os_solaris.cpp revision 11618:1fba59da0199
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_solaris.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_solaris.hpp"
41#include "os_solaris.inline.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "runtime/vm_version.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <dlfcn.h>
77# include <errno.h>
78# include <exception>
79# include <link.h>
80# include <poll.h>
81# include <pthread.h>
82# include <schedctl.h>
83# include <setjmp.h>
84# include <signal.h>
85# include <stdio.h>
86# include <alloca.h>
87# include <sys/filio.h>
88# include <sys/ipc.h>
89# include <sys/lwp.h>
90# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
91# include <sys/mman.h>
92# include <sys/processor.h>
93# include <sys/procset.h>
94# include <sys/pset.h>
95# include <sys/resource.h>
96# include <sys/shm.h>
97# include <sys/socket.h>
98# include <sys/stat.h>
99# include <sys/systeminfo.h>
100# include <sys/time.h>
101# include <sys/times.h>
102# include <sys/types.h>
103# include <sys/wait.h>
104# include <sys/utsname.h>
105# include <thread.h>
106# include <unistd.h>
107# include <sys/priocntl.h>
108# include <sys/rtpriocntl.h>
109# include <sys/tspriocntl.h>
110# include <sys/iapriocntl.h>
111# include <sys/fxpriocntl.h>
112# include <sys/loadavg.h>
113# include <string.h>
114# include <stdio.h>
115
116# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
117# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
118
119#define MAX_PATH (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124
125// Here are some liblgrp types from sys/lgrp_user.h to be able to
126// compile on older systems without this header file.
127
128#ifndef MADV_ACCESS_LWP
129  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
130#endif
131#ifndef MADV_ACCESS_MANY
132  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
133#endif
134
135#ifndef LGRP_RSRC_CPU
136  #define LGRP_RSRC_CPU      0       /* CPU resources */
137#endif
138#ifndef LGRP_RSRC_MEM
139  #define LGRP_RSRC_MEM      1       /* memory resources */
140#endif
141
142// Values for ThreadPriorityPolicy == 1
143int prio_policy1[CriticalPriority+1] = {
144  -99999,  0, 16,  32,  48,  64,
145          80, 96, 112, 124, 127, 127 };
146
147// System parameters used internally
148static clock_t clock_tics_per_sec = 100;
149
150// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
151static bool enabled_extended_FILE_stdio = false;
152
153// For diagnostics to print a message once. see run_periodic_checks
154static bool check_addr0_done = false;
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
159address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
160
161address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
162
163os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
164
165// "default" initializers for missing libc APIs
166extern "C" {
167  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
168  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
169
170  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
171  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
172}
173
174// "default" initializers for pthread-based synchronization
175extern "C" {
176  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
177  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
178}
179
180static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
181
182static inline size_t adjust_stack_size(address base, size_t size) {
183  if ((ssize_t)size < 0) {
184    // 4759953: Compensate for ridiculous stack size.
185    size = max_intx;
186  }
187  if (size > (size_t)base) {
188    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
189    size = (size_t)base;
190  }
191  return size;
192}
193
194static inline stack_t get_stack_info() {
195  stack_t st;
196  int retval = thr_stksegment(&st);
197  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
198  assert(retval == 0, "incorrect return value from thr_stksegment");
199  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
200  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
201  return st;
202}
203
204address os::current_stack_base() {
205  int r = thr_main();
206  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
207  bool is_primordial_thread = r;
208
209  // Workaround 4352906, avoid calls to thr_stksegment by
210  // thr_main after the first one (it looks like we trash
211  // some data, causing the value for ss_sp to be incorrect).
212  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
213    stack_t st = get_stack_info();
214    if (is_primordial_thread) {
215      // cache initial value of stack base
216      os::Solaris::_main_stack_base = (address)st.ss_sp;
217    }
218    return (address)st.ss_sp;
219  } else {
220    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
221    return os::Solaris::_main_stack_base;
222  }
223}
224
225size_t os::current_stack_size() {
226  size_t size;
227
228  int r = thr_main();
229  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
230  if (!r) {
231    size = get_stack_info().ss_size;
232  } else {
233    struct rlimit limits;
234    getrlimit(RLIMIT_STACK, &limits);
235    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
236  }
237  // base may not be page aligned
238  address base = current_stack_base();
239  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
240  return (size_t)(base - bottom);
241}
242
243struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
244  return localtime_r(clock, res);
245}
246
247void os::Solaris::try_enable_extended_io() {
248  typedef int (*enable_extended_FILE_stdio_t)(int, int);
249
250  if (!UseExtendedFileIO) {
251    return;
252  }
253
254  enable_extended_FILE_stdio_t enabler =
255    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
256                                         "enable_extended_FILE_stdio");
257  if (enabler) {
258    enabler(-1, -1);
259  }
260}
261
262static int _processors_online = 0;
263
264jint os::Solaris::_os_thread_limit = 0;
265volatile jint os::Solaris::_os_thread_count = 0;
266
267julong os::available_memory() {
268  return Solaris::available_memory();
269}
270
271julong os::Solaris::available_memory() {
272  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
273}
274
275julong os::Solaris::_physical_memory = 0;
276
277julong os::physical_memory() {
278  return Solaris::physical_memory();
279}
280
281static hrtime_t first_hrtime = 0;
282static const hrtime_t hrtime_hz = 1000*1000*1000;
283static volatile hrtime_t max_hrtime = 0;
284
285
286void os::Solaris::initialize_system_info() {
287  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
288  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
289  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
290                                     (julong)sysconf(_SC_PAGESIZE);
291}
292
293int os::active_processor_count() {
294  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
295  pid_t pid = getpid();
296  psetid_t pset = PS_NONE;
297  // Are we running in a processor set or is there any processor set around?
298  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
299    uint_t pset_cpus;
300    // Query the number of cpus available to us.
301    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
302      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
303      _processors_online = pset_cpus;
304      return pset_cpus;
305    }
306  }
307  // Otherwise return number of online cpus
308  return online_cpus;
309}
310
311static bool find_processors_in_pset(psetid_t        pset,
312                                    processorid_t** id_array,
313                                    uint_t*         id_length) {
314  bool result = false;
315  // Find the number of processors in the processor set.
316  if (pset_info(pset, NULL, id_length, NULL) == 0) {
317    // Make up an array to hold their ids.
318    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
319    // Fill in the array with their processor ids.
320    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
321      result = true;
322    }
323  }
324  return result;
325}
326
327// Callers of find_processors_online() must tolerate imprecise results --
328// the system configuration can change asynchronously because of DR
329// or explicit psradm operations.
330//
331// We also need to take care that the loop (below) terminates as the
332// number of processors online can change between the _SC_NPROCESSORS_ONLN
333// request and the loop that builds the list of processor ids.   Unfortunately
334// there's no reliable way to determine the maximum valid processor id,
335// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
336// man pages, which claim the processor id set is "sparse, but
337// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
338// exit the loop.
339//
340// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
341// not available on S8.0.
342
343static bool find_processors_online(processorid_t** id_array,
344                                   uint*           id_length) {
345  const processorid_t MAX_PROCESSOR_ID = 100000;
346  // Find the number of processors online.
347  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
348  // Make up an array to hold their ids.
349  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
350  // Processors need not be numbered consecutively.
351  long found = 0;
352  processorid_t next = 0;
353  while (found < *id_length && next < MAX_PROCESSOR_ID) {
354    processor_info_t info;
355    if (processor_info(next, &info) == 0) {
356      // NB, PI_NOINTR processors are effectively online ...
357      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
358        (*id_array)[found] = next;
359        found += 1;
360      }
361    }
362    next += 1;
363  }
364  if (found < *id_length) {
365    // The loop above didn't identify the expected number of processors.
366    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
367    // and re-running the loop, above, but there's no guarantee of progress
368    // if the system configuration is in flux.  Instead, we just return what
369    // we've got.  Note that in the worst case find_processors_online() could
370    // return an empty set.  (As a fall-back in the case of the empty set we
371    // could just return the ID of the current processor).
372    *id_length = found;
373  }
374
375  return true;
376}
377
378static bool assign_distribution(processorid_t* id_array,
379                                uint           id_length,
380                                uint*          distribution,
381                                uint           distribution_length) {
382  // We assume we can assign processorid_t's to uint's.
383  assert(sizeof(processorid_t) == sizeof(uint),
384         "can't convert processorid_t to uint");
385  // Quick check to see if we won't succeed.
386  if (id_length < distribution_length) {
387    return false;
388  }
389  // Assign processor ids to the distribution.
390  // Try to shuffle processors to distribute work across boards,
391  // assuming 4 processors per board.
392  const uint processors_per_board = ProcessDistributionStride;
393  // Find the maximum processor id.
394  processorid_t max_id = 0;
395  for (uint m = 0; m < id_length; m += 1) {
396    max_id = MAX2(max_id, id_array[m]);
397  }
398  // The next id, to limit loops.
399  const processorid_t limit_id = max_id + 1;
400  // Make up markers for available processors.
401  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
402  for (uint c = 0; c < limit_id; c += 1) {
403    available_id[c] = false;
404  }
405  for (uint a = 0; a < id_length; a += 1) {
406    available_id[id_array[a]] = true;
407  }
408  // Step by "boards", then by "slot", copying to "assigned".
409  // NEEDS_CLEANUP: The assignment of processors should be stateful,
410  //                remembering which processors have been assigned by
411  //                previous calls, etc., so as to distribute several
412  //                independent calls of this method.  What we'd like is
413  //                It would be nice to have an API that let us ask
414  //                how many processes are bound to a processor,
415  //                but we don't have that, either.
416  //                In the short term, "board" is static so that
417  //                subsequent distributions don't all start at board 0.
418  static uint board = 0;
419  uint assigned = 0;
420  // Until we've found enough processors ....
421  while (assigned < distribution_length) {
422    // ... find the next available processor in the board.
423    for (uint slot = 0; slot < processors_per_board; slot += 1) {
424      uint try_id = board * processors_per_board + slot;
425      if ((try_id < limit_id) && (available_id[try_id] == true)) {
426        distribution[assigned] = try_id;
427        available_id[try_id] = false;
428        assigned += 1;
429        break;
430      }
431    }
432    board += 1;
433    if (board * processors_per_board + 0 >= limit_id) {
434      board = 0;
435    }
436  }
437  if (available_id != NULL) {
438    FREE_C_HEAP_ARRAY(bool, available_id);
439  }
440  return true;
441}
442
443void os::set_native_thread_name(const char *name) {
444  if (Solaris::_pthread_setname_np != NULL) {
445    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
446    // but we explicitly copy into a size-limited buffer to avoid any
447    // possible overflow.
448    char buf[32];
449    snprintf(buf, sizeof(buf), "%s", name);
450    buf[sizeof(buf) - 1] = '\0';
451    Solaris::_pthread_setname_np(pthread_self(), buf);
452  }
453}
454
455bool os::distribute_processes(uint length, uint* distribution) {
456  bool result = false;
457  // Find the processor id's of all the available CPUs.
458  processorid_t* id_array  = NULL;
459  uint           id_length = 0;
460  // There are some races between querying information and using it,
461  // since processor sets can change dynamically.
462  psetid_t pset = PS_NONE;
463  // Are we running in a processor set?
464  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
465    result = find_processors_in_pset(pset, &id_array, &id_length);
466  } else {
467    result = find_processors_online(&id_array, &id_length);
468  }
469  if (result == true) {
470    if (id_length >= length) {
471      result = assign_distribution(id_array, id_length, distribution, length);
472    } else {
473      result = false;
474    }
475  }
476  if (id_array != NULL) {
477    FREE_C_HEAP_ARRAY(processorid_t, id_array);
478  }
479  return result;
480}
481
482bool os::bind_to_processor(uint processor_id) {
483  // We assume that a processorid_t can be stored in a uint.
484  assert(sizeof(uint) == sizeof(processorid_t),
485         "can't convert uint to processorid_t");
486  int bind_result =
487    processor_bind(P_LWPID,                       // bind LWP.
488                   P_MYID,                        // bind current LWP.
489                   (processorid_t) processor_id,  // id.
490                   NULL);                         // don't return old binding.
491  return (bind_result == 0);
492}
493
494// Return true if user is running as root.
495
496bool os::have_special_privileges() {
497  static bool init = false;
498  static bool privileges = false;
499  if (!init) {
500    privileges = (getuid() != geteuid()) || (getgid() != getegid());
501    init = true;
502  }
503  return privileges;
504}
505
506
507void os::init_system_properties_values() {
508  // The next steps are taken in the product version:
509  //
510  // Obtain the JAVA_HOME value from the location of libjvm.so.
511  // This library should be located at:
512  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
513  //
514  // If "/jre/lib/" appears at the right place in the path, then we
515  // assume libjvm.so is installed in a JDK and we use this path.
516  //
517  // Otherwise exit with message: "Could not create the Java virtual machine."
518  //
519  // The following extra steps are taken in the debugging version:
520  //
521  // If "/jre/lib/" does NOT appear at the right place in the path
522  // instead of exit check for $JAVA_HOME environment variable.
523  //
524  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
525  // then we append a fake suffix "hotspot/libjvm.so" to this path so
526  // it looks like libjvm.so is installed there
527  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
528  //
529  // Otherwise exit.
530  //
531  // Important note: if the location of libjvm.so changes this
532  // code needs to be changed accordingly.
533
534// Base path of extensions installed on the system.
535#define SYS_EXT_DIR     "/usr/jdk/packages"
536#define EXTENSIONS_DIR  "/lib/ext"
537
538  char cpu_arch[12];
539  // Buffer that fits several sprintfs.
540  // Note that the space for the colon and the trailing null are provided
541  // by the nulls included by the sizeof operator.
542  const size_t bufsize =
543    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
544         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
545         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
546  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
547
548  // sysclasspath, java_home, dll_dir
549  {
550    char *pslash;
551    os::jvm_path(buf, bufsize);
552
553    // Found the full path to libjvm.so.
554    // Now cut the path to <java_home>/jre if we can.
555    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
556    pslash = strrchr(buf, '/');
557    if (pslash != NULL) {
558      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
559    }
560    Arguments::set_dll_dir(buf);
561
562    if (pslash != NULL) {
563      pslash = strrchr(buf, '/');
564      if (pslash != NULL) {
565        *pslash = '\0';          // Get rid of /<arch>.
566        pslash = strrchr(buf, '/');
567        if (pslash != NULL) {
568          *pslash = '\0';        // Get rid of /lib.
569        }
570      }
571    }
572    Arguments::set_java_home(buf);
573    set_boot_path('/', ':');
574  }
575
576  // Where to look for native libraries.
577  {
578    // Use dlinfo() to determine the correct java.library.path.
579    //
580    // If we're launched by the Java launcher, and the user
581    // does not set java.library.path explicitly on the commandline,
582    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
583    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
584    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
585    // /usr/lib), which is exactly what we want.
586    //
587    // If the user does set java.library.path, it completely
588    // overwrites this setting, and always has.
589    //
590    // If we're not launched by the Java launcher, we may
591    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
592    // settings.  Again, dlinfo does exactly what we want.
593
594    Dl_serinfo     info_sz, *info = &info_sz;
595    Dl_serpath     *path;
596    char           *library_path;
597    char           *common_path = buf;
598
599    // Determine search path count and required buffer size.
600    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
601      FREE_C_HEAP_ARRAY(char, buf);
602      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
603    }
604
605    // Allocate new buffer and initialize.
606    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
607    info->dls_size = info_sz.dls_size;
608    info->dls_cnt = info_sz.dls_cnt;
609
610    // Obtain search path information.
611    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
612      FREE_C_HEAP_ARRAY(char, buf);
613      FREE_C_HEAP_ARRAY(char, info);
614      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
615    }
616
617    path = &info->dls_serpath[0];
618
619    // Note: Due to a legacy implementation, most of the library path
620    // is set in the launcher. This was to accomodate linking restrictions
621    // on legacy Solaris implementations (which are no longer supported).
622    // Eventually, all the library path setting will be done here.
623    //
624    // However, to prevent the proliferation of improperly built native
625    // libraries, the new path component /usr/jdk/packages is added here.
626
627    // Determine the actual CPU architecture.
628    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
629#ifdef _LP64
630    // If we are a 64-bit vm, perform the following translations:
631    //   sparc   -> sparcv9
632    //   i386    -> amd64
633    if (strcmp(cpu_arch, "sparc") == 0) {
634      strcat(cpu_arch, "v9");
635    } else if (strcmp(cpu_arch, "i386") == 0) {
636      strcpy(cpu_arch, "amd64");
637    }
638#endif
639
640    // Construct the invariant part of ld_library_path.
641    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
642
643    // Struct size is more than sufficient for the path components obtained
644    // through the dlinfo() call, so only add additional space for the path
645    // components explicitly added here.
646    size_t library_path_size = info->dls_size + strlen(common_path);
647    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
648    library_path[0] = '\0';
649
650    // Construct the desired Java library path from the linker's library
651    // search path.
652    //
653    // For compatibility, it is optimal that we insert the additional path
654    // components specific to the Java VM after those components specified
655    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
656    // infrastructure.
657    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
658      strcpy(library_path, common_path);
659    } else {
660      int inserted = 0;
661      int i;
662      for (i = 0; i < info->dls_cnt; i++, path++) {
663        uint_t flags = path->dls_flags & LA_SER_MASK;
664        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
665          strcat(library_path, common_path);
666          strcat(library_path, os::path_separator());
667          inserted = 1;
668        }
669        strcat(library_path, path->dls_name);
670        strcat(library_path, os::path_separator());
671      }
672      // Eliminate trailing path separator.
673      library_path[strlen(library_path)-1] = '\0';
674    }
675
676    // happens before argument parsing - can't use a trace flag
677    // tty->print_raw("init_system_properties_values: native lib path: ");
678    // tty->print_raw_cr(library_path);
679
680    // Callee copies into its own buffer.
681    Arguments::set_library_path(library_path);
682
683    FREE_C_HEAP_ARRAY(char, library_path);
684    FREE_C_HEAP_ARRAY(char, info);
685  }
686
687  // Extensions directories.
688  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
689  Arguments::set_ext_dirs(buf);
690
691  FREE_C_HEAP_ARRAY(char, buf);
692
693#undef SYS_EXT_DIR
694#undef EXTENSIONS_DIR
695}
696
697void os::breakpoint() {
698  BREAKPOINT;
699}
700
701bool os::obsolete_option(const JavaVMOption *option) {
702  if (!strncmp(option->optionString, "-Xt", 3)) {
703    return true;
704  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
705    return true;
706  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
707    return true;
708  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
709    return true;
710  }
711  return false;
712}
713
714bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
715  address  stackStart  = (address)thread->stack_base();
716  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
717  if (sp < stackStart && sp >= stackEnd) return true;
718  return false;
719}
720
721extern "C" void breakpoint() {
722  // use debugger to set breakpoint here
723}
724
725static thread_t main_thread;
726
727// Thread start routine for all newly created threads
728extern "C" void* thread_native_entry(void* thread_addr) {
729  // Try to randomize the cache line index of hot stack frames.
730  // This helps when threads of the same stack traces evict each other's
731  // cache lines. The threads can be either from the same JVM instance, or
732  // from different JVM instances. The benefit is especially true for
733  // processors with hyperthreading technology.
734  static int counter = 0;
735  int pid = os::current_process_id();
736  alloca(((pid ^ counter++) & 7) * 128);
737
738  int prio;
739  Thread* thread = (Thread*)thread_addr;
740
741  thread->initialize_thread_current();
742
743  OSThread* osthr = thread->osthread();
744
745  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
746  thread->_schedctl = (void *) schedctl_init();
747
748  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
749    os::current_thread_id());
750
751  if (UseNUMA) {
752    int lgrp_id = os::numa_get_group_id();
753    if (lgrp_id != -1) {
754      thread->set_lgrp_id(lgrp_id);
755    }
756  }
757
758  // Our priority was set when we were created, and stored in the
759  // osthread, but couldn't be passed through to our LWP until now.
760  // So read back the priority and set it again.
761
762  if (osthr->thread_id() != -1) {
763    if (UseThreadPriorities) {
764      int prio = osthr->native_priority();
765      if (ThreadPriorityVerbose) {
766        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
767                      INTPTR_FORMAT ", setting priority: %d\n",
768                      osthr->thread_id(), osthr->lwp_id(), prio);
769      }
770      os::set_native_priority(thread, prio);
771    }
772  } else if (ThreadPriorityVerbose) {
773    warning("Can't set priority in _start routine, thread id hasn't been set\n");
774  }
775
776  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
777
778  // initialize signal mask for this thread
779  os::Solaris::hotspot_sigmask(thread);
780
781  thread->run();
782
783  // One less thread is executing
784  // When the VMThread gets here, the main thread may have already exited
785  // which frees the CodeHeap containing the Atomic::dec code
786  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
787    Atomic::dec(&os::Solaris::_os_thread_count);
788  }
789
790  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
791
792  // If a thread has not deleted itself ("delete this") as part of its
793  // termination sequence, we have to ensure thread-local-storage is
794  // cleared before we actually terminate. No threads should ever be
795  // deleted asynchronously with respect to their termination.
796  if (Thread::current_or_null_safe() != NULL) {
797    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
798    thread->clear_thread_current();
799  }
800
801  if (UseDetachedThreads) {
802    thr_exit(NULL);
803    ShouldNotReachHere();
804  }
805  return NULL;
806}
807
808static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
809  // Allocate the OSThread object
810  OSThread* osthread = new OSThread(NULL, NULL);
811  if (osthread == NULL) return NULL;
812
813  // Store info on the Solaris thread into the OSThread
814  osthread->set_thread_id(thread_id);
815  osthread->set_lwp_id(_lwp_self());
816  thread->_schedctl = (void *) schedctl_init();
817
818  if (UseNUMA) {
819    int lgrp_id = os::numa_get_group_id();
820    if (lgrp_id != -1) {
821      thread->set_lgrp_id(lgrp_id);
822    }
823  }
824
825  if (ThreadPriorityVerbose) {
826    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
827                  osthread->thread_id(), osthread->lwp_id());
828  }
829
830  // Initial thread state is INITIALIZED, not SUSPENDED
831  osthread->set_state(INITIALIZED);
832
833  return osthread;
834}
835
836void os::Solaris::hotspot_sigmask(Thread* thread) {
837  //Save caller's signal mask
838  sigset_t sigmask;
839  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
840  OSThread *osthread = thread->osthread();
841  osthread->set_caller_sigmask(sigmask);
842
843  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
844  if (!ReduceSignalUsage) {
845    if (thread->is_VM_thread()) {
846      // Only the VM thread handles BREAK_SIGNAL ...
847      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
848    } else {
849      // ... all other threads block BREAK_SIGNAL
850      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
851      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
852    }
853  }
854}
855
856bool os::create_attached_thread(JavaThread* thread) {
857#ifdef ASSERT
858  thread->verify_not_published();
859#endif
860  OSThread* osthread = create_os_thread(thread, thr_self());
861  if (osthread == NULL) {
862    return false;
863  }
864
865  // Initial thread state is RUNNABLE
866  osthread->set_state(RUNNABLE);
867  thread->set_osthread(osthread);
868
869  // initialize signal mask for this thread
870  // and save the caller's signal mask
871  os::Solaris::hotspot_sigmask(thread);
872
873  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
874    os::current_thread_id());
875
876  return true;
877}
878
879bool os::create_main_thread(JavaThread* thread) {
880#ifdef ASSERT
881  thread->verify_not_published();
882#endif
883  if (_starting_thread == NULL) {
884    _starting_thread = create_os_thread(thread, main_thread);
885    if (_starting_thread == NULL) {
886      return false;
887    }
888  }
889
890  // The primodial thread is runnable from the start
891  _starting_thread->set_state(RUNNABLE);
892
893  thread->set_osthread(_starting_thread);
894
895  // initialize signal mask for this thread
896  // and save the caller's signal mask
897  os::Solaris::hotspot_sigmask(thread);
898
899  return true;
900}
901
902// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
903static char* describe_thr_create_attributes(char* buf, size_t buflen,
904                                            size_t stacksize, long flags) {
905  stringStream ss(buf, buflen);
906  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
907  ss.print("flags: ");
908  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
909  #define ALL(X) \
910    X(THR_SUSPENDED) \
911    X(THR_DETACHED) \
912    X(THR_BOUND) \
913    X(THR_NEW_LWP) \
914    X(THR_DAEMON)
915  ALL(PRINT_FLAG)
916  #undef ALL
917  #undef PRINT_FLAG
918  return buf;
919}
920
921bool os::create_thread(Thread* thread, ThreadType thr_type,
922                       size_t stack_size) {
923  // Allocate the OSThread object
924  OSThread* osthread = new OSThread(NULL, NULL);
925  if (osthread == NULL) {
926    return false;
927  }
928
929  if (ThreadPriorityVerbose) {
930    char *thrtyp;
931    switch (thr_type) {
932    case vm_thread:
933      thrtyp = (char *)"vm";
934      break;
935    case cgc_thread:
936      thrtyp = (char *)"cgc";
937      break;
938    case pgc_thread:
939      thrtyp = (char *)"pgc";
940      break;
941    case java_thread:
942      thrtyp = (char *)"java";
943      break;
944    case compiler_thread:
945      thrtyp = (char *)"compiler";
946      break;
947    case watcher_thread:
948      thrtyp = (char *)"watcher";
949      break;
950    default:
951      thrtyp = (char *)"unknown";
952      break;
953    }
954    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
955  }
956
957  // Calculate stack size if it's not specified by caller.
958  if (stack_size == 0) {
959    // The default stack size 1M (2M for LP64).
960    stack_size = (BytesPerWord >> 2) * K * K;
961
962    switch (thr_type) {
963    case os::java_thread:
964      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
965      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
966      break;
967    case os::compiler_thread:
968      if (CompilerThreadStackSize > 0) {
969        stack_size = (size_t)(CompilerThreadStackSize * K);
970        break;
971      } // else fall through:
972        // use VMThreadStackSize if CompilerThreadStackSize is not defined
973    case os::vm_thread:
974    case os::pgc_thread:
975    case os::cgc_thread:
976    case os::watcher_thread:
977      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
978      break;
979    }
980  }
981  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
982
983  // Initial state is ALLOCATED but not INITIALIZED
984  osthread->set_state(ALLOCATED);
985
986  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
987    // We got lots of threads. Check if we still have some address space left.
988    // Need to be at least 5Mb of unreserved address space. We do check by
989    // trying to reserve some.
990    const size_t VirtualMemoryBangSize = 20*K*K;
991    char* mem = os::reserve_memory(VirtualMemoryBangSize);
992    if (mem == NULL) {
993      delete osthread;
994      return false;
995    } else {
996      // Release the memory again
997      os::release_memory(mem, VirtualMemoryBangSize);
998    }
999  }
1000
1001  // Setup osthread because the child thread may need it.
1002  thread->set_osthread(osthread);
1003
1004  // Create the Solaris thread
1005  thread_t tid = 0;
1006  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1007  int      status;
1008
1009  // Mark that we don't have an lwp or thread id yet.
1010  // In case we attempt to set the priority before the thread starts.
1011  osthread->set_lwp_id(-1);
1012  osthread->set_thread_id(-1);
1013
1014  status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
1015
1016  char buf[64];
1017  if (status == 0) {
1018    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1019      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1020  } else {
1021    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1022      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1023  }
1024
1025  if (status != 0) {
1026    thread->set_osthread(NULL);
1027    // Need to clean up stuff we've allocated so far
1028    delete osthread;
1029    return false;
1030  }
1031
1032  Atomic::inc(&os::Solaris::_os_thread_count);
1033
1034  // Store info on the Solaris thread into the OSThread
1035  osthread->set_thread_id(tid);
1036
1037  // Remember that we created this thread so we can set priority on it
1038  osthread->set_vm_created();
1039
1040  // Most thread types will set an explicit priority before starting the thread,
1041  // but for those that don't we need a valid value to read back in thread_native_entry.
1042  osthread->set_native_priority(NormPriority);
1043
1044  // Initial thread state is INITIALIZED, not SUSPENDED
1045  osthread->set_state(INITIALIZED);
1046
1047  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1048  return true;
1049}
1050
1051// defined for >= Solaris 10. This allows builds on earlier versions
1052// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1053// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1054// was SIGJVM1.
1055//
1056#if !defined(SIGJVM1)
1057  #define SIGJVM1 39
1058  #define SIGJVM2 40
1059#endif
1060
1061debug_only(static bool signal_sets_initialized = false);
1062static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1063
1064int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1065
1066bool os::Solaris::is_sig_ignored(int sig) {
1067  struct sigaction oact;
1068  sigaction(sig, (struct sigaction*)NULL, &oact);
1069  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1070                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1071  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1072    return true;
1073  } else {
1074    return false;
1075  }
1076}
1077
1078// Note: SIGRTMIN is a macro that calls sysconf() so it will
1079// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1080static bool isJVM1available() {
1081  return SIGJVM1 < SIGRTMIN;
1082}
1083
1084void os::Solaris::signal_sets_init() {
1085  // Should also have an assertion stating we are still single-threaded.
1086  assert(!signal_sets_initialized, "Already initialized");
1087  // Fill in signals that are necessarily unblocked for all threads in
1088  // the VM. Currently, we unblock the following signals:
1089  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1090  //                         by -Xrs (=ReduceSignalUsage));
1091  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1092  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1093  // the dispositions or masks wrt these signals.
1094  // Programs embedding the VM that want to use the above signals for their
1095  // own purposes must, at this time, use the "-Xrs" option to prevent
1096  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1097  // (See bug 4345157, and other related bugs).
1098  // In reality, though, unblocking these signals is really a nop, since
1099  // these signals are not blocked by default.
1100  sigemptyset(&unblocked_sigs);
1101  sigemptyset(&allowdebug_blocked_sigs);
1102  sigaddset(&unblocked_sigs, SIGILL);
1103  sigaddset(&unblocked_sigs, SIGSEGV);
1104  sigaddset(&unblocked_sigs, SIGBUS);
1105  sigaddset(&unblocked_sigs, SIGFPE);
1106
1107  // Always true on Solaris 10+
1108  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1109  os::Solaris::set_SIGasync(SIGJVM2);
1110
1111  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1112
1113  if (!ReduceSignalUsage) {
1114    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1115      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1116      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1117    }
1118    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1119      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1120      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1121    }
1122    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1123      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1124      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1125    }
1126  }
1127  // Fill in signals that are blocked by all but the VM thread.
1128  sigemptyset(&vm_sigs);
1129  if (!ReduceSignalUsage) {
1130    sigaddset(&vm_sigs, BREAK_SIGNAL);
1131  }
1132  debug_only(signal_sets_initialized = true);
1133
1134  // For diagnostics only used in run_periodic_checks
1135  sigemptyset(&check_signal_done);
1136}
1137
1138// These are signals that are unblocked while a thread is running Java.
1139// (For some reason, they get blocked by default.)
1140sigset_t* os::Solaris::unblocked_signals() {
1141  assert(signal_sets_initialized, "Not initialized");
1142  return &unblocked_sigs;
1143}
1144
1145// These are the signals that are blocked while a (non-VM) thread is
1146// running Java. Only the VM thread handles these signals.
1147sigset_t* os::Solaris::vm_signals() {
1148  assert(signal_sets_initialized, "Not initialized");
1149  return &vm_sigs;
1150}
1151
1152// These are signals that are blocked during cond_wait to allow debugger in
1153sigset_t* os::Solaris::allowdebug_blocked_signals() {
1154  assert(signal_sets_initialized, "Not initialized");
1155  return &allowdebug_blocked_sigs;
1156}
1157
1158
1159void _handle_uncaught_cxx_exception() {
1160  VMError::report_and_die("An uncaught C++ exception");
1161}
1162
1163
1164// First crack at OS-specific initialization, from inside the new thread.
1165void os::initialize_thread(Thread* thr) {
1166  int r = thr_main();
1167  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1168  if (r) {
1169    JavaThread* jt = (JavaThread *)thr;
1170    assert(jt != NULL, "Sanity check");
1171    size_t stack_size;
1172    address base = jt->stack_base();
1173    if (Arguments::created_by_java_launcher()) {
1174      // Use 2MB to allow for Solaris 7 64 bit mode.
1175      stack_size = JavaThread::stack_size_at_create() == 0
1176        ? 2048*K : JavaThread::stack_size_at_create();
1177
1178      // There are rare cases when we may have already used more than
1179      // the basic stack size allotment before this method is invoked.
1180      // Attempt to allow for a normally sized java_stack.
1181      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1182      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1183    } else {
1184      // 6269555: If we were not created by a Java launcher, i.e. if we are
1185      // running embedded in a native application, treat the primordial thread
1186      // as much like a native attached thread as possible.  This means using
1187      // the current stack size from thr_stksegment(), unless it is too large
1188      // to reliably setup guard pages.  A reasonable max size is 8MB.
1189      size_t current_size = current_stack_size();
1190      // This should never happen, but just in case....
1191      if (current_size == 0) current_size = 2 * K * K;
1192      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1193    }
1194    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1195    stack_size = (size_t)(base - bottom);
1196
1197    assert(stack_size > 0, "Stack size calculation problem");
1198
1199    if (stack_size > jt->stack_size()) {
1200#ifndef PRODUCT
1201      struct rlimit limits;
1202      getrlimit(RLIMIT_STACK, &limits);
1203      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1204      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1205#endif
1206      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1207                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1208                    "See limit(1) to increase the stack size limit.",
1209                    stack_size / K, jt->stack_size() / K);
1210      vm_exit(1);
1211    }
1212    assert(jt->stack_size() >= stack_size,
1213           "Attempt to map more stack than was allocated");
1214    jt->set_stack_size(stack_size);
1215  }
1216
1217  // With the T2 libthread (T1 is no longer supported) threads are always bound
1218  // and we use stackbanging in all cases.
1219
1220  os::Solaris::init_thread_fpu_state();
1221  std::set_terminate(_handle_uncaught_cxx_exception);
1222}
1223
1224
1225
1226// Free Solaris resources related to the OSThread
1227void os::free_thread(OSThread* osthread) {
1228  assert(osthread != NULL, "os::free_thread but osthread not set");
1229
1230  // We are told to free resources of the argument thread,
1231  // but we can only really operate on the current thread.
1232  assert(Thread::current()->osthread() == osthread,
1233         "os::free_thread but not current thread");
1234
1235  // Restore caller's signal mask
1236  sigset_t sigmask = osthread->caller_sigmask();
1237  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1238
1239  delete osthread;
1240}
1241
1242void os::pd_start_thread(Thread* thread) {
1243  int status = thr_continue(thread->osthread()->thread_id());
1244  assert_status(status == 0, status, "thr_continue failed");
1245}
1246
1247
1248intx os::current_thread_id() {
1249  return (intx)thr_self();
1250}
1251
1252static pid_t _initial_pid = 0;
1253
1254int os::current_process_id() {
1255  return (int)(_initial_pid ? _initial_pid : getpid());
1256}
1257
1258// gethrtime() should be monotonic according to the documentation,
1259// but some virtualized platforms are known to break this guarantee.
1260// getTimeNanos() must be guaranteed not to move backwards, so we
1261// are forced to add a check here.
1262inline hrtime_t getTimeNanos() {
1263  const hrtime_t now = gethrtime();
1264  const hrtime_t prev = max_hrtime;
1265  if (now <= prev) {
1266    return prev;   // same or retrograde time;
1267  }
1268  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1269  assert(obsv >= prev, "invariant");   // Monotonicity
1270  // If the CAS succeeded then we're done and return "now".
1271  // If the CAS failed and the observed value "obsv" is >= now then
1272  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1273  // some other thread raced this thread and installed a new value, in which case
1274  // we could either (a) retry the entire operation, (b) retry trying to install now
1275  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1276  // we might discard a higher "now" value in deference to a slightly lower but freshly
1277  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1278  // to (a) or (b) -- and greatly reduces coherence traffic.
1279  // We might also condition (c) on the magnitude of the delta between obsv and now.
1280  // Avoiding excessive CAS operations to hot RW locations is critical.
1281  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1282  return (prev == obsv) ? now : obsv;
1283}
1284
1285// Time since start-up in seconds to a fine granularity.
1286// Used by VMSelfDestructTimer and the MemProfiler.
1287double os::elapsedTime() {
1288  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1289}
1290
1291jlong os::elapsed_counter() {
1292  return (jlong)(getTimeNanos() - first_hrtime);
1293}
1294
1295jlong os::elapsed_frequency() {
1296  return hrtime_hz;
1297}
1298
1299// Return the real, user, and system times in seconds from an
1300// arbitrary fixed point in the past.
1301bool os::getTimesSecs(double* process_real_time,
1302                      double* process_user_time,
1303                      double* process_system_time) {
1304  struct tms ticks;
1305  clock_t real_ticks = times(&ticks);
1306
1307  if (real_ticks == (clock_t) (-1)) {
1308    return false;
1309  } else {
1310    double ticks_per_second = (double) clock_tics_per_sec;
1311    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1312    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1313    // For consistency return the real time from getTimeNanos()
1314    // converted to seconds.
1315    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1316
1317    return true;
1318  }
1319}
1320
1321bool os::supports_vtime() { return true; }
1322bool os::enable_vtime() { return false; }
1323bool os::vtime_enabled() { return false; }
1324
1325double os::elapsedVTime() {
1326  return (double)gethrvtime() / (double)hrtime_hz;
1327}
1328
1329// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1330jlong os::javaTimeMillis() {
1331  timeval t;
1332  if (gettimeofday(&t, NULL) == -1) {
1333    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1334  }
1335  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1336}
1337
1338// Must return seconds+nanos since Jan 1 1970. This must use the same
1339// time source as javaTimeMillis and can't use get_nsec_fromepoch as
1340// we need better than 1ms accuracy
1341void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1342  timeval t;
1343  if (gettimeofday(&t, NULL) == -1) {
1344    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1345  }
1346  seconds = jlong(t.tv_sec);
1347  nanos = jlong(t.tv_usec) * 1000;
1348}
1349
1350
1351jlong os::javaTimeNanos() {
1352  return (jlong)getTimeNanos();
1353}
1354
1355void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1356  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1357  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1358  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1359  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1360}
1361
1362char * os::local_time_string(char *buf, size_t buflen) {
1363  struct tm t;
1364  time_t long_time;
1365  time(&long_time);
1366  localtime_r(&long_time, &t);
1367  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1368               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1369               t.tm_hour, t.tm_min, t.tm_sec);
1370  return buf;
1371}
1372
1373// Note: os::shutdown() might be called very early during initialization, or
1374// called from signal handler. Before adding something to os::shutdown(), make
1375// sure it is async-safe and can handle partially initialized VM.
1376void os::shutdown() {
1377
1378  // allow PerfMemory to attempt cleanup of any persistent resources
1379  perfMemory_exit();
1380
1381  // needs to remove object in file system
1382  AttachListener::abort();
1383
1384  // flush buffered output, finish log files
1385  ostream_abort();
1386
1387  // Check for abort hook
1388  abort_hook_t abort_hook = Arguments::abort_hook();
1389  if (abort_hook != NULL) {
1390    abort_hook();
1391  }
1392}
1393
1394// Note: os::abort() might be called very early during initialization, or
1395// called from signal handler. Before adding something to os::abort(), make
1396// sure it is async-safe and can handle partially initialized VM.
1397void os::abort(bool dump_core, void* siginfo, const void* context) {
1398  os::shutdown();
1399  if (dump_core) {
1400#ifndef PRODUCT
1401    fdStream out(defaultStream::output_fd());
1402    out.print_raw("Current thread is ");
1403    char buf[16];
1404    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1405    out.print_raw_cr(buf);
1406    out.print_raw_cr("Dumping core ...");
1407#endif
1408    ::abort(); // dump core (for debugging)
1409  }
1410
1411  ::exit(1);
1412}
1413
1414// Die immediately, no exit hook, no abort hook, no cleanup.
1415void os::die() {
1416  ::abort(); // dump core (for debugging)
1417}
1418
1419// DLL functions
1420
1421const char* os::dll_file_extension() { return ".so"; }
1422
1423// This must be hard coded because it's the system's temporary
1424// directory not the java application's temp directory, ala java.io.tmpdir.
1425const char* os::get_temp_directory() { return "/tmp"; }
1426
1427static bool file_exists(const char* filename) {
1428  struct stat statbuf;
1429  if (filename == NULL || strlen(filename) == 0) {
1430    return false;
1431  }
1432  return os::stat(filename, &statbuf) == 0;
1433}
1434
1435bool os::dll_build_name(char* buffer, size_t buflen,
1436                        const char* pname, const char* fname) {
1437  bool retval = false;
1438  const size_t pnamelen = pname ? strlen(pname) : 0;
1439
1440  // Return error on buffer overflow.
1441  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1442    return retval;
1443  }
1444
1445  if (pnamelen == 0) {
1446    snprintf(buffer, buflen, "lib%s.so", fname);
1447    retval = true;
1448  } else if (strchr(pname, *os::path_separator()) != NULL) {
1449    int n;
1450    char** pelements = split_path(pname, &n);
1451    if (pelements == NULL) {
1452      return false;
1453    }
1454    for (int i = 0; i < n; i++) {
1455      // really shouldn't be NULL but what the heck, check can't hurt
1456      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1457        continue; // skip the empty path values
1458      }
1459      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1460      if (file_exists(buffer)) {
1461        retval = true;
1462        break;
1463      }
1464    }
1465    // release the storage
1466    for (int i = 0; i < n; i++) {
1467      if (pelements[i] != NULL) {
1468        FREE_C_HEAP_ARRAY(char, pelements[i]);
1469      }
1470    }
1471    if (pelements != NULL) {
1472      FREE_C_HEAP_ARRAY(char*, pelements);
1473    }
1474  } else {
1475    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1476    retval = true;
1477  }
1478  return retval;
1479}
1480
1481// check if addr is inside libjvm.so
1482bool os::address_is_in_vm(address addr) {
1483  static address libjvm_base_addr;
1484  Dl_info dlinfo;
1485
1486  if (libjvm_base_addr == NULL) {
1487    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1488      libjvm_base_addr = (address)dlinfo.dli_fbase;
1489    }
1490    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1491  }
1492
1493  if (dladdr((void *)addr, &dlinfo) != 0) {
1494    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1495  }
1496
1497  return false;
1498}
1499
1500typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1501static dladdr1_func_type dladdr1_func = NULL;
1502
1503bool os::dll_address_to_function_name(address addr, char *buf,
1504                                      int buflen, int * offset,
1505                                      bool demangle) {
1506  // buf is not optional, but offset is optional
1507  assert(buf != NULL, "sanity check");
1508
1509  Dl_info dlinfo;
1510
1511  // dladdr1_func was initialized in os::init()
1512  if (dladdr1_func != NULL) {
1513    // yes, we have dladdr1
1514
1515    // Support for dladdr1 is checked at runtime; it may be
1516    // available even if the vm is built on a machine that does
1517    // not have dladdr1 support.  Make sure there is a value for
1518    // RTLD_DL_SYMENT.
1519#ifndef RTLD_DL_SYMENT
1520  #define RTLD_DL_SYMENT 1
1521#endif
1522#ifdef _LP64
1523    Elf64_Sym * info;
1524#else
1525    Elf32_Sym * info;
1526#endif
1527    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1528                     RTLD_DL_SYMENT) != 0) {
1529      // see if we have a matching symbol that covers our address
1530      if (dlinfo.dli_saddr != NULL &&
1531          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1532        if (dlinfo.dli_sname != NULL) {
1533          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1534            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1535          }
1536          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1537          return true;
1538        }
1539      }
1540      // no matching symbol so try for just file info
1541      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1542        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1543                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1544          return true;
1545        }
1546      }
1547    }
1548    buf[0] = '\0';
1549    if (offset != NULL) *offset  = -1;
1550    return false;
1551  }
1552
1553  // no, only dladdr is available
1554  if (dladdr((void *)addr, &dlinfo) != 0) {
1555    // see if we have a matching symbol
1556    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1557      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1558        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1559      }
1560      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1561      return true;
1562    }
1563    // no matching symbol so try for just file info
1564    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1565      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1566                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1567        return true;
1568      }
1569    }
1570  }
1571  buf[0] = '\0';
1572  if (offset != NULL) *offset  = -1;
1573  return false;
1574}
1575
1576bool os::dll_address_to_library_name(address addr, char* buf,
1577                                     int buflen, int* offset) {
1578  // buf is not optional, but offset is optional
1579  assert(buf != NULL, "sanity check");
1580
1581  Dl_info dlinfo;
1582
1583  if (dladdr((void*)addr, &dlinfo) != 0) {
1584    if (dlinfo.dli_fname != NULL) {
1585      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1586    }
1587    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1588      *offset = addr - (address)dlinfo.dli_fbase;
1589    }
1590    return true;
1591  }
1592
1593  buf[0] = '\0';
1594  if (offset) *offset = -1;
1595  return false;
1596}
1597
1598int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1599  Dl_info dli;
1600  // Sanity check?
1601  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1602      dli.dli_fname == NULL) {
1603    return 1;
1604  }
1605
1606  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1607  if (handle == NULL) {
1608    return 1;
1609  }
1610
1611  Link_map *map;
1612  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1613  if (map == NULL) {
1614    dlclose(handle);
1615    return 1;
1616  }
1617
1618  while (map->l_prev != NULL) {
1619    map = map->l_prev;
1620  }
1621
1622  while (map != NULL) {
1623    // Iterate through all map entries and call callback with fields of interest
1624    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1625      dlclose(handle);
1626      return 1;
1627    }
1628    map = map->l_next;
1629  }
1630
1631  dlclose(handle);
1632  return 0;
1633}
1634
1635int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1636  outputStream * out = (outputStream *) param;
1637  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1638  return 0;
1639}
1640
1641void os::print_dll_info(outputStream * st) {
1642  st->print_cr("Dynamic libraries:"); st->flush();
1643  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1644    st->print_cr("Error: Cannot print dynamic libraries.");
1645  }
1646}
1647
1648// Loads .dll/.so and
1649// in case of error it checks if .dll/.so was built for the
1650// same architecture as Hotspot is running on
1651
1652void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1653  void * result= ::dlopen(filename, RTLD_LAZY);
1654  if (result != NULL) {
1655    // Successful loading
1656    return result;
1657  }
1658
1659  Elf32_Ehdr elf_head;
1660
1661  // Read system error message into ebuf
1662  // It may or may not be overwritten below
1663  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1664  ebuf[ebuflen-1]='\0';
1665  int diag_msg_max_length=ebuflen-strlen(ebuf);
1666  char* diag_msg_buf=ebuf+strlen(ebuf);
1667
1668  if (diag_msg_max_length==0) {
1669    // No more space in ebuf for additional diagnostics message
1670    return NULL;
1671  }
1672
1673
1674  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1675
1676  if (file_descriptor < 0) {
1677    // Can't open library, report dlerror() message
1678    return NULL;
1679  }
1680
1681  bool failed_to_read_elf_head=
1682    (sizeof(elf_head)!=
1683     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1684
1685  ::close(file_descriptor);
1686  if (failed_to_read_elf_head) {
1687    // file i/o error - report dlerror() msg
1688    return NULL;
1689  }
1690
1691  typedef struct {
1692    Elf32_Half  code;         // Actual value as defined in elf.h
1693    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1694    char        elf_class;    // 32 or 64 bit
1695    char        endianess;    // MSB or LSB
1696    char*       name;         // String representation
1697  } arch_t;
1698
1699  static const arch_t arch_array[]={
1700    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1701    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1702    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1703    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1704    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1705    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1706    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1707    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1708    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1709    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1710  };
1711
1712#if  (defined IA32)
1713  static  Elf32_Half running_arch_code=EM_386;
1714#elif   (defined AMD64)
1715  static  Elf32_Half running_arch_code=EM_X86_64;
1716#elif  (defined IA64)
1717  static  Elf32_Half running_arch_code=EM_IA_64;
1718#elif  (defined __sparc) && (defined _LP64)
1719  static  Elf32_Half running_arch_code=EM_SPARCV9;
1720#elif  (defined __sparc) && (!defined _LP64)
1721  static  Elf32_Half running_arch_code=EM_SPARC;
1722#elif  (defined __powerpc64__)
1723  static  Elf32_Half running_arch_code=EM_PPC64;
1724#elif  (defined __powerpc__)
1725  static  Elf32_Half running_arch_code=EM_PPC;
1726#elif (defined ARM)
1727  static  Elf32_Half running_arch_code=EM_ARM;
1728#else
1729  #error Method os::dll_load requires that one of following is defined:\
1730       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1731#endif
1732
1733  // Identify compatability class for VM's architecture and library's architecture
1734  // Obtain string descriptions for architectures
1735
1736  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1737  int running_arch_index=-1;
1738
1739  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1740    if (running_arch_code == arch_array[i].code) {
1741      running_arch_index    = i;
1742    }
1743    if (lib_arch.code == arch_array[i].code) {
1744      lib_arch.compat_class = arch_array[i].compat_class;
1745      lib_arch.name         = arch_array[i].name;
1746    }
1747  }
1748
1749  assert(running_arch_index != -1,
1750         "Didn't find running architecture code (running_arch_code) in arch_array");
1751  if (running_arch_index == -1) {
1752    // Even though running architecture detection failed
1753    // we may still continue with reporting dlerror() message
1754    return NULL;
1755  }
1756
1757  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1758    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1759    return NULL;
1760  }
1761
1762  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1763    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1764    return NULL;
1765  }
1766
1767  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1768    if (lib_arch.name!=NULL) {
1769      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1770                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1771                 lib_arch.name, arch_array[running_arch_index].name);
1772    } else {
1773      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1774                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1775                 lib_arch.code,
1776                 arch_array[running_arch_index].name);
1777    }
1778  }
1779
1780  return NULL;
1781}
1782
1783void* os::dll_lookup(void* handle, const char* name) {
1784  return dlsym(handle, name);
1785}
1786
1787void* os::get_default_process_handle() {
1788  return (void*)::dlopen(NULL, RTLD_LAZY);
1789}
1790
1791int os::stat(const char *path, struct stat *sbuf) {
1792  char pathbuf[MAX_PATH];
1793  if (strlen(path) > MAX_PATH - 1) {
1794    errno = ENAMETOOLONG;
1795    return -1;
1796  }
1797  os::native_path(strcpy(pathbuf, path));
1798  return ::stat(pathbuf, sbuf);
1799}
1800
1801static inline time_t get_mtime(const char* filename) {
1802  struct stat st;
1803  int ret = os::stat(filename, &st);
1804  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1805  return st.st_mtime;
1806}
1807
1808int os::compare_file_modified_times(const char* file1, const char* file2) {
1809  time_t t1 = get_mtime(file1);
1810  time_t t2 = get_mtime(file2);
1811  return t1 - t2;
1812}
1813
1814static bool _print_ascii_file(const char* filename, outputStream* st) {
1815  int fd = ::open(filename, O_RDONLY);
1816  if (fd == -1) {
1817    return false;
1818  }
1819
1820  char buf[32];
1821  int bytes;
1822  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1823    st->print_raw(buf, bytes);
1824  }
1825
1826  ::close(fd);
1827
1828  return true;
1829}
1830
1831void os::print_os_info_brief(outputStream* st) {
1832  os::Solaris::print_distro_info(st);
1833
1834  os::Posix::print_uname_info(st);
1835
1836  os::Solaris::print_libversion_info(st);
1837}
1838
1839void os::print_os_info(outputStream* st) {
1840  st->print("OS:");
1841
1842  os::Solaris::print_distro_info(st);
1843
1844  os::Posix::print_uname_info(st);
1845
1846  os::Solaris::print_libversion_info(st);
1847
1848  os::Posix::print_rlimit_info(st);
1849
1850  os::Posix::print_load_average(st);
1851}
1852
1853void os::Solaris::print_distro_info(outputStream* st) {
1854  if (!_print_ascii_file("/etc/release", st)) {
1855    st->print("Solaris");
1856  }
1857  st->cr();
1858}
1859
1860void os::get_summary_os_info(char* buf, size_t buflen) {
1861  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1862  FILE* fp = fopen("/etc/release", "r");
1863  if (fp != NULL) {
1864    char tmp[256];
1865    // Only get the first line and chop out everything but the os name.
1866    if (fgets(tmp, sizeof(tmp), fp)) {
1867      char* ptr = tmp;
1868      // skip past whitespace characters
1869      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1870      if (*ptr != '\0') {
1871        char* nl = strchr(ptr, '\n');
1872        if (nl != NULL) *nl = '\0';
1873        strncpy(buf, ptr, buflen);
1874      }
1875    }
1876    fclose(fp);
1877  }
1878}
1879
1880void os::Solaris::print_libversion_info(outputStream* st) {
1881  st->print("  (T2 libthread)");
1882  st->cr();
1883}
1884
1885static bool check_addr0(outputStream* st) {
1886  jboolean status = false;
1887  const int read_chunk = 200;
1888  int ret = 0;
1889  int nmap = 0;
1890  int fd = ::open("/proc/self/map",O_RDONLY);
1891  if (fd >= 0) {
1892    prmap_t *p = NULL;
1893    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1894    if (NULL == mbuff) {
1895      ::close(fd);
1896      return status;
1897    }
1898    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1899      //check if read() has not read partial data
1900      if( 0 != ret % sizeof(prmap_t)){
1901        break;
1902      }
1903      nmap = ret / sizeof(prmap_t);
1904      p = (prmap_t *)mbuff;
1905      for(int i = 0; i < nmap; i++){
1906        if (p->pr_vaddr == 0x0) {
1907          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1908          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1909          st->print("Access: ");
1910          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1911          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1912          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1913          st->cr();
1914          status = true;
1915        }
1916        p++;
1917      }
1918    }
1919    free(mbuff);
1920    ::close(fd);
1921  }
1922  return status;
1923}
1924
1925void os::get_summary_cpu_info(char* buf, size_t buflen) {
1926  // Get MHz with system call. We don't seem to already have this.
1927  processor_info_t stats;
1928  processorid_t id = getcpuid();
1929  int clock = 0;
1930  if (processor_info(id, &stats) != -1) {
1931    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1932  }
1933#ifdef AMD64
1934  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1935#else
1936  // must be sparc
1937  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1938#endif
1939}
1940
1941void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1942  // Nothing to do for now.
1943}
1944
1945void os::print_memory_info(outputStream* st) {
1946  st->print("Memory:");
1947  st->print(" %dk page", os::vm_page_size()>>10);
1948  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1949  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1950  st->cr();
1951  (void) check_addr0(st);
1952}
1953
1954// Moved from whole group, because we need them here for diagnostic
1955// prints.
1956#define OLDMAXSIGNUM 32
1957static int Maxsignum = 0;
1958static int *ourSigFlags = NULL;
1959
1960int os::Solaris::get_our_sigflags(int sig) {
1961  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1962  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1963  return ourSigFlags[sig];
1964}
1965
1966void os::Solaris::set_our_sigflags(int sig, int flags) {
1967  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1968  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1969  ourSigFlags[sig] = flags;
1970}
1971
1972
1973static const char* get_signal_handler_name(address handler,
1974                                           char* buf, int buflen) {
1975  int offset;
1976  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1977  if (found) {
1978    // skip directory names
1979    const char *p1, *p2;
1980    p1 = buf;
1981    size_t len = strlen(os::file_separator());
1982    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1983    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1984  } else {
1985    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1986  }
1987  return buf;
1988}
1989
1990static void print_signal_handler(outputStream* st, int sig,
1991                                 char* buf, size_t buflen) {
1992  struct sigaction sa;
1993
1994  sigaction(sig, NULL, &sa);
1995
1996  st->print("%s: ", os::exception_name(sig, buf, buflen));
1997
1998  address handler = (sa.sa_flags & SA_SIGINFO)
1999                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2000                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2001
2002  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2003    st->print("SIG_DFL");
2004  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2005    st->print("SIG_IGN");
2006  } else {
2007    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2008  }
2009
2010  st->print(", sa_mask[0]=");
2011  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2012
2013  address rh = VMError::get_resetted_sighandler(sig);
2014  // May be, handler was resetted by VMError?
2015  if (rh != NULL) {
2016    handler = rh;
2017    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2018  }
2019
2020  st->print(", sa_flags=");
2021  os::Posix::print_sa_flags(st, sa.sa_flags);
2022
2023  // Check: is it our handler?
2024  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2025    // It is our signal handler
2026    // check for flags
2027    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2028      st->print(
2029                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2030                os::Solaris::get_our_sigflags(sig));
2031    }
2032  }
2033  st->cr();
2034}
2035
2036void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2037  st->print_cr("Signal Handlers:");
2038  print_signal_handler(st, SIGSEGV, buf, buflen);
2039  print_signal_handler(st, SIGBUS , buf, buflen);
2040  print_signal_handler(st, SIGFPE , buf, buflen);
2041  print_signal_handler(st, SIGPIPE, buf, buflen);
2042  print_signal_handler(st, SIGXFSZ, buf, buflen);
2043  print_signal_handler(st, SIGILL , buf, buflen);
2044  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2045  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2046  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2047  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2048  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2049  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2050}
2051
2052static char saved_jvm_path[MAXPATHLEN] = { 0 };
2053
2054// Find the full path to the current module, libjvm.so
2055void os::jvm_path(char *buf, jint buflen) {
2056  // Error checking.
2057  if (buflen < MAXPATHLEN) {
2058    assert(false, "must use a large-enough buffer");
2059    buf[0] = '\0';
2060    return;
2061  }
2062  // Lazy resolve the path to current module.
2063  if (saved_jvm_path[0] != 0) {
2064    strcpy(buf, saved_jvm_path);
2065    return;
2066  }
2067
2068  Dl_info dlinfo;
2069  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2070  assert(ret != 0, "cannot locate libjvm");
2071  if (ret != 0 && dlinfo.dli_fname != NULL) {
2072    realpath((char *)dlinfo.dli_fname, buf);
2073  } else {
2074    buf[0] = '\0';
2075    return;
2076  }
2077
2078  if (Arguments::sun_java_launcher_is_altjvm()) {
2079    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2080    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2081    // If "/jre/lib/" appears at the right place in the string, then
2082    // assume we are installed in a JDK and we're done.  Otherwise, check
2083    // for a JAVA_HOME environment variable and fix up the path so it
2084    // looks like libjvm.so is installed there (append a fake suffix
2085    // hotspot/libjvm.so).
2086    const char *p = buf + strlen(buf) - 1;
2087    for (int count = 0; p > buf && count < 5; ++count) {
2088      for (--p; p > buf && *p != '/'; --p)
2089        /* empty */ ;
2090    }
2091
2092    if (strncmp(p, "/jre/lib/", 9) != 0) {
2093      // Look for JAVA_HOME in the environment.
2094      char* java_home_var = ::getenv("JAVA_HOME");
2095      if (java_home_var != NULL && java_home_var[0] != 0) {
2096        char cpu_arch[12];
2097        char* jrelib_p;
2098        int   len;
2099        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2100#ifdef _LP64
2101        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2102        if (strcmp(cpu_arch, "sparc") == 0) {
2103          strcat(cpu_arch, "v9");
2104        } else if (strcmp(cpu_arch, "i386") == 0) {
2105          strcpy(cpu_arch, "amd64");
2106        }
2107#endif
2108        // Check the current module name "libjvm.so".
2109        p = strrchr(buf, '/');
2110        assert(strstr(p, "/libjvm") == p, "invalid library name");
2111
2112        realpath(java_home_var, buf);
2113        // determine if this is a legacy image or modules image
2114        // modules image doesn't have "jre" subdirectory
2115        len = strlen(buf);
2116        assert(len < buflen, "Ran out of buffer space");
2117        jrelib_p = buf + len;
2118        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2119        if (0 != access(buf, F_OK)) {
2120          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2121        }
2122
2123        if (0 == access(buf, F_OK)) {
2124          // Use current module name "libjvm.so"
2125          len = strlen(buf);
2126          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2127        } else {
2128          // Go back to path of .so
2129          realpath((char *)dlinfo.dli_fname, buf);
2130        }
2131      }
2132    }
2133  }
2134
2135  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2136  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2137}
2138
2139
2140void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2141  // no prefix required, not even "_"
2142}
2143
2144
2145void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2146  // no suffix required
2147}
2148
2149// This method is a copy of JDK's sysGetLastErrorString
2150// from src/solaris/hpi/src/system_md.c
2151
2152size_t os::lasterror(char *buf, size_t len) {
2153  if (errno == 0)  return 0;
2154
2155  const char *s = os::strerror(errno);
2156  size_t n = ::strlen(s);
2157  if (n >= len) {
2158    n = len - 1;
2159  }
2160  ::strncpy(buf, s, n);
2161  buf[n] = '\0';
2162  return n;
2163}
2164
2165
2166// sun.misc.Signal
2167
2168extern "C" {
2169  static void UserHandler(int sig, void *siginfo, void *context) {
2170    // Ctrl-C is pressed during error reporting, likely because the error
2171    // handler fails to abort. Let VM die immediately.
2172    if (sig == SIGINT && is_error_reported()) {
2173      os::die();
2174    }
2175
2176    os::signal_notify(sig);
2177    // We do not need to reinstate the signal handler each time...
2178  }
2179}
2180
2181void* os::user_handler() {
2182  return CAST_FROM_FN_PTR(void*, UserHandler);
2183}
2184
2185struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2186  struct timespec ts;
2187  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2188
2189  return ts;
2190}
2191
2192extern "C" {
2193  typedef void (*sa_handler_t)(int);
2194  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2195}
2196
2197void* os::signal(int signal_number, void* handler) {
2198  struct sigaction sigAct, oldSigAct;
2199  sigfillset(&(sigAct.sa_mask));
2200  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2201  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2202
2203  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2204    // -1 means registration failed
2205    return (void *)-1;
2206  }
2207
2208  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2209}
2210
2211void os::signal_raise(int signal_number) {
2212  raise(signal_number);
2213}
2214
2215// The following code is moved from os.cpp for making this
2216// code platform specific, which it is by its very nature.
2217
2218// a counter for each possible signal value
2219static int Sigexit = 0;
2220static int Maxlibjsigsigs;
2221static jint *pending_signals = NULL;
2222static int *preinstalled_sigs = NULL;
2223static struct sigaction *chainedsigactions = NULL;
2224static sema_t sig_sem;
2225typedef int (*version_getting_t)();
2226version_getting_t os::Solaris::get_libjsig_version = NULL;
2227static int libjsigversion = NULL;
2228
2229int os::sigexitnum_pd() {
2230  assert(Sigexit > 0, "signal memory not yet initialized");
2231  return Sigexit;
2232}
2233
2234void os::Solaris::init_signal_mem() {
2235  // Initialize signal structures
2236  Maxsignum = SIGRTMAX;
2237  Sigexit = Maxsignum+1;
2238  assert(Maxsignum >0, "Unable to obtain max signal number");
2239
2240  Maxlibjsigsigs = Maxsignum;
2241
2242  // pending_signals has one int per signal
2243  // The additional signal is for SIGEXIT - exit signal to signal_thread
2244  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2245  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2246
2247  if (UseSignalChaining) {
2248    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2249                                                   * (Maxsignum + 1), mtInternal);
2250    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2251    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2252    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2253  }
2254  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2255  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2256}
2257
2258void os::signal_init_pd() {
2259  int ret;
2260
2261  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2262  assert(ret == 0, "sema_init() failed");
2263}
2264
2265void os::signal_notify(int signal_number) {
2266  int ret;
2267
2268  Atomic::inc(&pending_signals[signal_number]);
2269  ret = ::sema_post(&sig_sem);
2270  assert(ret == 0, "sema_post() failed");
2271}
2272
2273static int check_pending_signals(bool wait_for_signal) {
2274  int ret;
2275  while (true) {
2276    for (int i = 0; i < Sigexit + 1; i++) {
2277      jint n = pending_signals[i];
2278      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2279        return i;
2280      }
2281    }
2282    if (!wait_for_signal) {
2283      return -1;
2284    }
2285    JavaThread *thread = JavaThread::current();
2286    ThreadBlockInVM tbivm(thread);
2287
2288    bool threadIsSuspended;
2289    do {
2290      thread->set_suspend_equivalent();
2291      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2292      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2293        ;
2294      assert(ret == 0, "sema_wait() failed");
2295
2296      // were we externally suspended while we were waiting?
2297      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2298      if (threadIsSuspended) {
2299        // The semaphore has been incremented, but while we were waiting
2300        // another thread suspended us. We don't want to continue running
2301        // while suspended because that would surprise the thread that
2302        // suspended us.
2303        ret = ::sema_post(&sig_sem);
2304        assert(ret == 0, "sema_post() failed");
2305
2306        thread->java_suspend_self();
2307      }
2308    } while (threadIsSuspended);
2309  }
2310}
2311
2312int os::signal_lookup() {
2313  return check_pending_signals(false);
2314}
2315
2316int os::signal_wait() {
2317  return check_pending_signals(true);
2318}
2319
2320////////////////////////////////////////////////////////////////////////////////
2321// Virtual Memory
2322
2323static int page_size = -1;
2324
2325// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2326// clear this var if support is not available.
2327static bool has_map_align = true;
2328
2329int os::vm_page_size() {
2330  assert(page_size != -1, "must call os::init");
2331  return page_size;
2332}
2333
2334// Solaris allocates memory by pages.
2335int os::vm_allocation_granularity() {
2336  assert(page_size != -1, "must call os::init");
2337  return page_size;
2338}
2339
2340static bool recoverable_mmap_error(int err) {
2341  // See if the error is one we can let the caller handle. This
2342  // list of errno values comes from the Solaris mmap(2) man page.
2343  switch (err) {
2344  case EBADF:
2345  case EINVAL:
2346  case ENOTSUP:
2347    // let the caller deal with these errors
2348    return true;
2349
2350  default:
2351    // Any remaining errors on this OS can cause our reserved mapping
2352    // to be lost. That can cause confusion where different data
2353    // structures think they have the same memory mapped. The worst
2354    // scenario is if both the VM and a library think they have the
2355    // same memory mapped.
2356    return false;
2357  }
2358}
2359
2360static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2361                                    int err) {
2362  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2363          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2364          os::strerror(err), err);
2365}
2366
2367static void warn_fail_commit_memory(char* addr, size_t bytes,
2368                                    size_t alignment_hint, bool exec,
2369                                    int err) {
2370  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2371          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2372          alignment_hint, exec, os::strerror(err), err);
2373}
2374
2375int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2376  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2377  size_t size = bytes;
2378  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2379  if (res != NULL) {
2380    if (UseNUMAInterleaving) {
2381      numa_make_global(addr, bytes);
2382    }
2383    return 0;
2384  }
2385
2386  int err = errno;  // save errno from mmap() call in mmap_chunk()
2387
2388  if (!recoverable_mmap_error(err)) {
2389    warn_fail_commit_memory(addr, bytes, exec, err);
2390    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2391  }
2392
2393  return err;
2394}
2395
2396bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2397  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2398}
2399
2400void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2401                                  const char* mesg) {
2402  assert(mesg != NULL, "mesg must be specified");
2403  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2404  if (err != 0) {
2405    // the caller wants all commit errors to exit with the specified mesg:
2406    warn_fail_commit_memory(addr, bytes, exec, err);
2407    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2408  }
2409}
2410
2411size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2412  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2413         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2414         alignment, (size_t) vm_page_size());
2415
2416  for (int i = 0; _page_sizes[i] != 0; i++) {
2417    if (is_size_aligned(alignment, _page_sizes[i])) {
2418      return _page_sizes[i];
2419    }
2420  }
2421
2422  return (size_t) vm_page_size();
2423}
2424
2425int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2426                                    size_t alignment_hint, bool exec) {
2427  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2428  if (err == 0 && UseLargePages && alignment_hint > 0) {
2429    assert(is_size_aligned(bytes, alignment_hint),
2430           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2431
2432    // The syscall memcntl requires an exact page size (see man memcntl for details).
2433    size_t page_size = page_size_for_alignment(alignment_hint);
2434    if (page_size > (size_t) vm_page_size()) {
2435      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2436    }
2437  }
2438  return err;
2439}
2440
2441bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2442                          bool exec) {
2443  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2444}
2445
2446void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2447                                  size_t alignment_hint, bool exec,
2448                                  const char* mesg) {
2449  assert(mesg != NULL, "mesg must be specified");
2450  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2451  if (err != 0) {
2452    // the caller wants all commit errors to exit with the specified mesg:
2453    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2454    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2455  }
2456}
2457
2458// Uncommit the pages in a specified region.
2459void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2460  if (madvise(addr, bytes, MADV_FREE) < 0) {
2461    debug_only(warning("MADV_FREE failed."));
2462    return;
2463  }
2464}
2465
2466bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2467  return os::commit_memory(addr, size, !ExecMem);
2468}
2469
2470bool os::remove_stack_guard_pages(char* addr, size_t size) {
2471  return os::uncommit_memory(addr, size);
2472}
2473
2474// Change the page size in a given range.
2475void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2476  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2477  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2478  if (UseLargePages) {
2479    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2480    if (page_size > (size_t) vm_page_size()) {
2481      Solaris::setup_large_pages(addr, bytes, page_size);
2482    }
2483  }
2484}
2485
2486// Tell the OS to make the range local to the first-touching LWP
2487void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2488  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2489  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2490    debug_only(warning("MADV_ACCESS_LWP failed."));
2491  }
2492}
2493
2494// Tell the OS that this range would be accessed from different LWPs.
2495void os::numa_make_global(char *addr, size_t bytes) {
2496  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2497  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2498    debug_only(warning("MADV_ACCESS_MANY failed."));
2499  }
2500}
2501
2502// Get the number of the locality groups.
2503size_t os::numa_get_groups_num() {
2504  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2505  return n != -1 ? n : 1;
2506}
2507
2508// Get a list of leaf locality groups. A leaf lgroup is group that
2509// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2510// board. An LWP is assigned to one of these groups upon creation.
2511size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2512  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2513    ids[0] = 0;
2514    return 1;
2515  }
2516  int result_size = 0, top = 1, bottom = 0, cur = 0;
2517  for (int k = 0; k < size; k++) {
2518    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2519                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2520    if (r == -1) {
2521      ids[0] = 0;
2522      return 1;
2523    }
2524    if (!r) {
2525      // That's a leaf node.
2526      assert(bottom <= cur, "Sanity check");
2527      // Check if the node has memory
2528      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2529                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2530        ids[bottom++] = ids[cur];
2531      }
2532    }
2533    top += r;
2534    cur++;
2535  }
2536  if (bottom == 0) {
2537    // Handle a situation, when the OS reports no memory available.
2538    // Assume UMA architecture.
2539    ids[0] = 0;
2540    return 1;
2541  }
2542  return bottom;
2543}
2544
2545// Detect the topology change. Typically happens during CPU plugging-unplugging.
2546bool os::numa_topology_changed() {
2547  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2548  if (is_stale != -1 && is_stale) {
2549    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2550    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2551    assert(c != 0, "Failure to initialize LGRP API");
2552    Solaris::set_lgrp_cookie(c);
2553    return true;
2554  }
2555  return false;
2556}
2557
2558// Get the group id of the current LWP.
2559int os::numa_get_group_id() {
2560  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2561  if (lgrp_id == -1) {
2562    return 0;
2563  }
2564  const int size = os::numa_get_groups_num();
2565  int *ids = (int*)alloca(size * sizeof(int));
2566
2567  // Get the ids of all lgroups with memory; r is the count.
2568  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2569                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2570  if (r <= 0) {
2571    return 0;
2572  }
2573  return ids[os::random() % r];
2574}
2575
2576// Request information about the page.
2577bool os::get_page_info(char *start, page_info* info) {
2578  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2579  uint64_t addr = (uintptr_t)start;
2580  uint64_t outdata[2];
2581  uint_t validity = 0;
2582
2583  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2584    return false;
2585  }
2586
2587  info->size = 0;
2588  info->lgrp_id = -1;
2589
2590  if ((validity & 1) != 0) {
2591    if ((validity & 2) != 0) {
2592      info->lgrp_id = outdata[0];
2593    }
2594    if ((validity & 4) != 0) {
2595      info->size = outdata[1];
2596    }
2597    return true;
2598  }
2599  return false;
2600}
2601
2602// Scan the pages from start to end until a page different than
2603// the one described in the info parameter is encountered.
2604char *os::scan_pages(char *start, char* end, page_info* page_expected,
2605                     page_info* page_found) {
2606  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2607  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2608  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2609  uint_t validity[MAX_MEMINFO_CNT];
2610
2611  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2612  uint64_t p = (uint64_t)start;
2613  while (p < (uint64_t)end) {
2614    addrs[0] = p;
2615    size_t addrs_count = 1;
2616    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2617      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2618      addrs_count++;
2619    }
2620
2621    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2622      return NULL;
2623    }
2624
2625    size_t i = 0;
2626    for (; i < addrs_count; i++) {
2627      if ((validity[i] & 1) != 0) {
2628        if ((validity[i] & 4) != 0) {
2629          if (outdata[types * i + 1] != page_expected->size) {
2630            break;
2631          }
2632        } else if (page_expected->size != 0) {
2633          break;
2634        }
2635
2636        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2637          if (outdata[types * i] != page_expected->lgrp_id) {
2638            break;
2639          }
2640        }
2641      } else {
2642        return NULL;
2643      }
2644    }
2645
2646    if (i < addrs_count) {
2647      if ((validity[i] & 2) != 0) {
2648        page_found->lgrp_id = outdata[types * i];
2649      } else {
2650        page_found->lgrp_id = -1;
2651      }
2652      if ((validity[i] & 4) != 0) {
2653        page_found->size = outdata[types * i + 1];
2654      } else {
2655        page_found->size = 0;
2656      }
2657      return (char*)addrs[i];
2658    }
2659
2660    p = addrs[addrs_count - 1] + page_size;
2661  }
2662  return end;
2663}
2664
2665bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2666  size_t size = bytes;
2667  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2668  // uncommitted page. Otherwise, the read/write might succeed if we
2669  // have enough swap space to back the physical page.
2670  return
2671    NULL != Solaris::mmap_chunk(addr, size,
2672                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2673                                PROT_NONE);
2674}
2675
2676char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2677  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2678
2679  if (b == MAP_FAILED) {
2680    return NULL;
2681  }
2682  return b;
2683}
2684
2685char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2686                             size_t alignment_hint, bool fixed) {
2687  char* addr = requested_addr;
2688  int flags = MAP_PRIVATE | MAP_NORESERVE;
2689
2690  assert(!(fixed && (alignment_hint > 0)),
2691         "alignment hint meaningless with fixed mmap");
2692
2693  if (fixed) {
2694    flags |= MAP_FIXED;
2695  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2696    flags |= MAP_ALIGN;
2697    addr = (char*) alignment_hint;
2698  }
2699
2700  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2701  // uncommitted page. Otherwise, the read/write might succeed if we
2702  // have enough swap space to back the physical page.
2703  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2704}
2705
2706char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2707                            size_t alignment_hint) {
2708  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2709                                  (requested_addr != NULL));
2710
2711  guarantee(requested_addr == NULL || requested_addr == addr,
2712            "OS failed to return requested mmap address.");
2713  return addr;
2714}
2715
2716// Reserve memory at an arbitrary address, only if that area is
2717// available (and not reserved for something else).
2718
2719char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2720  const int max_tries = 10;
2721  char* base[max_tries];
2722  size_t size[max_tries];
2723
2724  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2725  // is dependent on the requested size and the MMU.  Our initial gap
2726  // value here is just a guess and will be corrected later.
2727  bool had_top_overlap = false;
2728  bool have_adjusted_gap = false;
2729  size_t gap = 0x400000;
2730
2731  // Assert only that the size is a multiple of the page size, since
2732  // that's all that mmap requires, and since that's all we really know
2733  // about at this low abstraction level.  If we need higher alignment,
2734  // we can either pass an alignment to this method or verify alignment
2735  // in one of the methods further up the call chain.  See bug 5044738.
2736  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2737
2738  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2739  // Give it a try, if the kernel honors the hint we can return immediately.
2740  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2741
2742  volatile int err = errno;
2743  if (addr == requested_addr) {
2744    return addr;
2745  } else if (addr != NULL) {
2746    pd_unmap_memory(addr, bytes);
2747  }
2748
2749  if (log_is_enabled(Warning, os)) {
2750    char buf[256];
2751    buf[0] = '\0';
2752    if (addr == NULL) {
2753      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2754    }
2755    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2756            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2757            "%s", bytes, requested_addr, addr, buf);
2758  }
2759
2760  // Address hint method didn't work.  Fall back to the old method.
2761  // In theory, once SNV becomes our oldest supported platform, this
2762  // code will no longer be needed.
2763  //
2764  // Repeatedly allocate blocks until the block is allocated at the
2765  // right spot. Give up after max_tries.
2766  int i;
2767  for (i = 0; i < max_tries; ++i) {
2768    base[i] = reserve_memory(bytes);
2769
2770    if (base[i] != NULL) {
2771      // Is this the block we wanted?
2772      if (base[i] == requested_addr) {
2773        size[i] = bytes;
2774        break;
2775      }
2776
2777      // check that the gap value is right
2778      if (had_top_overlap && !have_adjusted_gap) {
2779        size_t actual_gap = base[i-1] - base[i] - bytes;
2780        if (gap != actual_gap) {
2781          // adjust the gap value and retry the last 2 allocations
2782          assert(i > 0, "gap adjustment code problem");
2783          have_adjusted_gap = true;  // adjust the gap only once, just in case
2784          gap = actual_gap;
2785          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2786          unmap_memory(base[i], bytes);
2787          unmap_memory(base[i-1], size[i-1]);
2788          i-=2;
2789          continue;
2790        }
2791      }
2792
2793      // Does this overlap the block we wanted? Give back the overlapped
2794      // parts and try again.
2795      //
2796      // There is still a bug in this code: if top_overlap == bytes,
2797      // the overlap is offset from requested region by the value of gap.
2798      // In this case giving back the overlapped part will not work,
2799      // because we'll give back the entire block at base[i] and
2800      // therefore the subsequent allocation will not generate a new gap.
2801      // This could be fixed with a new algorithm that used larger
2802      // or variable size chunks to find the requested region -
2803      // but such a change would introduce additional complications.
2804      // It's rare enough that the planets align for this bug,
2805      // so we'll just wait for a fix for 6204603/5003415 which
2806      // will provide a mmap flag to allow us to avoid this business.
2807
2808      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2809      if (top_overlap >= 0 && top_overlap < bytes) {
2810        had_top_overlap = true;
2811        unmap_memory(base[i], top_overlap);
2812        base[i] += top_overlap;
2813        size[i] = bytes - top_overlap;
2814      } else {
2815        size_t bottom_overlap = base[i] + bytes - requested_addr;
2816        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2817          if (bottom_overlap == 0) {
2818            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2819          }
2820          unmap_memory(requested_addr, bottom_overlap);
2821          size[i] = bytes - bottom_overlap;
2822        } else {
2823          size[i] = bytes;
2824        }
2825      }
2826    }
2827  }
2828
2829  // Give back the unused reserved pieces.
2830
2831  for (int j = 0; j < i; ++j) {
2832    if (base[j] != NULL) {
2833      unmap_memory(base[j], size[j]);
2834    }
2835  }
2836
2837  return (i < max_tries) ? requested_addr : NULL;
2838}
2839
2840bool os::pd_release_memory(char* addr, size_t bytes) {
2841  size_t size = bytes;
2842  return munmap(addr, size) == 0;
2843}
2844
2845static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2846  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2847         "addr must be page aligned");
2848  int retVal = mprotect(addr, bytes, prot);
2849  return retVal == 0;
2850}
2851
2852// Protect memory (Used to pass readonly pages through
2853// JNI GetArray<type>Elements with empty arrays.)
2854// Also, used for serialization page and for compressed oops null pointer
2855// checking.
2856bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2857                        bool is_committed) {
2858  unsigned int p = 0;
2859  switch (prot) {
2860  case MEM_PROT_NONE: p = PROT_NONE; break;
2861  case MEM_PROT_READ: p = PROT_READ; break;
2862  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2863  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2864  default:
2865    ShouldNotReachHere();
2866  }
2867  // is_committed is unused.
2868  return solaris_mprotect(addr, bytes, p);
2869}
2870
2871// guard_memory and unguard_memory only happens within stack guard pages.
2872// Since ISM pertains only to the heap, guard and unguard memory should not
2873/// happen with an ISM region.
2874bool os::guard_memory(char* addr, size_t bytes) {
2875  return solaris_mprotect(addr, bytes, PROT_NONE);
2876}
2877
2878bool os::unguard_memory(char* addr, size_t bytes) {
2879  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2880}
2881
2882// Large page support
2883static size_t _large_page_size = 0;
2884
2885// Insertion sort for small arrays (descending order).
2886static void insertion_sort_descending(size_t* array, int len) {
2887  for (int i = 0; i < len; i++) {
2888    size_t val = array[i];
2889    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2890      size_t tmp = array[key];
2891      array[key] = array[key - 1];
2892      array[key - 1] = tmp;
2893    }
2894  }
2895}
2896
2897bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2898  const unsigned int usable_count = VM_Version::page_size_count();
2899  if (usable_count == 1) {
2900    return false;
2901  }
2902
2903  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2904  // build platform, getpagesizes() (without the '2') can be called directly.
2905  typedef int (*gps_t)(size_t[], int);
2906  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2907  if (gps_func == NULL) {
2908    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2909    if (gps_func == NULL) {
2910      if (warn) {
2911        warning("MPSS is not supported by the operating system.");
2912      }
2913      return false;
2914    }
2915  }
2916
2917  // Fill the array of page sizes.
2918  int n = (*gps_func)(_page_sizes, page_sizes_max);
2919  assert(n > 0, "Solaris bug?");
2920
2921  if (n == page_sizes_max) {
2922    // Add a sentinel value (necessary only if the array was completely filled
2923    // since it is static (zeroed at initialization)).
2924    _page_sizes[--n] = 0;
2925    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2926  }
2927  assert(_page_sizes[n] == 0, "missing sentinel");
2928  trace_page_sizes("available page sizes", _page_sizes, n);
2929
2930  if (n == 1) return false;     // Only one page size available.
2931
2932  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2933  // select up to usable_count elements.  First sort the array, find the first
2934  // acceptable value, then copy the usable sizes to the top of the array and
2935  // trim the rest.  Make sure to include the default page size :-).
2936  //
2937  // A better policy could get rid of the 4M limit by taking the sizes of the
2938  // important VM memory regions (java heap and possibly the code cache) into
2939  // account.
2940  insertion_sort_descending(_page_sizes, n);
2941  const size_t size_limit =
2942    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2943  int beg;
2944  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2945  const int end = MIN2((int)usable_count, n) - 1;
2946  for (int cur = 0; cur < end; ++cur, ++beg) {
2947    _page_sizes[cur] = _page_sizes[beg];
2948  }
2949  _page_sizes[end] = vm_page_size();
2950  _page_sizes[end + 1] = 0;
2951
2952  if (_page_sizes[end] > _page_sizes[end - 1]) {
2953    // Default page size is not the smallest; sort again.
2954    insertion_sort_descending(_page_sizes, end + 1);
2955  }
2956  *page_size = _page_sizes[0];
2957
2958  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2959  return true;
2960}
2961
2962void os::large_page_init() {
2963  if (UseLargePages) {
2964    // print a warning if any large page related flag is specified on command line
2965    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2966                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2967
2968    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2969  }
2970}
2971
2972bool os::Solaris::is_valid_page_size(size_t bytes) {
2973  for (int i = 0; _page_sizes[i] != 0; i++) {
2974    if (_page_sizes[i] == bytes) {
2975      return true;
2976    }
2977  }
2978  return false;
2979}
2980
2981bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2982  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2983  assert(is_ptr_aligned((void*) start, align),
2984         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2985  assert(is_size_aligned(bytes, align),
2986         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2987
2988  // Signal to OS that we want large pages for addresses
2989  // from addr, addr + bytes
2990  struct memcntl_mha mpss_struct;
2991  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2992  mpss_struct.mha_pagesize = align;
2993  mpss_struct.mha_flags = 0;
2994  // Upon successful completion, memcntl() returns 0
2995  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2996    debug_only(warning("Attempt to use MPSS failed."));
2997    return false;
2998  }
2999  return true;
3000}
3001
3002char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3003  fatal("os::reserve_memory_special should not be called on Solaris.");
3004  return NULL;
3005}
3006
3007bool os::release_memory_special(char* base, size_t bytes) {
3008  fatal("os::release_memory_special should not be called on Solaris.");
3009  return false;
3010}
3011
3012size_t os::large_page_size() {
3013  return _large_page_size;
3014}
3015
3016// MPSS allows application to commit large page memory on demand; with ISM
3017// the entire memory region must be allocated as shared memory.
3018bool os::can_commit_large_page_memory() {
3019  return true;
3020}
3021
3022bool os::can_execute_large_page_memory() {
3023  return true;
3024}
3025
3026// Read calls from inside the vm need to perform state transitions
3027size_t os::read(int fd, void *buf, unsigned int nBytes) {
3028  size_t res;
3029  JavaThread* thread = (JavaThread*)Thread::current();
3030  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3031  ThreadBlockInVM tbiv(thread);
3032  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3033  return res;
3034}
3035
3036size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3037  size_t res;
3038  JavaThread* thread = (JavaThread*)Thread::current();
3039  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3040  ThreadBlockInVM tbiv(thread);
3041  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3042  return res;
3043}
3044
3045size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3046  size_t res;
3047  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3048         "Assumed _thread_in_native");
3049  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3050  return res;
3051}
3052
3053void os::naked_short_sleep(jlong ms) {
3054  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3055
3056  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3057  // Solaris requires -lrt for this.
3058  usleep((ms * 1000));
3059
3060  return;
3061}
3062
3063// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3064void os::infinite_sleep() {
3065  while (true) {    // sleep forever ...
3066    ::sleep(100);   // ... 100 seconds at a time
3067  }
3068}
3069
3070// Used to convert frequent JVM_Yield() to nops
3071bool os::dont_yield() {
3072  if (DontYieldALot) {
3073    static hrtime_t last_time = 0;
3074    hrtime_t diff = getTimeNanos() - last_time;
3075
3076    if (diff < DontYieldALotInterval * 1000000) {
3077      return true;
3078    }
3079
3080    last_time += diff;
3081
3082    return false;
3083  } else {
3084    return false;
3085  }
3086}
3087
3088// Note that yield semantics are defined by the scheduling class to which
3089// the thread currently belongs.  Typically, yield will _not yield to
3090// other equal or higher priority threads that reside on the dispatch queues
3091// of other CPUs.
3092
3093void os::naked_yield() {
3094  thr_yield();
3095}
3096
3097// Interface for setting lwp priorities.  If we are using T2 libthread,
3098// which forces the use of BoundThreads or we manually set UseBoundThreads,
3099// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3100// function is meaningless in this mode so we must adjust the real lwp's priority
3101// The routines below implement the getting and setting of lwp priorities.
3102//
3103// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3104//       being deprecated and all threads are now BoundThreads
3105//
3106// Note: There are three priority scales used on Solaris.  Java priotities
3107//       which range from 1 to 10, libthread "thr_setprio" scale which range
3108//       from 0 to 127, and the current scheduling class of the process we
3109//       are running in.  This is typically from -60 to +60.
3110//       The setting of the lwp priorities in done after a call to thr_setprio
3111//       so Java priorities are mapped to libthread priorities and we map from
3112//       the latter to lwp priorities.  We don't keep priorities stored in
3113//       Java priorities since some of our worker threads want to set priorities
3114//       higher than all Java threads.
3115//
3116// For related information:
3117// (1)  man -s 2 priocntl
3118// (2)  man -s 4 priocntl
3119// (3)  man dispadmin
3120// =    librt.so
3121// =    libthread/common/rtsched.c - thrp_setlwpprio().
3122// =    ps -cL <pid> ... to validate priority.
3123// =    sched_get_priority_min and _max
3124//              pthread_create
3125//              sched_setparam
3126//              pthread_setschedparam
3127//
3128// Assumptions:
3129// +    We assume that all threads in the process belong to the same
3130//              scheduling class.   IE. an homogenous process.
3131// +    Must be root or in IA group to change change "interactive" attribute.
3132//              Priocntl() will fail silently.  The only indication of failure is when
3133//              we read-back the value and notice that it hasn't changed.
3134// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3135// +    For RT, change timeslice as well.  Invariant:
3136//              constant "priority integral"
3137//              Konst == TimeSlice * (60-Priority)
3138//              Given a priority, compute appropriate timeslice.
3139// +    Higher numerical values have higher priority.
3140
3141// sched class attributes
3142typedef struct {
3143  int   schedPolicy;              // classID
3144  int   maxPrio;
3145  int   minPrio;
3146} SchedInfo;
3147
3148
3149static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3150
3151#ifdef ASSERT
3152static int  ReadBackValidate = 1;
3153#endif
3154static int  myClass     = 0;
3155static int  myMin       = 0;
3156static int  myMax       = 0;
3157static int  myCur       = 0;
3158static bool priocntl_enable = false;
3159
3160static const int criticalPrio = FXCriticalPriority;
3161static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3162
3163
3164// lwp_priocntl_init
3165//
3166// Try to determine the priority scale for our process.
3167//
3168// Return errno or 0 if OK.
3169//
3170static int lwp_priocntl_init() {
3171  int rslt;
3172  pcinfo_t ClassInfo;
3173  pcparms_t ParmInfo;
3174  int i;
3175
3176  if (!UseThreadPriorities) return 0;
3177
3178  // If ThreadPriorityPolicy is 1, switch tables
3179  if (ThreadPriorityPolicy == 1) {
3180    for (i = 0; i < CriticalPriority+1; i++)
3181      os::java_to_os_priority[i] = prio_policy1[i];
3182  }
3183  if (UseCriticalJavaThreadPriority) {
3184    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3185    // See set_native_priority() and set_lwp_class_and_priority().
3186    // Save original MaxPriority mapping in case attempt to
3187    // use critical priority fails.
3188    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3189    // Set negative to distinguish from other priorities
3190    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3191  }
3192
3193  // Get IDs for a set of well-known scheduling classes.
3194  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3195  // the system.  We should have a loop that iterates over the
3196  // classID values, which are known to be "small" integers.
3197
3198  strcpy(ClassInfo.pc_clname, "TS");
3199  ClassInfo.pc_cid = -1;
3200  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3201  if (rslt < 0) return errno;
3202  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3203  tsLimits.schedPolicy = ClassInfo.pc_cid;
3204  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3205  tsLimits.minPrio = -tsLimits.maxPrio;
3206
3207  strcpy(ClassInfo.pc_clname, "IA");
3208  ClassInfo.pc_cid = -1;
3209  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3210  if (rslt < 0) return errno;
3211  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3212  iaLimits.schedPolicy = ClassInfo.pc_cid;
3213  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3214  iaLimits.minPrio = -iaLimits.maxPrio;
3215
3216  strcpy(ClassInfo.pc_clname, "RT");
3217  ClassInfo.pc_cid = -1;
3218  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3219  if (rslt < 0) return errno;
3220  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3221  rtLimits.schedPolicy = ClassInfo.pc_cid;
3222  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3223  rtLimits.minPrio = 0;
3224
3225  strcpy(ClassInfo.pc_clname, "FX");
3226  ClassInfo.pc_cid = -1;
3227  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3228  if (rslt < 0) return errno;
3229  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3230  fxLimits.schedPolicy = ClassInfo.pc_cid;
3231  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3232  fxLimits.minPrio = 0;
3233
3234  // Query our "current" scheduling class.
3235  // This will normally be IA, TS or, rarely, FX or RT.
3236  memset(&ParmInfo, 0, sizeof(ParmInfo));
3237  ParmInfo.pc_cid = PC_CLNULL;
3238  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3239  if (rslt < 0) return errno;
3240  myClass = ParmInfo.pc_cid;
3241
3242  // We now know our scheduling classId, get specific information
3243  // about the class.
3244  ClassInfo.pc_cid = myClass;
3245  ClassInfo.pc_clname[0] = 0;
3246  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3247  if (rslt < 0) return errno;
3248
3249  if (ThreadPriorityVerbose) {
3250    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3251  }
3252
3253  memset(&ParmInfo, 0, sizeof(pcparms_t));
3254  ParmInfo.pc_cid = PC_CLNULL;
3255  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3256  if (rslt < 0) return errno;
3257
3258  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3259    myMin = rtLimits.minPrio;
3260    myMax = rtLimits.maxPrio;
3261  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3262    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3263    myMin = iaLimits.minPrio;
3264    myMax = iaLimits.maxPrio;
3265    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3266  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3267    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3268    myMin = tsLimits.minPrio;
3269    myMax = tsLimits.maxPrio;
3270    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3271  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3272    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3273    myMin = fxLimits.minPrio;
3274    myMax = fxLimits.maxPrio;
3275    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3276  } else {
3277    // No clue - punt
3278    if (ThreadPriorityVerbose) {
3279      tty->print_cr("Unknown scheduling class: %s ... \n",
3280                    ClassInfo.pc_clname);
3281    }
3282    return EINVAL;      // no clue, punt
3283  }
3284
3285  if (ThreadPriorityVerbose) {
3286    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3287  }
3288
3289  priocntl_enable = true;  // Enable changing priorities
3290  return 0;
3291}
3292
3293#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3294#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3295#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3296#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3297
3298
3299// scale_to_lwp_priority
3300//
3301// Convert from the libthread "thr_setprio" scale to our current
3302// lwp scheduling class scale.
3303//
3304static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3305  int v;
3306
3307  if (x == 127) return rMax;            // avoid round-down
3308  v = (((x*(rMax-rMin)))/128)+rMin;
3309  return v;
3310}
3311
3312
3313// set_lwp_class_and_priority
3314int set_lwp_class_and_priority(int ThreadID, int lwpid,
3315                               int newPrio, int new_class, bool scale) {
3316  int rslt;
3317  int Actual, Expected, prv;
3318  pcparms_t ParmInfo;                   // for GET-SET
3319#ifdef ASSERT
3320  pcparms_t ReadBack;                   // for readback
3321#endif
3322
3323  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3324  // Query current values.
3325  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3326  // Cache "pcparms_t" in global ParmCache.
3327  // TODO: elide set-to-same-value
3328
3329  // If something went wrong on init, don't change priorities.
3330  if (!priocntl_enable) {
3331    if (ThreadPriorityVerbose) {
3332      tty->print_cr("Trying to set priority but init failed, ignoring");
3333    }
3334    return EINVAL;
3335  }
3336
3337  // If lwp hasn't started yet, just return
3338  // the _start routine will call us again.
3339  if (lwpid <= 0) {
3340    if (ThreadPriorityVerbose) {
3341      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3342                    INTPTR_FORMAT " to %d, lwpid not set",
3343                    ThreadID, newPrio);
3344    }
3345    return 0;
3346  }
3347
3348  if (ThreadPriorityVerbose) {
3349    tty->print_cr ("set_lwp_class_and_priority("
3350                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3351                   ThreadID, lwpid, newPrio);
3352  }
3353
3354  memset(&ParmInfo, 0, sizeof(pcparms_t));
3355  ParmInfo.pc_cid = PC_CLNULL;
3356  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3357  if (rslt < 0) return errno;
3358
3359  int cur_class = ParmInfo.pc_cid;
3360  ParmInfo.pc_cid = (id_t)new_class;
3361
3362  if (new_class == rtLimits.schedPolicy) {
3363    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3364    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3365                                                       rtLimits.maxPrio, newPrio)
3366                               : newPrio;
3367    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3368    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3369    if (ThreadPriorityVerbose) {
3370      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3371    }
3372  } else if (new_class == iaLimits.schedPolicy) {
3373    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3374    int maxClamped     = MIN2(iaLimits.maxPrio,
3375                              cur_class == new_class
3376                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3377    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3378                                                       maxClamped, newPrio)
3379                               : newPrio;
3380    iaInfo->ia_uprilim = cur_class == new_class
3381                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3382    iaInfo->ia_mode    = IA_NOCHANGE;
3383    if (ThreadPriorityVerbose) {
3384      tty->print_cr("IA: [%d...%d] %d->%d\n",
3385                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3386    }
3387  } else if (new_class == tsLimits.schedPolicy) {
3388    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3389    int maxClamped     = MIN2(tsLimits.maxPrio,
3390                              cur_class == new_class
3391                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3392    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3393                                                       maxClamped, newPrio)
3394                               : newPrio;
3395    tsInfo->ts_uprilim = cur_class == new_class
3396                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3397    if (ThreadPriorityVerbose) {
3398      tty->print_cr("TS: [%d...%d] %d->%d\n",
3399                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3400    }
3401  } else if (new_class == fxLimits.schedPolicy) {
3402    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3403    int maxClamped     = MIN2(fxLimits.maxPrio,
3404                              cur_class == new_class
3405                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3406    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3407                                                       maxClamped, newPrio)
3408                               : newPrio;
3409    fxInfo->fx_uprilim = cur_class == new_class
3410                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3411    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3412    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3413    if (ThreadPriorityVerbose) {
3414      tty->print_cr("FX: [%d...%d] %d->%d\n",
3415                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3416    }
3417  } else {
3418    if (ThreadPriorityVerbose) {
3419      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3420    }
3421    return EINVAL;    // no clue, punt
3422  }
3423
3424  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3425  if (ThreadPriorityVerbose && rslt) {
3426    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3427  }
3428  if (rslt < 0) return errno;
3429
3430#ifdef ASSERT
3431  // Sanity check: read back what we just attempted to set.
3432  // In theory it could have changed in the interim ...
3433  //
3434  // The priocntl system call is tricky.
3435  // Sometimes it'll validate the priority value argument and
3436  // return EINVAL if unhappy.  At other times it fails silently.
3437  // Readbacks are prudent.
3438
3439  if (!ReadBackValidate) return 0;
3440
3441  memset(&ReadBack, 0, sizeof(pcparms_t));
3442  ReadBack.pc_cid = PC_CLNULL;
3443  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3444  assert(rslt >= 0, "priocntl failed");
3445  Actual = Expected = 0xBAD;
3446  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3447  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3448    Actual   = RTPRI(ReadBack)->rt_pri;
3449    Expected = RTPRI(ParmInfo)->rt_pri;
3450  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3451    Actual   = IAPRI(ReadBack)->ia_upri;
3452    Expected = IAPRI(ParmInfo)->ia_upri;
3453  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3454    Actual   = TSPRI(ReadBack)->ts_upri;
3455    Expected = TSPRI(ParmInfo)->ts_upri;
3456  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3457    Actual   = FXPRI(ReadBack)->fx_upri;
3458    Expected = FXPRI(ParmInfo)->fx_upri;
3459  } else {
3460    if (ThreadPriorityVerbose) {
3461      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3462                    ParmInfo.pc_cid);
3463    }
3464  }
3465
3466  if (Actual != Expected) {
3467    if (ThreadPriorityVerbose) {
3468      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3469                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3470    }
3471  }
3472#endif
3473
3474  return 0;
3475}
3476
3477// Solaris only gives access to 128 real priorities at a time,
3478// so we expand Java's ten to fill this range.  This would be better
3479// if we dynamically adjusted relative priorities.
3480//
3481// The ThreadPriorityPolicy option allows us to select 2 different
3482// priority scales.
3483//
3484// ThreadPriorityPolicy=0
3485// Since the Solaris' default priority is MaximumPriority, we do not
3486// set a priority lower than Max unless a priority lower than
3487// NormPriority is requested.
3488//
3489// ThreadPriorityPolicy=1
3490// This mode causes the priority table to get filled with
3491// linear values.  NormPriority get's mapped to 50% of the
3492// Maximum priority an so on.  This will cause VM threads
3493// to get unfair treatment against other Solaris processes
3494// which do not explicitly alter their thread priorities.
3495
3496int os::java_to_os_priority[CriticalPriority + 1] = {
3497  -99999,         // 0 Entry should never be used
3498
3499  0,              // 1 MinPriority
3500  32,             // 2
3501  64,             // 3
3502
3503  96,             // 4
3504  127,            // 5 NormPriority
3505  127,            // 6
3506
3507  127,            // 7
3508  127,            // 8
3509  127,            // 9 NearMaxPriority
3510
3511  127,            // 10 MaxPriority
3512
3513  -criticalPrio   // 11 CriticalPriority
3514};
3515
3516OSReturn os::set_native_priority(Thread* thread, int newpri) {
3517  OSThread* osthread = thread->osthread();
3518
3519  // Save requested priority in case the thread hasn't been started
3520  osthread->set_native_priority(newpri);
3521
3522  // Check for critical priority request
3523  bool fxcritical = false;
3524  if (newpri == -criticalPrio) {
3525    fxcritical = true;
3526    newpri = criticalPrio;
3527  }
3528
3529  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3530  if (!UseThreadPriorities) return OS_OK;
3531
3532  int status = 0;
3533
3534  if (!fxcritical) {
3535    // Use thr_setprio only if we have a priority that thr_setprio understands
3536    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3537  }
3538
3539  int lwp_status =
3540          set_lwp_class_and_priority(osthread->thread_id(),
3541                                     osthread->lwp_id(),
3542                                     newpri,
3543                                     fxcritical ? fxLimits.schedPolicy : myClass,
3544                                     !fxcritical);
3545  if (lwp_status != 0 && fxcritical) {
3546    // Try again, this time without changing the scheduling class
3547    newpri = java_MaxPriority_to_os_priority;
3548    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3549                                            osthread->lwp_id(),
3550                                            newpri, myClass, false);
3551  }
3552  status |= lwp_status;
3553  return (status == 0) ? OS_OK : OS_ERR;
3554}
3555
3556
3557OSReturn os::get_native_priority(const Thread* const thread,
3558                                 int *priority_ptr) {
3559  int p;
3560  if (!UseThreadPriorities) {
3561    *priority_ptr = NormalPriority;
3562    return OS_OK;
3563  }
3564  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3565  if (status != 0) {
3566    return OS_ERR;
3567  }
3568  *priority_ptr = p;
3569  return OS_OK;
3570}
3571
3572
3573// Hint to the underlying OS that a task switch would not be good.
3574// Void return because it's a hint and can fail.
3575void os::hint_no_preempt() {
3576  schedctl_start(schedctl_init());
3577}
3578
3579static void resume_clear_context(OSThread *osthread) {
3580  osthread->set_ucontext(NULL);
3581}
3582
3583static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3584  osthread->set_ucontext(context);
3585}
3586
3587static PosixSemaphore sr_semaphore;
3588
3589void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3590  // Save and restore errno to avoid confusing native code with EINTR
3591  // after sigsuspend.
3592  int old_errno = errno;
3593
3594  OSThread* osthread = thread->osthread();
3595  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3596
3597  os::SuspendResume::State current = osthread->sr.state();
3598  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3599    suspend_save_context(osthread, uc);
3600
3601    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3602    os::SuspendResume::State state = osthread->sr.suspended();
3603    if (state == os::SuspendResume::SR_SUSPENDED) {
3604      sigset_t suspend_set;  // signals for sigsuspend()
3605
3606      // get current set of blocked signals and unblock resume signal
3607      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3608      sigdelset(&suspend_set, os::Solaris::SIGasync());
3609
3610      sr_semaphore.signal();
3611      // wait here until we are resumed
3612      while (1) {
3613        sigsuspend(&suspend_set);
3614
3615        os::SuspendResume::State result = osthread->sr.running();
3616        if (result == os::SuspendResume::SR_RUNNING) {
3617          sr_semaphore.signal();
3618          break;
3619        }
3620      }
3621
3622    } else if (state == os::SuspendResume::SR_RUNNING) {
3623      // request was cancelled, continue
3624    } else {
3625      ShouldNotReachHere();
3626    }
3627
3628    resume_clear_context(osthread);
3629  } else if (current == os::SuspendResume::SR_RUNNING) {
3630    // request was cancelled, continue
3631  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3632    // ignore
3633  } else {
3634    // ignore
3635  }
3636
3637  errno = old_errno;
3638}
3639
3640void os::print_statistics() {
3641}
3642
3643bool os::message_box(const char* title, const char* message) {
3644  int i;
3645  fdStream err(defaultStream::error_fd());
3646  for (i = 0; i < 78; i++) err.print_raw("=");
3647  err.cr();
3648  err.print_raw_cr(title);
3649  for (i = 0; i < 78; i++) err.print_raw("-");
3650  err.cr();
3651  err.print_raw_cr(message);
3652  for (i = 0; i < 78; i++) err.print_raw("=");
3653  err.cr();
3654
3655  char buf[16];
3656  // Prevent process from exiting upon "read error" without consuming all CPU
3657  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3658
3659  return buf[0] == 'y' || buf[0] == 'Y';
3660}
3661
3662static int sr_notify(OSThread* osthread) {
3663  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3664  assert_status(status == 0, status, "thr_kill");
3665  return status;
3666}
3667
3668// "Randomly" selected value for how long we want to spin
3669// before bailing out on suspending a thread, also how often
3670// we send a signal to a thread we want to resume
3671static const int RANDOMLY_LARGE_INTEGER = 1000000;
3672static const int RANDOMLY_LARGE_INTEGER2 = 100;
3673
3674static bool do_suspend(OSThread* osthread) {
3675  assert(osthread->sr.is_running(), "thread should be running");
3676  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3677
3678  // mark as suspended and send signal
3679  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3680    // failed to switch, state wasn't running?
3681    ShouldNotReachHere();
3682    return false;
3683  }
3684
3685  if (sr_notify(osthread) != 0) {
3686    ShouldNotReachHere();
3687  }
3688
3689  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3690  while (true) {
3691    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3692      break;
3693    } else {
3694      // timeout
3695      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3696      if (cancelled == os::SuspendResume::SR_RUNNING) {
3697        return false;
3698      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3699        // make sure that we consume the signal on the semaphore as well
3700        sr_semaphore.wait();
3701        break;
3702      } else {
3703        ShouldNotReachHere();
3704        return false;
3705      }
3706    }
3707  }
3708
3709  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3710  return true;
3711}
3712
3713static void do_resume(OSThread* osthread) {
3714  assert(osthread->sr.is_suspended(), "thread should be suspended");
3715  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3716
3717  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3718    // failed to switch to WAKEUP_REQUEST
3719    ShouldNotReachHere();
3720    return;
3721  }
3722
3723  while (true) {
3724    if (sr_notify(osthread) == 0) {
3725      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3726        if (osthread->sr.is_running()) {
3727          return;
3728        }
3729      }
3730    } else {
3731      ShouldNotReachHere();
3732    }
3733  }
3734
3735  guarantee(osthread->sr.is_running(), "Must be running!");
3736}
3737
3738void os::SuspendedThreadTask::internal_do_task() {
3739  if (do_suspend(_thread->osthread())) {
3740    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3741    do_task(context);
3742    do_resume(_thread->osthread());
3743  }
3744}
3745
3746class PcFetcher : public os::SuspendedThreadTask {
3747 public:
3748  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3749  ExtendedPC result();
3750 protected:
3751  void do_task(const os::SuspendedThreadTaskContext& context);
3752 private:
3753  ExtendedPC _epc;
3754};
3755
3756ExtendedPC PcFetcher::result() {
3757  guarantee(is_done(), "task is not done yet.");
3758  return _epc;
3759}
3760
3761void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3762  Thread* thread = context.thread();
3763  OSThread* osthread = thread->osthread();
3764  if (osthread->ucontext() != NULL) {
3765    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3766  } else {
3767    // NULL context is unexpected, double-check this is the VMThread
3768    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3769  }
3770}
3771
3772// A lightweight implementation that does not suspend the target thread and
3773// thus returns only a hint. Used for profiling only!
3774ExtendedPC os::get_thread_pc(Thread* thread) {
3775  // Make sure that it is called by the watcher and the Threads lock is owned.
3776  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3777  // For now, is only used to profile the VM Thread
3778  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3779  PcFetcher fetcher(thread);
3780  fetcher.run();
3781  return fetcher.result();
3782}
3783
3784
3785// This does not do anything on Solaris. This is basically a hook for being
3786// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3787void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3788                              const methodHandle& method, JavaCallArguments* args,
3789                              Thread* thread) {
3790  f(value, method, args, thread);
3791}
3792
3793// This routine may be used by user applications as a "hook" to catch signals.
3794// The user-defined signal handler must pass unrecognized signals to this
3795// routine, and if it returns true (non-zero), then the signal handler must
3796// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3797// routine will never retun false (zero), but instead will execute a VM panic
3798// routine kill the process.
3799//
3800// If this routine returns false, it is OK to call it again.  This allows
3801// the user-defined signal handler to perform checks either before or after
3802// the VM performs its own checks.  Naturally, the user code would be making
3803// a serious error if it tried to handle an exception (such as a null check
3804// or breakpoint) that the VM was generating for its own correct operation.
3805//
3806// This routine may recognize any of the following kinds of signals:
3807// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3808// os::Solaris::SIGasync
3809// It should be consulted by handlers for any of those signals.
3810//
3811// The caller of this routine must pass in the three arguments supplied
3812// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3813// field of the structure passed to sigaction().  This routine assumes that
3814// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3815//
3816// Note that the VM will print warnings if it detects conflicting signal
3817// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3818//
3819extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3820                                                   siginfo_t* siginfo,
3821                                                   void* ucontext,
3822                                                   int abort_if_unrecognized);
3823
3824
3825void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3826  int orig_errno = errno;  // Preserve errno value over signal handler.
3827  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3828  errno = orig_errno;
3829}
3830
3831// This boolean allows users to forward their own non-matching signals
3832// to JVM_handle_solaris_signal, harmlessly.
3833bool os::Solaris::signal_handlers_are_installed = false;
3834
3835// For signal-chaining
3836bool os::Solaris::libjsig_is_loaded = false;
3837typedef struct sigaction *(*get_signal_t)(int);
3838get_signal_t os::Solaris::get_signal_action = NULL;
3839
3840struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3841  struct sigaction *actp = NULL;
3842
3843  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3844    // Retrieve the old signal handler from libjsig
3845    actp = (*get_signal_action)(sig);
3846  }
3847  if (actp == NULL) {
3848    // Retrieve the preinstalled signal handler from jvm
3849    actp = get_preinstalled_handler(sig);
3850  }
3851
3852  return actp;
3853}
3854
3855static bool call_chained_handler(struct sigaction *actp, int sig,
3856                                 siginfo_t *siginfo, void *context) {
3857  // Call the old signal handler
3858  if (actp->sa_handler == SIG_DFL) {
3859    // It's more reasonable to let jvm treat it as an unexpected exception
3860    // instead of taking the default action.
3861    return false;
3862  } else if (actp->sa_handler != SIG_IGN) {
3863    if ((actp->sa_flags & SA_NODEFER) == 0) {
3864      // automaticlly block the signal
3865      sigaddset(&(actp->sa_mask), sig);
3866    }
3867
3868    sa_handler_t hand;
3869    sa_sigaction_t sa;
3870    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3871    // retrieve the chained handler
3872    if (siginfo_flag_set) {
3873      sa = actp->sa_sigaction;
3874    } else {
3875      hand = actp->sa_handler;
3876    }
3877
3878    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3879      actp->sa_handler = SIG_DFL;
3880    }
3881
3882    // try to honor the signal mask
3883    sigset_t oset;
3884    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3885
3886    // call into the chained handler
3887    if (siginfo_flag_set) {
3888      (*sa)(sig, siginfo, context);
3889    } else {
3890      (*hand)(sig);
3891    }
3892
3893    // restore the signal mask
3894    pthread_sigmask(SIG_SETMASK, &oset, 0);
3895  }
3896  // Tell jvm's signal handler the signal is taken care of.
3897  return true;
3898}
3899
3900bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3901  bool chained = false;
3902  // signal-chaining
3903  if (UseSignalChaining) {
3904    struct sigaction *actp = get_chained_signal_action(sig);
3905    if (actp != NULL) {
3906      chained = call_chained_handler(actp, sig, siginfo, context);
3907    }
3908  }
3909  return chained;
3910}
3911
3912struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3913  assert((chainedsigactions != (struct sigaction *)NULL) &&
3914         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3915  if (preinstalled_sigs[sig] != 0) {
3916    return &chainedsigactions[sig];
3917  }
3918  return NULL;
3919}
3920
3921void os::Solaris::save_preinstalled_handler(int sig,
3922                                            struct sigaction& oldAct) {
3923  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3924  assert((chainedsigactions != (struct sigaction *)NULL) &&
3925         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3926  chainedsigactions[sig] = oldAct;
3927  preinstalled_sigs[sig] = 1;
3928}
3929
3930void os::Solaris::set_signal_handler(int sig, bool set_installed,
3931                                     bool oktochain) {
3932  // Check for overwrite.
3933  struct sigaction oldAct;
3934  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3935  void* oldhand =
3936      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3937                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3938  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3939      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3940      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3941    if (AllowUserSignalHandlers || !set_installed) {
3942      // Do not overwrite; user takes responsibility to forward to us.
3943      return;
3944    } else if (UseSignalChaining) {
3945      if (oktochain) {
3946        // save the old handler in jvm
3947        save_preinstalled_handler(sig, oldAct);
3948      } else {
3949        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3950      }
3951      // libjsig also interposes the sigaction() call below and saves the
3952      // old sigaction on it own.
3953    } else {
3954      fatal("Encountered unexpected pre-existing sigaction handler "
3955            "%#lx for signal %d.", (long)oldhand, sig);
3956    }
3957  }
3958
3959  struct sigaction sigAct;
3960  sigfillset(&(sigAct.sa_mask));
3961  sigAct.sa_handler = SIG_DFL;
3962
3963  sigAct.sa_sigaction = signalHandler;
3964  // Handle SIGSEGV on alternate signal stack if
3965  // not using stack banging
3966  if (!UseStackBanging && sig == SIGSEGV) {
3967    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3968  } else {
3969    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3970  }
3971  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3972
3973  sigaction(sig, &sigAct, &oldAct);
3974
3975  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3976                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3977  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3978}
3979
3980
3981#define DO_SIGNAL_CHECK(sig)                      \
3982  do {                                            \
3983    if (!sigismember(&check_signal_done, sig)) {  \
3984      os::Solaris::check_signal_handler(sig);     \
3985    }                                             \
3986  } while (0)
3987
3988// This method is a periodic task to check for misbehaving JNI applications
3989// under CheckJNI, we can add any periodic checks here
3990
3991void os::run_periodic_checks() {
3992  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3993  // thereby preventing a NULL checks.
3994  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3995
3996  if (check_signals == false) return;
3997
3998  // SEGV and BUS if overridden could potentially prevent
3999  // generation of hs*.log in the event of a crash, debugging
4000  // such a case can be very challenging, so we absolutely
4001  // check for the following for a good measure:
4002  DO_SIGNAL_CHECK(SIGSEGV);
4003  DO_SIGNAL_CHECK(SIGILL);
4004  DO_SIGNAL_CHECK(SIGFPE);
4005  DO_SIGNAL_CHECK(SIGBUS);
4006  DO_SIGNAL_CHECK(SIGPIPE);
4007  DO_SIGNAL_CHECK(SIGXFSZ);
4008
4009  // ReduceSignalUsage allows the user to override these handlers
4010  // see comments at the very top and jvm_solaris.h
4011  if (!ReduceSignalUsage) {
4012    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4013    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4014    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4015    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4016  }
4017
4018  // See comments above for using JVM1/JVM2
4019  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4020
4021}
4022
4023typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4024
4025static os_sigaction_t os_sigaction = NULL;
4026
4027void os::Solaris::check_signal_handler(int sig) {
4028  char buf[O_BUFLEN];
4029  address jvmHandler = NULL;
4030
4031  struct sigaction act;
4032  if (os_sigaction == NULL) {
4033    // only trust the default sigaction, in case it has been interposed
4034    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4035    if (os_sigaction == NULL) return;
4036  }
4037
4038  os_sigaction(sig, (struct sigaction*)NULL, &act);
4039
4040  address thisHandler = (act.sa_flags & SA_SIGINFO)
4041    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4042    : CAST_FROM_FN_PTR(address, act.sa_handler);
4043
4044
4045  switch (sig) {
4046  case SIGSEGV:
4047  case SIGBUS:
4048  case SIGFPE:
4049  case SIGPIPE:
4050  case SIGXFSZ:
4051  case SIGILL:
4052    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4053    break;
4054
4055  case SHUTDOWN1_SIGNAL:
4056  case SHUTDOWN2_SIGNAL:
4057  case SHUTDOWN3_SIGNAL:
4058  case BREAK_SIGNAL:
4059    jvmHandler = (address)user_handler();
4060    break;
4061
4062  default:
4063    int asynsig = os::Solaris::SIGasync();
4064
4065    if (sig == asynsig) {
4066      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4067    } else {
4068      return;
4069    }
4070    break;
4071  }
4072
4073
4074  if (thisHandler != jvmHandler) {
4075    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4076    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4077    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4078    // No need to check this sig any longer
4079    sigaddset(&check_signal_done, sig);
4080    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4081    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4082      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4083                    exception_name(sig, buf, O_BUFLEN));
4084    }
4085  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4086    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4087    tty->print("expected:");
4088    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4089    tty->cr();
4090    tty->print("  found:");
4091    os::Posix::print_sa_flags(tty, act.sa_flags);
4092    tty->cr();
4093    // No need to check this sig any longer
4094    sigaddset(&check_signal_done, sig);
4095  }
4096
4097  // Print all the signal handler state
4098  if (sigismember(&check_signal_done, sig)) {
4099    print_signal_handlers(tty, buf, O_BUFLEN);
4100  }
4101
4102}
4103
4104void os::Solaris::install_signal_handlers() {
4105  bool libjsigdone = false;
4106  signal_handlers_are_installed = true;
4107
4108  // signal-chaining
4109  typedef void (*signal_setting_t)();
4110  signal_setting_t begin_signal_setting = NULL;
4111  signal_setting_t end_signal_setting = NULL;
4112  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4113                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4114  if (begin_signal_setting != NULL) {
4115    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4116                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4117    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4118                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4119    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4120                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4121    libjsig_is_loaded = true;
4122    if (os::Solaris::get_libjsig_version != NULL) {
4123      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4124    }
4125    assert(UseSignalChaining, "should enable signal-chaining");
4126  }
4127  if (libjsig_is_loaded) {
4128    // Tell libjsig jvm is setting signal handlers
4129    (*begin_signal_setting)();
4130  }
4131
4132  set_signal_handler(SIGSEGV, true, true);
4133  set_signal_handler(SIGPIPE, true, true);
4134  set_signal_handler(SIGXFSZ, true, true);
4135  set_signal_handler(SIGBUS, true, true);
4136  set_signal_handler(SIGILL, true, true);
4137  set_signal_handler(SIGFPE, true, true);
4138
4139
4140  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4141    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4142    // can not register overridable signals which might be > 32
4143    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4144      // Tell libjsig jvm has finished setting signal handlers
4145      (*end_signal_setting)();
4146      libjsigdone = true;
4147    }
4148  }
4149
4150  set_signal_handler(os::Solaris::SIGasync(), true, true);
4151
4152  if (libjsig_is_loaded && !libjsigdone) {
4153    // Tell libjsig jvm finishes setting signal handlers
4154    (*end_signal_setting)();
4155  }
4156
4157  // We don't activate signal checker if libjsig is in place, we trust ourselves
4158  // and if UserSignalHandler is installed all bets are off.
4159  // Log that signal checking is off only if -verbose:jni is specified.
4160  if (CheckJNICalls) {
4161    if (libjsig_is_loaded) {
4162      if (PrintJNIResolving) {
4163        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4164      }
4165      check_signals = false;
4166    }
4167    if (AllowUserSignalHandlers) {
4168      if (PrintJNIResolving) {
4169        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4170      }
4171      check_signals = false;
4172    }
4173  }
4174}
4175
4176
4177void report_error(const char* file_name, int line_no, const char* title,
4178                  const char* format, ...);
4179
4180// (Static) wrapper for getisax(2) call.
4181os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4182
4183// (Static) wrappers for the liblgrp API
4184os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4185os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4186os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4187os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4188os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4189os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4190os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4191os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4192os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4193
4194// (Static) wrapper for meminfo() call.
4195os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4196
4197static address resolve_symbol_lazy(const char* name) {
4198  address addr = (address) dlsym(RTLD_DEFAULT, name);
4199  if (addr == NULL) {
4200    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4201    addr = (address) dlsym(RTLD_NEXT, name);
4202  }
4203  return addr;
4204}
4205
4206static address resolve_symbol(const char* name) {
4207  address addr = resolve_symbol_lazy(name);
4208  if (addr == NULL) {
4209    fatal(dlerror());
4210  }
4211  return addr;
4212}
4213
4214void os::Solaris::libthread_init() {
4215  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4216
4217  lwp_priocntl_init();
4218
4219  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4220  if (func == NULL) {
4221    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4222    // Guarantee that this VM is running on an new enough OS (5.6 or
4223    // later) that it will have a new enough libthread.so.
4224    guarantee(func != NULL, "libthread.so is too old.");
4225  }
4226
4227  int size;
4228  void (*handler_info_func)(address *, int *);
4229  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4230  handler_info_func(&handler_start, &size);
4231  handler_end = handler_start + size;
4232}
4233
4234
4235int_fnP_mutex_tP os::Solaris::_mutex_lock;
4236int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4237int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4238int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4239int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4240int os::Solaris::_mutex_scope = USYNC_THREAD;
4241
4242int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4243int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4244int_fnP_cond_tP os::Solaris::_cond_signal;
4245int_fnP_cond_tP os::Solaris::_cond_broadcast;
4246int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4247int_fnP_cond_tP os::Solaris::_cond_destroy;
4248int os::Solaris::_cond_scope = USYNC_THREAD;
4249
4250void os::Solaris::synchronization_init() {
4251  if (UseLWPSynchronization) {
4252    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4253    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4254    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4255    os::Solaris::set_mutex_init(lwp_mutex_init);
4256    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4257    os::Solaris::set_mutex_scope(USYNC_THREAD);
4258
4259    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4260    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4261    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4262    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4263    os::Solaris::set_cond_init(lwp_cond_init);
4264    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4265    os::Solaris::set_cond_scope(USYNC_THREAD);
4266  } else {
4267    os::Solaris::set_mutex_scope(USYNC_THREAD);
4268    os::Solaris::set_cond_scope(USYNC_THREAD);
4269
4270    if (UsePthreads) {
4271      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4272      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4273      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4274      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4275      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4276
4277      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4278      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4279      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4280      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4281      os::Solaris::set_cond_init(pthread_cond_default_init);
4282      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4283    } else {
4284      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4285      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4286      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4287      os::Solaris::set_mutex_init(::mutex_init);
4288      os::Solaris::set_mutex_destroy(::mutex_destroy);
4289
4290      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4291      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4292      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4293      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4294      os::Solaris::set_cond_init(::cond_init);
4295      os::Solaris::set_cond_destroy(::cond_destroy);
4296    }
4297  }
4298}
4299
4300bool os::Solaris::liblgrp_init() {
4301  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4302  if (handle != NULL) {
4303    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4304    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4305    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4306    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4307    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4308    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4309    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4310    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4311                                                      dlsym(handle, "lgrp_cookie_stale")));
4312
4313    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4314    set_lgrp_cookie(c);
4315    return true;
4316  }
4317  return false;
4318}
4319
4320void os::Solaris::misc_sym_init() {
4321  address func;
4322
4323  // getisax
4324  func = resolve_symbol_lazy("getisax");
4325  if (func != NULL) {
4326    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4327  }
4328
4329  // meminfo
4330  func = resolve_symbol_lazy("meminfo");
4331  if (func != NULL) {
4332    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4333  }
4334}
4335
4336uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4337  assert(_getisax != NULL, "_getisax not set");
4338  return _getisax(array, n);
4339}
4340
4341// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4342typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4343static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4344
4345void init_pset_getloadavg_ptr(void) {
4346  pset_getloadavg_ptr =
4347    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4348  if (pset_getloadavg_ptr == NULL) {
4349    log_warning(os)("pset_getloadavg function not found");
4350  }
4351}
4352
4353int os::Solaris::_dev_zero_fd = -1;
4354
4355// this is called _before_ the global arguments have been parsed
4356void os::init(void) {
4357  _initial_pid = getpid();
4358
4359  max_hrtime = first_hrtime = gethrtime();
4360
4361  init_random(1234567);
4362
4363  page_size = sysconf(_SC_PAGESIZE);
4364  if (page_size == -1) {
4365    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4366  }
4367  init_page_sizes((size_t) page_size);
4368
4369  Solaris::initialize_system_info();
4370
4371  // Initialize misc. symbols as soon as possible, so we can use them
4372  // if we need them.
4373  Solaris::misc_sym_init();
4374
4375  int fd = ::open("/dev/zero", O_RDWR);
4376  if (fd < 0) {
4377    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4378  } else {
4379    Solaris::set_dev_zero_fd(fd);
4380
4381    // Close on exec, child won't inherit.
4382    fcntl(fd, F_SETFD, FD_CLOEXEC);
4383  }
4384
4385  clock_tics_per_sec = CLK_TCK;
4386
4387  // check if dladdr1() exists; dladdr1 can provide more information than
4388  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4389  // and is available on linker patches for 5.7 and 5.8.
4390  // libdl.so must have been loaded, this call is just an entry lookup
4391  void * hdl = dlopen("libdl.so", RTLD_NOW);
4392  if (hdl) {
4393    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4394  }
4395
4396  // (Solaris only) this switches to calls that actually do locking.
4397  ThreadCritical::initialize();
4398
4399  main_thread = thr_self();
4400
4401  // Constant minimum stack size allowed. It must be at least
4402  // the minimum of what the OS supports (thr_min_stack()), and
4403  // enough to allow the thread to get to user bytecode execution.
4404  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4405
4406  // dynamic lookup of functions that may not be available in our lowest
4407  // supported Solaris release
4408  void * handle = dlopen("libc.so.1", RTLD_LAZY);
4409  if (handle != NULL) {
4410    Solaris::_pthread_setname_np =  // from 11.3
4411        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4412  }
4413}
4414
4415// To install functions for atexit system call
4416extern "C" {
4417  static void perfMemory_exit_helper() {
4418    perfMemory_exit();
4419  }
4420}
4421
4422// this is called _after_ the global arguments have been parsed
4423jint os::init_2(void) {
4424  // try to enable extended file IO ASAP, see 6431278
4425  os::Solaris::try_enable_extended_io();
4426
4427  // Allocate a single page and mark it as readable for safepoint polling.  Also
4428  // use this first mmap call to check support for MAP_ALIGN.
4429  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4430                                                      page_size,
4431                                                      MAP_PRIVATE | MAP_ALIGN,
4432                                                      PROT_READ);
4433  if (polling_page == NULL) {
4434    has_map_align = false;
4435    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4436                                                PROT_READ);
4437  }
4438
4439  os::set_polling_page(polling_page);
4440  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4441
4442  if (!UseMembar) {
4443    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4444    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4445    os::set_memory_serialize_page(mem_serialize_page);
4446    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4447  }
4448
4449  // Check minimum allowable stack size for thread creation and to initialize
4450  // the java system classes, including StackOverflowError - depends on page
4451  // size.  Add two 4K pages for compiler2 recursion in main thread.
4452  // Add in 4*BytesPerWord 4K pages to account for VM stack during
4453  // class initialization depending on 32 or 64 bit VM.
4454  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4455                                        JavaThread::stack_guard_zone_size() +
4456                                        JavaThread::stack_shadow_zone_size() +
4457                                        (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4458
4459  os::Solaris::min_stack_allowed = align_size_up(os::Solaris::min_stack_allowed, os::vm_page_size());
4460
4461  size_t threadStackSizeInBytes = ThreadStackSize * K;
4462  if (threadStackSizeInBytes != 0 &&
4463      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4464    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4465                  os::Solaris::min_stack_allowed/K);
4466    return JNI_ERR;
4467  }
4468
4469  // For 64kbps there will be a 64kb page size, which makes
4470  // the usable default stack size quite a bit less.  Increase the
4471  // stack for 64kb (or any > than 8kb) pages, this increases
4472  // virtual memory fragmentation (since we're not creating the
4473  // stack on a power of 2 boundary.  The real fix for this
4474  // should be to fix the guard page mechanism.
4475
4476  if (vm_page_size() > 8*K) {
4477    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4478       ? threadStackSizeInBytes +
4479         JavaThread::stack_red_zone_size() +
4480         JavaThread::stack_yellow_zone_size()
4481       : 0;
4482    ThreadStackSize = threadStackSizeInBytes/K;
4483  }
4484
4485  // Make the stack size a multiple of the page size so that
4486  // the yellow/red zones can be guarded.
4487  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4488                                                vm_page_size()));
4489
4490  Solaris::libthread_init();
4491
4492  if (UseNUMA) {
4493    if (!Solaris::liblgrp_init()) {
4494      UseNUMA = false;
4495    } else {
4496      size_t lgrp_limit = os::numa_get_groups_num();
4497      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4498      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4499      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4500      if (lgrp_num < 2) {
4501        // There's only one locality group, disable NUMA.
4502        UseNUMA = false;
4503      }
4504    }
4505    if (!UseNUMA && ForceNUMA) {
4506      UseNUMA = true;
4507    }
4508  }
4509
4510  Solaris::signal_sets_init();
4511  Solaris::init_signal_mem();
4512  Solaris::install_signal_handlers();
4513
4514  if (libjsigversion < JSIG_VERSION_1_4_1) {
4515    Maxlibjsigsigs = OLDMAXSIGNUM;
4516  }
4517
4518  // initialize synchronization primitives to use either thread or
4519  // lwp synchronization (controlled by UseLWPSynchronization)
4520  Solaris::synchronization_init();
4521
4522  if (MaxFDLimit) {
4523    // set the number of file descriptors to max. print out error
4524    // if getrlimit/setrlimit fails but continue regardless.
4525    struct rlimit nbr_files;
4526    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4527    if (status != 0) {
4528      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4529    } else {
4530      nbr_files.rlim_cur = nbr_files.rlim_max;
4531      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4532      if (status != 0) {
4533        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4534      }
4535    }
4536  }
4537
4538  // Calculate theoretical max. size of Threads to guard gainst
4539  // artifical out-of-memory situations, where all available address-
4540  // space has been reserved by thread stacks. Default stack size is 1Mb.
4541  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4542    JavaThread::stack_size_at_create() : (1*K*K);
4543  assert(pre_thread_stack_size != 0, "Must have a stack");
4544  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4545  // we should start doing Virtual Memory banging. Currently when the threads will
4546  // have used all but 200Mb of space.
4547  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4548  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4549
4550  // at-exit methods are called in the reverse order of their registration.
4551  // In Solaris 7 and earlier, atexit functions are called on return from
4552  // main or as a result of a call to exit(3C). There can be only 32 of
4553  // these functions registered and atexit() does not set errno. In Solaris
4554  // 8 and later, there is no limit to the number of functions registered
4555  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4556  // functions are called upon dlclose(3DL) in addition to return from main
4557  // and exit(3C).
4558
4559  if (PerfAllowAtExitRegistration) {
4560    // only register atexit functions if PerfAllowAtExitRegistration is set.
4561    // atexit functions can be delayed until process exit time, which
4562    // can be problematic for embedded VM situations. Embedded VMs should
4563    // call DestroyJavaVM() to assure that VM resources are released.
4564
4565    // note: perfMemory_exit_helper atexit function may be removed in
4566    // the future if the appropriate cleanup code can be added to the
4567    // VM_Exit VMOperation's doit method.
4568    if (atexit(perfMemory_exit_helper) != 0) {
4569      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4570    }
4571  }
4572
4573  // Init pset_loadavg function pointer
4574  init_pset_getloadavg_ptr();
4575
4576  return JNI_OK;
4577}
4578
4579// Mark the polling page as unreadable
4580void os::make_polling_page_unreadable(void) {
4581  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4582    fatal("Could not disable polling page");
4583  }
4584}
4585
4586// Mark the polling page as readable
4587void os::make_polling_page_readable(void) {
4588  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4589    fatal("Could not enable polling page");
4590  }
4591}
4592
4593// OS interface.
4594
4595bool os::check_heap(bool force) { return true; }
4596
4597// Is a (classpath) directory empty?
4598bool os::dir_is_empty(const char* path) {
4599  DIR *dir = NULL;
4600  struct dirent *ptr;
4601
4602  dir = opendir(path);
4603  if (dir == NULL) return true;
4604
4605  // Scan the directory
4606  bool result = true;
4607  char buf[sizeof(struct dirent) + MAX_PATH];
4608  struct dirent *dbuf = (struct dirent *) buf;
4609  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4610    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4611      result = false;
4612    }
4613  }
4614  closedir(dir);
4615  return result;
4616}
4617
4618// This code originates from JDK's sysOpen and open64_w
4619// from src/solaris/hpi/src/system_md.c
4620
4621int os::open(const char *path, int oflag, int mode) {
4622  if (strlen(path) > MAX_PATH - 1) {
4623    errno = ENAMETOOLONG;
4624    return -1;
4625  }
4626  int fd;
4627
4628  fd = ::open64(path, oflag, mode);
4629  if (fd == -1) return -1;
4630
4631  // If the open succeeded, the file might still be a directory
4632  {
4633    struct stat64 buf64;
4634    int ret = ::fstat64(fd, &buf64);
4635    int st_mode = buf64.st_mode;
4636
4637    if (ret != -1) {
4638      if ((st_mode & S_IFMT) == S_IFDIR) {
4639        errno = EISDIR;
4640        ::close(fd);
4641        return -1;
4642      }
4643    } else {
4644      ::close(fd);
4645      return -1;
4646    }
4647  }
4648
4649  // 32-bit Solaris systems suffer from:
4650  //
4651  // - an historical default soft limit of 256 per-process file
4652  //   descriptors that is too low for many Java programs.
4653  //
4654  // - a design flaw where file descriptors created using stdio
4655  //   fopen must be less than 256, _even_ when the first limit above
4656  //   has been raised.  This can cause calls to fopen (but not calls to
4657  //   open, for example) to fail mysteriously, perhaps in 3rd party
4658  //   native code (although the JDK itself uses fopen).  One can hardly
4659  //   criticize them for using this most standard of all functions.
4660  //
4661  // We attempt to make everything work anyways by:
4662  //
4663  // - raising the soft limit on per-process file descriptors beyond
4664  //   256
4665  //
4666  // - As of Solaris 10u4, we can request that Solaris raise the 256
4667  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4668  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4669  //
4670  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4671  //   workaround the bug by remapping non-stdio file descriptors below
4672  //   256 to ones beyond 256, which is done below.
4673  //
4674  // See:
4675  // 1085341: 32-bit stdio routines should support file descriptors >255
4676  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4677  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4678  //          enable_extended_FILE_stdio() in VM initialisation
4679  // Giri Mandalika's blog
4680  // http://technopark02.blogspot.com/2005_05_01_archive.html
4681  //
4682#ifndef  _LP64
4683  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4684    int newfd = ::fcntl(fd, F_DUPFD, 256);
4685    if (newfd != -1) {
4686      ::close(fd);
4687      fd = newfd;
4688    }
4689  }
4690#endif // 32-bit Solaris
4691
4692  // All file descriptors that are opened in the JVM and not
4693  // specifically destined for a subprocess should have the
4694  // close-on-exec flag set.  If we don't set it, then careless 3rd
4695  // party native code might fork and exec without closing all
4696  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4697  // UNIXProcess.c), and this in turn might:
4698  //
4699  // - cause end-of-file to fail to be detected on some file
4700  //   descriptors, resulting in mysterious hangs, or
4701  //
4702  // - might cause an fopen in the subprocess to fail on a system
4703  //   suffering from bug 1085341.
4704  //
4705  // (Yes, the default setting of the close-on-exec flag is a Unix
4706  // design flaw)
4707  //
4708  // See:
4709  // 1085341: 32-bit stdio routines should support file descriptors >255
4710  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4711  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4712  //
4713#ifdef FD_CLOEXEC
4714  {
4715    int flags = ::fcntl(fd, F_GETFD);
4716    if (flags != -1) {
4717      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4718    }
4719  }
4720#endif
4721
4722  return fd;
4723}
4724
4725// create binary file, rewriting existing file if required
4726int os::create_binary_file(const char* path, bool rewrite_existing) {
4727  int oflags = O_WRONLY | O_CREAT;
4728  if (!rewrite_existing) {
4729    oflags |= O_EXCL;
4730  }
4731  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4732}
4733
4734// return current position of file pointer
4735jlong os::current_file_offset(int fd) {
4736  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4737}
4738
4739// move file pointer to the specified offset
4740jlong os::seek_to_file_offset(int fd, jlong offset) {
4741  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4742}
4743
4744jlong os::lseek(int fd, jlong offset, int whence) {
4745  return (jlong) ::lseek64(fd, offset, whence);
4746}
4747
4748char * os::native_path(char *path) {
4749  return path;
4750}
4751
4752int os::ftruncate(int fd, jlong length) {
4753  return ::ftruncate64(fd, length);
4754}
4755
4756int os::fsync(int fd)  {
4757  RESTARTABLE_RETURN_INT(::fsync(fd));
4758}
4759
4760int os::available(int fd, jlong *bytes) {
4761  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4762         "Assumed _thread_in_native");
4763  jlong cur, end;
4764  int mode;
4765  struct stat64 buf64;
4766
4767  if (::fstat64(fd, &buf64) >= 0) {
4768    mode = buf64.st_mode;
4769    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4770      int n,ioctl_return;
4771
4772      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4773      if (ioctl_return>= 0) {
4774        *bytes = n;
4775        return 1;
4776      }
4777    }
4778  }
4779  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4780    return 0;
4781  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4782    return 0;
4783  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4784    return 0;
4785  }
4786  *bytes = end - cur;
4787  return 1;
4788}
4789
4790// Map a block of memory.
4791char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4792                        char *addr, size_t bytes, bool read_only,
4793                        bool allow_exec) {
4794  int prot;
4795  int flags;
4796
4797  if (read_only) {
4798    prot = PROT_READ;
4799    flags = MAP_SHARED;
4800  } else {
4801    prot = PROT_READ | PROT_WRITE;
4802    flags = MAP_PRIVATE;
4803  }
4804
4805  if (allow_exec) {
4806    prot |= PROT_EXEC;
4807  }
4808
4809  if (addr != NULL) {
4810    flags |= MAP_FIXED;
4811  }
4812
4813  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4814                                     fd, file_offset);
4815  if (mapped_address == MAP_FAILED) {
4816    return NULL;
4817  }
4818  return mapped_address;
4819}
4820
4821
4822// Remap a block of memory.
4823char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4824                          char *addr, size_t bytes, bool read_only,
4825                          bool allow_exec) {
4826  // same as map_memory() on this OS
4827  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4828                        allow_exec);
4829}
4830
4831
4832// Unmap a block of memory.
4833bool os::pd_unmap_memory(char* addr, size_t bytes) {
4834  return munmap(addr, bytes) == 0;
4835}
4836
4837void os::pause() {
4838  char filename[MAX_PATH];
4839  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4840    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4841  } else {
4842    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4843  }
4844
4845  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4846  if (fd != -1) {
4847    struct stat buf;
4848    ::close(fd);
4849    while (::stat(filename, &buf) == 0) {
4850      (void)::poll(NULL, 0, 100);
4851    }
4852  } else {
4853    jio_fprintf(stderr,
4854                "Could not open pause file '%s', continuing immediately.\n", filename);
4855  }
4856}
4857
4858#ifndef PRODUCT
4859#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4860// Turn this on if you need to trace synch operations.
4861// Set RECORD_SYNCH_LIMIT to a large-enough value,
4862// and call record_synch_enable and record_synch_disable
4863// around the computation of interest.
4864
4865void record_synch(char* name, bool returning);  // defined below
4866
4867class RecordSynch {
4868  char* _name;
4869 public:
4870  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4871  ~RecordSynch()                       { record_synch(_name, true); }
4872};
4873
4874#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4875extern "C" ret name params {                                    \
4876  typedef ret name##_t params;                                  \
4877  static name##_t* implem = NULL;                               \
4878  static int callcount = 0;                                     \
4879  if (implem == NULL) {                                         \
4880    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4881    if (implem == NULL)  fatal(dlerror());                      \
4882  }                                                             \
4883  ++callcount;                                                  \
4884  RecordSynch _rs(#name);                                       \
4885  inner;                                                        \
4886  return implem args;                                           \
4887}
4888// in dbx, examine callcounts this way:
4889// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4890
4891#define CHECK_POINTER_OK(p) \
4892  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4893#define CHECK_MU \
4894  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4895#define CHECK_CV \
4896  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4897#define CHECK_P(p) \
4898  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4899
4900#define CHECK_MUTEX(mutex_op) \
4901  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4902
4903CHECK_MUTEX(   mutex_lock)
4904CHECK_MUTEX(  _mutex_lock)
4905CHECK_MUTEX( mutex_unlock)
4906CHECK_MUTEX(_mutex_unlock)
4907CHECK_MUTEX( mutex_trylock)
4908CHECK_MUTEX(_mutex_trylock)
4909
4910#define CHECK_COND(cond_op) \
4911  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4912
4913CHECK_COND( cond_wait);
4914CHECK_COND(_cond_wait);
4915CHECK_COND(_cond_wait_cancel);
4916
4917#define CHECK_COND2(cond_op) \
4918  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4919
4920CHECK_COND2( cond_timedwait);
4921CHECK_COND2(_cond_timedwait);
4922CHECK_COND2(_cond_timedwait_cancel);
4923
4924// do the _lwp_* versions too
4925#define mutex_t lwp_mutex_t
4926#define cond_t  lwp_cond_t
4927CHECK_MUTEX(  _lwp_mutex_lock)
4928CHECK_MUTEX(  _lwp_mutex_unlock)
4929CHECK_MUTEX(  _lwp_mutex_trylock)
4930CHECK_MUTEX( __lwp_mutex_lock)
4931CHECK_MUTEX( __lwp_mutex_unlock)
4932CHECK_MUTEX( __lwp_mutex_trylock)
4933CHECK_MUTEX(___lwp_mutex_lock)
4934CHECK_MUTEX(___lwp_mutex_unlock)
4935
4936CHECK_COND(  _lwp_cond_wait);
4937CHECK_COND( __lwp_cond_wait);
4938CHECK_COND(___lwp_cond_wait);
4939
4940CHECK_COND2(  _lwp_cond_timedwait);
4941CHECK_COND2( __lwp_cond_timedwait);
4942#undef mutex_t
4943#undef cond_t
4944
4945CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4946CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4947CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4948CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4949CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4950CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4951CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4952CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4953
4954
4955// recording machinery:
4956
4957enum { RECORD_SYNCH_LIMIT = 200 };
4958char* record_synch_name[RECORD_SYNCH_LIMIT];
4959void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4960bool record_synch_returning[RECORD_SYNCH_LIMIT];
4961thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4962int record_synch_count = 0;
4963bool record_synch_enabled = false;
4964
4965// in dbx, examine recorded data this way:
4966// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4967
4968void record_synch(char* name, bool returning) {
4969  if (record_synch_enabled) {
4970    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4971      record_synch_name[record_synch_count] = name;
4972      record_synch_returning[record_synch_count] = returning;
4973      record_synch_thread[record_synch_count] = thr_self();
4974      record_synch_arg0ptr[record_synch_count] = &name;
4975      record_synch_count++;
4976    }
4977    // put more checking code here:
4978    // ...
4979  }
4980}
4981
4982void record_synch_enable() {
4983  // start collecting trace data, if not already doing so
4984  if (!record_synch_enabled)  record_synch_count = 0;
4985  record_synch_enabled = true;
4986}
4987
4988void record_synch_disable() {
4989  // stop collecting trace data
4990  record_synch_enabled = false;
4991}
4992
4993#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4994#endif // PRODUCT
4995
4996const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4997const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4998                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4999
5000
5001// JVMTI & JVM monitoring and management support
5002// The thread_cpu_time() and current_thread_cpu_time() are only
5003// supported if is_thread_cpu_time_supported() returns true.
5004// They are not supported on Solaris T1.
5005
5006// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5007// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5008// of a thread.
5009//
5010// current_thread_cpu_time() and thread_cpu_time(Thread *)
5011// returns the fast estimate available on the platform.
5012
5013// hrtime_t gethrvtime() return value includes
5014// user time but does not include system time
5015jlong os::current_thread_cpu_time() {
5016  return (jlong) gethrvtime();
5017}
5018
5019jlong os::thread_cpu_time(Thread *thread) {
5020  // return user level CPU time only to be consistent with
5021  // what current_thread_cpu_time returns.
5022  // thread_cpu_time_info() must be changed if this changes
5023  return os::thread_cpu_time(thread, false /* user time only */);
5024}
5025
5026jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5027  if (user_sys_cpu_time) {
5028    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5029  } else {
5030    return os::current_thread_cpu_time();
5031  }
5032}
5033
5034jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5035  char proc_name[64];
5036  int count;
5037  prusage_t prusage;
5038  jlong lwp_time;
5039  int fd;
5040
5041  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5042          getpid(),
5043          thread->osthread()->lwp_id());
5044  fd = ::open(proc_name, O_RDONLY);
5045  if (fd == -1) return -1;
5046
5047  do {
5048    count = ::pread(fd,
5049                    (void *)&prusage.pr_utime,
5050                    thr_time_size,
5051                    thr_time_off);
5052  } while (count < 0 && errno == EINTR);
5053  ::close(fd);
5054  if (count < 0) return -1;
5055
5056  if (user_sys_cpu_time) {
5057    // user + system CPU time
5058    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5059                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5060                 (jlong)prusage.pr_stime.tv_nsec +
5061                 (jlong)prusage.pr_utime.tv_nsec;
5062  } else {
5063    // user level CPU time only
5064    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5065                (jlong)prusage.pr_utime.tv_nsec;
5066  }
5067
5068  return (lwp_time);
5069}
5070
5071void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5072  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5073  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5074  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5075  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5076}
5077
5078void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5079  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5080  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5081  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5082  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5083}
5084
5085bool os::is_thread_cpu_time_supported() {
5086  return true;
5087}
5088
5089// System loadavg support.  Returns -1 if load average cannot be obtained.
5090// Return the load average for our processor set if the primitive exists
5091// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5092int os::loadavg(double loadavg[], int nelem) {
5093  if (pset_getloadavg_ptr != NULL) {
5094    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5095  } else {
5096    return ::getloadavg(loadavg, nelem);
5097  }
5098}
5099
5100//---------------------------------------------------------------------------------
5101
5102bool os::find(address addr, outputStream* st) {
5103  Dl_info dlinfo;
5104  memset(&dlinfo, 0, sizeof(dlinfo));
5105  if (dladdr(addr, &dlinfo) != 0) {
5106    st->print(PTR_FORMAT ": ", addr);
5107    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5108      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5109    } else if (dlinfo.dli_fbase != NULL) {
5110      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5111    } else {
5112      st->print("<absolute address>");
5113    }
5114    if (dlinfo.dli_fname != NULL) {
5115      st->print(" in %s", dlinfo.dli_fname);
5116    }
5117    if (dlinfo.dli_fbase != NULL) {
5118      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5119    }
5120    st->cr();
5121
5122    if (Verbose) {
5123      // decode some bytes around the PC
5124      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5125      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5126      address       lowest = (address) dlinfo.dli_sname;
5127      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5128      if (begin < lowest)  begin = lowest;
5129      Dl_info dlinfo2;
5130      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5131          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5132        end = (address) dlinfo2.dli_saddr;
5133      }
5134      Disassembler::decode(begin, end, st);
5135    }
5136    return true;
5137  }
5138  return false;
5139}
5140
5141// Following function has been added to support HotSparc's libjvm.so running
5142// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5143// src/solaris/hpi/native_threads in the EVM codebase.
5144//
5145// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5146// libraries and should thus be removed. We will leave it behind for a while
5147// until we no longer want to able to run on top of 1.3.0 Solaris production
5148// JDK. See 4341971.
5149
5150#define STACK_SLACK 0x800
5151
5152extern "C" {
5153  intptr_t sysThreadAvailableStackWithSlack() {
5154    stack_t st;
5155    intptr_t retval, stack_top;
5156    retval = thr_stksegment(&st);
5157    assert(retval == 0, "incorrect return value from thr_stksegment");
5158    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5159    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5160    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5161    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5162  }
5163}
5164
5165// ObjectMonitor park-unpark infrastructure ...
5166//
5167// We implement Solaris and Linux PlatformEvents with the
5168// obvious condvar-mutex-flag triple.
5169// Another alternative that works quite well is pipes:
5170// Each PlatformEvent consists of a pipe-pair.
5171// The thread associated with the PlatformEvent
5172// calls park(), which reads from the input end of the pipe.
5173// Unpark() writes into the other end of the pipe.
5174// The write-side of the pipe must be set NDELAY.
5175// Unfortunately pipes consume a large # of handles.
5176// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5177// Using pipes for the 1st few threads might be workable, however.
5178//
5179// park() is permitted to return spuriously.
5180// Callers of park() should wrap the call to park() in
5181// an appropriate loop.  A litmus test for the correct
5182// usage of park is the following: if park() were modified
5183// to immediately return 0 your code should still work,
5184// albeit degenerating to a spin loop.
5185//
5186// In a sense, park()-unpark() just provides more polite spinning
5187// and polling with the key difference over naive spinning being
5188// that a parked thread needs to be explicitly unparked() in order
5189// to wake up and to poll the underlying condition.
5190//
5191// Assumption:
5192//    Only one parker can exist on an event, which is why we allocate
5193//    them per-thread. Multiple unparkers can coexist.
5194//
5195// _Event transitions in park()
5196//   -1 => -1 : illegal
5197//    1 =>  0 : pass - return immediately
5198//    0 => -1 : block; then set _Event to 0 before returning
5199//
5200// _Event transitions in unpark()
5201//    0 => 1 : just return
5202//    1 => 1 : just return
5203//   -1 => either 0 or 1; must signal target thread
5204//         That is, we can safely transition _Event from -1 to either
5205//         0 or 1.
5206//
5207// _Event serves as a restricted-range semaphore.
5208//   -1 : thread is blocked, i.e. there is a waiter
5209//    0 : neutral: thread is running or ready,
5210//        could have been signaled after a wait started
5211//    1 : signaled - thread is running or ready
5212//
5213// Another possible encoding of _Event would be with
5214// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5215//
5216// TODO-FIXME: add DTRACE probes for:
5217// 1.   Tx parks
5218// 2.   Ty unparks Tx
5219// 3.   Tx resumes from park
5220
5221
5222// value determined through experimentation
5223#define ROUNDINGFIX 11
5224
5225// utility to compute the abstime argument to timedwait.
5226// TODO-FIXME: switch from compute_abstime() to unpackTime().
5227
5228static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5229  // millis is the relative timeout time
5230  // abstime will be the absolute timeout time
5231  if (millis < 0)  millis = 0;
5232  struct timeval now;
5233  int status = gettimeofday(&now, NULL);
5234  assert(status == 0, "gettimeofday");
5235  jlong seconds = millis / 1000;
5236  jlong max_wait_period;
5237
5238  if (UseLWPSynchronization) {
5239    // forward port of fix for 4275818 (not sleeping long enough)
5240    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5241    // _lwp_cond_timedwait() used a round_down algorithm rather
5242    // than a round_up. For millis less than our roundfactor
5243    // it rounded down to 0 which doesn't meet the spec.
5244    // For millis > roundfactor we may return a bit sooner, but
5245    // since we can not accurately identify the patch level and
5246    // this has already been fixed in Solaris 9 and 8 we will
5247    // leave it alone rather than always rounding down.
5248
5249    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5250    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5251    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5252    max_wait_period = 21000000;
5253  } else {
5254    max_wait_period = 50000000;
5255  }
5256  millis %= 1000;
5257  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5258    seconds = max_wait_period;
5259  }
5260  abstime->tv_sec = now.tv_sec  + seconds;
5261  long       usec = now.tv_usec + millis * 1000;
5262  if (usec >= 1000000) {
5263    abstime->tv_sec += 1;
5264    usec -= 1000000;
5265  }
5266  abstime->tv_nsec = usec * 1000;
5267  return abstime;
5268}
5269
5270void os::PlatformEvent::park() {           // AKA: down()
5271  // Transitions for _Event:
5272  //   -1 => -1 : illegal
5273  //    1 =>  0 : pass - return immediately
5274  //    0 => -1 : block; then set _Event to 0 before returning
5275
5276  // Invariant: Only the thread associated with the Event/PlatformEvent
5277  // may call park().
5278  assert(_nParked == 0, "invariant");
5279
5280  int v;
5281  for (;;) {
5282    v = _Event;
5283    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5284  }
5285  guarantee(v >= 0, "invariant");
5286  if (v == 0) {
5287    // Do this the hard way by blocking ...
5288    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5289    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5290    // Only for SPARC >= V8PlusA
5291#if defined(__sparc) && defined(COMPILER2)
5292    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5293#endif
5294    int status = os::Solaris::mutex_lock(_mutex);
5295    assert_status(status == 0, status, "mutex_lock");
5296    guarantee(_nParked == 0, "invariant");
5297    ++_nParked;
5298    while (_Event < 0) {
5299      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5300      // Treat this the same as if the wait was interrupted
5301      // With usr/lib/lwp going to kernel, always handle ETIME
5302      status = os::Solaris::cond_wait(_cond, _mutex);
5303      if (status == ETIME) status = EINTR;
5304      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5305    }
5306    --_nParked;
5307    _Event = 0;
5308    status = os::Solaris::mutex_unlock(_mutex);
5309    assert_status(status == 0, status, "mutex_unlock");
5310    // Paranoia to ensure our locked and lock-free paths interact
5311    // correctly with each other.
5312    OrderAccess::fence();
5313  }
5314}
5315
5316int os::PlatformEvent::park(jlong millis) {
5317  // Transitions for _Event:
5318  //   -1 => -1 : illegal
5319  //    1 =>  0 : pass - return immediately
5320  //    0 => -1 : block; then set _Event to 0 before returning
5321
5322  guarantee(_nParked == 0, "invariant");
5323  int v;
5324  for (;;) {
5325    v = _Event;
5326    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5327  }
5328  guarantee(v >= 0, "invariant");
5329  if (v != 0) return OS_OK;
5330
5331  int ret = OS_TIMEOUT;
5332  timestruc_t abst;
5333  compute_abstime(&abst, millis);
5334
5335  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5336  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5337  // Only for SPARC >= V8PlusA
5338#if defined(__sparc) && defined(COMPILER2)
5339  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5340#endif
5341  int status = os::Solaris::mutex_lock(_mutex);
5342  assert_status(status == 0, status, "mutex_lock");
5343  guarantee(_nParked == 0, "invariant");
5344  ++_nParked;
5345  while (_Event < 0) {
5346    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5347    assert_status(status == 0 || status == EINTR ||
5348                  status == ETIME || status == ETIMEDOUT,
5349                  status, "cond_timedwait");
5350    if (!FilterSpuriousWakeups) break;                // previous semantics
5351    if (status == ETIME || status == ETIMEDOUT) break;
5352    // We consume and ignore EINTR and spurious wakeups.
5353  }
5354  --_nParked;
5355  if (_Event >= 0) ret = OS_OK;
5356  _Event = 0;
5357  status = os::Solaris::mutex_unlock(_mutex);
5358  assert_status(status == 0, status, "mutex_unlock");
5359  // Paranoia to ensure our locked and lock-free paths interact
5360  // correctly with each other.
5361  OrderAccess::fence();
5362  return ret;
5363}
5364
5365void os::PlatformEvent::unpark() {
5366  // Transitions for _Event:
5367  //    0 => 1 : just return
5368  //    1 => 1 : just return
5369  //   -1 => either 0 or 1; must signal target thread
5370  //         That is, we can safely transition _Event from -1 to either
5371  //         0 or 1.
5372  // See also: "Semaphores in Plan 9" by Mullender & Cox
5373  //
5374  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5375  // that it will take two back-to-back park() calls for the owning
5376  // thread to block. This has the benefit of forcing a spurious return
5377  // from the first park() call after an unpark() call which will help
5378  // shake out uses of park() and unpark() without condition variables.
5379
5380  if (Atomic::xchg(1, &_Event) >= 0) return;
5381
5382  // If the thread associated with the event was parked, wake it.
5383  // Wait for the thread assoc with the PlatformEvent to vacate.
5384  int status = os::Solaris::mutex_lock(_mutex);
5385  assert_status(status == 0, status, "mutex_lock");
5386  int AnyWaiters = _nParked;
5387  status = os::Solaris::mutex_unlock(_mutex);
5388  assert_status(status == 0, status, "mutex_unlock");
5389  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5390  if (AnyWaiters != 0) {
5391    // Note that we signal() *after* dropping the lock for "immortal" Events.
5392    // This is safe and avoids a common class of  futile wakeups.  In rare
5393    // circumstances this can cause a thread to return prematurely from
5394    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5395    // will simply re-test the condition and re-park itself.
5396    // This provides particular benefit if the underlying platform does not
5397    // provide wait morphing.
5398    status = os::Solaris::cond_signal(_cond);
5399    assert_status(status == 0, status, "cond_signal");
5400  }
5401}
5402
5403// JSR166
5404// -------------------------------------------------------
5405
5406// The solaris and linux implementations of park/unpark are fairly
5407// conservative for now, but can be improved. They currently use a
5408// mutex/condvar pair, plus _counter.
5409// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5410// sets count to 1 and signals condvar.  Only one thread ever waits
5411// on the condvar. Contention seen when trying to park implies that someone
5412// is unparking you, so don't wait. And spurious returns are fine, so there
5413// is no need to track notifications.
5414
5415#define MAX_SECS 100000000
5416
5417// This code is common to linux and solaris and will be moved to a
5418// common place in dolphin.
5419//
5420// The passed in time value is either a relative time in nanoseconds
5421// or an absolute time in milliseconds. Either way it has to be unpacked
5422// into suitable seconds and nanoseconds components and stored in the
5423// given timespec structure.
5424// Given time is a 64-bit value and the time_t used in the timespec is only
5425// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5426// overflow if times way in the future are given. Further on Solaris versions
5427// prior to 10 there is a restriction (see cond_timedwait) that the specified
5428// number of seconds, in abstime, is less than current_time  + 100,000,000.
5429// As it will be 28 years before "now + 100000000" will overflow we can
5430// ignore overflow and just impose a hard-limit on seconds using the value
5431// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5432// years from "now".
5433//
5434static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5435  assert(time > 0, "convertTime");
5436
5437  struct timeval now;
5438  int status = gettimeofday(&now, NULL);
5439  assert(status == 0, "gettimeofday");
5440
5441  time_t max_secs = now.tv_sec + MAX_SECS;
5442
5443  if (isAbsolute) {
5444    jlong secs = time / 1000;
5445    if (secs > max_secs) {
5446      absTime->tv_sec = max_secs;
5447    } else {
5448      absTime->tv_sec = secs;
5449    }
5450    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5451  } else {
5452    jlong secs = time / NANOSECS_PER_SEC;
5453    if (secs >= MAX_SECS) {
5454      absTime->tv_sec = max_secs;
5455      absTime->tv_nsec = 0;
5456    } else {
5457      absTime->tv_sec = now.tv_sec + secs;
5458      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5459      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5460        absTime->tv_nsec -= NANOSECS_PER_SEC;
5461        ++absTime->tv_sec; // note: this must be <= max_secs
5462      }
5463    }
5464  }
5465  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5466  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5467  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5468  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5469}
5470
5471void Parker::park(bool isAbsolute, jlong time) {
5472  // Ideally we'd do something useful while spinning, such
5473  // as calling unpackTime().
5474
5475  // Optional fast-path check:
5476  // Return immediately if a permit is available.
5477  // We depend on Atomic::xchg() having full barrier semantics
5478  // since we are doing a lock-free update to _counter.
5479  if (Atomic::xchg(0, &_counter) > 0) return;
5480
5481  // Optional fast-exit: Check interrupt before trying to wait
5482  Thread* thread = Thread::current();
5483  assert(thread->is_Java_thread(), "Must be JavaThread");
5484  JavaThread *jt = (JavaThread *)thread;
5485  if (Thread::is_interrupted(thread, false)) {
5486    return;
5487  }
5488
5489  // First, demultiplex/decode time arguments
5490  timespec absTime;
5491  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5492    return;
5493  }
5494  if (time > 0) {
5495    // Warning: this code might be exposed to the old Solaris time
5496    // round-down bugs.  Grep "roundingFix" for details.
5497    unpackTime(&absTime, isAbsolute, time);
5498  }
5499
5500  // Enter safepoint region
5501  // Beware of deadlocks such as 6317397.
5502  // The per-thread Parker:: _mutex is a classic leaf-lock.
5503  // In particular a thread must never block on the Threads_lock while
5504  // holding the Parker:: mutex.  If safepoints are pending both the
5505  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5506  ThreadBlockInVM tbivm(jt);
5507
5508  // Don't wait if cannot get lock since interference arises from
5509  // unblocking.  Also. check interrupt before trying wait
5510  if (Thread::is_interrupted(thread, false) ||
5511      os::Solaris::mutex_trylock(_mutex) != 0) {
5512    return;
5513  }
5514
5515  int status;
5516
5517  if (_counter > 0)  { // no wait needed
5518    _counter = 0;
5519    status = os::Solaris::mutex_unlock(_mutex);
5520    assert(status == 0, "invariant");
5521    // Paranoia to ensure our locked and lock-free paths interact
5522    // correctly with each other and Java-level accesses.
5523    OrderAccess::fence();
5524    return;
5525  }
5526
5527#ifdef ASSERT
5528  // Don't catch signals while blocked; let the running threads have the signals.
5529  // (This allows a debugger to break into the running thread.)
5530  sigset_t oldsigs;
5531  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5532  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5533#endif
5534
5535  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5536  jt->set_suspend_equivalent();
5537  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5538
5539  // Do this the hard way by blocking ...
5540  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5541  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5542  // Only for SPARC >= V8PlusA
5543#if defined(__sparc) && defined(COMPILER2)
5544  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5545#endif
5546
5547  if (time == 0) {
5548    status = os::Solaris::cond_wait(_cond, _mutex);
5549  } else {
5550    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5551  }
5552  // Note that an untimed cond_wait() can sometimes return ETIME on older
5553  // versions of the Solaris.
5554  assert_status(status == 0 || status == EINTR ||
5555                status == ETIME || status == ETIMEDOUT,
5556                status, "cond_timedwait");
5557
5558#ifdef ASSERT
5559  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5560#endif
5561  _counter = 0;
5562  status = os::Solaris::mutex_unlock(_mutex);
5563  assert_status(status == 0, status, "mutex_unlock");
5564  // Paranoia to ensure our locked and lock-free paths interact
5565  // correctly with each other and Java-level accesses.
5566  OrderAccess::fence();
5567
5568  // If externally suspended while waiting, re-suspend
5569  if (jt->handle_special_suspend_equivalent_condition()) {
5570    jt->java_suspend_self();
5571  }
5572}
5573
5574void Parker::unpark() {
5575  int status = os::Solaris::mutex_lock(_mutex);
5576  assert(status == 0, "invariant");
5577  const int s = _counter;
5578  _counter = 1;
5579  status = os::Solaris::mutex_unlock(_mutex);
5580  assert(status == 0, "invariant");
5581
5582  if (s < 1) {
5583    status = os::Solaris::cond_signal(_cond);
5584    assert(status == 0, "invariant");
5585  }
5586}
5587
5588extern char** environ;
5589
5590// Run the specified command in a separate process. Return its exit value,
5591// or -1 on failure (e.g. can't fork a new process).
5592// Unlike system(), this function can be called from signal handler. It
5593// doesn't block SIGINT et al.
5594int os::fork_and_exec(char* cmd) {
5595  char * argv[4];
5596  argv[0] = (char *)"sh";
5597  argv[1] = (char *)"-c";
5598  argv[2] = cmd;
5599  argv[3] = NULL;
5600
5601  // fork is async-safe, fork1 is not so can't use in signal handler
5602  pid_t pid;
5603  Thread* t = Thread::current_or_null_safe();
5604  if (t != NULL && t->is_inside_signal_handler()) {
5605    pid = fork();
5606  } else {
5607    pid = fork1();
5608  }
5609
5610  if (pid < 0) {
5611    // fork failed
5612    warning("fork failed: %s", os::strerror(errno));
5613    return -1;
5614
5615  } else if (pid == 0) {
5616    // child process
5617
5618    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5619    execve("/usr/bin/sh", argv, environ);
5620
5621    // execve failed
5622    _exit(-1);
5623
5624  } else  {
5625    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5626    // care about the actual exit code, for now.
5627
5628    int status;
5629
5630    // Wait for the child process to exit.  This returns immediately if
5631    // the child has already exited. */
5632    while (waitpid(pid, &status, 0) < 0) {
5633      switch (errno) {
5634      case ECHILD: return 0;
5635      case EINTR: break;
5636      default: return -1;
5637      }
5638    }
5639
5640    if (WIFEXITED(status)) {
5641      // The child exited normally; get its exit code.
5642      return WEXITSTATUS(status);
5643    } else if (WIFSIGNALED(status)) {
5644      // The child exited because of a signal
5645      // The best value to return is 0x80 + signal number,
5646      // because that is what all Unix shells do, and because
5647      // it allows callers to distinguish between process exit and
5648      // process death by signal.
5649      return 0x80 + WTERMSIG(status);
5650    } else {
5651      // Unknown exit code; pass it through
5652      return status;
5653    }
5654  }
5655}
5656
5657// is_headless_jre()
5658//
5659// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5660// in order to report if we are running in a headless jre
5661//
5662// Since JDK8 xawt/libmawt.so was moved into the same directory
5663// as libawt.so, and renamed libawt_xawt.so
5664//
5665bool os::is_headless_jre() {
5666  struct stat statbuf;
5667  char buf[MAXPATHLEN];
5668  char libmawtpath[MAXPATHLEN];
5669  const char *xawtstr  = "/xawt/libmawt.so";
5670  const char *new_xawtstr = "/libawt_xawt.so";
5671  char *p;
5672
5673  // Get path to libjvm.so
5674  os::jvm_path(buf, sizeof(buf));
5675
5676  // Get rid of libjvm.so
5677  p = strrchr(buf, '/');
5678  if (p == NULL) {
5679    return false;
5680  } else {
5681    *p = '\0';
5682  }
5683
5684  // Get rid of client or server
5685  p = strrchr(buf, '/');
5686  if (p == NULL) {
5687    return false;
5688  } else {
5689    *p = '\0';
5690  }
5691
5692  // check xawt/libmawt.so
5693  strcpy(libmawtpath, buf);
5694  strcat(libmawtpath, xawtstr);
5695  if (::stat(libmawtpath, &statbuf) == 0) return false;
5696
5697  // check libawt_xawt.so
5698  strcpy(libmawtpath, buf);
5699  strcat(libmawtpath, new_xawtstr);
5700  if (::stat(libmawtpath, &statbuf) == 0) return false;
5701
5702  return true;
5703}
5704
5705size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5706  size_t res;
5707  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5708  return res;
5709}
5710
5711int os::close(int fd) {
5712  return ::close(fd);
5713}
5714
5715int os::socket_close(int fd) {
5716  return ::close(fd);
5717}
5718
5719int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5720  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5721         "Assumed _thread_in_native");
5722  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5723}
5724
5725int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5726  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5727         "Assumed _thread_in_native");
5728  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5729}
5730
5731int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5732  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5733}
5734
5735// As both poll and select can be interrupted by signals, we have to be
5736// prepared to restart the system call after updating the timeout, unless
5737// a poll() is done with timeout == -1, in which case we repeat with this
5738// "wait forever" value.
5739
5740int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5741  int _result;
5742  _result = ::connect(fd, him, len);
5743
5744  // On Solaris, when a connect() call is interrupted, the connection
5745  // can be established asynchronously (see 6343810). Subsequent calls
5746  // to connect() must check the errno value which has the semantic
5747  // described below (copied from the connect() man page). Handling
5748  // of asynchronously established connections is required for both
5749  // blocking and non-blocking sockets.
5750  //     EINTR            The  connection  attempt  was   interrupted
5751  //                      before  any data arrived by the delivery of
5752  //                      a signal. The connection, however, will  be
5753  //                      established asynchronously.
5754  //
5755  //     EINPROGRESS      The socket is non-blocking, and the connec-
5756  //                      tion  cannot  be completed immediately.
5757  //
5758  //     EALREADY         The socket is non-blocking,  and a previous
5759  //                      connection  attempt  has  not yet been com-
5760  //                      pleted.
5761  //
5762  //     EISCONN          The socket is already connected.
5763  if (_result == OS_ERR && errno == EINTR) {
5764    // restarting a connect() changes its errno semantics
5765    RESTARTABLE(::connect(fd, him, len), _result);
5766    // undo these changes
5767    if (_result == OS_ERR) {
5768      if (errno == EALREADY) {
5769        errno = EINPROGRESS; // fall through
5770      } else if (errno == EISCONN) {
5771        errno = 0;
5772        return OS_OK;
5773      }
5774    }
5775  }
5776  return _result;
5777}
5778
5779// Get the default path to the core file
5780// Returns the length of the string
5781int os::get_core_path(char* buffer, size_t bufferSize) {
5782  const char* p = get_current_directory(buffer, bufferSize);
5783
5784  if (p == NULL) {
5785    assert(p != NULL, "failed to get current directory");
5786    return 0;
5787  }
5788
5789  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5790                                              p, current_process_id());
5791
5792  return strlen(buffer);
5793}
5794
5795#ifndef PRODUCT
5796void TestReserveMemorySpecial_test() {
5797  // No tests available for this platform
5798}
5799#endif
5800
5801bool os::start_debugging(char *buf, int buflen) {
5802  int len = (int)strlen(buf);
5803  char *p = &buf[len];
5804
5805  jio_snprintf(p, buflen-len,
5806               "\n\n"
5807               "Do you want to debug the problem?\n\n"
5808               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5809               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5810               "Otherwise, press RETURN to abort...",
5811               os::current_process_id(), os::current_thread_id());
5812
5813  bool yes = os::message_box("Unexpected Error", buf);
5814
5815  if (yes) {
5816    // yes, user asked VM to launch debugger
5817    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5818
5819    os::fork_and_exec(buf);
5820    yes = false;
5821  }
5822  return yes;
5823}
5824