p = (uint64_t)start;
2569  while (p < (uint64_t)end) {
2570    addrs[0] = p;
2571    size_t addrs_count = 1;
2572    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2573      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2574      addrs_count++;
2575    }
2576
2577    if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2578      return NULL;
2579    }
2580
2581    size_t i = 0;
2582    for (; i < addrs_count; i++) {
2583      if ((validity[i] & 1) != 0) {
2584        if ((validity[i] & 4) != 0) {
2585          if (outdata[types * i + 1] != page_expected->size) {
2586            break;
2587          }
2588        } else if (page_expected->size != 0) {
2589          break;
2590        }
2591
2592        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2593          if (outdata[types * i] != page_expected->lgrp_id) {
2594            break;
2595          }
2596        }
2597      } else {
2598        return NULL;
2599      }
2600    }
2601
2602    if (i < addrs_count) {
2603      if ((validity[i] & 2) != 0) {
2604        page_found->lgrp_id = outdata[types * i];
2605      } else {
2606        page_found->lgrp_id = -1;
2607      }
2608      if ((validity[i] & 4) != 0) {
2609        page_found->size = outdata[types * i + 1];
2610      } else {
2611        page_found->size = 0;
2612      }
2613      return (char*)addrs[i];
2614    }
2615
2616    p = addrs[addrs_count - 1] + page_size;
2617  }
2618  return end;
2619}
2620
2621bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2622  size_t size = bytes;
2623  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2624  // uncommitted page. Otherwise, the read/write might succeed if we
2625  // have enough swap space to back the physical page.
2626  return
2627    NULL != Solaris::mmap_chunk(addr, size,
2628                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2629                                PROT_NONE);
2630}
2631
2632char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2633  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2634
2635  if (b == MAP_FAILED) {
2636    return NULL;
2637  }
2638  return b;
2639}
2640
2641char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2642                             size_t alignment_hint, bool fixed) {
2643  char* addr = requested_addr;
2644  int flags = MAP_PRIVATE | MAP_NORESERVE;
2645
2646  assert(!(fixed && (alignment_hint > 0)),
2647         "alignment hint meaningless with fixed mmap");
2648
2649  if (fixed) {
2650    flags |= MAP_FIXED;
2651  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2652    flags |= MAP_ALIGN;
2653    addr = (char*) alignment_hint;
2654  }
2655
2656  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2657  // uncommitted page. Otherwise, the read/write might succeed if we
2658  // have enough swap space to back the physical page.
2659  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2660}
2661
2662char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2663                            size_t alignment_hint) {
2664  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2665                                  (requested_addr != NULL));
2666
2667  guarantee(requested_addr == NULL || requested_addr == addr,
2668            "OS failed to return requested mmap address.");
2669  return addr;
2670}
2671
2672// Reserve memory at an arbitrary address, only if that area is
2673// available (and not reserved for something else).
2674
2675char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2676  const int max_tries = 10;
2677  char* base[max_tries];
2678  size_t size[max_tries];
2679
2680  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2681  // is dependent on the requested size and the MMU.  Our initial gap
2682  // value here is just a guess and will be corrected later.
2683  bool had_top_overlap = false;
2684  bool have_adjusted_gap = false;
2685  size_t gap = 0x400000;
2686
2687  // Assert only that the size is a multiple of the page size, since
2688  // that's all that mmap requires, and since that's all we really know
2689  // about at this low abstraction level.  If we need higher alignment,
2690  // we can either pass an alignment to this method or verify alignment
2691  // in one of the methods further up the call chain.  See bug 5044738.
2692  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2693
2694  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2695  // Give it a try, if the kernel honors the hint we can return immediately.
2696  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2697
2698  volatile int err = errno;
2699  if (addr == requested_addr) {
2700    return addr;
2701  } else if (addr != NULL) {
2702    pd_unmap_memory(addr, bytes);
2703  }
2704
2705  if (log_is_enabled(Warning, os)) {
2706    char buf[256];
2707    buf[0] = '\0';
2708    if (addr == NULL) {
2709      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2710    }
2711    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2712            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2713            "%s", bytes, requested_addr, addr, buf);
2714  }
2715
2716  // Address hint method didn't work.  Fall back to the old method.
2717  // In theory, once SNV becomes our oldest supported platform, this
2718  // code will no longer be needed.
2719  //
2720  // Repeatedly allocate blocks until the block is allocated at the
2721  // right spot. Give up after max_tries.
2722  int i;
2723  for (i = 0; i < max_tries; ++i) {
2724    base[i] = reserve_memory(bytes);
2725
2726    if (base[i] != NULL) {
2727      // Is this the block we wanted?
2728      if (base[i] == requested_addr) {
2729        size[i] = bytes;
2730        break;
2731      }
2732
2733      // check that the gap value is right
2734      if (had_top_overlap && !have_adjusted_gap) {
2735        size_t actual_gap = base[i-1] - base[i] - bytes;
2736        if (gap != actual_gap) {
2737          // adjust the gap value and retry the last 2 allocations
2738          assert(i > 0, "gap adjustment code problem");
2739          have_adjusted_gap = true;  // adjust the gap only once, just in case
2740          gap = actual_gap;
2741          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2742          unmap_memory(base[i], bytes);
2743          unmap_memory(base[i-1], size[i-1]);
2744          i-=2;
2745          continue;
2746        }
2747      }
2748
2749      // Does this overlap the block we wanted? Give back the overlapped
2750      // parts and try again.
2751      //
2752      // There is still a bug in this code: if top_overlap == bytes,
2753      // the overlap is offset from requested region by the value of gap.
2754      // In this case giving back the overlapped part will not work,
2755      // because we'll give back the entire block at base[i] and
2756      // therefore the subsequent allocation will not generate a new gap.
2757      // This could be fixed with a new algorithm that used larger
2758      // or variable size chunks to find the requested region -
2759      // but such a change would introduce additional complications.
2760      // It's rare enough that the planets align for this bug,
2761      // so we'll just wait for a fix for 6204603/5003415 which
2762      // will provide a mmap flag to allow us to avoid this business.
2763
2764      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2765      if (top_overlap >= 0 && top_overlap < bytes) {
2766        had_top_overlap = true;
2767        unmap_memory(base[i], top_overlap);
2768        base[i] += top_overlap;
2769        size[i] = bytes - top_overlap;
2770      } else {
2771        size_t bottom_overlap = base[i] + bytes - requested_addr;
2772        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2773          if (bottom_overlap == 0) {
2774            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2775          }
2776          unmap_memory(requested_addr, bottom_overlap);
2777          size[i] = bytes - bottom_overlap;
2778        } else {
2779          size[i] = bytes;
2780        }
2781      }
2782    }
2783  }
2784
2785  // Give back the unused reserved pieces.
2786
2787  for (int j = 0; j < i; ++j) {
2788    if (base[j] != NULL) {
2789      unmap_memory(base[j], size[j]);
2790    }
2791  }
2792
2793  return (i < max_tries) ? requested_addr : NULL;
2794}
2795
2796bool os::pd_release_memory(char* addr, size_t bytes) {
2797  size_t size = bytes;
2798  return munmap(addr, size) == 0;
2799}
2800
2801static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2802  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2803         "addr must be page aligned");
2804  int retVal = mprotect(addr, bytes, prot);
2805  return retVal == 0;
2806}
2807
2808// Protect memory (Used to pass readonly pages through
2809// JNI GetArray<type>Elements with empty arrays.)
2810// Also, used for serialization page and for compressed oops null pointer
2811// checking.
2812bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2813                        bool is_committed) {
2814  unsigned int p = 0;
2815  switch (prot) {
2816  case MEM_PROT_NONE: p = PROT_NONE; break;
2817  case MEM_PROT_READ: p = PROT_READ; break;
2818  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2819  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2820  default:
2821    ShouldNotReachHere();
2822  }
2823  // is_committed is unused.
2824  return solaris_mprotect(addr, bytes, p);
2825}
2826
2827// guard_memory and unguard_memory only happens within stack guard pages.
2828// Since ISM pertains only to the heap, guard and unguard memory should not
2829/// happen with an ISM region.
2830bool os::guard_memory(char* addr, size_t bytes) {
2831  return solaris_mprotect(addr, bytes, PROT_NONE);
2832}
2833
2834bool os::unguard_memory(char* addr, size_t bytes) {
2835  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2836}
2837
2838// Large page support
2839static size_t _large_page_size = 0;
2840
2841// Insertion sort for small arrays (descending order).
2842static void insertion_sort_descending(size_t* array, int len) {
2843  for (int i = 0; i < len; i++) {
2844    size_t val = array[i];
2845    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2846      size_t tmp = array[key];
2847      array[key] = array[key - 1];
2848      array[key - 1] = tmp;
2849    }
2850  }
2851}
2852
2853bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2854  const unsigned int usable_count = VM_Version::page_size_count();
2855  if (usable_count == 1) {
2856    return false;
2857  }
2858
2859  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2860  // build platform, getpagesizes() (without the '2') can be called directly.
2861  typedef int (*gps_t)(size_t[], int);
2862  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2863  if (gps_func == NULL) {
2864    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2865    if (gps_func == NULL) {
2866      if (warn) {
2867        warning("MPSS is not supported by the operating system.");
2868      }
2869      return false;
2870    }
2871  }
2872
2873  // Fill the array of page sizes.
2874  int n = (*gps_func)(_page_sizes, page_sizes_max);
2875  assert(n > 0, "Solaris bug?");
2876
2877  if (n == page_sizes_max) {
2878    // Add a sentinel value (necessary only if the array was completely filled
2879    // since it is static (zeroed at initialization)).
2880    _page_sizes[--n] = 0;
2881    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2882  }
2883  assert(_page_sizes[n] == 0, "missing sentinel");
2884  trace_page_sizes("available page sizes", _page_sizes, n);
2885
2886  if (n == 1) return false;     // Only one page size available.
2887
2888  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2889  // select up to usable_count elements.  First sort the array, find the first
2890  // acceptable value, then copy the usable sizes to the top of the array and
2891  // trim the rest.  Make sure to include the default page size :-).
2892  //
2893  // A better policy could get rid of the 4M limit by taking the sizes of the
2894  // important VM memory regions (java heap and possibly the code cache) into
2895  // account.
2896  insertion_sort_descending(_page_sizes, n);
2897  const size_t size_limit =
2898    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2899  int beg;
2900  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2901  const int end = MIN2((int)usable_count, n) - 1;
2902  for (int cur = 0; cur < end; ++cur, ++beg) {
2903    _page_sizes[cur] = _page_sizes[beg];
2904  }
2905  _page_sizes[end] = vm_page_size();
2906  _page_sizes[end + 1] = 0;
2907
2908  if (_page_sizes[end] > _page_sizes[end - 1]) {
2909    // Default page size is not the smallest; sort again.
2910    insertion_sort_descending(_page_sizes, end + 1);
2911  }
2912  *page_size = _page_sizes[0];
2913
2914  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2915  return true;
2916}
2917
2918void os::large_page_init() {
2919  if (UseLargePages) {
2920    // print a warning if any large page related flag is specified on command line
2921    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2922                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2923
2924    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2925  }
2926}
2927
2928bool os::Solaris::is_valid_page_size(size_t bytes) {
2929  for (int i = 0; _page_sizes[i] != 0; i++) {
2930    if (_page_sizes[i] == bytes) {
2931      return true;
2932    }
2933  }
2934  return false;
2935}
2936
2937bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2938  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2939  assert(is_ptr_aligned((void*) start, align),
2940         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2941  assert(is_size_aligned(bytes, align),
2942         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2943
2944  // Signal to OS that we want large pages for addresses
2945  // from addr, addr + bytes
2946  struct memcntl_mha mpss_struct;
2947  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2948  mpss_struct.mha_pagesize = align;
2949  mpss_struct.mha_flags = 0;
2950  // Upon successful completion, memcntl() returns 0
2951  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2952    debug_only(warning("Attempt to use MPSS failed."));
2953    return false;
2954  }
2955  return true;
2956}
2957
2958char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2959  fatal("os::reserve_memory_special should not be called on Solaris.");
2960  return NULL;
2961}
2962
2963bool os::release_memory_special(char* base, size_t bytes) {
2964  fatal("os::release_memory_special should not be called on Solaris.");
2965  return false;
2966}
2967
2968size_t os::large_page_size() {
2969  return _large_page_size;
2970}
2971
2972// MPSS allows application to commit large page memory on demand; with ISM
2973// the entire memory region must be allocated as shared memory.
2974bool os::can_commit_large_page_memory() {
2975  return true;
2976}
2977
2978bool os::can_execute_large_page_memory() {
2979  return true;
2980}
2981
2982// Read calls from inside the vm need to perform state transitions
2983size_t os::read(int fd, void *buf, unsigned int nBytes) {
2984  size_t res;
2985  JavaThread* thread = (JavaThread*)Thread::current();
2986  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2987  ThreadBlockInVM tbiv(thread);
2988  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2989  return res;
2990}
2991
2992size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2993  size_t res;
2994  JavaThread* thread = (JavaThread*)Thread::current();
2995  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2996  ThreadBlockInVM tbiv(thread);
2997  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2998  return res;
2999}
3000
3001size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3002  size_t res;
3003  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3004         "Assumed _thread_in_native");
3005  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3006  return res;
3007}
3008
3009void os::naked_short_sleep(jlong ms) {
3010  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3011
3012  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3013  // Solaris requires -lrt for this.
3014  usleep((ms * 1000));
3015
3016  return;
3017}
3018
3019// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3020void os::infinite_sleep() {
3021  while (true) {    // sleep forever ...
3022    ::sleep(100);   // ... 100 seconds at a time
3023  }
3024}
3025
3026// Used to convert frequent JVM_Yield() to nops
3027bool os::dont_yield() {
3028  if (DontYieldALot) {
3029    static hrtime_t last_time = 0;
3030    hrtime_t diff = getTimeNanos() - last_time;
3031
3032    if (diff < DontYieldALotInterval * 1000000) {
3033      return true;
3034    }
3035
3036    last_time += diff;
3037
3038    return false;
3039  } else {
3040    return false;
3041  }
3042}
3043
3044// Note that yield semantics are defined by the scheduling class to which
3045// the thread currently belongs.  Typically, yield will _not yield to
3046// other equal or higher priority threads that reside on the dispatch queues
3047// of other CPUs.
3048
3049void os::naked_yield() {
3050  thr_yield();
3051}
3052
3053// Interface for setting lwp priorities.  If we are using T2 libthread,
3054// which forces the use of BoundThreads or we manually set UseBoundThreads,
3055// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3056// function is meaningless in this mode so we must adjust the real lwp's priority
3057// The routines below implement the getting and setting of lwp priorities.
3058//
3059// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3060//       being deprecated and all threads are now BoundThreads
3061//
3062// Note: There are three priority scales used on Solaris.  Java priotities
3063//       which range from 1 to 10, libthread "thr_setprio" scale which range
3064//       from 0 to 127, and the current scheduling class of the process we
3065//       are running in.  This is typically from -60 to +60.
3066//       The setting of the lwp priorities in done after a call to thr_setprio
3067//       so Java priorities are mapped to libthread priorities and we map from
3068//       the latter to lwp priorities.  We don't keep priorities stored in
3069//       Java priorities since some of our worker threads want to set priorities
3070//       higher than all Java threads.
3071//
3072// For related information:
3073// (1)  man -s 2 priocntl
3074// (2)  man -s 4 priocntl
3075// (3)  man dispadmin
3076// =    librt.so
3077// =    libthread/common/rtsched.c - thrp_setlwpprio().
3078// =    ps -cL <pid> ... to validate priority.
3079// =    sched_get_priority_min and _max
3080//              pthread_create
3081//              sched_setparam
3082//              pthread_setschedparam
3083//
3084// Assumptions:
3085// +    We assume that all threads in the process belong to the same
3086//              scheduling class.   IE. an homogenous process.
3087// +    Must be root or in IA group to change change "interactive" attribute.
3088//              Priocntl() will fail silently.  The only indication of failure is when
3089//              we read-back the value and notice that it hasn't changed.
3090// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3091// +    For RT, change timeslice as well.  Invariant:
3092//              constant "priority integral"
3093//              Konst == TimeSlice * (60-Priority)
3094//              Given a priority, compute appropriate timeslice.
3095// +    Higher numerical values have higher priority.
3096
3097// sched class attributes
3098typedef struct {
3099  int   schedPolicy;              // classID
3100  int   maxPrio;
3101  int   minPrio;
3102} SchedInfo;
3103
3104
3105static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3106
3107#ifdef ASSERT
3108static int  ReadBackValidate = 1;
3109#endif
3110static int  myClass     = 0;
3111static int  myMin       = 0;
3112static int  myMax       = 0;
3113static int  myCur       = 0;
3114static bool priocntl_enable = false;
3115
3116static const int criticalPrio = FXCriticalPriority;
3117static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3118
3119
3120// lwp_priocntl_init
3121//
3122// Try to determine the priority scale for our process.
3123//
3124// Return errno or 0 if OK.
3125//
3126static int lwp_priocntl_init() {
3127  int rslt;
3128  pcinfo_t ClassInfo;
3129  pcparms_t ParmInfo;
3130  int i;
3131
3132  if (!UseThreadPriorities) return 0;
3133
3134  // If ThreadPriorityPolicy is 1, switch tables
3135  if (ThreadPriorityPolicy == 1) {
3136    for (i = 0; i < CriticalPriority+1; i++)
3137      os::java_to_os_priority[i] = prio_policy1[i];
3138  }
3139  if (UseCriticalJavaThreadPriority) {
3140    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3141    // See set_native_priority() and set_lwp_class_and_priority().
3142    // Save original MaxPriority mapping in case attempt to
3143    // use critical priority fails.
3144    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3145    // Set negative to distinguish from other priorities
3146    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3147  }
3148
3149  // Get IDs for a set of well-known scheduling classes.
3150  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3151  // the system.  We should have a loop that iterates over the
3152  // classID values, which are known to be "small" integers.
3153
3154  strcpy(ClassInfo.pc_clname, "TS");
3155  ClassInfo.pc_cid = -1;
3156  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3157  if (rslt < 0) return errno;
3158  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3159  tsLimits.schedPolicy = ClassInfo.pc_cid;
3160  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3161  tsLimits.minPrio = -tsLimits.maxPrio;
3162
3163  strcpy(ClassInfo.pc_clname, "IA");
3164  ClassInfo.pc_cid = -1;
3165  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3166  if (rslt < 0) return errno;
3167  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3168  iaLimits.schedPolicy = ClassInfo.pc_cid;
3169  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3170  iaLimits.minPrio = -iaLimits.maxPrio;
3171
3172  strcpy(ClassInfo.pc_clname, "RT");
3173  ClassInfo.pc_cid = -1;
3174  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3175  if (rslt < 0) return errno;
3176  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3177  rtLimits.schedPolicy = ClassInfo.pc_cid;
3178  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3179  rtLimits.minPrio = 0;
3180
3181  strcpy(ClassInfo.pc_clname, "FX");
3182  ClassInfo.pc_cid = -1;
3183  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3184  if (rslt < 0) return errno;
3185  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3186  fxLimits.schedPolicy = ClassInfo.pc_cid;
3187  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3188  fxLimits.minPrio = 0;
3189
3190  // Query our "current" scheduling class.
3191  // This will normally be IA, TS or, rarely, FX or RT.
3192  memset(&ParmInfo, 0, sizeof(ParmInfo));
3193  ParmInfo.pc_cid = PC_CLNULL;
3194  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3195  if (rslt < 0) return errno;
3196  myClass = ParmInfo.pc_cid;
3197
3198  // We now know our scheduling classId, get specific information
3199  // about the class.
3200  ClassInfo.pc_cid = myClass;
3201  ClassInfo.pc_clname[0] = 0;
3202  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3203  if (rslt < 0) return errno;
3204
3205  if (ThreadPriorityVerbose) {
3206    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3207  }
3208
3209  memset(&ParmInfo, 0, sizeof(pcparms_t));
3210  ParmInfo.pc_cid = PC_CLNULL;
3211  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3212  if (rslt < 0) return errno;
3213
3214  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3215    myMin = rtLimits.minPrio;
3216    myMax = rtLimits.maxPrio;
3217  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3218    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3219    myMin = iaLimits.minPrio;
3220    myMax = iaLimits.maxPrio;
3221    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3222  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3223    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3224    myMin = tsLimits.minPrio;
3225    myMax = tsLimits.maxPrio;
3226    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3227  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3228    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3229    myMin = fxLimits.minPrio;
3230    myMax = fxLimits.maxPrio;
3231    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3232  } else {
3233    // No clue - punt
3234    if (ThreadPriorityVerbose) {
3235      tty->print_cr("Unknown scheduling class: %s ... \n",
3236                    ClassInfo.pc_clname);
3237    }
3238    return EINVAL;      // no clue, punt
3239  }
3240
3241  if (ThreadPriorityVerbose) {
3242    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3243  }
3244
3245  priocntl_enable = true;  // Enable changing priorities
3246  return 0;
3247}
3248
3249#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3250#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3251#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3252#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3253
3254
3255// scale_to_lwp_priority
3256//
3257// Convert from the libthread "thr_setprio" scale to our current
3258// lwp scheduling class scale.
3259//
3260static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3261  int v;
3262
3263  if (x == 127) return rMax;            // avoid round-down
3264  v = (((x*(rMax-rMin)))/128)+rMin;
3265  return v;
3266}
3267
3268
3269// set_lwp_class_and_priority
3270int set_lwp_class_and_priority(int ThreadID, int lwpid,
3271                               int newPrio, int new_class, bool scale) {
3272  int rslt;
3273  int Actual, Expected, prv;
3274  pcparms_t ParmInfo;                   // for GET-SET
3275#ifdef ASSERT
3276  pcparms_t ReadBack;                   // for readback
3277#endif
3278
3279  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3280  // Query current values.
3281  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3282  // Cache "pcparms_t" in global ParmCache.
3283  // TODO: elide set-to-same-value
3284
3285  // If something went wrong on init, don't change priorities.
3286  if (!priocntl_enable) {
3287    if (ThreadPriorityVerbose) {
3288      tty->print_cr("Trying to set priority but init failed, ignoring");
3289    }
3290    return EINVAL;
3291  }
3292
3293  // If lwp hasn't started yet, just return
3294  // the _start routine will call us again.
3295  if (lwpid <= 0) {
3296    if (ThreadPriorityVerbose) {
3297      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3298                    INTPTR_FORMAT " to %d, lwpid not set",
3299                    ThreadID, newPrio);
3300    }
3301    return 0;
3302  }
3303
3304  if (ThreadPriorityVerbose) {
3305    tty->print_cr ("set_lwp_class_and_priority("
3306                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3307                   ThreadID, lwpid, newPrio);
3308  }
3309
3310  memset(&ParmInfo, 0, sizeof(pcparms_t));
3311  ParmInfo.pc_cid = PC_CLNULL;
3312  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3313  if (rslt < 0) return errno;
3314
3315  int cur_class = ParmInfo.pc_cid;
3316  ParmInfo.pc_cid = (id_t)new_class;
3317
3318  if (new_class == rtLimits.schedPolicy) {
3319    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3320    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3321                                                       rtLimits.maxPrio, newPrio)
3322                               : newPrio;
3323    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3324    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3325    if (ThreadPriorityVerbose) {
3326      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3327    }
3328  } else if (new_class == iaLimits.schedPolicy) {
3329    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3330    int maxClamped     = MIN2(iaLimits.maxPrio,
3331                              cur_class == new_class
3332                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3333    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3334                                                       maxClamped, newPrio)
3335                               : newPrio;
3336    iaInfo->ia_uprilim = cur_class == new_class
3337                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3338    iaInfo->ia_mode    = IA_NOCHANGE;
3339    if (ThreadPriorityVerbose) {
3340      tty->print_cr("IA: [%d...%d] %d->%d\n",
3341                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3342    }
3343  } else if (new_class == tsLimits.schedPolicy) {
3344    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3345    int maxClamped     = MIN2(tsLimits.maxPrio,
3346                              cur_class == new_class
3347                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3348    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3349                                                       maxClamped, newPrio)
3350                               : newPrio;
3351    tsInfo->ts_uprilim = cur_class == new_class
3352                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3353    if (ThreadPriorityVerbose) {
3354      tty->print_cr("TS: [%d...%d] %d->%d\n",
3355                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3356    }
3357  } else if (new_class == fxLimits.schedPolicy) {
3358    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3359    int maxClamped     = MIN2(fxLimits.maxPrio,
3360                              cur_class == new_class
3361                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3362    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3363                                                       maxClamped, newPrio)
3364                               : newPrio;
3365    fxInfo->fx_uprilim = cur_class == new_class
3366                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3367    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3368    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3369    if (ThreadPriorityVerbose) {
3370      tty->print_cr("FX: [%d...%d] %d->%d\n",
3371                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3372    }
3373  } else {
3374    if (ThreadPriorityVerbose) {
3375      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3376    }
3377    return EINVAL;    // no clue, punt
3378  }
3379
3380  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3381  if (ThreadPriorityVerbose && rslt) {
3382    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3383  }
3384  if (rslt < 0) return errno;
3385
3386#ifdef ASSERT
3387  // Sanity check: read back what we just attempted to set.
3388  // In theory it could have changed in the interim ...
3389  //
3390  // The priocntl system call is tricky.
3391  // Sometimes it'll validate the priority value argument and
3392  // return EINVAL if unhappy.  At other times it fails silently.
3393  // Readbacks are prudent.
3394
3395  if (!ReadBackValidate) return 0;
3396
3397  memset(&ReadBack, 0, sizeof(pcparms_t));
3398  ReadBack.pc_cid = PC_CLNULL;
3399  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3400  assert(rslt >= 0, "priocntl failed");
3401  Actual = Expected = 0xBAD;
3402  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3403  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3404    Actual   = RTPRI(ReadBack)->rt_pri;
3405    Expected = RTPRI(ParmInfo)->rt_pri;
3406  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3407    Actual   = IAPRI(ReadBack)->ia_upri;
3408    Expected = IAPRI(ParmInfo)->ia_upri;
3409  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3410    Actual   = TSPRI(ReadBack)->ts_upri;
3411    Expected = TSPRI(ParmInfo)->ts_upri;
3412  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3413    Actual   = FXPRI(ReadBack)->fx_upri;
3414    Expected = FXPRI(ParmInfo)->fx_upri;
3415  } else {
3416    if (ThreadPriorityVerbose) {
3417      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3418                    ParmInfo.pc_cid);
3419    }
3420  }
3421
3422  if (Actual != Expected) {
3423    if (ThreadPriorityVerbose) {
3424      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3425                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3426    }
3427  }
3428#endif
3429
3430  return 0;
3431}
3432
3433// Solaris only gives access to 128 real priorities at a time,
3434// so we expand Java's ten to fill this range.  This would be better
3435// if we dynamically adjusted relative priorities.
3436//
3437// The ThreadPriorityPolicy option allows us to select 2 different
3438// priority scales.
3439//
3440// ThreadPriorityPolicy=0
3441// Since the Solaris' default priority is MaximumPriority, we do not
3442// set a priority lower than Max unless a priority lower than
3443// NormPriority is requested.
3444//
3445// ThreadPriorityPolicy=1
3446// This mode causes the priority table to get filled with
3447// linear values.  NormPriority get's mapped to 50% of the
3448// Maximum priority an so on.  This will cause VM threads
3449// to get unfair treatment against other Solaris processes
3450// which do not explicitly alter their thread priorities.
3451
3452int os::java_to_os_priority[CriticalPriority + 1] = {
3453  -99999,         // 0 Entry should never be used
3454
3455  0,              // 1 MinPriority
3456  32,             // 2
3457  64,             // 3
3458
3459  96,             // 4
3460  127,            // 5 NormPriority
3461  127,            // 6
3462
3463  127,            // 7
3464  127,            // 8
3465  127,            // 9 NearMaxPriority
3466
3467  127,            // 10 MaxPriority
3468
3469  -criticalPrio   // 11 CriticalPriority
3470};
3471
3472OSReturn os::set_native_priority(Thread* thread, int newpri) {
3473  OSThread* osthread = thread->osthread();
3474
3475  // Save requested priority in case the thread hasn't been started
3476  osthread->set_native_priority(newpri);
3477
3478  // Check for critical priority request
3479  bool fxcritical = false;
3480  if (newpri == -criticalPrio) {
3481    fxcritical = true;
3482    newpri = criticalPrio;
3483  }
3484
3485  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3486  if (!UseThreadPriorities) return OS_OK;
3487
3488  int status = 0;
3489
3490  if (!fxcritical) {
3491    // Use thr_setprio only if we have a priority that thr_setprio understands
3492    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3493  }
3494
3495  int lwp_status =
3496          set_lwp_class_and_priority(osthread->thread_id(),
3497                                     osthread->lwp_id(),
3498                                     newpri,
3499                                     fxcritical ? fxLimits.schedPolicy : myClass,
3500                                     !fxcritical);
3501  if (lwp_status != 0 && fxcritical) {
3502    // Try again, this time without changing the scheduling class
3503    newpri = java_MaxPriority_to_os_priority;
3504    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3505                                            osthread->lwp_id(),
3506                                            newpri, myClass, false);
3507  }
3508  status |= lwp_status;
3509  return (status == 0) ? OS_OK : OS_ERR;
3510}
3511
3512
3513OSReturn os::get_native_priority(const Thread* const thread,
3514                                 int *priority_ptr) {
3515  int p;
3516  if (!UseThreadPriorities) {
3517    *priority_ptr = NormalPriority;
3518    return OS_OK;
3519  }
3520  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3521  if (status != 0) {
3522    return OS_ERR;
3523  }
3524  *priority_ptr = p;
3525  return OS_OK;
3526}
3527
3528
3529// Hint to the underlying OS that a task switch would not be good.
3530// Void return because it's a hint and can fail.
3531void os::hint_no_preempt() {
3532  schedctl_start(schedctl_init());
3533}
3534
3535static void resume_clear_context(OSThread *osthread) {
3536  osthread->set_ucontext(NULL);
3537}
3538
3539static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3540  osthread->set_ucontext(context);
3541}
3542
3543static PosixSemaphore sr_semaphore;
3544
3545void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3546  // Save and restore errno to avoid confusing native code with EINTR
3547  // after sigsuspend.
3548  int old_errno = errno;
3549
3550  OSThread* osthread = thread->osthread();
3551  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3552
3553  os::SuspendResume::State current = osthread->sr.state();
3554  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3555    suspend_save_context(osthread, uc);
3556
3557    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3558    os::SuspendResume::State state = osthread->sr.suspended();
3559    if (state == os::SuspendResume::SR_SUSPENDED) {
3560      sigset_t suspend_set;  // signals for sigsuspend()
3561
3562      // get current set of blocked signals and unblock resume signal
3563      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3564      sigdelset(&suspend_set, os::Solaris::SIGasync());
3565
3566      sr_semaphore.signal();
3567      // wait here until we are resumed
3568      while (1) {
3569        sigsuspend(&suspend_set);
3570
3571        os::SuspendResume::State result = osthread->sr.running();
3572        if (result == os::SuspendResume::SR_RUNNING) {
3573          sr_semaphore.signal();
3574          break;
3575        }
3576      }
3577
3578    } else if (state == os::SuspendResume::SR_RUNNING) {
3579      // request was cancelled, continue
3580    } else {
3581      ShouldNotReachHere();
3582    }
3583
3584    resume_clear_context(osthread);
3585  } else if (current == os::SuspendResume::SR_RUNNING) {
3586    // request was cancelled, continue
3587  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3588    // ignore
3589  } else {
3590    // ignore
3591  }
3592
3593  errno = old_errno;
3594}
3595
3596void os::print_statistics() {
3597}
3598
3599bool os::message_box(const char* title, const char* message) {
3600  int i;
3601  fdStream err(defaultStream::error_fd());
3602  for (i = 0; i < 78; i++) err.print_raw("=");
3603  err.cr();
3604  err.print_raw_cr(title);
3605  for (i = 0; i < 78; i++) err.print_raw("-");
3606  err.cr();
3607  err.print_raw_cr(message);
3608  for (i = 0; i < 78; i++) err.print_raw("=");
3609  err.cr();
3610
3611  char buf[16];
3612  // Prevent process from exiting upon "read error" without consuming all CPU
3613  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3614
3615  return buf[0] == 'y' || buf[0] == 'Y';
3616}
3617
3618static int sr_notify(OSThread* osthread) {
3619  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3620  assert_status(status == 0, status, "thr_kill");
3621  return status;
3622}
3623
3624// "Randomly" selected value for how long we want to spin
3625// before bailing out on suspending a thread, also how often
3626// we send a signal to a thread we want to resume
3627static const int RANDOMLY_LARGE_INTEGER = 1000000;
3628static const int RANDOMLY_LARGE_INTEGER2 = 100;
3629
3630static bool do_suspend(OSThread* osthread) {
3631  assert(osthread->sr.is_running(), "thread should be running");
3632  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3633
3634  // mark as suspended and send signal
3635  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3636    // failed to switch, state wasn't running?
3637    ShouldNotReachHere();
3638    return false;
3639  }
3640
3641  if (sr_notify(osthread) != 0) {
3642    ShouldNotReachHere();
3643  }
3644
3645  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3646  while (true) {
3647    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3648      break;
3649    } else {
3650      // timeout
3651      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3652      if (cancelled == os::SuspendResume::SR_RUNNING) {
3653        return false;
3654      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3655        // make sure that we consume the signal on the semaphore as well
3656        sr_semaphore.wait();
3657        break;
3658      } else {
3659        ShouldNotReachHere();
3660        return false;
3661      }
3662    }
3663  }
3664
3665  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3666  return true;
3667}
3668
3669static void do_resume(OSThread* osthread) {
3670  assert(osthread->sr.is_suspended(), "thread should be suspended");
3671  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3672
3673  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3674    // failed to switch to WAKEUP_REQUEST
3675    ShouldNotReachHere();
3676    return;
3677  }
3678
3679  while (true) {
3680    if (sr_notify(osthread) == 0) {
3681      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3682        if (osthread->sr.is_running()) {
3683          return;
3684        }
3685      }
3686    } else {
3687      ShouldNotReachHere();
3688    }
3689  }
3690
3691  guarantee(osthread->sr.is_running(), "Must be running!");
3692}
3693
3694void os::SuspendedThreadTask::internal_do_task() {
3695  if (do_suspend(_thread->osthread())) {
3696    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3697    do_task(context);
3698    do_resume(_thread->osthread());
3699  }
3700}
3701
3702class PcFetcher : public os::SuspendedThreadTask {
3703 public:
3704  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3705  ExtendedPC result();
3706 protected:
3707  void do_task(const os::SuspendedThreadTaskContext& context);
3708 private:
3709  ExtendedPC _epc;
3710};
3711
3712ExtendedPC PcFetcher::result() {
3713  guarantee(is_done(), "task is not done yet.");
3714  return _epc;
3715}
3716
3717void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3718  Thread* thread = context.thread();
3719  OSThread* osthread = thread->osthread();
3720  if (osthread->ucontext() != NULL) {
3721    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3722  } else {
3723    // NULL context is unexpected, double-check this is the VMThread
3724    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3725  }
3726}
3727
3728// A lightweight implementation that does not suspend the target thread and
3729// thus returns only a hint. Used for profiling only!
3730ExtendedPC os::get_thread_pc(Thread* thread) {
3731  // Make sure that it is called by the watcher and the Threads lock is owned.
3732  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3733  // For now, is only used to profile the VM Thread
3734  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3735  PcFetcher fetcher(thread);
3736  fetcher.run();
3737  return fetcher.result();
3738}
3739
3740
3741// This does not do anything on Solaris. This is basically a hook for being
3742// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3743void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3744                              const methodHandle& method, JavaCallArguments* args,
3745                              Thread* thread) {
3746  f(value, method, args, thread);
3747}
3748
3749// This routine may be used by user applications as a "hook" to catch signals.
3750// The user-defined signal handler must pass unrecognized signals to this
3751// routine, and if it returns true (non-zero), then the signal handler must
3752// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3753// routine will never retun false (zero), but instead will execute a VM panic
3754// routine kill the process.
3755//
3756// If this routine returns false, it is OK to call it again.  This allows
3757// the user-defined signal handler to perform checks either before or after
3758// the VM performs its own checks.  Naturally, the user code would be making
3759// a serious error if it tried to handle an exception (such as a null check
3760// or breakpoint) that the VM was generating for its own correct operation.
3761//
3762// This routine may recognize any of the following kinds of signals:
3763// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3764// os::Solaris::SIGasync
3765// It should be consulted by handlers for any of those signals.
3766//
3767// The caller of this routine must pass in the three arguments supplied
3768// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3769// field of the structure passed to sigaction().  This routine assumes that
3770// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3771//
3772// Note that the VM will print warnings if it detects conflicting signal
3773// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3774//
3775extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3776                                                   siginfo_t* siginfo,
3777                                                   void* ucontext,
3778                                                   int abort_if_unrecognized);
3779
3780
3781void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3782  int orig_errno = errno;  // Preserve errno value over signal handler.
3783  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3784  errno = orig_errno;
3785}
3786
3787// This boolean allows users to forward their own non-matching signals
3788// to JVM_handle_solaris_signal, harmlessly.
3789bool os::Solaris::signal_handlers_are_installed = false;
3790
3791// For signal-chaining
3792bool os::Solaris::libjsig_is_loaded = false;
3793typedef struct sigaction *(*get_signal_t)(int);
3794get_signal_t os::Solaris::get_signal_action = NULL;
3795
3796struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3797  struct sigaction *actp = NULL;
3798
3799  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3800    // Retrieve the old signal handler from libjsig
3801    actp = (*get_signal_action)(sig);
3802  }
3803  if (actp == NULL) {
3804    // Retrieve the preinstalled signal handler from jvm
3805    actp = get_preinstalled_handler(sig);
3806  }
3807
3808  return actp;
3809}
3810
3811static bool call_chained_handler(struct sigaction *actp, int sig,
3812                                 siginfo_t *siginfo, void *context) {
3813  // Call the old signal handler
3814  if (actp->sa_handler == SIG_DFL) {
3815    // It's more reasonable to let jvm treat it as an unexpected exception
3816    // instead of taking the default action.
3817    return false;
3818  } else if (actp->sa_handler != SIG_IGN) {
3819    if ((actp->sa_flags & SA_NODEFER) == 0) {
3820      // automaticlly block the signal
3821      sigaddset(&(actp->sa_mask), sig);
3822    }
3823
3824    sa_handler_t hand;
3825    sa_sigaction_t sa;
3826    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3827    // retrieve the chained handler
3828    if (siginfo_flag_set) {
3829      sa = actp->sa_sigaction;
3830    } else {
3831      hand = actp->sa_handler;
3832    }
3833
3834    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3835      actp->sa_handler = SIG_DFL;
3836    }
3837
3838    // try to honor the signal mask
3839    sigset_t oset;
3840    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3841
3842    // call into the chained handler
3843    if (siginfo_flag_set) {
3844      (*sa)(sig, siginfo, context);
3845    } else {
3846      (*hand)(sig);
3847    }
3848
3849    // restore the signal mask
3850    pthread_sigmask(SIG_SETMASK, &oset, 0);
3851  }
3852  // Tell jvm's signal handler the signal is taken care of.
3853  return true;
3854}
3855
3856bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3857  bool chained = false;
3858  // signal-chaining
3859  if (UseSignalChaining) {
3860    struct sigaction *actp = get_chained_signal_action(sig);
3861    if (actp != NULL) {
3862      chained = call_chained_handler(actp, sig, siginfo, context);
3863    }
3864  }
3865  return chained;
3866}
3867
3868struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3869  assert((chainedsigactions != (struct sigaction *)NULL) &&
3870         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3871  if (preinstalled_sigs[sig] != 0) {
3872    return &chainedsigactions[sig];
3873  }
3874  return NULL;
3875}
3876
3877void os::Solaris::save_preinstalled_handler(int sig,
3878                                            struct sigaction& oldAct) {
3879  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3880  assert((chainedsigactions != (struct sigaction *)NULL) &&
3881         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3882  chainedsigactions[sig] = oldAct;
3883  preinstalled_sigs[sig] = 1;
3884}
3885
3886void os::Solaris::set_signal_handler(int sig, bool set_installed,
3887                                     bool oktochain) {
3888  // Check for overwrite.
3889  struct sigaction oldAct;
3890  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3891  void* oldhand =
3892      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3893                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3894  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3895      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3896      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3897    if (AllowUserSignalHandlers || !set_installed) {
3898      // Do not overwrite; user takes responsibility to forward to us.
3899      return;
3900    } else if (UseSignalChaining) {
3901      if (oktochain) {
3902        // save the old handler in jvm
3903        save_preinstalled_handler(sig, oldAct);
3904      } else {
3905        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3906      }
3907      // libjsig also interposes the sigaction() call below and saves the
3908      // old sigaction on it own.
3909    } else {
3910      fatal("Encountered unexpected pre-existing sigaction handler "
3911            "%#lx for signal %d.", (long)oldhand, sig);
3912    }
3913  }
3914
3915  struct sigaction sigAct;
3916  sigfillset(&(sigAct.sa_mask));
3917  sigAct.sa_handler = SIG_DFL;
3918
3919  sigAct.sa_sigaction = signalHandler;
3920  // Handle SIGSEGV on alternate signal stack if
3921  // not using stack banging
3922  if (!UseStackBanging && sig == SIGSEGV) {
3923    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3924  } else {
3925    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3926  }
3927  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3928
3929  sigaction(sig, &sigAct, &oldAct);
3930
3931  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3932                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3933  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3934}
3935
3936
3937#define DO_SIGNAL_CHECK(sig)                      \
3938  do {                                            \
3939    if (!sigismember(&check_signal_done, sig)) {  \
3940      os::Solaris::check_signal_handler(sig);     \
3941    }                                             \
3942  } while (0)
3943
3944// This method is a periodic task to check for misbehaving JNI applications
3945// under CheckJNI, we can add any periodic checks here
3946
3947void os::run_periodic_checks() {
3948  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3949  // thereby preventing a NULL checks.
3950  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3951
3952  if (check_signals == false) return;
3953
3954  // SEGV and BUS if overridden could potentially prevent
3955  // generation of hs*.log in the event of a crash, debugging
3956  // such a case can be very challenging, so we absolutely
3957  // check for the following for a good measure:
3958  DO_SIGNAL_CHECK(SIGSEGV);
3959  DO_SIGNAL_CHECK(SIGILL);
3960  DO_SIGNAL_CHECK(SIGFPE);
3961  DO_SIGNAL_CHECK(SIGBUS);
3962  DO_SIGNAL_CHECK(SIGPIPE);
3963  DO_SIGNAL_CHECK(SIGXFSZ);
3964
3965  // ReduceSignalUsage allows the user to override these handlers
3966  // see comments at the very top and jvm_solaris.h
3967  if (!ReduceSignalUsage) {
3968    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3969    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3970    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3971    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3972  }
3973
3974  // See comments above for using JVM1/JVM2
3975  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3976
3977}
3978
3979typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3980
3981static os_sigaction_t os_sigaction = NULL;
3982
3983void os::Solaris::check_signal_handler(int sig) {
3984  char buf[O_BUFLEN];
3985  address jvmHandler = NULL;
3986
3987  struct sigaction act;
3988  if (os_sigaction == NULL) {
3989    // only trust the default sigaction, in case it has been interposed
3990    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3991    if (os_sigaction == NULL) return;
3992  }
3993
3994  os_sigaction(sig, (struct sigaction*)NULL, &act);
3995
3996  address thisHandler = (act.sa_flags & SA_SIGINFO)
3997    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3998    : CAST_FROM_FN_PTR(address, act.sa_handler);
3999
4000
4001  switch (sig) {
4002  case SIGSEGV:
4003  case SIGBUS:
4004  case SIGFPE:
4005  case SIGPIPE:
4006  case SIGXFSZ:
4007  case SIGILL:
4008    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4009    break;
4010
4011  case SHUTDOWN1_SIGNAL:
4012  case SHUTDOWN2_SIGNAL:
4013  case SHUTDOWN3_SIGNAL:
4014  case BREAK_SIGNAL:
4015    jvmHandler = (address)user_handler();
4016    break;
4017
4018  default:
4019    int asynsig = os::Solaris::SIGasync();
4020
4021    if (sig == asynsig) {
4022      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4023    } else {
4024      return;
4025    }
4026    break;
4027  }
4028
4029
4030  if (thisHandler != jvmHandler) {
4031    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4032    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4033    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4034    // No need to check this sig any longer
4035    sigaddset(&check_signal_done, sig);
4036    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4037    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4038      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4039                    exception_name(sig, buf, O_BUFLEN));
4040    }
4041  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4042    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4043    tty->print("expected:");
4044    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4045    tty->cr();
4046    tty->print("  found:");
4047    os::Posix::print_sa_flags(tty, act.sa_flags);
4048    tty->cr();
4049    // No need to check this sig any longer
4050    sigaddset(&check_signal_done, sig);
4051  }
4052
4053  // Print all the signal handler state
4054  if (sigismember(&check_signal_done, sig)) {
4055    print_signal_handlers(tty, buf, O_BUFLEN);
4056  }
4057
4058}
4059
4060void os::Solaris::install_signal_handlers() {
4061  bool libjsigdone = false;
4062  signal_handlers_are_installed = true;
4063
4064  // signal-chaining
4065  typedef void (*signal_setting_t)();
4066  signal_setting_t begin_signal_setting = NULL;
4067  signal_setting_t end_signal_setting = NULL;
4068  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4069                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4070  if (begin_signal_setting != NULL) {
4071    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4072                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4073    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4074                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4075    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4076                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4077    libjsig_is_loaded = true;
4078    if (os::Solaris::get_libjsig_version != NULL) {
4079      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4080    }
4081    assert(UseSignalChaining, "should enable signal-chaining");
4082  }
4083  if (libjsig_is_loaded) {
4084    // Tell libjsig jvm is setting signal handlers
4085    (*begin_signal_setting)();
4086  }
4087
4088  set_signal_handler(SIGSEGV, true, true);
4089  set_signal_handler(SIGPIPE, true, true);
4090  set_signal_handler(SIGXFSZ, true, true);
4091  set_signal_handler(SIGBUS, true, true);
4092  set_signal_handler(SIGILL, true, true);
4093  set_signal_handler(SIGFPE, true, true);
4094
4095
4096  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4097    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4098    // can not register overridable signals which might be > 32
4099    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4100      // Tell libjsig jvm has finished setting signal handlers
4101      (*end_signal_setting)();
4102      libjsigdone = true;
4103    }
4104  }
4105
4106  set_signal_handler(os::Solaris::SIGasync(), true, true);
4107
4108  if (libjsig_is_loaded && !libjsigdone) {
4109    // Tell libjsig jvm finishes setting signal handlers
4110    (*end_signal_setting)();
4111  }
4112
4113  // We don't activate signal checker if libjsig is in place, we trust ourselves
4114  // and if UserSignalHandler is installed all bets are off.
4115  // Log that signal checking is off only if -verbose:jni is specified.
4116  if (CheckJNICalls) {
4117    if (libjsig_is_loaded) {
4118      if (PrintJNIResolving) {
4119        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4120      }
4121      check_signals = false;
4122    }
4123    if (AllowUserSignalHandlers) {
4124      if (PrintJNIResolving) {
4125        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4126      }
4127      check_signals = false;
4128    }
4129  }
4130}
4131
4132
4133void report_error(const char* file_name, int line_no, const char* title,
4134                  const char* format, ...);
4135
4136// (Static) wrappers for the liblgrp API
4137os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4138os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4139os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4140os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4141os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4142os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4143os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4144os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4145os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4146
4147static address resolve_symbol_lazy(const char* name) {
4148  address addr = (address) dlsym(RTLD_DEFAULT, name);
4149  if (addr == NULL) {
4150    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4151    addr = (address) dlsym(RTLD_NEXT, name);
4152  }
4153  return addr;
4154}
4155
4156static address resolve_symbol(const char* name) {
4157  address addr = resolve_symbol_lazy(name);
4158  if (addr == NULL) {
4159    fatal(dlerror());
4160  }
4161  return addr;
4162}
4163
4164void os::Solaris::libthread_init() {
4165  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4166
4167  lwp_priocntl_init();
4168
4169  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4170  if (func == NULL) {
4171    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4172    // Guarantee that this VM is running on an new enough OS (5.6 or
4173    // later) that it will have a new enough libthread.so.
4174    guarantee(func != NULL, "libthread.so is too old.");
4175  }
4176
4177  int size;
4178  void (*handler_info_func)(address *, int *);
4179  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4180  handler_info_func(&handler_start, &size);
4181  handler_end = handler_start + size;
4182}
4183
4184
4185int_fnP_mutex_tP os::Solaris::_mutex_lock;
4186int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4187int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4188int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4189int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4190int os::Solaris::_mutex_scope = USYNC_THREAD;
4191
4192int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4193int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4194int_fnP_cond_tP os::Solaris::_cond_signal;
4195int_fnP_cond_tP os::Solaris::_cond_broadcast;
4196int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4197int_fnP_cond_tP os::Solaris::_cond_destroy;
4198int os::Solaris::_cond_scope = USYNC_THREAD;
4199
4200void os::Solaris::synchronization_init() {
4201  if (UseLWPSynchronization) {
4202    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4203    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4204    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4205    os::Solaris::set_mutex_init(lwp_mutex_init);
4206    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4207    os::Solaris::set_mutex_scope(USYNC_THREAD);
4208
4209    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4210    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4211    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4212    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4213    os::Solaris::set_cond_init(lwp_cond_init);
4214    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4215    os::Solaris::set_cond_scope(USYNC_THREAD);
4216  } else {
4217    os::Solaris::set_mutex_scope(USYNC_THREAD);
4218    os::Solaris::set_cond_scope(USYNC_THREAD);
4219
4220    if (UsePthreads) {
4221      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4222      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4223      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4224      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4225      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4226
4227      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4228      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4229      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4230      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4231      os::Solaris::set_cond_init(pthread_cond_default_init);
4232      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4233    } else {
4234      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4235      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4236      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4237      os::Solaris::set_mutex_init(::mutex_init);
4238      os::Solaris::set_mutex_destroy(::mutex_destroy);
4239
4240      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4241      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4242      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4243      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4244      os::Solaris::set_cond_init(::cond_init);
4245      os::Solaris::set_cond_destroy(::cond_destroy);
4246    }
4247  }
4248}
4249
4250bool os::Solaris::liblgrp_init() {
4251  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4252  if (handle != NULL) {
4253    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4254    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4255    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4256    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4257    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4258    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4259    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4260    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4261                                                      dlsym(handle, "lgrp_cookie_stale")));
4262
4263    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4264    set_lgrp_cookie(c);
4265    return true;
4266  }
4267  return false;
4268}
4269
4270// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4271typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4272static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4273
4274void init_pset_getloadavg_ptr(void) {
4275  pset_getloadavg_ptr =
4276    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4277  if (pset_getloadavg_ptr == NULL) {
4278    log_warning(os)("pset_getloadavg function not found");
4279  }
4280}
4281
4282int os::Solaris::_dev_zero_fd = -1;
4283
4284// this is called _before_ the global arguments have been parsed
4285void os::init(void) {
4286  _initial_pid = getpid();
4287
4288  max_hrtime = first_hrtime = gethrtime();
4289
4290  init_random(1234567);
4291
4292  page_size = sysconf(_SC_PAGESIZE);
4293  if (page_size == -1) {
4294    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4295  }
4296  init_page_sizes((size_t) page_size);
4297
4298  Solaris::initialize_system_info();
4299
4300  int fd = ::open("/dev/zero", O_RDWR);
4301  if (fd < 0) {
4302    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4303  } else {
4304    Solaris::set_dev_zero_fd(fd);
4305
4306    // Close on exec, child won't inherit.
4307    fcntl(fd, F_SETFD, FD_CLOEXEC);
4308  }
4309
4310  clock_tics_per_sec = CLK_TCK;
4311
4312  // check if dladdr1() exists; dladdr1 can provide more information than
4313  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4314  // and is available on linker patches for 5.7 and 5.8.
4315  // libdl.so must have been loaded, this call is just an entry lookup
4316  void * hdl = dlopen("libdl.so", RTLD_NOW);
4317  if (hdl) {
4318    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4319  }
4320
4321  // (Solaris only) this switches to calls that actually do locking.
4322  ThreadCritical::initialize();
4323
4324  main_thread = thr_self();
4325
4326  // Constant minimum stack size allowed. It must be at least
4327  // the minimum of what the OS supports (thr_min_stack()), and
4328  // enough to allow the thread to get to user bytecode execution.
4329  Posix::_compiler_thread_min_stack_allowed = MAX2(thr_min_stack(),
4330                                                   Posix::_compiler_thread_min_stack_allowed);
4331  Posix::_java_thread_min_stack_allowed = MAX2(thr_min_stack(),
4332                                               Posix::_java_thread_min_stack_allowed);
4333  Posix::_vm_internal_thread_min_stack_allowed = MAX2(thr_min_stack(),
4334                                                      Posix::_vm_internal_thread_min_stack_allowed);
4335
4336  // dynamic lookup of functions that may not be available in our lowest
4337  // supported Solaris release
4338  void * handle = dlopen("libc.so.1", RTLD_LAZY);
4339  if (handle != NULL) {
4340    Solaris::_pthread_setname_np =  // from 11.3
4341        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4342  }
4343}
4344
4345// To install functions for atexit system call
4346extern "C" {
4347  static void perfMemory_exit_helper() {
4348    perfMemory_exit();
4349  }
4350}
4351
4352// this is called _after_ the global arguments have been parsed
4353jint os::init_2(void) {
4354  // try to enable extended file IO ASAP, see 6431278
4355  os::Solaris::try_enable_extended_io();
4356
4357  // Allocate a single page and mark it as readable for safepoint polling.  Also
4358  // use this first mmap call to check support for MAP_ALIGN.
4359  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4360                                                      page_size,
4361                                                      MAP_PRIVATE | MAP_ALIGN,
4362                                                      PROT_READ);
4363  if (polling_page == NULL) {
4364    has_map_align = false;
4365    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4366                                                PROT_READ);
4367  }
4368
4369  os::set_polling_page(polling_page);
4370  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4371
4372  if (!UseMembar) {
4373    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4374    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4375    os::set_memory_serialize_page(mem_serialize_page);
4376    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4377  }
4378
4379  // Check and sets minimum stack sizes against command line options
4380  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4381    return JNI_ERR;
4382  }
4383
4384  Solaris::libthread_init();
4385
4386  if (UseNUMA) {
4387    if (!Solaris::liblgrp_init()) {
4388      UseNUMA = false;
4389    } else {
4390      size_t lgrp_limit = os::numa_get_groups_num();
4391      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4392      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4393      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4394      if (lgrp_num < 2) {
4395        // There's only one locality group, disable NUMA.
4396        UseNUMA = false;
4397      }
4398    }
4399    if (!UseNUMA && ForceNUMA) {
4400      UseNUMA = true;
4401    }
4402  }
4403
4404  Solaris::signal_sets_init();
4405  Solaris::init_signal_mem();
4406  Solaris::install_signal_handlers();
4407
4408  if (libjsigversion < JSIG_VERSION_1_4_1) {
4409    Maxlibjsigsigs = OLDMAXSIGNUM;
4410  }
4411
4412  // initialize synchronization primitives to use either thread or
4413  // lwp synchronization (controlled by UseLWPSynchronization)
4414  Solaris::synchronization_init();
4415
4416  if (MaxFDLimit) {
4417    // set the number of file descriptors to max. print out error
4418    // if getrlimit/setrlimit fails but continue regardless.
4419    struct rlimit nbr_files;
4420    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4421    if (status != 0) {
4422      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4423    } else {
4424      nbr_files.rlim_cur = nbr_files.rlim_max;
4425      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4426      if (status != 0) {
4427        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4428      }
4429    }
4430  }
4431
4432  // Calculate theoretical max. size of Threads to guard gainst
4433  // artifical out-of-memory situations, where all available address-
4434  // space has been reserved by thread stacks. Default stack size is 1Mb.
4435  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4436    JavaThread::stack_size_at_create() : (1*K*K);
4437  assert(pre_thread_stack_size != 0, "Must have a stack");
4438  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4439  // we should start doing Virtual Memory banging. Currently when the threads will
4440  // have used all but 200Mb of space.
4441  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4442  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4443
4444  // at-exit methods are called in the reverse order of their registration.
4445  // In Solaris 7 and earlier, atexit functions are called on return from
4446  // main or as a result of a call to exit(3C). There can be only 32 of
4447  // these functions registered and atexit() does not set errno. In Solaris
4448  // 8 and later, there is no limit to the number of functions registered
4449  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4450  // functions are called upon dlclose(3DL) in addition to return from main
4451  // and exit(3C).
4452
4453  if (PerfAllowAtExitRegistration) {
4454    // only register atexit functions if PerfAllowAtExitRegistration is set.
4455    // atexit functions can be delayed until process exit time, which
4456    // can be problematic for embedded VM situations. Embedded VMs should
4457    // call DestroyJavaVM() to assure that VM resources are released.
4458
4459    // note: perfMemory_exit_helper atexit function may be removed in
4460    // the future if the appropriate cleanup code can be added to the
4461    // VM_Exit VMOperation's doit method.
4462    if (atexit(perfMemory_exit_helper) != 0) {
4463      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4464    }
4465  }
4466
4467  // Init pset_loadavg function pointer
4468  init_pset_getloadavg_ptr();
4469
4470  return JNI_OK;
4471}
4472
4473// Mark the polling page as unreadable
4474void os::make_polling_page_unreadable(void) {
4475  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4476    fatal("Could not disable polling page");
4477  }
4478}
4479
4480// Mark the polling page as readable
4481void os::make_polling_page_readable(void) {
4482  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4483    fatal("Could not enable polling page");
4484  }
4485}
4486
4487// Is a (classpath) directory empty?
4488bool os::dir_is_empty(const char* path) {
4489  DIR *dir = NULL;
4490  struct dirent *ptr;
4491
4492  dir = opendir(path);
4493  if (dir == NULL) return true;
4494
4495  // Scan the directory
4496  bool result = true;
4497  char buf[sizeof(struct dirent) + MAX_PATH];
4498  struct dirent *dbuf = (struct dirent *) buf;
4499  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4500    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4501      result = false;
4502    }
4503  }
4504  closedir(dir);
4505  return result;
4506}
4507
4508// This code originates from JDK's sysOpen and open64_w
4509// from src/solaris/hpi/src/system_md.c
4510
4511int os::open(const char *path, int oflag, int mode) {
4512  if (strlen(path) > MAX_PATH - 1) {
4513    errno = ENAMETOOLONG;
4514    return -1;
4515  }
4516  int fd;
4517
4518  fd = ::open64(path, oflag, mode);
4519  if (fd == -1) return -1;
4520
4521  // If the open succeeded, the file might still be a directory
4522  {
4523    struct stat64 buf64;
4524    int ret = ::fstat64(fd, &buf64);
4525    int st_mode = buf64.st_mode;
4526
4527    if (ret != -1) {
4528      if ((st_mode & S_IFMT) == S_IFDIR) {
4529        errno = EISDIR;
4530        ::close(fd);
4531        return -1;
4532      }
4533    } else {
4534      ::close(fd);
4535      return -1;
4536    }
4537  }
4538
4539  // 32-bit Solaris systems suffer from:
4540  //
4541  // - an historical default soft limit of 256 per-process file
4542  //   descriptors that is too low for many Java programs.
4543  //
4544  // - a design flaw where file descriptors created using stdio
4545  //   fopen must be less than 256, _even_ when the first limit above
4546  //   has been raised.  This can cause calls to fopen (but not calls to
4547  //   open, for example) to fail mysteriously, perhaps in 3rd party
4548  //   native code (although the JDK itself uses fopen).  One can hardly
4549  //   criticize them for using this most standard of all functions.
4550  //
4551  // We attempt to make everything work anyways by:
4552  //
4553  // - raising the soft limit on per-process file descriptors beyond
4554  //   256
4555  //
4556  // - As of Solaris 10u4, we can request that Solaris raise the 256
4557  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4558  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4559  //
4560  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4561  //   workaround the bug by remapping non-stdio file descriptors below
4562  //   256 to ones beyond 256, which is done below.
4563  //
4564  // See:
4565  // 1085341: 32-bit stdio routines should support file descriptors >255
4566  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4567  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4568  //          enable_extended_FILE_stdio() in VM initialisation
4569  // Giri Mandalika's blog
4570  // http://technopark02.blogspot.com/2005_05_01_archive.html
4571  //
4572#ifndef  _LP64
4573  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4574    int newfd = ::fcntl(fd, F_DUPFD, 256);
4575    if (newfd != -1) {
4576      ::close(fd);
4577      fd = newfd;
4578    }
4579  }
4580#endif // 32-bit Solaris
4581
4582  // All file descriptors that are opened in the JVM and not
4583  // specifically destined for a subprocess should have the
4584  // close-on-exec flag set.  If we don't set it, then careless 3rd
4585  // party native code might fork and exec without closing all
4586  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4587  // UNIXProcess.c), and this in turn might:
4588  //
4589  // - cause end-of-file to fail to be detected on some file
4590  //   descriptors, resulting in mysterious hangs, or
4591  //
4592  // - might cause an fopen in the subprocess to fail on a system
4593  //   suffering from bug 1085341.
4594  //
4595  // (Yes, the default setting of the close-on-exec flag is a Unix
4596  // design flaw)
4597  //
4598  // See:
4599  // 1085341: 32-bit stdio routines should support file descriptors >255
4600  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4601  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4602  //
4603#ifdef FD_CLOEXEC
4604  {
4605    int flags = ::fcntl(fd, F_GETFD);
4606    if (flags != -1) {
4607      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4608    }
4609  }
4610#endif
4611
4612  return fd;
4613}
4614
4615// create binary file, rewriting existing file if required
4616int os::create_binary_file(const char* path, bool rewrite_existing) {
4617  int oflags = O_WRONLY | O_CREAT;
4618  if (!rewrite_existing) {
4619    oflags |= O_EXCL;
4620  }
4621  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4622}
4623
4624// return current position of file pointer
4625jlong os::current_file_offset(int fd) {
4626  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4627}
4628
4629// move file pointer to the specified offset
4630jlong os::seek_to_file_offset(int fd, jlong offset) {
4631  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4632}
4633
4634jlong os::lseek(int fd, jlong offset, int whence) {
4635  return (jlong) ::lseek64(fd, offset, whence);
4636}
4637
4638char * os::native_path(char *path) {
4639  return path;
4640}
4641
4642int os::ftruncate(int fd, jlong length) {
4643  return ::ftruncate64(fd, length);
4644}
4645
4646int os::fsync(int fd)  {
4647  RESTARTABLE_RETURN_INT(::fsync(fd));
4648}
4649
4650int os::available(int fd, jlong *bytes) {
4651  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4652         "Assumed _thread_in_native");
4653  jlong cur, end;
4654  int mode;
4655  struct stat64 buf64;
4656
4657  if (::fstat64(fd, &buf64) >= 0) {
4658    mode = buf64.st_mode;
4659    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4660      int n,ioctl_return;
4661
4662      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4663      if (ioctl_return>= 0) {
4664        *bytes = n;
4665        return 1;
4666      }
4667    }
4668  }
4669  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4670    return 0;
4671  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4672    return 0;
4673  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4674    return 0;
4675  }
4676  *bytes = end - cur;
4677  return 1;
4678}
4679
4680// Map a block of memory.
4681char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4682                        char *addr, size_t bytes, bool read_only,
4683                        bool allow_exec) {
4684  int prot;
4685  int flags;
4686
4687  if (read_only) {
4688    prot = PROT_READ;
4689    flags = MAP_SHARED;
4690  } else {
4691    prot = PROT_READ | PROT_WRITE;
4692    flags = MAP_PRIVATE;
4693  }
4694
4695  if (allow_exec) {
4696    prot |= PROT_EXEC;
4697  }
4698
4699  if (addr != NULL) {
4700    flags |= MAP_FIXED;
4701  }
4702
4703  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4704                                     fd, file_offset);
4705  if (mapped_address == MAP_FAILED) {
4706    return NULL;
4707  }
4708  return mapped_address;
4709}
4710
4711
4712// Remap a block of memory.
4713char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4714                          char *addr, size_t bytes, bool read_only,
4715                          bool allow_exec) {
4716  // same as map_memory() on this OS
4717  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4718                        allow_exec);
4719}
4720
4721
4722// Unmap a block of memory.
4723bool os::pd_unmap_memory(char* addr, size_t bytes) {
4724  return munmap(addr, bytes) == 0;
4725}
4726
4727void os::pause() {
4728  char filename[MAX_PATH];
4729  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4730    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4731  } else {
4732    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4733  }
4734
4735  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4736  if (fd != -1) {
4737    struct stat buf;
4738    ::close(fd);
4739    while (::stat(filename, &buf) == 0) {
4740      (void)::poll(NULL, 0, 100);
4741    }
4742  } else {
4743    jio_fprintf(stderr,
4744                "Could not open pause file '%s', continuing immediately.\n", filename);
4745  }
4746}
4747
4748#ifndef PRODUCT
4749#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4750// Turn this on if you need to trace synch operations.
4751// Set RECORD_SYNCH_LIMIT to a large-enough value,
4752// and call record_synch_enable and record_synch_disable
4753// around the computation of interest.
4754
4755void record_synch(char* name, bool returning);  // defined below
4756
4757class RecordSynch {
4758  char* _name;
4759 public:
4760  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4761  ~RecordSynch()                       { record_synch(_name, true); }
4762};
4763
4764#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4765extern "C" ret name params {                                    \
4766  typedef ret name##_t params;                                  \
4767  static name##_t* implem = NULL;                               \
4768  static int callcount = 0;                                     \
4769  if (implem == NULL) {                                         \
4770    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4771    if (implem == NULL)  fatal(dlerror());                      \
4772  }                                                             \
4773  ++callcount;                                                  \
4774  RecordSynch _rs(#name);                                       \
4775  inner;                                                        \
4776  return implem args;                                           \
4777}
4778// in dbx, examine callcounts this way:
4779// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4780
4781#define CHECK_POINTER_OK(p) \
4782  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4783#define CHECK_MU \
4784  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4785#define CHECK_CV \
4786  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4787#define CHECK_P(p) \
4788  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4789
4790#define CHECK_MUTEX(mutex_op) \
4791  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4792
4793CHECK_MUTEX(   mutex_lock)
4794CHECK_MUTEX(  _mutex_lock)
4795CHECK_MUTEX( mutex_unlock)
4796CHECK_MUTEX(_mutex_unlock)
4797CHECK_MUTEX( mutex_trylock)
4798CHECK_MUTEX(_mutex_trylock)
4799
4800#define CHECK_COND(cond_op) \
4801  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4802
4803CHECK_COND( cond_wait);
4804CHECK_COND(_cond_wait);
4805CHECK_COND(_cond_wait_cancel);
4806
4807#define CHECK_COND2(cond_op) \
4808  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4809
4810CHECK_COND2( cond_timedwait);
4811CHECK_COND2(_cond_timedwait);
4812CHECK_COND2(_cond_timedwait_cancel);
4813
4814// do the _lwp_* versions too
4815#define mutex_t lwp_mutex_t
4816#define cond_t  lwp_cond_t
4817CHECK_MUTEX(  _lwp_mutex_lock)
4818CHECK_MUTEX(  _lwp_mutex_unlock)
4819CHECK_MUTEX(  _lwp_mutex_trylock)
4820CHECK_MUTEX( __lwp_mutex_lock)
4821CHECK_MUTEX( __lwp_mutex_unlock)
4822CHECK_MUTEX( __lwp_mutex_trylock)
4823CHECK_MUTEX(___lwp_mutex_lock)
4824CHECK_MUTEX(___lwp_mutex_unlock)
4825
4826CHECK_COND(  _lwp_cond_wait);
4827CHECK_COND( __lwp_cond_wait);
4828CHECK_COND(___lwp_cond_wait);
4829
4830CHECK_COND2(  _lwp_cond_timedwait);
4831CHECK_COND2( __lwp_cond_timedwait);
4832#undef mutex_t
4833#undef cond_t
4834
4835CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4836CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4837CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4838CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4839CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4840CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4841CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4842CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4843
4844
4845// recording machinery:
4846
4847enum { RECORD_SYNCH_LIMIT = 200 };
4848char* record_synch_name[RECORD_SYNCH_LIMIT];
4849void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4850bool record_synch_returning[RECORD_SYNCH_LIMIT];
4851thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4852int record_synch_count = 0;
4853bool record_synch_enabled = false;
4854
4855// in dbx, examine recorded data this way:
4856// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4857
4858void record_synch(char* name, bool returning) {
4859  if (record_synch_enabled) {
4860    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4861      record_synch_name[record_synch_count] = name;
4862      record_synch_returning[record_synch_count] = returning;
4863      record_synch_thread[record_synch_count] = thr_self();
4864      record_synch_arg0ptr[record_synch_count] = &name;
4865      record_synch_count++;
4866    }
4867    // put more checking code here:
4868    // ...
4869  }
4870}
4871
4872void record_synch_enable() {
4873  // start collecting trace data, if not already doing so
4874  if (!record_synch_enabled)  record_synch_count = 0;
4875  record_synch_enabled = true;
4876}
4877
4878void record_synch_disable() {
4879  // stop collecting trace data
4880  record_synch_enabled = false;
4881}
4882
4883#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4884#endif // PRODUCT
4885
4886const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4887const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4888                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4889
4890
4891// JVMTI & JVM monitoring and management support
4892// The thread_cpu_time() and current_thread_cpu_time() are only
4893// supported if is_thread_cpu_time_supported() returns true.
4894// They are not supported on Solaris T1.
4895
4896// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4897// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4898// of a thread.
4899//
4900// current_thread_cpu_time() and thread_cpu_time(Thread *)
4901// returns the fast estimate available on the platform.
4902
4903// hrtime_t gethrvtime() return value includes
4904// user time but does not include system time
4905jlong os::current_thread_cpu_time() {
4906  return (jlong) gethrvtime();
4907}
4908
4909jlong os::thread_cpu_time(Thread *thread) {
4910  // return user level CPU time only to be consistent with
4911  // what current_thread_cpu_time returns.
4912  // thread_cpu_time_info() must be changed if this changes
4913  return os::thread_cpu_time(thread, false /* user time only */);
4914}
4915
4916jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4917  if (user_sys_cpu_time) {
4918    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4919  } else {
4920    return os::current_thread_cpu_time();
4921  }
4922}
4923
4924jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4925  char proc_name[64];
4926  int count;
4927  prusage_t prusage;
4928  jlong lwp_time;
4929  int fd;
4930
4931  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4932          getpid(),
4933          thread->osthread()->lwp_id());
4934  fd = ::open(proc_name, O_RDONLY);
4935  if (fd == -1) return -1;
4936
4937  do {
4938    count = ::pread(fd,
4939                    (void *)&prusage.pr_utime,
4940                    thr_time_size,
4941                    thr_time_off);
4942  } while (count < 0 && errno == EINTR);
4943  ::close(fd);
4944  if (count < 0) return -1;
4945
4946  if (user_sys_cpu_time) {
4947    // user + system CPU time
4948    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4949                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4950                 (jlong)prusage.pr_stime.tv_nsec +
4951                 (jlong)prusage.pr_utime.tv_nsec;
4952  } else {
4953    // user level CPU time only
4954    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4955                (jlong)prusage.pr_utime.tv_nsec;
4956  }
4957
4958  return (lwp_time);
4959}
4960
4961void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4962  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4963  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4964  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4965  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4966}
4967
4968void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4969  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4970  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4971  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4972  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4973}
4974
4975bool os::is_thread_cpu_time_supported() {
4976  return true;
4977}
4978
4979// System loadavg support.  Returns -1 if load average cannot be obtained.
4980// Return the load average for our processor set if the primitive exists
4981// (Solaris 9 and later).  Otherwise just return system wide loadavg.
4982int os::loadavg(double loadavg[], int nelem) {
4983  if (pset_getloadavg_ptr != NULL) {
4984    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4985  } else {
4986    return ::getloadavg(loadavg, nelem);
4987  }
4988}
4989
4990//---------------------------------------------------------------------------------
4991
4992bool os::find(address addr, outputStream* st) {
4993  Dl_info dlinfo;
4994  memset(&dlinfo, 0, sizeof(dlinfo));
4995  if (dladdr(addr, &dlinfo) != 0) {
4996    st->print(PTR_FORMAT ": ", addr);
4997    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4998      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4999    } else if (dlinfo.dli_fbase != NULL) {
5000      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5001    } else {
5002      st->print("<absolute address>");
5003    }
5004    if (dlinfo.dli_fname != NULL) {
5005      st->print(" in %s", dlinfo.dli_fname);
5006    }
5007    if (dlinfo.dli_fbase != NULL) {
5008      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5009    }
5010    st->cr();
5011
5012    if (Verbose) {
5013      // decode some bytes around the PC
5014      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5015      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5016      address       lowest = (address) dlinfo.dli_sname;
5017      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5018      if (begin < lowest)  begin = lowest;
5019      Dl_info dlinfo2;
5020      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5021          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5022        end = (address) dlinfo2.dli_saddr;
5023      }
5024      Disassembler::decode(begin, end, st);
5025    }
5026    return true;
5027  }
5028  return false;
5029}
5030
5031// Following function has been added to support HotSparc's libjvm.so running
5032// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5033// src/solaris/hpi/native_threads in the EVM codebase.
5034//
5035// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5036// libraries and should thus be removed. We will leave it behind for a while
5037// until we no longer want to able to run on top of 1.3.0 Solaris production
5038// JDK. See 4341971.
5039
5040#define STACK_SLACK 0x800
5041
5042extern "C" {
5043  intptr_t sysThreadAvailableStackWithSlack() {
5044    stack_t st;
5045    intptr_t retval, stack_top;
5046    retval = thr_stksegment(&st);
5047    assert(retval == 0, "incorrect return value from thr_stksegment");
5048    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5049    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5050    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5051    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5052  }
5053}
5054
5055// ObjectMonitor park-unpark infrastructure ...
5056//
5057// We implement Solaris and Linux PlatformEvents with the
5058// obvious condvar-mutex-flag triple.
5059// Another alternative that works quite well is pipes:
5060// Each PlatformEvent consists of a pipe-pair.
5061// The thread associated with the PlatformEvent
5062// calls park(), which reads from the input end of the pipe.
5063// Unpark() writes into the other end of the pipe.
5064// The write-side of the pipe must be set NDELAY.
5065// Unfortunately pipes consume a large # of handles.
5066// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5067// Using pipes for the 1st few threads might be workable, however.
5068//
5069// park() is permitted to return spuriously.
5070// Callers of park() should wrap the call to park() in
5071// an appropriate loop.  A litmus test for the correct
5072// usage of park is the following: if park() were modified
5073// to immediately return 0 your code should still work,
5074// albeit degenerating to a spin loop.
5075//
5076// In a sense, park()-unpark() just provides more polite spinning
5077// and polling with the key difference over naive spinning being
5078// that a parked thread needs to be explicitly unparked() in order
5079// to wake up and to poll the underlying condition.
5080//
5081// Assumption:
5082//    Only one parker can exist on an event, which is why we allocate
5083//    them per-thread. Multiple unparkers can coexist.
5084//
5085// _Event transitions in park()
5086//   -1 => -1 : illegal
5087//    1 =>  0 : pass - return immediately
5088//    0 => -1 : block; then set _Event to 0 before returning
5089//
5090// _Event transitions in unpark()
5091//    0 => 1 : just return
5092//    1 => 1 : just return
5093//   -1 => either 0 or 1; must signal target thread
5094//         That is, we can safely transition _Event from -1 to either
5095//         0 or 1.
5096//
5097// _Event serves as a restricted-range semaphore.
5098//   -1 : thread is blocked, i.e. there is a waiter
5099//    0 : neutral: thread is running or ready,
5100//        could have been signaled after a wait started
5101//    1 : signaled - thread is running or ready
5102//
5103// Another possible encoding of _Event would be with
5104// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5105//
5106// TODO-FIXME: add DTRACE probes for:
5107// 1.   Tx parks
5108// 2.   Ty unparks Tx
5109// 3.   Tx resumes from park
5110
5111
5112// value determined through experimentation
5113#define ROUNDINGFIX 11
5114
5115// utility to compute the abstime argument to timedwait.
5116// TODO-FIXME: switch from compute_abstime() to unpackTime().
5117
5118static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5119  // millis is the relative timeout time
5120  // abstime will be the absolute timeout time
5121  if (millis < 0)  millis = 0;
5122  struct timeval now;
5123  int status = gettimeofday(&now, NULL);
5124  assert(status == 0, "gettimeofday");
5125  jlong seconds = millis / 1000;
5126  jlong max_wait_period;
5127
5128  if (UseLWPSynchronization) {
5129    // forward port of fix for 4275818 (not sleeping long enough)
5130    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5131    // _lwp_cond_timedwait() used a round_down algorithm rather
5132    // than a round_up. For millis less than our roundfactor
5133    // it rounded down to 0 which doesn't meet the spec.
5134    // For millis > roundfactor we may return a bit sooner, but
5135    // since we can not accurately identify the patch level and
5136    // this has already been fixed in Solaris 9 and 8 we will
5137    // leave it alone rather than always rounding down.
5138
5139    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5140    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5141    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5142    max_wait_period = 21000000;
5143  } else {
5144    max_wait_period = 50000000;
5145  }
5146  millis %= 1000;
5147  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5148    seconds = max_wait_period;
5149  }
5150  abstime->tv_sec = now.tv_sec  + seconds;
5151  long       usec = now.tv_usec + millis * 1000;
5152  if (usec >= 1000000) {
5153    abstime->tv_sec += 1;
5154    usec -= 1000000;
5155  }
5156  abstime->tv_nsec = usec * 1000;
5157  return abstime;
5158}
5159
5160void os::PlatformEvent::park() {           // AKA: down()
5161  // Transitions for _Event:
5162  //   -1 => -1 : illegal
5163  //    1 =>  0 : pass - return immediately
5164  //    0 => -1 : block; then set _Event to 0 before returning
5165
5166  // Invariant: Only the thread associated with the Event/PlatformEvent
5167  // may call park().
5168  assert(_nParked == 0, "invariant");
5169
5170  int v;
5171  for (;;) {
5172    v = _Event;
5173    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5174  }
5175  guarantee(v >= 0, "invariant");
5176  if (v == 0) {
5177    // Do this the hard way by blocking ...
5178    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5179    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5180    // Only for SPARC >= V8PlusA
5181#if defined(__sparc) && defined(COMPILER2)
5182    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5183#endif
5184    int status = os::Solaris::mutex_lock(_mutex);
5185    assert_status(status == 0, status, "mutex_lock");
5186    guarantee(_nParked == 0, "invariant");
5187    ++_nParked;
5188    while (_Event < 0) {
5189      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5190      // Treat this the same as if the wait was interrupted
5191      // With usr/lib/lwp going to kernel, always handle ETIME
5192      status = os::Solaris::cond_wait(_cond, _mutex);
5193      if (status == ETIME) status = EINTR;
5194      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5195    }
5196    --_nParked;
5197    _Event = 0;
5198    status = os::Solaris::mutex_unlock(_mutex);
5199    assert_status(status == 0, status, "mutex_unlock");
5200    // Paranoia to ensure our locked and lock-free paths interact
5201    // correctly with each other.
5202    OrderAccess::fence();
5203  }
5204}
5205
5206int os::PlatformEvent::park(jlong millis) {
5207  // Transitions for _Event:
5208  //   -1 => -1 : illegal
5209  //    1 =>  0 : pass - return immediately
5210  //    0 => -1 : block; then set _Event to 0 before returning
5211
5212  guarantee(_nParked == 0, "invariant");
5213  int v;
5214  for (;;) {
5215    v = _Event;
5216    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5217  }
5218  guarantee(v >= 0, "invariant");
5219  if (v != 0) return OS_OK;
5220
5221  int ret = OS_TIMEOUT;
5222  timestruc_t abst;
5223  compute_abstime(&abst, millis);
5224
5225  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5226  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5227  // Only for SPARC >= V8PlusA
5228#if defined(__sparc) && defined(COMPILER2)
5229  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5230#endif
5231  int status = os::Solaris::mutex_lock(_mutex);
5232  assert_status(status == 0, status, "mutex_lock");
5233  guarantee(_nParked == 0, "invariant");
5234  ++_nParked;
5235  while (_Event < 0) {
5236    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5237    assert_status(status == 0 || status == EINTR ||
5238                  status == ETIME || status == ETIMEDOUT,
5239                  status, "cond_timedwait");
5240    if (!FilterSpuriousWakeups) break;                // previous semantics
5241    if (status == ETIME || status == ETIMEDOUT) break;
5242    // We consume and ignore EINTR and spurious wakeups.
5243  }
5244  --_nParked;
5245  if (_Event >= 0) ret = OS_OK;
5246  _Event = 0;
5247  status = os::Solaris::mutex_unlock(_mutex);
5248  assert_status(status == 0, status, "mutex_unlock");
5249  // Paranoia to ensure our locked and lock-free paths interact
5250  // correctly with each other.
5251  OrderAccess::fence();
5252  return ret;
5253}
5254
5255void os::PlatformEvent::unpark() {
5256  // Transitions for _Event:
5257  //    0 => 1 : just return
5258  //    1 => 1 : just return
5259  //   -1 => either 0 or 1; must signal target thread
5260  //         That is, we can safely transition _Event from -1 to either
5261  //         0 or 1.
5262  // See also: "Semaphores in Plan 9" by Mullender & Cox
5263  //
5264  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5265  // that it will take two back-to-back park() calls for the owning
5266  // thread to block. This has the benefit of forcing a spurious return
5267  // from the first park() call after an unpark() call which will help
5268  // shake out uses of park() and unpark() without condition variables.
5269
5270  if (Atomic::xchg(1, &_Event) >= 0) return;
5271
5272  // If the thread associated with the event was parked, wake it.
5273  // Wait for the thread assoc with the PlatformEvent to vacate.
5274  int status = os::Solaris::mutex_lock(_mutex);
5275  assert_status(status == 0, status, "mutex_lock");
5276  int AnyWaiters = _nParked;
5277  status = os::Solaris::mutex_unlock(_mutex);
5278  assert_status(status == 0, status, "mutex_unlock");
5279  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5280  if (AnyWaiters != 0) {
5281    // Note that we signal() *after* dropping the lock for "immortal" Events.
5282    // This is safe and avoids a common class of  futile wakeups.  In rare
5283    // circumstances this can cause a thread to return prematurely from
5284    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5285    // will simply re-test the condition and re-park itself.
5286    // This provides particular benefit if the underlying platform does not
5287    // provide wait morphing.
5288    status = os::Solaris::cond_signal(_cond);
5289    assert_status(status == 0, status, "cond_signal");
5290  }
5291}
5292
5293// JSR166
5294// -------------------------------------------------------
5295
5296// The solaris and linux implementations of park/unpark are fairly
5297// conservative for now, but can be improved. They currently use a
5298// mutex/condvar pair, plus _counter.
5299// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5300// sets count to 1 and signals condvar.  Only one thread ever waits
5301// on the condvar. Contention seen when trying to park implies that someone
5302// is unparking you, so don't wait. And spurious returns are fine, so there
5303// is no need to track notifications.
5304
5305#define MAX_SECS 100000000
5306
5307// This code is common to linux and solaris and will be moved to a
5308// common place in dolphin.
5309//
5310// The passed in time value is either a relative time in nanoseconds
5311// or an absolute time in milliseconds. Either way it has to be unpacked
5312// into suitable seconds and nanoseconds components and stored in the
5313// given timespec structure.
5314// Given time is a 64-bit value and the time_t used in the timespec is only
5315// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5316// overflow if times way in the future are given. Further on Solaris versions
5317// prior to 10 there is a restriction (see cond_timedwait) that the specified
5318// number of seconds, in abstime, is less than current_time  + 100,000,000.
5319// As it will be 28 years before "now + 100000000" will overflow we can
5320// ignore overflow and just impose a hard-limit on seconds using the value
5321// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5322// years from "now".
5323//
5324static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5325  assert(time > 0, "convertTime");
5326
5327  struct timeval now;
5328  int status = gettimeofday(&now, NULL);
5329  assert(status == 0, "gettimeofday");
5330
5331  time_t max_secs = now.tv_sec + MAX_SECS;
5332
5333  if (isAbsolute) {
5334    jlong secs = time / 1000;
5335    if (secs > max_secs) {
5336      absTime->tv_sec = max_secs;
5337    } else {
5338      absTime->tv_sec = secs;
5339    }
5340    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5341  } else {
5342    jlong secs = time / NANOSECS_PER_SEC;
5343    if (secs >= MAX_SECS) {
5344      absTime->tv_sec = max_secs;
5345      absTime->tv_nsec = 0;
5346    } else {
5347      absTime->tv_sec = now.tv_sec + secs;
5348      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5349      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5350        absTime->tv_nsec -= NANOSECS_PER_SEC;
5351        ++absTime->tv_sec; // note: this must be <= max_secs
5352      }
5353    }
5354  }
5355  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5356  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5357  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5358  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5359}
5360
5361void Parker::park(bool isAbsolute, jlong time) {
5362  // Ideally we'd do something useful while spinning, such
5363  // as calling unpackTime().
5364
5365  // Optional fast-path check:
5366  // Return immediately if a permit is available.
5367  // We depend on Atomic::xchg() having full barrier semantics
5368  // since we are doing a lock-free update to _counter.
5369  if (Atomic::xchg(0, &_counter) > 0) return;
5370
5371  // Optional fast-exit: Check interrupt before trying to wait
5372  Thread* thread = Thread::current();
5373  assert(thread->is_Java_thread(), "Must be JavaThread");
5374  JavaThread *jt = (JavaThread *)thread;
5375  if (Thread::is_interrupted(thread, false)) {
5376    return;
5377  }
5378
5379  // First, demultiplex/decode time arguments
5380  timespec absTime;
5381  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5382    return;
5383  }
5384  if (time > 0) {
5385    // Warning: this code might be exposed to the old Solaris time
5386    // round-down bugs.  Grep "roundingFix" for details.
5387    unpackTime(&absTime, isAbsolute, time);
5388  }
5389
5390  // Enter safepoint region
5391  // Beware of deadlocks such as 6317397.
5392  // The per-thread Parker:: _mutex is a classic leaf-lock.
5393  // In particular a thread must never block on the Threads_lock while
5394  // holding the Parker:: mutex.  If safepoints are pending both the
5395  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5396  ThreadBlockInVM tbivm(jt);
5397
5398  // Don't wait if cannot get lock since interference arises from
5399  // unblocking.  Also. check interrupt before trying wait
5400  if (Thread::is_interrupted(thread, false) ||
5401      os::Solaris::mutex_trylock(_mutex) != 0) {
5402    return;
5403  }
5404
5405  int status;
5406
5407  if (_counter > 0)  { // no wait needed
5408    _counter = 0;
5409    status = os::Solaris::mutex_unlock(_mutex);
5410    assert(status == 0, "invariant");
5411    // Paranoia to ensure our locked and lock-free paths interact
5412    // correctly with each other and Java-level accesses.
5413    OrderAccess::fence();
5414    return;
5415  }
5416
5417#ifdef ASSERT
5418  // Don't catch signals while blocked; let the running threads have the signals.
5419  // (This allows a debugger to break into the running thread.)
5420  sigset_t oldsigs;
5421  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5422  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5423#endif
5424
5425  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5426  jt->set_suspend_equivalent();
5427  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5428
5429  // Do this the hard way by blocking ...
5430  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5431  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5432  // Only for SPARC >= V8PlusA
5433#if defined(__sparc) && defined(COMPILER2)
5434  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5435#endif
5436
5437  if (time == 0) {
5438    status = os::Solaris::cond_wait(_cond, _mutex);
5439  } else {
5440    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5441  }
5442  // Note that an untimed cond_wait() can sometimes return ETIME on older
5443  // versions of the Solaris.
5444  assert_status(status == 0 || status == EINTR ||
5445                status == ETIME || status == ETIMEDOUT,
5446                status, "cond_timedwait");
5447
5448#ifdef ASSERT
5449  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5450#endif
5451  _counter = 0;
5452  status = os::Solaris::mutex_unlock(_mutex);
5453  assert_status(status == 0, status, "mutex_unlock");
5454  // Paranoia to ensure our locked and lock-free paths interact
5455  // correctly with each other and Java-level accesses.
5456  OrderAccess::fence();
5457
5458  // If externally suspended while waiting, re-suspend
5459  if (jt->handle_special_suspend_equivalent_condition()) {
5460    jt->java_suspend_self();
5461  }
5462}
5463
5464void Parker::unpark() {
5465  int status = os::Solaris::mutex_lock(_mutex);
5466  assert(status == 0, "invariant");
5467  const int s = _counter;
5468  _counter = 1;
5469  status = os::Solaris::mutex_unlock(_mutex);
5470  assert(status == 0, "invariant");
5471
5472  if (s < 1) {
5473    status = os::Solaris::cond_signal(_cond);
5474    assert(status == 0, "invariant");
5475  }
5476}
5477
5478extern char** environ;
5479
5480// Run the specified command in a separate process. Return its exit value,
5481// or -1 on failure (e.g. can't fork a new process).
5482// Unlike system(), this function can be called from signal handler. It
5483// doesn't block SIGINT et al.
5484int os::fork_and_exec(char* cmd) {
5485  char * argv[4];
5486  argv[0] = (char *)"sh";
5487  argv[1] = (char *)"-c";
5488  argv[2] = cmd;
5489  argv[3] = NULL;
5490
5491  // fork is async-safe, fork1 is not so can't use in signal handler
5492  pid_t pid;
5493  Thread* t = Thread::current_or_null_safe();
5494  if (t != NULL && t->is_inside_signal_handler()) {
5495    pid = fork();
5496  } else {
5497    pid = fork1();
5498  }
5499
5500  if (pid < 0) {
5501    // fork failed
5502    warning("fork failed: %s", os::strerror(errno));
5503    return -1;
5504
5505  } else if (pid == 0) {
5506    // child process
5507
5508    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5509    execve("/usr/bin/sh", argv, environ);
5510
5511    // execve failed
5512    _exit(-1);
5513
5514  } else  {
5515    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5516    // care about the actual exit code, for now.
5517
5518    int status;
5519
5520    // Wait for the child process to exit.  This returns immediately if
5521    // the child has already exited. */
5522    while (waitpid(pid, &status, 0) < 0) {
5523      switch (errno) {
5524      case ECHILD: return 0;
5525      case EINTR: break;
5526      default: return -1;
5527      }
5528    }
5529
5530    if (WIFEXITED(status)) {
5531      // The child exited normally; get its exit code.
5532      return WEXITSTATUS(status);
5533    } else if (WIFSIGNALED(status)) {
5534      // The child exited because of a signal
5535      // The best value to return is 0x80 + signal number,
5536      // because that is what all Unix shells do, and because
5537      // it allows callers to distinguish between process exit and
5538      // process death by signal.
5539      return 0x80 + WTERMSIG(status);
5540    } else {
5541      // Unknown exit code; pass it through
5542      return status;
5543    }
5544  }
5545}
5546
5547// is_headless_jre()
5548//
5549// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5550// in order to report if we are running in a headless jre
5551//
5552// Since JDK8 xawt/libmawt.so was moved into the same directory
5553// as libawt.so, and renamed libawt_xawt.so
5554//
5555bool os::is_headless_jre() {
5556  struct stat statbuf;
5557  char buf[MAXPATHLEN];
5558  char libmawtpath[MAXPATHLEN];
5559  const char *xawtstr  = "/xawt/libmawt.so";
5560  const char *new_xawtstr = "/libawt_xawt.so";
5561  char *p;
5562
5563  // Get path to libjvm.so
5564  os::jvm_path(buf, sizeof(buf));
5565
5566  // Get rid of libjvm.so
5567  p = strrchr(buf, '/');
5568  if (p == NULL) {
5569    return false;
5570  } else {
5571    *p = '\0';
5572  }
5573
5574  // Get rid of client or server
5575  p = strrchr(buf, '/');
5576  if (p == NULL) {
5577    return false;
5578  } else {
5579    *p = '\0';
5580  }
5581
5582  // check xawt/libmawt.so
5583  strcpy(libmawtpath, buf);
5584  strcat(libmawtpath, xawtstr);
5585  if (::stat(libmawtpath, &statbuf) == 0) return false;
5586
5587  // check libawt_xawt.so
5588  strcpy(libmawtpath, buf);
5589  strcat(libmawtpath, new_xawtstr);
5590  if (::stat(libmawtpath, &statbuf) == 0) return false;
5591
5592  return true;
5593}
5594
5595size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5596  size_t res;
5597  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5598  return res;
5599}
5600
5601int os::close(int fd) {
5602  return ::close(fd);
5603}
5604
5605int os::socket_close(int fd) {
5606  return ::close(fd);
5607}
5608
5609int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5610  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5611         "Assumed _thread_in_native");
5612  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5613}
5614
5615int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5616  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5617         "Assumed _thread_in_native");
5618  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5619}
5620
5621int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5622  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5623}
5624
5625// As both poll and select can be interrupted by signals, we have to be
5626// prepared to restart the system call after updating the timeout, unless
5627// a poll() is done with timeout == -1, in which case we repeat with this
5628// "wait forever" value.
5629
5630int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5631  int _result;
5632  _result = ::connect(fd, him, len);
5633
5634  // On Solaris, when a connect() call is interrupted, the connection
5635  // can be established asynchronously (see 6343810). Subsequent calls
5636  // to connect() must check the errno value which has the semantic
5637  // described below (copied from the connect() man page). Handling
5638  // of asynchronously established connections is required for both
5639  // blocking and non-blocking sockets.
5640  //     EINTR            The  connection  attempt  was   interrupted
5641  //                      before  any data arrived by the delivery of
5642  //                      a signal. The connection, however, will  be
5643  //                      established asynchronously.
5644  //
5645  //     EINPROGRESS      The socket is non-blocking, and the connec-
5646  //                      tion  cannot  be completed immediately.
5647  //
5648  //     EALREADY         The socket is non-blocking,  and a previous
5649  //                      connection  attempt  has  not yet been com-
5650  //                      pleted.
5651  //
5652  //     EISCONN          The socket is already connected.
5653  if (_result == OS_ERR && errno == EINTR) {
5654    // restarting a connect() changes its errno semantics
5655    RESTARTABLE(::connect(fd, him, len), _result);
5656    // undo these changes
5657    if (_result == OS_ERR) {
5658      if (errno == EALREADY) {
5659        errno = EINPROGRESS; // fall through
5660      } else if (errno == EISCONN) {
5661        errno = 0;
5662        return OS_OK;
5663      }
5664    }
5665  }
5666  return _result;
5667}
5668
5669// Get the default path to the core file
5670// Returns the length of the string
5671int os::get_core_path(char* buffer, size_t bufferSize) {
5672  const char* p = get_current_directory(buffer, bufferSize);
5673
5674  if (p == NULL) {
5675    assert(p != NULL, "failed to get current directory");
5676    return 0;
5677  }
5678
5679  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5680                                              p, current_process_id());
5681
5682  return strlen(buffer);
5683}
5684
5685#ifndef PRODUCT
5686void TestReserveMemorySpecial_test() {
5687  // No tests available for this platform
5688}
5689#endif
5690
5691bool os::start_debugging(char *buf, int buflen) {
5692  int len = (int)strlen(buf);
5693  char *p = &buf[len];
5694
5695  jio_snprintf(p, buflen-len,
5696               "\n\n"
5697               "Do you want to debug the problem?\n\n"
5698               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5699               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5700               "Otherwise, press RETURN to abort...",
5701               os::current_process_id(), os::current_thread_id());
5702
5703  bool yes = os::message_box("Unexpected Error", buf);
5704
5705  if (yes) {
5706    // yes, user asked VM to launch debugger
5707    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5708
5709    os::fork_and_exec(buf);
5710    yes = false;
5711  }
5712  return yes;
5713}
5714