os_solaris.cpp revision 7260:9ccb94e5c153
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <dlfcn.h>
74# include <errno.h>
75# include <exception>
76# include <link.h>
77# include <poll.h>
78# include <pthread.h>
79# include <pwd.h>
80# include <schedctl.h>
81# include <setjmp.h>
82# include <signal.h>
83# include <stdio.h>
84# include <alloca.h>
85# include <sys/filio.h>
86# include <sys/ipc.h>
87# include <sys/lwp.h>
88# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
89# include <sys/mman.h>
90# include <sys/processor.h>
91# include <sys/procset.h>
92# include <sys/pset.h>
93# include <sys/resource.h>
94# include <sys/shm.h>
95# include <sys/socket.h>
96# include <sys/stat.h>
97# include <sys/systeminfo.h>
98# include <sys/time.h>
99# include <sys/times.h>
100# include <sys/types.h>
101# include <sys/wait.h>
102# include <sys/utsname.h>
103# include <thread.h>
104# include <unistd.h>
105# include <sys/priocntl.h>
106# include <sys/rtpriocntl.h>
107# include <sys/tspriocntl.h>
108# include <sys/iapriocntl.h>
109# include <sys/fxpriocntl.h>
110# include <sys/loadavg.h>
111# include <string.h>
112# include <stdio.h>
113
114# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
115# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
116
117#define MAX_PATH (2 * K)
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122
123// Here are some liblgrp types from sys/lgrp_user.h to be able to
124// compile on older systems without this header file.
125
126#ifndef MADV_ACCESS_LWP
127  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
128#endif
129#ifndef MADV_ACCESS_MANY
130  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
131#endif
132
133#ifndef LGRP_RSRC_CPU
134  #define LGRP_RSRC_CPU      0       /* CPU resources */
135#endif
136#ifndef LGRP_RSRC_MEM
137  #define LGRP_RSRC_MEM      1       /* memory resources */
138#endif
139
140// see thr_setprio(3T) for the basis of these numbers
141#define MinimumPriority 0
142#define NormalPriority  64
143#define MaximumPriority 127
144
145// Values for ThreadPriorityPolicy == 1
146int prio_policy1[CriticalPriority+1] = {
147  -99999,  0, 16,  32,  48,  64,
148          80, 96, 112, 124, 127, 127 };
149
150// System parameters used internally
151static clock_t clock_tics_per_sec = 100;
152
153// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
154static bool enabled_extended_FILE_stdio = false;
155
156// For diagnostics to print a message once. see run_periodic_checks
157static bool check_addr0_done = false;
158static sigset_t check_signal_done;
159static bool check_signals = true;
160
161address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
162address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
163
164address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
165
166
167// "default" initializers for missing libc APIs
168extern "C" {
169  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
170  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
171
172  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
173  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
174}
175
176// "default" initializers for pthread-based synchronization
177extern "C" {
178  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
179  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
180}
181
182static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
183
184// Thread Local Storage
185// This is common to all Solaris platforms so it is defined here,
186// in this common file.
187// The declarations are in the os_cpu threadLS*.hpp files.
188//
189// Static member initialization for TLS
190Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
191
192#ifndef PRODUCT
193  #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
194
195int ThreadLocalStorage::_tcacheHit = 0;
196int ThreadLocalStorage::_tcacheMiss = 0;
197
198void ThreadLocalStorage::print_statistics() {
199  int total = _tcacheMiss+_tcacheHit;
200  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
201                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
202}
203  #undef _PCT
204#endif // PRODUCT
205
206Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
207                                                        int index) {
208  Thread *thread = get_thread_slow();
209  if (thread != NULL) {
210    address sp = os::current_stack_pointer();
211    guarantee(thread->_stack_base == NULL ||
212              (sp <= thread->_stack_base &&
213              sp >= thread->_stack_base - thread->_stack_size) ||
214              is_error_reported(),
215              "sp must be inside of selected thread stack");
216
217    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
218    _get_thread_cache[index] = thread;
219  }
220  return thread;
221}
222
223
224static const double all_zero[sizeof(Thread) / sizeof(double) + 1] = {0};
225#define NO_CACHED_THREAD ((Thread*)all_zero)
226
227void ThreadLocalStorage::pd_set_thread(Thread* thread) {
228
229  // Store the new value before updating the cache to prevent a race
230  // between get_thread_via_cache_slowly() and this store operation.
231  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
232
233  // Update thread cache with new thread if setting on thread create,
234  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
235  uintptr_t raw = pd_raw_thread_id();
236  int ix = pd_cache_index(raw);
237  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
238}
239
240void ThreadLocalStorage::pd_init() {
241  for (int i = 0; i < _pd_cache_size; i++) {
242    _get_thread_cache[i] = NO_CACHED_THREAD;
243  }
244}
245
246// Invalidate all the caches (happens to be the same as pd_init).
247void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
248
249#undef NO_CACHED_THREAD
250
251// END Thread Local Storage
252
253static inline size_t adjust_stack_size(address base, size_t size) {
254  if ((ssize_t)size < 0) {
255    // 4759953: Compensate for ridiculous stack size.
256    size = max_intx;
257  }
258  if (size > (size_t)base) {
259    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
260    size = (size_t)base;
261  }
262  return size;
263}
264
265static inline stack_t get_stack_info() {
266  stack_t st;
267  int retval = thr_stksegment(&st);
268  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
269  assert(retval == 0, "incorrect return value from thr_stksegment");
270  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
271  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
272  return st;
273}
274
275address os::current_stack_base() {
276  int r = thr_main();
277  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
278  bool is_primordial_thread = r;
279
280  // Workaround 4352906, avoid calls to thr_stksegment by
281  // thr_main after the first one (it looks like we trash
282  // some data, causing the value for ss_sp to be incorrect).
283  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
284    stack_t st = get_stack_info();
285    if (is_primordial_thread) {
286      // cache initial value of stack base
287      os::Solaris::_main_stack_base = (address)st.ss_sp;
288    }
289    return (address)st.ss_sp;
290  } else {
291    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
292    return os::Solaris::_main_stack_base;
293  }
294}
295
296size_t os::current_stack_size() {
297  size_t size;
298
299  int r = thr_main();
300  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
301  if (!r) {
302    size = get_stack_info().ss_size;
303  } else {
304    struct rlimit limits;
305    getrlimit(RLIMIT_STACK, &limits);
306    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
307  }
308  // base may not be page aligned
309  address base = current_stack_base();
310  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
311  return (size_t)(base - bottom);
312}
313
314struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
315  return localtime_r(clock, res);
316}
317
318void os::Solaris::try_enable_extended_io() {
319  typedef int (*enable_extended_FILE_stdio_t)(int, int);
320
321  if (!UseExtendedFileIO) {
322    return;
323  }
324
325  enable_extended_FILE_stdio_t enabler =
326    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
327                                         "enable_extended_FILE_stdio");
328  if (enabler) {
329    enabler(-1, -1);
330  }
331}
332
333static int _processors_online = 0;
334
335jint os::Solaris::_os_thread_limit = 0;
336volatile jint os::Solaris::_os_thread_count = 0;
337
338julong os::available_memory() {
339  return Solaris::available_memory();
340}
341
342julong os::Solaris::available_memory() {
343  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
344}
345
346julong os::Solaris::_physical_memory = 0;
347
348julong os::physical_memory() {
349  return Solaris::physical_memory();
350}
351
352static hrtime_t first_hrtime = 0;
353static const hrtime_t hrtime_hz = 1000*1000*1000;
354static volatile hrtime_t max_hrtime = 0;
355
356
357void os::Solaris::initialize_system_info() {
358  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
359  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
360  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
361                                     (julong)sysconf(_SC_PAGESIZE);
362}
363
364int os::active_processor_count() {
365  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
366  pid_t pid = getpid();
367  psetid_t pset = PS_NONE;
368  // Are we running in a processor set or is there any processor set around?
369  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
370    uint_t pset_cpus;
371    // Query the number of cpus available to us.
372    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
373      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
374      _processors_online = pset_cpus;
375      return pset_cpus;
376    }
377  }
378  // Otherwise return number of online cpus
379  return online_cpus;
380}
381
382static bool find_processors_in_pset(psetid_t        pset,
383                                    processorid_t** id_array,
384                                    uint_t*         id_length) {
385  bool result = false;
386  // Find the number of processors in the processor set.
387  if (pset_info(pset, NULL, id_length, NULL) == 0) {
388    // Make up an array to hold their ids.
389    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
390    // Fill in the array with their processor ids.
391    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
392      result = true;
393    }
394  }
395  return result;
396}
397
398// Callers of find_processors_online() must tolerate imprecise results --
399// the system configuration can change asynchronously because of DR
400// or explicit psradm operations.
401//
402// We also need to take care that the loop (below) terminates as the
403// number of processors online can change between the _SC_NPROCESSORS_ONLN
404// request and the loop that builds the list of processor ids.   Unfortunately
405// there's no reliable way to determine the maximum valid processor id,
406// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
407// man pages, which claim the processor id set is "sparse, but
408// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
409// exit the loop.
410//
411// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
412// not available on S8.0.
413
414static bool find_processors_online(processorid_t** id_array,
415                                   uint*           id_length) {
416  const processorid_t MAX_PROCESSOR_ID = 100000;
417  // Find the number of processors online.
418  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
419  // Make up an array to hold their ids.
420  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
421  // Processors need not be numbered consecutively.
422  long found = 0;
423  processorid_t next = 0;
424  while (found < *id_length && next < MAX_PROCESSOR_ID) {
425    processor_info_t info;
426    if (processor_info(next, &info) == 0) {
427      // NB, PI_NOINTR processors are effectively online ...
428      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
429        (*id_array)[found] = next;
430        found += 1;
431      }
432    }
433    next += 1;
434  }
435  if (found < *id_length) {
436    // The loop above didn't identify the expected number of processors.
437    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
438    // and re-running the loop, above, but there's no guarantee of progress
439    // if the system configuration is in flux.  Instead, we just return what
440    // we've got.  Note that in the worst case find_processors_online() could
441    // return an empty set.  (As a fall-back in the case of the empty set we
442    // could just return the ID of the current processor).
443    *id_length = found;
444  }
445
446  return true;
447}
448
449static bool assign_distribution(processorid_t* id_array,
450                                uint           id_length,
451                                uint*          distribution,
452                                uint           distribution_length) {
453  // We assume we can assign processorid_t's to uint's.
454  assert(sizeof(processorid_t) == sizeof(uint),
455         "can't convert processorid_t to uint");
456  // Quick check to see if we won't succeed.
457  if (id_length < distribution_length) {
458    return false;
459  }
460  // Assign processor ids to the distribution.
461  // Try to shuffle processors to distribute work across boards,
462  // assuming 4 processors per board.
463  const uint processors_per_board = ProcessDistributionStride;
464  // Find the maximum processor id.
465  processorid_t max_id = 0;
466  for (uint m = 0; m < id_length; m += 1) {
467    max_id = MAX2(max_id, id_array[m]);
468  }
469  // The next id, to limit loops.
470  const processorid_t limit_id = max_id + 1;
471  // Make up markers for available processors.
472  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
473  for (uint c = 0; c < limit_id; c += 1) {
474    available_id[c] = false;
475  }
476  for (uint a = 0; a < id_length; a += 1) {
477    available_id[id_array[a]] = true;
478  }
479  // Step by "boards", then by "slot", copying to "assigned".
480  // NEEDS_CLEANUP: The assignment of processors should be stateful,
481  //                remembering which processors have been assigned by
482  //                previous calls, etc., so as to distribute several
483  //                independent calls of this method.  What we'd like is
484  //                It would be nice to have an API that let us ask
485  //                how many processes are bound to a processor,
486  //                but we don't have that, either.
487  //                In the short term, "board" is static so that
488  //                subsequent distributions don't all start at board 0.
489  static uint board = 0;
490  uint assigned = 0;
491  // Until we've found enough processors ....
492  while (assigned < distribution_length) {
493    // ... find the next available processor in the board.
494    for (uint slot = 0; slot < processors_per_board; slot += 1) {
495      uint try_id = board * processors_per_board + slot;
496      if ((try_id < limit_id) && (available_id[try_id] == true)) {
497        distribution[assigned] = try_id;
498        available_id[try_id] = false;
499        assigned += 1;
500        break;
501      }
502    }
503    board += 1;
504    if (board * processors_per_board + 0 >= limit_id) {
505      board = 0;
506    }
507  }
508  if (available_id != NULL) {
509    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
510  }
511  return true;
512}
513
514void os::set_native_thread_name(const char *name) {
515  // Not yet implemented.
516  return;
517}
518
519bool os::distribute_processes(uint length, uint* distribution) {
520  bool result = false;
521  // Find the processor id's of all the available CPUs.
522  processorid_t* id_array  = NULL;
523  uint           id_length = 0;
524  // There are some races between querying information and using it,
525  // since processor sets can change dynamically.
526  psetid_t pset = PS_NONE;
527  // Are we running in a processor set?
528  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
529    result = find_processors_in_pset(pset, &id_array, &id_length);
530  } else {
531    result = find_processors_online(&id_array, &id_length);
532  }
533  if (result == true) {
534    if (id_length >= length) {
535      result = assign_distribution(id_array, id_length, distribution, length);
536    } else {
537      result = false;
538    }
539  }
540  if (id_array != NULL) {
541    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
542  }
543  return result;
544}
545
546bool os::bind_to_processor(uint processor_id) {
547  // We assume that a processorid_t can be stored in a uint.
548  assert(sizeof(uint) == sizeof(processorid_t),
549         "can't convert uint to processorid_t");
550  int bind_result =
551    processor_bind(P_LWPID,                       // bind LWP.
552                   P_MYID,                        // bind current LWP.
553                   (processorid_t) processor_id,  // id.
554                   NULL);                         // don't return old binding.
555  return (bind_result == 0);
556}
557
558bool os::getenv(const char* name, char* buffer, int len) {
559  char* val = ::getenv(name);
560  if (val == NULL || strlen(val) + 1 > len) {
561    if (len > 0) buffer[0] = 0; // return a null string
562    return false;
563  }
564  strcpy(buffer, val);
565  return true;
566}
567
568
569// Return true if user is running as root.
570
571bool os::have_special_privileges() {
572  static bool init = false;
573  static bool privileges = false;
574  if (!init) {
575    privileges = (getuid() != geteuid()) || (getgid() != getegid());
576    init = true;
577  }
578  return privileges;
579}
580
581
582void os::init_system_properties_values() {
583  // The next steps are taken in the product version:
584  //
585  // Obtain the JAVA_HOME value from the location of libjvm.so.
586  // This library should be located at:
587  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
588  //
589  // If "/jre/lib/" appears at the right place in the path, then we
590  // assume libjvm.so is installed in a JDK and we use this path.
591  //
592  // Otherwise exit with message: "Could not create the Java virtual machine."
593  //
594  // The following extra steps are taken in the debugging version:
595  //
596  // If "/jre/lib/" does NOT appear at the right place in the path
597  // instead of exit check for $JAVA_HOME environment variable.
598  //
599  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
600  // then we append a fake suffix "hotspot/libjvm.so" to this path so
601  // it looks like libjvm.so is installed there
602  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
603  //
604  // Otherwise exit.
605  //
606  // Important note: if the location of libjvm.so changes this
607  // code needs to be changed accordingly.
608
609// Base path of extensions installed on the system.
610#define SYS_EXT_DIR     "/usr/jdk/packages"
611#define EXTENSIONS_DIR  "/lib/ext"
612#define ENDORSED_DIR    "/lib/endorsed"
613
614  char cpu_arch[12];
615  // Buffer that fits several sprintfs.
616  // Note that the space for the colon and the trailing null are provided
617  // by the nulls included by the sizeof operator.
618  const size_t bufsize =
619    MAX4((size_t)MAXPATHLEN,  // For dll_dir & friends.
620         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
621         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
622         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
623  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
624
625  // sysclasspath, java_home, dll_dir
626  {
627    char *pslash;
628    os::jvm_path(buf, bufsize);
629
630    // Found the full path to libjvm.so.
631    // Now cut the path to <java_home>/jre if we can.
632    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
633    pslash = strrchr(buf, '/');
634    if (pslash != NULL) {
635      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
636    }
637    Arguments::set_dll_dir(buf);
638
639    if (pslash != NULL) {
640      pslash = strrchr(buf, '/');
641      if (pslash != NULL) {
642        *pslash = '\0';          // Get rid of /<arch>.
643        pslash = strrchr(buf, '/');
644        if (pslash != NULL) {
645          *pslash = '\0';        // Get rid of /lib.
646        }
647      }
648    }
649    Arguments::set_java_home(buf);
650    set_boot_path('/', ':');
651  }
652
653  // Where to look for native libraries.
654  {
655    // Use dlinfo() to determine the correct java.library.path.
656    //
657    // If we're launched by the Java launcher, and the user
658    // does not set java.library.path explicitly on the commandline,
659    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
660    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
661    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
662    // /usr/lib), which is exactly what we want.
663    //
664    // If the user does set java.library.path, it completely
665    // overwrites this setting, and always has.
666    //
667    // If we're not launched by the Java launcher, we may
668    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
669    // settings.  Again, dlinfo does exactly what we want.
670
671    Dl_serinfo     info_sz, *info = &info_sz;
672    Dl_serpath     *path;
673    char           *library_path;
674    char           *common_path = buf;
675
676    // Determine search path count and required buffer size.
677    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
678      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
679      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
680    }
681
682    // Allocate new buffer and initialize.
683    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
684    info->dls_size = info_sz.dls_size;
685    info->dls_cnt = info_sz.dls_cnt;
686
687    // Obtain search path information.
688    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
689      FREE_C_HEAP_ARRAY(char, buf, mtInternal);
690      FREE_C_HEAP_ARRAY(char, info, mtInternal);
691      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
692    }
693
694    path = &info->dls_serpath[0];
695
696    // Note: Due to a legacy implementation, most of the library path
697    // is set in the launcher. This was to accomodate linking restrictions
698    // on legacy Solaris implementations (which are no longer supported).
699    // Eventually, all the library path setting will be done here.
700    //
701    // However, to prevent the proliferation of improperly built native
702    // libraries, the new path component /usr/jdk/packages is added here.
703
704    // Determine the actual CPU architecture.
705    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
706#ifdef _LP64
707    // If we are a 64-bit vm, perform the following translations:
708    //   sparc   -> sparcv9
709    //   i386    -> amd64
710    if (strcmp(cpu_arch, "sparc") == 0) {
711      strcat(cpu_arch, "v9");
712    } else if (strcmp(cpu_arch, "i386") == 0) {
713      strcpy(cpu_arch, "amd64");
714    }
715#endif
716
717    // Construct the invariant part of ld_library_path.
718    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
719
720    // Struct size is more than sufficient for the path components obtained
721    // through the dlinfo() call, so only add additional space for the path
722    // components explicitly added here.
723    size_t library_path_size = info->dls_size + strlen(common_path);
724    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
725    library_path[0] = '\0';
726
727    // Construct the desired Java library path from the linker's library
728    // search path.
729    //
730    // For compatibility, it is optimal that we insert the additional path
731    // components specific to the Java VM after those components specified
732    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
733    // infrastructure.
734    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
735      strcpy(library_path, common_path);
736    } else {
737      int inserted = 0;
738      int i;
739      for (i = 0; i < info->dls_cnt; i++, path++) {
740        uint_t flags = path->dls_flags & LA_SER_MASK;
741        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
742          strcat(library_path, common_path);
743          strcat(library_path, os::path_separator());
744          inserted = 1;
745        }
746        strcat(library_path, path->dls_name);
747        strcat(library_path, os::path_separator());
748      }
749      // Eliminate trailing path separator.
750      library_path[strlen(library_path)-1] = '\0';
751    }
752
753    // happens before argument parsing - can't use a trace flag
754    // tty->print_raw("init_system_properties_values: native lib path: ");
755    // tty->print_raw_cr(library_path);
756
757    // Callee copies into its own buffer.
758    Arguments::set_library_path(library_path);
759
760    FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
761    FREE_C_HEAP_ARRAY(char, info, mtInternal);
762  }
763
764  // Extensions directories.
765  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
766  Arguments::set_ext_dirs(buf);
767
768  // Endorsed standards default directory.
769  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
770  Arguments::set_endorsed_dirs(buf);
771
772  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
773
774#undef SYS_EXT_DIR
775#undef EXTENSIONS_DIR
776#undef ENDORSED_DIR
777}
778
779void os::breakpoint() {
780  BREAKPOINT;
781}
782
783bool os::obsolete_option(const JavaVMOption *option) {
784  if (!strncmp(option->optionString, "-Xt", 3)) {
785    return true;
786  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
787    return true;
788  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
789    return true;
790  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
791    return true;
792  }
793  return false;
794}
795
796bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
797  address  stackStart  = (address)thread->stack_base();
798  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
799  if (sp < stackStart && sp >= stackEnd) return true;
800  return false;
801}
802
803extern "C" void breakpoint() {
804  // use debugger to set breakpoint here
805}
806
807static thread_t main_thread;
808
809// Thread start routine for all new Java threads
810extern "C" void* java_start(void* thread_addr) {
811  // Try to randomize the cache line index of hot stack frames.
812  // This helps when threads of the same stack traces evict each other's
813  // cache lines. The threads can be either from the same JVM instance, or
814  // from different JVM instances. The benefit is especially true for
815  // processors with hyperthreading technology.
816  static int counter = 0;
817  int pid = os::current_process_id();
818  alloca(((pid ^ counter++) & 7) * 128);
819
820  int prio;
821  Thread* thread = (Thread*)thread_addr;
822  OSThread* osthr = thread->osthread();
823
824  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
825  thread->_schedctl = (void *) schedctl_init();
826
827  if (UseNUMA) {
828    int lgrp_id = os::numa_get_group_id();
829    if (lgrp_id != -1) {
830      thread->set_lgrp_id(lgrp_id);
831    }
832  }
833
834  // If the creator called set priority before we started,
835  // we need to call set_native_priority now that we have an lwp.
836  // We used to get the priority from thr_getprio (we called
837  // thr_setprio way back in create_thread) and pass it to
838  // set_native_priority, but Solaris scales the priority
839  // in java_to_os_priority, so when we read it back here,
840  // we pass trash to set_native_priority instead of what's
841  // in java_to_os_priority. So we save the native priority
842  // in the osThread and recall it here.
843
844  if (osthr->thread_id() != -1) {
845    if (UseThreadPriorities) {
846      int prio = osthr->native_priority();
847      if (ThreadPriorityVerbose) {
848        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
849                      INTPTR_FORMAT ", setting priority: %d\n",
850                      osthr->thread_id(), osthr->lwp_id(), prio);
851      }
852      os::set_native_priority(thread, prio);
853    }
854  } else if (ThreadPriorityVerbose) {
855    warning("Can't set priority in _start routine, thread id hasn't been set\n");
856  }
857
858  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
859
860  // initialize signal mask for this thread
861  os::Solaris::hotspot_sigmask(thread);
862
863  thread->run();
864
865  // One less thread is executing
866  // When the VMThread gets here, the main thread may have already exited
867  // which frees the CodeHeap containing the Atomic::dec code
868  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
869    Atomic::dec(&os::Solaris::_os_thread_count);
870  }
871
872  if (UseDetachedThreads) {
873    thr_exit(NULL);
874    ShouldNotReachHere();
875  }
876  return NULL;
877}
878
879static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
880  // Allocate the OSThread object
881  OSThread* osthread = new OSThread(NULL, NULL);
882  if (osthread == NULL) return NULL;
883
884  // Store info on the Solaris thread into the OSThread
885  osthread->set_thread_id(thread_id);
886  osthread->set_lwp_id(_lwp_self());
887  thread->_schedctl = (void *) schedctl_init();
888
889  if (UseNUMA) {
890    int lgrp_id = os::numa_get_group_id();
891    if (lgrp_id != -1) {
892      thread->set_lgrp_id(lgrp_id);
893    }
894  }
895
896  if (ThreadPriorityVerbose) {
897    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
898                  osthread->thread_id(), osthread->lwp_id());
899  }
900
901  // Initial thread state is INITIALIZED, not SUSPENDED
902  osthread->set_state(INITIALIZED);
903
904  return osthread;
905}
906
907void os::Solaris::hotspot_sigmask(Thread* thread) {
908  //Save caller's signal mask
909  sigset_t sigmask;
910  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
911  OSThread *osthread = thread->osthread();
912  osthread->set_caller_sigmask(sigmask);
913
914  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
915  if (!ReduceSignalUsage) {
916    if (thread->is_VM_thread()) {
917      // Only the VM thread handles BREAK_SIGNAL ...
918      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
919    } else {
920      // ... all other threads block BREAK_SIGNAL
921      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
922      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
923    }
924  }
925}
926
927bool os::create_attached_thread(JavaThread* thread) {
928#ifdef ASSERT
929  thread->verify_not_published();
930#endif
931  OSThread* osthread = create_os_thread(thread, thr_self());
932  if (osthread == NULL) {
933    return false;
934  }
935
936  // Initial thread state is RUNNABLE
937  osthread->set_state(RUNNABLE);
938  thread->set_osthread(osthread);
939
940  // initialize signal mask for this thread
941  // and save the caller's signal mask
942  os::Solaris::hotspot_sigmask(thread);
943
944  return true;
945}
946
947bool os::create_main_thread(JavaThread* thread) {
948#ifdef ASSERT
949  thread->verify_not_published();
950#endif
951  if (_starting_thread == NULL) {
952    _starting_thread = create_os_thread(thread, main_thread);
953    if (_starting_thread == NULL) {
954      return false;
955    }
956  }
957
958  // The primodial thread is runnable from the start
959  _starting_thread->set_state(RUNNABLE);
960
961  thread->set_osthread(_starting_thread);
962
963  // initialize signal mask for this thread
964  // and save the caller's signal mask
965  os::Solaris::hotspot_sigmask(thread);
966
967  return true;
968}
969
970
971bool os::create_thread(Thread* thread, ThreadType thr_type,
972                       size_t stack_size) {
973  // Allocate the OSThread object
974  OSThread* osthread = new OSThread(NULL, NULL);
975  if (osthread == NULL) {
976    return false;
977  }
978
979  if (ThreadPriorityVerbose) {
980    char *thrtyp;
981    switch (thr_type) {
982    case vm_thread:
983      thrtyp = (char *)"vm";
984      break;
985    case cgc_thread:
986      thrtyp = (char *)"cgc";
987      break;
988    case pgc_thread:
989      thrtyp = (char *)"pgc";
990      break;
991    case java_thread:
992      thrtyp = (char *)"java";
993      break;
994    case compiler_thread:
995      thrtyp = (char *)"compiler";
996      break;
997    case watcher_thread:
998      thrtyp = (char *)"watcher";
999      break;
1000    default:
1001      thrtyp = (char *)"unknown";
1002      break;
1003    }
1004    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1005  }
1006
1007  // Calculate stack size if it's not specified by caller.
1008  if (stack_size == 0) {
1009    // The default stack size 1M (2M for LP64).
1010    stack_size = (BytesPerWord >> 2) * K * K;
1011
1012    switch (thr_type) {
1013    case os::java_thread:
1014      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1015      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1016      break;
1017    case os::compiler_thread:
1018      if (CompilerThreadStackSize > 0) {
1019        stack_size = (size_t)(CompilerThreadStackSize * K);
1020        break;
1021      } // else fall through:
1022        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1023    case os::vm_thread:
1024    case os::pgc_thread:
1025    case os::cgc_thread:
1026    case os::watcher_thread:
1027      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1028      break;
1029    }
1030  }
1031  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1032
1033  // Initial state is ALLOCATED but not INITIALIZED
1034  osthread->set_state(ALLOCATED);
1035
1036  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1037    // We got lots of threads. Check if we still have some address space left.
1038    // Need to be at least 5Mb of unreserved address space. We do check by
1039    // trying to reserve some.
1040    const size_t VirtualMemoryBangSize = 20*K*K;
1041    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1042    if (mem == NULL) {
1043      delete osthread;
1044      return false;
1045    } else {
1046      // Release the memory again
1047      os::release_memory(mem, VirtualMemoryBangSize);
1048    }
1049  }
1050
1051  // Setup osthread because the child thread may need it.
1052  thread->set_osthread(osthread);
1053
1054  // Create the Solaris thread
1055  thread_t tid = 0;
1056  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1057  int      status;
1058
1059  // Mark that we don't have an lwp or thread id yet.
1060  // In case we attempt to set the priority before the thread starts.
1061  osthread->set_lwp_id(-1);
1062  osthread->set_thread_id(-1);
1063
1064  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1065  if (status != 0) {
1066    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1067      perror("os::create_thread");
1068    }
1069    thread->set_osthread(NULL);
1070    // Need to clean up stuff we've allocated so far
1071    delete osthread;
1072    return false;
1073  }
1074
1075  Atomic::inc(&os::Solaris::_os_thread_count);
1076
1077  // Store info on the Solaris thread into the OSThread
1078  osthread->set_thread_id(tid);
1079
1080  // Remember that we created this thread so we can set priority on it
1081  osthread->set_vm_created();
1082
1083  // Initial thread state is INITIALIZED, not SUSPENDED
1084  osthread->set_state(INITIALIZED);
1085
1086  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1087  return true;
1088}
1089
1090// defined for >= Solaris 10. This allows builds on earlier versions
1091// of Solaris to take advantage of the newly reserved Solaris JVM signals
1092// With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1093// and -XX:+UseAltSigs does nothing since these should have no conflict
1094//
1095#if !defined(SIGJVM1)
1096  #define SIGJVM1 39
1097  #define SIGJVM2 40
1098#endif
1099
1100debug_only(static bool signal_sets_initialized = false);
1101static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1102int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1103int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1104
1105bool os::Solaris::is_sig_ignored(int sig) {
1106  struct sigaction oact;
1107  sigaction(sig, (struct sigaction*)NULL, &oact);
1108  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1109                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1110  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1111    return true;
1112  } else {
1113    return false;
1114  }
1115}
1116
1117// Note: SIGRTMIN is a macro that calls sysconf() so it will
1118// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1119static bool isJVM1available() {
1120  return SIGJVM1 < SIGRTMIN;
1121}
1122
1123void os::Solaris::signal_sets_init() {
1124  // Should also have an assertion stating we are still single-threaded.
1125  assert(!signal_sets_initialized, "Already initialized");
1126  // Fill in signals that are necessarily unblocked for all threads in
1127  // the VM. Currently, we unblock the following signals:
1128  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1129  //                         by -Xrs (=ReduceSignalUsage));
1130  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1131  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1132  // the dispositions or masks wrt these signals.
1133  // Programs embedding the VM that want to use the above signals for their
1134  // own purposes must, at this time, use the "-Xrs" option to prevent
1135  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1136  // (See bug 4345157, and other related bugs).
1137  // In reality, though, unblocking these signals is really a nop, since
1138  // these signals are not blocked by default.
1139  sigemptyset(&unblocked_sigs);
1140  sigemptyset(&allowdebug_blocked_sigs);
1141  sigaddset(&unblocked_sigs, SIGILL);
1142  sigaddset(&unblocked_sigs, SIGSEGV);
1143  sigaddset(&unblocked_sigs, SIGBUS);
1144  sigaddset(&unblocked_sigs, SIGFPE);
1145
1146  if (isJVM1available) {
1147    os::Solaris::set_SIGinterrupt(SIGJVM1);
1148    os::Solaris::set_SIGasync(SIGJVM2);
1149  } else if (UseAltSigs) {
1150    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1151    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1152  } else {
1153    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1154    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1155  }
1156
1157  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1158  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1159
1160  if (!ReduceSignalUsage) {
1161    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1162      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1163      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1164    }
1165    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1166      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1167      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1168    }
1169    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1170      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1171      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1172    }
1173  }
1174  // Fill in signals that are blocked by all but the VM thread.
1175  sigemptyset(&vm_sigs);
1176  if (!ReduceSignalUsage) {
1177    sigaddset(&vm_sigs, BREAK_SIGNAL);
1178  }
1179  debug_only(signal_sets_initialized = true);
1180
1181  // For diagnostics only used in run_periodic_checks
1182  sigemptyset(&check_signal_done);
1183}
1184
1185// These are signals that are unblocked while a thread is running Java.
1186// (For some reason, they get blocked by default.)
1187sigset_t* os::Solaris::unblocked_signals() {
1188  assert(signal_sets_initialized, "Not initialized");
1189  return &unblocked_sigs;
1190}
1191
1192// These are the signals that are blocked while a (non-VM) thread is
1193// running Java. Only the VM thread handles these signals.
1194sigset_t* os::Solaris::vm_signals() {
1195  assert(signal_sets_initialized, "Not initialized");
1196  return &vm_sigs;
1197}
1198
1199// These are signals that are blocked during cond_wait to allow debugger in
1200sigset_t* os::Solaris::allowdebug_blocked_signals() {
1201  assert(signal_sets_initialized, "Not initialized");
1202  return &allowdebug_blocked_sigs;
1203}
1204
1205
1206void _handle_uncaught_cxx_exception() {
1207  VMError err("An uncaught C++ exception");
1208  err.report_and_die();
1209}
1210
1211
1212// First crack at OS-specific initialization, from inside the new thread.
1213void os::initialize_thread(Thread* thr) {
1214  int r = thr_main();
1215  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1216  if (r) {
1217    JavaThread* jt = (JavaThread *)thr;
1218    assert(jt != NULL, "Sanity check");
1219    size_t stack_size;
1220    address base = jt->stack_base();
1221    if (Arguments::created_by_java_launcher()) {
1222      // Use 2MB to allow for Solaris 7 64 bit mode.
1223      stack_size = JavaThread::stack_size_at_create() == 0
1224        ? 2048*K : JavaThread::stack_size_at_create();
1225
1226      // There are rare cases when we may have already used more than
1227      // the basic stack size allotment before this method is invoked.
1228      // Attempt to allow for a normally sized java_stack.
1229      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1230      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1231    } else {
1232      // 6269555: If we were not created by a Java launcher, i.e. if we are
1233      // running embedded in a native application, treat the primordial thread
1234      // as much like a native attached thread as possible.  This means using
1235      // the current stack size from thr_stksegment(), unless it is too large
1236      // to reliably setup guard pages.  A reasonable max size is 8MB.
1237      size_t current_size = current_stack_size();
1238      // This should never happen, but just in case....
1239      if (current_size == 0) current_size = 2 * K * K;
1240      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1241    }
1242    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1243    stack_size = (size_t)(base - bottom);
1244
1245    assert(stack_size > 0, "Stack size calculation problem");
1246
1247    if (stack_size > jt->stack_size()) {
1248#ifndef PRODUCT
1249      struct rlimit limits;
1250      getrlimit(RLIMIT_STACK, &limits);
1251      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1252      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1253#endif
1254      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1255                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1256                    "See limit(1) to increase the stack size limit.",
1257                    stack_size / K, jt->stack_size() / K);
1258      vm_exit(1);
1259    }
1260    assert(jt->stack_size() >= stack_size,
1261           "Attempt to map more stack than was allocated");
1262    jt->set_stack_size(stack_size);
1263  }
1264
1265  // With the T2 libthread (T1 is no longer supported) threads are always bound
1266  // and we use stackbanging in all cases.
1267
1268  os::Solaris::init_thread_fpu_state();
1269  std::set_terminate(_handle_uncaught_cxx_exception);
1270}
1271
1272
1273
1274// Free Solaris resources related to the OSThread
1275void os::free_thread(OSThread* osthread) {
1276  assert(osthread != NULL, "os::free_thread but osthread not set");
1277
1278
1279  // We are told to free resources of the argument thread,
1280  // but we can only really operate on the current thread.
1281  // The main thread must take the VMThread down synchronously
1282  // before the main thread exits and frees up CodeHeap
1283  guarantee((Thread::current()->osthread() == osthread
1284             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1285  if (Thread::current()->osthread() == osthread) {
1286    // Restore caller's signal mask
1287    sigset_t sigmask = osthread->caller_sigmask();
1288    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1289  }
1290  delete osthread;
1291}
1292
1293void os::pd_start_thread(Thread* thread) {
1294  int status = thr_continue(thread->osthread()->thread_id());
1295  assert_status(status == 0, status, "thr_continue failed");
1296}
1297
1298
1299intx os::current_thread_id() {
1300  return (intx)thr_self();
1301}
1302
1303static pid_t _initial_pid = 0;
1304
1305int os::current_process_id() {
1306  return (int)(_initial_pid ? _initial_pid : getpid());
1307}
1308
1309int os::allocate_thread_local_storage() {
1310  // %%%       in Win32 this allocates a memory segment pointed to by a
1311  //           register.  Dan Stein can implement a similar feature in
1312  //           Solaris.  Alternatively, the VM can do the same thing
1313  //           explicitly: malloc some storage and keep the pointer in a
1314  //           register (which is part of the thread's context) (or keep it
1315  //           in TLS).
1316  // %%%       In current versions of Solaris, thr_self and TSD can
1317  //           be accessed via short sequences of displaced indirections.
1318  //           The value of thr_self is available as %g7(36).
1319  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1320  //           assuming that the current thread already has a value bound to k.
1321  //           It may be worth experimenting with such access patterns,
1322  //           and later having the parameters formally exported from a Solaris
1323  //           interface.  I think, however, that it will be faster to
1324  //           maintain the invariant that %g2 always contains the
1325  //           JavaThread in Java code, and have stubs simply
1326  //           treat %g2 as a caller-save register, preserving it in a %lN.
1327  thread_key_t tk;
1328  if (thr_keycreate(&tk, NULL)) {
1329    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1330                  "(%s)", strerror(errno)));
1331  }
1332  return int(tk);
1333}
1334
1335void os::free_thread_local_storage(int index) {
1336  // %%% don't think we need anything here
1337  // if (pthread_key_delete((pthread_key_t) tk)) {
1338  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1339  // }
1340}
1341
1342// libthread allocate for tsd_common is a version specific
1343// small number - point is NO swap space available
1344#define SMALLINT 32
1345void os::thread_local_storage_at_put(int index, void* value) {
1346  // %%% this is used only in threadLocalStorage.cpp
1347  if (thr_setspecific((thread_key_t)index, value)) {
1348    if (errno == ENOMEM) {
1349      vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1350                            "thr_setspecific: out of swap space");
1351    } else {
1352      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1353                    "(%s)", strerror(errno)));
1354    }
1355  } else {
1356    ThreadLocalStorage::set_thread_in_slot((Thread *) value);
1357  }
1358}
1359
1360// This function could be called before TLS is initialized, for example, when
1361// VM receives an async signal or when VM causes a fatal error during
1362// initialization. Return NULL if thr_getspecific() fails.
1363void* os::thread_local_storage_at(int index) {
1364  // %%% this is used only in threadLocalStorage.cpp
1365  void* r = NULL;
1366  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1367}
1368
1369
1370// gethrtime() should be monotonic according to the documentation,
1371// but some virtualized platforms are known to break this guarantee.
1372// getTimeNanos() must be guaranteed not to move backwards, so we
1373// are forced to add a check here.
1374inline hrtime_t getTimeNanos() {
1375  const hrtime_t now = gethrtime();
1376  const hrtime_t prev = max_hrtime;
1377  if (now <= prev) {
1378    return prev;   // same or retrograde time;
1379  }
1380  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1381  assert(obsv >= prev, "invariant");   // Monotonicity
1382  // If the CAS succeeded then we're done and return "now".
1383  // If the CAS failed and the observed value "obsv" is >= now then
1384  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1385  // some other thread raced this thread and installed a new value, in which case
1386  // we could either (a) retry the entire operation, (b) retry trying to install now
1387  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1388  // we might discard a higher "now" value in deference to a slightly lower but freshly
1389  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1390  // to (a) or (b) -- and greatly reduces coherence traffic.
1391  // We might also condition (c) on the magnitude of the delta between obsv and now.
1392  // Avoiding excessive CAS operations to hot RW locations is critical.
1393  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1394  return (prev == obsv) ? now : obsv;
1395}
1396
1397// Time since start-up in seconds to a fine granularity.
1398// Used by VMSelfDestructTimer and the MemProfiler.
1399double os::elapsedTime() {
1400  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1401}
1402
1403jlong os::elapsed_counter() {
1404  return (jlong)(getTimeNanos() - first_hrtime);
1405}
1406
1407jlong os::elapsed_frequency() {
1408  return hrtime_hz;
1409}
1410
1411// Return the real, user, and system times in seconds from an
1412// arbitrary fixed point in the past.
1413bool os::getTimesSecs(double* process_real_time,
1414                      double* process_user_time,
1415                      double* process_system_time) {
1416  struct tms ticks;
1417  clock_t real_ticks = times(&ticks);
1418
1419  if (real_ticks == (clock_t) (-1)) {
1420    return false;
1421  } else {
1422    double ticks_per_second = (double) clock_tics_per_sec;
1423    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1424    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1425    // For consistency return the real time from getTimeNanos()
1426    // converted to seconds.
1427    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1428
1429    return true;
1430  }
1431}
1432
1433bool os::supports_vtime() { return true; }
1434
1435bool os::enable_vtime() {
1436  int fd = ::open("/proc/self/ctl", O_WRONLY);
1437  if (fd == -1) {
1438    return false;
1439  }
1440
1441  long cmd[] = { PCSET, PR_MSACCT };
1442  int res = ::write(fd, cmd, sizeof(long) * 2);
1443  ::close(fd);
1444  if (res != sizeof(long) * 2) {
1445    return false;
1446  }
1447  return true;
1448}
1449
1450bool os::vtime_enabled() {
1451  int fd = ::open("/proc/self/status", O_RDONLY);
1452  if (fd == -1) {
1453    return false;
1454  }
1455
1456  pstatus_t status;
1457  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1458  ::close(fd);
1459  if (res != sizeof(pstatus_t)) {
1460    return false;
1461  }
1462  return status.pr_flags & PR_MSACCT;
1463}
1464
1465double os::elapsedVTime() {
1466  return (double)gethrvtime() / (double)hrtime_hz;
1467}
1468
1469// Used internally for comparisons only
1470// getTimeMillis guaranteed to not move backwards on Solaris
1471jlong getTimeMillis() {
1472  jlong nanotime = getTimeNanos();
1473  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1474}
1475
1476// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1477jlong os::javaTimeMillis() {
1478  timeval t;
1479  if (gettimeofday(&t, NULL) == -1) {
1480    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1481  }
1482  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1483}
1484
1485jlong os::javaTimeNanos() {
1486  return (jlong)getTimeNanos();
1487}
1488
1489void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1490  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1491  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1492  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1493  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1494}
1495
1496char * os::local_time_string(char *buf, size_t buflen) {
1497  struct tm t;
1498  time_t long_time;
1499  time(&long_time);
1500  localtime_r(&long_time, &t);
1501  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1502               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1503               t.tm_hour, t.tm_min, t.tm_sec);
1504  return buf;
1505}
1506
1507// Note: os::shutdown() might be called very early during initialization, or
1508// called from signal handler. Before adding something to os::shutdown(), make
1509// sure it is async-safe and can handle partially initialized VM.
1510void os::shutdown() {
1511
1512  // allow PerfMemory to attempt cleanup of any persistent resources
1513  perfMemory_exit();
1514
1515  // needs to remove object in file system
1516  AttachListener::abort();
1517
1518  // flush buffered output, finish log files
1519  ostream_abort();
1520
1521  // Check for abort hook
1522  abort_hook_t abort_hook = Arguments::abort_hook();
1523  if (abort_hook != NULL) {
1524    abort_hook();
1525  }
1526}
1527
1528// Note: os::abort() might be called very early during initialization, or
1529// called from signal handler. Before adding something to os::abort(), make
1530// sure it is async-safe and can handle partially initialized VM.
1531void os::abort(bool dump_core) {
1532  os::shutdown();
1533  if (dump_core) {
1534#ifndef PRODUCT
1535    fdStream out(defaultStream::output_fd());
1536    out.print_raw("Current thread is ");
1537    char buf[16];
1538    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1539    out.print_raw_cr(buf);
1540    out.print_raw_cr("Dumping core ...");
1541#endif
1542    ::abort(); // dump core (for debugging)
1543  }
1544
1545  ::exit(1);
1546}
1547
1548// Die immediately, no exit hook, no abort hook, no cleanup.
1549void os::die() {
1550  ::abort(); // dump core (for debugging)
1551}
1552
1553// DLL functions
1554
1555const char* os::dll_file_extension() { return ".so"; }
1556
1557// This must be hard coded because it's the system's temporary
1558// directory not the java application's temp directory, ala java.io.tmpdir.
1559const char* os::get_temp_directory() { return "/tmp"; }
1560
1561static bool file_exists(const char* filename) {
1562  struct stat statbuf;
1563  if (filename == NULL || strlen(filename) == 0) {
1564    return false;
1565  }
1566  return os::stat(filename, &statbuf) == 0;
1567}
1568
1569bool os::dll_build_name(char* buffer, size_t buflen,
1570                        const char* pname, const char* fname) {
1571  bool retval = false;
1572  const size_t pnamelen = pname ? strlen(pname) : 0;
1573
1574  // Return error on buffer overflow.
1575  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1576    return retval;
1577  }
1578
1579  if (pnamelen == 0) {
1580    snprintf(buffer, buflen, "lib%s.so", fname);
1581    retval = true;
1582  } else if (strchr(pname, *os::path_separator()) != NULL) {
1583    int n;
1584    char** pelements = split_path(pname, &n);
1585    if (pelements == NULL) {
1586      return false;
1587    }
1588    for (int i = 0; i < n; i++) {
1589      // really shouldn't be NULL but what the heck, check can't hurt
1590      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1591        continue; // skip the empty path values
1592      }
1593      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1594      if (file_exists(buffer)) {
1595        retval = true;
1596        break;
1597      }
1598    }
1599    // release the storage
1600    for (int i = 0; i < n; i++) {
1601      if (pelements[i] != NULL) {
1602        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1603      }
1604    }
1605    if (pelements != NULL) {
1606      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1607    }
1608  } else {
1609    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1610    retval = true;
1611  }
1612  return retval;
1613}
1614
1615// check if addr is inside libjvm.so
1616bool os::address_is_in_vm(address addr) {
1617  static address libjvm_base_addr;
1618  Dl_info dlinfo;
1619
1620  if (libjvm_base_addr == NULL) {
1621    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1622      libjvm_base_addr = (address)dlinfo.dli_fbase;
1623    }
1624    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1625  }
1626
1627  if (dladdr((void *)addr, &dlinfo) != 0) {
1628    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1629  }
1630
1631  return false;
1632}
1633
1634typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1635static dladdr1_func_type dladdr1_func = NULL;
1636
1637bool os::dll_address_to_function_name(address addr, char *buf,
1638                                      int buflen, int * offset) {
1639  // buf is not optional, but offset is optional
1640  assert(buf != NULL, "sanity check");
1641
1642  Dl_info dlinfo;
1643
1644  // dladdr1_func was initialized in os::init()
1645  if (dladdr1_func != NULL) {
1646    // yes, we have dladdr1
1647
1648    // Support for dladdr1 is checked at runtime; it may be
1649    // available even if the vm is built on a machine that does
1650    // not have dladdr1 support.  Make sure there is a value for
1651    // RTLD_DL_SYMENT.
1652#ifndef RTLD_DL_SYMENT
1653  #define RTLD_DL_SYMENT 1
1654#endif
1655#ifdef _LP64
1656    Elf64_Sym * info;
1657#else
1658    Elf32_Sym * info;
1659#endif
1660    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1661                     RTLD_DL_SYMENT) != 0) {
1662      // see if we have a matching symbol that covers our address
1663      if (dlinfo.dli_saddr != NULL &&
1664          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1665        if (dlinfo.dli_sname != NULL) {
1666          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1667            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1668          }
1669          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1670          return true;
1671        }
1672      }
1673      // no matching symbol so try for just file info
1674      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1675        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1676                            buf, buflen, offset, dlinfo.dli_fname)) {
1677          return true;
1678        }
1679      }
1680    }
1681    buf[0] = '\0';
1682    if (offset != NULL) *offset  = -1;
1683    return false;
1684  }
1685
1686  // no, only dladdr is available
1687  if (dladdr((void *)addr, &dlinfo) != 0) {
1688    // see if we have a matching symbol
1689    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1692      }
1693      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694      return true;
1695    }
1696    // no matching symbol so try for just file info
1697    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                          buf, buflen, offset, dlinfo.dli_fname)) {
1700        return true;
1701      }
1702    }
1703  }
1704  buf[0] = '\0';
1705  if (offset != NULL) *offset  = -1;
1706  return false;
1707}
1708
1709bool os::dll_address_to_library_name(address addr, char* buf,
1710                                     int buflen, int* offset) {
1711  // buf is not optional, but offset is optional
1712  assert(buf != NULL, "sanity check");
1713
1714  Dl_info dlinfo;
1715
1716  if (dladdr((void*)addr, &dlinfo) != 0) {
1717    if (dlinfo.dli_fname != NULL) {
1718      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1719    }
1720    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1721      *offset = addr - (address)dlinfo.dli_fbase;
1722    }
1723    return true;
1724  }
1725
1726  buf[0] = '\0';
1727  if (offset) *offset = -1;
1728  return false;
1729}
1730
1731int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1732  Dl_info dli;
1733  // Sanity check?
1734  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1735      dli.dli_fname == NULL) {
1736    return 1;
1737  }
1738
1739  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1740  if (handle == NULL) {
1741    return 1;
1742  }
1743
1744  Link_map *map;
1745  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1746  if (map == NULL) {
1747    dlclose(handle);
1748    return 1;
1749  }
1750
1751  while (map->l_prev != NULL) {
1752    map = map->l_prev;
1753  }
1754
1755  while (map != NULL) {
1756    // Iterate through all map entries and call callback with fields of interest
1757    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1758      dlclose(handle);
1759      return 1;
1760    }
1761    map = map->l_next;
1762  }
1763
1764  dlclose(handle);
1765  return 0;
1766}
1767
1768int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1769  outputStream * out = (outputStream *) param;
1770  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1771  return 0;
1772}
1773
1774void os::print_dll_info(outputStream * st) {
1775  st->print_cr("Dynamic libraries:"); st->flush();
1776  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1777    st->print_cr("Error: Cannot print dynamic libraries.");
1778  }
1779}
1780
1781// Loads .dll/.so and
1782// in case of error it checks if .dll/.so was built for the
1783// same architecture as Hotspot is running on
1784
1785void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1786  void * result= ::dlopen(filename, RTLD_LAZY);
1787  if (result != NULL) {
1788    // Successful loading
1789    return result;
1790  }
1791
1792  Elf32_Ehdr elf_head;
1793
1794  // Read system error message into ebuf
1795  // It may or may not be overwritten below
1796  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1797  ebuf[ebuflen-1]='\0';
1798  int diag_msg_max_length=ebuflen-strlen(ebuf);
1799  char* diag_msg_buf=ebuf+strlen(ebuf);
1800
1801  if (diag_msg_max_length==0) {
1802    // No more space in ebuf for additional diagnostics message
1803    return NULL;
1804  }
1805
1806
1807  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1808
1809  if (file_descriptor < 0) {
1810    // Can't open library, report dlerror() message
1811    return NULL;
1812  }
1813
1814  bool failed_to_read_elf_head=
1815    (sizeof(elf_head)!=
1816     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1817
1818  ::close(file_descriptor);
1819  if (failed_to_read_elf_head) {
1820    // file i/o error - report dlerror() msg
1821    return NULL;
1822  }
1823
1824  typedef struct {
1825    Elf32_Half  code;         // Actual value as defined in elf.h
1826    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1827    char        elf_class;    // 32 or 64 bit
1828    char        endianess;    // MSB or LSB
1829    char*       name;         // String representation
1830  } arch_t;
1831
1832  static const arch_t arch_array[]={
1833    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1834    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1835    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1836    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1837    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1838    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1839    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1840    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1841    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1842    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1843  };
1844
1845#if  (defined IA32)
1846  static  Elf32_Half running_arch_code=EM_386;
1847#elif   (defined AMD64)
1848  static  Elf32_Half running_arch_code=EM_X86_64;
1849#elif  (defined IA64)
1850  static  Elf32_Half running_arch_code=EM_IA_64;
1851#elif  (defined __sparc) && (defined _LP64)
1852  static  Elf32_Half running_arch_code=EM_SPARCV9;
1853#elif  (defined __sparc) && (!defined _LP64)
1854  static  Elf32_Half running_arch_code=EM_SPARC;
1855#elif  (defined __powerpc64__)
1856  static  Elf32_Half running_arch_code=EM_PPC64;
1857#elif  (defined __powerpc__)
1858  static  Elf32_Half running_arch_code=EM_PPC;
1859#elif (defined ARM)
1860  static  Elf32_Half running_arch_code=EM_ARM;
1861#else
1862  #error Method os::dll_load requires that one of following is defined:\
1863       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1864#endif
1865
1866  // Identify compatability class for VM's architecture and library's architecture
1867  // Obtain string descriptions for architectures
1868
1869  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1870  int running_arch_index=-1;
1871
1872  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1873    if (running_arch_code == arch_array[i].code) {
1874      running_arch_index    = i;
1875    }
1876    if (lib_arch.code == arch_array[i].code) {
1877      lib_arch.compat_class = arch_array[i].compat_class;
1878      lib_arch.name         = arch_array[i].name;
1879    }
1880  }
1881
1882  assert(running_arch_index != -1,
1883         "Didn't find running architecture code (running_arch_code) in arch_array");
1884  if (running_arch_index == -1) {
1885    // Even though running architecture detection failed
1886    // we may still continue with reporting dlerror() message
1887    return NULL;
1888  }
1889
1890  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1891    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1892    return NULL;
1893  }
1894
1895  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1896    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1897    return NULL;
1898  }
1899
1900  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1901    if (lib_arch.name!=NULL) {
1902      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1903                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1904                 lib_arch.name, arch_array[running_arch_index].name);
1905    } else {
1906      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1907                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1908                 lib_arch.code,
1909                 arch_array[running_arch_index].name);
1910    }
1911  }
1912
1913  return NULL;
1914}
1915
1916void* os::dll_lookup(void* handle, const char* name) {
1917  return dlsym(handle, name);
1918}
1919
1920void* os::get_default_process_handle() {
1921  return (void*)::dlopen(NULL, RTLD_LAZY);
1922}
1923
1924int os::stat(const char *path, struct stat *sbuf) {
1925  char pathbuf[MAX_PATH];
1926  if (strlen(path) > MAX_PATH - 1) {
1927    errno = ENAMETOOLONG;
1928    return -1;
1929  }
1930  os::native_path(strcpy(pathbuf, path));
1931  return ::stat(pathbuf, sbuf);
1932}
1933
1934static bool _print_ascii_file(const char* filename, outputStream* st) {
1935  int fd = ::open(filename, O_RDONLY);
1936  if (fd == -1) {
1937    return false;
1938  }
1939
1940  char buf[32];
1941  int bytes;
1942  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1943    st->print_raw(buf, bytes);
1944  }
1945
1946  ::close(fd);
1947
1948  return true;
1949}
1950
1951void os::print_os_info_brief(outputStream* st) {
1952  os::Solaris::print_distro_info(st);
1953
1954  os::Posix::print_uname_info(st);
1955
1956  os::Solaris::print_libversion_info(st);
1957}
1958
1959void os::print_os_info(outputStream* st) {
1960  st->print("OS:");
1961
1962  os::Solaris::print_distro_info(st);
1963
1964  os::Posix::print_uname_info(st);
1965
1966  os::Solaris::print_libversion_info(st);
1967
1968  os::Posix::print_rlimit_info(st);
1969
1970  os::Posix::print_load_average(st);
1971}
1972
1973void os::Solaris::print_distro_info(outputStream* st) {
1974  if (!_print_ascii_file("/etc/release", st)) {
1975    st->print("Solaris");
1976  }
1977  st->cr();
1978}
1979
1980void os::Solaris::print_libversion_info(outputStream* st) {
1981  st->print("  (T2 libthread)");
1982  st->cr();
1983}
1984
1985static bool check_addr0(outputStream* st) {
1986  jboolean status = false;
1987  int fd = ::open("/proc/self/map",O_RDONLY);
1988  if (fd >= 0) {
1989    prmap_t p;
1990    while (::read(fd, &p, sizeof(p)) > 0) {
1991      if (p.pr_vaddr == 0x0) {
1992        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1993        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1994        st->print("Access:");
1995        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1996        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1997        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1998        st->cr();
1999        status = true;
2000      }
2001    }
2002    ::close(fd);
2003  }
2004  return status;
2005}
2006
2007void os::pd_print_cpu_info(outputStream* st) {
2008  // Nothing to do for now.
2009}
2010
2011void os::print_memory_info(outputStream* st) {
2012  st->print("Memory:");
2013  st->print(" %dk page", os::vm_page_size()>>10);
2014  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2015  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2016  st->cr();
2017  (void) check_addr0(st);
2018}
2019
2020void os::print_siginfo(outputStream* st, void* siginfo) {
2021  const siginfo_t* si = (const siginfo_t*)siginfo;
2022
2023  os::Posix::print_siginfo_brief(st, si);
2024
2025  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2026      UseSharedSpaces) {
2027    FileMapInfo* mapinfo = FileMapInfo::current_info();
2028    if (mapinfo->is_in_shared_space(si->si_addr)) {
2029      st->print("\n\nError accessing class data sharing archive."   \
2030                " Mapped file inaccessible during execution, "      \
2031                " possible disk/network problem.");
2032    }
2033  }
2034  st->cr();
2035}
2036
2037// Moved from whole group, because we need them here for diagnostic
2038// prints.
2039#define OLDMAXSIGNUM 32
2040static int Maxsignum = 0;
2041static int *ourSigFlags = NULL;
2042
2043extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2044
2045int os::Solaris::get_our_sigflags(int sig) {
2046  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2047  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2048  return ourSigFlags[sig];
2049}
2050
2051void os::Solaris::set_our_sigflags(int sig, int flags) {
2052  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2053  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2054  ourSigFlags[sig] = flags;
2055}
2056
2057
2058static const char* get_signal_handler_name(address handler,
2059                                           char* buf, int buflen) {
2060  int offset;
2061  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2062  if (found) {
2063    // skip directory names
2064    const char *p1, *p2;
2065    p1 = buf;
2066    size_t len = strlen(os::file_separator());
2067    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2068    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2069  } else {
2070    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2071  }
2072  return buf;
2073}
2074
2075static void print_signal_handler(outputStream* st, int sig,
2076                                 char* buf, size_t buflen) {
2077  struct sigaction sa;
2078
2079  sigaction(sig, NULL, &sa);
2080
2081  st->print("%s: ", os::exception_name(sig, buf, buflen));
2082
2083  address handler = (sa.sa_flags & SA_SIGINFO)
2084                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2085                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2086
2087  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2088    st->print("SIG_DFL");
2089  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2090    st->print("SIG_IGN");
2091  } else {
2092    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2093  }
2094
2095  st->print(", sa_mask[0]=");
2096  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2097
2098  address rh = VMError::get_resetted_sighandler(sig);
2099  // May be, handler was resetted by VMError?
2100  if (rh != NULL) {
2101    handler = rh;
2102    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2103  }
2104
2105  st->print(", sa_flags=");
2106  os::Posix::print_sa_flags(st, sa.sa_flags);
2107
2108  // Check: is it our handler?
2109  if (handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2110      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2111    // It is our signal handler
2112    // check for flags
2113    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2114      st->print(
2115                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2116                os::Solaris::get_our_sigflags(sig));
2117    }
2118  }
2119  st->cr();
2120}
2121
2122void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2123  st->print_cr("Signal Handlers:");
2124  print_signal_handler(st, SIGSEGV, buf, buflen);
2125  print_signal_handler(st, SIGBUS , buf, buflen);
2126  print_signal_handler(st, SIGFPE , buf, buflen);
2127  print_signal_handler(st, SIGPIPE, buf, buflen);
2128  print_signal_handler(st, SIGXFSZ, buf, buflen);
2129  print_signal_handler(st, SIGILL , buf, buflen);
2130  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2131  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2132  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2133  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2134  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2135  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2136  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2137  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2138}
2139
2140static char saved_jvm_path[MAXPATHLEN] = { 0 };
2141
2142// Find the full path to the current module, libjvm.so
2143void os::jvm_path(char *buf, jint buflen) {
2144  // Error checking.
2145  if (buflen < MAXPATHLEN) {
2146    assert(false, "must use a large-enough buffer");
2147    buf[0] = '\0';
2148    return;
2149  }
2150  // Lazy resolve the path to current module.
2151  if (saved_jvm_path[0] != 0) {
2152    strcpy(buf, saved_jvm_path);
2153    return;
2154  }
2155
2156  Dl_info dlinfo;
2157  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2158  assert(ret != 0, "cannot locate libjvm");
2159  if (ret != 0 && dlinfo.dli_fname != NULL) {
2160    realpath((char *)dlinfo.dli_fname, buf);
2161  } else {
2162    buf[0] = '\0';
2163    return;
2164  }
2165
2166  if (Arguments::sun_java_launcher_is_altjvm()) {
2167    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2168    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2169    // If "/jre/lib/" appears at the right place in the string, then
2170    // assume we are installed in a JDK and we're done.  Otherwise, check
2171    // for a JAVA_HOME environment variable and fix up the path so it
2172    // looks like libjvm.so is installed there (append a fake suffix
2173    // hotspot/libjvm.so).
2174    const char *p = buf + strlen(buf) - 1;
2175    for (int count = 0; p > buf && count < 5; ++count) {
2176      for (--p; p > buf && *p != '/'; --p)
2177        /* empty */ ;
2178    }
2179
2180    if (strncmp(p, "/jre/lib/", 9) != 0) {
2181      // Look for JAVA_HOME in the environment.
2182      char* java_home_var = ::getenv("JAVA_HOME");
2183      if (java_home_var != NULL && java_home_var[0] != 0) {
2184        char cpu_arch[12];
2185        char* jrelib_p;
2186        int   len;
2187        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2188#ifdef _LP64
2189        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2190        if (strcmp(cpu_arch, "sparc") == 0) {
2191          strcat(cpu_arch, "v9");
2192        } else if (strcmp(cpu_arch, "i386") == 0) {
2193          strcpy(cpu_arch, "amd64");
2194        }
2195#endif
2196        // Check the current module name "libjvm.so".
2197        p = strrchr(buf, '/');
2198        assert(strstr(p, "/libjvm") == p, "invalid library name");
2199
2200        realpath(java_home_var, buf);
2201        // determine if this is a legacy image or modules image
2202        // modules image doesn't have "jre" subdirectory
2203        len = strlen(buf);
2204        assert(len < buflen, "Ran out of buffer space");
2205        jrelib_p = buf + len;
2206        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2207        if (0 != access(buf, F_OK)) {
2208          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2209        }
2210
2211        if (0 == access(buf, F_OK)) {
2212          // Use current module name "libjvm.so"
2213          len = strlen(buf);
2214          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2215        } else {
2216          // Go back to path of .so
2217          realpath((char *)dlinfo.dli_fname, buf);
2218        }
2219      }
2220    }
2221  }
2222
2223  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2224}
2225
2226
2227void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2228  // no prefix required, not even "_"
2229}
2230
2231
2232void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2233  // no suffix required
2234}
2235
2236// This method is a copy of JDK's sysGetLastErrorString
2237// from src/solaris/hpi/src/system_md.c
2238
2239size_t os::lasterror(char *buf, size_t len) {
2240  if (errno == 0)  return 0;
2241
2242  const char *s = ::strerror(errno);
2243  size_t n = ::strlen(s);
2244  if (n >= len) {
2245    n = len - 1;
2246  }
2247  ::strncpy(buf, s, n);
2248  buf[n] = '\0';
2249  return n;
2250}
2251
2252
2253// sun.misc.Signal
2254
2255extern "C" {
2256  static void UserHandler(int sig, void *siginfo, void *context) {
2257    // Ctrl-C is pressed during error reporting, likely because the error
2258    // handler fails to abort. Let VM die immediately.
2259    if (sig == SIGINT && is_error_reported()) {
2260      os::die();
2261    }
2262
2263    os::signal_notify(sig);
2264    // We do not need to reinstate the signal handler each time...
2265  }
2266}
2267
2268void* os::user_handler() {
2269  return CAST_FROM_FN_PTR(void*, UserHandler);
2270}
2271
2272class Semaphore : public StackObj {
2273 public:
2274  Semaphore();
2275  ~Semaphore();
2276  void signal();
2277  void wait();
2278  bool trywait();
2279  bool timedwait(unsigned int sec, int nsec);
2280 private:
2281  sema_t _semaphore;
2282};
2283
2284
2285Semaphore::Semaphore() {
2286  sema_init(&_semaphore, 0, NULL, NULL);
2287}
2288
2289Semaphore::~Semaphore() {
2290  sema_destroy(&_semaphore);
2291}
2292
2293void Semaphore::signal() {
2294  sema_post(&_semaphore);
2295}
2296
2297void Semaphore::wait() {
2298  sema_wait(&_semaphore);
2299}
2300
2301bool Semaphore::trywait() {
2302  return sema_trywait(&_semaphore) == 0;
2303}
2304
2305bool Semaphore::timedwait(unsigned int sec, int nsec) {
2306  struct timespec ts;
2307  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2308
2309  while (1) {
2310    int result = sema_timedwait(&_semaphore, &ts);
2311    if (result == 0) {
2312      return true;
2313    } else if (errno == EINTR) {
2314      continue;
2315    } else if (errno == ETIME) {
2316      return false;
2317    } else {
2318      return false;
2319    }
2320  }
2321}
2322
2323extern "C" {
2324  typedef void (*sa_handler_t)(int);
2325  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2326}
2327
2328void* os::signal(int signal_number, void* handler) {
2329  struct sigaction sigAct, oldSigAct;
2330  sigfillset(&(sigAct.sa_mask));
2331  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2332  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2333
2334  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2335    // -1 means registration failed
2336    return (void *)-1;
2337  }
2338
2339  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2340}
2341
2342void os::signal_raise(int signal_number) {
2343  raise(signal_number);
2344}
2345
2346// The following code is moved from os.cpp for making this
2347// code platform specific, which it is by its very nature.
2348
2349// a counter for each possible signal value
2350static int Sigexit = 0;
2351static int Maxlibjsigsigs;
2352static jint *pending_signals = NULL;
2353static int *preinstalled_sigs = NULL;
2354static struct sigaction *chainedsigactions = NULL;
2355static sema_t sig_sem;
2356typedef int (*version_getting_t)();
2357version_getting_t os::Solaris::get_libjsig_version = NULL;
2358static int libjsigversion = NULL;
2359
2360int os::sigexitnum_pd() {
2361  assert(Sigexit > 0, "signal memory not yet initialized");
2362  return Sigexit;
2363}
2364
2365void os::Solaris::init_signal_mem() {
2366  // Initialize signal structures
2367  Maxsignum = SIGRTMAX;
2368  Sigexit = Maxsignum+1;
2369  assert(Maxsignum >0, "Unable to obtain max signal number");
2370
2371  Maxlibjsigsigs = Maxsignum;
2372
2373  // pending_signals has one int per signal
2374  // The additional signal is for SIGEXIT - exit signal to signal_thread
2375  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2376  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2377
2378  if (UseSignalChaining) {
2379    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2380                                                   * (Maxsignum + 1), mtInternal);
2381    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2382    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2383    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2384  }
2385  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2386  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2387}
2388
2389void os::signal_init_pd() {
2390  int ret;
2391
2392  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2393  assert(ret == 0, "sema_init() failed");
2394}
2395
2396void os::signal_notify(int signal_number) {
2397  int ret;
2398
2399  Atomic::inc(&pending_signals[signal_number]);
2400  ret = ::sema_post(&sig_sem);
2401  assert(ret == 0, "sema_post() failed");
2402}
2403
2404static int check_pending_signals(bool wait_for_signal) {
2405  int ret;
2406  while (true) {
2407    for (int i = 0; i < Sigexit + 1; i++) {
2408      jint n = pending_signals[i];
2409      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2410        return i;
2411      }
2412    }
2413    if (!wait_for_signal) {
2414      return -1;
2415    }
2416    JavaThread *thread = JavaThread::current();
2417    ThreadBlockInVM tbivm(thread);
2418
2419    bool threadIsSuspended;
2420    do {
2421      thread->set_suspend_equivalent();
2422      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2423      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2424        ;
2425      assert(ret == 0, "sema_wait() failed");
2426
2427      // were we externally suspended while we were waiting?
2428      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2429      if (threadIsSuspended) {
2430        // The semaphore has been incremented, but while we were waiting
2431        // another thread suspended us. We don't want to continue running
2432        // while suspended because that would surprise the thread that
2433        // suspended us.
2434        ret = ::sema_post(&sig_sem);
2435        assert(ret == 0, "sema_post() failed");
2436
2437        thread->java_suspend_self();
2438      }
2439    } while (threadIsSuspended);
2440  }
2441}
2442
2443int os::signal_lookup() {
2444  return check_pending_signals(false);
2445}
2446
2447int os::signal_wait() {
2448  return check_pending_signals(true);
2449}
2450
2451////////////////////////////////////////////////////////////////////////////////
2452// Virtual Memory
2453
2454static int page_size = -1;
2455
2456// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2457// clear this var if support is not available.
2458static bool has_map_align = true;
2459
2460int os::vm_page_size() {
2461  assert(page_size != -1, "must call os::init");
2462  return page_size;
2463}
2464
2465// Solaris allocates memory by pages.
2466int os::vm_allocation_granularity() {
2467  assert(page_size != -1, "must call os::init");
2468  return page_size;
2469}
2470
2471static bool recoverable_mmap_error(int err) {
2472  // See if the error is one we can let the caller handle. This
2473  // list of errno values comes from the Solaris mmap(2) man page.
2474  switch (err) {
2475  case EBADF:
2476  case EINVAL:
2477  case ENOTSUP:
2478    // let the caller deal with these errors
2479    return true;
2480
2481  default:
2482    // Any remaining errors on this OS can cause our reserved mapping
2483    // to be lost. That can cause confusion where different data
2484    // structures think they have the same memory mapped. The worst
2485    // scenario is if both the VM and a library think they have the
2486    // same memory mapped.
2487    return false;
2488  }
2489}
2490
2491static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2492                                    int err) {
2493  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2494          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2495          strerror(err), err);
2496}
2497
2498static void warn_fail_commit_memory(char* addr, size_t bytes,
2499                                    size_t alignment_hint, bool exec,
2500                                    int err) {
2501  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2502          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2503          alignment_hint, exec, strerror(err), err);
2504}
2505
2506int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2507  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2508  size_t size = bytes;
2509  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2510  if (res != NULL) {
2511    if (UseNUMAInterleaving) {
2512      numa_make_global(addr, bytes);
2513    }
2514    return 0;
2515  }
2516
2517  int err = errno;  // save errno from mmap() call in mmap_chunk()
2518
2519  if (!recoverable_mmap_error(err)) {
2520    warn_fail_commit_memory(addr, bytes, exec, err);
2521    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2522  }
2523
2524  return err;
2525}
2526
2527bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2528  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2529}
2530
2531void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2532                                  const char* mesg) {
2533  assert(mesg != NULL, "mesg must be specified");
2534  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2535  if (err != 0) {
2536    // the caller wants all commit errors to exit with the specified mesg:
2537    warn_fail_commit_memory(addr, bytes, exec, err);
2538    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2539  }
2540}
2541
2542size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2543  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2544         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2545                 alignment, (size_t) vm_page_size()));
2546
2547  for (int i = 0; _page_sizes[i] != 0; i++) {
2548    if (is_size_aligned(alignment, _page_sizes[i])) {
2549      return _page_sizes[i];
2550    }
2551  }
2552
2553  return (size_t) vm_page_size();
2554}
2555
2556int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2557                                    size_t alignment_hint, bool exec) {
2558  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2559  if (err == 0 && UseLargePages && alignment_hint > 0) {
2560    assert(is_size_aligned(bytes, alignment_hint),
2561           err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint));
2562
2563    // The syscall memcntl requires an exact page size (see man memcntl for details).
2564    size_t page_size = page_size_for_alignment(alignment_hint);
2565    if (page_size > (size_t) vm_page_size()) {
2566      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2567    }
2568  }
2569  return err;
2570}
2571
2572bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2573                          bool exec) {
2574  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2575}
2576
2577void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2578                                  size_t alignment_hint, bool exec,
2579                                  const char* mesg) {
2580  assert(mesg != NULL, "mesg must be specified");
2581  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2582  if (err != 0) {
2583    // the caller wants all commit errors to exit with the specified mesg:
2584    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2585    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2586  }
2587}
2588
2589// Uncommit the pages in a specified region.
2590void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2591  if (madvise(addr, bytes, MADV_FREE) < 0) {
2592    debug_only(warning("MADV_FREE failed."));
2593    return;
2594  }
2595}
2596
2597bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2598  return os::commit_memory(addr, size, !ExecMem);
2599}
2600
2601bool os::remove_stack_guard_pages(char* addr, size_t size) {
2602  return os::uncommit_memory(addr, size);
2603}
2604
2605// Change the page size in a given range.
2606void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2607  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2608  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2609  if (UseLargePages) {
2610    Solaris::setup_large_pages(addr, bytes, alignment_hint);
2611  }
2612}
2613
2614// Tell the OS to make the range local to the first-touching LWP
2615void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2616  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2617  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2618    debug_only(warning("MADV_ACCESS_LWP failed."));
2619  }
2620}
2621
2622// Tell the OS that this range would be accessed from different LWPs.
2623void os::numa_make_global(char *addr, size_t bytes) {
2624  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2625  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2626    debug_only(warning("MADV_ACCESS_MANY failed."));
2627  }
2628}
2629
2630// Get the number of the locality groups.
2631size_t os::numa_get_groups_num() {
2632  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2633  return n != -1 ? n : 1;
2634}
2635
2636// Get a list of leaf locality groups. A leaf lgroup is group that
2637// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2638// board. An LWP is assigned to one of these groups upon creation.
2639size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2640  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2641    ids[0] = 0;
2642    return 1;
2643  }
2644  int result_size = 0, top = 1, bottom = 0, cur = 0;
2645  for (int k = 0; k < size; k++) {
2646    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2647                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2648    if (r == -1) {
2649      ids[0] = 0;
2650      return 1;
2651    }
2652    if (!r) {
2653      // That's a leaf node.
2654      assert(bottom <= cur, "Sanity check");
2655      // Check if the node has memory
2656      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2657                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2658        ids[bottom++] = ids[cur];
2659      }
2660    }
2661    top += r;
2662    cur++;
2663  }
2664  if (bottom == 0) {
2665    // Handle a situation, when the OS reports no memory available.
2666    // Assume UMA architecture.
2667    ids[0] = 0;
2668    return 1;
2669  }
2670  return bottom;
2671}
2672
2673// Detect the topology change. Typically happens during CPU plugging-unplugging.
2674bool os::numa_topology_changed() {
2675  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2676  if (is_stale != -1 && is_stale) {
2677    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2678    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2679    assert(c != 0, "Failure to initialize LGRP API");
2680    Solaris::set_lgrp_cookie(c);
2681    return true;
2682  }
2683  return false;
2684}
2685
2686// Get the group id of the current LWP.
2687int os::numa_get_group_id() {
2688  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2689  if (lgrp_id == -1) {
2690    return 0;
2691  }
2692  const int size = os::numa_get_groups_num();
2693  int *ids = (int*)alloca(size * sizeof(int));
2694
2695  // Get the ids of all lgroups with memory; r is the count.
2696  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2697                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2698  if (r <= 0) {
2699    return 0;
2700  }
2701  return ids[os::random() % r];
2702}
2703
2704// Request information about the page.
2705bool os::get_page_info(char *start, page_info* info) {
2706  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2707  uint64_t addr = (uintptr_t)start;
2708  uint64_t outdata[2];
2709  uint_t validity = 0;
2710
2711  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2712    return false;
2713  }
2714
2715  info->size = 0;
2716  info->lgrp_id = -1;
2717
2718  if ((validity & 1) != 0) {
2719    if ((validity & 2) != 0) {
2720      info->lgrp_id = outdata[0];
2721    }
2722    if ((validity & 4) != 0) {
2723      info->size = outdata[1];
2724    }
2725    return true;
2726  }
2727  return false;
2728}
2729
2730// Scan the pages from start to end until a page different than
2731// the one described in the info parameter is encountered.
2732char *os::scan_pages(char *start, char* end, page_info* page_expected,
2733                     page_info* page_found) {
2734  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2735  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2736  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2737  uint_t validity[MAX_MEMINFO_CNT];
2738
2739  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2740  uint64_t p = (uint64_t)start;
2741  while (p < (uint64_t)end) {
2742    addrs[0] = p;
2743    size_t addrs_count = 1;
2744    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2745      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2746      addrs_count++;
2747    }
2748
2749    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2750      return NULL;
2751    }
2752
2753    size_t i = 0;
2754    for (; i < addrs_count; i++) {
2755      if ((validity[i] & 1) != 0) {
2756        if ((validity[i] & 4) != 0) {
2757          if (outdata[types * i + 1] != page_expected->size) {
2758            break;
2759          }
2760        } else if (page_expected->size != 0) {
2761          break;
2762        }
2763
2764        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2765          if (outdata[types * i] != page_expected->lgrp_id) {
2766            break;
2767          }
2768        }
2769      } else {
2770        return NULL;
2771      }
2772    }
2773
2774    if (i < addrs_count) {
2775      if ((validity[i] & 2) != 0) {
2776        page_found->lgrp_id = outdata[types * i];
2777      } else {
2778        page_found->lgrp_id = -1;
2779      }
2780      if ((validity[i] & 4) != 0) {
2781        page_found->size = outdata[types * i + 1];
2782      } else {
2783        page_found->size = 0;
2784      }
2785      return (char*)addrs[i];
2786    }
2787
2788    p = addrs[addrs_count - 1] + page_size;
2789  }
2790  return end;
2791}
2792
2793bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2794  size_t size = bytes;
2795  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2796  // uncommitted page. Otherwise, the read/write might succeed if we
2797  // have enough swap space to back the physical page.
2798  return
2799    NULL != Solaris::mmap_chunk(addr, size,
2800                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2801                                PROT_NONE);
2802}
2803
2804char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2805  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2806
2807  if (b == MAP_FAILED) {
2808    return NULL;
2809  }
2810  return b;
2811}
2812
2813char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2814                             size_t alignment_hint, bool fixed) {
2815  char* addr = requested_addr;
2816  int flags = MAP_PRIVATE | MAP_NORESERVE;
2817
2818  assert(!(fixed && (alignment_hint > 0)),
2819         "alignment hint meaningless with fixed mmap");
2820
2821  if (fixed) {
2822    flags |= MAP_FIXED;
2823  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2824    flags |= MAP_ALIGN;
2825    addr = (char*) alignment_hint;
2826  }
2827
2828  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2829  // uncommitted page. Otherwise, the read/write might succeed if we
2830  // have enough swap space to back the physical page.
2831  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2832}
2833
2834char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2835                            size_t alignment_hint) {
2836  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2837                                  (requested_addr != NULL));
2838
2839  guarantee(requested_addr == NULL || requested_addr == addr,
2840            "OS failed to return requested mmap address.");
2841  return addr;
2842}
2843
2844// Reserve memory at an arbitrary address, only if that area is
2845// available (and not reserved for something else).
2846
2847char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2848  const int max_tries = 10;
2849  char* base[max_tries];
2850  size_t size[max_tries];
2851
2852  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2853  // is dependent on the requested size and the MMU.  Our initial gap
2854  // value here is just a guess and will be corrected later.
2855  bool had_top_overlap = false;
2856  bool have_adjusted_gap = false;
2857  size_t gap = 0x400000;
2858
2859  // Assert only that the size is a multiple of the page size, since
2860  // that's all that mmap requires, and since that's all we really know
2861  // about at this low abstraction level.  If we need higher alignment,
2862  // we can either pass an alignment to this method or verify alignment
2863  // in one of the methods further up the call chain.  See bug 5044738.
2864  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2865
2866  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2867  // Give it a try, if the kernel honors the hint we can return immediately.
2868  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2869
2870  volatile int err = errno;
2871  if (addr == requested_addr) {
2872    return addr;
2873  } else if (addr != NULL) {
2874    pd_unmap_memory(addr, bytes);
2875  }
2876
2877  if (PrintMiscellaneous && Verbose) {
2878    char buf[256];
2879    buf[0] = '\0';
2880    if (addr == NULL) {
2881      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2882    }
2883    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2884            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2885            "%s", bytes, requested_addr, addr, buf);
2886  }
2887
2888  // Address hint method didn't work.  Fall back to the old method.
2889  // In theory, once SNV becomes our oldest supported platform, this
2890  // code will no longer be needed.
2891  //
2892  // Repeatedly allocate blocks until the block is allocated at the
2893  // right spot. Give up after max_tries.
2894  int i;
2895  for (i = 0; i < max_tries; ++i) {
2896    base[i] = reserve_memory(bytes);
2897
2898    if (base[i] != NULL) {
2899      // Is this the block we wanted?
2900      if (base[i] == requested_addr) {
2901        size[i] = bytes;
2902        break;
2903      }
2904
2905      // check that the gap value is right
2906      if (had_top_overlap && !have_adjusted_gap) {
2907        size_t actual_gap = base[i-1] - base[i] - bytes;
2908        if (gap != actual_gap) {
2909          // adjust the gap value and retry the last 2 allocations
2910          assert(i > 0, "gap adjustment code problem");
2911          have_adjusted_gap = true;  // adjust the gap only once, just in case
2912          gap = actual_gap;
2913          if (PrintMiscellaneous && Verbose) {
2914            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2915          }
2916          unmap_memory(base[i], bytes);
2917          unmap_memory(base[i-1], size[i-1]);
2918          i-=2;
2919          continue;
2920        }
2921      }
2922
2923      // Does this overlap the block we wanted? Give back the overlapped
2924      // parts and try again.
2925      //
2926      // There is still a bug in this code: if top_overlap == bytes,
2927      // the overlap is offset from requested region by the value of gap.
2928      // In this case giving back the overlapped part will not work,
2929      // because we'll give back the entire block at base[i] and
2930      // therefore the subsequent allocation will not generate a new gap.
2931      // This could be fixed with a new algorithm that used larger
2932      // or variable size chunks to find the requested region -
2933      // but such a change would introduce additional complications.
2934      // It's rare enough that the planets align for this bug,
2935      // so we'll just wait for a fix for 6204603/5003415 which
2936      // will provide a mmap flag to allow us to avoid this business.
2937
2938      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2939      if (top_overlap >= 0 && top_overlap < bytes) {
2940        had_top_overlap = true;
2941        unmap_memory(base[i], top_overlap);
2942        base[i] += top_overlap;
2943        size[i] = bytes - top_overlap;
2944      } else {
2945        size_t bottom_overlap = base[i] + bytes - requested_addr;
2946        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2947          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2948            warning("attempt_reserve_memory_at: possible alignment bug");
2949          }
2950          unmap_memory(requested_addr, bottom_overlap);
2951          size[i] = bytes - bottom_overlap;
2952        } else {
2953          size[i] = bytes;
2954        }
2955      }
2956    }
2957  }
2958
2959  // Give back the unused reserved pieces.
2960
2961  for (int j = 0; j < i; ++j) {
2962    if (base[j] != NULL) {
2963      unmap_memory(base[j], size[j]);
2964    }
2965  }
2966
2967  return (i < max_tries) ? requested_addr : NULL;
2968}
2969
2970bool os::pd_release_memory(char* addr, size_t bytes) {
2971  size_t size = bytes;
2972  return munmap(addr, size) == 0;
2973}
2974
2975static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2976  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2977         "addr must be page aligned");
2978  int retVal = mprotect(addr, bytes, prot);
2979  return retVal == 0;
2980}
2981
2982// Protect memory (Used to pass readonly pages through
2983// JNI GetArray<type>Elements with empty arrays.)
2984// Also, used for serialization page and for compressed oops null pointer
2985// checking.
2986bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2987                        bool is_committed) {
2988  unsigned int p = 0;
2989  switch (prot) {
2990  case MEM_PROT_NONE: p = PROT_NONE; break;
2991  case MEM_PROT_READ: p = PROT_READ; break;
2992  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2993  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2994  default:
2995    ShouldNotReachHere();
2996  }
2997  // is_committed is unused.
2998  return solaris_mprotect(addr, bytes, p);
2999}
3000
3001// guard_memory and unguard_memory only happens within stack guard pages.
3002// Since ISM pertains only to the heap, guard and unguard memory should not
3003/// happen with an ISM region.
3004bool os::guard_memory(char* addr, size_t bytes) {
3005  return solaris_mprotect(addr, bytes, PROT_NONE);
3006}
3007
3008bool os::unguard_memory(char* addr, size_t bytes) {
3009  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3010}
3011
3012// Large page support
3013static size_t _large_page_size = 0;
3014
3015// Insertion sort for small arrays (descending order).
3016static void insertion_sort_descending(size_t* array, int len) {
3017  for (int i = 0; i < len; i++) {
3018    size_t val = array[i];
3019    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3020      size_t tmp = array[key];
3021      array[key] = array[key - 1];
3022      array[key - 1] = tmp;
3023    }
3024  }
3025}
3026
3027bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
3028  const unsigned int usable_count = VM_Version::page_size_count();
3029  if (usable_count == 1) {
3030    return false;
3031  }
3032
3033  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3034  // build platform, getpagesizes() (without the '2') can be called directly.
3035  typedef int (*gps_t)(size_t[], int);
3036  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3037  if (gps_func == NULL) {
3038    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3039    if (gps_func == NULL) {
3040      if (warn) {
3041        warning("MPSS is not supported by the operating system.");
3042      }
3043      return false;
3044    }
3045  }
3046
3047  // Fill the array of page sizes.
3048  int n = (*gps_func)(_page_sizes, page_sizes_max);
3049  assert(n > 0, "Solaris bug?");
3050
3051  if (n == page_sizes_max) {
3052    // Add a sentinel value (necessary only if the array was completely filled
3053    // since it is static (zeroed at initialization)).
3054    _page_sizes[--n] = 0;
3055    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3056  }
3057  assert(_page_sizes[n] == 0, "missing sentinel");
3058  trace_page_sizes("available page sizes", _page_sizes, n);
3059
3060  if (n == 1) return false;     // Only one page size available.
3061
3062  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3063  // select up to usable_count elements.  First sort the array, find the first
3064  // acceptable value, then copy the usable sizes to the top of the array and
3065  // trim the rest.  Make sure to include the default page size :-).
3066  //
3067  // A better policy could get rid of the 4M limit by taking the sizes of the
3068  // important VM memory regions (java heap and possibly the code cache) into
3069  // account.
3070  insertion_sort_descending(_page_sizes, n);
3071  const size_t size_limit =
3072    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3073  int beg;
3074  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
3075  const int end = MIN2((int)usable_count, n) - 1;
3076  for (int cur = 0; cur < end; ++cur, ++beg) {
3077    _page_sizes[cur] = _page_sizes[beg];
3078  }
3079  _page_sizes[end] = vm_page_size();
3080  _page_sizes[end + 1] = 0;
3081
3082  if (_page_sizes[end] > _page_sizes[end - 1]) {
3083    // Default page size is not the smallest; sort again.
3084    insertion_sort_descending(_page_sizes, end + 1);
3085  }
3086  *page_size = _page_sizes[0];
3087
3088  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3089  return true;
3090}
3091
3092void os::large_page_init() {
3093  if (UseLargePages) {
3094    // print a warning if any large page related flag is specified on command line
3095    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3096                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3097
3098    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3099  }
3100}
3101
3102bool os::Solaris::is_valid_page_size(size_t bytes) {
3103  for (int i = 0; _page_sizes[i] != 0; i++) {
3104    if (_page_sizes[i] == bytes) {
3105      return true;
3106    }
3107  }
3108  return false;
3109}
3110
3111bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3112  assert(is_valid_page_size(align), err_msg(SIZE_FORMAT " is not a valid page size", align));
3113  assert(is_ptr_aligned((void*) start, align),
3114         err_msg(PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align));
3115  assert(is_size_aligned(bytes, align),
3116         err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align));
3117
3118  // Signal to OS that we want large pages for addresses
3119  // from addr, addr + bytes
3120  struct memcntl_mha mpss_struct;
3121  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3122  mpss_struct.mha_pagesize = align;
3123  mpss_struct.mha_flags = 0;
3124  // Upon successful completion, memcntl() returns 0
3125  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3126    debug_only(warning("Attempt to use MPSS failed."));
3127    return false;
3128  }
3129  return true;
3130}
3131
3132char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3133  fatal("os::reserve_memory_special should not be called on Solaris.");
3134  return NULL;
3135}
3136
3137bool os::release_memory_special(char* base, size_t bytes) {
3138  fatal("os::release_memory_special should not be called on Solaris.");
3139  return false;
3140}
3141
3142size_t os::large_page_size() {
3143  return _large_page_size;
3144}
3145
3146// MPSS allows application to commit large page memory on demand; with ISM
3147// the entire memory region must be allocated as shared memory.
3148bool os::can_commit_large_page_memory() {
3149  return true;
3150}
3151
3152bool os::can_execute_large_page_memory() {
3153  return true;
3154}
3155
3156// Read calls from inside the vm need to perform state transitions
3157size_t os::read(int fd, void *buf, unsigned int nBytes) {
3158  size_t res;
3159  JavaThread* thread = (JavaThread*)Thread::current();
3160  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3161  ThreadBlockInVM tbiv(thread);
3162  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3163  return res;
3164}
3165
3166size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3167  size_t res;
3168  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3169         "Assumed _thread_in_native");
3170  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3171  return res;
3172}
3173
3174void os::naked_short_sleep(jlong ms) {
3175  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3176
3177  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3178  // Solaris requires -lrt for this.
3179  usleep((ms * 1000));
3180
3181  return;
3182}
3183
3184// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3185void os::infinite_sleep() {
3186  while (true) {    // sleep forever ...
3187    ::sleep(100);   // ... 100 seconds at a time
3188  }
3189}
3190
3191// Used to convert frequent JVM_Yield() to nops
3192bool os::dont_yield() {
3193  if (DontYieldALot) {
3194    static hrtime_t last_time = 0;
3195    hrtime_t diff = getTimeNanos() - last_time;
3196
3197    if (diff < DontYieldALotInterval * 1000000) {
3198      return true;
3199    }
3200
3201    last_time += diff;
3202
3203    return false;
3204  } else {
3205    return false;
3206  }
3207}
3208
3209// Note that yield semantics are defined by the scheduling class to which
3210// the thread currently belongs.  Typically, yield will _not yield to
3211// other equal or higher priority threads that reside on the dispatch queues
3212// of other CPUs.
3213
3214void os::naked_yield() {
3215  thr_yield();
3216}
3217
3218// Interface for setting lwp priorities.  If we are using T2 libthread,
3219// which forces the use of BoundThreads or we manually set UseBoundThreads,
3220// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3221// function is meaningless in this mode so we must adjust the real lwp's priority
3222// The routines below implement the getting and setting of lwp priorities.
3223//
3224// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3225//       being deprecated and all threads are now BoundThreads
3226//
3227// Note: There are three priority scales used on Solaris.  Java priotities
3228//       which range from 1 to 10, libthread "thr_setprio" scale which range
3229//       from 0 to 127, and the current scheduling class of the process we
3230//       are running in.  This is typically from -60 to +60.
3231//       The setting of the lwp priorities in done after a call to thr_setprio
3232//       so Java priorities are mapped to libthread priorities and we map from
3233//       the latter to lwp priorities.  We don't keep priorities stored in
3234//       Java priorities since some of our worker threads want to set priorities
3235//       higher than all Java threads.
3236//
3237// For related information:
3238// (1)  man -s 2 priocntl
3239// (2)  man -s 4 priocntl
3240// (3)  man dispadmin
3241// =    librt.so
3242// =    libthread/common/rtsched.c - thrp_setlwpprio().
3243// =    ps -cL <pid> ... to validate priority.
3244// =    sched_get_priority_min and _max
3245//              pthread_create
3246//              sched_setparam
3247//              pthread_setschedparam
3248//
3249// Assumptions:
3250// +    We assume that all threads in the process belong to the same
3251//              scheduling class.   IE. an homogenous process.
3252// +    Must be root or in IA group to change change "interactive" attribute.
3253//              Priocntl() will fail silently.  The only indication of failure is when
3254//              we read-back the value and notice that it hasn't changed.
3255// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3256// +    For RT, change timeslice as well.  Invariant:
3257//              constant "priority integral"
3258//              Konst == TimeSlice * (60-Priority)
3259//              Given a priority, compute appropriate timeslice.
3260// +    Higher numerical values have higher priority.
3261
3262// sched class attributes
3263typedef struct {
3264  int   schedPolicy;              // classID
3265  int   maxPrio;
3266  int   minPrio;
3267} SchedInfo;
3268
3269
3270static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3271
3272#ifdef ASSERT
3273static int  ReadBackValidate = 1;
3274#endif
3275static int  myClass     = 0;
3276static int  myMin       = 0;
3277static int  myMax       = 0;
3278static int  myCur       = 0;
3279static bool priocntl_enable = false;
3280
3281static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3282static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3283
3284
3285// lwp_priocntl_init
3286//
3287// Try to determine the priority scale for our process.
3288//
3289// Return errno or 0 if OK.
3290//
3291static int lwp_priocntl_init() {
3292  int rslt;
3293  pcinfo_t ClassInfo;
3294  pcparms_t ParmInfo;
3295  int i;
3296
3297  if (!UseThreadPriorities) return 0;
3298
3299  // If ThreadPriorityPolicy is 1, switch tables
3300  if (ThreadPriorityPolicy == 1) {
3301    for (i = 0; i < CriticalPriority+1; i++)
3302      os::java_to_os_priority[i] = prio_policy1[i];
3303  }
3304  if (UseCriticalJavaThreadPriority) {
3305    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3306    // See set_native_priority() and set_lwp_class_and_priority().
3307    // Save original MaxPriority mapping in case attempt to
3308    // use critical priority fails.
3309    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3310    // Set negative to distinguish from other priorities
3311    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3312  }
3313
3314  // Get IDs for a set of well-known scheduling classes.
3315  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3316  // the system.  We should have a loop that iterates over the
3317  // classID values, which are known to be "small" integers.
3318
3319  strcpy(ClassInfo.pc_clname, "TS");
3320  ClassInfo.pc_cid = -1;
3321  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3322  if (rslt < 0) return errno;
3323  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3324  tsLimits.schedPolicy = ClassInfo.pc_cid;
3325  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3326  tsLimits.minPrio = -tsLimits.maxPrio;
3327
3328  strcpy(ClassInfo.pc_clname, "IA");
3329  ClassInfo.pc_cid = -1;
3330  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3331  if (rslt < 0) return errno;
3332  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3333  iaLimits.schedPolicy = ClassInfo.pc_cid;
3334  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3335  iaLimits.minPrio = -iaLimits.maxPrio;
3336
3337  strcpy(ClassInfo.pc_clname, "RT");
3338  ClassInfo.pc_cid = -1;
3339  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3340  if (rslt < 0) return errno;
3341  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3342  rtLimits.schedPolicy = ClassInfo.pc_cid;
3343  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3344  rtLimits.minPrio = 0;
3345
3346  strcpy(ClassInfo.pc_clname, "FX");
3347  ClassInfo.pc_cid = -1;
3348  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3349  if (rslt < 0) return errno;
3350  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3351  fxLimits.schedPolicy = ClassInfo.pc_cid;
3352  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3353  fxLimits.minPrio = 0;
3354
3355  // Query our "current" scheduling class.
3356  // This will normally be IA, TS or, rarely, FX or RT.
3357  memset(&ParmInfo, 0, sizeof(ParmInfo));
3358  ParmInfo.pc_cid = PC_CLNULL;
3359  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3360  if (rslt < 0) return errno;
3361  myClass = ParmInfo.pc_cid;
3362
3363  // We now know our scheduling classId, get specific information
3364  // about the class.
3365  ClassInfo.pc_cid = myClass;
3366  ClassInfo.pc_clname[0] = 0;
3367  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3368  if (rslt < 0) return errno;
3369
3370  if (ThreadPriorityVerbose) {
3371    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3372  }
3373
3374  memset(&ParmInfo, 0, sizeof(pcparms_t));
3375  ParmInfo.pc_cid = PC_CLNULL;
3376  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3377  if (rslt < 0) return errno;
3378
3379  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3380    myMin = rtLimits.minPrio;
3381    myMax = rtLimits.maxPrio;
3382  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3383    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3384    myMin = iaLimits.minPrio;
3385    myMax = iaLimits.maxPrio;
3386    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3387  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3388    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3389    myMin = tsLimits.minPrio;
3390    myMax = tsLimits.maxPrio;
3391    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3392  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3393    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3394    myMin = fxLimits.minPrio;
3395    myMax = fxLimits.maxPrio;
3396    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3397  } else {
3398    // No clue - punt
3399    if (ThreadPriorityVerbose) {
3400      tty->print_cr("Unknown scheduling class: %s ... \n",
3401                    ClassInfo.pc_clname);
3402    }
3403    return EINVAL;      // no clue, punt
3404  }
3405
3406  if (ThreadPriorityVerbose) {
3407    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3408  }
3409
3410  priocntl_enable = true;  // Enable changing priorities
3411  return 0;
3412}
3413
3414#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3415#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3416#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3417#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3418
3419
3420// scale_to_lwp_priority
3421//
3422// Convert from the libthread "thr_setprio" scale to our current
3423// lwp scheduling class scale.
3424//
3425static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3426  int v;
3427
3428  if (x == 127) return rMax;            // avoid round-down
3429  v = (((x*(rMax-rMin)))/128)+rMin;
3430  return v;
3431}
3432
3433
3434// set_lwp_class_and_priority
3435int set_lwp_class_and_priority(int ThreadID, int lwpid,
3436                               int newPrio, int new_class, bool scale) {
3437  int rslt;
3438  int Actual, Expected, prv;
3439  pcparms_t ParmInfo;                   // for GET-SET
3440#ifdef ASSERT
3441  pcparms_t ReadBack;                   // for readback
3442#endif
3443
3444  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3445  // Query current values.
3446  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3447  // Cache "pcparms_t" in global ParmCache.
3448  // TODO: elide set-to-same-value
3449
3450  // If something went wrong on init, don't change priorities.
3451  if (!priocntl_enable) {
3452    if (ThreadPriorityVerbose) {
3453      tty->print_cr("Trying to set priority but init failed, ignoring");
3454    }
3455    return EINVAL;
3456  }
3457
3458  // If lwp hasn't started yet, just return
3459  // the _start routine will call us again.
3460  if (lwpid <= 0) {
3461    if (ThreadPriorityVerbose) {
3462      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3463                    INTPTR_FORMAT " to %d, lwpid not set",
3464                    ThreadID, newPrio);
3465    }
3466    return 0;
3467  }
3468
3469  if (ThreadPriorityVerbose) {
3470    tty->print_cr ("set_lwp_class_and_priority("
3471                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3472                   ThreadID, lwpid, newPrio);
3473  }
3474
3475  memset(&ParmInfo, 0, sizeof(pcparms_t));
3476  ParmInfo.pc_cid = PC_CLNULL;
3477  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3478  if (rslt < 0) return errno;
3479
3480  int cur_class = ParmInfo.pc_cid;
3481  ParmInfo.pc_cid = (id_t)new_class;
3482
3483  if (new_class == rtLimits.schedPolicy) {
3484    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3485    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3486                                                       rtLimits.maxPrio, newPrio)
3487                               : newPrio;
3488    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3489    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3490    if (ThreadPriorityVerbose) {
3491      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3492    }
3493  } else if (new_class == iaLimits.schedPolicy) {
3494    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3495    int maxClamped     = MIN2(iaLimits.maxPrio,
3496                              cur_class == new_class
3497                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3498    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3499                                                       maxClamped, newPrio)
3500                               : newPrio;
3501    iaInfo->ia_uprilim = cur_class == new_class
3502                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3503    iaInfo->ia_mode    = IA_NOCHANGE;
3504    if (ThreadPriorityVerbose) {
3505      tty->print_cr("IA: [%d...%d] %d->%d\n",
3506                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3507    }
3508  } else if (new_class == tsLimits.schedPolicy) {
3509    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3510    int maxClamped     = MIN2(tsLimits.maxPrio,
3511                              cur_class == new_class
3512                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3513    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3514                                                       maxClamped, newPrio)
3515                               : newPrio;
3516    tsInfo->ts_uprilim = cur_class == new_class
3517                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3518    if (ThreadPriorityVerbose) {
3519      tty->print_cr("TS: [%d...%d] %d->%d\n",
3520                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3521    }
3522  } else if (new_class == fxLimits.schedPolicy) {
3523    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3524    int maxClamped     = MIN2(fxLimits.maxPrio,
3525                              cur_class == new_class
3526                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3527    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3528                                                       maxClamped, newPrio)
3529                               : newPrio;
3530    fxInfo->fx_uprilim = cur_class == new_class
3531                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3532    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3533    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3534    if (ThreadPriorityVerbose) {
3535      tty->print_cr("FX: [%d...%d] %d->%d\n",
3536                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3537    }
3538  } else {
3539    if (ThreadPriorityVerbose) {
3540      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3541    }
3542    return EINVAL;    // no clue, punt
3543  }
3544
3545  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3546  if (ThreadPriorityVerbose && rslt) {
3547    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3548  }
3549  if (rslt < 0) return errno;
3550
3551#ifdef ASSERT
3552  // Sanity check: read back what we just attempted to set.
3553  // In theory it could have changed in the interim ...
3554  //
3555  // The priocntl system call is tricky.
3556  // Sometimes it'll validate the priority value argument and
3557  // return EINVAL if unhappy.  At other times it fails silently.
3558  // Readbacks are prudent.
3559
3560  if (!ReadBackValidate) return 0;
3561
3562  memset(&ReadBack, 0, sizeof(pcparms_t));
3563  ReadBack.pc_cid = PC_CLNULL;
3564  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3565  assert(rslt >= 0, "priocntl failed");
3566  Actual = Expected = 0xBAD;
3567  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3568  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3569    Actual   = RTPRI(ReadBack)->rt_pri;
3570    Expected = RTPRI(ParmInfo)->rt_pri;
3571  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3572    Actual   = IAPRI(ReadBack)->ia_upri;
3573    Expected = IAPRI(ParmInfo)->ia_upri;
3574  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3575    Actual   = TSPRI(ReadBack)->ts_upri;
3576    Expected = TSPRI(ParmInfo)->ts_upri;
3577  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3578    Actual   = FXPRI(ReadBack)->fx_upri;
3579    Expected = FXPRI(ParmInfo)->fx_upri;
3580  } else {
3581    if (ThreadPriorityVerbose) {
3582      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3583                    ParmInfo.pc_cid);
3584    }
3585  }
3586
3587  if (Actual != Expected) {
3588    if (ThreadPriorityVerbose) {
3589      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3590                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3591    }
3592  }
3593#endif
3594
3595  return 0;
3596}
3597
3598// Solaris only gives access to 128 real priorities at a time,
3599// so we expand Java's ten to fill this range.  This would be better
3600// if we dynamically adjusted relative priorities.
3601//
3602// The ThreadPriorityPolicy option allows us to select 2 different
3603// priority scales.
3604//
3605// ThreadPriorityPolicy=0
3606// Since the Solaris' default priority is MaximumPriority, we do not
3607// set a priority lower than Max unless a priority lower than
3608// NormPriority is requested.
3609//
3610// ThreadPriorityPolicy=1
3611// This mode causes the priority table to get filled with
3612// linear values.  NormPriority get's mapped to 50% of the
3613// Maximum priority an so on.  This will cause VM threads
3614// to get unfair treatment against other Solaris processes
3615// which do not explicitly alter their thread priorities.
3616
3617int os::java_to_os_priority[CriticalPriority + 1] = {
3618  -99999,         // 0 Entry should never be used
3619
3620  0,              // 1 MinPriority
3621  32,             // 2
3622  64,             // 3
3623
3624  96,             // 4
3625  127,            // 5 NormPriority
3626  127,            // 6
3627
3628  127,            // 7
3629  127,            // 8
3630  127,            // 9 NearMaxPriority
3631
3632  127,            // 10 MaxPriority
3633
3634  -criticalPrio   // 11 CriticalPriority
3635};
3636
3637OSReturn os::set_native_priority(Thread* thread, int newpri) {
3638  OSThread* osthread = thread->osthread();
3639
3640  // Save requested priority in case the thread hasn't been started
3641  osthread->set_native_priority(newpri);
3642
3643  // Check for critical priority request
3644  bool fxcritical = false;
3645  if (newpri == -criticalPrio) {
3646    fxcritical = true;
3647    newpri = criticalPrio;
3648  }
3649
3650  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3651  if (!UseThreadPriorities) return OS_OK;
3652
3653  int status = 0;
3654
3655  if (!fxcritical) {
3656    // Use thr_setprio only if we have a priority that thr_setprio understands
3657    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3658  }
3659
3660  int lwp_status =
3661          set_lwp_class_and_priority(osthread->thread_id(),
3662                                     osthread->lwp_id(),
3663                                     newpri,
3664                                     fxcritical ? fxLimits.schedPolicy : myClass,
3665                                     !fxcritical);
3666  if (lwp_status != 0 && fxcritical) {
3667    // Try again, this time without changing the scheduling class
3668    newpri = java_MaxPriority_to_os_priority;
3669    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3670                                            osthread->lwp_id(),
3671                                            newpri, myClass, false);
3672  }
3673  status |= lwp_status;
3674  return (status == 0) ? OS_OK : OS_ERR;
3675}
3676
3677
3678OSReturn os::get_native_priority(const Thread* const thread,
3679                                 int *priority_ptr) {
3680  int p;
3681  if (!UseThreadPriorities) {
3682    *priority_ptr = NormalPriority;
3683    return OS_OK;
3684  }
3685  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3686  if (status != 0) {
3687    return OS_ERR;
3688  }
3689  *priority_ptr = p;
3690  return OS_OK;
3691}
3692
3693
3694// Hint to the underlying OS that a task switch would not be good.
3695// Void return because it's a hint and can fail.
3696void os::hint_no_preempt() {
3697  schedctl_start(schedctl_init());
3698}
3699
3700static void resume_clear_context(OSThread *osthread) {
3701  osthread->set_ucontext(NULL);
3702}
3703
3704static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3705  osthread->set_ucontext(context);
3706}
3707
3708static Semaphore sr_semaphore;
3709
3710void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3711  // Save and restore errno to avoid confusing native code with EINTR
3712  // after sigsuspend.
3713  int old_errno = errno;
3714
3715  OSThread* osthread = thread->osthread();
3716  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3717
3718  os::SuspendResume::State current = osthread->sr.state();
3719  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3720    suspend_save_context(osthread, uc);
3721
3722    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3723    os::SuspendResume::State state = osthread->sr.suspended();
3724    if (state == os::SuspendResume::SR_SUSPENDED) {
3725      sigset_t suspend_set;  // signals for sigsuspend()
3726
3727      // get current set of blocked signals and unblock resume signal
3728      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
3729      sigdelset(&suspend_set, os::Solaris::SIGasync());
3730
3731      sr_semaphore.signal();
3732      // wait here until we are resumed
3733      while (1) {
3734        sigsuspend(&suspend_set);
3735
3736        os::SuspendResume::State result = osthread->sr.running();
3737        if (result == os::SuspendResume::SR_RUNNING) {
3738          sr_semaphore.signal();
3739          break;
3740        }
3741      }
3742
3743    } else if (state == os::SuspendResume::SR_RUNNING) {
3744      // request was cancelled, continue
3745    } else {
3746      ShouldNotReachHere();
3747    }
3748
3749    resume_clear_context(osthread);
3750  } else if (current == os::SuspendResume::SR_RUNNING) {
3751    // request was cancelled, continue
3752  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3753    // ignore
3754  } else {
3755    // ignore
3756  }
3757
3758  errno = old_errno;
3759}
3760
3761void os::print_statistics() {
3762}
3763
3764int os::message_box(const char* title, const char* message) {
3765  int i;
3766  fdStream err(defaultStream::error_fd());
3767  for (i = 0; i < 78; i++) err.print_raw("=");
3768  err.cr();
3769  err.print_raw_cr(title);
3770  for (i = 0; i < 78; i++) err.print_raw("-");
3771  err.cr();
3772  err.print_raw_cr(message);
3773  for (i = 0; i < 78; i++) err.print_raw("=");
3774  err.cr();
3775
3776  char buf[16];
3777  // Prevent process from exiting upon "read error" without consuming all CPU
3778  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3779
3780  return buf[0] == 'y' || buf[0] == 'Y';
3781}
3782
3783static int sr_notify(OSThread* osthread) {
3784  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3785  assert_status(status == 0, status, "thr_kill");
3786  return status;
3787}
3788
3789// "Randomly" selected value for how long we want to spin
3790// before bailing out on suspending a thread, also how often
3791// we send a signal to a thread we want to resume
3792static const int RANDOMLY_LARGE_INTEGER = 1000000;
3793static const int RANDOMLY_LARGE_INTEGER2 = 100;
3794
3795static bool do_suspend(OSThread* osthread) {
3796  assert(osthread->sr.is_running(), "thread should be running");
3797  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3798
3799  // mark as suspended and send signal
3800  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3801    // failed to switch, state wasn't running?
3802    ShouldNotReachHere();
3803    return false;
3804  }
3805
3806  if (sr_notify(osthread) != 0) {
3807    ShouldNotReachHere();
3808  }
3809
3810  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3811  while (true) {
3812    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3813      break;
3814    } else {
3815      // timeout
3816      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3817      if (cancelled == os::SuspendResume::SR_RUNNING) {
3818        return false;
3819      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3820        // make sure that we consume the signal on the semaphore as well
3821        sr_semaphore.wait();
3822        break;
3823      } else {
3824        ShouldNotReachHere();
3825        return false;
3826      }
3827    }
3828  }
3829
3830  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3831  return true;
3832}
3833
3834static void do_resume(OSThread* osthread) {
3835  assert(osthread->sr.is_suspended(), "thread should be suspended");
3836  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3837
3838  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3839    // failed to switch to WAKEUP_REQUEST
3840    ShouldNotReachHere();
3841    return;
3842  }
3843
3844  while (true) {
3845    if (sr_notify(osthread) == 0) {
3846      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3847        if (osthread->sr.is_running()) {
3848          return;
3849        }
3850      }
3851    } else {
3852      ShouldNotReachHere();
3853    }
3854  }
3855
3856  guarantee(osthread->sr.is_running(), "Must be running!");
3857}
3858
3859void os::SuspendedThreadTask::internal_do_task() {
3860  if (do_suspend(_thread->osthread())) {
3861    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3862    do_task(context);
3863    do_resume(_thread->osthread());
3864  }
3865}
3866
3867class PcFetcher : public os::SuspendedThreadTask {
3868 public:
3869  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3870  ExtendedPC result();
3871 protected:
3872  void do_task(const os::SuspendedThreadTaskContext& context);
3873 private:
3874  ExtendedPC _epc;
3875};
3876
3877ExtendedPC PcFetcher::result() {
3878  guarantee(is_done(), "task is not done yet.");
3879  return _epc;
3880}
3881
3882void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3883  Thread* thread = context.thread();
3884  OSThread* osthread = thread->osthread();
3885  if (osthread->ucontext() != NULL) {
3886    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
3887  } else {
3888    // NULL context is unexpected, double-check this is the VMThread
3889    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3890  }
3891}
3892
3893// A lightweight implementation that does not suspend the target thread and
3894// thus returns only a hint. Used for profiling only!
3895ExtendedPC os::get_thread_pc(Thread* thread) {
3896  // Make sure that it is called by the watcher and the Threads lock is owned.
3897  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3898  // For now, is only used to profile the VM Thread
3899  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3900  PcFetcher fetcher(thread);
3901  fetcher.run();
3902  return fetcher.result();
3903}
3904
3905
3906// This does not do anything on Solaris. This is basically a hook for being
3907// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3908void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3909                              methodHandle* method, JavaCallArguments* args,
3910                              Thread* thread) {
3911  f(value, method, args, thread);
3912}
3913
3914// This routine may be used by user applications as a "hook" to catch signals.
3915// The user-defined signal handler must pass unrecognized signals to this
3916// routine, and if it returns true (non-zero), then the signal handler must
3917// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3918// routine will never retun false (zero), but instead will execute a VM panic
3919// routine kill the process.
3920//
3921// If this routine returns false, it is OK to call it again.  This allows
3922// the user-defined signal handler to perform checks either before or after
3923// the VM performs its own checks.  Naturally, the user code would be making
3924// a serious error if it tried to handle an exception (such as a null check
3925// or breakpoint) that the VM was generating for its own correct operation.
3926//
3927// This routine may recognize any of the following kinds of signals:
3928// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3929// os::Solaris::SIGasync
3930// It should be consulted by handlers for any of those signals.
3931// It explicitly does not recognize os::Solaris::SIGinterrupt
3932//
3933// The caller of this routine must pass in the three arguments supplied
3934// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3935// field of the structure passed to sigaction().  This routine assumes that
3936// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3937//
3938// Note that the VM will print warnings if it detects conflicting signal
3939// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3940//
3941extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3942                                                   siginfo_t* siginfo,
3943                                                   void* ucontext,
3944                                                   int abort_if_unrecognized);
3945
3946
3947void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3948  int orig_errno = errno;  // Preserve errno value over signal handler.
3949  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3950  errno = orig_errno;
3951}
3952
3953// Do not delete - if guarantee is ever removed,  a signal handler (even empty)
3954// is needed to provoke threads blocked on IO to return an EINTR
3955// Note: this explicitly does NOT call JVM_handle_solaris_signal and
3956// does NOT participate in signal chaining due to requirement for
3957// NOT setting SA_RESTART to make EINTR work.
3958extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
3959  if (UseSignalChaining) {
3960    struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
3961    if (actp && actp->sa_handler) {
3962      vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
3963    }
3964  }
3965}
3966
3967// This boolean allows users to forward their own non-matching signals
3968// to JVM_handle_solaris_signal, harmlessly.
3969bool os::Solaris::signal_handlers_are_installed = false;
3970
3971// For signal-chaining
3972bool os::Solaris::libjsig_is_loaded = false;
3973typedef struct sigaction *(*get_signal_t)(int);
3974get_signal_t os::Solaris::get_signal_action = NULL;
3975
3976struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3977  struct sigaction *actp = NULL;
3978
3979  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3980    // Retrieve the old signal handler from libjsig
3981    actp = (*get_signal_action)(sig);
3982  }
3983  if (actp == NULL) {
3984    // Retrieve the preinstalled signal handler from jvm
3985    actp = get_preinstalled_handler(sig);
3986  }
3987
3988  return actp;
3989}
3990
3991static bool call_chained_handler(struct sigaction *actp, int sig,
3992                                 siginfo_t *siginfo, void *context) {
3993  // Call the old signal handler
3994  if (actp->sa_handler == SIG_DFL) {
3995    // It's more reasonable to let jvm treat it as an unexpected exception
3996    // instead of taking the default action.
3997    return false;
3998  } else if (actp->sa_handler != SIG_IGN) {
3999    if ((actp->sa_flags & SA_NODEFER) == 0) {
4000      // automaticlly block the signal
4001      sigaddset(&(actp->sa_mask), sig);
4002    }
4003
4004    sa_handler_t hand;
4005    sa_sigaction_t sa;
4006    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4007    // retrieve the chained handler
4008    if (siginfo_flag_set) {
4009      sa = actp->sa_sigaction;
4010    } else {
4011      hand = actp->sa_handler;
4012    }
4013
4014    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4015      actp->sa_handler = SIG_DFL;
4016    }
4017
4018    // try to honor the signal mask
4019    sigset_t oset;
4020    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4021
4022    // call into the chained handler
4023    if (siginfo_flag_set) {
4024      (*sa)(sig, siginfo, context);
4025    } else {
4026      (*hand)(sig);
4027    }
4028
4029    // restore the signal mask
4030    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4031  }
4032  // Tell jvm's signal handler the signal is taken care of.
4033  return true;
4034}
4035
4036bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4037  bool chained = false;
4038  // signal-chaining
4039  if (UseSignalChaining) {
4040    struct sigaction *actp = get_chained_signal_action(sig);
4041    if (actp != NULL) {
4042      chained = call_chained_handler(actp, sig, siginfo, context);
4043    }
4044  }
4045  return chained;
4046}
4047
4048struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4049  assert((chainedsigactions != (struct sigaction *)NULL) &&
4050         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4051  if (preinstalled_sigs[sig] != 0) {
4052    return &chainedsigactions[sig];
4053  }
4054  return NULL;
4055}
4056
4057void os::Solaris::save_preinstalled_handler(int sig,
4058                                            struct sigaction& oldAct) {
4059  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4060  assert((chainedsigactions != (struct sigaction *)NULL) &&
4061         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
4062  chainedsigactions[sig] = oldAct;
4063  preinstalled_sigs[sig] = 1;
4064}
4065
4066void os::Solaris::set_signal_handler(int sig, bool set_installed,
4067                                     bool oktochain) {
4068  // Check for overwrite.
4069  struct sigaction oldAct;
4070  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4071  void* oldhand =
4072      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4073                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4074  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4075      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4076      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4077    if (AllowUserSignalHandlers || !set_installed) {
4078      // Do not overwrite; user takes responsibility to forward to us.
4079      return;
4080    } else if (UseSignalChaining) {
4081      if (oktochain) {
4082        // save the old handler in jvm
4083        save_preinstalled_handler(sig, oldAct);
4084      } else {
4085        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4086      }
4087      // libjsig also interposes the sigaction() call below and saves the
4088      // old sigaction on it own.
4089    } else {
4090      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4091                    "%#lx for signal %d.", (long)oldhand, sig));
4092    }
4093  }
4094
4095  struct sigaction sigAct;
4096  sigfillset(&(sigAct.sa_mask));
4097  sigAct.sa_handler = SIG_DFL;
4098
4099  sigAct.sa_sigaction = signalHandler;
4100  // Handle SIGSEGV on alternate signal stack if
4101  // not using stack banging
4102  if (!UseStackBanging && sig == SIGSEGV) {
4103    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4104  } else if (sig == os::Solaris::SIGinterrupt()) {
4105    // Interruptible i/o requires SA_RESTART cleared so EINTR
4106    // is returned instead of restarting system calls
4107    sigemptyset(&sigAct.sa_mask);
4108    sigAct.sa_handler = NULL;
4109    sigAct.sa_flags = SA_SIGINFO;
4110    sigAct.sa_sigaction = sigINTRHandler;
4111  } else {
4112    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4113  }
4114  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4115
4116  sigaction(sig, &sigAct, &oldAct);
4117
4118  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4119                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4120  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4121}
4122
4123
4124#define DO_SIGNAL_CHECK(sig)                      \
4125  do {                                            \
4126    if (!sigismember(&check_signal_done, sig)) {  \
4127      os::Solaris::check_signal_handler(sig);     \
4128    }                                             \
4129  } while (0)
4130
4131// This method is a periodic task to check for misbehaving JNI applications
4132// under CheckJNI, we can add any periodic checks here
4133
4134void os::run_periodic_checks() {
4135  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4136  // thereby preventing a NULL checks.
4137  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4138
4139  if (check_signals == false) return;
4140
4141  // SEGV and BUS if overridden could potentially prevent
4142  // generation of hs*.log in the event of a crash, debugging
4143  // such a case can be very challenging, so we absolutely
4144  // check for the following for a good measure:
4145  DO_SIGNAL_CHECK(SIGSEGV);
4146  DO_SIGNAL_CHECK(SIGILL);
4147  DO_SIGNAL_CHECK(SIGFPE);
4148  DO_SIGNAL_CHECK(SIGBUS);
4149  DO_SIGNAL_CHECK(SIGPIPE);
4150  DO_SIGNAL_CHECK(SIGXFSZ);
4151
4152  // ReduceSignalUsage allows the user to override these handlers
4153  // see comments at the very top and jvm_solaris.h
4154  if (!ReduceSignalUsage) {
4155    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4156    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4157    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4158    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4159  }
4160
4161  // See comments above for using JVM1/JVM2 and UseAltSigs
4162  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4163  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4164
4165}
4166
4167typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4168
4169static os_sigaction_t os_sigaction = NULL;
4170
4171void os::Solaris::check_signal_handler(int sig) {
4172  char buf[O_BUFLEN];
4173  address jvmHandler = NULL;
4174
4175  struct sigaction act;
4176  if (os_sigaction == NULL) {
4177    // only trust the default sigaction, in case it has been interposed
4178    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4179    if (os_sigaction == NULL) return;
4180  }
4181
4182  os_sigaction(sig, (struct sigaction*)NULL, &act);
4183
4184  address thisHandler = (act.sa_flags & SA_SIGINFO)
4185    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4186    : CAST_FROM_FN_PTR(address, act.sa_handler);
4187
4188
4189  switch (sig) {
4190  case SIGSEGV:
4191  case SIGBUS:
4192  case SIGFPE:
4193  case SIGPIPE:
4194  case SIGXFSZ:
4195  case SIGILL:
4196    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4197    break;
4198
4199  case SHUTDOWN1_SIGNAL:
4200  case SHUTDOWN2_SIGNAL:
4201  case SHUTDOWN3_SIGNAL:
4202  case BREAK_SIGNAL:
4203    jvmHandler = (address)user_handler();
4204    break;
4205
4206  default:
4207    int intrsig = os::Solaris::SIGinterrupt();
4208    int asynsig = os::Solaris::SIGasync();
4209
4210    if (sig == intrsig) {
4211      jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4212    } else if (sig == asynsig) {
4213      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4214    } else {
4215      return;
4216    }
4217    break;
4218  }
4219
4220
4221  if (thisHandler != jvmHandler) {
4222    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4223    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4224    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4225    // No need to check this sig any longer
4226    sigaddset(&check_signal_done, sig);
4227    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4228    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4229      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4230                    exception_name(sig, buf, O_BUFLEN));
4231    }
4232  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4233    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4234    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4235    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4236    // No need to check this sig any longer
4237    sigaddset(&check_signal_done, sig);
4238  }
4239
4240  // Print all the signal handler state
4241  if (sigismember(&check_signal_done, sig)) {
4242    print_signal_handlers(tty, buf, O_BUFLEN);
4243  }
4244
4245}
4246
4247void os::Solaris::install_signal_handlers() {
4248  bool libjsigdone = false;
4249  signal_handlers_are_installed = true;
4250
4251  // signal-chaining
4252  typedef void (*signal_setting_t)();
4253  signal_setting_t begin_signal_setting = NULL;
4254  signal_setting_t end_signal_setting = NULL;
4255  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4256                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4257  if (begin_signal_setting != NULL) {
4258    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4259                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4260    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4261                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4262    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4263                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4264    libjsig_is_loaded = true;
4265    if (os::Solaris::get_libjsig_version != NULL) {
4266      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4267    }
4268    assert(UseSignalChaining, "should enable signal-chaining");
4269  }
4270  if (libjsig_is_loaded) {
4271    // Tell libjsig jvm is setting signal handlers
4272    (*begin_signal_setting)();
4273  }
4274
4275  set_signal_handler(SIGSEGV, true, true);
4276  set_signal_handler(SIGPIPE, true, true);
4277  set_signal_handler(SIGXFSZ, true, true);
4278  set_signal_handler(SIGBUS, true, true);
4279  set_signal_handler(SIGILL, true, true);
4280  set_signal_handler(SIGFPE, true, true);
4281
4282
4283  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4284
4285    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4286    // can not register overridable signals which might be > 32
4287    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4288      // Tell libjsig jvm has finished setting signal handlers
4289      (*end_signal_setting)();
4290      libjsigdone = true;
4291    }
4292  }
4293
4294  // Never ok to chain our SIGinterrupt
4295  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4296  set_signal_handler(os::Solaris::SIGasync(), true, true);
4297
4298  if (libjsig_is_loaded && !libjsigdone) {
4299    // Tell libjsig jvm finishes setting signal handlers
4300    (*end_signal_setting)();
4301  }
4302
4303  // We don't activate signal checker if libjsig is in place, we trust ourselves
4304  // and if UserSignalHandler is installed all bets are off.
4305  // Log that signal checking is off only if -verbose:jni is specified.
4306  if (CheckJNICalls) {
4307    if (libjsig_is_loaded) {
4308      if (PrintJNIResolving) {
4309        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4310      }
4311      check_signals = false;
4312    }
4313    if (AllowUserSignalHandlers) {
4314      if (PrintJNIResolving) {
4315        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4316      }
4317      check_signals = false;
4318    }
4319  }
4320}
4321
4322
4323void report_error(const char* file_name, int line_no, const char* title,
4324                  const char* format, ...);
4325
4326const char * signames[] = {
4327  "SIG0",
4328  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4329  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4330  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4331  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4332  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4333  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4334  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4335  "SIGCANCEL", "SIGLOST"
4336};
4337
4338const char* os::exception_name(int exception_code, char* buf, size_t size) {
4339  if (0 < exception_code && exception_code <= SIGRTMAX) {
4340    // signal
4341    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4342      jio_snprintf(buf, size, "%s", signames[exception_code]);
4343    } else {
4344      jio_snprintf(buf, size, "SIG%d", exception_code);
4345    }
4346    return buf;
4347  } else {
4348    return NULL;
4349  }
4350}
4351
4352// (Static) wrapper for getisax(2) call.
4353os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4354
4355// (Static) wrappers for the liblgrp API
4356os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4357os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4358os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4359os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4360os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4361os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4362os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4363os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4364os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4365
4366// (Static) wrapper for meminfo() call.
4367os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4368
4369static address resolve_symbol_lazy(const char* name) {
4370  address addr = (address) dlsym(RTLD_DEFAULT, name);
4371  if (addr == NULL) {
4372    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4373    addr = (address) dlsym(RTLD_NEXT, name);
4374  }
4375  return addr;
4376}
4377
4378static address resolve_symbol(const char* name) {
4379  address addr = resolve_symbol_lazy(name);
4380  if (addr == NULL) {
4381    fatal(dlerror());
4382  }
4383  return addr;
4384}
4385
4386void os::Solaris::libthread_init() {
4387  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4388
4389  lwp_priocntl_init();
4390
4391  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4392  if (func == NULL) {
4393    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4394    // Guarantee that this VM is running on an new enough OS (5.6 or
4395    // later) that it will have a new enough libthread.so.
4396    guarantee(func != NULL, "libthread.so is too old.");
4397  }
4398
4399  int size;
4400  void (*handler_info_func)(address *, int *);
4401  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4402  handler_info_func(&handler_start, &size);
4403  handler_end = handler_start + size;
4404}
4405
4406
4407int_fnP_mutex_tP os::Solaris::_mutex_lock;
4408int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4409int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4410int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4411int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4412int os::Solaris::_mutex_scope = USYNC_THREAD;
4413
4414int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4415int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4416int_fnP_cond_tP os::Solaris::_cond_signal;
4417int_fnP_cond_tP os::Solaris::_cond_broadcast;
4418int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4419int_fnP_cond_tP os::Solaris::_cond_destroy;
4420int os::Solaris::_cond_scope = USYNC_THREAD;
4421
4422void os::Solaris::synchronization_init() {
4423  if (UseLWPSynchronization) {
4424    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4425    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4426    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4427    os::Solaris::set_mutex_init(lwp_mutex_init);
4428    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4429    os::Solaris::set_mutex_scope(USYNC_THREAD);
4430
4431    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4432    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4433    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4434    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4435    os::Solaris::set_cond_init(lwp_cond_init);
4436    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4437    os::Solaris::set_cond_scope(USYNC_THREAD);
4438  } else {
4439    os::Solaris::set_mutex_scope(USYNC_THREAD);
4440    os::Solaris::set_cond_scope(USYNC_THREAD);
4441
4442    if (UsePthreads) {
4443      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4444      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4445      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4446      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4447      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4448
4449      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4450      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4451      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4452      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4453      os::Solaris::set_cond_init(pthread_cond_default_init);
4454      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4455    } else {
4456      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4457      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4458      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4459      os::Solaris::set_mutex_init(::mutex_init);
4460      os::Solaris::set_mutex_destroy(::mutex_destroy);
4461
4462      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4463      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4464      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4465      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4466      os::Solaris::set_cond_init(::cond_init);
4467      os::Solaris::set_cond_destroy(::cond_destroy);
4468    }
4469  }
4470}
4471
4472bool os::Solaris::liblgrp_init() {
4473  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4474  if (handle != NULL) {
4475    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4476    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4477    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4478    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4479    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4480    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4481    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4482    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4483                                                      dlsym(handle, "lgrp_cookie_stale")));
4484
4485    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4486    set_lgrp_cookie(c);
4487    return true;
4488  }
4489  return false;
4490}
4491
4492void os::Solaris::misc_sym_init() {
4493  address func;
4494
4495  // getisax
4496  func = resolve_symbol_lazy("getisax");
4497  if (func != NULL) {
4498    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4499  }
4500
4501  // meminfo
4502  func = resolve_symbol_lazy("meminfo");
4503  if (func != NULL) {
4504    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4505  }
4506}
4507
4508uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4509  assert(_getisax != NULL, "_getisax not set");
4510  return _getisax(array, n);
4511}
4512
4513// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4514typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4515static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4516
4517void init_pset_getloadavg_ptr(void) {
4518  pset_getloadavg_ptr =
4519    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4520  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4521    warning("pset_getloadavg function not found");
4522  }
4523}
4524
4525int os::Solaris::_dev_zero_fd = -1;
4526
4527// this is called _before_ the global arguments have been parsed
4528void os::init(void) {
4529  _initial_pid = getpid();
4530
4531  max_hrtime = first_hrtime = gethrtime();
4532
4533  init_random(1234567);
4534
4535  page_size = sysconf(_SC_PAGESIZE);
4536  if (page_size == -1) {
4537    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
4538                  strerror(errno)));
4539  }
4540  init_page_sizes((size_t) page_size);
4541
4542  Solaris::initialize_system_info();
4543
4544  // Initialize misc. symbols as soon as possible, so we can use them
4545  // if we need them.
4546  Solaris::misc_sym_init();
4547
4548  int fd = ::open("/dev/zero", O_RDWR);
4549  if (fd < 0) {
4550    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
4551  } else {
4552    Solaris::set_dev_zero_fd(fd);
4553
4554    // Close on exec, child won't inherit.
4555    fcntl(fd, F_SETFD, FD_CLOEXEC);
4556  }
4557
4558  clock_tics_per_sec = CLK_TCK;
4559
4560  // check if dladdr1() exists; dladdr1 can provide more information than
4561  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4562  // and is available on linker patches for 5.7 and 5.8.
4563  // libdl.so must have been loaded, this call is just an entry lookup
4564  void * hdl = dlopen("libdl.so", RTLD_NOW);
4565  if (hdl) {
4566    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4567  }
4568
4569  // (Solaris only) this switches to calls that actually do locking.
4570  ThreadCritical::initialize();
4571
4572  main_thread = thr_self();
4573
4574  // Constant minimum stack size allowed. It must be at least
4575  // the minimum of what the OS supports (thr_min_stack()), and
4576  // enough to allow the thread to get to user bytecode execution.
4577  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4578  // If the pagesize of the VM is greater than 8K determine the appropriate
4579  // number of initial guard pages.  The user can change this with the
4580  // command line arguments, if needed.
4581  if (vm_page_size() > 8*K) {
4582    StackYellowPages = 1;
4583    StackRedPages = 1;
4584    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
4585  }
4586}
4587
4588// To install functions for atexit system call
4589extern "C" {
4590  static void perfMemory_exit_helper() {
4591    perfMemory_exit();
4592  }
4593}
4594
4595// this is called _after_ the global arguments have been parsed
4596jint os::init_2(void) {
4597  // try to enable extended file IO ASAP, see 6431278
4598  os::Solaris::try_enable_extended_io();
4599
4600  // Allocate a single page and mark it as readable for safepoint polling.  Also
4601  // use this first mmap call to check support for MAP_ALIGN.
4602  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4603                                                      page_size,
4604                                                      MAP_PRIVATE | MAP_ALIGN,
4605                                                      PROT_READ);
4606  if (polling_page == NULL) {
4607    has_map_align = false;
4608    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4609                                                PROT_READ);
4610  }
4611
4612  os::set_polling_page(polling_page);
4613
4614#ifndef PRODUCT
4615  if (Verbose && PrintMiscellaneous) {
4616    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4617               (intptr_t)polling_page);
4618  }
4619#endif
4620
4621  if (!UseMembar) {
4622    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4623    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4624    os::set_memory_serialize_page(mem_serialize_page);
4625
4626#ifndef PRODUCT
4627    if (Verbose && PrintMiscellaneous) {
4628      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4629                 (intptr_t)mem_serialize_page);
4630    }
4631#endif
4632  }
4633
4634  // Check minimum allowable stack size for thread creation and to initialize
4635  // the java system classes, including StackOverflowError - depends on page
4636  // size.  Add a page for compiler2 recursion in main thread.
4637  // Add in 2*BytesPerWord times page size to account for VM stack during
4638  // class initialization depending on 32 or 64 bit VM.
4639  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4640                                        (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4641                                        2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4642
4643  size_t threadStackSizeInBytes = ThreadStackSize * K;
4644  if (threadStackSizeInBytes != 0 &&
4645      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4646    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4647                  os::Solaris::min_stack_allowed/K);
4648    return JNI_ERR;
4649  }
4650
4651  // For 64kbps there will be a 64kb page size, which makes
4652  // the usable default stack size quite a bit less.  Increase the
4653  // stack for 64kb (or any > than 8kb) pages, this increases
4654  // virtual memory fragmentation (since we're not creating the
4655  // stack on a power of 2 boundary.  The real fix for this
4656  // should be to fix the guard page mechanism.
4657
4658  if (vm_page_size() > 8*K) {
4659    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4660       ? threadStackSizeInBytes +
4661         ((StackYellowPages + StackRedPages) * vm_page_size())
4662       : 0;
4663    ThreadStackSize = threadStackSizeInBytes/K;
4664  }
4665
4666  // Make the stack size a multiple of the page size so that
4667  // the yellow/red zones can be guarded.
4668  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4669                                                vm_page_size()));
4670
4671  Solaris::libthread_init();
4672
4673  if (UseNUMA) {
4674    if (!Solaris::liblgrp_init()) {
4675      UseNUMA = false;
4676    } else {
4677      size_t lgrp_limit = os::numa_get_groups_num();
4678      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4679      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4680      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
4681      if (lgrp_num < 2) {
4682        // There's only one locality group, disable NUMA.
4683        UseNUMA = false;
4684      }
4685    }
4686    if (!UseNUMA && ForceNUMA) {
4687      UseNUMA = true;
4688    }
4689  }
4690
4691  Solaris::signal_sets_init();
4692  Solaris::init_signal_mem();
4693  Solaris::install_signal_handlers();
4694
4695  if (libjsigversion < JSIG_VERSION_1_4_1) {
4696    Maxlibjsigsigs = OLDMAXSIGNUM;
4697  }
4698
4699  // initialize synchronization primitives to use either thread or
4700  // lwp synchronization (controlled by UseLWPSynchronization)
4701  Solaris::synchronization_init();
4702
4703  if (MaxFDLimit) {
4704    // set the number of file descriptors to max. print out error
4705    // if getrlimit/setrlimit fails but continue regardless.
4706    struct rlimit nbr_files;
4707    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4708    if (status != 0) {
4709      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4710        perror("os::init_2 getrlimit failed");
4711      }
4712    } else {
4713      nbr_files.rlim_cur = nbr_files.rlim_max;
4714      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4715      if (status != 0) {
4716        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4717          perror("os::init_2 setrlimit failed");
4718        }
4719      }
4720    }
4721  }
4722
4723  // Calculate theoretical max. size of Threads to guard gainst
4724  // artifical out-of-memory situations, where all available address-
4725  // space has been reserved by thread stacks. Default stack size is 1Mb.
4726  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4727    JavaThread::stack_size_at_create() : (1*K*K);
4728  assert(pre_thread_stack_size != 0, "Must have a stack");
4729  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4730  // we should start doing Virtual Memory banging. Currently when the threads will
4731  // have used all but 200Mb of space.
4732  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4733  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4734
4735  // at-exit methods are called in the reverse order of their registration.
4736  // In Solaris 7 and earlier, atexit functions are called on return from
4737  // main or as a result of a call to exit(3C). There can be only 32 of
4738  // these functions registered and atexit() does not set errno. In Solaris
4739  // 8 and later, there is no limit to the number of functions registered
4740  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4741  // functions are called upon dlclose(3DL) in addition to return from main
4742  // and exit(3C).
4743
4744  if (PerfAllowAtExitRegistration) {
4745    // only register atexit functions if PerfAllowAtExitRegistration is set.
4746    // atexit functions can be delayed until process exit time, which
4747    // can be problematic for embedded VM situations. Embedded VMs should
4748    // call DestroyJavaVM() to assure that VM resources are released.
4749
4750    // note: perfMemory_exit_helper atexit function may be removed in
4751    // the future if the appropriate cleanup code can be added to the
4752    // VM_Exit VMOperation's doit method.
4753    if (atexit(perfMemory_exit_helper) != 0) {
4754      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4755    }
4756  }
4757
4758  // Init pset_loadavg function pointer
4759  init_pset_getloadavg_ptr();
4760
4761  return JNI_OK;
4762}
4763
4764void os::init_3(void) {
4765  return;
4766}
4767
4768// Mark the polling page as unreadable
4769void os::make_polling_page_unreadable(void) {
4770  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4771    fatal("Could not disable polling page");
4772  }
4773}
4774
4775// Mark the polling page as readable
4776void os::make_polling_page_readable(void) {
4777  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4778    fatal("Could not enable polling page");
4779  }
4780}
4781
4782// OS interface.
4783
4784bool os::check_heap(bool force) { return true; }
4785
4786// Is a (classpath) directory empty?
4787bool os::dir_is_empty(const char* path) {
4788  DIR *dir = NULL;
4789  struct dirent *ptr;
4790
4791  dir = opendir(path);
4792  if (dir == NULL) return true;
4793
4794  // Scan the directory
4795  bool result = true;
4796  char buf[sizeof(struct dirent) + MAX_PATH];
4797  struct dirent *dbuf = (struct dirent *) buf;
4798  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4799    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4800      result = false;
4801    }
4802  }
4803  closedir(dir);
4804  return result;
4805}
4806
4807// This code originates from JDK's sysOpen and open64_w
4808// from src/solaris/hpi/src/system_md.c
4809
4810int os::open(const char *path, int oflag, int mode) {
4811  if (strlen(path) > MAX_PATH - 1) {
4812    errno = ENAMETOOLONG;
4813    return -1;
4814  }
4815  int fd;
4816
4817  fd = ::open64(path, oflag, mode);
4818  if (fd == -1) return -1;
4819
4820  // If the open succeeded, the file might still be a directory
4821  {
4822    struct stat64 buf64;
4823    int ret = ::fstat64(fd, &buf64);
4824    int st_mode = buf64.st_mode;
4825
4826    if (ret != -1) {
4827      if ((st_mode & S_IFMT) == S_IFDIR) {
4828        errno = EISDIR;
4829        ::close(fd);
4830        return -1;
4831      }
4832    } else {
4833      ::close(fd);
4834      return -1;
4835    }
4836  }
4837
4838  // 32-bit Solaris systems suffer from:
4839  //
4840  // - an historical default soft limit of 256 per-process file
4841  //   descriptors that is too low for many Java programs.
4842  //
4843  // - a design flaw where file descriptors created using stdio
4844  //   fopen must be less than 256, _even_ when the first limit above
4845  //   has been raised.  This can cause calls to fopen (but not calls to
4846  //   open, for example) to fail mysteriously, perhaps in 3rd party
4847  //   native code (although the JDK itself uses fopen).  One can hardly
4848  //   criticize them for using this most standard of all functions.
4849  //
4850  // We attempt to make everything work anyways by:
4851  //
4852  // - raising the soft limit on per-process file descriptors beyond
4853  //   256
4854  //
4855  // - As of Solaris 10u4, we can request that Solaris raise the 256
4856  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4857  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4858  //
4859  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4860  //   workaround the bug by remapping non-stdio file descriptors below
4861  //   256 to ones beyond 256, which is done below.
4862  //
4863  // See:
4864  // 1085341: 32-bit stdio routines should support file descriptors >255
4865  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4866  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4867  //          enable_extended_FILE_stdio() in VM initialisation
4868  // Giri Mandalika's blog
4869  // http://technopark02.blogspot.com/2005_05_01_archive.html
4870  //
4871#ifndef  _LP64
4872  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4873    int newfd = ::fcntl(fd, F_DUPFD, 256);
4874    if (newfd != -1) {
4875      ::close(fd);
4876      fd = newfd;
4877    }
4878  }
4879#endif // 32-bit Solaris
4880
4881  // All file descriptors that are opened in the JVM and not
4882  // specifically destined for a subprocess should have the
4883  // close-on-exec flag set.  If we don't set it, then careless 3rd
4884  // party native code might fork and exec without closing all
4885  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4886  // UNIXProcess.c), and this in turn might:
4887  //
4888  // - cause end-of-file to fail to be detected on some file
4889  //   descriptors, resulting in mysterious hangs, or
4890  //
4891  // - might cause an fopen in the subprocess to fail on a system
4892  //   suffering from bug 1085341.
4893  //
4894  // (Yes, the default setting of the close-on-exec flag is a Unix
4895  // design flaw)
4896  //
4897  // See:
4898  // 1085341: 32-bit stdio routines should support file descriptors >255
4899  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4900  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4901  //
4902#ifdef FD_CLOEXEC
4903  {
4904    int flags = ::fcntl(fd, F_GETFD);
4905    if (flags != -1) {
4906      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4907    }
4908  }
4909#endif
4910
4911  return fd;
4912}
4913
4914// create binary file, rewriting existing file if required
4915int os::create_binary_file(const char* path, bool rewrite_existing) {
4916  int oflags = O_WRONLY | O_CREAT;
4917  if (!rewrite_existing) {
4918    oflags |= O_EXCL;
4919  }
4920  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4921}
4922
4923// return current position of file pointer
4924jlong os::current_file_offset(int fd) {
4925  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4926}
4927
4928// move file pointer to the specified offset
4929jlong os::seek_to_file_offset(int fd, jlong offset) {
4930  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4931}
4932
4933jlong os::lseek(int fd, jlong offset, int whence) {
4934  return (jlong) ::lseek64(fd, offset, whence);
4935}
4936
4937char * os::native_path(char *path) {
4938  return path;
4939}
4940
4941int os::ftruncate(int fd, jlong length) {
4942  return ::ftruncate64(fd, length);
4943}
4944
4945int os::fsync(int fd)  {
4946  RESTARTABLE_RETURN_INT(::fsync(fd));
4947}
4948
4949int os::available(int fd, jlong *bytes) {
4950  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4951         "Assumed _thread_in_native");
4952  jlong cur, end;
4953  int mode;
4954  struct stat64 buf64;
4955
4956  if (::fstat64(fd, &buf64) >= 0) {
4957    mode = buf64.st_mode;
4958    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4959      int n,ioctl_return;
4960
4961      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4962      if (ioctl_return>= 0) {
4963        *bytes = n;
4964        return 1;
4965      }
4966    }
4967  }
4968  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4969    return 0;
4970  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4971    return 0;
4972  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4973    return 0;
4974  }
4975  *bytes = end - cur;
4976  return 1;
4977}
4978
4979// Map a block of memory.
4980char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4981                        char *addr, size_t bytes, bool read_only,
4982                        bool allow_exec) {
4983  int prot;
4984  int flags;
4985
4986  if (read_only) {
4987    prot = PROT_READ;
4988    flags = MAP_SHARED;
4989  } else {
4990    prot = PROT_READ | PROT_WRITE;
4991    flags = MAP_PRIVATE;
4992  }
4993
4994  if (allow_exec) {
4995    prot |= PROT_EXEC;
4996  }
4997
4998  if (addr != NULL) {
4999    flags |= MAP_FIXED;
5000  }
5001
5002  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5003                                     fd, file_offset);
5004  if (mapped_address == MAP_FAILED) {
5005    return NULL;
5006  }
5007  return mapped_address;
5008}
5009
5010
5011// Remap a block of memory.
5012char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5013                          char *addr, size_t bytes, bool read_only,
5014                          bool allow_exec) {
5015  // same as map_memory() on this OS
5016  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5017                        allow_exec);
5018}
5019
5020
5021// Unmap a block of memory.
5022bool os::pd_unmap_memory(char* addr, size_t bytes) {
5023  return munmap(addr, bytes) == 0;
5024}
5025
5026void os::pause() {
5027  char filename[MAX_PATH];
5028  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5029    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5030  } else {
5031    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5032  }
5033
5034  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5035  if (fd != -1) {
5036    struct stat buf;
5037    ::close(fd);
5038    while (::stat(filename, &buf) == 0) {
5039      (void)::poll(NULL, 0, 100);
5040    }
5041  } else {
5042    jio_fprintf(stderr,
5043                "Could not open pause file '%s', continuing immediately.\n", filename);
5044  }
5045}
5046
5047#ifndef PRODUCT
5048#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5049// Turn this on if you need to trace synch operations.
5050// Set RECORD_SYNCH_LIMIT to a large-enough value,
5051// and call record_synch_enable and record_synch_disable
5052// around the computation of interest.
5053
5054void record_synch(char* name, bool returning);  // defined below
5055
5056class RecordSynch {
5057  char* _name;
5058 public:
5059  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
5060  ~RecordSynch()                       { record_synch(_name, true); }
5061};
5062
5063#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5064extern "C" ret name params {                                    \
5065  typedef ret name##_t params;                                  \
5066  static name##_t* implem = NULL;                               \
5067  static int callcount = 0;                                     \
5068  if (implem == NULL) {                                         \
5069    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5070    if (implem == NULL)  fatal(dlerror());                      \
5071  }                                                             \
5072  ++callcount;                                                  \
5073  RecordSynch _rs(#name);                                       \
5074  inner;                                                        \
5075  return implem args;                                           \
5076}
5077// in dbx, examine callcounts this way:
5078// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5079
5080#define CHECK_POINTER_OK(p) \
5081  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5082#define CHECK_MU \
5083  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5084#define CHECK_CV \
5085  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5086#define CHECK_P(p) \
5087  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5088
5089#define CHECK_MUTEX(mutex_op) \
5090  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5091
5092CHECK_MUTEX(   mutex_lock)
5093CHECK_MUTEX(  _mutex_lock)
5094CHECK_MUTEX( mutex_unlock)
5095CHECK_MUTEX(_mutex_unlock)
5096CHECK_MUTEX( mutex_trylock)
5097CHECK_MUTEX(_mutex_trylock)
5098
5099#define CHECK_COND(cond_op) \
5100  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
5101
5102CHECK_COND( cond_wait);
5103CHECK_COND(_cond_wait);
5104CHECK_COND(_cond_wait_cancel);
5105
5106#define CHECK_COND2(cond_op) \
5107  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
5108
5109CHECK_COND2( cond_timedwait);
5110CHECK_COND2(_cond_timedwait);
5111CHECK_COND2(_cond_timedwait_cancel);
5112
5113// do the _lwp_* versions too
5114#define mutex_t lwp_mutex_t
5115#define cond_t  lwp_cond_t
5116CHECK_MUTEX(  _lwp_mutex_lock)
5117CHECK_MUTEX(  _lwp_mutex_unlock)
5118CHECK_MUTEX(  _lwp_mutex_trylock)
5119CHECK_MUTEX( __lwp_mutex_lock)
5120CHECK_MUTEX( __lwp_mutex_unlock)
5121CHECK_MUTEX( __lwp_mutex_trylock)
5122CHECK_MUTEX(___lwp_mutex_lock)
5123CHECK_MUTEX(___lwp_mutex_unlock)
5124
5125CHECK_COND(  _lwp_cond_wait);
5126CHECK_COND( __lwp_cond_wait);
5127CHECK_COND(___lwp_cond_wait);
5128
5129CHECK_COND2(  _lwp_cond_timedwait);
5130CHECK_COND2( __lwp_cond_timedwait);
5131#undef mutex_t
5132#undef cond_t
5133
5134CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5135CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5136CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5137CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5138CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5139CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5140CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5141CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5142
5143
5144// recording machinery:
5145
5146enum { RECORD_SYNCH_LIMIT = 200 };
5147char* record_synch_name[RECORD_SYNCH_LIMIT];
5148void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5149bool record_synch_returning[RECORD_SYNCH_LIMIT];
5150thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5151int record_synch_count = 0;
5152bool record_synch_enabled = false;
5153
5154// in dbx, examine recorded data this way:
5155// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5156
5157void record_synch(char* name, bool returning) {
5158  if (record_synch_enabled) {
5159    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5160      record_synch_name[record_synch_count] = name;
5161      record_synch_returning[record_synch_count] = returning;
5162      record_synch_thread[record_synch_count] = thr_self();
5163      record_synch_arg0ptr[record_synch_count] = &name;
5164      record_synch_count++;
5165    }
5166    // put more checking code here:
5167    // ...
5168  }
5169}
5170
5171void record_synch_enable() {
5172  // start collecting trace data, if not already doing so
5173  if (!record_synch_enabled)  record_synch_count = 0;
5174  record_synch_enabled = true;
5175}
5176
5177void record_synch_disable() {
5178  // stop collecting trace data
5179  record_synch_enabled = false;
5180}
5181
5182#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5183#endif // PRODUCT
5184
5185const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5186const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5187                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5188
5189
5190// JVMTI & JVM monitoring and management support
5191// The thread_cpu_time() and current_thread_cpu_time() are only
5192// supported if is_thread_cpu_time_supported() returns true.
5193// They are not supported on Solaris T1.
5194
5195// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5196// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5197// of a thread.
5198//
5199// current_thread_cpu_time() and thread_cpu_time(Thread *)
5200// returns the fast estimate available on the platform.
5201
5202// hrtime_t gethrvtime() return value includes
5203// user time but does not include system time
5204jlong os::current_thread_cpu_time() {
5205  return (jlong) gethrvtime();
5206}
5207
5208jlong os::thread_cpu_time(Thread *thread) {
5209  // return user level CPU time only to be consistent with
5210  // what current_thread_cpu_time returns.
5211  // thread_cpu_time_info() must be changed if this changes
5212  return os::thread_cpu_time(thread, false /* user time only */);
5213}
5214
5215jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5216  if (user_sys_cpu_time) {
5217    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5218  } else {
5219    return os::current_thread_cpu_time();
5220  }
5221}
5222
5223jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5224  char proc_name[64];
5225  int count;
5226  prusage_t prusage;
5227  jlong lwp_time;
5228  int fd;
5229
5230  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5231          getpid(),
5232          thread->osthread()->lwp_id());
5233  fd = ::open(proc_name, O_RDONLY);
5234  if (fd == -1) return -1;
5235
5236  do {
5237    count = ::pread(fd,
5238                    (void *)&prusage.pr_utime,
5239                    thr_time_size,
5240                    thr_time_off);
5241  } while (count < 0 && errno == EINTR);
5242  ::close(fd);
5243  if (count < 0) return -1;
5244
5245  if (user_sys_cpu_time) {
5246    // user + system CPU time
5247    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5248                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5249                 (jlong)prusage.pr_stime.tv_nsec +
5250                 (jlong)prusage.pr_utime.tv_nsec;
5251  } else {
5252    // user level CPU time only
5253    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5254                (jlong)prusage.pr_utime.tv_nsec;
5255  }
5256
5257  return (lwp_time);
5258}
5259
5260void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5261  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5262  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5263  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5264  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5265}
5266
5267void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5268  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5269  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5270  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5271  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5272}
5273
5274bool os::is_thread_cpu_time_supported() {
5275  return true;
5276}
5277
5278// System loadavg support.  Returns -1 if load average cannot be obtained.
5279// Return the load average for our processor set if the primitive exists
5280// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5281int os::loadavg(double loadavg[], int nelem) {
5282  if (pset_getloadavg_ptr != NULL) {
5283    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5284  } else {
5285    return ::getloadavg(loadavg, nelem);
5286  }
5287}
5288
5289//---------------------------------------------------------------------------------
5290
5291bool os::find(address addr, outputStream* st) {
5292  Dl_info dlinfo;
5293  memset(&dlinfo, 0, sizeof(dlinfo));
5294  if (dladdr(addr, &dlinfo) != 0) {
5295    st->print(PTR_FORMAT ": ", addr);
5296    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5297      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5298    } else if (dlinfo.dli_fbase != NULL) {
5299      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5300    } else {
5301      st->print("<absolute address>");
5302    }
5303    if (dlinfo.dli_fname != NULL) {
5304      st->print(" in %s", dlinfo.dli_fname);
5305    }
5306    if (dlinfo.dli_fbase != NULL) {
5307      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5308    }
5309    st->cr();
5310
5311    if (Verbose) {
5312      // decode some bytes around the PC
5313      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5314      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5315      address       lowest = (address) dlinfo.dli_sname;
5316      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5317      if (begin < lowest)  begin = lowest;
5318      Dl_info dlinfo2;
5319      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5320          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5321        end = (address) dlinfo2.dli_saddr;
5322      }
5323      Disassembler::decode(begin, end, st);
5324    }
5325    return true;
5326  }
5327  return false;
5328}
5329
5330// Following function has been added to support HotSparc's libjvm.so running
5331// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5332// src/solaris/hpi/native_threads in the EVM codebase.
5333//
5334// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5335// libraries and should thus be removed. We will leave it behind for a while
5336// until we no longer want to able to run on top of 1.3.0 Solaris production
5337// JDK. See 4341971.
5338
5339#define STACK_SLACK 0x800
5340
5341extern "C" {
5342  intptr_t sysThreadAvailableStackWithSlack() {
5343    stack_t st;
5344    intptr_t retval, stack_top;
5345    retval = thr_stksegment(&st);
5346    assert(retval == 0, "incorrect return value from thr_stksegment");
5347    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5348    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5349    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5350    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5351  }
5352}
5353
5354// ObjectMonitor park-unpark infrastructure ...
5355//
5356// We implement Solaris and Linux PlatformEvents with the
5357// obvious condvar-mutex-flag triple.
5358// Another alternative that works quite well is pipes:
5359// Each PlatformEvent consists of a pipe-pair.
5360// The thread associated with the PlatformEvent
5361// calls park(), which reads from the input end of the pipe.
5362// Unpark() writes into the other end of the pipe.
5363// The write-side of the pipe must be set NDELAY.
5364// Unfortunately pipes consume a large # of handles.
5365// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5366// Using pipes for the 1st few threads might be workable, however.
5367//
5368// park() is permitted to return spuriously.
5369// Callers of park() should wrap the call to park() in
5370// an appropriate loop.  A litmus test for the correct
5371// usage of park is the following: if park() were modified
5372// to immediately return 0 your code should still work,
5373// albeit degenerating to a spin loop.
5374//
5375// An interesting optimization for park() is to use a trylock()
5376// to attempt to acquire the mutex.  If the trylock() fails
5377// then we know that a concurrent unpark() operation is in-progress.
5378// in that case the park() code could simply set _count to 0
5379// and return immediately.  The subsequent park() operation *might*
5380// return immediately.  That's harmless as the caller of park() is
5381// expected to loop.  By using trylock() we will have avoided a
5382// avoided a context switch caused by contention on the per-thread mutex.
5383//
5384// TODO-FIXME:
5385// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5386//     objectmonitor implementation.
5387// 2.  Collapse the JSR166 parker event, and the
5388//     objectmonitor ParkEvent into a single "Event" construct.
5389// 3.  In park() and unpark() add:
5390//     assert (Thread::current() == AssociatedWith).
5391// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5392//     1-out-of-N park() operations will return immediately.
5393//
5394// _Event transitions in park()
5395//   -1 => -1 : illegal
5396//    1 =>  0 : pass - return immediately
5397//    0 => -1 : block
5398//
5399// _Event serves as a restricted-range semaphore.
5400//
5401// Another possible encoding of _Event would be with
5402// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5403//
5404// TODO-FIXME: add DTRACE probes for:
5405// 1.   Tx parks
5406// 2.   Ty unparks Tx
5407// 3.   Tx resumes from park
5408
5409
5410// value determined through experimentation
5411#define ROUNDINGFIX 11
5412
5413// utility to compute the abstime argument to timedwait.
5414// TODO-FIXME: switch from compute_abstime() to unpackTime().
5415
5416static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5417  // millis is the relative timeout time
5418  // abstime will be the absolute timeout time
5419  if (millis < 0)  millis = 0;
5420  struct timeval now;
5421  int status = gettimeofday(&now, NULL);
5422  assert(status == 0, "gettimeofday");
5423  jlong seconds = millis / 1000;
5424  jlong max_wait_period;
5425
5426  if (UseLWPSynchronization) {
5427    // forward port of fix for 4275818 (not sleeping long enough)
5428    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5429    // _lwp_cond_timedwait() used a round_down algorithm rather
5430    // than a round_up. For millis less than our roundfactor
5431    // it rounded down to 0 which doesn't meet the spec.
5432    // For millis > roundfactor we may return a bit sooner, but
5433    // since we can not accurately identify the patch level and
5434    // this has already been fixed in Solaris 9 and 8 we will
5435    // leave it alone rather than always rounding down.
5436
5437    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5438    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5439    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5440    max_wait_period = 21000000;
5441  } else {
5442    max_wait_period = 50000000;
5443  }
5444  millis %= 1000;
5445  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5446    seconds = max_wait_period;
5447  }
5448  abstime->tv_sec = now.tv_sec  + seconds;
5449  long       usec = now.tv_usec + millis * 1000;
5450  if (usec >= 1000000) {
5451    abstime->tv_sec += 1;
5452    usec -= 1000000;
5453  }
5454  abstime->tv_nsec = usec * 1000;
5455  return abstime;
5456}
5457
5458void os::PlatformEvent::park() {           // AKA: down()
5459  // Invariant: Only the thread associated with the Event/PlatformEvent
5460  // may call park().
5461  assert(_nParked == 0, "invariant");
5462
5463  int v;
5464  for (;;) {
5465    v = _Event;
5466    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5467  }
5468  guarantee(v >= 0, "invariant");
5469  if (v == 0) {
5470    // Do this the hard way by blocking ...
5471    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5472    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5473    // Only for SPARC >= V8PlusA
5474#if defined(__sparc) && defined(COMPILER2)
5475    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5476#endif
5477    int status = os::Solaris::mutex_lock(_mutex);
5478    assert_status(status == 0, status, "mutex_lock");
5479    guarantee(_nParked == 0, "invariant");
5480    ++_nParked;
5481    while (_Event < 0) {
5482      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5483      // Treat this the same as if the wait was interrupted
5484      // With usr/lib/lwp going to kernel, always handle ETIME
5485      status = os::Solaris::cond_wait(_cond, _mutex);
5486      if (status == ETIME) status = EINTR;
5487      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5488    }
5489    --_nParked;
5490    _Event = 0;
5491    status = os::Solaris::mutex_unlock(_mutex);
5492    assert_status(status == 0, status, "mutex_unlock");
5493    // Paranoia to ensure our locked and lock-free paths interact
5494    // correctly with each other.
5495    OrderAccess::fence();
5496  }
5497}
5498
5499int os::PlatformEvent::park(jlong millis) {
5500  guarantee(_nParked == 0, "invariant");
5501  int v;
5502  for (;;) {
5503    v = _Event;
5504    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5505  }
5506  guarantee(v >= 0, "invariant");
5507  if (v != 0) return OS_OK;
5508
5509  int ret = OS_TIMEOUT;
5510  timestruc_t abst;
5511  compute_abstime(&abst, millis);
5512
5513  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5514  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5515  // Only for SPARC >= V8PlusA
5516#if defined(__sparc) && defined(COMPILER2)
5517  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5518#endif
5519  int status = os::Solaris::mutex_lock(_mutex);
5520  assert_status(status == 0, status, "mutex_lock");
5521  guarantee(_nParked == 0, "invariant");
5522  ++_nParked;
5523  while (_Event < 0) {
5524    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5525    assert_status(status == 0 || status == EINTR ||
5526                  status == ETIME || status == ETIMEDOUT,
5527                  status, "cond_timedwait");
5528    if (!FilterSpuriousWakeups) break;                // previous semantics
5529    if (status == ETIME || status == ETIMEDOUT) break;
5530    // We consume and ignore EINTR and spurious wakeups.
5531  }
5532  --_nParked;
5533  if (_Event >= 0) ret = OS_OK;
5534  _Event = 0;
5535  status = os::Solaris::mutex_unlock(_mutex);
5536  assert_status(status == 0, status, "mutex_unlock");
5537  // Paranoia to ensure our locked and lock-free paths interact
5538  // correctly with each other.
5539  OrderAccess::fence();
5540  return ret;
5541}
5542
5543void os::PlatformEvent::unpark() {
5544  // Transitions for _Event:
5545  //    0 :=> 1
5546  //    1 :=> 1
5547  //   -1 :=> either 0 or 1; must signal target thread
5548  //          That is, we can safely transition _Event from -1 to either
5549  //          0 or 1.
5550  // See also: "Semaphores in Plan 9" by Mullender & Cox
5551  //
5552  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5553  // that it will take two back-to-back park() calls for the owning
5554  // thread to block. This has the benefit of forcing a spurious return
5555  // from the first park() call after an unpark() call which will help
5556  // shake out uses of park() and unpark() without condition variables.
5557
5558  if (Atomic::xchg(1, &_Event) >= 0) return;
5559
5560  // If the thread associated with the event was parked, wake it.
5561  // Wait for the thread assoc with the PlatformEvent to vacate.
5562  int status = os::Solaris::mutex_lock(_mutex);
5563  assert_status(status == 0, status, "mutex_lock");
5564  int AnyWaiters = _nParked;
5565  status = os::Solaris::mutex_unlock(_mutex);
5566  assert_status(status == 0, status, "mutex_unlock");
5567  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5568  if (AnyWaiters != 0) {
5569    // We intentional signal *after* dropping the lock
5570    // to avoid a common class of futile wakeups.
5571    status = os::Solaris::cond_signal(_cond);
5572    assert_status(status == 0, status, "cond_signal");
5573  }
5574}
5575
5576// JSR166
5577// -------------------------------------------------------
5578
5579// The solaris and linux implementations of park/unpark are fairly
5580// conservative for now, but can be improved. They currently use a
5581// mutex/condvar pair, plus _counter.
5582// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5583// sets count to 1 and signals condvar.  Only one thread ever waits
5584// on the condvar. Contention seen when trying to park implies that someone
5585// is unparking you, so don't wait. And spurious returns are fine, so there
5586// is no need to track notifications.
5587
5588#define MAX_SECS 100000000
5589
5590// This code is common to linux and solaris and will be moved to a
5591// common place in dolphin.
5592//
5593// The passed in time value is either a relative time in nanoseconds
5594// or an absolute time in milliseconds. Either way it has to be unpacked
5595// into suitable seconds and nanoseconds components and stored in the
5596// given timespec structure.
5597// Given time is a 64-bit value and the time_t used in the timespec is only
5598// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5599// overflow if times way in the future are given. Further on Solaris versions
5600// prior to 10 there is a restriction (see cond_timedwait) that the specified
5601// number of seconds, in abstime, is less than current_time  + 100,000,000.
5602// As it will be 28 years before "now + 100000000" will overflow we can
5603// ignore overflow and just impose a hard-limit on seconds using the value
5604// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5605// years from "now".
5606//
5607static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5608  assert(time > 0, "convertTime");
5609
5610  struct timeval now;
5611  int status = gettimeofday(&now, NULL);
5612  assert(status == 0, "gettimeofday");
5613
5614  time_t max_secs = now.tv_sec + MAX_SECS;
5615
5616  if (isAbsolute) {
5617    jlong secs = time / 1000;
5618    if (secs > max_secs) {
5619      absTime->tv_sec = max_secs;
5620    } else {
5621      absTime->tv_sec = secs;
5622    }
5623    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5624  } else {
5625    jlong secs = time / NANOSECS_PER_SEC;
5626    if (secs >= MAX_SECS) {
5627      absTime->tv_sec = max_secs;
5628      absTime->tv_nsec = 0;
5629    } else {
5630      absTime->tv_sec = now.tv_sec + secs;
5631      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5632      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5633        absTime->tv_nsec -= NANOSECS_PER_SEC;
5634        ++absTime->tv_sec; // note: this must be <= max_secs
5635      }
5636    }
5637  }
5638  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5639  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5640  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5641  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5642}
5643
5644void Parker::park(bool isAbsolute, jlong time) {
5645  // Ideally we'd do something useful while spinning, such
5646  // as calling unpackTime().
5647
5648  // Optional fast-path check:
5649  // Return immediately if a permit is available.
5650  // We depend on Atomic::xchg() having full barrier semantics
5651  // since we are doing a lock-free update to _counter.
5652  if (Atomic::xchg(0, &_counter) > 0) return;
5653
5654  // Optional fast-exit: Check interrupt before trying to wait
5655  Thread* thread = Thread::current();
5656  assert(thread->is_Java_thread(), "Must be JavaThread");
5657  JavaThread *jt = (JavaThread *)thread;
5658  if (Thread::is_interrupted(thread, false)) {
5659    return;
5660  }
5661
5662  // First, demultiplex/decode time arguments
5663  timespec absTime;
5664  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5665    return;
5666  }
5667  if (time > 0) {
5668    // Warning: this code might be exposed to the old Solaris time
5669    // round-down bugs.  Grep "roundingFix" for details.
5670    unpackTime(&absTime, isAbsolute, time);
5671  }
5672
5673  // Enter safepoint region
5674  // Beware of deadlocks such as 6317397.
5675  // The per-thread Parker:: _mutex is a classic leaf-lock.
5676  // In particular a thread must never block on the Threads_lock while
5677  // holding the Parker:: mutex.  If safepoints are pending both the
5678  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5679  ThreadBlockInVM tbivm(jt);
5680
5681  // Don't wait if cannot get lock since interference arises from
5682  // unblocking.  Also. check interrupt before trying wait
5683  if (Thread::is_interrupted(thread, false) ||
5684      os::Solaris::mutex_trylock(_mutex) != 0) {
5685    return;
5686  }
5687
5688  int status;
5689
5690  if (_counter > 0)  { // no wait needed
5691    _counter = 0;
5692    status = os::Solaris::mutex_unlock(_mutex);
5693    assert(status == 0, "invariant");
5694    // Paranoia to ensure our locked and lock-free paths interact
5695    // correctly with each other and Java-level accesses.
5696    OrderAccess::fence();
5697    return;
5698  }
5699
5700#ifdef ASSERT
5701  // Don't catch signals while blocked; let the running threads have the signals.
5702  // (This allows a debugger to break into the running thread.)
5703  sigset_t oldsigs;
5704  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5705  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5706#endif
5707
5708  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5709  jt->set_suspend_equivalent();
5710  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5711
5712  // Do this the hard way by blocking ...
5713  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5714  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5715  // Only for SPARC >= V8PlusA
5716#if defined(__sparc) && defined(COMPILER2)
5717  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5718#endif
5719
5720  if (time == 0) {
5721    status = os::Solaris::cond_wait(_cond, _mutex);
5722  } else {
5723    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5724  }
5725  // Note that an untimed cond_wait() can sometimes return ETIME on older
5726  // versions of the Solaris.
5727  assert_status(status == 0 || status == EINTR ||
5728                status == ETIME || status == ETIMEDOUT,
5729                status, "cond_timedwait");
5730
5731#ifdef ASSERT
5732  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
5733#endif
5734  _counter = 0;
5735  status = os::Solaris::mutex_unlock(_mutex);
5736  assert_status(status == 0, status, "mutex_unlock");
5737  // Paranoia to ensure our locked and lock-free paths interact
5738  // correctly with each other and Java-level accesses.
5739  OrderAccess::fence();
5740
5741  // If externally suspended while waiting, re-suspend
5742  if (jt->handle_special_suspend_equivalent_condition()) {
5743    jt->java_suspend_self();
5744  }
5745}
5746
5747void Parker::unpark() {
5748  int status = os::Solaris::mutex_lock(_mutex);
5749  assert(status == 0, "invariant");
5750  const int s = _counter;
5751  _counter = 1;
5752  status = os::Solaris::mutex_unlock(_mutex);
5753  assert(status == 0, "invariant");
5754
5755  if (s < 1) {
5756    status = os::Solaris::cond_signal(_cond);
5757    assert(status == 0, "invariant");
5758  }
5759}
5760
5761extern char** environ;
5762
5763// Run the specified command in a separate process. Return its exit value,
5764// or -1 on failure (e.g. can't fork a new process).
5765// Unlike system(), this function can be called from signal handler. It
5766// doesn't block SIGINT et al.
5767int os::fork_and_exec(char* cmd) {
5768  char * argv[4];
5769  argv[0] = (char *)"sh";
5770  argv[1] = (char *)"-c";
5771  argv[2] = cmd;
5772  argv[3] = NULL;
5773
5774  // fork is async-safe, fork1 is not so can't use in signal handler
5775  pid_t pid;
5776  Thread* t = ThreadLocalStorage::get_thread_slow();
5777  if (t != NULL && t->is_inside_signal_handler()) {
5778    pid = fork();
5779  } else {
5780    pid = fork1();
5781  }
5782
5783  if (pid < 0) {
5784    // fork failed
5785    warning("fork failed: %s", strerror(errno));
5786    return -1;
5787
5788  } else if (pid == 0) {
5789    // child process
5790
5791    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5792    execve("/usr/bin/sh", argv, environ);
5793
5794    // execve failed
5795    _exit(-1);
5796
5797  } else  {
5798    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5799    // care about the actual exit code, for now.
5800
5801    int status;
5802
5803    // Wait for the child process to exit.  This returns immediately if
5804    // the child has already exited. */
5805    while (waitpid(pid, &status, 0) < 0) {
5806      switch (errno) {
5807      case ECHILD: return 0;
5808      case EINTR: break;
5809      default: return -1;
5810      }
5811    }
5812
5813    if (WIFEXITED(status)) {
5814      // The child exited normally; get its exit code.
5815      return WEXITSTATUS(status);
5816    } else if (WIFSIGNALED(status)) {
5817      // The child exited because of a signal
5818      // The best value to return is 0x80 + signal number,
5819      // because that is what all Unix shells do, and because
5820      // it allows callers to distinguish between process exit and
5821      // process death by signal.
5822      return 0x80 + WTERMSIG(status);
5823    } else {
5824      // Unknown exit code; pass it through
5825      return status;
5826    }
5827  }
5828}
5829
5830// is_headless_jre()
5831//
5832// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5833// in order to report if we are running in a headless jre
5834//
5835// Since JDK8 xawt/libmawt.so was moved into the same directory
5836// as libawt.so, and renamed libawt_xawt.so
5837//
5838bool os::is_headless_jre() {
5839  struct stat statbuf;
5840  char buf[MAXPATHLEN];
5841  char libmawtpath[MAXPATHLEN];
5842  const char *xawtstr  = "/xawt/libmawt.so";
5843  const char *new_xawtstr = "/libawt_xawt.so";
5844  char *p;
5845
5846  // Get path to libjvm.so
5847  os::jvm_path(buf, sizeof(buf));
5848
5849  // Get rid of libjvm.so
5850  p = strrchr(buf, '/');
5851  if (p == NULL) {
5852    return false;
5853  } else {
5854    *p = '\0';
5855  }
5856
5857  // Get rid of client or server
5858  p = strrchr(buf, '/');
5859  if (p == NULL) {
5860    return false;
5861  } else {
5862    *p = '\0';
5863  }
5864
5865  // check xawt/libmawt.so
5866  strcpy(libmawtpath, buf);
5867  strcat(libmawtpath, xawtstr);
5868  if (::stat(libmawtpath, &statbuf) == 0) return false;
5869
5870  // check libawt_xawt.so
5871  strcpy(libmawtpath, buf);
5872  strcat(libmawtpath, new_xawtstr);
5873  if (::stat(libmawtpath, &statbuf) == 0) return false;
5874
5875  return true;
5876}
5877
5878size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5879  size_t res;
5880  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5881         "Assumed _thread_in_native");
5882  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5883  return res;
5884}
5885
5886int os::close(int fd) {
5887  return ::close(fd);
5888}
5889
5890int os::socket_close(int fd) {
5891  return ::close(fd);
5892}
5893
5894int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5895  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5896         "Assumed _thread_in_native");
5897  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5898}
5899
5900int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5901  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5902         "Assumed _thread_in_native");
5903  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5904}
5905
5906int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5907  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5908}
5909
5910// As both poll and select can be interrupted by signals, we have to be
5911// prepared to restart the system call after updating the timeout, unless
5912// a poll() is done with timeout == -1, in which case we repeat with this
5913// "wait forever" value.
5914
5915int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5916  int _result;
5917  _result = ::connect(fd, him, len);
5918
5919  // On Solaris, when a connect() call is interrupted, the connection
5920  // can be established asynchronously (see 6343810). Subsequent calls
5921  // to connect() must check the errno value which has the semantic
5922  // described below (copied from the connect() man page). Handling
5923  // of asynchronously established connections is required for both
5924  // blocking and non-blocking sockets.
5925  //     EINTR            The  connection  attempt  was   interrupted
5926  //                      before  any data arrived by the delivery of
5927  //                      a signal. The connection, however, will  be
5928  //                      established asynchronously.
5929  //
5930  //     EINPROGRESS      The socket is non-blocking, and the connec-
5931  //                      tion  cannot  be completed immediately.
5932  //
5933  //     EALREADY         The socket is non-blocking,  and a previous
5934  //                      connection  attempt  has  not yet been com-
5935  //                      pleted.
5936  //
5937  //     EISCONN          The socket is already connected.
5938  if (_result == OS_ERR && errno == EINTR) {
5939    // restarting a connect() changes its errno semantics
5940    RESTARTABLE(::connect(fd, him, len), _result);
5941    // undo these changes
5942    if (_result == OS_ERR) {
5943      if (errno == EALREADY) {
5944        errno = EINPROGRESS; // fall through
5945      } else if (errno == EISCONN) {
5946        errno = 0;
5947        return OS_OK;
5948      }
5949    }
5950  }
5951  return _result;
5952}
5953
5954// Get the default path to the core file
5955// Returns the length of the string
5956int os::get_core_path(char* buffer, size_t bufferSize) {
5957  const char* p = get_current_directory(buffer, bufferSize);
5958
5959  if (p == NULL) {
5960    assert(p != NULL, "failed to get current directory");
5961    return 0;
5962  }
5963
5964  return strlen(buffer);
5965}
5966
5967#ifndef PRODUCT
5968void TestReserveMemorySpecial_test() {
5969  // No tests available for this platform
5970}
5971#endif
5972