os_solaris.cpp revision 5839:c250880a6673
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_solaris.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <dlfcn.h>
70# include <errno.h>
71# include <exception>
72# include <link.h>
73# include <poll.h>
74# include <pthread.h>
75# include <pwd.h>
76# include <schedctl.h>
77# include <setjmp.h>
78# include <signal.h>
79# include <stdio.h>
80# include <alloca.h>
81# include <sys/filio.h>
82# include <sys/ipc.h>
83# include <sys/lwp.h>
84# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
85# include <sys/mman.h>
86# include <sys/processor.h>
87# include <sys/procset.h>
88# include <sys/pset.h>
89# include <sys/resource.h>
90# include <sys/shm.h>
91# include <sys/socket.h>
92# include <sys/stat.h>
93# include <sys/systeminfo.h>
94# include <sys/time.h>
95# include <sys/times.h>
96# include <sys/types.h>
97# include <sys/wait.h>
98# include <sys/utsname.h>
99# include <thread.h>
100# include <unistd.h>
101# include <sys/priocntl.h>
102# include <sys/rtpriocntl.h>
103# include <sys/tspriocntl.h>
104# include <sys/iapriocntl.h>
105# include <sys/fxpriocntl.h>
106# include <sys/loadavg.h>
107# include <string.h>
108# include <stdio.h>
109
110# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
111# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
112
113#define MAX_PATH (2 * K)
114
115// for timer info max values which include all bits
116#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
117
118
119// Here are some liblgrp types from sys/lgrp_user.h to be able to
120// compile on older systems without this header file.
121
122#ifndef MADV_ACCESS_LWP
123# define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
124#endif
125#ifndef MADV_ACCESS_MANY
126# define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
127#endif
128
129#ifndef LGRP_RSRC_CPU
130# define LGRP_RSRC_CPU           0       /* CPU resources */
131#endif
132#ifndef LGRP_RSRC_MEM
133# define LGRP_RSRC_MEM           1       /* memory resources */
134#endif
135
136// see thr_setprio(3T) for the basis of these numbers
137#define MinimumPriority 0
138#define NormalPriority  64
139#define MaximumPriority 127
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162
163// "default" initializers for missing libc APIs
164extern "C" {
165  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
166  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
167
168  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
169  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
170}
171
172// "default" initializers for pthread-based synchronization
173extern "C" {
174  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
175  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
176}
177
178static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
179
180// Thread Local Storage
181// This is common to all Solaris platforms so it is defined here,
182// in this common file.
183// The declarations are in the os_cpu threadLS*.hpp files.
184//
185// Static member initialization for TLS
186Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
187
188#ifndef PRODUCT
189#define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
190
191int ThreadLocalStorage::_tcacheHit = 0;
192int ThreadLocalStorage::_tcacheMiss = 0;
193
194void ThreadLocalStorage::print_statistics() {
195  int total = _tcacheMiss+_tcacheHit;
196  tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
197                _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
198}
199#undef _PCT
200#endif // PRODUCT
201
202Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
203                                                        int index) {
204  Thread *thread = get_thread_slow();
205  if (thread != NULL) {
206    address sp = os::current_stack_pointer();
207    guarantee(thread->_stack_base == NULL ||
208              (sp <= thread->_stack_base &&
209                 sp >= thread->_stack_base - thread->_stack_size) ||
210               is_error_reported(),
211              "sp must be inside of selected thread stack");
212
213    thread->set_self_raw_id(raw_id);  // mark for quick retrieval
214    _get_thread_cache[ index ] = thread;
215  }
216  return thread;
217}
218
219
220static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
221#define NO_CACHED_THREAD ((Thread*)all_zero)
222
223void ThreadLocalStorage::pd_set_thread(Thread* thread) {
224
225  // Store the new value before updating the cache to prevent a race
226  // between get_thread_via_cache_slowly() and this store operation.
227  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
228
229  // Update thread cache with new thread if setting on thread create,
230  // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
231  uintptr_t raw = pd_raw_thread_id();
232  int ix = pd_cache_index(raw);
233  _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
234}
235
236void ThreadLocalStorage::pd_init() {
237  for (int i = 0; i < _pd_cache_size; i++) {
238    _get_thread_cache[i] = NO_CACHED_THREAD;
239  }
240}
241
242// Invalidate all the caches (happens to be the same as pd_init).
243void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
244
245#undef NO_CACHED_THREAD
246
247// END Thread Local Storage
248
249static inline size_t adjust_stack_size(address base, size_t size) {
250  if ((ssize_t)size < 0) {
251    // 4759953: Compensate for ridiculous stack size.
252    size = max_intx;
253  }
254  if (size > (size_t)base) {
255    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
256    size = (size_t)base;
257  }
258  return size;
259}
260
261static inline stack_t get_stack_info() {
262  stack_t st;
263  int retval = thr_stksegment(&st);
264  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
265  assert(retval == 0, "incorrect return value from thr_stksegment");
266  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
267  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
268  return st;
269}
270
271address os::current_stack_base() {
272  int r = thr_main() ;
273  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
274  bool is_primordial_thread = r;
275
276  // Workaround 4352906, avoid calls to thr_stksegment by
277  // thr_main after the first one (it looks like we trash
278  // some data, causing the value for ss_sp to be incorrect).
279  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
280    stack_t st = get_stack_info();
281    if (is_primordial_thread) {
282      // cache initial value of stack base
283      os::Solaris::_main_stack_base = (address)st.ss_sp;
284    }
285    return (address)st.ss_sp;
286  } else {
287    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
288    return os::Solaris::_main_stack_base;
289  }
290}
291
292size_t os::current_stack_size() {
293  size_t size;
294
295  int r = thr_main() ;
296  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
297  if(!r) {
298    size = get_stack_info().ss_size;
299  } else {
300    struct rlimit limits;
301    getrlimit(RLIMIT_STACK, &limits);
302    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
303  }
304  // base may not be page aligned
305  address base = current_stack_base();
306  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
307  return (size_t)(base - bottom);
308}
309
310struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
311  return localtime_r(clock, res);
312}
313
314// interruptible infrastructure
315
316// setup_interruptible saves the thread state before going into an
317// interruptible system call.
318// The saved state is used to restore the thread to
319// its former state whether or not an interrupt is received.
320// Used by classloader os::read
321// os::restartable_read calls skip this layer and stay in _thread_in_native
322
323void os::Solaris::setup_interruptible(JavaThread* thread) {
324
325  JavaThreadState thread_state = thread->thread_state();
326
327  assert(thread_state != _thread_blocked, "Coming from the wrong thread");
328  assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
329  OSThread* osthread = thread->osthread();
330  osthread->set_saved_interrupt_thread_state(thread_state);
331  thread->frame_anchor()->make_walkable(thread);
332  ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
333}
334
335// Version of setup_interruptible() for threads that are already in
336// _thread_blocked. Used by os_sleep().
337void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
338  thread->frame_anchor()->make_walkable(thread);
339}
340
341JavaThread* os::Solaris::setup_interruptible() {
342  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
343  setup_interruptible(thread);
344  return thread;
345}
346
347void os::Solaris::try_enable_extended_io() {
348  typedef int (*enable_extended_FILE_stdio_t)(int, int);
349
350  if (!UseExtendedFileIO) {
351    return;
352  }
353
354  enable_extended_FILE_stdio_t enabler =
355    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
356                                         "enable_extended_FILE_stdio");
357  if (enabler) {
358    enabler(-1, -1);
359  }
360}
361
362
363#ifdef ASSERT
364
365JavaThread* os::Solaris::setup_interruptible_native() {
366  JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
367  JavaThreadState thread_state = thread->thread_state();
368  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
369  return thread;
370}
371
372void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
373  JavaThreadState thread_state = thread->thread_state();
374  assert(thread_state == _thread_in_native, "Assumed thread_in_native");
375}
376#endif
377
378// cleanup_interruptible reverses the effects of setup_interruptible
379// setup_interruptible_already_blocked() does not need any cleanup.
380
381void os::Solaris::cleanup_interruptible(JavaThread* thread) {
382  OSThread* osthread = thread->osthread();
383
384  ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
385}
386
387// I/O interruption related counters called in _INTERRUPTIBLE
388
389void os::Solaris::bump_interrupted_before_count() {
390  RuntimeService::record_interrupted_before_count();
391}
392
393void os::Solaris::bump_interrupted_during_count() {
394  RuntimeService::record_interrupted_during_count();
395}
396
397static int _processors_online = 0;
398
399         jint os::Solaris::_os_thread_limit = 0;
400volatile jint os::Solaris::_os_thread_count = 0;
401
402julong os::available_memory() {
403  return Solaris::available_memory();
404}
405
406julong os::Solaris::available_memory() {
407  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
408}
409
410julong os::Solaris::_physical_memory = 0;
411
412julong os::physical_memory() {
413   return Solaris::physical_memory();
414}
415
416static hrtime_t first_hrtime = 0;
417static const hrtime_t hrtime_hz = 1000*1000*1000;
418const int LOCK_BUSY = 1;
419const int LOCK_FREE = 0;
420const int LOCK_INVALID = -1;
421static volatile hrtime_t max_hrtime = 0;
422static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
423
424
425void os::Solaris::initialize_system_info() {
426  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
427  _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
428  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
429}
430
431int os::active_processor_count() {
432  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
433  pid_t pid = getpid();
434  psetid_t pset = PS_NONE;
435  // Are we running in a processor set or is there any processor set around?
436  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
437    uint_t pset_cpus;
438    // Query the number of cpus available to us.
439    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
440      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
441      _processors_online = pset_cpus;
442      return pset_cpus;
443    }
444  }
445  // Otherwise return number of online cpus
446  return online_cpus;
447}
448
449static bool find_processors_in_pset(psetid_t        pset,
450                                    processorid_t** id_array,
451                                    uint_t*         id_length) {
452  bool result = false;
453  // Find the number of processors in the processor set.
454  if (pset_info(pset, NULL, id_length, NULL) == 0) {
455    // Make up an array to hold their ids.
456    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
457    // Fill in the array with their processor ids.
458    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
459      result = true;
460    }
461  }
462  return result;
463}
464
465// Callers of find_processors_online() must tolerate imprecise results --
466// the system configuration can change asynchronously because of DR
467// or explicit psradm operations.
468//
469// We also need to take care that the loop (below) terminates as the
470// number of processors online can change between the _SC_NPROCESSORS_ONLN
471// request and the loop that builds the list of processor ids.   Unfortunately
472// there's no reliable way to determine the maximum valid processor id,
473// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
474// man pages, which claim the processor id set is "sparse, but
475// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
476// exit the loop.
477//
478// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
479// not available on S8.0.
480
481static bool find_processors_online(processorid_t** id_array,
482                                   uint*           id_length) {
483  const processorid_t MAX_PROCESSOR_ID = 100000 ;
484  // Find the number of processors online.
485  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
486  // Make up an array to hold their ids.
487  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
488  // Processors need not be numbered consecutively.
489  long found = 0;
490  processorid_t next = 0;
491  while (found < *id_length && next < MAX_PROCESSOR_ID) {
492    processor_info_t info;
493    if (processor_info(next, &info) == 0) {
494      // NB, PI_NOINTR processors are effectively online ...
495      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
496        (*id_array)[found] = next;
497        found += 1;
498      }
499    }
500    next += 1;
501  }
502  if (found < *id_length) {
503      // The loop above didn't identify the expected number of processors.
504      // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
505      // and re-running the loop, above, but there's no guarantee of progress
506      // if the system configuration is in flux.  Instead, we just return what
507      // we've got.  Note that in the worst case find_processors_online() could
508      // return an empty set.  (As a fall-back in the case of the empty set we
509      // could just return the ID of the current processor).
510      *id_length = found ;
511  }
512
513  return true;
514}
515
516static bool assign_distribution(processorid_t* id_array,
517                                uint           id_length,
518                                uint*          distribution,
519                                uint           distribution_length) {
520  // We assume we can assign processorid_t's to uint's.
521  assert(sizeof(processorid_t) == sizeof(uint),
522         "can't convert processorid_t to uint");
523  // Quick check to see if we won't succeed.
524  if (id_length < distribution_length) {
525    return false;
526  }
527  // Assign processor ids to the distribution.
528  // Try to shuffle processors to distribute work across boards,
529  // assuming 4 processors per board.
530  const uint processors_per_board = ProcessDistributionStride;
531  // Find the maximum processor id.
532  processorid_t max_id = 0;
533  for (uint m = 0; m < id_length; m += 1) {
534    max_id = MAX2(max_id, id_array[m]);
535  }
536  // The next id, to limit loops.
537  const processorid_t limit_id = max_id + 1;
538  // Make up markers for available processors.
539  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
540  for (uint c = 0; c < limit_id; c += 1) {
541    available_id[c] = false;
542  }
543  for (uint a = 0; a < id_length; a += 1) {
544    available_id[id_array[a]] = true;
545  }
546  // Step by "boards", then by "slot", copying to "assigned".
547  // NEEDS_CLEANUP: The assignment of processors should be stateful,
548  //                remembering which processors have been assigned by
549  //                previous calls, etc., so as to distribute several
550  //                independent calls of this method.  What we'd like is
551  //                It would be nice to have an API that let us ask
552  //                how many processes are bound to a processor,
553  //                but we don't have that, either.
554  //                In the short term, "board" is static so that
555  //                subsequent distributions don't all start at board 0.
556  static uint board = 0;
557  uint assigned = 0;
558  // Until we've found enough processors ....
559  while (assigned < distribution_length) {
560    // ... find the next available processor in the board.
561    for (uint slot = 0; slot < processors_per_board; slot += 1) {
562      uint try_id = board * processors_per_board + slot;
563      if ((try_id < limit_id) && (available_id[try_id] == true)) {
564        distribution[assigned] = try_id;
565        available_id[try_id] = false;
566        assigned += 1;
567        break;
568      }
569    }
570    board += 1;
571    if (board * processors_per_board + 0 >= limit_id) {
572      board = 0;
573    }
574  }
575  if (available_id != NULL) {
576    FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
577  }
578  return true;
579}
580
581void os::set_native_thread_name(const char *name) {
582  // Not yet implemented.
583  return;
584}
585
586bool os::distribute_processes(uint length, uint* distribution) {
587  bool result = false;
588  // Find the processor id's of all the available CPUs.
589  processorid_t* id_array  = NULL;
590  uint           id_length = 0;
591  // There are some races between querying information and using it,
592  // since processor sets can change dynamically.
593  psetid_t pset = PS_NONE;
594  // Are we running in a processor set?
595  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
596    result = find_processors_in_pset(pset, &id_array, &id_length);
597  } else {
598    result = find_processors_online(&id_array, &id_length);
599  }
600  if (result == true) {
601    if (id_length >= length) {
602      result = assign_distribution(id_array, id_length, distribution, length);
603    } else {
604      result = false;
605    }
606  }
607  if (id_array != NULL) {
608    FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
609  }
610  return result;
611}
612
613bool os::bind_to_processor(uint processor_id) {
614  // We assume that a processorid_t can be stored in a uint.
615  assert(sizeof(uint) == sizeof(processorid_t),
616         "can't convert uint to processorid_t");
617  int bind_result =
618    processor_bind(P_LWPID,                       // bind LWP.
619                   P_MYID,                        // bind current LWP.
620                   (processorid_t) processor_id,  // id.
621                   NULL);                         // don't return old binding.
622  return (bind_result == 0);
623}
624
625bool os::getenv(const char* name, char* buffer, int len) {
626  char* val = ::getenv( name );
627  if ( val == NULL
628  ||   strlen(val) + 1  >  len ) {
629    if (len > 0)  buffer[0] = 0; // return a null string
630    return false;
631  }
632  strcpy( buffer, val );
633  return true;
634}
635
636
637// Return true if user is running as root.
638
639bool os::have_special_privileges() {
640  static bool init = false;
641  static bool privileges = false;
642  if (!init) {
643    privileges = (getuid() != geteuid()) || (getgid() != getegid());
644    init = true;
645  }
646  return privileges;
647}
648
649
650void os::init_system_properties_values() {
651  char arch[12];
652  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
653
654  // The next steps are taken in the product version:
655  //
656  // Obtain the JAVA_HOME value from the location of libjvm.so.
657  // This library should be located at:
658  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
659  //
660  // If "/jre/lib/" appears at the right place in the path, then we
661  // assume libjvm.so is installed in a JDK and we use this path.
662  //
663  // Otherwise exit with message: "Could not create the Java virtual machine."
664  //
665  // The following extra steps are taken in the debugging version:
666  //
667  // If "/jre/lib/" does NOT appear at the right place in the path
668  // instead of exit check for $JAVA_HOME environment variable.
669  //
670  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
671  // then we append a fake suffix "hotspot/libjvm.so" to this path so
672  // it looks like libjvm.so is installed there
673  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
674  //
675  // Otherwise exit.
676  //
677  // Important note: if the location of libjvm.so changes this
678  // code needs to be changed accordingly.
679
680  // The next few definitions allow the code to be verbatim:
681#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
682#define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
683#define getenv(n) ::getenv(n)
684
685#define EXTENSIONS_DIR  "/lib/ext"
686#define ENDORSED_DIR    "/lib/endorsed"
687#define COMMON_DIR      "/usr/jdk/packages"
688
689  {
690    /* sysclasspath, java_home, dll_dir */
691    {
692        char *home_path;
693        char *dll_path;
694        char *pslash;
695        char buf[MAXPATHLEN];
696        os::jvm_path(buf, sizeof(buf));
697
698        // Found the full path to libjvm.so.
699        // Now cut the path to <java_home>/jre if we can.
700        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
701        pslash = strrchr(buf, '/');
702        if (pslash != NULL)
703            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
704        dll_path = malloc(strlen(buf) + 1);
705        if (dll_path == NULL)
706            return;
707        strcpy(dll_path, buf);
708        Arguments::set_dll_dir(dll_path);
709
710        if (pslash != NULL) {
711            pslash = strrchr(buf, '/');
712            if (pslash != NULL) {
713                *pslash = '\0';       /* get rid of /<arch> */
714                pslash = strrchr(buf, '/');
715                if (pslash != NULL)
716                    *pslash = '\0';   /* get rid of /lib */
717            }
718        }
719
720        home_path = malloc(strlen(buf) + 1);
721        if (home_path == NULL)
722            return;
723        strcpy(home_path, buf);
724        Arguments::set_java_home(home_path);
725
726        if (!set_boot_path('/', ':'))
727            return;
728    }
729
730    /*
731     * Where to look for native libraries
732     */
733    {
734      // Use dlinfo() to determine the correct java.library.path.
735      //
736      // If we're launched by the Java launcher, and the user
737      // does not set java.library.path explicitly on the commandline,
738      // the Java launcher sets LD_LIBRARY_PATH for us and unsets
739      // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
740      // dlinfo returns LD_LIBRARY_PATH + crle settings (including
741      // /usr/lib), which is exactly what we want.
742      //
743      // If the user does set java.library.path, it completely
744      // overwrites this setting, and always has.
745      //
746      // If we're not launched by the Java launcher, we may
747      // get here with any/all of the LD_LIBRARY_PATH[_32|64]
748      // settings.  Again, dlinfo does exactly what we want.
749
750      Dl_serinfo     _info, *info = &_info;
751      Dl_serpath     *path;
752      char*          library_path;
753      char           *common_path;
754      int            i;
755
756      // determine search path count and required buffer size
757      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
758        vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
759      }
760
761      // allocate new buffer and initialize
762      info = (Dl_serinfo*)malloc(_info.dls_size);
763      if (info == NULL) {
764        vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
765                              "init_system_properties_values info");
766      }
767      info->dls_size = _info.dls_size;
768      info->dls_cnt = _info.dls_cnt;
769
770      // obtain search path information
771      if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
772        free(info);
773        vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
774      }
775
776      path = &info->dls_serpath[0];
777
778      // Note: Due to a legacy implementation, most of the library path
779      // is set in the launcher.  This was to accomodate linking restrictions
780      // on legacy Solaris implementations (which are no longer supported).
781      // Eventually, all the library path setting will be done here.
782      //
783      // However, to prevent the proliferation of improperly built native
784      // libraries, the new path component /usr/jdk/packages is added here.
785
786      // Determine the actual CPU architecture.
787      char cpu_arch[12];
788      sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
789#ifdef _LP64
790      // If we are a 64-bit vm, perform the following translations:
791      //   sparc   -> sparcv9
792      //   i386    -> amd64
793      if (strcmp(cpu_arch, "sparc") == 0)
794        strcat(cpu_arch, "v9");
795      else if (strcmp(cpu_arch, "i386") == 0)
796        strcpy(cpu_arch, "amd64");
797#endif
798
799      // Construct the invariant part of ld_library_path. Note that the
800      // space for the colon and the trailing null are provided by the
801      // nulls included by the sizeof operator.
802      size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
803      common_path = malloc(bufsize);
804      if (common_path == NULL) {
805        free(info);
806        vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
807                              "init_system_properties_values common_path");
808      }
809      sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
810
811      // struct size is more than sufficient for the path components obtained
812      // through the dlinfo() call, so only add additional space for the path
813      // components explicitly added here.
814      bufsize = info->dls_size + strlen(common_path);
815      library_path = malloc(bufsize);
816      if (library_path == NULL) {
817        free(info);
818        free(common_path);
819        vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
820                              "init_system_properties_values library_path");
821      }
822      library_path[0] = '\0';
823
824      // Construct the desired Java library path from the linker's library
825      // search path.
826      //
827      // For compatibility, it is optimal that we insert the additional path
828      // components specific to the Java VM after those components specified
829      // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
830      // infrastructure.
831      if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
832        strcpy(library_path, common_path);
833      } else {
834        int inserted = 0;
835        for (i = 0; i < info->dls_cnt; i++, path++) {
836          uint_t flags = path->dls_flags & LA_SER_MASK;
837          if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
838            strcat(library_path, common_path);
839            strcat(library_path, os::path_separator());
840            inserted = 1;
841          }
842          strcat(library_path, path->dls_name);
843          strcat(library_path, os::path_separator());
844        }
845        // eliminate trailing path separator
846        library_path[strlen(library_path)-1] = '\0';
847      }
848
849      // happens before argument parsing - can't use a trace flag
850      // tty->print_raw("init_system_properties_values: native lib path: ");
851      // tty->print_raw_cr(library_path);
852
853      // callee copies into its own buffer
854      Arguments::set_library_path(library_path);
855
856      free(common_path);
857      free(library_path);
858      free(info);
859    }
860
861    /*
862     * Extensions directories.
863     *
864     * Note that the space for the colon and the trailing null are provided
865     * by the nulls included by the sizeof operator (so actually one byte more
866     * than necessary is allocated).
867     */
868    {
869        char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
870            sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
871            sizeof(EXTENSIONS_DIR));
872        sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
873            Arguments::get_java_home());
874        Arguments::set_ext_dirs(buf);
875    }
876
877    /* Endorsed standards default directory. */
878    {
879        char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
880        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
881        Arguments::set_endorsed_dirs(buf);
882    }
883  }
884
885#undef malloc
886#undef free
887#undef getenv
888#undef EXTENSIONS_DIR
889#undef ENDORSED_DIR
890#undef COMMON_DIR
891
892}
893
894void os::breakpoint() {
895  BREAKPOINT;
896}
897
898bool os::obsolete_option(const JavaVMOption *option)
899{
900  if (!strncmp(option->optionString, "-Xt", 3)) {
901    return true;
902  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
903    return true;
904  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
905    return true;
906  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
907    return true;
908  }
909  return false;
910}
911
912bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
913  address  stackStart  = (address)thread->stack_base();
914  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
915  if (sp < stackStart && sp >= stackEnd ) return true;
916  return false;
917}
918
919extern "C" void breakpoint() {
920  // use debugger to set breakpoint here
921}
922
923static thread_t main_thread;
924
925// Thread start routine for all new Java threads
926extern "C" void* java_start(void* thread_addr) {
927  // Try to randomize the cache line index of hot stack frames.
928  // This helps when threads of the same stack traces evict each other's
929  // cache lines. The threads can be either from the same JVM instance, or
930  // from different JVM instances. The benefit is especially true for
931  // processors with hyperthreading technology.
932  static int counter = 0;
933  int pid = os::current_process_id();
934  alloca(((pid ^ counter++) & 7) * 128);
935
936  int prio;
937  Thread* thread = (Thread*)thread_addr;
938  OSThread* osthr = thread->osthread();
939
940  osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
941  thread->_schedctl = (void *) schedctl_init () ;
942
943  if (UseNUMA) {
944    int lgrp_id = os::numa_get_group_id();
945    if (lgrp_id != -1) {
946      thread->set_lgrp_id(lgrp_id);
947    }
948  }
949
950  // If the creator called set priority before we started,
951  // we need to call set_native_priority now that we have an lwp.
952  // We used to get the priority from thr_getprio (we called
953  // thr_setprio way back in create_thread) and pass it to
954  // set_native_priority, but Solaris scales the priority
955  // in java_to_os_priority, so when we read it back here,
956  // we pass trash to set_native_priority instead of what's
957  // in java_to_os_priority. So we save the native priority
958  // in the osThread and recall it here.
959
960  if ( osthr->thread_id() != -1 ) {
961    if ( UseThreadPriorities ) {
962      int prio = osthr->native_priority();
963      if (ThreadPriorityVerbose) {
964        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
965                      INTPTR_FORMAT ", setting priority: %d\n",
966                      osthr->thread_id(), osthr->lwp_id(), prio);
967      }
968      os::set_native_priority(thread, prio);
969    }
970  } else if (ThreadPriorityVerbose) {
971    warning("Can't set priority in _start routine, thread id hasn't been set\n");
972  }
973
974  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
975
976  // initialize signal mask for this thread
977  os::Solaris::hotspot_sigmask(thread);
978
979  thread->run();
980
981  // One less thread is executing
982  // When the VMThread gets here, the main thread may have already exited
983  // which frees the CodeHeap containing the Atomic::dec code
984  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
985    Atomic::dec(&os::Solaris::_os_thread_count);
986  }
987
988  if (UseDetachedThreads) {
989    thr_exit(NULL);
990    ShouldNotReachHere();
991  }
992  return NULL;
993}
994
995static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
996  // Allocate the OSThread object
997  OSThread* osthread = new OSThread(NULL, NULL);
998  if (osthread == NULL) return NULL;
999
1000  // Store info on the Solaris thread into the OSThread
1001  osthread->set_thread_id(thread_id);
1002  osthread->set_lwp_id(_lwp_self());
1003  thread->_schedctl = (void *) schedctl_init () ;
1004
1005  if (UseNUMA) {
1006    int lgrp_id = os::numa_get_group_id();
1007    if (lgrp_id != -1) {
1008      thread->set_lgrp_id(lgrp_id);
1009    }
1010  }
1011
1012  if ( ThreadPriorityVerbose ) {
1013    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
1014                  osthread->thread_id(), osthread->lwp_id() );
1015  }
1016
1017  // Initial thread state is INITIALIZED, not SUSPENDED
1018  osthread->set_state(INITIALIZED);
1019
1020  return osthread;
1021}
1022
1023void os::Solaris::hotspot_sigmask(Thread* thread) {
1024
1025  //Save caller's signal mask
1026  sigset_t sigmask;
1027  thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
1028  OSThread *osthread = thread->osthread();
1029  osthread->set_caller_sigmask(sigmask);
1030
1031  thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
1032  if (!ReduceSignalUsage) {
1033    if (thread->is_VM_thread()) {
1034      // Only the VM thread handles BREAK_SIGNAL ...
1035      thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
1036    } else {
1037      // ... all other threads block BREAK_SIGNAL
1038      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
1039      thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
1040    }
1041  }
1042}
1043
1044bool os::create_attached_thread(JavaThread* thread) {
1045#ifdef ASSERT
1046  thread->verify_not_published();
1047#endif
1048  OSThread* osthread = create_os_thread(thread, thr_self());
1049  if (osthread == NULL) {
1050     return false;
1051  }
1052
1053  // Initial thread state is RUNNABLE
1054  osthread->set_state(RUNNABLE);
1055  thread->set_osthread(osthread);
1056
1057  // initialize signal mask for this thread
1058  // and save the caller's signal mask
1059  os::Solaris::hotspot_sigmask(thread);
1060
1061  return true;
1062}
1063
1064bool os::create_main_thread(JavaThread* thread) {
1065#ifdef ASSERT
1066  thread->verify_not_published();
1067#endif
1068  if (_starting_thread == NULL) {
1069    _starting_thread = create_os_thread(thread, main_thread);
1070     if (_starting_thread == NULL) {
1071        return false;
1072     }
1073  }
1074
1075  // The primodial thread is runnable from the start
1076  _starting_thread->set_state(RUNNABLE);
1077
1078  thread->set_osthread(_starting_thread);
1079
1080  // initialize signal mask for this thread
1081  // and save the caller's signal mask
1082  os::Solaris::hotspot_sigmask(thread);
1083
1084  return true;
1085}
1086
1087// _T2_libthread is true if we believe we are running with the newer
1088// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
1089bool os::Solaris::_T2_libthread = false;
1090
1091bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1092  // Allocate the OSThread object
1093  OSThread* osthread = new OSThread(NULL, NULL);
1094  if (osthread == NULL) {
1095    return false;
1096  }
1097
1098  if ( ThreadPriorityVerbose ) {
1099    char *thrtyp;
1100    switch ( thr_type ) {
1101      case vm_thread:
1102        thrtyp = (char *)"vm";
1103        break;
1104      case cgc_thread:
1105        thrtyp = (char *)"cgc";
1106        break;
1107      case pgc_thread:
1108        thrtyp = (char *)"pgc";
1109        break;
1110      case java_thread:
1111        thrtyp = (char *)"java";
1112        break;
1113      case compiler_thread:
1114        thrtyp = (char *)"compiler";
1115        break;
1116      case watcher_thread:
1117        thrtyp = (char *)"watcher";
1118        break;
1119      default:
1120        thrtyp = (char *)"unknown";
1121        break;
1122    }
1123    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1124  }
1125
1126  // Calculate stack size if it's not specified by caller.
1127  if (stack_size == 0) {
1128    // The default stack size 1M (2M for LP64).
1129    stack_size = (BytesPerWord >> 2) * K * K;
1130
1131    switch (thr_type) {
1132    case os::java_thread:
1133      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1134      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1135      break;
1136    case os::compiler_thread:
1137      if (CompilerThreadStackSize > 0) {
1138        stack_size = (size_t)(CompilerThreadStackSize * K);
1139        break;
1140      } // else fall through:
1141        // use VMThreadStackSize if CompilerThreadStackSize is not defined
1142    case os::vm_thread:
1143    case os::pgc_thread:
1144    case os::cgc_thread:
1145    case os::watcher_thread:
1146      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1147      break;
1148    }
1149  }
1150  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1151
1152  // Initial state is ALLOCATED but not INITIALIZED
1153  osthread->set_state(ALLOCATED);
1154
1155  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1156    // We got lots of threads. Check if we still have some address space left.
1157    // Need to be at least 5Mb of unreserved address space. We do check by
1158    // trying to reserve some.
1159    const size_t VirtualMemoryBangSize = 20*K*K;
1160    char* mem = os::reserve_memory(VirtualMemoryBangSize);
1161    if (mem == NULL) {
1162      delete osthread;
1163      return false;
1164    } else {
1165      // Release the memory again
1166      os::release_memory(mem, VirtualMemoryBangSize);
1167    }
1168  }
1169
1170  // Setup osthread because the child thread may need it.
1171  thread->set_osthread(osthread);
1172
1173  // Create the Solaris thread
1174  // explicit THR_BOUND for T2_libthread case in case
1175  // that assumption is not accurate, but our alternate signal stack
1176  // handling is based on it which must have bound threads
1177  thread_t tid = 0;
1178  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
1179                   | ((UseBoundThreads || os::Solaris::T2_libthread() ||
1180                       (thr_type == vm_thread) ||
1181                       (thr_type == cgc_thread) ||
1182                       (thr_type == pgc_thread) ||
1183                       (thr_type == compiler_thread && BackgroundCompilation)) ?
1184                      THR_BOUND : 0);
1185  int      status;
1186
1187  // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
1188  //
1189  // On multiprocessors systems, libthread sometimes under-provisions our
1190  // process with LWPs.  On a 30-way systems, for instance, we could have
1191  // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
1192  // to our process.  This can result in under utilization of PEs.
1193  // I suspect the problem is related to libthread's LWP
1194  // pool management and to the kernel's SIGBLOCKING "last LWP parked"
1195  // upcall policy.
1196  //
1197  // The following code is palliative -- it attempts to ensure that our
1198  // process has sufficient LWPs to take advantage of multiple PEs.
1199  // Proper long-term cures include using user-level threads bound to LWPs
1200  // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
1201  // slight timing window with respect to sampling _os_thread_count, but
1202  // the race is benign.  Also, we should periodically recompute
1203  // _processors_online as the min of SC_NPROCESSORS_ONLN and the
1204  // the number of PEs in our partition.  You might be tempted to use
1205  // THR_NEW_LWP here, but I'd recommend against it as that could
1206  // result in undesirable growth of the libthread's LWP pool.
1207  // The fix below isn't sufficient; for instance, it doesn't take into count
1208  // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
1209  //
1210  // Some pathologies this scheme doesn't handle:
1211  // *  Threads can block, releasing the LWPs.  The LWPs can age out.
1212  //    When a large number of threads become ready again there aren't
1213  //    enough LWPs available to service them.  This can occur when the
1214  //    number of ready threads oscillates.
1215  // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
1216  //
1217  // Finally, we should call thr_setconcurrency() periodically to refresh
1218  // the LWP pool and thwart the LWP age-out mechanism.
1219  // The "+3" term provides a little slop -- we want to slightly overprovision.
1220
1221  if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
1222    if (!(flags & THR_BOUND)) {
1223      thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
1224    }
1225  }
1226  // Although this doesn't hurt, we should warn of undefined behavior
1227  // when using unbound T1 threads with schedctl().  This should never
1228  // happen, as the compiler and VM threads are always created bound
1229  DEBUG_ONLY(
1230      if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
1231          (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
1232          ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
1233           (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
1234         warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
1235      }
1236  );
1237
1238
1239  // Mark that we don't have an lwp or thread id yet.
1240  // In case we attempt to set the priority before the thread starts.
1241  osthread->set_lwp_id(-1);
1242  osthread->set_thread_id(-1);
1243
1244  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1245  if (status != 0) {
1246    if (PrintMiscellaneous && (Verbose || WizardMode)) {
1247      perror("os::create_thread");
1248    }
1249    thread->set_osthread(NULL);
1250    // Need to clean up stuff we've allocated so far
1251    delete osthread;
1252    return false;
1253  }
1254
1255  Atomic::inc(&os::Solaris::_os_thread_count);
1256
1257  // Store info on the Solaris thread into the OSThread
1258  osthread->set_thread_id(tid);
1259
1260  // Remember that we created this thread so we can set priority on it
1261  osthread->set_vm_created();
1262
1263  // Set the default thread priority.  If using bound threads, setting
1264  // lwp priority will be delayed until thread start.
1265  set_native_priority(thread,
1266                      DefaultThreadPriority == -1 ?
1267                        java_to_os_priority[NormPriority] :
1268                        DefaultThreadPriority);
1269
1270  // Initial thread state is INITIALIZED, not SUSPENDED
1271  osthread->set_state(INITIALIZED);
1272
1273  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1274  return true;
1275}
1276
1277/* defined for >= Solaris 10. This allows builds on earlier versions
1278 *  of Solaris to take advantage of the newly reserved Solaris JVM signals
1279 *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1280 *  and -XX:+UseAltSigs does nothing since these should have no conflict
1281 */
1282#if !defined(SIGJVM1)
1283#define SIGJVM1 39
1284#define SIGJVM2 40
1285#endif
1286
1287debug_only(static bool signal_sets_initialized = false);
1288static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1289int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1290int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1291
1292bool os::Solaris::is_sig_ignored(int sig) {
1293      struct sigaction oact;
1294      sigaction(sig, (struct sigaction*)NULL, &oact);
1295      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1296                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1297      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
1298           return true;
1299      else
1300           return false;
1301}
1302
1303// Note: SIGRTMIN is a macro that calls sysconf() so it will
1304// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1305static bool isJVM1available() {
1306  return SIGJVM1 < SIGRTMIN;
1307}
1308
1309void os::Solaris::signal_sets_init() {
1310  // Should also have an assertion stating we are still single-threaded.
1311  assert(!signal_sets_initialized, "Already initialized");
1312  // Fill in signals that are necessarily unblocked for all threads in
1313  // the VM. Currently, we unblock the following signals:
1314  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1315  //                         by -Xrs (=ReduceSignalUsage));
1316  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1317  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1318  // the dispositions or masks wrt these signals.
1319  // Programs embedding the VM that want to use the above signals for their
1320  // own purposes must, at this time, use the "-Xrs" option to prevent
1321  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1322  // (See bug 4345157, and other related bugs).
1323  // In reality, though, unblocking these signals is really a nop, since
1324  // these signals are not blocked by default.
1325  sigemptyset(&unblocked_sigs);
1326  sigemptyset(&allowdebug_blocked_sigs);
1327  sigaddset(&unblocked_sigs, SIGILL);
1328  sigaddset(&unblocked_sigs, SIGSEGV);
1329  sigaddset(&unblocked_sigs, SIGBUS);
1330  sigaddset(&unblocked_sigs, SIGFPE);
1331
1332  if (isJVM1available) {
1333    os::Solaris::set_SIGinterrupt(SIGJVM1);
1334    os::Solaris::set_SIGasync(SIGJVM2);
1335  } else if (UseAltSigs) {
1336    os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1337    os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1338  } else {
1339    os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1340    os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1341  }
1342
1343  sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1344  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1345
1346  if (!ReduceSignalUsage) {
1347   if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1348      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1349      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1350   }
1351   if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1352      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1353      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1354   }
1355   if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1356      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1357      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1358   }
1359  }
1360  // Fill in signals that are blocked by all but the VM thread.
1361  sigemptyset(&vm_sigs);
1362  if (!ReduceSignalUsage)
1363    sigaddset(&vm_sigs, BREAK_SIGNAL);
1364  debug_only(signal_sets_initialized = true);
1365
1366  // For diagnostics only used in run_periodic_checks
1367  sigemptyset(&check_signal_done);
1368}
1369
1370// These are signals that are unblocked while a thread is running Java.
1371// (For some reason, they get blocked by default.)
1372sigset_t* os::Solaris::unblocked_signals() {
1373  assert(signal_sets_initialized, "Not initialized");
1374  return &unblocked_sigs;
1375}
1376
1377// These are the signals that are blocked while a (non-VM) thread is
1378// running Java. Only the VM thread handles these signals.
1379sigset_t* os::Solaris::vm_signals() {
1380  assert(signal_sets_initialized, "Not initialized");
1381  return &vm_sigs;
1382}
1383
1384// These are signals that are blocked during cond_wait to allow debugger in
1385sigset_t* os::Solaris::allowdebug_blocked_signals() {
1386  assert(signal_sets_initialized, "Not initialized");
1387  return &allowdebug_blocked_sigs;
1388}
1389
1390
1391void _handle_uncaught_cxx_exception() {
1392  VMError err("An uncaught C++ exception");
1393  err.report_and_die();
1394}
1395
1396
1397// First crack at OS-specific initialization, from inside the new thread.
1398void os::initialize_thread(Thread* thr) {
1399  int r = thr_main() ;
1400  guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
1401  if (r) {
1402    JavaThread* jt = (JavaThread *)thr;
1403    assert(jt != NULL,"Sanity check");
1404    size_t stack_size;
1405    address base = jt->stack_base();
1406    if (Arguments::created_by_java_launcher()) {
1407      // Use 2MB to allow for Solaris 7 64 bit mode.
1408      stack_size = JavaThread::stack_size_at_create() == 0
1409        ? 2048*K : JavaThread::stack_size_at_create();
1410
1411      // There are rare cases when we may have already used more than
1412      // the basic stack size allotment before this method is invoked.
1413      // Attempt to allow for a normally sized java_stack.
1414      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1415      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1416    } else {
1417      // 6269555: If we were not created by a Java launcher, i.e. if we are
1418      // running embedded in a native application, treat the primordial thread
1419      // as much like a native attached thread as possible.  This means using
1420      // the current stack size from thr_stksegment(), unless it is too large
1421      // to reliably setup guard pages.  A reasonable max size is 8MB.
1422      size_t current_size = current_stack_size();
1423      // This should never happen, but just in case....
1424      if (current_size == 0) current_size = 2 * K * K;
1425      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1426    }
1427    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1428    stack_size = (size_t)(base - bottom);
1429
1430    assert(stack_size > 0, "Stack size calculation problem");
1431
1432    if (stack_size > jt->stack_size()) {
1433      NOT_PRODUCT(
1434        struct rlimit limits;
1435        getrlimit(RLIMIT_STACK, &limits);
1436        size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1437        assert(size >= jt->stack_size(), "Stack size problem in main thread");
1438      )
1439      tty->print_cr(
1440        "Stack size of %d Kb exceeds current limit of %d Kb.\n"
1441        "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1442        "See limit(1) to increase the stack size limit.",
1443        stack_size / K, jt->stack_size() / K);
1444      vm_exit(1);
1445    }
1446    assert(jt->stack_size() >= stack_size,
1447          "Attempt to map more stack than was allocated");
1448    jt->set_stack_size(stack_size);
1449  }
1450
1451   // 5/22/01: Right now alternate signal stacks do not handle
1452   // throwing stack overflow exceptions, see bug 4463178
1453   // Until a fix is found for this, T2 will NOT imply alternate signal
1454   // stacks.
1455   // If using T2 libthread threads, install an alternate signal stack.
1456   // Because alternate stacks associate with LWPs on Solaris,
1457   // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
1458   // we prefer to explicitly stack bang.
1459   // If not using T2 libthread, but using UseBoundThreads any threads
1460   // (primordial thread, jni_attachCurrentThread) we do not create,
1461   // probably are not bound, therefore they can not have an alternate
1462   // signal stack. Since our stack banging code is generated and
1463   // is shared across threads, all threads must be bound to allow
1464   // using alternate signal stacks.  The alternative is to interpose
1465   // on _lwp_create to associate an alt sig stack with each LWP,
1466   // and this could be a problem when the JVM is embedded.
1467   // We would prefer to use alternate signal stacks with T2
1468   // Since there is currently no accurate way to detect T2
1469   // we do not. Assuming T2 when running T1 causes sig 11s or assertions
1470   // on installing alternate signal stacks
1471
1472
1473   // 05/09/03: removed alternate signal stack support for Solaris
1474   // The alternate signal stack mechanism is no longer needed to
1475   // handle stack overflow. This is now handled by allocating
1476   // guard pages (red zone) and stackbanging.
1477   // Initially the alternate signal stack mechanism was removed because
1478   // it did not work with T1 llibthread. Alternate
1479   // signal stacks MUST have all threads bound to lwps. Applications
1480   // can create their own threads and attach them without their being
1481   // bound under T1. This is frequently the case for the primordial thread.
1482   // If we were ever to reenable this mechanism we would need to
1483   // use the dynamic check for T2 libthread.
1484
1485  os::Solaris::init_thread_fpu_state();
1486  std::set_terminate(_handle_uncaught_cxx_exception);
1487}
1488
1489
1490
1491// Free Solaris resources related to the OSThread
1492void os::free_thread(OSThread* osthread) {
1493  assert(osthread != NULL, "os::free_thread but osthread not set");
1494
1495
1496  // We are told to free resources of the argument thread,
1497  // but we can only really operate on the current thread.
1498  // The main thread must take the VMThread down synchronously
1499  // before the main thread exits and frees up CodeHeap
1500  guarantee((Thread::current()->osthread() == osthread
1501     || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1502  if (Thread::current()->osthread() == osthread) {
1503    // Restore caller's signal mask
1504    sigset_t sigmask = osthread->caller_sigmask();
1505    thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1506  }
1507  delete osthread;
1508}
1509
1510void os::pd_start_thread(Thread* thread) {
1511  int status = thr_continue(thread->osthread()->thread_id());
1512  assert_status(status == 0, status, "thr_continue failed");
1513}
1514
1515
1516intx os::current_thread_id() {
1517  return (intx)thr_self();
1518}
1519
1520static pid_t _initial_pid = 0;
1521
1522int os::current_process_id() {
1523  return (int)(_initial_pid ? _initial_pid : getpid());
1524}
1525
1526int os::allocate_thread_local_storage() {
1527  // %%%       in Win32 this allocates a memory segment pointed to by a
1528  //           register.  Dan Stein can implement a similar feature in
1529  //           Solaris.  Alternatively, the VM can do the same thing
1530  //           explicitly: malloc some storage and keep the pointer in a
1531  //           register (which is part of the thread's context) (or keep it
1532  //           in TLS).
1533  // %%%       In current versions of Solaris, thr_self and TSD can
1534  //           be accessed via short sequences of displaced indirections.
1535  //           The value of thr_self is available as %g7(36).
1536  //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1537  //           assuming that the current thread already has a value bound to k.
1538  //           It may be worth experimenting with such access patterns,
1539  //           and later having the parameters formally exported from a Solaris
1540  //           interface.  I think, however, that it will be faster to
1541  //           maintain the invariant that %g2 always contains the
1542  //           JavaThread in Java code, and have stubs simply
1543  //           treat %g2 as a caller-save register, preserving it in a %lN.
1544  thread_key_t tk;
1545  if (thr_keycreate( &tk, NULL ) )
1546    fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1547                  "(%s)", strerror(errno)));
1548  return int(tk);
1549}
1550
1551void os::free_thread_local_storage(int index) {
1552  // %%% don't think we need anything here
1553  // if ( pthread_key_delete((pthread_key_t) tk) )
1554  //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1555}
1556
1557#define SMALLINT 32   // libthread allocate for tsd_common is a version specific
1558                      // small number - point is NO swap space available
1559void os::thread_local_storage_at_put(int index, void* value) {
1560  // %%% this is used only in threadLocalStorage.cpp
1561  if (thr_setspecific((thread_key_t)index, value)) {
1562    if (errno == ENOMEM) {
1563       vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1564                             "thr_setspecific: out of swap space");
1565    } else {
1566      fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1567                    "(%s)", strerror(errno)));
1568    }
1569  } else {
1570      ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
1571  }
1572}
1573
1574// This function could be called before TLS is initialized, for example, when
1575// VM receives an async signal or when VM causes a fatal error during
1576// initialization. Return NULL if thr_getspecific() fails.
1577void* os::thread_local_storage_at(int index) {
1578  // %%% this is used only in threadLocalStorage.cpp
1579  void* r = NULL;
1580  return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1581}
1582
1583
1584// gethrtime can move backwards if read from one cpu and then a different cpu
1585// getTimeNanos is guaranteed to not move backward on Solaris
1586// local spinloop created as faster for a CAS on an int than
1587// a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
1588// supported on sparc v8 or pre supports_cx8 intel boxes.
1589// oldgetTimeNanos for systems which do not support CAS on 64bit jlong
1590// i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
1591inline hrtime_t oldgetTimeNanos() {
1592  int gotlock = LOCK_INVALID;
1593  hrtime_t newtime = gethrtime();
1594
1595  for (;;) {
1596// grab lock for max_hrtime
1597    int curlock = max_hrtime_lock;
1598    if (curlock & LOCK_BUSY)  continue;
1599    if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
1600    if (newtime > max_hrtime) {
1601      max_hrtime = newtime;
1602    } else {
1603      newtime = max_hrtime;
1604    }
1605    // release lock
1606    max_hrtime_lock = LOCK_FREE;
1607    return newtime;
1608  }
1609}
1610// gethrtime can move backwards if read from one cpu and then a different cpu
1611// getTimeNanos is guaranteed to not move backward on Solaris
1612inline hrtime_t getTimeNanos() {
1613  if (VM_Version::supports_cx8()) {
1614    const hrtime_t now = gethrtime();
1615    // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
1616    const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
1617    if (now <= prev)  return prev;   // same or retrograde time;
1618    const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1619    assert(obsv >= prev, "invariant");   // Monotonicity
1620    // If the CAS succeeded then we're done and return "now".
1621    // If the CAS failed and the observed value "obs" is >= now then
1622    // we should return "obs".  If the CAS failed and now > obs > prv then
1623    // some other thread raced this thread and installed a new value, in which case
1624    // we could either (a) retry the entire operation, (b) retry trying to install now
1625    // or (c) just return obs.  We use (c).   No loop is required although in some cases
1626    // we might discard a higher "now" value in deference to a slightly lower but freshly
1627    // installed obs value.   That's entirely benign -- it admits no new orderings compared
1628    // to (a) or (b) -- and greatly reduces coherence traffic.
1629    // We might also condition (c) on the magnitude of the delta between obs and now.
1630    // Avoiding excessive CAS operations to hot RW locations is critical.
1631    // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
1632    return (prev == obsv) ? now : obsv ;
1633  } else {
1634    return oldgetTimeNanos();
1635  }
1636}
1637
1638// Time since start-up in seconds to a fine granularity.
1639// Used by VMSelfDestructTimer and the MemProfiler.
1640double os::elapsedTime() {
1641  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1642}
1643
1644jlong os::elapsed_counter() {
1645  return (jlong)(getTimeNanos() - first_hrtime);
1646}
1647
1648jlong os::elapsed_frequency() {
1649   return hrtime_hz;
1650}
1651
1652// Return the real, user, and system times in seconds from an
1653// arbitrary fixed point in the past.
1654bool os::getTimesSecs(double* process_real_time,
1655                  double* process_user_time,
1656                  double* process_system_time) {
1657  struct tms ticks;
1658  clock_t real_ticks = times(&ticks);
1659
1660  if (real_ticks == (clock_t) (-1)) {
1661    return false;
1662  } else {
1663    double ticks_per_second = (double) clock_tics_per_sec;
1664    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1665    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1666    // For consistency return the real time from getTimeNanos()
1667    // converted to seconds.
1668    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1669
1670    return true;
1671  }
1672}
1673
1674bool os::supports_vtime() { return true; }
1675
1676bool os::enable_vtime() {
1677  int fd = ::open("/proc/self/ctl", O_WRONLY);
1678  if (fd == -1)
1679    return false;
1680
1681  long cmd[] = { PCSET, PR_MSACCT };
1682  int res = ::write(fd, cmd, sizeof(long) * 2);
1683  ::close(fd);
1684  if (res != sizeof(long) * 2)
1685    return false;
1686
1687  return true;
1688}
1689
1690bool os::vtime_enabled() {
1691  int fd = ::open("/proc/self/status", O_RDONLY);
1692  if (fd == -1)
1693    return false;
1694
1695  pstatus_t status;
1696  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1697  ::close(fd);
1698  if (res != sizeof(pstatus_t))
1699    return false;
1700
1701  return status.pr_flags & PR_MSACCT;
1702}
1703
1704double os::elapsedVTime() {
1705  return (double)gethrvtime() / (double)hrtime_hz;
1706}
1707
1708// Used internally for comparisons only
1709// getTimeMillis guaranteed to not move backwards on Solaris
1710jlong getTimeMillis() {
1711  jlong nanotime = getTimeNanos();
1712  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1713}
1714
1715// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1716jlong os::javaTimeMillis() {
1717  timeval t;
1718  if (gettimeofday( &t, NULL) == -1)
1719    fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1720  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1721}
1722
1723jlong os::javaTimeNanos() {
1724  return (jlong)getTimeNanos();
1725}
1726
1727void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1728  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1729  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1730  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1731  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1732}
1733
1734char * os::local_time_string(char *buf, size_t buflen) {
1735  struct tm t;
1736  time_t long_time;
1737  time(&long_time);
1738  localtime_r(&long_time, &t);
1739  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1740               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1741               t.tm_hour, t.tm_min, t.tm_sec);
1742  return buf;
1743}
1744
1745// Note: os::shutdown() might be called very early during initialization, or
1746// called from signal handler. Before adding something to os::shutdown(), make
1747// sure it is async-safe and can handle partially initialized VM.
1748void os::shutdown() {
1749
1750  // allow PerfMemory to attempt cleanup of any persistent resources
1751  perfMemory_exit();
1752
1753  // needs to remove object in file system
1754  AttachListener::abort();
1755
1756  // flush buffered output, finish log files
1757  ostream_abort();
1758
1759  // Check for abort hook
1760  abort_hook_t abort_hook = Arguments::abort_hook();
1761  if (abort_hook != NULL) {
1762    abort_hook();
1763  }
1764}
1765
1766// Note: os::abort() might be called very early during initialization, or
1767// called from signal handler. Before adding something to os::abort(), make
1768// sure it is async-safe and can handle partially initialized VM.
1769void os::abort(bool dump_core) {
1770  os::shutdown();
1771  if (dump_core) {
1772#ifndef PRODUCT
1773    fdStream out(defaultStream::output_fd());
1774    out.print_raw("Current thread is ");
1775    char buf[16];
1776    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1777    out.print_raw_cr(buf);
1778    out.print_raw_cr("Dumping core ...");
1779#endif
1780    ::abort(); // dump core (for debugging)
1781  }
1782
1783  ::exit(1);
1784}
1785
1786// Die immediately, no exit hook, no abort hook, no cleanup.
1787void os::die() {
1788  ::abort(); // dump core (for debugging)
1789}
1790
1791// unused
1792void os::set_error_file(const char *logfile) {}
1793
1794// DLL functions
1795
1796const char* os::dll_file_extension() { return ".so"; }
1797
1798// This must be hard coded because it's the system's temporary
1799// directory not the java application's temp directory, ala java.io.tmpdir.
1800const char* os::get_temp_directory() { return "/tmp"; }
1801
1802static bool file_exists(const char* filename) {
1803  struct stat statbuf;
1804  if (filename == NULL || strlen(filename) == 0) {
1805    return false;
1806  }
1807  return os::stat(filename, &statbuf) == 0;
1808}
1809
1810bool os::dll_build_name(char* buffer, size_t buflen,
1811                        const char* pname, const char* fname) {
1812  bool retval = false;
1813  const size_t pnamelen = pname ? strlen(pname) : 0;
1814
1815  // Return error on buffer overflow.
1816  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1817    return retval;
1818  }
1819
1820  if (pnamelen == 0) {
1821    snprintf(buffer, buflen, "lib%s.so", fname);
1822    retval = true;
1823  } else if (strchr(pname, *os::path_separator()) != NULL) {
1824    int n;
1825    char** pelements = split_path(pname, &n);
1826    if (pelements == NULL) {
1827      return false;
1828    }
1829    for (int i = 0 ; i < n ; i++) {
1830      // really shouldn't be NULL but what the heck, check can't hurt
1831      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1832        continue; // skip the empty path values
1833      }
1834      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1835      if (file_exists(buffer)) {
1836        retval = true;
1837        break;
1838      }
1839    }
1840    // release the storage
1841    for (int i = 0 ; i < n ; i++) {
1842      if (pelements[i] != NULL) {
1843        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1844      }
1845    }
1846    if (pelements != NULL) {
1847      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1848    }
1849  } else {
1850    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1851    retval = true;
1852  }
1853  return retval;
1854}
1855
1856// check if addr is inside libjvm.so
1857bool os::address_is_in_vm(address addr) {
1858  static address libjvm_base_addr;
1859  Dl_info dlinfo;
1860
1861  if (libjvm_base_addr == NULL) {
1862    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1863      libjvm_base_addr = (address)dlinfo.dli_fbase;
1864    }
1865    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1866  }
1867
1868  if (dladdr((void *)addr, &dlinfo) != 0) {
1869    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1870  }
1871
1872  return false;
1873}
1874
1875typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
1876static dladdr1_func_type dladdr1_func = NULL;
1877
1878bool os::dll_address_to_function_name(address addr, char *buf,
1879                                      int buflen, int * offset) {
1880  // buf is not optional, but offset is optional
1881  assert(buf != NULL, "sanity check");
1882
1883  Dl_info dlinfo;
1884
1885  // dladdr1_func was initialized in os::init()
1886  if (dladdr1_func != NULL) {
1887    // yes, we have dladdr1
1888
1889    // Support for dladdr1 is checked at runtime; it may be
1890    // available even if the vm is built on a machine that does
1891    // not have dladdr1 support.  Make sure there is a value for
1892    // RTLD_DL_SYMENT.
1893    #ifndef RTLD_DL_SYMENT
1894    #define RTLD_DL_SYMENT 1
1895    #endif
1896#ifdef _LP64
1897    Elf64_Sym * info;
1898#else
1899    Elf32_Sym * info;
1900#endif
1901    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1902                     RTLD_DL_SYMENT) != 0) {
1903      // see if we have a matching symbol that covers our address
1904      if (dlinfo.dli_saddr != NULL &&
1905          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1906        if (dlinfo.dli_sname != NULL) {
1907          if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1908            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1909          }
1910          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1911          return true;
1912        }
1913      }
1914      // no matching symbol so try for just file info
1915      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1916        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1917                            buf, buflen, offset, dlinfo.dli_fname)) {
1918          return true;
1919        }
1920      }
1921    }
1922    buf[0] = '\0';
1923    if (offset != NULL) *offset  = -1;
1924    return false;
1925  }
1926
1927  // no, only dladdr is available
1928  if (dladdr((void *)addr, &dlinfo) != 0) {
1929    // see if we have a matching symbol
1930    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1931      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1932        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1933      }
1934      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1935      return true;
1936    }
1937    // no matching symbol so try for just file info
1938    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1939      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1940                          buf, buflen, offset, dlinfo.dli_fname)) {
1941        return true;
1942      }
1943    }
1944  }
1945  buf[0] = '\0';
1946  if (offset != NULL) *offset  = -1;
1947  return false;
1948}
1949
1950bool os::dll_address_to_library_name(address addr, char* buf,
1951                                     int buflen, int* offset) {
1952  // buf is not optional, but offset is optional
1953  assert(buf != NULL, "sanity check");
1954
1955  Dl_info dlinfo;
1956
1957  if (dladdr((void*)addr, &dlinfo) != 0) {
1958    if (dlinfo.dli_fname != NULL) {
1959      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1960    }
1961    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1962      *offset = addr - (address)dlinfo.dli_fbase;
1963    }
1964    return true;
1965  }
1966
1967  buf[0] = '\0';
1968  if (offset) *offset = -1;
1969  return false;
1970}
1971
1972// Prints the names and full paths of all opened dynamic libraries
1973// for current process
1974void os::print_dll_info(outputStream * st) {
1975  Dl_info dli;
1976  void *handle;
1977  Link_map *map;
1978  Link_map *p;
1979
1980  st->print_cr("Dynamic libraries:"); st->flush();
1981
1982  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1983      dli.dli_fname == NULL) {
1984    st->print_cr("Error: Cannot print dynamic libraries.");
1985    return;
1986  }
1987  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1988  if (handle == NULL) {
1989    st->print_cr("Error: Cannot print dynamic libraries.");
1990    return;
1991  }
1992  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1993  if (map == NULL) {
1994    st->print_cr("Error: Cannot print dynamic libraries.");
1995    return;
1996  }
1997
1998  while (map->l_prev != NULL)
1999    map = map->l_prev;
2000
2001  while (map != NULL) {
2002    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2003    map = map->l_next;
2004  }
2005
2006  dlclose(handle);
2007}
2008
2009  // Loads .dll/.so and
2010  // in case of error it checks if .dll/.so was built for the
2011  // same architecture as Hotspot is running on
2012
2013void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2014{
2015  void * result= ::dlopen(filename, RTLD_LAZY);
2016  if (result != NULL) {
2017    // Successful loading
2018    return result;
2019  }
2020
2021  Elf32_Ehdr elf_head;
2022
2023  // Read system error message into ebuf
2024  // It may or may not be overwritten below
2025  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2026  ebuf[ebuflen-1]='\0';
2027  int diag_msg_max_length=ebuflen-strlen(ebuf);
2028  char* diag_msg_buf=ebuf+strlen(ebuf);
2029
2030  if (diag_msg_max_length==0) {
2031    // No more space in ebuf for additional diagnostics message
2032    return NULL;
2033  }
2034
2035
2036  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2037
2038  if (file_descriptor < 0) {
2039    // Can't open library, report dlerror() message
2040    return NULL;
2041  }
2042
2043  bool failed_to_read_elf_head=
2044    (sizeof(elf_head)!=
2045        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2046
2047  ::close(file_descriptor);
2048  if (failed_to_read_elf_head) {
2049    // file i/o error - report dlerror() msg
2050    return NULL;
2051  }
2052
2053  typedef struct {
2054    Elf32_Half  code;         // Actual value as defined in elf.h
2055    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2056    char        elf_class;    // 32 or 64 bit
2057    char        endianess;    // MSB or LSB
2058    char*       name;         // String representation
2059  } arch_t;
2060
2061  static const arch_t arch_array[]={
2062    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2063    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2064    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2065    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2066    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2067    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2068    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2069    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2070    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2071    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
2072  };
2073
2074  #if  (defined IA32)
2075    static  Elf32_Half running_arch_code=EM_386;
2076  #elif   (defined AMD64)
2077    static  Elf32_Half running_arch_code=EM_X86_64;
2078  #elif  (defined IA64)
2079    static  Elf32_Half running_arch_code=EM_IA_64;
2080  #elif  (defined __sparc) && (defined _LP64)
2081    static  Elf32_Half running_arch_code=EM_SPARCV9;
2082  #elif  (defined __sparc) && (!defined _LP64)
2083    static  Elf32_Half running_arch_code=EM_SPARC;
2084  #elif  (defined __powerpc64__)
2085    static  Elf32_Half running_arch_code=EM_PPC64;
2086  #elif  (defined __powerpc__)
2087    static  Elf32_Half running_arch_code=EM_PPC;
2088  #elif (defined ARM)
2089    static  Elf32_Half running_arch_code=EM_ARM;
2090  #else
2091    #error Method os::dll_load requires that one of following is defined:\
2092         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
2093  #endif
2094
2095  // Identify compatability class for VM's architecture and library's architecture
2096  // Obtain string descriptions for architectures
2097
2098  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2099  int running_arch_index=-1;
2100
2101  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2102    if (running_arch_code == arch_array[i].code) {
2103      running_arch_index    = i;
2104    }
2105    if (lib_arch.code == arch_array[i].code) {
2106      lib_arch.compat_class = arch_array[i].compat_class;
2107      lib_arch.name         = arch_array[i].name;
2108    }
2109  }
2110
2111  assert(running_arch_index != -1,
2112    "Didn't find running architecture code (running_arch_code) in arch_array");
2113  if (running_arch_index == -1) {
2114    // Even though running architecture detection failed
2115    // we may still continue with reporting dlerror() message
2116    return NULL;
2117  }
2118
2119  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2120    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2121    return NULL;
2122  }
2123
2124  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2125    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2126    return NULL;
2127  }
2128
2129  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2130    if ( lib_arch.name!=NULL ) {
2131      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2132        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2133        lib_arch.name, arch_array[running_arch_index].name);
2134    } else {
2135      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2136      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2137        lib_arch.code,
2138        arch_array[running_arch_index].name);
2139    }
2140  }
2141
2142  return NULL;
2143}
2144
2145void* os::dll_lookup(void* handle, const char* name) {
2146  return dlsym(handle, name);
2147}
2148
2149void* os::get_default_process_handle() {
2150  return (void*)::dlopen(NULL, RTLD_LAZY);
2151}
2152
2153int os::stat(const char *path, struct stat *sbuf) {
2154  char pathbuf[MAX_PATH];
2155  if (strlen(path) > MAX_PATH - 1) {
2156    errno = ENAMETOOLONG;
2157    return -1;
2158  }
2159  os::native_path(strcpy(pathbuf, path));
2160  return ::stat(pathbuf, sbuf);
2161}
2162
2163static bool _print_ascii_file(const char* filename, outputStream* st) {
2164  int fd = ::open(filename, O_RDONLY);
2165  if (fd == -1) {
2166     return false;
2167  }
2168
2169  char buf[32];
2170  int bytes;
2171  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2172    st->print_raw(buf, bytes);
2173  }
2174
2175  ::close(fd);
2176
2177  return true;
2178}
2179
2180void os::print_os_info_brief(outputStream* st) {
2181  os::Solaris::print_distro_info(st);
2182
2183  os::Posix::print_uname_info(st);
2184
2185  os::Solaris::print_libversion_info(st);
2186}
2187
2188void os::print_os_info(outputStream* st) {
2189  st->print("OS:");
2190
2191  os::Solaris::print_distro_info(st);
2192
2193  os::Posix::print_uname_info(st);
2194
2195  os::Solaris::print_libversion_info(st);
2196
2197  os::Posix::print_rlimit_info(st);
2198
2199  os::Posix::print_load_average(st);
2200}
2201
2202void os::Solaris::print_distro_info(outputStream* st) {
2203  if (!_print_ascii_file("/etc/release", st)) {
2204      st->print("Solaris");
2205    }
2206    st->cr();
2207}
2208
2209void os::Solaris::print_libversion_info(outputStream* st) {
2210  if (os::Solaris::T2_libthread()) {
2211    st->print("  (T2 libthread)");
2212  }
2213  else {
2214    st->print("  (T1 libthread)");
2215  }
2216  st->cr();
2217}
2218
2219static bool check_addr0(outputStream* st) {
2220  jboolean status = false;
2221  int fd = ::open("/proc/self/map",O_RDONLY);
2222  if (fd >= 0) {
2223    prmap_t p;
2224    while(::read(fd, &p, sizeof(p)) > 0) {
2225      if (p.pr_vaddr == 0x0) {
2226        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
2227        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
2228        st->print("Access:");
2229        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
2230        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
2231        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
2232        st->cr();
2233        status = true;
2234      }
2235      ::close(fd);
2236    }
2237  }
2238  return status;
2239}
2240
2241void os::pd_print_cpu_info(outputStream* st) {
2242  // Nothing to do for now.
2243}
2244
2245void os::print_memory_info(outputStream* st) {
2246  st->print("Memory:");
2247  st->print(" %dk page", os::vm_page_size()>>10);
2248  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2249  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2250  st->cr();
2251  (void) check_addr0(st);
2252}
2253
2254// Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
2255// but they're the same for all the solaris architectures that we support.
2256const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2257                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2258                          "ILL_COPROC", "ILL_BADSTK" };
2259
2260const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2261                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2262                          "FPE_FLTINV", "FPE_FLTSUB" };
2263
2264const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2265
2266const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2267
2268void os::print_siginfo(outputStream* st, void* siginfo) {
2269  st->print("siginfo:");
2270
2271  const int buflen = 100;
2272  char buf[buflen];
2273  siginfo_t *si = (siginfo_t*)siginfo;
2274  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2275  char *err = strerror(si->si_errno);
2276  if (si->si_errno != 0 && err != NULL) {
2277    st->print("si_errno=%s", err);
2278  } else {
2279    st->print("si_errno=%d", si->si_errno);
2280  }
2281  const int c = si->si_code;
2282  assert(c > 0, "unexpected si_code");
2283  switch (si->si_signo) {
2284  case SIGILL:
2285    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2286    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2287    break;
2288  case SIGFPE:
2289    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2290    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2291    break;
2292  case SIGSEGV:
2293    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2294    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2295    break;
2296  case SIGBUS:
2297    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2298    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2299    break;
2300  default:
2301    st->print(", si_code=%d", si->si_code);
2302    // no si_addr
2303  }
2304
2305  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2306      UseSharedSpaces) {
2307    FileMapInfo* mapinfo = FileMapInfo::current_info();
2308    if (mapinfo->is_in_shared_space(si->si_addr)) {
2309      st->print("\n\nError accessing class data sharing archive."   \
2310                " Mapped file inaccessible during execution, "      \
2311                " possible disk/network problem.");
2312    }
2313  }
2314  st->cr();
2315}
2316
2317// Moved from whole group, because we need them here for diagnostic
2318// prints.
2319#define OLDMAXSIGNUM 32
2320static int Maxsignum = 0;
2321static int *ourSigFlags = NULL;
2322
2323extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2324
2325int os::Solaris::get_our_sigflags(int sig) {
2326  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2327  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2328  return ourSigFlags[sig];
2329}
2330
2331void os::Solaris::set_our_sigflags(int sig, int flags) {
2332  assert(ourSigFlags!=NULL, "signal data structure not initialized");
2333  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2334  ourSigFlags[sig] = flags;
2335}
2336
2337
2338static const char* get_signal_handler_name(address handler,
2339                                           char* buf, int buflen) {
2340  int offset;
2341  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2342  if (found) {
2343    // skip directory names
2344    const char *p1, *p2;
2345    p1 = buf;
2346    size_t len = strlen(os::file_separator());
2347    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2348    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2349  } else {
2350    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2351  }
2352  return buf;
2353}
2354
2355static void print_signal_handler(outputStream* st, int sig,
2356                                  char* buf, size_t buflen) {
2357  struct sigaction sa;
2358
2359  sigaction(sig, NULL, &sa);
2360
2361  st->print("%s: ", os::exception_name(sig, buf, buflen));
2362
2363  address handler = (sa.sa_flags & SA_SIGINFO)
2364                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2365                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2366
2367  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2368    st->print("SIG_DFL");
2369  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2370    st->print("SIG_IGN");
2371  } else {
2372    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2373  }
2374
2375  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
2376
2377  address rh = VMError::get_resetted_sighandler(sig);
2378  // May be, handler was resetted by VMError?
2379  if(rh != NULL) {
2380    handler = rh;
2381    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2382  }
2383
2384  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
2385
2386  // Check: is it our handler?
2387  if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2388     handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2389    // It is our signal handler
2390    // check for flags
2391    if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2392      st->print(
2393        ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2394        os::Solaris::get_our_sigflags(sig));
2395    }
2396  }
2397  st->cr();
2398}
2399
2400void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2401  st->print_cr("Signal Handlers:");
2402  print_signal_handler(st, SIGSEGV, buf, buflen);
2403  print_signal_handler(st, SIGBUS , buf, buflen);
2404  print_signal_handler(st, SIGFPE , buf, buflen);
2405  print_signal_handler(st, SIGPIPE, buf, buflen);
2406  print_signal_handler(st, SIGXFSZ, buf, buflen);
2407  print_signal_handler(st, SIGILL , buf, buflen);
2408  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2409  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2410  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2411  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2412  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2413  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2414  print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2415  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2416}
2417
2418static char saved_jvm_path[MAXPATHLEN] = { 0 };
2419
2420// Find the full path to the current module, libjvm.so
2421void os::jvm_path(char *buf, jint buflen) {
2422  // Error checking.
2423  if (buflen < MAXPATHLEN) {
2424    assert(false, "must use a large-enough buffer");
2425    buf[0] = '\0';
2426    return;
2427  }
2428  // Lazy resolve the path to current module.
2429  if (saved_jvm_path[0] != 0) {
2430    strcpy(buf, saved_jvm_path);
2431    return;
2432  }
2433
2434  Dl_info dlinfo;
2435  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2436  assert(ret != 0, "cannot locate libjvm");
2437  if (ret != 0 && dlinfo.dli_fname != NULL) {
2438    realpath((char *)dlinfo.dli_fname, buf);
2439  } else {
2440    buf[0] = '\0';
2441    return;
2442  }
2443
2444  if (Arguments::created_by_gamma_launcher()) {
2445    // Support for the gamma launcher.  Typical value for buf is
2446    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2447    // the right place in the string, then assume we are installed in a JDK and
2448    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2449    // up the path so it looks like libjvm.so is installed there (append a
2450    // fake suffix hotspot/libjvm.so).
2451    const char *p = buf + strlen(buf) - 1;
2452    for (int count = 0; p > buf && count < 5; ++count) {
2453      for (--p; p > buf && *p != '/'; --p)
2454        /* empty */ ;
2455    }
2456
2457    if (strncmp(p, "/jre/lib/", 9) != 0) {
2458      // Look for JAVA_HOME in the environment.
2459      char* java_home_var = ::getenv("JAVA_HOME");
2460      if (java_home_var != NULL && java_home_var[0] != 0) {
2461        char cpu_arch[12];
2462        char* jrelib_p;
2463        int   len;
2464        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2465#ifdef _LP64
2466        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2467        if (strcmp(cpu_arch, "sparc") == 0) {
2468          strcat(cpu_arch, "v9");
2469        } else if (strcmp(cpu_arch, "i386") == 0) {
2470          strcpy(cpu_arch, "amd64");
2471        }
2472#endif
2473        // Check the current module name "libjvm.so".
2474        p = strrchr(buf, '/');
2475        assert(strstr(p, "/libjvm") == p, "invalid library name");
2476
2477        realpath(java_home_var, buf);
2478        // determine if this is a legacy image or modules image
2479        // modules image doesn't have "jre" subdirectory
2480        len = strlen(buf);
2481        jrelib_p = buf + len;
2482        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2483        if (0 != access(buf, F_OK)) {
2484          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2485        }
2486
2487        if (0 == access(buf, F_OK)) {
2488          // Use current module name "libjvm.so"
2489          len = strlen(buf);
2490          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2491        } else {
2492          // Go back to path of .so
2493          realpath((char *)dlinfo.dli_fname, buf);
2494        }
2495      }
2496    }
2497  }
2498
2499  strcpy(saved_jvm_path, buf);
2500}
2501
2502
2503void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2504  // no prefix required, not even "_"
2505}
2506
2507
2508void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2509  // no suffix required
2510}
2511
2512// This method is a copy of JDK's sysGetLastErrorString
2513// from src/solaris/hpi/src/system_md.c
2514
2515size_t os::lasterror(char *buf, size_t len) {
2516
2517  if (errno == 0)  return 0;
2518
2519  const char *s = ::strerror(errno);
2520  size_t n = ::strlen(s);
2521  if (n >= len) {
2522    n = len - 1;
2523  }
2524  ::strncpy(buf, s, n);
2525  buf[n] = '\0';
2526  return n;
2527}
2528
2529
2530// sun.misc.Signal
2531
2532extern "C" {
2533  static void UserHandler(int sig, void *siginfo, void *context) {
2534    // Ctrl-C is pressed during error reporting, likely because the error
2535    // handler fails to abort. Let VM die immediately.
2536    if (sig == SIGINT && is_error_reported()) {
2537       os::die();
2538    }
2539
2540    os::signal_notify(sig);
2541    // We do not need to reinstate the signal handler each time...
2542  }
2543}
2544
2545void* os::user_handler() {
2546  return CAST_FROM_FN_PTR(void*, UserHandler);
2547}
2548
2549class Semaphore : public StackObj {
2550  public:
2551    Semaphore();
2552    ~Semaphore();
2553    void signal();
2554    void wait();
2555    bool trywait();
2556    bool timedwait(unsigned int sec, int nsec);
2557  private:
2558    sema_t _semaphore;
2559};
2560
2561
2562Semaphore::Semaphore() {
2563  sema_init(&_semaphore, 0, NULL, NULL);
2564}
2565
2566Semaphore::~Semaphore() {
2567  sema_destroy(&_semaphore);
2568}
2569
2570void Semaphore::signal() {
2571  sema_post(&_semaphore);
2572}
2573
2574void Semaphore::wait() {
2575  sema_wait(&_semaphore);
2576}
2577
2578bool Semaphore::trywait() {
2579  return sema_trywait(&_semaphore) == 0;
2580}
2581
2582bool Semaphore::timedwait(unsigned int sec, int nsec) {
2583  struct timespec ts;
2584  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2585
2586  while (1) {
2587    int result = sema_timedwait(&_semaphore, &ts);
2588    if (result == 0) {
2589      return true;
2590    } else if (errno == EINTR) {
2591      continue;
2592    } else if (errno == ETIME) {
2593      return false;
2594    } else {
2595      return false;
2596    }
2597  }
2598}
2599
2600extern "C" {
2601  typedef void (*sa_handler_t)(int);
2602  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2603}
2604
2605void* os::signal(int signal_number, void* handler) {
2606  struct sigaction sigAct, oldSigAct;
2607  sigfillset(&(sigAct.sa_mask));
2608  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2609  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2610
2611  if (sigaction(signal_number, &sigAct, &oldSigAct))
2612    // -1 means registration failed
2613    return (void *)-1;
2614
2615  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2616}
2617
2618void os::signal_raise(int signal_number) {
2619  raise(signal_number);
2620}
2621
2622/*
2623 * The following code is moved from os.cpp for making this
2624 * code platform specific, which it is by its very nature.
2625 */
2626
2627// a counter for each possible signal value
2628static int Sigexit = 0;
2629static int Maxlibjsigsigs;
2630static jint *pending_signals = NULL;
2631static int *preinstalled_sigs = NULL;
2632static struct sigaction *chainedsigactions = NULL;
2633static sema_t sig_sem;
2634typedef int (*version_getting_t)();
2635version_getting_t os::Solaris::get_libjsig_version = NULL;
2636static int libjsigversion = NULL;
2637
2638int os::sigexitnum_pd() {
2639  assert(Sigexit > 0, "signal memory not yet initialized");
2640  return Sigexit;
2641}
2642
2643void os::Solaris::init_signal_mem() {
2644  // Initialize signal structures
2645  Maxsignum = SIGRTMAX;
2646  Sigexit = Maxsignum+1;
2647  assert(Maxsignum >0, "Unable to obtain max signal number");
2648
2649  Maxlibjsigsigs = Maxsignum;
2650
2651  // pending_signals has one int per signal
2652  // The additional signal is for SIGEXIT - exit signal to signal_thread
2653  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2654  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2655
2656  if (UseSignalChaining) {
2657     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2658       * (Maxsignum + 1), mtInternal);
2659     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2660     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2661     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2662  }
2663  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
2664  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2665}
2666
2667void os::signal_init_pd() {
2668  int ret;
2669
2670  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2671  assert(ret == 0, "sema_init() failed");
2672}
2673
2674void os::signal_notify(int signal_number) {
2675  int ret;
2676
2677  Atomic::inc(&pending_signals[signal_number]);
2678  ret = ::sema_post(&sig_sem);
2679  assert(ret == 0, "sema_post() failed");
2680}
2681
2682static int check_pending_signals(bool wait_for_signal) {
2683  int ret;
2684  while (true) {
2685    for (int i = 0; i < Sigexit + 1; i++) {
2686      jint n = pending_signals[i];
2687      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2688        return i;
2689      }
2690    }
2691    if (!wait_for_signal) {
2692      return -1;
2693    }
2694    JavaThread *thread = JavaThread::current();
2695    ThreadBlockInVM tbivm(thread);
2696
2697    bool threadIsSuspended;
2698    do {
2699      thread->set_suspend_equivalent();
2700      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2701      while((ret = ::sema_wait(&sig_sem)) == EINTR)
2702          ;
2703      assert(ret == 0, "sema_wait() failed");
2704
2705      // were we externally suspended while we were waiting?
2706      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2707      if (threadIsSuspended) {
2708        //
2709        // The semaphore has been incremented, but while we were waiting
2710        // another thread suspended us. We don't want to continue running
2711        // while suspended because that would surprise the thread that
2712        // suspended us.
2713        //
2714        ret = ::sema_post(&sig_sem);
2715        assert(ret == 0, "sema_post() failed");
2716
2717        thread->java_suspend_self();
2718      }
2719    } while (threadIsSuspended);
2720  }
2721}
2722
2723int os::signal_lookup() {
2724  return check_pending_signals(false);
2725}
2726
2727int os::signal_wait() {
2728  return check_pending_signals(true);
2729}
2730
2731////////////////////////////////////////////////////////////////////////////////
2732// Virtual Memory
2733
2734static int page_size = -1;
2735
2736// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2737// clear this var if support is not available.
2738static bool has_map_align = true;
2739
2740int os::vm_page_size() {
2741  assert(page_size != -1, "must call os::init");
2742  return page_size;
2743}
2744
2745// Solaris allocates memory by pages.
2746int os::vm_allocation_granularity() {
2747  assert(page_size != -1, "must call os::init");
2748  return page_size;
2749}
2750
2751static bool recoverable_mmap_error(int err) {
2752  // See if the error is one we can let the caller handle. This
2753  // list of errno values comes from the Solaris mmap(2) man page.
2754  switch (err) {
2755  case EBADF:
2756  case EINVAL:
2757  case ENOTSUP:
2758    // let the caller deal with these errors
2759    return true;
2760
2761  default:
2762    // Any remaining errors on this OS can cause our reserved mapping
2763    // to be lost. That can cause confusion where different data
2764    // structures think they have the same memory mapped. The worst
2765    // scenario is if both the VM and a library think they have the
2766    // same memory mapped.
2767    return false;
2768  }
2769}
2770
2771static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2772                                    int err) {
2773  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2774          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2775          strerror(err), err);
2776}
2777
2778static void warn_fail_commit_memory(char* addr, size_t bytes,
2779                                    size_t alignment_hint, bool exec,
2780                                    int err) {
2781  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2782          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2783          alignment_hint, exec, strerror(err), err);
2784}
2785
2786int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2787  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2788  size_t size = bytes;
2789  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2790  if (res != NULL) {
2791    if (UseNUMAInterleaving) {
2792      numa_make_global(addr, bytes);
2793    }
2794    return 0;
2795  }
2796
2797  int err = errno;  // save errno from mmap() call in mmap_chunk()
2798
2799  if (!recoverable_mmap_error(err)) {
2800    warn_fail_commit_memory(addr, bytes, exec, err);
2801    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2802  }
2803
2804  return err;
2805}
2806
2807bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2808  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2809}
2810
2811void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2812                                  const char* mesg) {
2813  assert(mesg != NULL, "mesg must be specified");
2814  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2815  if (err != 0) {
2816    // the caller wants all commit errors to exit with the specified mesg:
2817    warn_fail_commit_memory(addr, bytes, exec, err);
2818    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2819  }
2820}
2821
2822int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2823                                    size_t alignment_hint, bool exec) {
2824  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2825  if (err == 0) {
2826    if (UseLargePages && (alignment_hint > (size_t)vm_page_size())) {
2827      // If the large page size has been set and the VM
2828      // is using large pages, use the large page size
2829      // if it is smaller than the alignment hint. This is
2830      // a case where the VM wants to use a larger alignment size
2831      // for its own reasons but still want to use large pages
2832      // (which is what matters to setting the mpss range.
2833      size_t page_size = 0;
2834      if (large_page_size() < alignment_hint) {
2835        assert(UseLargePages, "Expected to be here for large page use only");
2836        page_size = large_page_size();
2837      } else {
2838        // If the alignment hint is less than the large page
2839        // size, the VM wants a particular alignment (thus the hint)
2840        // for internal reasons.  Try to set the mpss range using
2841        // the alignment_hint.
2842        page_size = alignment_hint;
2843      }
2844      // Since this is a hint, ignore any failures.
2845      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2846    }
2847  }
2848  return err;
2849}
2850
2851bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2852                          bool exec) {
2853  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2854}
2855
2856void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2857                                  size_t alignment_hint, bool exec,
2858                                  const char* mesg) {
2859  assert(mesg != NULL, "mesg must be specified");
2860  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2861  if (err != 0) {
2862    // the caller wants all commit errors to exit with the specified mesg:
2863    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2864    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
2865  }
2866}
2867
2868// Uncommit the pages in a specified region.
2869void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2870  if (madvise(addr, bytes, MADV_FREE) < 0) {
2871    debug_only(warning("MADV_FREE failed."));
2872    return;
2873  }
2874}
2875
2876bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2877  return os::commit_memory(addr, size, !ExecMem);
2878}
2879
2880bool os::remove_stack_guard_pages(char* addr, size_t size) {
2881  return os::uncommit_memory(addr, size);
2882}
2883
2884// Change the page size in a given range.
2885void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2886  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2887  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2888  if (UseLargePages) {
2889    Solaris::setup_large_pages(addr, bytes, alignment_hint);
2890  }
2891}
2892
2893// Tell the OS to make the range local to the first-touching LWP
2894void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2895  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2896  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2897    debug_only(warning("MADV_ACCESS_LWP failed."));
2898  }
2899}
2900
2901// Tell the OS that this range would be accessed from different LWPs.
2902void os::numa_make_global(char *addr, size_t bytes) {
2903  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2904  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2905    debug_only(warning("MADV_ACCESS_MANY failed."));
2906  }
2907}
2908
2909// Get the number of the locality groups.
2910size_t os::numa_get_groups_num() {
2911  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2912  return n != -1 ? n : 1;
2913}
2914
2915// Get a list of leaf locality groups. A leaf lgroup is group that
2916// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2917// board. An LWP is assigned to one of these groups upon creation.
2918size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2919   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2920     ids[0] = 0;
2921     return 1;
2922   }
2923   int result_size = 0, top = 1, bottom = 0, cur = 0;
2924   for (int k = 0; k < size; k++) {
2925     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2926                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2927     if (r == -1) {
2928       ids[0] = 0;
2929       return 1;
2930     }
2931     if (!r) {
2932       // That's a leaf node.
2933       assert (bottom <= cur, "Sanity check");
2934       // Check if the node has memory
2935       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2936                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2937         ids[bottom++] = ids[cur];
2938       }
2939     }
2940     top += r;
2941     cur++;
2942   }
2943   if (bottom == 0) {
2944     // Handle a situation, when the OS reports no memory available.
2945     // Assume UMA architecture.
2946     ids[0] = 0;
2947     return 1;
2948   }
2949   return bottom;
2950}
2951
2952// Detect the topology change. Typically happens during CPU plugging-unplugging.
2953bool os::numa_topology_changed() {
2954  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2955  if (is_stale != -1 && is_stale) {
2956    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2957    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2958    assert(c != 0, "Failure to initialize LGRP API");
2959    Solaris::set_lgrp_cookie(c);
2960    return true;
2961  }
2962  return false;
2963}
2964
2965// Get the group id of the current LWP.
2966int os::numa_get_group_id() {
2967  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2968  if (lgrp_id == -1) {
2969    return 0;
2970  }
2971  const int size = os::numa_get_groups_num();
2972  int *ids = (int*)alloca(size * sizeof(int));
2973
2974  // Get the ids of all lgroups with memory; r is the count.
2975  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2976                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2977  if (r <= 0) {
2978    return 0;
2979  }
2980  return ids[os::random() % r];
2981}
2982
2983// Request information about the page.
2984bool os::get_page_info(char *start, page_info* info) {
2985  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2986  uint64_t addr = (uintptr_t)start;
2987  uint64_t outdata[2];
2988  uint_t validity = 0;
2989
2990  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2991    return false;
2992  }
2993
2994  info->size = 0;
2995  info->lgrp_id = -1;
2996
2997  if ((validity & 1) != 0) {
2998    if ((validity & 2) != 0) {
2999      info->lgrp_id = outdata[0];
3000    }
3001    if ((validity & 4) != 0) {
3002      info->size = outdata[1];
3003    }
3004    return true;
3005  }
3006  return false;
3007}
3008
3009// Scan the pages from start to end until a page different than
3010// the one described in the info parameter is encountered.
3011char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3012  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
3013  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
3014  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
3015  uint_t validity[MAX_MEMINFO_CNT];
3016
3017  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
3018  uint64_t p = (uint64_t)start;
3019  while (p < (uint64_t)end) {
3020    addrs[0] = p;
3021    size_t addrs_count = 1;
3022    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
3023      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
3024      addrs_count++;
3025    }
3026
3027    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
3028      return NULL;
3029    }
3030
3031    size_t i = 0;
3032    for (; i < addrs_count; i++) {
3033      if ((validity[i] & 1) != 0) {
3034        if ((validity[i] & 4) != 0) {
3035          if (outdata[types * i + 1] != page_expected->size) {
3036            break;
3037          }
3038        } else
3039          if (page_expected->size != 0) {
3040            break;
3041          }
3042
3043        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
3044          if (outdata[types * i] != page_expected->lgrp_id) {
3045            break;
3046          }
3047        }
3048      } else {
3049        return NULL;
3050      }
3051    }
3052
3053    if (i != addrs_count) {
3054      if ((validity[i] & 2) != 0) {
3055        page_found->lgrp_id = outdata[types * i];
3056      } else {
3057        page_found->lgrp_id = -1;
3058      }
3059      if ((validity[i] & 4) != 0) {
3060        page_found->size = outdata[types * i + 1];
3061      } else {
3062        page_found->size = 0;
3063      }
3064      return (char*)addrs[i];
3065    }
3066
3067    p = addrs[addrs_count - 1] + page_size;
3068  }
3069  return end;
3070}
3071
3072bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3073  size_t size = bytes;
3074  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3075  // uncommitted page. Otherwise, the read/write might succeed if we
3076  // have enough swap space to back the physical page.
3077  return
3078    NULL != Solaris::mmap_chunk(addr, size,
3079                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
3080                                PROT_NONE);
3081}
3082
3083char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
3084  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
3085
3086  if (b == MAP_FAILED) {
3087    return NULL;
3088  }
3089  return b;
3090}
3091
3092char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
3093  char* addr = requested_addr;
3094  int flags = MAP_PRIVATE | MAP_NORESERVE;
3095
3096  assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
3097
3098  if (fixed) {
3099    flags |= MAP_FIXED;
3100  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
3101    flags |= MAP_ALIGN;
3102    addr = (char*) alignment_hint;
3103  }
3104
3105  // Map uncommitted pages PROT_NONE so we fail early if we touch an
3106  // uncommitted page. Otherwise, the read/write might succeed if we
3107  // have enough swap space to back the physical page.
3108  return mmap_chunk(addr, bytes, flags, PROT_NONE);
3109}
3110
3111char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
3112  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
3113
3114  guarantee(requested_addr == NULL || requested_addr == addr,
3115            "OS failed to return requested mmap address.");
3116  return addr;
3117}
3118
3119// Reserve memory at an arbitrary address, only if that area is
3120// available (and not reserved for something else).
3121
3122char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3123  const int max_tries = 10;
3124  char* base[max_tries];
3125  size_t size[max_tries];
3126
3127  // Solaris adds a gap between mmap'ed regions.  The size of the gap
3128  // is dependent on the requested size and the MMU.  Our initial gap
3129  // value here is just a guess and will be corrected later.
3130  bool had_top_overlap = false;
3131  bool have_adjusted_gap = false;
3132  size_t gap = 0x400000;
3133
3134  // Assert only that the size is a multiple of the page size, since
3135  // that's all that mmap requires, and since that's all we really know
3136  // about at this low abstraction level.  If we need higher alignment,
3137  // we can either pass an alignment to this method or verify alignment
3138  // in one of the methods further up the call chain.  See bug 5044738.
3139  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3140
3141  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
3142  // Give it a try, if the kernel honors the hint we can return immediately.
3143  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
3144
3145  volatile int err = errno;
3146  if (addr == requested_addr) {
3147    return addr;
3148  } else if (addr != NULL) {
3149    pd_unmap_memory(addr, bytes);
3150  }
3151
3152  if (PrintMiscellaneous && Verbose) {
3153    char buf[256];
3154    buf[0] = '\0';
3155    if (addr == NULL) {
3156      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
3157    }
3158    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
3159            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
3160            "%s", bytes, requested_addr, addr, buf);
3161  }
3162
3163  // Address hint method didn't work.  Fall back to the old method.
3164  // In theory, once SNV becomes our oldest supported platform, this
3165  // code will no longer be needed.
3166  //
3167  // Repeatedly allocate blocks until the block is allocated at the
3168  // right spot. Give up after max_tries.
3169  int i;
3170  for (i = 0; i < max_tries; ++i) {
3171    base[i] = reserve_memory(bytes);
3172
3173    if (base[i] != NULL) {
3174      // Is this the block we wanted?
3175      if (base[i] == requested_addr) {
3176        size[i] = bytes;
3177        break;
3178      }
3179
3180      // check that the gap value is right
3181      if (had_top_overlap && !have_adjusted_gap) {
3182        size_t actual_gap = base[i-1] - base[i] - bytes;
3183        if (gap != actual_gap) {
3184          // adjust the gap value and retry the last 2 allocations
3185          assert(i > 0, "gap adjustment code problem");
3186          have_adjusted_gap = true;  // adjust the gap only once, just in case
3187          gap = actual_gap;
3188          if (PrintMiscellaneous && Verbose) {
3189            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
3190          }
3191          unmap_memory(base[i], bytes);
3192          unmap_memory(base[i-1], size[i-1]);
3193          i-=2;
3194          continue;
3195        }
3196      }
3197
3198      // Does this overlap the block we wanted? Give back the overlapped
3199      // parts and try again.
3200      //
3201      // There is still a bug in this code: if top_overlap == bytes,
3202      // the overlap is offset from requested region by the value of gap.
3203      // In this case giving back the overlapped part will not work,
3204      // because we'll give back the entire block at base[i] and
3205      // therefore the subsequent allocation will not generate a new gap.
3206      // This could be fixed with a new algorithm that used larger
3207      // or variable size chunks to find the requested region -
3208      // but such a change would introduce additional complications.
3209      // It's rare enough that the planets align for this bug,
3210      // so we'll just wait for a fix for 6204603/5003415 which
3211      // will provide a mmap flag to allow us to avoid this business.
3212
3213      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3214      if (top_overlap >= 0 && top_overlap < bytes) {
3215        had_top_overlap = true;
3216        unmap_memory(base[i], top_overlap);
3217        base[i] += top_overlap;
3218        size[i] = bytes - top_overlap;
3219      } else {
3220        size_t bottom_overlap = base[i] + bytes - requested_addr;
3221        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3222          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
3223            warning("attempt_reserve_memory_at: possible alignment bug");
3224          }
3225          unmap_memory(requested_addr, bottom_overlap);
3226          size[i] = bytes - bottom_overlap;
3227        } else {
3228          size[i] = bytes;
3229        }
3230      }
3231    }
3232  }
3233
3234  // Give back the unused reserved pieces.
3235
3236  for (int j = 0; j < i; ++j) {
3237    if (base[j] != NULL) {
3238      unmap_memory(base[j], size[j]);
3239    }
3240  }
3241
3242  return (i < max_tries) ? requested_addr : NULL;
3243}
3244
3245bool os::pd_release_memory(char* addr, size_t bytes) {
3246  size_t size = bytes;
3247  return munmap(addr, size) == 0;
3248}
3249
3250static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
3251  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
3252         "addr must be page aligned");
3253  int retVal = mprotect(addr, bytes, prot);
3254  return retVal == 0;
3255}
3256
3257// Protect memory (Used to pass readonly pages through
3258// JNI GetArray<type>Elements with empty arrays.)
3259// Also, used for serialization page and for compressed oops null pointer
3260// checking.
3261bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3262                        bool is_committed) {
3263  unsigned int p = 0;
3264  switch (prot) {
3265  case MEM_PROT_NONE: p = PROT_NONE; break;
3266  case MEM_PROT_READ: p = PROT_READ; break;
3267  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3268  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3269  default:
3270    ShouldNotReachHere();
3271  }
3272  // is_committed is unused.
3273  return solaris_mprotect(addr, bytes, p);
3274}
3275
3276// guard_memory and unguard_memory only happens within stack guard pages.
3277// Since ISM pertains only to the heap, guard and unguard memory should not
3278/// happen with an ISM region.
3279bool os::guard_memory(char* addr, size_t bytes) {
3280  return solaris_mprotect(addr, bytes, PROT_NONE);
3281}
3282
3283bool os::unguard_memory(char* addr, size_t bytes) {
3284  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3285}
3286
3287// Large page support
3288static size_t _large_page_size = 0;
3289
3290// Insertion sort for small arrays (descending order).
3291static void insertion_sort_descending(size_t* array, int len) {
3292  for (int i = 0; i < len; i++) {
3293    size_t val = array[i];
3294    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3295      size_t tmp = array[key];
3296      array[key] = array[key - 1];
3297      array[key - 1] = tmp;
3298    }
3299  }
3300}
3301
3302bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
3303  const unsigned int usable_count = VM_Version::page_size_count();
3304  if (usable_count == 1) {
3305    return false;
3306  }
3307
3308  // Find the right getpagesizes interface.  When solaris 11 is the minimum
3309  // build platform, getpagesizes() (without the '2') can be called directly.
3310  typedef int (*gps_t)(size_t[], int);
3311  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3312  if (gps_func == NULL) {
3313    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3314    if (gps_func == NULL) {
3315      if (warn) {
3316        warning("MPSS is not supported by the operating system.");
3317      }
3318      return false;
3319    }
3320  }
3321
3322  // Fill the array of page sizes.
3323  int n = (*gps_func)(_page_sizes, page_sizes_max);
3324  assert(n > 0, "Solaris bug?");
3325
3326  if (n == page_sizes_max) {
3327    // Add a sentinel value (necessary only if the array was completely filled
3328    // since it is static (zeroed at initialization)).
3329    _page_sizes[--n] = 0;
3330    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3331  }
3332  assert(_page_sizes[n] == 0, "missing sentinel");
3333  trace_page_sizes("available page sizes", _page_sizes, n);
3334
3335  if (n == 1) return false;     // Only one page size available.
3336
3337  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3338  // select up to usable_count elements.  First sort the array, find the first
3339  // acceptable value, then copy the usable sizes to the top of the array and
3340  // trim the rest.  Make sure to include the default page size :-).
3341  //
3342  // A better policy could get rid of the 4M limit by taking the sizes of the
3343  // important VM memory regions (java heap and possibly the code cache) into
3344  // account.
3345  insertion_sort_descending(_page_sizes, n);
3346  const size_t size_limit =
3347    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3348  int beg;
3349  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
3350  const int end = MIN2((int)usable_count, n) - 1;
3351  for (int cur = 0; cur < end; ++cur, ++beg) {
3352    _page_sizes[cur] = _page_sizes[beg];
3353  }
3354  _page_sizes[end] = vm_page_size();
3355  _page_sizes[end + 1] = 0;
3356
3357  if (_page_sizes[end] > _page_sizes[end - 1]) {
3358    // Default page size is not the smallest; sort again.
3359    insertion_sort_descending(_page_sizes, end + 1);
3360  }
3361  *page_size = _page_sizes[0];
3362
3363  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3364  return true;
3365}
3366
3367void os::large_page_init() {
3368  if (UseLargePages) {
3369    // print a warning if any large page related flag is specified on command line
3370    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3371                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3372
3373    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3374  }
3375}
3376
3377bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3378  // Signal to OS that we want large pages for addresses
3379  // from addr, addr + bytes
3380  struct memcntl_mha mpss_struct;
3381  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3382  mpss_struct.mha_pagesize = align;
3383  mpss_struct.mha_flags = 0;
3384  // Upon successful completion, memcntl() returns 0
3385  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3386    debug_only(warning("Attempt to use MPSS failed."));
3387    return false;
3388  }
3389  return true;
3390}
3391
3392char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3393  fatal("os::reserve_memory_special should not be called on Solaris.");
3394  return NULL;
3395}
3396
3397bool os::release_memory_special(char* base, size_t bytes) {
3398  fatal("os::release_memory_special should not be called on Solaris.");
3399  return false;
3400}
3401
3402size_t os::large_page_size() {
3403  return _large_page_size;
3404}
3405
3406// MPSS allows application to commit large page memory on demand; with ISM
3407// the entire memory region must be allocated as shared memory.
3408bool os::can_commit_large_page_memory() {
3409  return true;
3410}
3411
3412bool os::can_execute_large_page_memory() {
3413  return true;
3414}
3415
3416static int os_sleep(jlong millis, bool interruptible) {
3417  const jlong limit = INT_MAX;
3418  jlong prevtime;
3419  int res;
3420
3421  while (millis > limit) {
3422    if ((res = os_sleep(limit, interruptible)) != OS_OK)
3423      return res;
3424    millis -= limit;
3425  }
3426
3427  // Restart interrupted polls with new parameters until the proper delay
3428  // has been completed.
3429
3430  prevtime = getTimeMillis();
3431
3432  while (millis > 0) {
3433    jlong newtime;
3434
3435    if (!interruptible) {
3436      // Following assert fails for os::yield_all:
3437      // assert(!thread->is_Java_thread(), "must not be java thread");
3438      res = poll(NULL, 0, millis);
3439    } else {
3440      JavaThread *jt = JavaThread::current();
3441
3442      INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
3443        os::Solaris::clear_interrupted);
3444    }
3445
3446    // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
3447    // thread.Interrupt.
3448
3449    // See c/r 6751923. Poll can return 0 before time
3450    // has elapsed if time is set via clock_settime (as NTP does).
3451    // res == 0 if poll timed out (see man poll RETURN VALUES)
3452    // using the logic below checks that we really did
3453    // sleep at least "millis" if not we'll sleep again.
3454    if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
3455      newtime = getTimeMillis();
3456      assert(newtime >= prevtime, "time moving backwards");
3457    /* Doing prevtime and newtime in microseconds doesn't help precision,
3458       and trying to round up to avoid lost milliseconds can result in a
3459       too-short delay. */
3460      millis -= newtime - prevtime;
3461      if(millis <= 0)
3462        return OS_OK;
3463      prevtime = newtime;
3464    } else
3465      return res;
3466  }
3467
3468  return OS_OK;
3469}
3470
3471// Read calls from inside the vm need to perform state transitions
3472size_t os::read(int fd, void *buf, unsigned int nBytes) {
3473  INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3474}
3475
3476size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3477  INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3478}
3479
3480int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3481  assert(thread == Thread::current(),  "thread consistency check");
3482
3483  // TODO-FIXME: this should be removed.
3484  // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
3485  // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
3486  // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
3487  // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
3488  // is fooled into believing that the system is making progress. In the code below we block the
3489  // the watcher thread while safepoint is in progress so that it would not appear as though the
3490  // system is making progress.
3491  if (!Solaris::T2_libthread() &&
3492      thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
3493    // We now try to acquire the threads lock. Since this lock is held by the VM thread during
3494    // the entire safepoint, the watcher thread will  line up here during the safepoint.
3495    Threads_lock->lock_without_safepoint_check();
3496    Threads_lock->unlock();
3497  }
3498
3499  if (thread->is_Java_thread()) {
3500    // This is a JavaThread so we honor the _thread_blocked protocol
3501    // even for sleeps of 0 milliseconds. This was originally done
3502    // as a workaround for bug 4338139. However, now we also do it
3503    // to honor the suspend-equivalent protocol.
3504
3505    JavaThread *jt = (JavaThread *) thread;
3506    ThreadBlockInVM tbivm(jt);
3507
3508    jt->set_suspend_equivalent();
3509    // cleared by handle_special_suspend_equivalent_condition() or
3510    // java_suspend_self() via check_and_wait_while_suspended()
3511
3512    int ret_code;
3513    if (millis <= 0) {
3514      thr_yield();
3515      ret_code = 0;
3516    } else {
3517      // The original sleep() implementation did not create an
3518      // OSThreadWaitState helper for sleeps of 0 milliseconds.
3519      // I'm preserving that decision for now.
3520      OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3521
3522      ret_code = os_sleep(millis, interruptible);
3523    }
3524
3525    // were we externally suspended while we were waiting?
3526    jt->check_and_wait_while_suspended();
3527
3528    return ret_code;
3529  }
3530
3531  // non-JavaThread from this point on:
3532
3533  if (millis <= 0) {
3534    thr_yield();
3535    return 0;
3536  }
3537
3538  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3539
3540  return os_sleep(millis, interruptible);
3541}
3542
3543int os::naked_sleep() {
3544  // %% make the sleep time an integer flag. for now use 1 millisec.
3545  return os_sleep(1, false);
3546}
3547
3548// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3549void os::infinite_sleep() {
3550  while (true) {    // sleep forever ...
3551    ::sleep(100);   // ... 100 seconds at a time
3552  }
3553}
3554
3555// Used to convert frequent JVM_Yield() to nops
3556bool os::dont_yield() {
3557  if (DontYieldALot) {
3558    static hrtime_t last_time = 0;
3559    hrtime_t diff = getTimeNanos() - last_time;
3560
3561    if (diff < DontYieldALotInterval * 1000000)
3562      return true;
3563
3564    last_time += diff;
3565
3566    return false;
3567  }
3568  else {
3569    return false;
3570  }
3571}
3572
3573// Caveat: Solaris os::yield() causes a thread-state transition whereas
3574// the linux and win32 implementations do not.  This should be checked.
3575
3576void os::yield() {
3577  // Yields to all threads with same or greater priority
3578  os::sleep(Thread::current(), 0, false);
3579}
3580
3581// Note that yield semantics are defined by the scheduling class to which
3582// the thread currently belongs.  Typically, yield will _not yield to
3583// other equal or higher priority threads that reside on the dispatch queues
3584// of other CPUs.
3585
3586os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
3587
3588
3589// On Solaris we found that yield_all doesn't always yield to all other threads.
3590// There have been cases where there is a thread ready to execute but it doesn't
3591// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
3592// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
3593// SIGWAITING signal which will cause a new lwp to be created. So we count the
3594// number of times yield_all is called in the one loop and increase the sleep
3595// time after 8 attempts. If this fails too we increase the concurrency level
3596// so that the starving thread would get an lwp
3597
3598void os::yield_all(int attempts) {
3599  // Yields to all threads, including threads with lower priorities
3600  if (attempts == 0) {
3601    os::sleep(Thread::current(), 1, false);
3602  } else {
3603    int iterations = attempts % 30;
3604    if (iterations == 0 && !os::Solaris::T2_libthread()) {
3605      // thr_setconcurrency and _getconcurrency make sense only under T1.
3606      int noofLWPS = thr_getconcurrency();
3607      if (noofLWPS < (Threads::number_of_threads() + 2)) {
3608        thr_setconcurrency(thr_getconcurrency() + 1);
3609      }
3610    } else if (iterations < 25) {
3611      os::sleep(Thread::current(), 1, false);
3612    } else {
3613      os::sleep(Thread::current(), 10, false);
3614    }
3615  }
3616}
3617
3618// Called from the tight loops to possibly influence time-sharing heuristics
3619void os::loop_breaker(int attempts) {
3620  os::yield_all(attempts);
3621}
3622
3623
3624// Interface for setting lwp priorities.  If we are using T2 libthread,
3625// which forces the use of BoundThreads or we manually set UseBoundThreads,
3626// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3627// function is meaningless in this mode so we must adjust the real lwp's priority
3628// The routines below implement the getting and setting of lwp priorities.
3629//
3630// Note: There are three priority scales used on Solaris.  Java priotities
3631//       which range from 1 to 10, libthread "thr_setprio" scale which range
3632//       from 0 to 127, and the current scheduling class of the process we
3633//       are running in.  This is typically from -60 to +60.
3634//       The setting of the lwp priorities in done after a call to thr_setprio
3635//       so Java priorities are mapped to libthread priorities and we map from
3636//       the latter to lwp priorities.  We don't keep priorities stored in
3637//       Java priorities since some of our worker threads want to set priorities
3638//       higher than all Java threads.
3639//
3640// For related information:
3641// (1)  man -s 2 priocntl
3642// (2)  man -s 4 priocntl
3643// (3)  man dispadmin
3644// =    librt.so
3645// =    libthread/common/rtsched.c - thrp_setlwpprio().
3646// =    ps -cL <pid> ... to validate priority.
3647// =    sched_get_priority_min and _max
3648//              pthread_create
3649//              sched_setparam
3650//              pthread_setschedparam
3651//
3652// Assumptions:
3653// +    We assume that all threads in the process belong to the same
3654//              scheduling class.   IE. an homogenous process.
3655// +    Must be root or in IA group to change change "interactive" attribute.
3656//              Priocntl() will fail silently.  The only indication of failure is when
3657//              we read-back the value and notice that it hasn't changed.
3658// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3659// +    For RT, change timeslice as well.  Invariant:
3660//              constant "priority integral"
3661//              Konst == TimeSlice * (60-Priority)
3662//              Given a priority, compute appropriate timeslice.
3663// +    Higher numerical values have higher priority.
3664
3665// sched class attributes
3666typedef struct {
3667        int   schedPolicy;              // classID
3668        int   maxPrio;
3669        int   minPrio;
3670} SchedInfo;
3671
3672
3673static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3674
3675#ifdef ASSERT
3676static int  ReadBackValidate = 1;
3677#endif
3678static int  myClass     = 0;
3679static int  myMin       = 0;
3680static int  myMax       = 0;
3681static int  myCur       = 0;
3682static bool priocntl_enable = false;
3683
3684static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3685static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3686
3687
3688// lwp_priocntl_init
3689//
3690// Try to determine the priority scale for our process.
3691//
3692// Return errno or 0 if OK.
3693//
3694static int lwp_priocntl_init () {
3695  int rslt;
3696  pcinfo_t ClassInfo;
3697  pcparms_t ParmInfo;
3698  int i;
3699
3700  if (!UseThreadPriorities) return 0;
3701
3702  // We are using Bound threads, we need to determine our priority ranges
3703  if (os::Solaris::T2_libthread() || UseBoundThreads) {
3704    // If ThreadPriorityPolicy is 1, switch tables
3705    if (ThreadPriorityPolicy == 1) {
3706      for (i = 0 ; i < CriticalPriority+1; i++)
3707        os::java_to_os_priority[i] = prio_policy1[i];
3708    }
3709    if (UseCriticalJavaThreadPriority) {
3710      // MaxPriority always maps to the FX scheduling class and criticalPrio.
3711      // See set_native_priority() and set_lwp_class_and_priority().
3712      // Save original MaxPriority mapping in case attempt to
3713      // use critical priority fails.
3714      java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3715      // Set negative to distinguish from other priorities
3716      os::java_to_os_priority[MaxPriority] = -criticalPrio;
3717    }
3718  }
3719  // Not using Bound Threads, set to ThreadPolicy 1
3720  else {
3721    for ( i = 0 ; i < CriticalPriority+1; i++ ) {
3722      os::java_to_os_priority[i] = prio_policy1[i];
3723    }
3724    return 0;
3725  }
3726
3727  // Get IDs for a set of well-known scheduling classes.
3728  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3729  // the system.  We should have a loop that iterates over the
3730  // classID values, which are known to be "small" integers.
3731
3732  strcpy(ClassInfo.pc_clname, "TS");
3733  ClassInfo.pc_cid = -1;
3734  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3735  if (rslt < 0) return errno;
3736  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3737  tsLimits.schedPolicy = ClassInfo.pc_cid;
3738  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3739  tsLimits.minPrio = -tsLimits.maxPrio;
3740
3741  strcpy(ClassInfo.pc_clname, "IA");
3742  ClassInfo.pc_cid = -1;
3743  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3744  if (rslt < 0) return errno;
3745  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3746  iaLimits.schedPolicy = ClassInfo.pc_cid;
3747  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3748  iaLimits.minPrio = -iaLimits.maxPrio;
3749
3750  strcpy(ClassInfo.pc_clname, "RT");
3751  ClassInfo.pc_cid = -1;
3752  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3753  if (rslt < 0) return errno;
3754  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3755  rtLimits.schedPolicy = ClassInfo.pc_cid;
3756  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3757  rtLimits.minPrio = 0;
3758
3759  strcpy(ClassInfo.pc_clname, "FX");
3760  ClassInfo.pc_cid = -1;
3761  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3762  if (rslt < 0) return errno;
3763  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3764  fxLimits.schedPolicy = ClassInfo.pc_cid;
3765  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3766  fxLimits.minPrio = 0;
3767
3768  // Query our "current" scheduling class.
3769  // This will normally be IA, TS or, rarely, FX or RT.
3770  memset(&ParmInfo, 0, sizeof(ParmInfo));
3771  ParmInfo.pc_cid = PC_CLNULL;
3772  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3773  if (rslt < 0) return errno;
3774  myClass = ParmInfo.pc_cid;
3775
3776  // We now know our scheduling classId, get specific information
3777  // about the class.
3778  ClassInfo.pc_cid = myClass;
3779  ClassInfo.pc_clname[0] = 0;
3780  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3781  if (rslt < 0) return errno;
3782
3783  if (ThreadPriorityVerbose) {
3784    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3785  }
3786
3787  memset(&ParmInfo, 0, sizeof(pcparms_t));
3788  ParmInfo.pc_cid = PC_CLNULL;
3789  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3790  if (rslt < 0) return errno;
3791
3792  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3793    myMin = rtLimits.minPrio;
3794    myMax = rtLimits.maxPrio;
3795  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3796    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3797    myMin = iaLimits.minPrio;
3798    myMax = iaLimits.maxPrio;
3799    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3800  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3801    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3802    myMin = tsLimits.minPrio;
3803    myMax = tsLimits.maxPrio;
3804    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3805  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3806    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3807    myMin = fxLimits.minPrio;
3808    myMax = fxLimits.maxPrio;
3809    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3810  } else {
3811    // No clue - punt
3812    if (ThreadPriorityVerbose)
3813      tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
3814    return EINVAL;      // no clue, punt
3815  }
3816
3817  if (ThreadPriorityVerbose) {
3818    tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
3819  }
3820
3821  priocntl_enable = true;  // Enable changing priorities
3822  return 0;
3823}
3824
3825#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3826#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3827#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3828#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3829
3830
3831// scale_to_lwp_priority
3832//
3833// Convert from the libthread "thr_setprio" scale to our current
3834// lwp scheduling class scale.
3835//
3836static
3837int     scale_to_lwp_priority (int rMin, int rMax, int x)
3838{
3839  int v;
3840
3841  if (x == 127) return rMax;            // avoid round-down
3842    v = (((x*(rMax-rMin)))/128)+rMin;
3843  return v;
3844}
3845
3846
3847// set_lwp_class_and_priority
3848//
3849// Set the class and priority of the lwp.  This call should only
3850// be made when using bound threads (T2 threads are bound by default).
3851//
3852int set_lwp_class_and_priority(int ThreadID, int lwpid,
3853                               int newPrio, int new_class, bool scale) {
3854  int rslt;
3855  int Actual, Expected, prv;
3856  pcparms_t ParmInfo;                   // for GET-SET
3857#ifdef ASSERT
3858  pcparms_t ReadBack;                   // for readback
3859#endif
3860
3861  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3862  // Query current values.
3863  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3864  // Cache "pcparms_t" in global ParmCache.
3865  // TODO: elide set-to-same-value
3866
3867  // If something went wrong on init, don't change priorities.
3868  if ( !priocntl_enable ) {
3869    if (ThreadPriorityVerbose)
3870      tty->print_cr("Trying to set priority but init failed, ignoring");
3871    return EINVAL;
3872  }
3873
3874  // If lwp hasn't started yet, just return
3875  // the _start routine will call us again.
3876  if ( lwpid <= 0 ) {
3877    if (ThreadPriorityVerbose) {
3878      tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
3879                     INTPTR_FORMAT " to %d, lwpid not set",
3880                     ThreadID, newPrio);
3881    }
3882    return 0;
3883  }
3884
3885  if (ThreadPriorityVerbose) {
3886    tty->print_cr ("set_lwp_class_and_priority("
3887                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3888                   ThreadID, lwpid, newPrio);
3889  }
3890
3891  memset(&ParmInfo, 0, sizeof(pcparms_t));
3892  ParmInfo.pc_cid = PC_CLNULL;
3893  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3894  if (rslt < 0) return errno;
3895
3896  int cur_class = ParmInfo.pc_cid;
3897  ParmInfo.pc_cid = (id_t)new_class;
3898
3899  if (new_class == rtLimits.schedPolicy) {
3900    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3901    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3902                                                       rtLimits.maxPrio, newPrio)
3903                               : newPrio;
3904    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3905    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3906    if (ThreadPriorityVerbose) {
3907      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3908    }
3909  } else if (new_class == iaLimits.schedPolicy) {
3910    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3911    int maxClamped     = MIN2(iaLimits.maxPrio,
3912                              cur_class == new_class
3913                                ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3914    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3915                                                       maxClamped, newPrio)
3916                               : newPrio;
3917    iaInfo->ia_uprilim = cur_class == new_class
3918                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3919    iaInfo->ia_mode    = IA_NOCHANGE;
3920    if (ThreadPriorityVerbose) {
3921      tty->print_cr("IA: [%d...%d] %d->%d\n",
3922                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3923    }
3924  } else if (new_class == tsLimits.schedPolicy) {
3925    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3926    int maxClamped     = MIN2(tsLimits.maxPrio,
3927                              cur_class == new_class
3928                                ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3929    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3930                                                       maxClamped, newPrio)
3931                               : newPrio;
3932    tsInfo->ts_uprilim = cur_class == new_class
3933                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3934    if (ThreadPriorityVerbose) {
3935      tty->print_cr("TS: [%d...%d] %d->%d\n",
3936                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3937    }
3938  } else if (new_class == fxLimits.schedPolicy) {
3939    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3940    int maxClamped     = MIN2(fxLimits.maxPrio,
3941                              cur_class == new_class
3942                                ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3943    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3944                                                       maxClamped, newPrio)
3945                               : newPrio;
3946    fxInfo->fx_uprilim = cur_class == new_class
3947                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3948    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3949    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3950    if (ThreadPriorityVerbose) {
3951      tty->print_cr("FX: [%d...%d] %d->%d\n",
3952                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3953    }
3954  } else {
3955    if (ThreadPriorityVerbose) {
3956      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3957    }
3958    return EINVAL;    // no clue, punt
3959  }
3960
3961  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3962  if (ThreadPriorityVerbose && rslt) {
3963    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3964  }
3965  if (rslt < 0) return errno;
3966
3967#ifdef ASSERT
3968  // Sanity check: read back what we just attempted to set.
3969  // In theory it could have changed in the interim ...
3970  //
3971  // The priocntl system call is tricky.
3972  // Sometimes it'll validate the priority value argument and
3973  // return EINVAL if unhappy.  At other times it fails silently.
3974  // Readbacks are prudent.
3975
3976  if (!ReadBackValidate) return 0;
3977
3978  memset(&ReadBack, 0, sizeof(pcparms_t));
3979  ReadBack.pc_cid = PC_CLNULL;
3980  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3981  assert(rslt >= 0, "priocntl failed");
3982  Actual = Expected = 0xBAD;
3983  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3984  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3985    Actual   = RTPRI(ReadBack)->rt_pri;
3986    Expected = RTPRI(ParmInfo)->rt_pri;
3987  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3988    Actual   = IAPRI(ReadBack)->ia_upri;
3989    Expected = IAPRI(ParmInfo)->ia_upri;
3990  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3991    Actual   = TSPRI(ReadBack)->ts_upri;
3992    Expected = TSPRI(ParmInfo)->ts_upri;
3993  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3994    Actual   = FXPRI(ReadBack)->fx_upri;
3995    Expected = FXPRI(ParmInfo)->fx_upri;
3996  } else {
3997    if (ThreadPriorityVerbose) {
3998      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3999                    ParmInfo.pc_cid);
4000    }
4001  }
4002
4003  if (Actual != Expected) {
4004    if (ThreadPriorityVerbose) {
4005      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
4006                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
4007    }
4008  }
4009#endif
4010
4011  return 0;
4012}
4013
4014// Solaris only gives access to 128 real priorities at a time,
4015// so we expand Java's ten to fill this range.  This would be better
4016// if we dynamically adjusted relative priorities.
4017//
4018// The ThreadPriorityPolicy option allows us to select 2 different
4019// priority scales.
4020//
4021// ThreadPriorityPolicy=0
4022// Since the Solaris' default priority is MaximumPriority, we do not
4023// set a priority lower than Max unless a priority lower than
4024// NormPriority is requested.
4025//
4026// ThreadPriorityPolicy=1
4027// This mode causes the priority table to get filled with
4028// linear values.  NormPriority get's mapped to 50% of the
4029// Maximum priority an so on.  This will cause VM threads
4030// to get unfair treatment against other Solaris processes
4031// which do not explicitly alter their thread priorities.
4032//
4033
4034int os::java_to_os_priority[CriticalPriority + 1] = {
4035  -99999,         // 0 Entry should never be used
4036
4037  0,              // 1 MinPriority
4038  32,             // 2
4039  64,             // 3
4040
4041  96,             // 4
4042  127,            // 5 NormPriority
4043  127,            // 6
4044
4045  127,            // 7
4046  127,            // 8
4047  127,            // 9 NearMaxPriority
4048
4049  127,            // 10 MaxPriority
4050
4051  -criticalPrio   // 11 CriticalPriority
4052};
4053
4054OSReturn os::set_native_priority(Thread* thread, int newpri) {
4055  OSThread* osthread = thread->osthread();
4056
4057  // Save requested priority in case the thread hasn't been started
4058  osthread->set_native_priority(newpri);
4059
4060  // Check for critical priority request
4061  bool fxcritical = false;
4062  if (newpri == -criticalPrio) {
4063    fxcritical = true;
4064    newpri = criticalPrio;
4065  }
4066
4067  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
4068  if (!UseThreadPriorities) return OS_OK;
4069
4070  int status = 0;
4071
4072  if (!fxcritical) {
4073    // Use thr_setprio only if we have a priority that thr_setprio understands
4074    status = thr_setprio(thread->osthread()->thread_id(), newpri);
4075  }
4076
4077  if (os::Solaris::T2_libthread() ||
4078      (UseBoundThreads && osthread->is_vm_created())) {
4079    int lwp_status =
4080      set_lwp_class_and_priority(osthread->thread_id(),
4081                                 osthread->lwp_id(),
4082                                 newpri,
4083                                 fxcritical ? fxLimits.schedPolicy : myClass,
4084                                 !fxcritical);
4085    if (lwp_status != 0 && fxcritical) {
4086      // Try again, this time without changing the scheduling class
4087      newpri = java_MaxPriority_to_os_priority;
4088      lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
4089                                              osthread->lwp_id(),
4090                                              newpri, myClass, false);
4091    }
4092    status |= lwp_status;
4093  }
4094  return (status == 0) ? OS_OK : OS_ERR;
4095}
4096
4097
4098OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4099  int p;
4100  if ( !UseThreadPriorities ) {
4101    *priority_ptr = NormalPriority;
4102    return OS_OK;
4103  }
4104  int status = thr_getprio(thread->osthread()->thread_id(), &p);
4105  if (status != 0) {
4106    return OS_ERR;
4107  }
4108  *priority_ptr = p;
4109  return OS_OK;
4110}
4111
4112
4113// Hint to the underlying OS that a task switch would not be good.
4114// Void return because it's a hint and can fail.
4115void os::hint_no_preempt() {
4116  schedctl_start(schedctl_init());
4117}
4118
4119static void resume_clear_context(OSThread *osthread) {
4120  osthread->set_ucontext(NULL);
4121}
4122
4123static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
4124  osthread->set_ucontext(context);
4125}
4126
4127static Semaphore sr_semaphore;
4128
4129void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
4130  // Save and restore errno to avoid confusing native code with EINTR
4131  // after sigsuspend.
4132  int old_errno = errno;
4133
4134  OSThread* osthread = thread->osthread();
4135  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4136
4137  os::SuspendResume::State current = osthread->sr.state();
4138  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4139    suspend_save_context(osthread, uc);
4140
4141    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4142    os::SuspendResume::State state = osthread->sr.suspended();
4143    if (state == os::SuspendResume::SR_SUSPENDED) {
4144      sigset_t suspend_set;  // signals for sigsuspend()
4145
4146      // get current set of blocked signals and unblock resume signal
4147      thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
4148      sigdelset(&suspend_set, os::Solaris::SIGasync());
4149
4150      sr_semaphore.signal();
4151      // wait here until we are resumed
4152      while (1) {
4153        sigsuspend(&suspend_set);
4154
4155        os::SuspendResume::State result = osthread->sr.running();
4156        if (result == os::SuspendResume::SR_RUNNING) {
4157          sr_semaphore.signal();
4158          break;
4159        }
4160      }
4161
4162    } else if (state == os::SuspendResume::SR_RUNNING) {
4163      // request was cancelled, continue
4164    } else {
4165      ShouldNotReachHere();
4166    }
4167
4168    resume_clear_context(osthread);
4169  } else if (current == os::SuspendResume::SR_RUNNING) {
4170    // request was cancelled, continue
4171  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4172    // ignore
4173  } else {
4174    // ignore
4175  }
4176
4177  errno = old_errno;
4178}
4179
4180
4181void os::interrupt(Thread* thread) {
4182  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4183
4184  OSThread* osthread = thread->osthread();
4185
4186  int isInterrupted = osthread->interrupted();
4187  if (!isInterrupted) {
4188      osthread->set_interrupted(true);
4189      OrderAccess::fence();
4190      // os::sleep() is implemented with either poll (NULL,0,timeout) or
4191      // by parking on _SleepEvent.  If the former, thr_kill will unwedge
4192      // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
4193      ParkEvent * const slp = thread->_SleepEvent ;
4194      if (slp != NULL) slp->unpark() ;
4195  }
4196
4197  // For JSR166:  unpark after setting status but before thr_kill -dl
4198  if (thread->is_Java_thread()) {
4199    ((JavaThread*)thread)->parker()->unpark();
4200  }
4201
4202  // Handle interruptible wait() ...
4203  ParkEvent * const ev = thread->_ParkEvent ;
4204  if (ev != NULL) ev->unpark() ;
4205
4206  // When events are used everywhere for os::sleep, then this thr_kill
4207  // will only be needed if UseVMInterruptibleIO is true.
4208
4209  if (!isInterrupted) {
4210    int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
4211    assert_status(status == 0, status, "thr_kill");
4212
4213    // Bump thread interruption counter
4214    RuntimeService::record_thread_interrupt_signaled_count();
4215  }
4216}
4217
4218
4219bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4220  assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4221
4222  OSThread* osthread = thread->osthread();
4223
4224  bool res = osthread->interrupted();
4225
4226  // NOTE that since there is no "lock" around these two operations,
4227  // there is the possibility that the interrupted flag will be
4228  // "false" but that the interrupt event will be set. This is
4229  // intentional. The effect of this is that Object.wait() will appear
4230  // to have a spurious wakeup, which is not harmful, and the
4231  // possibility is so rare that it is not worth the added complexity
4232  // to add yet another lock. It has also been recommended not to put
4233  // the interrupted flag into the os::Solaris::Event structure,
4234  // because it hides the issue.
4235  if (res && clear_interrupted) {
4236    osthread->set_interrupted(false);
4237  }
4238  return res;
4239}
4240
4241
4242void os::print_statistics() {
4243}
4244
4245int os::message_box(const char* title, const char* message) {
4246  int i;
4247  fdStream err(defaultStream::error_fd());
4248  for (i = 0; i < 78; i++) err.print_raw("=");
4249  err.cr();
4250  err.print_raw_cr(title);
4251  for (i = 0; i < 78; i++) err.print_raw("-");
4252  err.cr();
4253  err.print_raw_cr(message);
4254  for (i = 0; i < 78; i++) err.print_raw("=");
4255  err.cr();
4256
4257  char buf[16];
4258  // Prevent process from exiting upon "read error" without consuming all CPU
4259  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4260
4261  return buf[0] == 'y' || buf[0] == 'Y';
4262}
4263
4264static int sr_notify(OSThread* osthread) {
4265  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
4266  assert_status(status == 0, status, "thr_kill");
4267  return status;
4268}
4269
4270// "Randomly" selected value for how long we want to spin
4271// before bailing out on suspending a thread, also how often
4272// we send a signal to a thread we want to resume
4273static const int RANDOMLY_LARGE_INTEGER = 1000000;
4274static const int RANDOMLY_LARGE_INTEGER2 = 100;
4275
4276static bool do_suspend(OSThread* osthread) {
4277  assert(osthread->sr.is_running(), "thread should be running");
4278  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4279
4280  // mark as suspended and send signal
4281  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4282    // failed to switch, state wasn't running?
4283    ShouldNotReachHere();
4284    return false;
4285  }
4286
4287  if (sr_notify(osthread) != 0) {
4288    ShouldNotReachHere();
4289  }
4290
4291  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4292  while (true) {
4293    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
4294      break;
4295    } else {
4296      // timeout
4297      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4298      if (cancelled == os::SuspendResume::SR_RUNNING) {
4299        return false;
4300      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4301        // make sure that we consume the signal on the semaphore as well
4302        sr_semaphore.wait();
4303        break;
4304      } else {
4305        ShouldNotReachHere();
4306        return false;
4307      }
4308    }
4309  }
4310
4311  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4312  return true;
4313}
4314
4315static void do_resume(OSThread* osthread) {
4316  assert(osthread->sr.is_suspended(), "thread should be suspended");
4317  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4318
4319  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4320    // failed to switch to WAKEUP_REQUEST
4321    ShouldNotReachHere();
4322    return;
4323  }
4324
4325  while (true) {
4326    if (sr_notify(osthread) == 0) {
4327      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4328        if (osthread->sr.is_running()) {
4329          return;
4330        }
4331      }
4332    } else {
4333      ShouldNotReachHere();
4334    }
4335  }
4336
4337  guarantee(osthread->sr.is_running(), "Must be running!");
4338}
4339
4340void os::SuspendedThreadTask::internal_do_task() {
4341  if (do_suspend(_thread->osthread())) {
4342    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4343    do_task(context);
4344    do_resume(_thread->osthread());
4345  }
4346}
4347
4348class PcFetcher : public os::SuspendedThreadTask {
4349public:
4350  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4351  ExtendedPC result();
4352protected:
4353  void do_task(const os::SuspendedThreadTaskContext& context);
4354private:
4355  ExtendedPC _epc;
4356};
4357
4358ExtendedPC PcFetcher::result() {
4359  guarantee(is_done(), "task is not done yet.");
4360  return _epc;
4361}
4362
4363void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4364  Thread* thread = context.thread();
4365  OSThread* osthread = thread->osthread();
4366  if (osthread->ucontext() != NULL) {
4367    _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
4368  } else {
4369    // NULL context is unexpected, double-check this is the VMThread
4370    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4371  }
4372}
4373
4374// A lightweight implementation that does not suspend the target thread and
4375// thus returns only a hint. Used for profiling only!
4376ExtendedPC os::get_thread_pc(Thread* thread) {
4377  // Make sure that it is called by the watcher and the Threads lock is owned.
4378  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
4379  // For now, is only used to profile the VM Thread
4380  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4381  PcFetcher fetcher(thread);
4382  fetcher.run();
4383  return fetcher.result();
4384}
4385
4386
4387// This does not do anything on Solaris. This is basically a hook for being
4388// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
4389void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
4390  f(value, method, args, thread);
4391}
4392
4393// This routine may be used by user applications as a "hook" to catch signals.
4394// The user-defined signal handler must pass unrecognized signals to this
4395// routine, and if it returns true (non-zero), then the signal handler must
4396// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4397// routine will never retun false (zero), but instead will execute a VM panic
4398// routine kill the process.
4399//
4400// If this routine returns false, it is OK to call it again.  This allows
4401// the user-defined signal handler to perform checks either before or after
4402// the VM performs its own checks.  Naturally, the user code would be making
4403// a serious error if it tried to handle an exception (such as a null check
4404// or breakpoint) that the VM was generating for its own correct operation.
4405//
4406// This routine may recognize any of the following kinds of signals:
4407// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
4408// os::Solaris::SIGasync
4409// It should be consulted by handlers for any of those signals.
4410// It explicitly does not recognize os::Solaris::SIGinterrupt
4411//
4412// The caller of this routine must pass in the three arguments supplied
4413// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4414// field of the structure passed to sigaction().  This routine assumes that
4415// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4416//
4417// Note that the VM will print warnings if it detects conflicting signal
4418// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4419//
4420extern "C" JNIEXPORT int
4421JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
4422                          int abort_if_unrecognized);
4423
4424
4425void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
4426  int orig_errno = errno;  // Preserve errno value over signal handler.
4427  JVM_handle_solaris_signal(sig, info, ucVoid, true);
4428  errno = orig_errno;
4429}
4430
4431/* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
4432   is needed to provoke threads blocked on IO to return an EINTR
4433   Note: this explicitly does NOT call JVM_handle_solaris_signal and
4434   does NOT participate in signal chaining due to requirement for
4435   NOT setting SA_RESTART to make EINTR work. */
4436extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
4437   if (UseSignalChaining) {
4438      struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
4439      if (actp && actp->sa_handler) {
4440        vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
4441      }
4442   }
4443}
4444
4445// This boolean allows users to forward their own non-matching signals
4446// to JVM_handle_solaris_signal, harmlessly.
4447bool os::Solaris::signal_handlers_are_installed = false;
4448
4449// For signal-chaining
4450bool os::Solaris::libjsig_is_loaded = false;
4451typedef struct sigaction *(*get_signal_t)(int);
4452get_signal_t os::Solaris::get_signal_action = NULL;
4453
4454struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
4455  struct sigaction *actp = NULL;
4456
4457  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
4458    // Retrieve the old signal handler from libjsig
4459    actp = (*get_signal_action)(sig);
4460  }
4461  if (actp == NULL) {
4462    // Retrieve the preinstalled signal handler from jvm
4463    actp = get_preinstalled_handler(sig);
4464  }
4465
4466  return actp;
4467}
4468
4469static bool call_chained_handler(struct sigaction *actp, int sig,
4470                                 siginfo_t *siginfo, void *context) {
4471  // Call the old signal handler
4472  if (actp->sa_handler == SIG_DFL) {
4473    // It's more reasonable to let jvm treat it as an unexpected exception
4474    // instead of taking the default action.
4475    return false;
4476  } else if (actp->sa_handler != SIG_IGN) {
4477    if ((actp->sa_flags & SA_NODEFER) == 0) {
4478      // automaticlly block the signal
4479      sigaddset(&(actp->sa_mask), sig);
4480    }
4481
4482    sa_handler_t hand;
4483    sa_sigaction_t sa;
4484    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4485    // retrieve the chained handler
4486    if (siginfo_flag_set) {
4487      sa = actp->sa_sigaction;
4488    } else {
4489      hand = actp->sa_handler;
4490    }
4491
4492    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4493      actp->sa_handler = SIG_DFL;
4494    }
4495
4496    // try to honor the signal mask
4497    sigset_t oset;
4498    thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4499
4500    // call into the chained handler
4501    if (siginfo_flag_set) {
4502      (*sa)(sig, siginfo, context);
4503    } else {
4504      (*hand)(sig);
4505    }
4506
4507    // restore the signal mask
4508    thr_sigsetmask(SIG_SETMASK, &oset, 0);
4509  }
4510  // Tell jvm's signal handler the signal is taken care of.
4511  return true;
4512}
4513
4514bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4515  bool chained = false;
4516  // signal-chaining
4517  if (UseSignalChaining) {
4518    struct sigaction *actp = get_chained_signal_action(sig);
4519    if (actp != NULL) {
4520      chained = call_chained_handler(actp, sig, siginfo, context);
4521    }
4522  }
4523  return chained;
4524}
4525
4526struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4527  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4528  if (preinstalled_sigs[sig] != 0) {
4529    return &chainedsigactions[sig];
4530  }
4531  return NULL;
4532}
4533
4534void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4535
4536  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4537  assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4538  chainedsigactions[sig] = oldAct;
4539  preinstalled_sigs[sig] = 1;
4540}
4541
4542void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
4543  // Check for overwrite.
4544  struct sigaction oldAct;
4545  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4546  void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4547                                      : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4548  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4549      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4550      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4551    if (AllowUserSignalHandlers || !set_installed) {
4552      // Do not overwrite; user takes responsibility to forward to us.
4553      return;
4554    } else if (UseSignalChaining) {
4555      if (oktochain) {
4556        // save the old handler in jvm
4557        save_preinstalled_handler(sig, oldAct);
4558      } else {
4559        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4560      }
4561      // libjsig also interposes the sigaction() call below and saves the
4562      // old sigaction on it own.
4563    } else {
4564      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4565                    "%#lx for signal %d.", (long)oldhand, sig));
4566    }
4567  }
4568
4569  struct sigaction sigAct;
4570  sigfillset(&(sigAct.sa_mask));
4571  sigAct.sa_handler = SIG_DFL;
4572
4573  sigAct.sa_sigaction = signalHandler;
4574  // Handle SIGSEGV on alternate signal stack if
4575  // not using stack banging
4576  if (!UseStackBanging && sig == SIGSEGV) {
4577    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4578  // Interruptible i/o requires SA_RESTART cleared so EINTR
4579  // is returned instead of restarting system calls
4580  } else if (sig == os::Solaris::SIGinterrupt()) {
4581    sigemptyset(&sigAct.sa_mask);
4582    sigAct.sa_handler = NULL;
4583    sigAct.sa_flags = SA_SIGINFO;
4584    sigAct.sa_sigaction = sigINTRHandler;
4585  } else {
4586    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4587  }
4588  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4589
4590  sigaction(sig, &sigAct, &oldAct);
4591
4592  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4593                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4594  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4595}
4596
4597
4598#define DO_SIGNAL_CHECK(sig) \
4599  if (!sigismember(&check_signal_done, sig)) \
4600    os::Solaris::check_signal_handler(sig)
4601
4602// This method is a periodic task to check for misbehaving JNI applications
4603// under CheckJNI, we can add any periodic checks here
4604
4605void os::run_periodic_checks() {
4606  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4607  // thereby preventing a NULL checks.
4608  if(!check_addr0_done) check_addr0_done = check_addr0(tty);
4609
4610  if (check_signals == false) return;
4611
4612  // SEGV and BUS if overridden could potentially prevent
4613  // generation of hs*.log in the event of a crash, debugging
4614  // such a case can be very challenging, so we absolutely
4615  // check for the following for a good measure:
4616  DO_SIGNAL_CHECK(SIGSEGV);
4617  DO_SIGNAL_CHECK(SIGILL);
4618  DO_SIGNAL_CHECK(SIGFPE);
4619  DO_SIGNAL_CHECK(SIGBUS);
4620  DO_SIGNAL_CHECK(SIGPIPE);
4621  DO_SIGNAL_CHECK(SIGXFSZ);
4622
4623  // ReduceSignalUsage allows the user to override these handlers
4624  // see comments at the very top and jvm_solaris.h
4625  if (!ReduceSignalUsage) {
4626    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4627    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4628    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4629    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4630  }
4631
4632  // See comments above for using JVM1/JVM2 and UseAltSigs
4633  DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4634  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4635
4636}
4637
4638typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4639
4640static os_sigaction_t os_sigaction = NULL;
4641
4642void os::Solaris::check_signal_handler(int sig) {
4643  char buf[O_BUFLEN];
4644  address jvmHandler = NULL;
4645
4646  struct sigaction act;
4647  if (os_sigaction == NULL) {
4648    // only trust the default sigaction, in case it has been interposed
4649    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4650    if (os_sigaction == NULL) return;
4651  }
4652
4653  os_sigaction(sig, (struct sigaction*)NULL, &act);
4654
4655  address thisHandler = (act.sa_flags & SA_SIGINFO)
4656    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4657    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4658
4659
4660  switch(sig) {
4661    case SIGSEGV:
4662    case SIGBUS:
4663    case SIGFPE:
4664    case SIGPIPE:
4665    case SIGXFSZ:
4666    case SIGILL:
4667      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4668      break;
4669
4670    case SHUTDOWN1_SIGNAL:
4671    case SHUTDOWN2_SIGNAL:
4672    case SHUTDOWN3_SIGNAL:
4673    case BREAK_SIGNAL:
4674      jvmHandler = (address)user_handler();
4675      break;
4676
4677    default:
4678      int intrsig = os::Solaris::SIGinterrupt();
4679      int asynsig = os::Solaris::SIGasync();
4680
4681      if (sig == intrsig) {
4682        jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4683      } else if (sig == asynsig) {
4684        jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4685      } else {
4686        return;
4687      }
4688      break;
4689  }
4690
4691
4692  if (thisHandler != jvmHandler) {
4693    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4694    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4695    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4696    // No need to check this sig any longer
4697    sigaddset(&check_signal_done, sig);
4698  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4699    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4700    tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4701    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4702    // No need to check this sig any longer
4703    sigaddset(&check_signal_done, sig);
4704  }
4705
4706  // Print all the signal handler state
4707  if (sigismember(&check_signal_done, sig)) {
4708    print_signal_handlers(tty, buf, O_BUFLEN);
4709  }
4710
4711}
4712
4713void os::Solaris::install_signal_handlers() {
4714  bool libjsigdone = false;
4715  signal_handlers_are_installed = true;
4716
4717  // signal-chaining
4718  typedef void (*signal_setting_t)();
4719  signal_setting_t begin_signal_setting = NULL;
4720  signal_setting_t end_signal_setting = NULL;
4721  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4722                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4723  if (begin_signal_setting != NULL) {
4724    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4725                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4726    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4727                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4728    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4729                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4730    libjsig_is_loaded = true;
4731    if (os::Solaris::get_libjsig_version != NULL) {
4732      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4733    }
4734    assert(UseSignalChaining, "should enable signal-chaining");
4735  }
4736  if (libjsig_is_loaded) {
4737    // Tell libjsig jvm is setting signal handlers
4738    (*begin_signal_setting)();
4739  }
4740
4741  set_signal_handler(SIGSEGV, true, true);
4742  set_signal_handler(SIGPIPE, true, true);
4743  set_signal_handler(SIGXFSZ, true, true);
4744  set_signal_handler(SIGBUS, true, true);
4745  set_signal_handler(SIGILL, true, true);
4746  set_signal_handler(SIGFPE, true, true);
4747
4748
4749  if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4750
4751    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4752    // can not register overridable signals which might be > 32
4753    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4754    // Tell libjsig jvm has finished setting signal handlers
4755      (*end_signal_setting)();
4756      libjsigdone = true;
4757    }
4758  }
4759
4760  // Never ok to chain our SIGinterrupt
4761  set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4762  set_signal_handler(os::Solaris::SIGasync(), true, true);
4763
4764  if (libjsig_is_loaded && !libjsigdone) {
4765    // Tell libjsig jvm finishes setting signal handlers
4766    (*end_signal_setting)();
4767  }
4768
4769  // We don't activate signal checker if libjsig is in place, we trust ourselves
4770  // and if UserSignalHandler is installed all bets are off.
4771  // Log that signal checking is off only if -verbose:jni is specified.
4772  if (CheckJNICalls) {
4773    if (libjsig_is_loaded) {
4774      if (PrintJNIResolving) {
4775        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4776      }
4777      check_signals = false;
4778    }
4779    if (AllowUserSignalHandlers) {
4780      if (PrintJNIResolving) {
4781        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4782      }
4783      check_signals = false;
4784    }
4785  }
4786}
4787
4788
4789void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
4790
4791const char * signames[] = {
4792  "SIG0",
4793  "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4794  "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4795  "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4796  "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4797  "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4798  "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4799  "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4800  "SIGCANCEL", "SIGLOST"
4801};
4802
4803const char* os::exception_name(int exception_code, char* buf, size_t size) {
4804  if (0 < exception_code && exception_code <= SIGRTMAX) {
4805    // signal
4806    if (exception_code < sizeof(signames)/sizeof(const char*)) {
4807       jio_snprintf(buf, size, "%s", signames[exception_code]);
4808    } else {
4809       jio_snprintf(buf, size, "SIG%d", exception_code);
4810    }
4811    return buf;
4812  } else {
4813    return NULL;
4814  }
4815}
4816
4817// (Static) wrappers for the new libthread API
4818int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
4819int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
4820int_fnP_thread_t_i os::Solaris::_thr_setmutator;
4821int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
4822int_fnP_thread_t os::Solaris::_thr_continue_mutator;
4823
4824// (Static) wrapper for getisax(2) call.
4825os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4826
4827// (Static) wrappers for the liblgrp API
4828os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4829os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4830os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4831os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4832os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4833os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4834os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4835os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4836os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4837
4838// (Static) wrapper for meminfo() call.
4839os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4840
4841static address resolve_symbol_lazy(const char* name) {
4842  address addr = (address) dlsym(RTLD_DEFAULT, name);
4843  if(addr == NULL) {
4844    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4845    addr = (address) dlsym(RTLD_NEXT, name);
4846  }
4847  return addr;
4848}
4849
4850static address resolve_symbol(const char* name) {
4851  address addr = resolve_symbol_lazy(name);
4852  if(addr == NULL) {
4853    fatal(dlerror());
4854  }
4855  return addr;
4856}
4857
4858
4859
4860// isT2_libthread()
4861//
4862// Routine to determine if we are currently using the new T2 libthread.
4863//
4864// We determine if we are using T2 by reading /proc/self/lstatus and
4865// looking for a thread with the ASLWP bit set.  If we find this status
4866// bit set, we must assume that we are NOT using T2.  The T2 team
4867// has approved this algorithm.
4868//
4869// We need to determine if we are running with the new T2 libthread
4870// since setting native thread priorities is handled differently
4871// when using this library.  All threads created using T2 are bound
4872// threads. Calling thr_setprio is meaningless in this case.
4873//
4874bool isT2_libthread() {
4875  static prheader_t * lwpArray = NULL;
4876  static int lwpSize = 0;
4877  static int lwpFile = -1;
4878  lwpstatus_t * that;
4879  char lwpName [128];
4880  bool isT2 = false;
4881
4882#define ADR(x)  ((uintptr_t)(x))
4883#define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
4884
4885  lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
4886  if (lwpFile < 0) {
4887      if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
4888      return false;
4889  }
4890  lwpSize = 16*1024;
4891  for (;;) {
4892    ::lseek64 (lwpFile, 0, SEEK_SET);
4893    lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
4894    if (::read(lwpFile, lwpArray, lwpSize) < 0) {
4895      if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
4896      break;
4897    }
4898    if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
4899       // We got a good snapshot - now iterate over the list.
4900      int aslwpcount = 0;
4901      for (int i = 0; i < lwpArray->pr_nent; i++ ) {
4902        that = LWPINDEX(lwpArray,i);
4903        if (that->pr_flags & PR_ASLWP) {
4904          aslwpcount++;
4905        }
4906      }
4907      if (aslwpcount == 0) isT2 = true;
4908      break;
4909    }
4910    lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
4911    FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
4912  }
4913
4914  FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
4915  ::close (lwpFile);
4916  if (ThreadPriorityVerbose) {
4917    if (isT2) tty->print_cr("We are running with a T2 libthread\n");
4918    else tty->print_cr("We are not running with a T2 libthread\n");
4919  }
4920  return isT2;
4921}
4922
4923
4924void os::Solaris::libthread_init() {
4925  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4926
4927  // Determine if we are running with the new T2 libthread
4928  os::Solaris::set_T2_libthread(isT2_libthread());
4929
4930  lwp_priocntl_init();
4931
4932  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4933  if(func == NULL) {
4934    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4935    // Guarantee that this VM is running on an new enough OS (5.6 or
4936    // later) that it will have a new enough libthread.so.
4937    guarantee(func != NULL, "libthread.so is too old.");
4938  }
4939
4940  // Initialize the new libthread getstate API wrappers
4941  func = resolve_symbol("thr_getstate");
4942  os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
4943
4944  func = resolve_symbol("thr_setstate");
4945  os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
4946
4947  func = resolve_symbol("thr_setmutator");
4948  os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
4949
4950  func = resolve_symbol("thr_suspend_mutator");
4951  os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4952
4953  func = resolve_symbol("thr_continue_mutator");
4954  os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4955
4956  int size;
4957  void (*handler_info_func)(address *, int *);
4958  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4959  handler_info_func(&handler_start, &size);
4960  handler_end = handler_start + size;
4961}
4962
4963
4964int_fnP_mutex_tP os::Solaris::_mutex_lock;
4965int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4966int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4967int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4968int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4969int os::Solaris::_mutex_scope = USYNC_THREAD;
4970
4971int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4972int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4973int_fnP_cond_tP os::Solaris::_cond_signal;
4974int_fnP_cond_tP os::Solaris::_cond_broadcast;
4975int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4976int_fnP_cond_tP os::Solaris::_cond_destroy;
4977int os::Solaris::_cond_scope = USYNC_THREAD;
4978
4979void os::Solaris::synchronization_init() {
4980  if(UseLWPSynchronization) {
4981    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4982    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4983    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4984    os::Solaris::set_mutex_init(lwp_mutex_init);
4985    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4986    os::Solaris::set_mutex_scope(USYNC_THREAD);
4987
4988    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4989    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4990    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4991    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4992    os::Solaris::set_cond_init(lwp_cond_init);
4993    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4994    os::Solaris::set_cond_scope(USYNC_THREAD);
4995  }
4996  else {
4997    os::Solaris::set_mutex_scope(USYNC_THREAD);
4998    os::Solaris::set_cond_scope(USYNC_THREAD);
4999
5000    if(UsePthreads) {
5001      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
5002      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
5003      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
5004      os::Solaris::set_mutex_init(pthread_mutex_default_init);
5005      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
5006
5007      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
5008      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
5009      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
5010      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
5011      os::Solaris::set_cond_init(pthread_cond_default_init);
5012      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
5013    }
5014    else {
5015      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
5016      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
5017      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
5018      os::Solaris::set_mutex_init(::mutex_init);
5019      os::Solaris::set_mutex_destroy(::mutex_destroy);
5020
5021      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
5022      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
5023      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
5024      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
5025      os::Solaris::set_cond_init(::cond_init);
5026      os::Solaris::set_cond_destroy(::cond_destroy);
5027    }
5028  }
5029}
5030
5031bool os::Solaris::liblgrp_init() {
5032  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
5033  if (handle != NULL) {
5034    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
5035    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
5036    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
5037    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
5038    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
5039    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
5040    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
5041    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
5042                                       dlsym(handle, "lgrp_cookie_stale")));
5043
5044    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
5045    set_lgrp_cookie(c);
5046    return true;
5047  }
5048  return false;
5049}
5050
5051void os::Solaris::misc_sym_init() {
5052  address func;
5053
5054  // getisax
5055  func = resolve_symbol_lazy("getisax");
5056  if (func != NULL) {
5057    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
5058  }
5059
5060  // meminfo
5061  func = resolve_symbol_lazy("meminfo");
5062  if (func != NULL) {
5063    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
5064  }
5065}
5066
5067uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
5068  assert(_getisax != NULL, "_getisax not set");
5069  return _getisax(array, n);
5070}
5071
5072// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
5073typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
5074static pset_getloadavg_type pset_getloadavg_ptr = NULL;
5075
5076void init_pset_getloadavg_ptr(void) {
5077  pset_getloadavg_ptr =
5078    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
5079  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
5080    warning("pset_getloadavg function not found");
5081  }
5082}
5083
5084int os::Solaris::_dev_zero_fd = -1;
5085
5086// this is called _before_ the global arguments have been parsed
5087void os::init(void) {
5088  _initial_pid = getpid();
5089
5090  max_hrtime = first_hrtime = gethrtime();
5091
5092  init_random(1234567);
5093
5094  page_size = sysconf(_SC_PAGESIZE);
5095  if (page_size == -1)
5096    fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
5097                  strerror(errno)));
5098  init_page_sizes((size_t) page_size);
5099
5100  Solaris::initialize_system_info();
5101
5102  // Initialize misc. symbols as soon as possible, so we can use them
5103  // if we need them.
5104  Solaris::misc_sym_init();
5105
5106  int fd = ::open("/dev/zero", O_RDWR);
5107  if (fd < 0) {
5108    fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
5109  } else {
5110    Solaris::set_dev_zero_fd(fd);
5111
5112    // Close on exec, child won't inherit.
5113    fcntl(fd, F_SETFD, FD_CLOEXEC);
5114  }
5115
5116  clock_tics_per_sec = CLK_TCK;
5117
5118  // check if dladdr1() exists; dladdr1 can provide more information than
5119  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
5120  // and is available on linker patches for 5.7 and 5.8.
5121  // libdl.so must have been loaded, this call is just an entry lookup
5122  void * hdl = dlopen("libdl.so", RTLD_NOW);
5123  if (hdl)
5124    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
5125
5126  // (Solaris only) this switches to calls that actually do locking.
5127  ThreadCritical::initialize();
5128
5129  main_thread = thr_self();
5130
5131  // Constant minimum stack size allowed. It must be at least
5132  // the minimum of what the OS supports (thr_min_stack()), and
5133  // enough to allow the thread to get to user bytecode execution.
5134  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
5135  // If the pagesize of the VM is greater than 8K determine the appropriate
5136  // number of initial guard pages.  The user can change this with the
5137  // command line arguments, if needed.
5138  if (vm_page_size() > 8*K) {
5139    StackYellowPages = 1;
5140    StackRedPages = 1;
5141    StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
5142  }
5143}
5144
5145// To install functions for atexit system call
5146extern "C" {
5147  static void perfMemory_exit_helper() {
5148    perfMemory_exit();
5149  }
5150}
5151
5152// this is called _after_ the global arguments have been parsed
5153jint os::init_2(void) {
5154  // try to enable extended file IO ASAP, see 6431278
5155  os::Solaris::try_enable_extended_io();
5156
5157  // Allocate a single page and mark it as readable for safepoint polling.  Also
5158  // use this first mmap call to check support for MAP_ALIGN.
5159  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
5160                                                      page_size,
5161                                                      MAP_PRIVATE | MAP_ALIGN,
5162                                                      PROT_READ);
5163  if (polling_page == NULL) {
5164    has_map_align = false;
5165    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
5166                                                PROT_READ);
5167  }
5168
5169  os::set_polling_page(polling_page);
5170
5171#ifndef PRODUCT
5172  if( Verbose && PrintMiscellaneous )
5173    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5174#endif
5175
5176  if (!UseMembar) {
5177    address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
5178    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
5179    os::set_memory_serialize_page( mem_serialize_page );
5180
5181#ifndef PRODUCT
5182    if(Verbose && PrintMiscellaneous)
5183      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5184#endif
5185  }
5186
5187  // Check minimum allowable stack size for thread creation and to initialize
5188  // the java system classes, including StackOverflowError - depends on page
5189  // size.  Add a page for compiler2 recursion in main thread.
5190  // Add in 2*BytesPerWord times page size to account for VM stack during
5191  // class initialization depending on 32 or 64 bit VM.
5192  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
5193            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
5194                    2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
5195
5196  size_t threadStackSizeInBytes = ThreadStackSize * K;
5197  if (threadStackSizeInBytes != 0 &&
5198    threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
5199    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
5200                  os::Solaris::min_stack_allowed/K);
5201    return JNI_ERR;
5202  }
5203
5204  // For 64kbps there will be a 64kb page size, which makes
5205  // the usable default stack size quite a bit less.  Increase the
5206  // stack for 64kb (or any > than 8kb) pages, this increases
5207  // virtual memory fragmentation (since we're not creating the
5208  // stack on a power of 2 boundary.  The real fix for this
5209  // should be to fix the guard page mechanism.
5210
5211  if (vm_page_size() > 8*K) {
5212      threadStackSizeInBytes = (threadStackSizeInBytes != 0)
5213         ? threadStackSizeInBytes +
5214           ((StackYellowPages + StackRedPages) * vm_page_size())
5215         : 0;
5216      ThreadStackSize = threadStackSizeInBytes/K;
5217  }
5218
5219  // Make the stack size a multiple of the page size so that
5220  // the yellow/red zones can be guarded.
5221  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5222        vm_page_size()));
5223
5224  Solaris::libthread_init();
5225
5226  if (UseNUMA) {
5227    if (!Solaris::liblgrp_init()) {
5228      UseNUMA = false;
5229    } else {
5230      size_t lgrp_limit = os::numa_get_groups_num();
5231      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
5232      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
5233      FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
5234      if (lgrp_num < 2) {
5235        // There's only one locality group, disable NUMA.
5236        UseNUMA = false;
5237      }
5238    }
5239    if (!UseNUMA && ForceNUMA) {
5240      UseNUMA = true;
5241    }
5242  }
5243
5244  Solaris::signal_sets_init();
5245  Solaris::init_signal_mem();
5246  Solaris::install_signal_handlers();
5247
5248  if (libjsigversion < JSIG_VERSION_1_4_1) {
5249    Maxlibjsigsigs = OLDMAXSIGNUM;
5250  }
5251
5252  // initialize synchronization primitives to use either thread or
5253  // lwp synchronization (controlled by UseLWPSynchronization)
5254  Solaris::synchronization_init();
5255
5256  if (MaxFDLimit) {
5257    // set the number of file descriptors to max. print out error
5258    // if getrlimit/setrlimit fails but continue regardless.
5259    struct rlimit nbr_files;
5260    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5261    if (status != 0) {
5262      if (PrintMiscellaneous && (Verbose || WizardMode))
5263        perror("os::init_2 getrlimit failed");
5264    } else {
5265      nbr_files.rlim_cur = nbr_files.rlim_max;
5266      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5267      if (status != 0) {
5268        if (PrintMiscellaneous && (Verbose || WizardMode))
5269          perror("os::init_2 setrlimit failed");
5270      }
5271    }
5272  }
5273
5274  // Calculate theoretical max. size of Threads to guard gainst
5275  // artifical out-of-memory situations, where all available address-
5276  // space has been reserved by thread stacks. Default stack size is 1Mb.
5277  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
5278    JavaThread::stack_size_at_create() : (1*K*K);
5279  assert(pre_thread_stack_size != 0, "Must have a stack");
5280  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
5281  // we should start doing Virtual Memory banging. Currently when the threads will
5282  // have used all but 200Mb of space.
5283  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
5284  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
5285
5286  // at-exit methods are called in the reverse order of their registration.
5287  // In Solaris 7 and earlier, atexit functions are called on return from
5288  // main or as a result of a call to exit(3C). There can be only 32 of
5289  // these functions registered and atexit() does not set errno. In Solaris
5290  // 8 and later, there is no limit to the number of functions registered
5291  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
5292  // functions are called upon dlclose(3DL) in addition to return from main
5293  // and exit(3C).
5294
5295  if (PerfAllowAtExitRegistration) {
5296    // only register atexit functions if PerfAllowAtExitRegistration is set.
5297    // atexit functions can be delayed until process exit time, which
5298    // can be problematic for embedded VM situations. Embedded VMs should
5299    // call DestroyJavaVM() to assure that VM resources are released.
5300
5301    // note: perfMemory_exit_helper atexit function may be removed in
5302    // the future if the appropriate cleanup code can be added to the
5303    // VM_Exit VMOperation's doit method.
5304    if (atexit(perfMemory_exit_helper) != 0) {
5305      warning("os::init2 atexit(perfMemory_exit_helper) failed");
5306    }
5307  }
5308
5309  // Init pset_loadavg function pointer
5310  init_pset_getloadavg_ptr();
5311
5312  return JNI_OK;
5313}
5314
5315void os::init_3(void) {
5316  return;
5317}
5318
5319// Mark the polling page as unreadable
5320void os::make_polling_page_unreadable(void) {
5321  if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
5322    fatal("Could not disable polling page");
5323};
5324
5325// Mark the polling page as readable
5326void os::make_polling_page_readable(void) {
5327  if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
5328    fatal("Could not enable polling page");
5329};
5330
5331// OS interface.
5332
5333bool os::check_heap(bool force) { return true; }
5334
5335typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
5336static vsnprintf_t sol_vsnprintf = NULL;
5337
5338int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
5339  if (!sol_vsnprintf) {
5340    //search  for the named symbol in the objects that were loaded after libjvm
5341    void* where = RTLD_NEXT;
5342    if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5343        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5344    if (!sol_vsnprintf){
5345      //search  for the named symbol in the objects that were loaded before libjvm
5346      where = RTLD_DEFAULT;
5347      if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5348        sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5349      assert(sol_vsnprintf != NULL, "vsnprintf not found");
5350    }
5351  }
5352  return (*sol_vsnprintf)(buf, count, fmt, argptr);
5353}
5354
5355
5356// Is a (classpath) directory empty?
5357bool os::dir_is_empty(const char* path) {
5358  DIR *dir = NULL;
5359  struct dirent *ptr;
5360
5361  dir = opendir(path);
5362  if (dir == NULL) return true;
5363
5364  /* Scan the directory */
5365  bool result = true;
5366  char buf[sizeof(struct dirent) + MAX_PATH];
5367  struct dirent *dbuf = (struct dirent *) buf;
5368  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
5369    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5370      result = false;
5371    }
5372  }
5373  closedir(dir);
5374  return result;
5375}
5376
5377// This code originates from JDK's sysOpen and open64_w
5378// from src/solaris/hpi/src/system_md.c
5379
5380#ifndef O_DELETE
5381#define O_DELETE 0x10000
5382#endif
5383
5384// Open a file. Unlink the file immediately after open returns
5385// if the specified oflag has the O_DELETE flag set.
5386// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5387
5388int os::open(const char *path, int oflag, int mode) {
5389  if (strlen(path) > MAX_PATH - 1) {
5390    errno = ENAMETOOLONG;
5391    return -1;
5392  }
5393  int fd;
5394  int o_delete = (oflag & O_DELETE);
5395  oflag = oflag & ~O_DELETE;
5396
5397  fd = ::open64(path, oflag, mode);
5398  if (fd == -1) return -1;
5399
5400  //If the open succeeded, the file might still be a directory
5401  {
5402    struct stat64 buf64;
5403    int ret = ::fstat64(fd, &buf64);
5404    int st_mode = buf64.st_mode;
5405
5406    if (ret != -1) {
5407      if ((st_mode & S_IFMT) == S_IFDIR) {
5408        errno = EISDIR;
5409        ::close(fd);
5410        return -1;
5411      }
5412    } else {
5413      ::close(fd);
5414      return -1;
5415    }
5416  }
5417    /*
5418     * 32-bit Solaris systems suffer from:
5419     *
5420     * - an historical default soft limit of 256 per-process file
5421     *   descriptors that is too low for many Java programs.
5422     *
5423     * - a design flaw where file descriptors created using stdio
5424     *   fopen must be less than 256, _even_ when the first limit above
5425     *   has been raised.  This can cause calls to fopen (but not calls to
5426     *   open, for example) to fail mysteriously, perhaps in 3rd party
5427     *   native code (although the JDK itself uses fopen).  One can hardly
5428     *   criticize them for using this most standard of all functions.
5429     *
5430     * We attempt to make everything work anyways by:
5431     *
5432     * - raising the soft limit on per-process file descriptors beyond
5433     *   256
5434     *
5435     * - As of Solaris 10u4, we can request that Solaris raise the 256
5436     *   stdio fopen limit by calling function enable_extended_FILE_stdio.
5437     *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
5438     *
5439     * - If we are stuck on an old (pre 10u4) Solaris system, we can
5440     *   workaround the bug by remapping non-stdio file descriptors below
5441     *   256 to ones beyond 256, which is done below.
5442     *
5443     * See:
5444     * 1085341: 32-bit stdio routines should support file descriptors >255
5445     * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
5446     * 6431278: Netbeans crash on 32 bit Solaris: need to call
5447     *          enable_extended_FILE_stdio() in VM initialisation
5448     * Giri Mandalika's blog
5449     * http://technopark02.blogspot.com/2005_05_01_archive.html
5450     */
5451#ifndef  _LP64
5452     if ((!enabled_extended_FILE_stdio) && fd < 256) {
5453         int newfd = ::fcntl(fd, F_DUPFD, 256);
5454         if (newfd != -1) {
5455             ::close(fd);
5456             fd = newfd;
5457         }
5458     }
5459#endif // 32-bit Solaris
5460    /*
5461     * All file descriptors that are opened in the JVM and not
5462     * specifically destined for a subprocess should have the
5463     * close-on-exec flag set.  If we don't set it, then careless 3rd
5464     * party native code might fork and exec without closing all
5465     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5466     * UNIXProcess.c), and this in turn might:
5467     *
5468     * - cause end-of-file to fail to be detected on some file
5469     *   descriptors, resulting in mysterious hangs, or
5470     *
5471     * - might cause an fopen in the subprocess to fail on a system
5472     *   suffering from bug 1085341.
5473     *
5474     * (Yes, the default setting of the close-on-exec flag is a Unix
5475     * design flaw)
5476     *
5477     * See:
5478     * 1085341: 32-bit stdio routines should support file descriptors >255
5479     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5480     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5481     */
5482#ifdef FD_CLOEXEC
5483    {
5484        int flags = ::fcntl(fd, F_GETFD);
5485        if (flags != -1)
5486            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5487    }
5488#endif
5489
5490  if (o_delete != 0) {
5491    ::unlink(path);
5492  }
5493  return fd;
5494}
5495
5496// create binary file, rewriting existing file if required
5497int os::create_binary_file(const char* path, bool rewrite_existing) {
5498  int oflags = O_WRONLY | O_CREAT;
5499  if (!rewrite_existing) {
5500    oflags |= O_EXCL;
5501  }
5502  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5503}
5504
5505// return current position of file pointer
5506jlong os::current_file_offset(int fd) {
5507  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5508}
5509
5510// move file pointer to the specified offset
5511jlong os::seek_to_file_offset(int fd, jlong offset) {
5512  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5513}
5514
5515jlong os::lseek(int fd, jlong offset, int whence) {
5516  return (jlong) ::lseek64(fd, offset, whence);
5517}
5518
5519char * os::native_path(char *path) {
5520  return path;
5521}
5522
5523int os::ftruncate(int fd, jlong length) {
5524  return ::ftruncate64(fd, length);
5525}
5526
5527int os::fsync(int fd)  {
5528  RESTARTABLE_RETURN_INT(::fsync(fd));
5529}
5530
5531int os::available(int fd, jlong *bytes) {
5532  jlong cur, end;
5533  int mode;
5534  struct stat64 buf64;
5535
5536  if (::fstat64(fd, &buf64) >= 0) {
5537    mode = buf64.st_mode;
5538    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5539      /*
5540      * XXX: is the following call interruptible? If so, this might
5541      * need to go through the INTERRUPT_IO() wrapper as for other
5542      * blocking, interruptible calls in this file.
5543      */
5544      int n,ioctl_return;
5545
5546      INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
5547      if (ioctl_return>= 0) {
5548          *bytes = n;
5549        return 1;
5550      }
5551    }
5552  }
5553  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5554    return 0;
5555  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5556    return 0;
5557  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5558    return 0;
5559  }
5560  *bytes = end - cur;
5561  return 1;
5562}
5563
5564// Map a block of memory.
5565char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5566                     char *addr, size_t bytes, bool read_only,
5567                     bool allow_exec) {
5568  int prot;
5569  int flags;
5570
5571  if (read_only) {
5572    prot = PROT_READ;
5573    flags = MAP_SHARED;
5574  } else {
5575    prot = PROT_READ | PROT_WRITE;
5576    flags = MAP_PRIVATE;
5577  }
5578
5579  if (allow_exec) {
5580    prot |= PROT_EXEC;
5581  }
5582
5583  if (addr != NULL) {
5584    flags |= MAP_FIXED;
5585  }
5586
5587  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5588                                     fd, file_offset);
5589  if (mapped_address == MAP_FAILED) {
5590    return NULL;
5591  }
5592  return mapped_address;
5593}
5594
5595
5596// Remap a block of memory.
5597char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5598                       char *addr, size_t bytes, bool read_only,
5599                       bool allow_exec) {
5600  // same as map_memory() on this OS
5601  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5602                        allow_exec);
5603}
5604
5605
5606// Unmap a block of memory.
5607bool os::pd_unmap_memory(char* addr, size_t bytes) {
5608  return munmap(addr, bytes) == 0;
5609}
5610
5611void os::pause() {
5612  char filename[MAX_PATH];
5613  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5614    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5615  } else {
5616    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5617  }
5618
5619  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5620  if (fd != -1) {
5621    struct stat buf;
5622    ::close(fd);
5623    while (::stat(filename, &buf) == 0) {
5624      (void)::poll(NULL, 0, 100);
5625    }
5626  } else {
5627    jio_fprintf(stderr,
5628      "Could not open pause file '%s', continuing immediately.\n", filename);
5629  }
5630}
5631
5632#ifndef PRODUCT
5633#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5634// Turn this on if you need to trace synch operations.
5635// Set RECORD_SYNCH_LIMIT to a large-enough value,
5636// and call record_synch_enable and record_synch_disable
5637// around the computation of interest.
5638
5639void record_synch(char* name, bool returning);  // defined below
5640
5641class RecordSynch {
5642  char* _name;
5643 public:
5644  RecordSynch(char* name) :_name(name)
5645                 { record_synch(_name, false); }
5646  ~RecordSynch() { record_synch(_name,   true);  }
5647};
5648
5649#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5650extern "C" ret name params {                                    \
5651  typedef ret name##_t params;                                  \
5652  static name##_t* implem = NULL;                               \
5653  static int callcount = 0;                                     \
5654  if (implem == NULL) {                                         \
5655    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5656    if (implem == NULL)  fatal(dlerror());                      \
5657  }                                                             \
5658  ++callcount;                                                  \
5659  RecordSynch _rs(#name);                                       \
5660  inner;                                                        \
5661  return implem args;                                           \
5662}
5663// in dbx, examine callcounts this way:
5664// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5665
5666#define CHECK_POINTER_OK(p) \
5667  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5668#define CHECK_MU \
5669  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5670#define CHECK_CV \
5671  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5672#define CHECK_P(p) \
5673  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5674
5675#define CHECK_MUTEX(mutex_op) \
5676CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5677
5678CHECK_MUTEX(   mutex_lock)
5679CHECK_MUTEX(  _mutex_lock)
5680CHECK_MUTEX( mutex_unlock)
5681CHECK_MUTEX(_mutex_unlock)
5682CHECK_MUTEX( mutex_trylock)
5683CHECK_MUTEX(_mutex_trylock)
5684
5685#define CHECK_COND(cond_op) \
5686CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
5687
5688CHECK_COND( cond_wait);
5689CHECK_COND(_cond_wait);
5690CHECK_COND(_cond_wait_cancel);
5691
5692#define CHECK_COND2(cond_op) \
5693CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
5694
5695CHECK_COND2( cond_timedwait);
5696CHECK_COND2(_cond_timedwait);
5697CHECK_COND2(_cond_timedwait_cancel);
5698
5699// do the _lwp_* versions too
5700#define mutex_t lwp_mutex_t
5701#define cond_t  lwp_cond_t
5702CHECK_MUTEX(  _lwp_mutex_lock)
5703CHECK_MUTEX(  _lwp_mutex_unlock)
5704CHECK_MUTEX(  _lwp_mutex_trylock)
5705CHECK_MUTEX( __lwp_mutex_lock)
5706CHECK_MUTEX( __lwp_mutex_unlock)
5707CHECK_MUTEX( __lwp_mutex_trylock)
5708CHECK_MUTEX(___lwp_mutex_lock)
5709CHECK_MUTEX(___lwp_mutex_unlock)
5710
5711CHECK_COND(  _lwp_cond_wait);
5712CHECK_COND( __lwp_cond_wait);
5713CHECK_COND(___lwp_cond_wait);
5714
5715CHECK_COND2(  _lwp_cond_timedwait);
5716CHECK_COND2( __lwp_cond_timedwait);
5717#undef mutex_t
5718#undef cond_t
5719
5720CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5721CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5722CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5723CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5724CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5725CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5726CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5727CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5728
5729
5730// recording machinery:
5731
5732enum { RECORD_SYNCH_LIMIT = 200 };
5733char* record_synch_name[RECORD_SYNCH_LIMIT];
5734void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5735bool record_synch_returning[RECORD_SYNCH_LIMIT];
5736thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5737int record_synch_count = 0;
5738bool record_synch_enabled = false;
5739
5740// in dbx, examine recorded data this way:
5741// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5742
5743void record_synch(char* name, bool returning) {
5744  if (record_synch_enabled) {
5745    if (record_synch_count < RECORD_SYNCH_LIMIT) {
5746      record_synch_name[record_synch_count] = name;
5747      record_synch_returning[record_synch_count] = returning;
5748      record_synch_thread[record_synch_count] = thr_self();
5749      record_synch_arg0ptr[record_synch_count] = &name;
5750      record_synch_count++;
5751    }
5752    // put more checking code here:
5753    // ...
5754  }
5755}
5756
5757void record_synch_enable() {
5758  // start collecting trace data, if not already doing so
5759  if (!record_synch_enabled)  record_synch_count = 0;
5760  record_synch_enabled = true;
5761}
5762
5763void record_synch_disable() {
5764  // stop collecting trace data
5765  record_synch_enabled = false;
5766}
5767
5768#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5769#endif // PRODUCT
5770
5771const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5772const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5773                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5774
5775
5776// JVMTI & JVM monitoring and management support
5777// The thread_cpu_time() and current_thread_cpu_time() are only
5778// supported if is_thread_cpu_time_supported() returns true.
5779// They are not supported on Solaris T1.
5780
5781// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5782// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5783// of a thread.
5784//
5785// current_thread_cpu_time() and thread_cpu_time(Thread *)
5786// returns the fast estimate available on the platform.
5787
5788// hrtime_t gethrvtime() return value includes
5789// user time but does not include system time
5790jlong os::current_thread_cpu_time() {
5791  return (jlong) gethrvtime();
5792}
5793
5794jlong os::thread_cpu_time(Thread *thread) {
5795  // return user level CPU time only to be consistent with
5796  // what current_thread_cpu_time returns.
5797  // thread_cpu_time_info() must be changed if this changes
5798  return os::thread_cpu_time(thread, false /* user time only */);
5799}
5800
5801jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5802  if (user_sys_cpu_time) {
5803    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5804  } else {
5805    return os::current_thread_cpu_time();
5806  }
5807}
5808
5809jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5810  char proc_name[64];
5811  int count;
5812  prusage_t prusage;
5813  jlong lwp_time;
5814  int fd;
5815
5816  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5817                     getpid(),
5818                     thread->osthread()->lwp_id());
5819  fd = ::open(proc_name, O_RDONLY);
5820  if ( fd == -1 ) return -1;
5821
5822  do {
5823    count = ::pread(fd,
5824                  (void *)&prusage.pr_utime,
5825                  thr_time_size,
5826                  thr_time_off);
5827  } while (count < 0 && errno == EINTR);
5828  ::close(fd);
5829  if ( count < 0 ) return -1;
5830
5831  if (user_sys_cpu_time) {
5832    // user + system CPU time
5833    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5834                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5835                 (jlong)prusage.pr_stime.tv_nsec +
5836                 (jlong)prusage.pr_utime.tv_nsec;
5837  } else {
5838    // user level CPU time only
5839    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5840                (jlong)prusage.pr_utime.tv_nsec;
5841  }
5842
5843  return(lwp_time);
5844}
5845
5846void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5847  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5848  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5849  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5850  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5851}
5852
5853void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5854  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5855  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5856  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5857  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5858}
5859
5860bool os::is_thread_cpu_time_supported() {
5861  if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
5862    return true;
5863  } else {
5864    return false;
5865  }
5866}
5867
5868// System loadavg support.  Returns -1 if load average cannot be obtained.
5869// Return the load average for our processor set if the primitive exists
5870// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5871int os::loadavg(double loadavg[], int nelem) {
5872  if (pset_getloadavg_ptr != NULL) {
5873    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5874  } else {
5875    return ::getloadavg(loadavg, nelem);
5876  }
5877}
5878
5879//---------------------------------------------------------------------------------
5880
5881bool os::find(address addr, outputStream* st) {
5882  Dl_info dlinfo;
5883  memset(&dlinfo, 0, sizeof(dlinfo));
5884  if (dladdr(addr, &dlinfo) != 0) {
5885    st->print(PTR_FORMAT ": ", addr);
5886    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5887      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5888    } else if (dlinfo.dli_fbase != NULL)
5889      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5890    else
5891      st->print("<absolute address>");
5892    if (dlinfo.dli_fname != NULL) {
5893      st->print(" in %s", dlinfo.dli_fname);
5894    }
5895    if (dlinfo.dli_fbase != NULL) {
5896      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5897    }
5898    st->cr();
5899
5900    if (Verbose) {
5901      // decode some bytes around the PC
5902      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5903      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5904      address       lowest = (address) dlinfo.dli_sname;
5905      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5906      if (begin < lowest)  begin = lowest;
5907      Dl_info dlinfo2;
5908      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5909          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5910        end = (address) dlinfo2.dli_saddr;
5911      Disassembler::decode(begin, end, st);
5912    }
5913    return true;
5914  }
5915  return false;
5916}
5917
5918// Following function has been added to support HotSparc's libjvm.so running
5919// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5920// src/solaris/hpi/native_threads in the EVM codebase.
5921//
5922// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5923// libraries and should thus be removed. We will leave it behind for a while
5924// until we no longer want to able to run on top of 1.3.0 Solaris production
5925// JDK. See 4341971.
5926
5927#define STACK_SLACK 0x800
5928
5929extern "C" {
5930  intptr_t sysThreadAvailableStackWithSlack() {
5931    stack_t st;
5932    intptr_t retval, stack_top;
5933    retval = thr_stksegment(&st);
5934    assert(retval == 0, "incorrect return value from thr_stksegment");
5935    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5936    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5937    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5938    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5939  }
5940}
5941
5942// ObjectMonitor park-unpark infrastructure ...
5943//
5944// We implement Solaris and Linux PlatformEvents with the
5945// obvious condvar-mutex-flag triple.
5946// Another alternative that works quite well is pipes:
5947// Each PlatformEvent consists of a pipe-pair.
5948// The thread associated with the PlatformEvent
5949// calls park(), which reads from the input end of the pipe.
5950// Unpark() writes into the other end of the pipe.
5951// The write-side of the pipe must be set NDELAY.
5952// Unfortunately pipes consume a large # of handles.
5953// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5954// Using pipes for the 1st few threads might be workable, however.
5955//
5956// park() is permitted to return spuriously.
5957// Callers of park() should wrap the call to park() in
5958// an appropriate loop.  A litmus test for the correct
5959// usage of park is the following: if park() were modified
5960// to immediately return 0 your code should still work,
5961// albeit degenerating to a spin loop.
5962//
5963// An interesting optimization for park() is to use a trylock()
5964// to attempt to acquire the mutex.  If the trylock() fails
5965// then we know that a concurrent unpark() operation is in-progress.
5966// in that case the park() code could simply set _count to 0
5967// and return immediately.  The subsequent park() operation *might*
5968// return immediately.  That's harmless as the caller of park() is
5969// expected to loop.  By using trylock() we will have avoided a
5970// avoided a context switch caused by contention on the per-thread mutex.
5971//
5972// TODO-FIXME:
5973// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5974//     objectmonitor implementation.
5975// 2.  Collapse the JSR166 parker event, and the
5976//     objectmonitor ParkEvent into a single "Event" construct.
5977// 3.  In park() and unpark() add:
5978//     assert (Thread::current() == AssociatedWith).
5979// 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5980//     1-out-of-N park() operations will return immediately.
5981//
5982// _Event transitions in park()
5983//   -1 => -1 : illegal
5984//    1 =>  0 : pass - return immediately
5985//    0 => -1 : block
5986//
5987// _Event serves as a restricted-range semaphore.
5988//
5989// Another possible encoding of _Event would be with
5990// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5991//
5992// TODO-FIXME: add DTRACE probes for:
5993// 1.   Tx parks
5994// 2.   Ty unparks Tx
5995// 3.   Tx resumes from park
5996
5997
5998// value determined through experimentation
5999#define ROUNDINGFIX 11
6000
6001// utility to compute the abstime argument to timedwait.
6002// TODO-FIXME: switch from compute_abstime() to unpackTime().
6003
6004static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
6005  // millis is the relative timeout time
6006  // abstime will be the absolute timeout time
6007  if (millis < 0)  millis = 0;
6008  struct timeval now;
6009  int status = gettimeofday(&now, NULL);
6010  assert(status == 0, "gettimeofday");
6011  jlong seconds = millis / 1000;
6012  jlong max_wait_period;
6013
6014  if (UseLWPSynchronization) {
6015    // forward port of fix for 4275818 (not sleeping long enough)
6016    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
6017    // _lwp_cond_timedwait() used a round_down algorithm rather
6018    // than a round_up. For millis less than our roundfactor
6019    // it rounded down to 0 which doesn't meet the spec.
6020    // For millis > roundfactor we may return a bit sooner, but
6021    // since we can not accurately identify the patch level and
6022    // this has already been fixed in Solaris 9 and 8 we will
6023    // leave it alone rather than always rounding down.
6024
6025    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
6026       // It appears that when we go directly through Solaris _lwp_cond_timedwait()
6027           // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
6028           max_wait_period = 21000000;
6029  } else {
6030    max_wait_period = 50000000;
6031  }
6032  millis %= 1000;
6033  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
6034     seconds = max_wait_period;
6035  }
6036  abstime->tv_sec = now.tv_sec  + seconds;
6037  long       usec = now.tv_usec + millis * 1000;
6038  if (usec >= 1000000) {
6039    abstime->tv_sec += 1;
6040    usec -= 1000000;
6041  }
6042  abstime->tv_nsec = usec * 1000;
6043  return abstime;
6044}
6045
6046// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
6047// Conceptually TryPark() should be equivalent to park(0).
6048
6049int os::PlatformEvent::TryPark() {
6050  for (;;) {
6051    const int v = _Event ;
6052    guarantee ((v == 0) || (v == 1), "invariant") ;
6053    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
6054  }
6055}
6056
6057void os::PlatformEvent::park() {           // AKA: down()
6058  // Invariant: Only the thread associated with the Event/PlatformEvent
6059  // may call park().
6060  int v ;
6061  for (;;) {
6062      v = _Event ;
6063      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6064  }
6065  guarantee (v >= 0, "invariant") ;
6066  if (v == 0) {
6067     // Do this the hard way by blocking ...
6068     // See http://monaco.sfbay/detail.jsf?cr=5094058.
6069     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6070     // Only for SPARC >= V8PlusA
6071#if defined(__sparc) && defined(COMPILER2)
6072     if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6073#endif
6074     int status = os::Solaris::mutex_lock(_mutex);
6075     assert_status(status == 0, status,  "mutex_lock");
6076     guarantee (_nParked == 0, "invariant") ;
6077     ++ _nParked ;
6078     while (_Event < 0) {
6079        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
6080        // Treat this the same as if the wait was interrupted
6081        // With usr/lib/lwp going to kernel, always handle ETIME
6082        status = os::Solaris::cond_wait(_cond, _mutex);
6083        if (status == ETIME) status = EINTR ;
6084        assert_status(status == 0 || status == EINTR, status, "cond_wait");
6085     }
6086     -- _nParked ;
6087     _Event = 0 ;
6088     status = os::Solaris::mutex_unlock(_mutex);
6089     assert_status(status == 0, status, "mutex_unlock");
6090    // Paranoia to ensure our locked and lock-free paths interact
6091    // correctly with each other.
6092    OrderAccess::fence();
6093  }
6094}
6095
6096int os::PlatformEvent::park(jlong millis) {
6097  guarantee (_nParked == 0, "invariant") ;
6098  int v ;
6099  for (;;) {
6100      v = _Event ;
6101      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6102  }
6103  guarantee (v >= 0, "invariant") ;
6104  if (v != 0) return OS_OK ;
6105
6106  int ret = OS_TIMEOUT;
6107  timestruc_t abst;
6108  compute_abstime (&abst, millis);
6109
6110  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6111  // For Solaris SPARC set fprs.FEF=0 prior to parking.
6112  // Only for SPARC >= V8PlusA
6113#if defined(__sparc) && defined(COMPILER2)
6114 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6115#endif
6116  int status = os::Solaris::mutex_lock(_mutex);
6117  assert_status(status == 0, status, "mutex_lock");
6118  guarantee (_nParked == 0, "invariant") ;
6119  ++ _nParked ;
6120  while (_Event < 0) {
6121     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
6122     assert_status(status == 0 || status == EINTR ||
6123                   status == ETIME || status == ETIMEDOUT,
6124                   status, "cond_timedwait");
6125     if (!FilterSpuriousWakeups) break ;                // previous semantics
6126     if (status == ETIME || status == ETIMEDOUT) break ;
6127     // We consume and ignore EINTR and spurious wakeups.
6128  }
6129  -- _nParked ;
6130  if (_Event >= 0) ret = OS_OK ;
6131  _Event = 0 ;
6132  status = os::Solaris::mutex_unlock(_mutex);
6133  assert_status(status == 0, status, "mutex_unlock");
6134  // Paranoia to ensure our locked and lock-free paths interact
6135  // correctly with each other.
6136  OrderAccess::fence();
6137  return ret;
6138}
6139
6140void os::PlatformEvent::unpark() {
6141  // Transitions for _Event:
6142  //    0 :=> 1
6143  //    1 :=> 1
6144  //   -1 :=> either 0 or 1; must signal target thread
6145  //          That is, we can safely transition _Event from -1 to either
6146  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6147  //          unpark() calls.
6148  // See also: "Semaphores in Plan 9" by Mullender & Cox
6149  //
6150  // Note: Forcing a transition from "-1" to "1" on an unpark() means
6151  // that it will take two back-to-back park() calls for the owning
6152  // thread to block. This has the benefit of forcing a spurious return
6153  // from the first park() call after an unpark() call which will help
6154  // shake out uses of park() and unpark() without condition variables.
6155
6156  if (Atomic::xchg(1, &_Event) >= 0) return;
6157
6158  // If the thread associated with the event was parked, wake it.
6159  // Wait for the thread assoc with the PlatformEvent to vacate.
6160  int status = os::Solaris::mutex_lock(_mutex);
6161  assert_status(status == 0, status, "mutex_lock");
6162  int AnyWaiters = _nParked;
6163  status = os::Solaris::mutex_unlock(_mutex);
6164  assert_status(status == 0, status, "mutex_unlock");
6165  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6166  if (AnyWaiters != 0) {
6167    // We intentional signal *after* dropping the lock
6168    // to avoid a common class of futile wakeups.
6169    status = os::Solaris::cond_signal(_cond);
6170    assert_status(status == 0, status, "cond_signal");
6171  }
6172}
6173
6174// JSR166
6175// -------------------------------------------------------
6176
6177/*
6178 * The solaris and linux implementations of park/unpark are fairly
6179 * conservative for now, but can be improved. They currently use a
6180 * mutex/condvar pair, plus _counter.
6181 * Park decrements _counter if > 0, else does a condvar wait.  Unpark
6182 * sets count to 1 and signals condvar.  Only one thread ever waits
6183 * on the condvar. Contention seen when trying to park implies that someone
6184 * is unparking you, so don't wait. And spurious returns are fine, so there
6185 * is no need to track notifications.
6186 */
6187
6188#define MAX_SECS 100000000
6189/*
6190 * This code is common to linux and solaris and will be moved to a
6191 * common place in dolphin.
6192 *
6193 * The passed in time value is either a relative time in nanoseconds
6194 * or an absolute time in milliseconds. Either way it has to be unpacked
6195 * into suitable seconds and nanoseconds components and stored in the
6196 * given timespec structure.
6197 * Given time is a 64-bit value and the time_t used in the timespec is only
6198 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6199 * overflow if times way in the future are given. Further on Solaris versions
6200 * prior to 10 there is a restriction (see cond_timedwait) that the specified
6201 * number of seconds, in abstime, is less than current_time  + 100,000,000.
6202 * As it will be 28 years before "now + 100000000" will overflow we can
6203 * ignore overflow and just impose a hard-limit on seconds using the value
6204 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6205 * years from "now".
6206 */
6207static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6208  assert (time > 0, "convertTime");
6209
6210  struct timeval now;
6211  int status = gettimeofday(&now, NULL);
6212  assert(status == 0, "gettimeofday");
6213
6214  time_t max_secs = now.tv_sec + MAX_SECS;
6215
6216  if (isAbsolute) {
6217    jlong secs = time / 1000;
6218    if (secs > max_secs) {
6219      absTime->tv_sec = max_secs;
6220    }
6221    else {
6222      absTime->tv_sec = secs;
6223    }
6224    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6225  }
6226  else {
6227    jlong secs = time / NANOSECS_PER_SEC;
6228    if (secs >= MAX_SECS) {
6229      absTime->tv_sec = max_secs;
6230      absTime->tv_nsec = 0;
6231    }
6232    else {
6233      absTime->tv_sec = now.tv_sec + secs;
6234      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6235      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6236        absTime->tv_nsec -= NANOSECS_PER_SEC;
6237        ++absTime->tv_sec; // note: this must be <= max_secs
6238      }
6239    }
6240  }
6241  assert(absTime->tv_sec >= 0, "tv_sec < 0");
6242  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6243  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6244  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6245}
6246
6247void Parker::park(bool isAbsolute, jlong time) {
6248  // Ideally we'd do something useful while spinning, such
6249  // as calling unpackTime().
6250
6251  // Optional fast-path check:
6252  // Return immediately if a permit is available.
6253  // We depend on Atomic::xchg() having full barrier semantics
6254  // since we are doing a lock-free update to _counter.
6255  if (Atomic::xchg(0, &_counter) > 0) return;
6256
6257  // Optional fast-exit: Check interrupt before trying to wait
6258  Thread* thread = Thread::current();
6259  assert(thread->is_Java_thread(), "Must be JavaThread");
6260  JavaThread *jt = (JavaThread *)thread;
6261  if (Thread::is_interrupted(thread, false)) {
6262    return;
6263  }
6264
6265  // First, demultiplex/decode time arguments
6266  timespec absTime;
6267  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6268    return;
6269  }
6270  if (time > 0) {
6271    // Warning: this code might be exposed to the old Solaris time
6272    // round-down bugs.  Grep "roundingFix" for details.
6273    unpackTime(&absTime, isAbsolute, time);
6274  }
6275
6276  // Enter safepoint region
6277  // Beware of deadlocks such as 6317397.
6278  // The per-thread Parker:: _mutex is a classic leaf-lock.
6279  // In particular a thread must never block on the Threads_lock while
6280  // holding the Parker:: mutex.  If safepoints are pending both the
6281  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6282  ThreadBlockInVM tbivm(jt);
6283
6284  // Don't wait if cannot get lock since interference arises from
6285  // unblocking.  Also. check interrupt before trying wait
6286  if (Thread::is_interrupted(thread, false) ||
6287      os::Solaris::mutex_trylock(_mutex) != 0) {
6288    return;
6289  }
6290
6291  int status ;
6292
6293  if (_counter > 0)  { // no wait needed
6294    _counter = 0;
6295    status = os::Solaris::mutex_unlock(_mutex);
6296    assert (status == 0, "invariant") ;
6297    // Paranoia to ensure our locked and lock-free paths interact
6298    // correctly with each other and Java-level accesses.
6299    OrderAccess::fence();
6300    return;
6301  }
6302
6303#ifdef ASSERT
6304  // Don't catch signals while blocked; let the running threads have the signals.
6305  // (This allows a debugger to break into the running thread.)
6306  sigset_t oldsigs;
6307  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
6308  thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6309#endif
6310
6311  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6312  jt->set_suspend_equivalent();
6313  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6314
6315  // Do this the hard way by blocking ...
6316  // See http://monaco.sfbay/detail.jsf?cr=5094058.
6317  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6318  // Only for SPARC >= V8PlusA
6319#if defined(__sparc) && defined(COMPILER2)
6320  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6321#endif
6322
6323  if (time == 0) {
6324    status = os::Solaris::cond_wait (_cond, _mutex) ;
6325  } else {
6326    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
6327  }
6328  // Note that an untimed cond_wait() can sometimes return ETIME on older
6329  // versions of the Solaris.
6330  assert_status(status == 0 || status == EINTR ||
6331                status == ETIME || status == ETIMEDOUT,
6332                status, "cond_timedwait");
6333
6334#ifdef ASSERT
6335  thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
6336#endif
6337  _counter = 0 ;
6338  status = os::Solaris::mutex_unlock(_mutex);
6339  assert_status(status == 0, status, "mutex_unlock") ;
6340  // Paranoia to ensure our locked and lock-free paths interact
6341  // correctly with each other and Java-level accesses.
6342  OrderAccess::fence();
6343
6344  // If externally suspended while waiting, re-suspend
6345  if (jt->handle_special_suspend_equivalent_condition()) {
6346    jt->java_suspend_self();
6347  }
6348}
6349
6350void Parker::unpark() {
6351  int s, status ;
6352  status = os::Solaris::mutex_lock (_mutex) ;
6353  assert (status == 0, "invariant") ;
6354  s = _counter;
6355  _counter = 1;
6356  status = os::Solaris::mutex_unlock (_mutex) ;
6357  assert (status == 0, "invariant") ;
6358
6359  if (s < 1) {
6360    status = os::Solaris::cond_signal (_cond) ;
6361    assert (status == 0, "invariant") ;
6362  }
6363}
6364
6365extern char** environ;
6366
6367// Run the specified command in a separate process. Return its exit value,
6368// or -1 on failure (e.g. can't fork a new process).
6369// Unlike system(), this function can be called from signal handler. It
6370// doesn't block SIGINT et al.
6371int os::fork_and_exec(char* cmd) {
6372  char * argv[4];
6373  argv[0] = (char *)"sh";
6374  argv[1] = (char *)"-c";
6375  argv[2] = cmd;
6376  argv[3] = NULL;
6377
6378  // fork is async-safe, fork1 is not so can't use in signal handler
6379  pid_t pid;
6380  Thread* t = ThreadLocalStorage::get_thread_slow();
6381  if (t != NULL && t->is_inside_signal_handler()) {
6382    pid = fork();
6383  } else {
6384    pid = fork1();
6385  }
6386
6387  if (pid < 0) {
6388    // fork failed
6389    warning("fork failed: %s", strerror(errno));
6390    return -1;
6391
6392  } else if (pid == 0) {
6393    // child process
6394
6395    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
6396    execve("/usr/bin/sh", argv, environ);
6397
6398    // execve failed
6399    _exit(-1);
6400
6401  } else  {
6402    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6403    // care about the actual exit code, for now.
6404
6405    int status;
6406
6407    // Wait for the child process to exit.  This returns immediately if
6408    // the child has already exited. */
6409    while (waitpid(pid, &status, 0) < 0) {
6410        switch (errno) {
6411        case ECHILD: return 0;
6412        case EINTR: break;
6413        default: return -1;
6414        }
6415    }
6416
6417    if (WIFEXITED(status)) {
6418       // The child exited normally; get its exit code.
6419       return WEXITSTATUS(status);
6420    } else if (WIFSIGNALED(status)) {
6421       // The child exited because of a signal
6422       // The best value to return is 0x80 + signal number,
6423       // because that is what all Unix shells do, and because
6424       // it allows callers to distinguish between process exit and
6425       // process death by signal.
6426       return 0x80 + WTERMSIG(status);
6427    } else {
6428       // Unknown exit code; pass it through
6429       return status;
6430    }
6431  }
6432}
6433
6434// is_headless_jre()
6435//
6436// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6437// in order to report if we are running in a headless jre
6438//
6439// Since JDK8 xawt/libmawt.so was moved into the same directory
6440// as libawt.so, and renamed libawt_xawt.so
6441//
6442bool os::is_headless_jre() {
6443    struct stat statbuf;
6444    char buf[MAXPATHLEN];
6445    char libmawtpath[MAXPATHLEN];
6446    const char *xawtstr  = "/xawt/libmawt.so";
6447    const char *new_xawtstr = "/libawt_xawt.so";
6448    char *p;
6449
6450    // Get path to libjvm.so
6451    os::jvm_path(buf, sizeof(buf));
6452
6453    // Get rid of libjvm.so
6454    p = strrchr(buf, '/');
6455    if (p == NULL) return false;
6456    else *p = '\0';
6457
6458    // Get rid of client or server
6459    p = strrchr(buf, '/');
6460    if (p == NULL) return false;
6461    else *p = '\0';
6462
6463    // check xawt/libmawt.so
6464    strcpy(libmawtpath, buf);
6465    strcat(libmawtpath, xawtstr);
6466    if (::stat(libmawtpath, &statbuf) == 0) return false;
6467
6468    // check libawt_xawt.so
6469    strcpy(libmawtpath, buf);
6470    strcat(libmawtpath, new_xawtstr);
6471    if (::stat(libmawtpath, &statbuf) == 0) return false;
6472
6473    return true;
6474}
6475
6476size_t os::write(int fd, const void *buf, unsigned int nBytes) {
6477  INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
6478}
6479
6480int os::close(int fd) {
6481  return ::close(fd);
6482}
6483
6484int os::socket_close(int fd) {
6485  return ::close(fd);
6486}
6487
6488int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
6489  INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6490}
6491
6492int os::send(int fd, char* buf, size_t nBytes, uint flags) {
6493  INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6494}
6495
6496int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
6497  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
6498}
6499
6500// As both poll and select can be interrupted by signals, we have to be
6501// prepared to restart the system call after updating the timeout, unless
6502// a poll() is done with timeout == -1, in which case we repeat with this
6503// "wait forever" value.
6504
6505int os::timeout(int fd, long timeout) {
6506  int res;
6507  struct timeval t;
6508  julong prevtime, newtime;
6509  static const char* aNull = 0;
6510  struct pollfd pfd;
6511  pfd.fd = fd;
6512  pfd.events = POLLIN;
6513
6514  gettimeofday(&t, &aNull);
6515  prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
6516
6517  for(;;) {
6518    INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
6519    if(res == OS_ERR && errno == EINTR) {
6520        if(timeout != -1) {
6521          gettimeofday(&t, &aNull);
6522          newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
6523          timeout -= newtime - prevtime;
6524          if(timeout <= 0)
6525            return OS_OK;
6526          prevtime = newtime;
6527        }
6528    } else return res;
6529  }
6530}
6531
6532int os::connect(int fd, struct sockaddr *him, socklen_t len) {
6533  int _result;
6534  INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
6535                          os::Solaris::clear_interrupted);
6536
6537  // Depending on when thread interruption is reset, _result could be
6538  // one of two values when errno == EINTR
6539
6540  if (((_result == OS_INTRPT) || (_result == OS_ERR))
6541      && (errno == EINTR)) {
6542     /* restarting a connect() changes its errno semantics */
6543     INTERRUPTIBLE(::connect(fd, him, len), _result,\
6544                   os::Solaris::clear_interrupted);
6545     /* undo these changes */
6546     if (_result == OS_ERR) {
6547       if (errno == EALREADY) {
6548         errno = EINPROGRESS; /* fall through */
6549       } else if (errno == EISCONN) {
6550         errno = 0;
6551         return OS_OK;
6552       }
6553     }
6554   }
6555   return _result;
6556 }
6557
6558int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
6559  if (fd < 0) {
6560    return OS_ERR;
6561  }
6562  INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
6563                           os::Solaris::clear_interrupted);
6564}
6565
6566int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
6567                 sockaddr* from, socklen_t* fromlen) {
6568  INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
6569                           os::Solaris::clear_interrupted);
6570}
6571
6572int os::sendto(int fd, char* buf, size_t len, uint flags,
6573               struct sockaddr* to, socklen_t tolen) {
6574  INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
6575                           os::Solaris::clear_interrupted);
6576}
6577
6578int os::socket_available(int fd, jint *pbytes) {
6579  if (fd < 0) {
6580    return OS_OK;
6581  }
6582  int ret;
6583  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
6584  // note: ioctl can return 0 when successful, JVM_SocketAvailable
6585  // is expected to return 0 on failure and 1 on success to the jdk.
6586  return (ret == OS_ERR) ? 0 : 1;
6587}
6588
6589int os::bind(int fd, struct sockaddr* him, socklen_t len) {
6590   INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
6591                                      os::Solaris::clear_interrupted);
6592}
6593
6594// Get the default path to the core file
6595// Returns the length of the string
6596int os::get_core_path(char* buffer, size_t bufferSize) {
6597  const char* p = get_current_directory(buffer, bufferSize);
6598
6599  if (p == NULL) {
6600    assert(p != NULL, "failed to get current directory");
6601    return 0;
6602  }
6603
6604  return strlen(buffer);
6605}
6606
6607#ifndef PRODUCT
6608void TestReserveMemorySpecial_test() {
6609  // No tests available for this platform
6610}
6611#endif
6612