os_solaris.cpp revision 10367:1c53edac6621
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_solaris.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_solaris.hpp"
41#include "os_solaris.inline.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "runtime/vm_version.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <dlfcn.h>
77# include <errno.h>
78# include <exception>
79# include <link.h>
80# include <poll.h>
81# include <pthread.h>
82# include <pwd.h>
83# include <schedctl.h>
84# include <setjmp.h>
85# include <signal.h>
86# include <stdio.h>
87# include <alloca.h>
88# include <sys/filio.h>
89# include <sys/ipc.h>
90# include <sys/lwp.h>
91# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
92# include <sys/mman.h>
93# include <sys/processor.h>
94# include <sys/procset.h>
95# include <sys/pset.h>
96# include <sys/resource.h>
97# include <sys/shm.h>
98# include <sys/socket.h>
99# include <sys/stat.h>
100# include <sys/systeminfo.h>
101# include <sys/time.h>
102# include <sys/times.h>
103# include <sys/types.h>
104# include <sys/wait.h>
105# include <sys/utsname.h>
106# include <thread.h>
107# include <unistd.h>
108# include <sys/priocntl.h>
109# include <sys/rtpriocntl.h>
110# include <sys/tspriocntl.h>
111# include <sys/iapriocntl.h>
112# include <sys/fxpriocntl.h>
113# include <sys/loadavg.h>
114# include <string.h>
115# include <stdio.h>
116
117# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
118# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
119
120#define MAX_PATH (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125
126// Here are some liblgrp types from sys/lgrp_user.h to be able to
127// compile on older systems without this header file.
128
129#ifndef MADV_ACCESS_LWP
130  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
131#endif
132#ifndef MADV_ACCESS_MANY
133  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
134#endif
135
136#ifndef LGRP_RSRC_CPU
137  #define LGRP_RSRC_CPU      0       /* CPU resources */
138#endif
139#ifndef LGRP_RSRC_MEM
140  #define LGRP_RSRC_MEM      1       /* memory resources */
141#endif
142
143// Values for ThreadPriorityPolicy == 1
144int prio_policy1[CriticalPriority+1] = {
145  -99999,  0, 16,  32,  48,  64,
146          80, 96, 112, 124, 127, 127 };
147
148// System parameters used internally
149static clock_t clock_tics_per_sec = 100;
150
151// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
152static bool enabled_extended_FILE_stdio = false;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static bool check_addr0_done = false;
156static sigset_t check_signal_done;
157static bool check_signals = true;
158
159address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
160address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
161
162address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
163
164
165// "default" initializers for missing libc APIs
166extern "C" {
167  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
168  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
169
170  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
171  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
172}
173
174// "default" initializers for pthread-based synchronization
175extern "C" {
176  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
177  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
178}
179
180static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
181
182static inline size_t adjust_stack_size(address base, size_t size) {
183  if ((ssize_t)size < 0) {
184    // 4759953: Compensate for ridiculous stack size.
185    size = max_intx;
186  }
187  if (size > (size_t)base) {
188    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
189    size = (size_t)base;
190  }
191  return size;
192}
193
194static inline stack_t get_stack_info() {
195  stack_t st;
196  int retval = thr_stksegment(&st);
197  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
198  assert(retval == 0, "incorrect return value from thr_stksegment");
199  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
200  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
201  return st;
202}
203
204address os::current_stack_base() {
205  int r = thr_main();
206  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
207  bool is_primordial_thread = r;
208
209  // Workaround 4352906, avoid calls to thr_stksegment by
210  // thr_main after the first one (it looks like we trash
211  // some data, causing the value for ss_sp to be incorrect).
212  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
213    stack_t st = get_stack_info();
214    if (is_primordial_thread) {
215      // cache initial value of stack base
216      os::Solaris::_main_stack_base = (address)st.ss_sp;
217    }
218    return (address)st.ss_sp;
219  } else {
220    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
221    return os::Solaris::_main_stack_base;
222  }
223}
224
225size_t os::current_stack_size() {
226  size_t size;
227
228  int r = thr_main();
229  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
230  if (!r) {
231    size = get_stack_info().ss_size;
232  } else {
233    struct rlimit limits;
234    getrlimit(RLIMIT_STACK, &limits);
235    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
236  }
237  // base may not be page aligned
238  address base = current_stack_base();
239  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
240  return (size_t)(base - bottom);
241}
242
243struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
244  return localtime_r(clock, res);
245}
246
247void os::Solaris::try_enable_extended_io() {
248  typedef int (*enable_extended_FILE_stdio_t)(int, int);
249
250  if (!UseExtendedFileIO) {
251    return;
252  }
253
254  enable_extended_FILE_stdio_t enabler =
255    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
256                                         "enable_extended_FILE_stdio");
257  if (enabler) {
258    enabler(-1, -1);
259  }
260}
261
262static int _processors_online = 0;
263
264jint os::Solaris::_os_thread_limit = 0;
265volatile jint os::Solaris::_os_thread_count = 0;
266
267julong os::available_memory() {
268  return Solaris::available_memory();
269}
270
271julong os::Solaris::available_memory() {
272  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
273}
274
275julong os::Solaris::_physical_memory = 0;
276
277julong os::physical_memory() {
278  return Solaris::physical_memory();
279}
280
281static hrtime_t first_hrtime = 0;
282static const hrtime_t hrtime_hz = 1000*1000*1000;
283static volatile hrtime_t max_hrtime = 0;
284
285
286void os::Solaris::initialize_system_info() {
287  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
288  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
289  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
290                                     (julong)sysconf(_SC_PAGESIZE);
291}
292
293int os::active_processor_count() {
294  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
295  pid_t pid = getpid();
296  psetid_t pset = PS_NONE;
297  // Are we running in a processor set or is there any processor set around?
298  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
299    uint_t pset_cpus;
300    // Query the number of cpus available to us.
301    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
302      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
303      _processors_online = pset_cpus;
304      return pset_cpus;
305    }
306  }
307  // Otherwise return number of online cpus
308  return online_cpus;
309}
310
311static bool find_processors_in_pset(psetid_t        pset,
312                                    processorid_t** id_array,
313                                    uint_t*         id_length) {
314  bool result = false;
315  // Find the number of processors in the processor set.
316  if (pset_info(pset, NULL, id_length, NULL) == 0) {
317    // Make up an array to hold their ids.
318    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
319    // Fill in the array with their processor ids.
320    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
321      result = true;
322    }
323  }
324  return result;
325}
326
327// Callers of find_processors_online() must tolerate imprecise results --
328// the system configuration can change asynchronously because of DR
329// or explicit psradm operations.
330//
331// We also need to take care that the loop (below) terminates as the
332// number of processors online can change between the _SC_NPROCESSORS_ONLN
333// request and the loop that builds the list of processor ids.   Unfortunately
334// there's no reliable way to determine the maximum valid processor id,
335// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
336// man pages, which claim the processor id set is "sparse, but
337// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
338// exit the loop.
339//
340// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
341// not available on S8.0.
342
343static bool find_processors_online(processorid_t** id_array,
344                                   uint*           id_length) {
345  const processorid_t MAX_PROCESSOR_ID = 100000;
346  // Find the number of processors online.
347  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
348  // Make up an array to hold their ids.
349  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
350  // Processors need not be numbered consecutively.
351  long found = 0;
352  processorid_t next = 0;
353  while (found < *id_length && next < MAX_PROCESSOR_ID) {
354    processor_info_t info;
355    if (processor_info(next, &info) == 0) {
356      // NB, PI_NOINTR processors are effectively online ...
357      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
358        (*id_array)[found] = next;
359        found += 1;
360      }
361    }
362    next += 1;
363  }
364  if (found < *id_length) {
365    // The loop above didn't identify the expected number of processors.
366    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
367    // and re-running the loop, above, but there's no guarantee of progress
368    // if the system configuration is in flux.  Instead, we just return what
369    // we've got.  Note that in the worst case find_processors_online() could
370    // return an empty set.  (As a fall-back in the case of the empty set we
371    // could just return the ID of the current processor).
372    *id_length = found;
373  }
374
375  return true;
376}
377
378static bool assign_distribution(processorid_t* id_array,
379                                uint           id_length,
380                                uint*          distribution,
381                                uint           distribution_length) {
382  // We assume we can assign processorid_t's to uint's.
383  assert(sizeof(processorid_t) == sizeof(uint),
384         "can't convert processorid_t to uint");
385  // Quick check to see if we won't succeed.
386  if (id_length < distribution_length) {
387    return false;
388  }
389  // Assign processor ids to the distribution.
390  // Try to shuffle processors to distribute work across boards,
391  // assuming 4 processors per board.
392  const uint processors_per_board = ProcessDistributionStride;
393  // Find the maximum processor id.
394  processorid_t max_id = 0;
395  for (uint m = 0; m < id_length; m += 1) {
396    max_id = MAX2(max_id, id_array[m]);
397  }
398  // The next id, to limit loops.
399  const processorid_t limit_id = max_id + 1;
400  // Make up markers for available processors.
401  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
402  for (uint c = 0; c < limit_id; c += 1) {
403    available_id[c] = false;
404  }
405  for (uint a = 0; a < id_length; a += 1) {
406    available_id[id_array[a]] = true;
407  }
408  // Step by "boards", then by "slot", copying to "assigned".
409  // NEEDS_CLEANUP: The assignment of processors should be stateful,
410  //                remembering which processors have been assigned by
411  //                previous calls, etc., so as to distribute several
412  //                independent calls of this method.  What we'd like is
413  //                It would be nice to have an API that let us ask
414  //                how many processes are bound to a processor,
415  //                but we don't have that, either.
416  //                In the short term, "board" is static so that
417  //                subsequent distributions don't all start at board 0.
418  static uint board = 0;
419  uint assigned = 0;
420  // Until we've found enough processors ....
421  while (assigned < distribution_length) {
422    // ... find the next available processor in the board.
423    for (uint slot = 0; slot < processors_per_board; slot += 1) {
424      uint try_id = board * processors_per_board + slot;
425      if ((try_id < limit_id) && (available_id[try_id] == true)) {
426        distribution[assigned] = try_id;
427        available_id[try_id] = false;
428        assigned += 1;
429        break;
430      }
431    }
432    board += 1;
433    if (board * processors_per_board + 0 >= limit_id) {
434      board = 0;
435    }
436  }
437  if (available_id != NULL) {
438    FREE_C_HEAP_ARRAY(bool, available_id);
439  }
440  return true;
441}
442
443void os::set_native_thread_name(const char *name) {
444  // Not yet implemented.
445  return;
446}
447
448bool os::distribute_processes(uint length, uint* distribution) {
449  bool result = false;
450  // Find the processor id's of all the available CPUs.
451  processorid_t* id_array  = NULL;
452  uint           id_length = 0;
453  // There are some races between querying information and using it,
454  // since processor sets can change dynamically.
455  psetid_t pset = PS_NONE;
456  // Are we running in a processor set?
457  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
458    result = find_processors_in_pset(pset, &id_array, &id_length);
459  } else {
460    result = find_processors_online(&id_array, &id_length);
461  }
462  if (result == true) {
463    if (id_length >= length) {
464      result = assign_distribution(id_array, id_length, distribution, length);
465    } else {
466      result = false;
467    }
468  }
469  if (id_array != NULL) {
470    FREE_C_HEAP_ARRAY(processorid_t, id_array);
471  }
472  return result;
473}
474
475bool os::bind_to_processor(uint processor_id) {
476  // We assume that a processorid_t can be stored in a uint.
477  assert(sizeof(uint) == sizeof(processorid_t),
478         "can't convert uint to processorid_t");
479  int bind_result =
480    processor_bind(P_LWPID,                       // bind LWP.
481                   P_MYID,                        // bind current LWP.
482                   (processorid_t) processor_id,  // id.
483                   NULL);                         // don't return old binding.
484  return (bind_result == 0);
485}
486
487// Return true if user is running as root.
488
489bool os::have_special_privileges() {
490  static bool init = false;
491  static bool privileges = false;
492  if (!init) {
493    privileges = (getuid() != geteuid()) || (getgid() != getegid());
494    init = true;
495  }
496  return privileges;
497}
498
499
500void os::init_system_properties_values() {
501  // The next steps are taken in the product version:
502  //
503  // Obtain the JAVA_HOME value from the location of libjvm.so.
504  // This library should be located at:
505  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
506  //
507  // If "/jre/lib/" appears at the right place in the path, then we
508  // assume libjvm.so is installed in a JDK and we use this path.
509  //
510  // Otherwise exit with message: "Could not create the Java virtual machine."
511  //
512  // The following extra steps are taken in the debugging version:
513  //
514  // If "/jre/lib/" does NOT appear at the right place in the path
515  // instead of exit check for $JAVA_HOME environment variable.
516  //
517  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
518  // then we append a fake suffix "hotspot/libjvm.so" to this path so
519  // it looks like libjvm.so is installed there
520  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
521  //
522  // Otherwise exit.
523  //
524  // Important note: if the location of libjvm.so changes this
525  // code needs to be changed accordingly.
526
527// Base path of extensions installed on the system.
528#define SYS_EXT_DIR     "/usr/jdk/packages"
529#define EXTENSIONS_DIR  "/lib/ext"
530
531  char cpu_arch[12];
532  // Buffer that fits several sprintfs.
533  // Note that the space for the colon and the trailing null are provided
534  // by the nulls included by the sizeof operator.
535  const size_t bufsize =
536    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
537         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
538         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
539  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
540
541  // sysclasspath, java_home, dll_dir
542  {
543    char *pslash;
544    os::jvm_path(buf, bufsize);
545
546    // Found the full path to libjvm.so.
547    // Now cut the path to <java_home>/jre if we can.
548    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
549    pslash = strrchr(buf, '/');
550    if (pslash != NULL) {
551      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
552    }
553    Arguments::set_dll_dir(buf);
554
555    if (pslash != NULL) {
556      pslash = strrchr(buf, '/');
557      if (pslash != NULL) {
558        *pslash = '\0';          // Get rid of /<arch>.
559        pslash = strrchr(buf, '/');
560        if (pslash != NULL) {
561          *pslash = '\0';        // Get rid of /lib.
562        }
563      }
564    }
565    Arguments::set_java_home(buf);
566    set_boot_path('/', ':');
567  }
568
569  // Where to look for native libraries.
570  {
571    // Use dlinfo() to determine the correct java.library.path.
572    //
573    // If we're launched by the Java launcher, and the user
574    // does not set java.library.path explicitly on the commandline,
575    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
576    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
577    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
578    // /usr/lib), which is exactly what we want.
579    //
580    // If the user does set java.library.path, it completely
581    // overwrites this setting, and always has.
582    //
583    // If we're not launched by the Java launcher, we may
584    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
585    // settings.  Again, dlinfo does exactly what we want.
586
587    Dl_serinfo     info_sz, *info = &info_sz;
588    Dl_serpath     *path;
589    char           *library_path;
590    char           *common_path = buf;
591
592    // Determine search path count and required buffer size.
593    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
594      FREE_C_HEAP_ARRAY(char, buf);
595      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
596    }
597
598    // Allocate new buffer and initialize.
599    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
600    info->dls_size = info_sz.dls_size;
601    info->dls_cnt = info_sz.dls_cnt;
602
603    // Obtain search path information.
604    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
605      FREE_C_HEAP_ARRAY(char, buf);
606      FREE_C_HEAP_ARRAY(char, info);
607      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
608    }
609
610    path = &info->dls_serpath[0];
611
612    // Note: Due to a legacy implementation, most of the library path
613    // is set in the launcher. This was to accomodate linking restrictions
614    // on legacy Solaris implementations (which are no longer supported).
615    // Eventually, all the library path setting will be done here.
616    //
617    // However, to prevent the proliferation of improperly built native
618    // libraries, the new path component /usr/jdk/packages is added here.
619
620    // Determine the actual CPU architecture.
621    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
622#ifdef _LP64
623    // If we are a 64-bit vm, perform the following translations:
624    //   sparc   -> sparcv9
625    //   i386    -> amd64
626    if (strcmp(cpu_arch, "sparc") == 0) {
627      strcat(cpu_arch, "v9");
628    } else if (strcmp(cpu_arch, "i386") == 0) {
629      strcpy(cpu_arch, "amd64");
630    }
631#endif
632
633    // Construct the invariant part of ld_library_path.
634    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
635
636    // Struct size is more than sufficient for the path components obtained
637    // through the dlinfo() call, so only add additional space for the path
638    // components explicitly added here.
639    size_t library_path_size = info->dls_size + strlen(common_path);
640    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
641    library_path[0] = '\0';
642
643    // Construct the desired Java library path from the linker's library
644    // search path.
645    //
646    // For compatibility, it is optimal that we insert the additional path
647    // components specific to the Java VM after those components specified
648    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
649    // infrastructure.
650    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
651      strcpy(library_path, common_path);
652    } else {
653      int inserted = 0;
654      int i;
655      for (i = 0; i < info->dls_cnt; i++, path++) {
656        uint_t flags = path->dls_flags & LA_SER_MASK;
657        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
658          strcat(library_path, common_path);
659          strcat(library_path, os::path_separator());
660          inserted = 1;
661        }
662        strcat(library_path, path->dls_name);
663        strcat(library_path, os::path_separator());
664      }
665      // Eliminate trailing path separator.
666      library_path[strlen(library_path)-1] = '\0';
667    }
668
669    // happens before argument parsing - can't use a trace flag
670    // tty->print_raw("init_system_properties_values: native lib path: ");
671    // tty->print_raw_cr(library_path);
672
673    // Callee copies into its own buffer.
674    Arguments::set_library_path(library_path);
675
676    FREE_C_HEAP_ARRAY(char, library_path);
677    FREE_C_HEAP_ARRAY(char, info);
678  }
679
680  // Extensions directories.
681  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
682  Arguments::set_ext_dirs(buf);
683
684  FREE_C_HEAP_ARRAY(char, buf);
685
686#undef SYS_EXT_DIR
687#undef EXTENSIONS_DIR
688}
689
690void os::breakpoint() {
691  BREAKPOINT;
692}
693
694bool os::obsolete_option(const JavaVMOption *option) {
695  if (!strncmp(option->optionString, "-Xt", 3)) {
696    return true;
697  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
698    return true;
699  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
700    return true;
701  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
702    return true;
703  }
704  return false;
705}
706
707bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
708  address  stackStart  = (address)thread->stack_base();
709  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
710  if (sp < stackStart && sp >= stackEnd) return true;
711  return false;
712}
713
714extern "C" void breakpoint() {
715  // use debugger to set breakpoint here
716}
717
718static thread_t main_thread;
719
720// Thread start routine for all new Java threads
721extern "C" void* java_start(void* thread_addr) {
722  // Try to randomize the cache line index of hot stack frames.
723  // This helps when threads of the same stack traces evict each other's
724  // cache lines. The threads can be either from the same JVM instance, or
725  // from different JVM instances. The benefit is especially true for
726  // processors with hyperthreading technology.
727  static int counter = 0;
728  int pid = os::current_process_id();
729  alloca(((pid ^ counter++) & 7) * 128);
730
731  int prio;
732  Thread* thread = (Thread*)thread_addr;
733
734  thread->initialize_thread_current();
735
736  OSThread* osthr = thread->osthread();
737
738  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
739  thread->_schedctl = (void *) schedctl_init();
740
741  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
742    os::current_thread_id());
743
744  if (UseNUMA) {
745    int lgrp_id = os::numa_get_group_id();
746    if (lgrp_id != -1) {
747      thread->set_lgrp_id(lgrp_id);
748    }
749  }
750
751  // If the creator called set priority before we started,
752  // we need to call set_native_priority now that we have an lwp.
753  // We used to get the priority from thr_getprio (we called
754  // thr_setprio way back in create_thread) and pass it to
755  // set_native_priority, but Solaris scales the priority
756  // in java_to_os_priority, so when we read it back here,
757  // we pass trash to set_native_priority instead of what's
758  // in java_to_os_priority. So we save the native priority
759  // in the osThread and recall it here.
760
761  if (osthr->thread_id() != -1) {
762    if (UseThreadPriorities) {
763      int prio = osthr->native_priority();
764      if (ThreadPriorityVerbose) {
765        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
766                      INTPTR_FORMAT ", setting priority: %d\n",
767                      osthr->thread_id(), osthr->lwp_id(), prio);
768      }
769      os::set_native_priority(thread, prio);
770    }
771  } else if (ThreadPriorityVerbose) {
772    warning("Can't set priority in _start routine, thread id hasn't been set\n");
773  }
774
775  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
776
777  // initialize signal mask for this thread
778  os::Solaris::hotspot_sigmask(thread);
779
780  thread->run();
781
782  // One less thread is executing
783  // When the VMThread gets here, the main thread may have already exited
784  // which frees the CodeHeap containing the Atomic::dec code
785  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
786    Atomic::dec(&os::Solaris::_os_thread_count);
787  }
788
789  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
790
791  if (UseDetachedThreads) {
792    thr_exit(NULL);
793    ShouldNotReachHere();
794  }
795  return NULL;
796}
797
798static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
799  // Allocate the OSThread object
800  OSThread* osthread = new OSThread(NULL, NULL);
801  if (osthread == NULL) return NULL;
802
803  // Store info on the Solaris thread into the OSThread
804  osthread->set_thread_id(thread_id);
805  osthread->set_lwp_id(_lwp_self());
806  thread->_schedctl = (void *) schedctl_init();
807
808  if (UseNUMA) {
809    int lgrp_id = os::numa_get_group_id();
810    if (lgrp_id != -1) {
811      thread->set_lgrp_id(lgrp_id);
812    }
813  }
814
815  if (ThreadPriorityVerbose) {
816    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
817                  osthread->thread_id(), osthread->lwp_id());
818  }
819
820  // Initial thread state is INITIALIZED, not SUSPENDED
821  osthread->set_state(INITIALIZED);
822
823  return osthread;
824}
825
826void os::Solaris::hotspot_sigmask(Thread* thread) {
827  //Save caller's signal mask
828  sigset_t sigmask;
829  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
830  OSThread *osthread = thread->osthread();
831  osthread->set_caller_sigmask(sigmask);
832
833  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
834  if (!ReduceSignalUsage) {
835    if (thread->is_VM_thread()) {
836      // Only the VM thread handles BREAK_SIGNAL ...
837      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
838    } else {
839      // ... all other threads block BREAK_SIGNAL
840      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
841      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
842    }
843  }
844}
845
846bool os::create_attached_thread(JavaThread* thread) {
847#ifdef ASSERT
848  thread->verify_not_published();
849#endif
850  OSThread* osthread = create_os_thread(thread, thr_self());
851  if (osthread == NULL) {
852    return false;
853  }
854
855  // Initial thread state is RUNNABLE
856  osthread->set_state(RUNNABLE);
857  thread->set_osthread(osthread);
858
859  // initialize signal mask for this thread
860  // and save the caller's signal mask
861  os::Solaris::hotspot_sigmask(thread);
862
863  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
864    os::current_thread_id());
865
866  return true;
867}
868
869bool os::create_main_thread(JavaThread* thread) {
870#ifdef ASSERT
871  thread->verify_not_published();
872#endif
873  if (_starting_thread == NULL) {
874    _starting_thread = create_os_thread(thread, main_thread);
875    if (_starting_thread == NULL) {
876      return false;
877    }
878  }
879
880  // The primodial thread is runnable from the start
881  _starting_thread->set_state(RUNNABLE);
882
883  thread->set_osthread(_starting_thread);
884
885  // initialize signal mask for this thread
886  // and save the caller's signal mask
887  os::Solaris::hotspot_sigmask(thread);
888
889  return true;
890}
891
892// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
893static char* describe_thr_create_attributes(char* buf, size_t buflen,
894  size_t stacksize, long flags)
895{
896  stringStream ss(buf, buflen);
897  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
898  ss.print("flags: ");
899  #define PRINT_FLAG(f) if (flags & f) ss.print( XSTR(f) " ");
900  #define ALL(X) \
901    X(THR_SUSPENDED) \
902    X(THR_DETACHED) \
903    X(THR_BOUND) \
904    X(THR_NEW_LWP) \
905    X(THR_DAEMON)
906  ALL(PRINT_FLAG)
907  #undef ALL
908  #undef PRINT_FLAG
909  return buf;
910}
911
912bool os::create_thread(Thread* thread, ThreadType thr_type,
913                       size_t stack_size) {
914  // Allocate the OSThread object
915  OSThread* osthread = new OSThread(NULL, NULL);
916  if (osthread == NULL) {
917    return false;
918  }
919
920  if (ThreadPriorityVerbose) {
921    char *thrtyp;
922    switch (thr_type) {
923    case vm_thread:
924      thrtyp = (char *)"vm";
925      break;
926    case cgc_thread:
927      thrtyp = (char *)"cgc";
928      break;
929    case pgc_thread:
930      thrtyp = (char *)"pgc";
931      break;
932    case java_thread:
933      thrtyp = (char *)"java";
934      break;
935    case compiler_thread:
936      thrtyp = (char *)"compiler";
937      break;
938    case watcher_thread:
939      thrtyp = (char *)"watcher";
940      break;
941    default:
942      thrtyp = (char *)"unknown";
943      break;
944    }
945    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
946  }
947
948  // Calculate stack size if it's not specified by caller.
949  if (stack_size == 0) {
950    // The default stack size 1M (2M for LP64).
951    stack_size = (BytesPerWord >> 2) * K * K;
952
953    switch (thr_type) {
954    case os::java_thread:
955      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
956      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
957      break;
958    case os::compiler_thread:
959      if (CompilerThreadStackSize > 0) {
960        stack_size = (size_t)(CompilerThreadStackSize * K);
961        break;
962      } // else fall through:
963        // use VMThreadStackSize if CompilerThreadStackSize is not defined
964    case os::vm_thread:
965    case os::pgc_thread:
966    case os::cgc_thread:
967    case os::watcher_thread:
968      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
969      break;
970    }
971  }
972  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
973
974  // Initial state is ALLOCATED but not INITIALIZED
975  osthread->set_state(ALLOCATED);
976
977  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
978    // We got lots of threads. Check if we still have some address space left.
979    // Need to be at least 5Mb of unreserved address space. We do check by
980    // trying to reserve some.
981    const size_t VirtualMemoryBangSize = 20*K*K;
982    char* mem = os::reserve_memory(VirtualMemoryBangSize);
983    if (mem == NULL) {
984      delete osthread;
985      return false;
986    } else {
987      // Release the memory again
988      os::release_memory(mem, VirtualMemoryBangSize);
989    }
990  }
991
992  // Setup osthread because the child thread may need it.
993  thread->set_osthread(osthread);
994
995  // Create the Solaris thread
996  thread_t tid = 0;
997  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
998  int      status;
999
1000  // Mark that we don't have an lwp or thread id yet.
1001  // In case we attempt to set the priority before the thread starts.
1002  osthread->set_lwp_id(-1);
1003  osthread->set_thread_id(-1);
1004
1005  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1006
1007  char buf[64];
1008  if (status == 0) {
1009    log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
1010      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1011  } else {
1012    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1013      strerror(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1014  }
1015
1016  if (status != 0) {
1017    thread->set_osthread(NULL);
1018    // Need to clean up stuff we've allocated so far
1019    delete osthread;
1020    return false;
1021  }
1022
1023  Atomic::inc(&os::Solaris::_os_thread_count);
1024
1025  // Store info on the Solaris thread into the OSThread
1026  osthread->set_thread_id(tid);
1027
1028  // Remember that we created this thread so we can set priority on it
1029  osthread->set_vm_created();
1030
1031  // Initial thread state is INITIALIZED, not SUSPENDED
1032  osthread->set_state(INITIALIZED);
1033
1034  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1035  return true;
1036}
1037
1038// defined for >= Solaris 10. This allows builds on earlier versions
1039// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1040// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1041// was SIGJVM1.
1042//
1043#if !defined(SIGJVM1)
1044  #define SIGJVM1 39
1045  #define SIGJVM2 40
1046#endif
1047
1048debug_only(static bool signal_sets_initialized = false);
1049static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1050
1051int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1052
1053bool os::Solaris::is_sig_ignored(int sig) {
1054  struct sigaction oact;
1055  sigaction(sig, (struct sigaction*)NULL, &oact);
1056  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1057                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1058  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1059    return true;
1060  } else {
1061    return false;
1062  }
1063}
1064
1065// Note: SIGRTMIN is a macro that calls sysconf() so it will
1066// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1067static bool isJVM1available() {
1068  return SIGJVM1 < SIGRTMIN;
1069}
1070
1071void os::Solaris::signal_sets_init() {
1072  // Should also have an assertion stating we are still single-threaded.
1073  assert(!signal_sets_initialized, "Already initialized");
1074  // Fill in signals that are necessarily unblocked for all threads in
1075  // the VM. Currently, we unblock the following signals:
1076  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1077  //                         by -Xrs (=ReduceSignalUsage));
1078  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1079  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1080  // the dispositions or masks wrt these signals.
1081  // Programs embedding the VM that want to use the above signals for their
1082  // own purposes must, at this time, use the "-Xrs" option to prevent
1083  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1084  // (See bug 4345157, and other related bugs).
1085  // In reality, though, unblocking these signals is really a nop, since
1086  // these signals are not blocked by default.
1087  sigemptyset(&unblocked_sigs);
1088  sigemptyset(&allowdebug_blocked_sigs);
1089  sigaddset(&unblocked_sigs, SIGILL);
1090  sigaddset(&unblocked_sigs, SIGSEGV);
1091  sigaddset(&unblocked_sigs, SIGBUS);
1092  sigaddset(&unblocked_sigs, SIGFPE);
1093
1094  // Always true on Solaris 10+
1095  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1096  os::Solaris::set_SIGasync(SIGJVM2);
1097
1098  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1099
1100  if (!ReduceSignalUsage) {
1101    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1102      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1103      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1104    }
1105    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1106      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1107      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1108    }
1109    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1110      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1111      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1112    }
1113  }
1114  // Fill in signals that are blocked by all but the VM thread.
1115  sigemptyset(&vm_sigs);
1116  if (!ReduceSignalUsage) {
1117    sigaddset(&vm_sigs, BREAK_SIGNAL);
1118  }
1119  debug_only(signal_sets_initialized = true);
1120
1121  // For diagnostics only used in run_periodic_checks
1122  sigemptyset(&check_signal_done);
1123}
1124
1125// These are signals that are unblocked while a thread is running Java.
1126// (For some reason, they get blocked by default.)
1127sigset_t* os::Solaris::unblocked_signals() {
1128  assert(signal_sets_initialized, "Not initialized");
1129  return &unblocked_sigs;
1130}
1131
1132// These are the signals that are blocked while a (non-VM) thread is
1133// running Java. Only the VM thread handles these signals.
1134sigset_t* os::Solaris::vm_signals() {
1135  assert(signal_sets_initialized, "Not initialized");
1136  return &vm_sigs;
1137}
1138
1139// These are signals that are blocked during cond_wait to allow debugger in
1140sigset_t* os::Solaris::allowdebug_blocked_signals() {
1141  assert(signal_sets_initialized, "Not initialized");
1142  return &allowdebug_blocked_sigs;
1143}
1144
1145
1146void _handle_uncaught_cxx_exception() {
1147  VMError::report_and_die("An uncaught C++ exception");
1148}
1149
1150
1151// First crack at OS-specific initialization, from inside the new thread.
1152void os::initialize_thread(Thread* thr) {
1153  int r = thr_main();
1154  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1155  if (r) {
1156    JavaThread* jt = (JavaThread *)thr;
1157    assert(jt != NULL, "Sanity check");
1158    size_t stack_size;
1159    address base = jt->stack_base();
1160    if (Arguments::created_by_java_launcher()) {
1161      // Use 2MB to allow for Solaris 7 64 bit mode.
1162      stack_size = JavaThread::stack_size_at_create() == 0
1163        ? 2048*K : JavaThread::stack_size_at_create();
1164
1165      // There are rare cases when we may have already used more than
1166      // the basic stack size allotment before this method is invoked.
1167      // Attempt to allow for a normally sized java_stack.
1168      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1169      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1170    } else {
1171      // 6269555: If we were not created by a Java launcher, i.e. if we are
1172      // running embedded in a native application, treat the primordial thread
1173      // as much like a native attached thread as possible.  This means using
1174      // the current stack size from thr_stksegment(), unless it is too large
1175      // to reliably setup guard pages.  A reasonable max size is 8MB.
1176      size_t current_size = current_stack_size();
1177      // This should never happen, but just in case....
1178      if (current_size == 0) current_size = 2 * K * K;
1179      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1180    }
1181    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1182    stack_size = (size_t)(base - bottom);
1183
1184    assert(stack_size > 0, "Stack size calculation problem");
1185
1186    if (stack_size > jt->stack_size()) {
1187#ifndef PRODUCT
1188      struct rlimit limits;
1189      getrlimit(RLIMIT_STACK, &limits);
1190      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1191      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1192#endif
1193      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1194                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1195                    "See limit(1) to increase the stack size limit.",
1196                    stack_size / K, jt->stack_size() / K);
1197      vm_exit(1);
1198    }
1199    assert(jt->stack_size() >= stack_size,
1200           "Attempt to map more stack than was allocated");
1201    jt->set_stack_size(stack_size);
1202  }
1203
1204  // With the T2 libthread (T1 is no longer supported) threads are always bound
1205  // and we use stackbanging in all cases.
1206
1207  os::Solaris::init_thread_fpu_state();
1208  std::set_terminate(_handle_uncaught_cxx_exception);
1209}
1210
1211
1212
1213// Free Solaris resources related to the OSThread
1214void os::free_thread(OSThread* osthread) {
1215  assert(osthread != NULL, "os::free_thread but osthread not set");
1216
1217
1218  // We are told to free resources of the argument thread,
1219  // but we can only really operate on the current thread.
1220  // The main thread must take the VMThread down synchronously
1221  // before the main thread exits and frees up CodeHeap
1222  guarantee((Thread::current()->osthread() == osthread
1223             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1224  if (Thread::current()->osthread() == osthread) {
1225    // Restore caller's signal mask
1226    sigset_t sigmask = osthread->caller_sigmask();
1227    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1228  }
1229  delete osthread;
1230}
1231
1232void os::pd_start_thread(Thread* thread) {
1233  int status = thr_continue(thread->osthread()->thread_id());
1234  assert_status(status == 0, status, "thr_continue failed");
1235}
1236
1237
1238intx os::current_thread_id() {
1239  return (intx)thr_self();
1240}
1241
1242static pid_t _initial_pid = 0;
1243
1244int os::current_process_id() {
1245  return (int)(_initial_pid ? _initial_pid : getpid());
1246}
1247
1248// gethrtime() should be monotonic according to the documentation,
1249// but some virtualized platforms are known to break this guarantee.
1250// getTimeNanos() must be guaranteed not to move backwards, so we
1251// are forced to add a check here.
1252inline hrtime_t getTimeNanos() {
1253  const hrtime_t now = gethrtime();
1254  const hrtime_t prev = max_hrtime;
1255  if (now <= prev) {
1256    return prev;   // same or retrograde time;
1257  }
1258  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1259  assert(obsv >= prev, "invariant");   // Monotonicity
1260  // If the CAS succeeded then we're done and return "now".
1261  // If the CAS failed and the observed value "obsv" is >= now then
1262  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1263  // some other thread raced this thread and installed a new value, in which case
1264  // we could either (a) retry the entire operation, (b) retry trying to install now
1265  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1266  // we might discard a higher "now" value in deference to a slightly lower but freshly
1267  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1268  // to (a) or (b) -- and greatly reduces coherence traffic.
1269  // We might also condition (c) on the magnitude of the delta between obsv and now.
1270  // Avoiding excessive CAS operations to hot RW locations is critical.
1271  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1272  return (prev == obsv) ? now : obsv;
1273}
1274
1275// Time since start-up in seconds to a fine granularity.
1276// Used by VMSelfDestructTimer and the MemProfiler.
1277double os::elapsedTime() {
1278  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1279}
1280
1281jlong os::elapsed_counter() {
1282  return (jlong)(getTimeNanos() - first_hrtime);
1283}
1284
1285jlong os::elapsed_frequency() {
1286  return hrtime_hz;
1287}
1288
1289// Return the real, user, and system times in seconds from an
1290// arbitrary fixed point in the past.
1291bool os::getTimesSecs(double* process_real_time,
1292                      double* process_user_time,
1293                      double* process_system_time) {
1294  struct tms ticks;
1295  clock_t real_ticks = times(&ticks);
1296
1297  if (real_ticks == (clock_t) (-1)) {
1298    return false;
1299  } else {
1300    double ticks_per_second = (double) clock_tics_per_sec;
1301    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1302    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1303    // For consistency return the real time from getTimeNanos()
1304    // converted to seconds.
1305    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1306
1307    return true;
1308  }
1309}
1310
1311bool os::supports_vtime() { return true; }
1312
1313bool os::enable_vtime() {
1314  int fd = ::open("/proc/self/ctl", O_WRONLY);
1315  if (fd == -1) {
1316    return false;
1317  }
1318
1319  long cmd[] = { PCSET, PR_MSACCT };
1320  int res = ::write(fd, cmd, sizeof(long) * 2);
1321  ::close(fd);
1322  if (res != sizeof(long) * 2) {
1323    return false;
1324  }
1325  return true;
1326}
1327
1328bool os::vtime_enabled() {
1329  int fd = ::open("/proc/self/status", O_RDONLY);
1330  if (fd == -1) {
1331    return false;
1332  }
1333
1334  pstatus_t status;
1335  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1336  ::close(fd);
1337  if (res != sizeof(pstatus_t)) {
1338    return false;
1339  }
1340  return status.pr_flags & PR_MSACCT;
1341}
1342
1343double os::elapsedVTime() {
1344  return (double)gethrvtime() / (double)hrtime_hz;
1345}
1346
1347// Used internally for comparisons only
1348// getTimeMillis guaranteed to not move backwards on Solaris
1349jlong getTimeMillis() {
1350  jlong nanotime = getTimeNanos();
1351  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1352}
1353
1354// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1355jlong os::javaTimeMillis() {
1356  timeval t;
1357  if (gettimeofday(&t, NULL) == -1) {
1358    fatal("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1359  }
1360  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1361}
1362
1363void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1364  timeval t;
1365  if (gettimeofday(&t, NULL) == -1) {
1366    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", strerror(errno));
1367  }
1368  seconds = jlong(t.tv_sec);
1369  nanos = jlong(t.tv_usec) * 1000;
1370}
1371
1372
1373jlong os::javaTimeNanos() {
1374  return (jlong)getTimeNanos();
1375}
1376
1377void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1378  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1379  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1380  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1381  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1382}
1383
1384char * os::local_time_string(char *buf, size_t buflen) {
1385  struct tm t;
1386  time_t long_time;
1387  time(&long_time);
1388  localtime_r(&long_time, &t);
1389  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1390               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1391               t.tm_hour, t.tm_min, t.tm_sec);
1392  return buf;
1393}
1394
1395// Note: os::shutdown() might be called very early during initialization, or
1396// called from signal handler. Before adding something to os::shutdown(), make
1397// sure it is async-safe and can handle partially initialized VM.
1398void os::shutdown() {
1399
1400  // allow PerfMemory to attempt cleanup of any persistent resources
1401  perfMemory_exit();
1402
1403  // needs to remove object in file system
1404  AttachListener::abort();
1405
1406  // flush buffered output, finish log files
1407  ostream_abort();
1408
1409  // Check for abort hook
1410  abort_hook_t abort_hook = Arguments::abort_hook();
1411  if (abort_hook != NULL) {
1412    abort_hook();
1413  }
1414}
1415
1416// Note: os::abort() might be called very early during initialization, or
1417// called from signal handler. Before adding something to os::abort(), make
1418// sure it is async-safe and can handle partially initialized VM.
1419void os::abort(bool dump_core, void* siginfo, const void* context) {
1420  os::shutdown();
1421  if (dump_core) {
1422#ifndef PRODUCT
1423    fdStream out(defaultStream::output_fd());
1424    out.print_raw("Current thread is ");
1425    char buf[16];
1426    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1427    out.print_raw_cr(buf);
1428    out.print_raw_cr("Dumping core ...");
1429#endif
1430    ::abort(); // dump core (for debugging)
1431  }
1432
1433  ::exit(1);
1434}
1435
1436// Die immediately, no exit hook, no abort hook, no cleanup.
1437void os::die() {
1438  ::abort(); // dump core (for debugging)
1439}
1440
1441// DLL functions
1442
1443const char* os::dll_file_extension() { return ".so"; }
1444
1445// This must be hard coded because it's the system's temporary
1446// directory not the java application's temp directory, ala java.io.tmpdir.
1447const char* os::get_temp_directory() { return "/tmp"; }
1448
1449static bool file_exists(const char* filename) {
1450  struct stat statbuf;
1451  if (filename == NULL || strlen(filename) == 0) {
1452    return false;
1453  }
1454  return os::stat(filename, &statbuf) == 0;
1455}
1456
1457bool os::dll_build_name(char* buffer, size_t buflen,
1458                        const char* pname, const char* fname) {
1459  bool retval = false;
1460  const size_t pnamelen = pname ? strlen(pname) : 0;
1461
1462  // Return error on buffer overflow.
1463  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1464    return retval;
1465  }
1466
1467  if (pnamelen == 0) {
1468    snprintf(buffer, buflen, "lib%s.so", fname);
1469    retval = true;
1470  } else if (strchr(pname, *os::path_separator()) != NULL) {
1471    int n;
1472    char** pelements = split_path(pname, &n);
1473    if (pelements == NULL) {
1474      return false;
1475    }
1476    for (int i = 0; i < n; i++) {
1477      // really shouldn't be NULL but what the heck, check can't hurt
1478      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1479        continue; // skip the empty path values
1480      }
1481      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1482      if (file_exists(buffer)) {
1483        retval = true;
1484        break;
1485      }
1486    }
1487    // release the storage
1488    for (int i = 0; i < n; i++) {
1489      if (pelements[i] != NULL) {
1490        FREE_C_HEAP_ARRAY(char, pelements[i]);
1491      }
1492    }
1493    if (pelements != NULL) {
1494      FREE_C_HEAP_ARRAY(char*, pelements);
1495    }
1496  } else {
1497    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1498    retval = true;
1499  }
1500  return retval;
1501}
1502
1503// check if addr is inside libjvm.so
1504bool os::address_is_in_vm(address addr) {
1505  static address libjvm_base_addr;
1506  Dl_info dlinfo;
1507
1508  if (libjvm_base_addr == NULL) {
1509    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1510      libjvm_base_addr = (address)dlinfo.dli_fbase;
1511    }
1512    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1513  }
1514
1515  if (dladdr((void *)addr, &dlinfo) != 0) {
1516    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1517  }
1518
1519  return false;
1520}
1521
1522typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1523static dladdr1_func_type dladdr1_func = NULL;
1524
1525bool os::dll_address_to_function_name(address addr, char *buf,
1526                                      int buflen, int * offset,
1527                                      bool demangle) {
1528  // buf is not optional, but offset is optional
1529  assert(buf != NULL, "sanity check");
1530
1531  Dl_info dlinfo;
1532
1533  // dladdr1_func was initialized in os::init()
1534  if (dladdr1_func != NULL) {
1535    // yes, we have dladdr1
1536
1537    // Support for dladdr1 is checked at runtime; it may be
1538    // available even if the vm is built on a machine that does
1539    // not have dladdr1 support.  Make sure there is a value for
1540    // RTLD_DL_SYMENT.
1541#ifndef RTLD_DL_SYMENT
1542  #define RTLD_DL_SYMENT 1
1543#endif
1544#ifdef _LP64
1545    Elf64_Sym * info;
1546#else
1547    Elf32_Sym * info;
1548#endif
1549    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1550                     RTLD_DL_SYMENT) != 0) {
1551      // see if we have a matching symbol that covers our address
1552      if (dlinfo.dli_saddr != NULL &&
1553          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1554        if (dlinfo.dli_sname != NULL) {
1555          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1556            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1557          }
1558          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1559          return true;
1560        }
1561      }
1562      // no matching symbol so try for just file info
1563      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1564        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1565                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1566          return true;
1567        }
1568      }
1569    }
1570    buf[0] = '\0';
1571    if (offset != NULL) *offset  = -1;
1572    return false;
1573  }
1574
1575  // no, only dladdr is available
1576  if (dladdr((void *)addr, &dlinfo) != 0) {
1577    // see if we have a matching symbol
1578    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1579      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1580        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1581      }
1582      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1583      return true;
1584    }
1585    // no matching symbol so try for just file info
1586    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1587      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1588                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1589        return true;
1590      }
1591    }
1592  }
1593  buf[0] = '\0';
1594  if (offset != NULL) *offset  = -1;
1595  return false;
1596}
1597
1598bool os::dll_address_to_library_name(address addr, char* buf,
1599                                     int buflen, int* offset) {
1600  // buf is not optional, but offset is optional
1601  assert(buf != NULL, "sanity check");
1602
1603  Dl_info dlinfo;
1604
1605  if (dladdr((void*)addr, &dlinfo) != 0) {
1606    if (dlinfo.dli_fname != NULL) {
1607      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1608    }
1609    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1610      *offset = addr - (address)dlinfo.dli_fbase;
1611    }
1612    return true;
1613  }
1614
1615  buf[0] = '\0';
1616  if (offset) *offset = -1;
1617  return false;
1618}
1619
1620int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1621  Dl_info dli;
1622  // Sanity check?
1623  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1624      dli.dli_fname == NULL) {
1625    return 1;
1626  }
1627
1628  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1629  if (handle == NULL) {
1630    return 1;
1631  }
1632
1633  Link_map *map;
1634  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1635  if (map == NULL) {
1636    dlclose(handle);
1637    return 1;
1638  }
1639
1640  while (map->l_prev != NULL) {
1641    map = map->l_prev;
1642  }
1643
1644  while (map != NULL) {
1645    // Iterate through all map entries and call callback with fields of interest
1646    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1647      dlclose(handle);
1648      return 1;
1649    }
1650    map = map->l_next;
1651  }
1652
1653  dlclose(handle);
1654  return 0;
1655}
1656
1657int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1658  outputStream * out = (outputStream *) param;
1659  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1660  return 0;
1661}
1662
1663void os::print_dll_info(outputStream * st) {
1664  st->print_cr("Dynamic libraries:"); st->flush();
1665  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1666    st->print_cr("Error: Cannot print dynamic libraries.");
1667  }
1668}
1669
1670// Loads .dll/.so and
1671// in case of error it checks if .dll/.so was built for the
1672// same architecture as Hotspot is running on
1673
1674void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1675  void * result= ::dlopen(filename, RTLD_LAZY);
1676  if (result != NULL) {
1677    // Successful loading
1678    return result;
1679  }
1680
1681  Elf32_Ehdr elf_head;
1682
1683  // Read system error message into ebuf
1684  // It may or may not be overwritten below
1685  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1686  ebuf[ebuflen-1]='\0';
1687  int diag_msg_max_length=ebuflen-strlen(ebuf);
1688  char* diag_msg_buf=ebuf+strlen(ebuf);
1689
1690  if (diag_msg_max_length==0) {
1691    // No more space in ebuf for additional diagnostics message
1692    return NULL;
1693  }
1694
1695
1696  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1697
1698  if (file_descriptor < 0) {
1699    // Can't open library, report dlerror() message
1700    return NULL;
1701  }
1702
1703  bool failed_to_read_elf_head=
1704    (sizeof(elf_head)!=
1705     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1706
1707  ::close(file_descriptor);
1708  if (failed_to_read_elf_head) {
1709    // file i/o error - report dlerror() msg
1710    return NULL;
1711  }
1712
1713  typedef struct {
1714    Elf32_Half  code;         // Actual value as defined in elf.h
1715    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1716    char        elf_class;    // 32 or 64 bit
1717    char        endianess;    // MSB or LSB
1718    char*       name;         // String representation
1719  } arch_t;
1720
1721  static const arch_t arch_array[]={
1722    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1723    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1724    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1725    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1726    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1727    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1728    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1729    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1730    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1731    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1732  };
1733
1734#if  (defined IA32)
1735  static  Elf32_Half running_arch_code=EM_386;
1736#elif   (defined AMD64)
1737  static  Elf32_Half running_arch_code=EM_X86_64;
1738#elif  (defined IA64)
1739  static  Elf32_Half running_arch_code=EM_IA_64;
1740#elif  (defined __sparc) && (defined _LP64)
1741  static  Elf32_Half running_arch_code=EM_SPARCV9;
1742#elif  (defined __sparc) && (!defined _LP64)
1743  static  Elf32_Half running_arch_code=EM_SPARC;
1744#elif  (defined __powerpc64__)
1745  static  Elf32_Half running_arch_code=EM_PPC64;
1746#elif  (defined __powerpc__)
1747  static  Elf32_Half running_arch_code=EM_PPC;
1748#elif (defined ARM)
1749  static  Elf32_Half running_arch_code=EM_ARM;
1750#else
1751  #error Method os::dll_load requires that one of following is defined:\
1752       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1753#endif
1754
1755  // Identify compatability class for VM's architecture and library's architecture
1756  // Obtain string descriptions for architectures
1757
1758  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1759  int running_arch_index=-1;
1760
1761  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1762    if (running_arch_code == arch_array[i].code) {
1763      running_arch_index    = i;
1764    }
1765    if (lib_arch.code == arch_array[i].code) {
1766      lib_arch.compat_class = arch_array[i].compat_class;
1767      lib_arch.name         = arch_array[i].name;
1768    }
1769  }
1770
1771  assert(running_arch_index != -1,
1772         "Didn't find running architecture code (running_arch_code) in arch_array");
1773  if (running_arch_index == -1) {
1774    // Even though running architecture detection failed
1775    // we may still continue with reporting dlerror() message
1776    return NULL;
1777  }
1778
1779  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1780    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1781    return NULL;
1782  }
1783
1784  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1785    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1786    return NULL;
1787  }
1788
1789  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1790    if (lib_arch.name!=NULL) {
1791      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1792                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1793                 lib_arch.name, arch_array[running_arch_index].name);
1794    } else {
1795      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1796                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1797                 lib_arch.code,
1798                 arch_array[running_arch_index].name);
1799    }
1800  }
1801
1802  return NULL;
1803}
1804
1805void* os::dll_lookup(void* handle, const char* name) {
1806  return dlsym(handle, name);
1807}
1808
1809void* os::get_default_process_handle() {
1810  return (void*)::dlopen(NULL, RTLD_LAZY);
1811}
1812
1813int os::stat(const char *path, struct stat *sbuf) {
1814  char pathbuf[MAX_PATH];
1815  if (strlen(path) > MAX_PATH - 1) {
1816    errno = ENAMETOOLONG;
1817    return -1;
1818  }
1819  os::native_path(strcpy(pathbuf, path));
1820  return ::stat(pathbuf, sbuf);
1821}
1822
1823static bool _print_ascii_file(const char* filename, outputStream* st) {
1824  int fd = ::open(filename, O_RDONLY);
1825  if (fd == -1) {
1826    return false;
1827  }
1828
1829  char buf[32];
1830  int bytes;
1831  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1832    st->print_raw(buf, bytes);
1833  }
1834
1835  ::close(fd);
1836
1837  return true;
1838}
1839
1840void os::print_os_info_brief(outputStream* st) {
1841  os::Solaris::print_distro_info(st);
1842
1843  os::Posix::print_uname_info(st);
1844
1845  os::Solaris::print_libversion_info(st);
1846}
1847
1848void os::print_os_info(outputStream* st) {
1849  st->print("OS:");
1850
1851  os::Solaris::print_distro_info(st);
1852
1853  os::Posix::print_uname_info(st);
1854
1855  os::Solaris::print_libversion_info(st);
1856
1857  os::Posix::print_rlimit_info(st);
1858
1859  os::Posix::print_load_average(st);
1860}
1861
1862void os::Solaris::print_distro_info(outputStream* st) {
1863  if (!_print_ascii_file("/etc/release", st)) {
1864    st->print("Solaris");
1865  }
1866  st->cr();
1867}
1868
1869void os::get_summary_os_info(char* buf, size_t buflen) {
1870  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1871  FILE* fp = fopen("/etc/release", "r");
1872  if (fp != NULL) {
1873    char tmp[256];
1874    // Only get the first line and chop out everything but the os name.
1875    if (fgets(tmp, sizeof(tmp), fp)) {
1876      char* ptr = tmp;
1877      // skip past whitespace characters
1878      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1879      if (*ptr != '\0') {
1880        char* nl = strchr(ptr, '\n');
1881        if (nl != NULL) *nl = '\0';
1882        strncpy(buf, ptr, buflen);
1883      }
1884    }
1885    fclose(fp);
1886  }
1887}
1888
1889void os::Solaris::print_libversion_info(outputStream* st) {
1890  st->print("  (T2 libthread)");
1891  st->cr();
1892}
1893
1894static bool check_addr0(outputStream* st) {
1895  jboolean status = false;
1896  int fd = ::open("/proc/self/map",O_RDONLY);
1897  if (fd >= 0) {
1898    prmap_t p;
1899    while (::read(fd, &p, sizeof(p)) > 0) {
1900      if (p.pr_vaddr == 0x0) {
1901        st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1902        st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1903        st->print("Access:");
1904        st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1905        st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1906        st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1907        st->cr();
1908        status = true;
1909      }
1910    }
1911    ::close(fd);
1912  }
1913  return status;
1914}
1915
1916void os::get_summary_cpu_info(char* buf, size_t buflen) {
1917  // Get MHz with system call. We don't seem to already have this.
1918  processor_info_t stats;
1919  processorid_t id = getcpuid();
1920  int clock = 0;
1921  if (processor_info(id, &stats) != -1) {
1922    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1923  }
1924#ifdef AMD64
1925  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1926#else
1927  // must be sparc
1928  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1929#endif
1930}
1931
1932void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1933  // Nothing to do for now.
1934}
1935
1936void os::print_memory_info(outputStream* st) {
1937  st->print("Memory:");
1938  st->print(" %dk page", os::vm_page_size()>>10);
1939  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1940  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1941  st->cr();
1942  (void) check_addr0(st);
1943}
1944
1945// Moved from whole group, because we need them here for diagnostic
1946// prints.
1947#define OLDMAXSIGNUM 32
1948static int Maxsignum = 0;
1949static int *ourSigFlags = NULL;
1950
1951int os::Solaris::get_our_sigflags(int sig) {
1952  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1953  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1954  return ourSigFlags[sig];
1955}
1956
1957void os::Solaris::set_our_sigflags(int sig, int flags) {
1958  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1959  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1960  ourSigFlags[sig] = flags;
1961}
1962
1963
1964static const char* get_signal_handler_name(address handler,
1965                                           char* buf, int buflen) {
1966  int offset;
1967  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1968  if (found) {
1969    // skip directory names
1970    const char *p1, *p2;
1971    p1 = buf;
1972    size_t len = strlen(os::file_separator());
1973    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1974    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1975  } else {
1976    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1977  }
1978  return buf;
1979}
1980
1981static void print_signal_handler(outputStream* st, int sig,
1982                                 char* buf, size_t buflen) {
1983  struct sigaction sa;
1984
1985  sigaction(sig, NULL, &sa);
1986
1987  st->print("%s: ", os::exception_name(sig, buf, buflen));
1988
1989  address handler = (sa.sa_flags & SA_SIGINFO)
1990                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1991                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1992
1993  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1994    st->print("SIG_DFL");
1995  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1996    st->print("SIG_IGN");
1997  } else {
1998    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1999  }
2000
2001  st->print(", sa_mask[0]=");
2002  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2003
2004  address rh = VMError::get_resetted_sighandler(sig);
2005  // May be, handler was resetted by VMError?
2006  if (rh != NULL) {
2007    handler = rh;
2008    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2009  }
2010
2011  st->print(", sa_flags=");
2012  os::Posix::print_sa_flags(st, sa.sa_flags);
2013
2014  // Check: is it our handler?
2015  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2016    // It is our signal handler
2017    // check for flags
2018    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2019      st->print(
2020                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2021                os::Solaris::get_our_sigflags(sig));
2022    }
2023  }
2024  st->cr();
2025}
2026
2027void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2028  st->print_cr("Signal Handlers:");
2029  print_signal_handler(st, SIGSEGV, buf, buflen);
2030  print_signal_handler(st, SIGBUS , buf, buflen);
2031  print_signal_handler(st, SIGFPE , buf, buflen);
2032  print_signal_handler(st, SIGPIPE, buf, buflen);
2033  print_signal_handler(st, SIGXFSZ, buf, buflen);
2034  print_signal_handler(st, SIGILL , buf, buflen);
2035  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2036  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2037  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2038  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2039  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2040  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2041}
2042
2043static char saved_jvm_path[MAXPATHLEN] = { 0 };
2044
2045// Find the full path to the current module, libjvm.so
2046void os::jvm_path(char *buf, jint buflen) {
2047  // Error checking.
2048  if (buflen < MAXPATHLEN) {
2049    assert(false, "must use a large-enough buffer");
2050    buf[0] = '\0';
2051    return;
2052  }
2053  // Lazy resolve the path to current module.
2054  if (saved_jvm_path[0] != 0) {
2055    strcpy(buf, saved_jvm_path);
2056    return;
2057  }
2058
2059  Dl_info dlinfo;
2060  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2061  assert(ret != 0, "cannot locate libjvm");
2062  if (ret != 0 && dlinfo.dli_fname != NULL) {
2063    realpath((char *)dlinfo.dli_fname, buf);
2064  } else {
2065    buf[0] = '\0';
2066    return;
2067  }
2068
2069  if (Arguments::sun_java_launcher_is_altjvm()) {
2070    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2071    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2072    // If "/jre/lib/" appears at the right place in the string, then
2073    // assume we are installed in a JDK and we're done.  Otherwise, check
2074    // for a JAVA_HOME environment variable and fix up the path so it
2075    // looks like libjvm.so is installed there (append a fake suffix
2076    // hotspot/libjvm.so).
2077    const char *p = buf + strlen(buf) - 1;
2078    for (int count = 0; p > buf && count < 5; ++count) {
2079      for (--p; p > buf && *p != '/'; --p)
2080        /* empty */ ;
2081    }
2082
2083    if (strncmp(p, "/jre/lib/", 9) != 0) {
2084      // Look for JAVA_HOME in the environment.
2085      char* java_home_var = ::getenv("JAVA_HOME");
2086      if (java_home_var != NULL && java_home_var[0] != 0) {
2087        char cpu_arch[12];
2088        char* jrelib_p;
2089        int   len;
2090        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2091#ifdef _LP64
2092        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2093        if (strcmp(cpu_arch, "sparc") == 0) {
2094          strcat(cpu_arch, "v9");
2095        } else if (strcmp(cpu_arch, "i386") == 0) {
2096          strcpy(cpu_arch, "amd64");
2097        }
2098#endif
2099        // Check the current module name "libjvm.so".
2100        p = strrchr(buf, '/');
2101        assert(strstr(p, "/libjvm") == p, "invalid library name");
2102
2103        realpath(java_home_var, buf);
2104        // determine if this is a legacy image or modules image
2105        // modules image doesn't have "jre" subdirectory
2106        len = strlen(buf);
2107        assert(len < buflen, "Ran out of buffer space");
2108        jrelib_p = buf + len;
2109        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2110        if (0 != access(buf, F_OK)) {
2111          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2112        }
2113
2114        if (0 == access(buf, F_OK)) {
2115          // Use current module name "libjvm.so"
2116          len = strlen(buf);
2117          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2118        } else {
2119          // Go back to path of .so
2120          realpath((char *)dlinfo.dli_fname, buf);
2121        }
2122      }
2123    }
2124  }
2125
2126  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2127  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2128}
2129
2130
2131void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2132  // no prefix required, not even "_"
2133}
2134
2135
2136void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2137  // no suffix required
2138}
2139
2140// This method is a copy of JDK's sysGetLastErrorString
2141// from src/solaris/hpi/src/system_md.c
2142
2143size_t os::lasterror(char *buf, size_t len) {
2144  if (errno == 0)  return 0;
2145
2146  const char *s = ::strerror(errno);
2147  size_t n = ::strlen(s);
2148  if (n >= len) {
2149    n = len - 1;
2150  }
2151  ::strncpy(buf, s, n);
2152  buf[n] = '\0';
2153  return n;
2154}
2155
2156
2157// sun.misc.Signal
2158
2159extern "C" {
2160  static void UserHandler(int sig, void *siginfo, void *context) {
2161    // Ctrl-C is pressed during error reporting, likely because the error
2162    // handler fails to abort. Let VM die immediately.
2163    if (sig == SIGINT && is_error_reported()) {
2164      os::die();
2165    }
2166
2167    os::signal_notify(sig);
2168    // We do not need to reinstate the signal handler each time...
2169  }
2170}
2171
2172void* os::user_handler() {
2173  return CAST_FROM_FN_PTR(void*, UserHandler);
2174}
2175
2176struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2177  struct timespec ts;
2178  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2179
2180  return ts;
2181}
2182
2183extern "C" {
2184  typedef void (*sa_handler_t)(int);
2185  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2186}
2187
2188void* os::signal(int signal_number, void* handler) {
2189  struct sigaction sigAct, oldSigAct;
2190  sigfillset(&(sigAct.sa_mask));
2191  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2192  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2193
2194  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2195    // -1 means registration failed
2196    return (void *)-1;
2197  }
2198
2199  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2200}
2201
2202void os::signal_raise(int signal_number) {
2203  raise(signal_number);
2204}
2205
2206// The following code is moved from os.cpp for making this
2207// code platform specific, which it is by its very nature.
2208
2209// a counter for each possible signal value
2210static int Sigexit = 0;
2211static int Maxlibjsigsigs;
2212static jint *pending_signals = NULL;
2213static int *preinstalled_sigs = NULL;
2214static struct sigaction *chainedsigactions = NULL;
2215static sema_t sig_sem;
2216typedef int (*version_getting_t)();
2217version_getting_t os::Solaris::get_libjsig_version = NULL;
2218static int libjsigversion = NULL;
2219
2220int os::sigexitnum_pd() {
2221  assert(Sigexit > 0, "signal memory not yet initialized");
2222  return Sigexit;
2223}
2224
2225void os::Solaris::init_signal_mem() {
2226  // Initialize signal structures
2227  Maxsignum = SIGRTMAX;
2228  Sigexit = Maxsignum+1;
2229  assert(Maxsignum >0, "Unable to obtain max signal number");
2230
2231  Maxlibjsigsigs = Maxsignum;
2232
2233  // pending_signals has one int per signal
2234  // The additional signal is for SIGEXIT - exit signal to signal_thread
2235  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2236  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2237
2238  if (UseSignalChaining) {
2239    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2240                                                   * (Maxsignum + 1), mtInternal);
2241    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2242    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2243    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2244  }
2245  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2246  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2247}
2248
2249void os::signal_init_pd() {
2250  int ret;
2251
2252  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2253  assert(ret == 0, "sema_init() failed");
2254}
2255
2256void os::signal_notify(int signal_number) {
2257  int ret;
2258
2259  Atomic::inc(&pending_signals[signal_number]);
2260  ret = ::sema_post(&sig_sem);
2261  assert(ret == 0, "sema_post() failed");
2262}
2263
2264static int check_pending_signals(bool wait_for_signal) {
2265  int ret;
2266  while (true) {
2267    for (int i = 0; i < Sigexit + 1; i++) {
2268      jint n = pending_signals[i];
2269      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2270        return i;
2271      }
2272    }
2273    if (!wait_for_signal) {
2274      return -1;
2275    }
2276    JavaThread *thread = JavaThread::current();
2277    ThreadBlockInVM tbivm(thread);
2278
2279    bool threadIsSuspended;
2280    do {
2281      thread->set_suspend_equivalent();
2282      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2283      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2284        ;
2285      assert(ret == 0, "sema_wait() failed");
2286
2287      // were we externally suspended while we were waiting?
2288      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2289      if (threadIsSuspended) {
2290        // The semaphore has been incremented, but while we were waiting
2291        // another thread suspended us. We don't want to continue running
2292        // while suspended because that would surprise the thread that
2293        // suspended us.
2294        ret = ::sema_post(&sig_sem);
2295        assert(ret == 0, "sema_post() failed");
2296
2297        thread->java_suspend_self();
2298      }
2299    } while (threadIsSuspended);
2300  }
2301}
2302
2303int os::signal_lookup() {
2304  return check_pending_signals(false);
2305}
2306
2307int os::signal_wait() {
2308  return check_pending_signals(true);
2309}
2310
2311////////////////////////////////////////////////////////////////////////////////
2312// Virtual Memory
2313
2314static int page_size = -1;
2315
2316// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2317// clear this var if support is not available.
2318static bool has_map_align = true;
2319
2320int os::vm_page_size() {
2321  assert(page_size != -1, "must call os::init");
2322  return page_size;
2323}
2324
2325// Solaris allocates memory by pages.
2326int os::vm_allocation_granularity() {
2327  assert(page_size != -1, "must call os::init");
2328  return page_size;
2329}
2330
2331static bool recoverable_mmap_error(int err) {
2332  // See if the error is one we can let the caller handle. This
2333  // list of errno values comes from the Solaris mmap(2) man page.
2334  switch (err) {
2335  case EBADF:
2336  case EINVAL:
2337  case ENOTSUP:
2338    // let the caller deal with these errors
2339    return true;
2340
2341  default:
2342    // Any remaining errors on this OS can cause our reserved mapping
2343    // to be lost. That can cause confusion where different data
2344    // structures think they have the same memory mapped. The worst
2345    // scenario is if both the VM and a library think they have the
2346    // same memory mapped.
2347    return false;
2348  }
2349}
2350
2351static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2352                                    int err) {
2353  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2354          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2355          strerror(err), err);
2356}
2357
2358static void warn_fail_commit_memory(char* addr, size_t bytes,
2359                                    size_t alignment_hint, bool exec,
2360                                    int err) {
2361  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2362          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2363          alignment_hint, exec, strerror(err), err);
2364}
2365
2366int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2367  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2368  size_t size = bytes;
2369  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2370  if (res != NULL) {
2371    if (UseNUMAInterleaving) {
2372      numa_make_global(addr, bytes);
2373    }
2374    return 0;
2375  }
2376
2377  int err = errno;  // save errno from mmap() call in mmap_chunk()
2378
2379  if (!recoverable_mmap_error(err)) {
2380    warn_fail_commit_memory(addr, bytes, exec, err);
2381    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2382  }
2383
2384  return err;
2385}
2386
2387bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2388  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2389}
2390
2391void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2392                                  const char* mesg) {
2393  assert(mesg != NULL, "mesg must be specified");
2394  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2395  if (err != 0) {
2396    // the caller wants all commit errors to exit with the specified mesg:
2397    warn_fail_commit_memory(addr, bytes, exec, err);
2398    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2399  }
2400}
2401
2402size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2403  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2404         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2405         alignment, (size_t) vm_page_size());
2406
2407  for (int i = 0; _page_sizes[i] != 0; i++) {
2408    if (is_size_aligned(alignment, _page_sizes[i])) {
2409      return _page_sizes[i];
2410    }
2411  }
2412
2413  return (size_t) vm_page_size();
2414}
2415
2416int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2417                                    size_t alignment_hint, bool exec) {
2418  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2419  if (err == 0 && UseLargePages && alignment_hint > 0) {
2420    assert(is_size_aligned(bytes, alignment_hint),
2421           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2422
2423    // The syscall memcntl requires an exact page size (see man memcntl for details).
2424    size_t page_size = page_size_for_alignment(alignment_hint);
2425    if (page_size > (size_t) vm_page_size()) {
2426      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2427    }
2428  }
2429  return err;
2430}
2431
2432bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2433                          bool exec) {
2434  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2435}
2436
2437void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2438                                  size_t alignment_hint, bool exec,
2439                                  const char* mesg) {
2440  assert(mesg != NULL, "mesg must be specified");
2441  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2442  if (err != 0) {
2443    // the caller wants all commit errors to exit with the specified mesg:
2444    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2445    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2446  }
2447}
2448
2449// Uncommit the pages in a specified region.
2450void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2451  if (madvise(addr, bytes, MADV_FREE) < 0) {
2452    debug_only(warning("MADV_FREE failed."));
2453    return;
2454  }
2455}
2456
2457bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2458  return os::commit_memory(addr, size, !ExecMem);
2459}
2460
2461bool os::remove_stack_guard_pages(char* addr, size_t size) {
2462  return os::uncommit_memory(addr, size);
2463}
2464
2465// Change the page size in a given range.
2466void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2467  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2468  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2469  if (UseLargePages) {
2470    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2471    if (page_size > (size_t) vm_page_size()) {
2472      Solaris::setup_large_pages(addr, bytes, page_size);
2473    }
2474  }
2475}
2476
2477// Tell the OS to make the range local to the first-touching LWP
2478void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2479  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2480  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2481    debug_only(warning("MADV_ACCESS_LWP failed."));
2482  }
2483}
2484
2485// Tell the OS that this range would be accessed from different LWPs.
2486void os::numa_make_global(char *addr, size_t bytes) {
2487  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2488  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2489    debug_only(warning("MADV_ACCESS_MANY failed."));
2490  }
2491}
2492
2493// Get the number of the locality groups.
2494size_t os::numa_get_groups_num() {
2495  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2496  return n != -1 ? n : 1;
2497}
2498
2499// Get a list of leaf locality groups. A leaf lgroup is group that
2500// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2501// board. An LWP is assigned to one of these groups upon creation.
2502size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2503  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2504    ids[0] = 0;
2505    return 1;
2506  }
2507  int result_size = 0, top = 1, bottom = 0, cur = 0;
2508  for (int k = 0; k < size; k++) {
2509    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2510                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2511    if (r == -1) {
2512      ids[0] = 0;
2513      return 1;
2514    }
2515    if (!r) {
2516      // That's a leaf node.
2517      assert(bottom <= cur, "Sanity check");
2518      // Check if the node has memory
2519      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2520                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2521        ids[bottom++] = ids[cur];
2522      }
2523    }
2524    top += r;
2525    cur++;
2526  }
2527  if (bottom == 0) {
2528    // Handle a situation, when the OS reports no memory available.
2529    // Assume UMA architecture.
2530    ids[0] = 0;
2531    return 1;
2532  }
2533  return bottom;
2534}
2535
2536// Detect the topology change. Typically happens during CPU plugging-unplugging.
2537bool os::numa_topology_changed() {
2538  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2539  if (is_stale != -1 && is_stale) {
2540    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2541    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2542    assert(c != 0, "Failure to initialize LGRP API");
2543    Solaris::set_lgrp_cookie(c);
2544    return true;
2545  }
2546  return false;
2547}
2548
2549// Get the group id of the current LWP.
2550int os::numa_get_group_id() {
2551  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2552  if (lgrp_id == -1) {
2553    return 0;
2554  }
2555  const int size = os::numa_get_groups_num();
2556  int *ids = (int*)alloca(size * sizeof(int));
2557
2558  // Get the ids of all lgroups with memory; r is the count.
2559  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2560                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2561  if (r <= 0) {
2562    return 0;
2563  }
2564  return ids[os::random() % r];
2565}
2566
2567// Request information about the page.
2568bool os::get_page_info(char *start, page_info* info) {
2569  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2570  uint64_t addr = (uintptr_t)start;
2571  uint64_t outdata[2];
2572  uint_t validity = 0;
2573
2574  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2575    return false;
2576  }
2577
2578  info->size = 0;
2579  info->lgrp_id = -1;
2580
2581  if ((validity & 1) != 0) {
2582    if ((validity & 2) != 0) {
2583      info->lgrp_id = outdata[0];
2584    }
2585    if ((validity & 4) != 0) {
2586      info->size = outdata[1];
2587    }
2588    return true;
2589  }
2590  return false;
2591}
2592
2593// Scan the pages from start to end until a page different than
2594// the one described in the info parameter is encountered.
2595char *os::scan_pages(char *start, char* end, page_info* page_expected,
2596                     page_info* page_found) {
2597  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2598  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2599  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2600  uint_t validity[MAX_MEMINFO_CNT];
2601
2602  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2603  uint64_t p = (uint64_t)start;
2604  while (p < (uint64_t)end) {
2605    addrs[0] = p;
2606    size_t addrs_count = 1;
2607    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2608      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2609      addrs_count++;
2610    }
2611
2612    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2613      return NULL;
2614    }
2615
2616    size_t i = 0;
2617    for (; i < addrs_count; i++) {
2618      if ((validity[i] & 1) != 0) {
2619        if ((validity[i] & 4) != 0) {
2620          if (outdata[types * i + 1] != page_expected->size) {
2621            break;
2622          }
2623        } else if (page_expected->size != 0) {
2624          break;
2625        }
2626
2627        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2628          if (outdata[types * i] != page_expected->lgrp_id) {
2629            break;
2630          }
2631        }
2632      } else {
2633        return NULL;
2634      }
2635    }
2636
2637    if (i < addrs_count) {
2638      if ((validity[i] & 2) != 0) {
2639        page_found->lgrp_id = outdata[types * i];
2640      } else {
2641        page_found->lgrp_id = -1;
2642      }
2643      if ((validity[i] & 4) != 0) {
2644        page_found->size = outdata[types * i + 1];
2645      } else {
2646        page_found->size = 0;
2647      }
2648      return (char*)addrs[i];
2649    }
2650
2651    p = addrs[addrs_count - 1] + page_size;
2652  }
2653  return end;
2654}
2655
2656bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2657  size_t size = bytes;
2658  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2659  // uncommitted page. Otherwise, the read/write might succeed if we
2660  // have enough swap space to back the physical page.
2661  return
2662    NULL != Solaris::mmap_chunk(addr, size,
2663                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2664                                PROT_NONE);
2665}
2666
2667char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2668  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2669
2670  if (b == MAP_FAILED) {
2671    return NULL;
2672  }
2673  return b;
2674}
2675
2676char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2677                             size_t alignment_hint, bool fixed) {
2678  char* addr = requested_addr;
2679  int flags = MAP_PRIVATE | MAP_NORESERVE;
2680
2681  assert(!(fixed && (alignment_hint > 0)),
2682         "alignment hint meaningless with fixed mmap");
2683
2684  if (fixed) {
2685    flags |= MAP_FIXED;
2686  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2687    flags |= MAP_ALIGN;
2688    addr = (char*) alignment_hint;
2689  }
2690
2691  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2692  // uncommitted page. Otherwise, the read/write might succeed if we
2693  // have enough swap space to back the physical page.
2694  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2695}
2696
2697char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2698                            size_t alignment_hint) {
2699  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2700                                  (requested_addr != NULL));
2701
2702  guarantee(requested_addr == NULL || requested_addr == addr,
2703            "OS failed to return requested mmap address.");
2704  return addr;
2705}
2706
2707// Reserve memory at an arbitrary address, only if that area is
2708// available (and not reserved for something else).
2709
2710char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2711  const int max_tries = 10;
2712  char* base[max_tries];
2713  size_t size[max_tries];
2714
2715  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2716  // is dependent on the requested size and the MMU.  Our initial gap
2717  // value here is just a guess and will be corrected later.
2718  bool had_top_overlap = false;
2719  bool have_adjusted_gap = false;
2720  size_t gap = 0x400000;
2721
2722  // Assert only that the size is a multiple of the page size, since
2723  // that's all that mmap requires, and since that's all we really know
2724  // about at this low abstraction level.  If we need higher alignment,
2725  // we can either pass an alignment to this method or verify alignment
2726  // in one of the methods further up the call chain.  See bug 5044738.
2727  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2728
2729  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2730  // Give it a try, if the kernel honors the hint we can return immediately.
2731  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2732
2733  volatile int err = errno;
2734  if (addr == requested_addr) {
2735    return addr;
2736  } else if (addr != NULL) {
2737    pd_unmap_memory(addr, bytes);
2738  }
2739
2740  if (PrintMiscellaneous && Verbose) {
2741    char buf[256];
2742    buf[0] = '\0';
2743    if (addr == NULL) {
2744      jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2745    }
2746    warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2747            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2748            "%s", bytes, requested_addr, addr, buf);
2749  }
2750
2751  // Address hint method didn't work.  Fall back to the old method.
2752  // In theory, once SNV becomes our oldest supported platform, this
2753  // code will no longer be needed.
2754  //
2755  // Repeatedly allocate blocks until the block is allocated at the
2756  // right spot. Give up after max_tries.
2757  int i;
2758  for (i = 0; i < max_tries; ++i) {
2759    base[i] = reserve_memory(bytes);
2760
2761    if (base[i] != NULL) {
2762      // Is this the block we wanted?
2763      if (base[i] == requested_addr) {
2764        size[i] = bytes;
2765        break;
2766      }
2767
2768      // check that the gap value is right
2769      if (had_top_overlap && !have_adjusted_gap) {
2770        size_t actual_gap = base[i-1] - base[i] - bytes;
2771        if (gap != actual_gap) {
2772          // adjust the gap value and retry the last 2 allocations
2773          assert(i > 0, "gap adjustment code problem");
2774          have_adjusted_gap = true;  // adjust the gap only once, just in case
2775          gap = actual_gap;
2776          if (PrintMiscellaneous && Verbose) {
2777            warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2778          }
2779          unmap_memory(base[i], bytes);
2780          unmap_memory(base[i-1], size[i-1]);
2781          i-=2;
2782          continue;
2783        }
2784      }
2785
2786      // Does this overlap the block we wanted? Give back the overlapped
2787      // parts and try again.
2788      //
2789      // There is still a bug in this code: if top_overlap == bytes,
2790      // the overlap is offset from requested region by the value of gap.
2791      // In this case giving back the overlapped part will not work,
2792      // because we'll give back the entire block at base[i] and
2793      // therefore the subsequent allocation will not generate a new gap.
2794      // This could be fixed with a new algorithm that used larger
2795      // or variable size chunks to find the requested region -
2796      // but such a change would introduce additional complications.
2797      // It's rare enough that the planets align for this bug,
2798      // so we'll just wait for a fix for 6204603/5003415 which
2799      // will provide a mmap flag to allow us to avoid this business.
2800
2801      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2802      if (top_overlap >= 0 && top_overlap < bytes) {
2803        had_top_overlap = true;
2804        unmap_memory(base[i], top_overlap);
2805        base[i] += top_overlap;
2806        size[i] = bytes - top_overlap;
2807      } else {
2808        size_t bottom_overlap = base[i] + bytes - requested_addr;
2809        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2810          if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2811            warning("attempt_reserve_memory_at: possible alignment bug");
2812          }
2813          unmap_memory(requested_addr, bottom_overlap);
2814          size[i] = bytes - bottom_overlap;
2815        } else {
2816          size[i] = bytes;
2817        }
2818      }
2819    }
2820  }
2821
2822  // Give back the unused reserved pieces.
2823
2824  for (int j = 0; j < i; ++j) {
2825    if (base[j] != NULL) {
2826      unmap_memory(base[j], size[j]);
2827    }
2828  }
2829
2830  return (i < max_tries) ? requested_addr : NULL;
2831}
2832
2833bool os::pd_release_memory(char* addr, size_t bytes) {
2834  size_t size = bytes;
2835  return munmap(addr, size) == 0;
2836}
2837
2838static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2839  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2840         "addr must be page aligned");
2841  int retVal = mprotect(addr, bytes, prot);
2842  return retVal == 0;
2843}
2844
2845// Protect memory (Used to pass readonly pages through
2846// JNI GetArray<type>Elements with empty arrays.)
2847// Also, used for serialization page and for compressed oops null pointer
2848// checking.
2849bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2850                        bool is_committed) {
2851  unsigned int p = 0;
2852  switch (prot) {
2853  case MEM_PROT_NONE: p = PROT_NONE; break;
2854  case MEM_PROT_READ: p = PROT_READ; break;
2855  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2856  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2857  default:
2858    ShouldNotReachHere();
2859  }
2860  // is_committed is unused.
2861  return solaris_mprotect(addr, bytes, p);
2862}
2863
2864// guard_memory and unguard_memory only happens within stack guard pages.
2865// Since ISM pertains only to the heap, guard and unguard memory should not
2866/// happen with an ISM region.
2867bool os::guard_memory(char* addr, size_t bytes) {
2868  return solaris_mprotect(addr, bytes, PROT_NONE);
2869}
2870
2871bool os::unguard_memory(char* addr, size_t bytes) {
2872  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2873}
2874
2875// Large page support
2876static size_t _large_page_size = 0;
2877
2878// Insertion sort for small arrays (descending order).
2879static void insertion_sort_descending(size_t* array, int len) {
2880  for (int i = 0; i < len; i++) {
2881    size_t val = array[i];
2882    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2883      size_t tmp = array[key];
2884      array[key] = array[key - 1];
2885      array[key - 1] = tmp;
2886    }
2887  }
2888}
2889
2890bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2891  const unsigned int usable_count = VM_Version::page_size_count();
2892  if (usable_count == 1) {
2893    return false;
2894  }
2895
2896  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2897  // build platform, getpagesizes() (without the '2') can be called directly.
2898  typedef int (*gps_t)(size_t[], int);
2899  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2900  if (gps_func == NULL) {
2901    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2902    if (gps_func == NULL) {
2903      if (warn) {
2904        warning("MPSS is not supported by the operating system.");
2905      }
2906      return false;
2907    }
2908  }
2909
2910  // Fill the array of page sizes.
2911  int n = (*gps_func)(_page_sizes, page_sizes_max);
2912  assert(n > 0, "Solaris bug?");
2913
2914  if (n == page_sizes_max) {
2915    // Add a sentinel value (necessary only if the array was completely filled
2916    // since it is static (zeroed at initialization)).
2917    _page_sizes[--n] = 0;
2918    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2919  }
2920  assert(_page_sizes[n] == 0, "missing sentinel");
2921  trace_page_sizes("available page sizes", _page_sizes, n);
2922
2923  if (n == 1) return false;     // Only one page size available.
2924
2925  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2926  // select up to usable_count elements.  First sort the array, find the first
2927  // acceptable value, then copy the usable sizes to the top of the array and
2928  // trim the rest.  Make sure to include the default page size :-).
2929  //
2930  // A better policy could get rid of the 4M limit by taking the sizes of the
2931  // important VM memory regions (java heap and possibly the code cache) into
2932  // account.
2933  insertion_sort_descending(_page_sizes, n);
2934  const size_t size_limit =
2935    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2936  int beg;
2937  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2938  const int end = MIN2((int)usable_count, n) - 1;
2939  for (int cur = 0; cur < end; ++cur, ++beg) {
2940    _page_sizes[cur] = _page_sizes[beg];
2941  }
2942  _page_sizes[end] = vm_page_size();
2943  _page_sizes[end + 1] = 0;
2944
2945  if (_page_sizes[end] > _page_sizes[end - 1]) {
2946    // Default page size is not the smallest; sort again.
2947    insertion_sort_descending(_page_sizes, end + 1);
2948  }
2949  *page_size = _page_sizes[0];
2950
2951  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2952  return true;
2953}
2954
2955void os::large_page_init() {
2956  if (UseLargePages) {
2957    // print a warning if any large page related flag is specified on command line
2958    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2959                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2960
2961    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2962  }
2963}
2964
2965bool os::Solaris::is_valid_page_size(size_t bytes) {
2966  for (int i = 0; _page_sizes[i] != 0; i++) {
2967    if (_page_sizes[i] == bytes) {
2968      return true;
2969    }
2970  }
2971  return false;
2972}
2973
2974bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2975  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2976  assert(is_ptr_aligned((void*) start, align),
2977         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2978  assert(is_size_aligned(bytes, align),
2979         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2980
2981  // Signal to OS that we want large pages for addresses
2982  // from addr, addr + bytes
2983  struct memcntl_mha mpss_struct;
2984  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2985  mpss_struct.mha_pagesize = align;
2986  mpss_struct.mha_flags = 0;
2987  // Upon successful completion, memcntl() returns 0
2988  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2989    debug_only(warning("Attempt to use MPSS failed."));
2990    return false;
2991  }
2992  return true;
2993}
2994
2995char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2996  fatal("os::reserve_memory_special should not be called on Solaris.");
2997  return NULL;
2998}
2999
3000bool os::release_memory_special(char* base, size_t bytes) {
3001  fatal("os::release_memory_special should not be called on Solaris.");
3002  return false;
3003}
3004
3005size_t os::large_page_size() {
3006  return _large_page_size;
3007}
3008
3009// MPSS allows application to commit large page memory on demand; with ISM
3010// the entire memory region must be allocated as shared memory.
3011bool os::can_commit_large_page_memory() {
3012  return true;
3013}
3014
3015bool os::can_execute_large_page_memory() {
3016  return true;
3017}
3018
3019// Read calls from inside the vm need to perform state transitions
3020size_t os::read(int fd, void *buf, unsigned int nBytes) {
3021  size_t res;
3022  JavaThread* thread = (JavaThread*)Thread::current();
3023  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3024  ThreadBlockInVM tbiv(thread);
3025  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3026  return res;
3027}
3028
3029size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3030  size_t res;
3031  JavaThread* thread = (JavaThread*)Thread::current();
3032  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3033  ThreadBlockInVM tbiv(thread);
3034  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3035  return res;
3036}
3037
3038size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3039  size_t res;
3040  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3041         "Assumed _thread_in_native");
3042  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3043  return res;
3044}
3045
3046void os::naked_short_sleep(jlong ms) {
3047  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3048
3049  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3050  // Solaris requires -lrt for this.
3051  usleep((ms * 1000));
3052
3053  return;
3054}
3055
3056// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3057void os::infinite_sleep() {
3058  while (true) {    // sleep forever ...
3059    ::sleep(100);   // ... 100 seconds at a time
3060  }
3061}
3062
3063// Used to convert frequent JVM_Yield() to nops
3064bool os::dont_yield() {
3065  if (DontYieldALot) {
3066    static hrtime_t last_time = 0;
3067    hrtime_t diff = getTimeNanos() - last_time;
3068
3069    if (diff < DontYieldALotInterval * 1000000) {
3070      return true;
3071    }
3072
3073    last_time += diff;
3074
3075    return false;
3076  } else {
3077    return false;
3078  }
3079}
3080
3081// Note that yield semantics are defined by the scheduling class to which
3082// the thread currently belongs.  Typically, yield will _not yield to
3083// other equal or higher priority threads that reside on the dispatch queues
3084// of other CPUs.
3085
3086void os::naked_yield() {
3087  thr_yield();
3088}
3089
3090// Interface for setting lwp priorities.  If we are using T2 libthread,
3091// which forces the use of BoundThreads or we manually set UseBoundThreads,
3092// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3093// function is meaningless in this mode so we must adjust the real lwp's priority
3094// The routines below implement the getting and setting of lwp priorities.
3095//
3096// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3097//       being deprecated and all threads are now BoundThreads
3098//
3099// Note: There are three priority scales used on Solaris.  Java priotities
3100//       which range from 1 to 10, libthread "thr_setprio" scale which range
3101//       from 0 to 127, and the current scheduling class of the process we
3102//       are running in.  This is typically from -60 to +60.
3103//       The setting of the lwp priorities in done after a call to thr_setprio
3104//       so Java priorities are mapped to libthread priorities and we map from
3105//       the latter to lwp priorities.  We don't keep priorities stored in
3106//       Java priorities since some of our worker threads want to set priorities
3107//       higher than all Java threads.
3108//
3109// For related information:
3110// (1)  man -s 2 priocntl
3111// (2)  man -s 4 priocntl
3112// (3)  man dispadmin
3113// =    librt.so
3114// =    libthread/common/rtsched.c - thrp_setlwpprio().
3115// =    ps -cL <pid> ... to validate priority.
3116// =    sched_get_priority_min and _max
3117//              pthread_create
3118//              sched_setparam
3119//              pthread_setschedparam
3120//
3121// Assumptions:
3122// +    We assume that all threads in the process belong to the same
3123//              scheduling class.   IE. an homogenous process.
3124// +    Must be root or in IA group to change change "interactive" attribute.
3125//              Priocntl() will fail silently.  The only indication of failure is when
3126//              we read-back the value and notice that it hasn't changed.
3127// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3128// +    For RT, change timeslice as well.  Invariant:
3129//              constant "priority integral"
3130//              Konst == TimeSlice * (60-Priority)
3131//              Given a priority, compute appropriate timeslice.
3132// +    Higher numerical values have higher priority.
3133
3134// sched class attributes
3135typedef struct {
3136  int   schedPolicy;              // classID
3137  int   maxPrio;
3138  int   minPrio;
3139} SchedInfo;
3140
3141
3142static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3143
3144#ifdef ASSERT
3145static int  ReadBackValidate = 1;
3146#endif
3147static int  myClass     = 0;
3148static int  myMin       = 0;
3149static int  myMax       = 0;
3150static int  myCur       = 0;
3151static bool priocntl_enable = false;
3152
3153static const int criticalPrio = FXCriticalPriority;
3154static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3155
3156
3157// lwp_priocntl_init
3158//
3159// Try to determine the priority scale for our process.
3160//
3161// Return errno or 0 if OK.
3162//
3163static int lwp_priocntl_init() {
3164  int rslt;
3165  pcinfo_t ClassInfo;
3166  pcparms_t ParmInfo;
3167  int i;
3168
3169  if (!UseThreadPriorities) return 0;
3170
3171  // If ThreadPriorityPolicy is 1, switch tables
3172  if (ThreadPriorityPolicy == 1) {
3173    for (i = 0; i < CriticalPriority+1; i++)
3174      os::java_to_os_priority[i] = prio_policy1[i];
3175  }
3176  if (UseCriticalJavaThreadPriority) {
3177    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3178    // See set_native_priority() and set_lwp_class_and_priority().
3179    // Save original MaxPriority mapping in case attempt to
3180    // use critical priority fails.
3181    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3182    // Set negative to distinguish from other priorities
3183    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3184  }
3185
3186  // Get IDs for a set of well-known scheduling classes.
3187  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3188  // the system.  We should have a loop that iterates over the
3189  // classID values, which are known to be "small" integers.
3190
3191  strcpy(ClassInfo.pc_clname, "TS");
3192  ClassInfo.pc_cid = -1;
3193  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3194  if (rslt < 0) return errno;
3195  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3196  tsLimits.schedPolicy = ClassInfo.pc_cid;
3197  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3198  tsLimits.minPrio = -tsLimits.maxPrio;
3199
3200  strcpy(ClassInfo.pc_clname, "IA");
3201  ClassInfo.pc_cid = -1;
3202  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3203  if (rslt < 0) return errno;
3204  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3205  iaLimits.schedPolicy = ClassInfo.pc_cid;
3206  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3207  iaLimits.minPrio = -iaLimits.maxPrio;
3208
3209  strcpy(ClassInfo.pc_clname, "RT");
3210  ClassInfo.pc_cid = -1;
3211  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3212  if (rslt < 0) return errno;
3213  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3214  rtLimits.schedPolicy = ClassInfo.pc_cid;
3215  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3216  rtLimits.minPrio = 0;
3217
3218  strcpy(ClassInfo.pc_clname, "FX");
3219  ClassInfo.pc_cid = -1;
3220  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3221  if (rslt < 0) return errno;
3222  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3223  fxLimits.schedPolicy = ClassInfo.pc_cid;
3224  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3225  fxLimits.minPrio = 0;
3226
3227  // Query our "current" scheduling class.
3228  // This will normally be IA, TS or, rarely, FX or RT.
3229  memset(&ParmInfo, 0, sizeof(ParmInfo));
3230  ParmInfo.pc_cid = PC_CLNULL;
3231  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3232  if (rslt < 0) return errno;
3233  myClass = ParmInfo.pc_cid;
3234
3235  // We now know our scheduling classId, get specific information
3236  // about the class.
3237  ClassInfo.pc_cid = myClass;
3238  ClassInfo.pc_clname[0] = 0;
3239  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3240  if (rslt < 0) return errno;
3241
3242  if (ThreadPriorityVerbose) {
3243    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3244  }
3245
3246  memset(&ParmInfo, 0, sizeof(pcparms_t));
3247  ParmInfo.pc_cid = PC_CLNULL;
3248  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3249  if (rslt < 0) return errno;
3250
3251  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3252    myMin = rtLimits.minPrio;
3253    myMax = rtLimits.maxPrio;
3254  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3255    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3256    myMin = iaLimits.minPrio;
3257    myMax = iaLimits.maxPrio;
3258    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3259  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3260    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3261    myMin = tsLimits.minPrio;
3262    myMax = tsLimits.maxPrio;
3263    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3264  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3265    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3266    myMin = fxLimits.minPrio;
3267    myMax = fxLimits.maxPrio;
3268    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3269  } else {
3270    // No clue - punt
3271    if (ThreadPriorityVerbose) {
3272      tty->print_cr("Unknown scheduling class: %s ... \n",
3273                    ClassInfo.pc_clname);
3274    }
3275    return EINVAL;      // no clue, punt
3276  }
3277
3278  if (ThreadPriorityVerbose) {
3279    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3280  }
3281
3282  priocntl_enable = true;  // Enable changing priorities
3283  return 0;
3284}
3285
3286#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3287#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3288#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3289#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3290
3291
3292// scale_to_lwp_priority
3293//
3294// Convert from the libthread "thr_setprio" scale to our current
3295// lwp scheduling class scale.
3296//
3297static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3298  int v;
3299
3300  if (x == 127) return rMax;            // avoid round-down
3301  v = (((x*(rMax-rMin)))/128)+rMin;
3302  return v;
3303}
3304
3305
3306// set_lwp_class_and_priority
3307int set_lwp_class_and_priority(int ThreadID, int lwpid,
3308                               int newPrio, int new_class, bool scale) {
3309  int rslt;
3310  int Actual, Expected, prv;
3311  pcparms_t ParmInfo;                   // for GET-SET
3312#ifdef ASSERT
3313  pcparms_t ReadBack;                   // for readback
3314#endif
3315
3316  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3317  // Query current values.
3318  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3319  // Cache "pcparms_t" in global ParmCache.
3320  // TODO: elide set-to-same-value
3321
3322  // If something went wrong on init, don't change priorities.
3323  if (!priocntl_enable) {
3324    if (ThreadPriorityVerbose) {
3325      tty->print_cr("Trying to set priority but init failed, ignoring");
3326    }
3327    return EINVAL;
3328  }
3329
3330  // If lwp hasn't started yet, just return
3331  // the _start routine will call us again.
3332  if (lwpid <= 0) {
3333    if (ThreadPriorityVerbose) {
3334      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3335                    INTPTR_FORMAT " to %d, lwpid not set",
3336                    ThreadID, newPrio);
3337    }
3338    return 0;
3339  }
3340
3341  if (ThreadPriorityVerbose) {
3342    tty->print_cr ("set_lwp_class_and_priority("
3343                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3344                   ThreadID, lwpid, newPrio);
3345  }
3346
3347  memset(&ParmInfo, 0, sizeof(pcparms_t));
3348  ParmInfo.pc_cid = PC_CLNULL;
3349  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3350  if (rslt < 0) return errno;
3351
3352  int cur_class = ParmInfo.pc_cid;
3353  ParmInfo.pc_cid = (id_t)new_class;
3354
3355  if (new_class == rtLimits.schedPolicy) {
3356    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3357    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3358                                                       rtLimits.maxPrio, newPrio)
3359                               : newPrio;
3360    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3361    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3362    if (ThreadPriorityVerbose) {
3363      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3364    }
3365  } else if (new_class == iaLimits.schedPolicy) {
3366    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3367    int maxClamped     = MIN2(iaLimits.maxPrio,
3368                              cur_class == new_class
3369                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3370    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3371                                                       maxClamped, newPrio)
3372                               : newPrio;
3373    iaInfo->ia_uprilim = cur_class == new_class
3374                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3375    iaInfo->ia_mode    = IA_NOCHANGE;
3376    if (ThreadPriorityVerbose) {
3377      tty->print_cr("IA: [%d...%d] %d->%d\n",
3378                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3379    }
3380  } else if (new_class == tsLimits.schedPolicy) {
3381    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3382    int maxClamped     = MIN2(tsLimits.maxPrio,
3383                              cur_class == new_class
3384                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3385    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3386                                                       maxClamped, newPrio)
3387                               : newPrio;
3388    tsInfo->ts_uprilim = cur_class == new_class
3389                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3390    if (ThreadPriorityVerbose) {
3391      tty->print_cr("TS: [%d...%d] %d->%d\n",
3392                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3393    }
3394  } else if (new_class == fxLimits.schedPolicy) {
3395    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3396    int maxClamped     = MIN2(fxLimits.maxPrio,
3397                              cur_class == new_class
3398                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3399    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3400                                                       maxClamped, newPrio)
3401                               : newPrio;
3402    fxInfo->fx_uprilim = cur_class == new_class
3403                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3404    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3405    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3406    if (ThreadPriorityVerbose) {
3407      tty->print_cr("FX: [%d...%d] %d->%d\n",
3408                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3409    }
3410  } else {
3411    if (ThreadPriorityVerbose) {
3412      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3413    }
3414    return EINVAL;    // no clue, punt
3415  }
3416
3417  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3418  if (ThreadPriorityVerbose && rslt) {
3419    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3420  }
3421  if (rslt < 0) return errno;
3422
3423#ifdef ASSERT
3424  // Sanity check: read back what we just attempted to set.
3425  // In theory it could have changed in the interim ...
3426  //
3427  // The priocntl system call is tricky.
3428  // Sometimes it'll validate the priority value argument and
3429  // return EINVAL if unhappy.  At other times it fails silently.
3430  // Readbacks are prudent.
3431
3432  if (!ReadBackValidate) return 0;
3433
3434  memset(&ReadBack, 0, sizeof(pcparms_t));
3435  ReadBack.pc_cid = PC_CLNULL;
3436  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3437  assert(rslt >= 0, "priocntl failed");
3438  Actual = Expected = 0xBAD;
3439  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3440  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3441    Actual   = RTPRI(ReadBack)->rt_pri;
3442    Expected = RTPRI(ParmInfo)->rt_pri;
3443  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3444    Actual   = IAPRI(ReadBack)->ia_upri;
3445    Expected = IAPRI(ParmInfo)->ia_upri;
3446  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3447    Actual   = TSPRI(ReadBack)->ts_upri;
3448    Expected = TSPRI(ParmInfo)->ts_upri;
3449  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3450    Actual   = FXPRI(ReadBack)->fx_upri;
3451    Expected = FXPRI(ParmInfo)->fx_upri;
3452  } else {
3453    if (ThreadPriorityVerbose) {
3454      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3455                    ParmInfo.pc_cid);
3456    }
3457  }
3458
3459  if (Actual != Expected) {
3460    if (ThreadPriorityVerbose) {
3461      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3462                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3463    }
3464  }
3465#endif
3466
3467  return 0;
3468}
3469
3470// Solaris only gives access to 128 real priorities at a time,
3471// so we expand Java's ten to fill this range.  This would be better
3472// if we dynamically adjusted relative priorities.
3473//
3474// The ThreadPriorityPolicy option allows us to select 2 different
3475// priority scales.
3476//
3477// ThreadPriorityPolicy=0
3478// Since the Solaris' default priority is MaximumPriority, we do not
3479// set a priority lower than Max unless a priority lower than
3480// NormPriority is requested.
3481//
3482// ThreadPriorityPolicy=1
3483// This mode causes the priority table to get filled with
3484// linear values.  NormPriority get's mapped to 50% of the
3485// Maximum priority an so on.  This will cause VM threads
3486// to get unfair treatment against other Solaris processes
3487// which do not explicitly alter their thread priorities.
3488
3489int os::java_to_os_priority[CriticalPriority + 1] = {
3490  -99999,         // 0 Entry should never be used
3491
3492  0,              // 1 MinPriority
3493  32,             // 2
3494  64,             // 3
3495
3496  96,             // 4
3497  127,            // 5 NormPriority
3498  127,            // 6
3499
3500  127,            // 7
3501  127,            // 8
3502  127,            // 9 NearMaxPriority
3503
3504  127,            // 10 MaxPriority
3505
3506  -criticalPrio   // 11 CriticalPriority
3507};
3508
3509OSReturn os::set_native_priority(Thread* thread, int newpri) {
3510  OSThread* osthread = thread->osthread();
3511
3512  // Save requested priority in case the thread hasn't been started
3513  osthread->set_native_priority(newpri);
3514
3515  // Check for critical priority request
3516  bool fxcritical = false;
3517  if (newpri == -criticalPrio) {
3518    fxcritical = true;
3519    newpri = criticalPrio;
3520  }
3521
3522  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3523  if (!UseThreadPriorities) return OS_OK;
3524
3525  int status = 0;
3526
3527  if (!fxcritical) {
3528    // Use thr_setprio only if we have a priority that thr_setprio understands
3529    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3530  }
3531
3532  int lwp_status =
3533          set_lwp_class_and_priority(osthread->thread_id(),
3534                                     osthread->lwp_id(),
3535                                     newpri,
3536                                     fxcritical ? fxLimits.schedPolicy : myClass,
3537                                     !fxcritical);
3538  if (lwp_status != 0 && fxcritical) {
3539    // Try again, this time without changing the scheduling class
3540    newpri = java_MaxPriority_to_os_priority;
3541    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3542                                            osthread->lwp_id(),
3543                                            newpri, myClass, false);
3544  }
3545  status |= lwp_status;
3546  return (status == 0) ? OS_OK : OS_ERR;
3547}
3548
3549
3550OSReturn os::get_native_priority(const Thread* const thread,
3551                                 int *priority_ptr) {
3552  int p;
3553  if (!UseThreadPriorities) {
3554    *priority_ptr = NormalPriority;
3555    return OS_OK;
3556  }
3557  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3558  if (status != 0) {
3559    return OS_ERR;
3560  }
3561  *priority_ptr = p;
3562  return OS_OK;
3563}
3564
3565
3566// Hint to the underlying OS that a task switch would not be good.
3567// Void return because it's a hint and can fail.
3568void os::hint_no_preempt() {
3569  schedctl_start(schedctl_init());
3570}
3571
3572static void resume_clear_context(OSThread *osthread) {
3573  osthread->set_ucontext(NULL);
3574}
3575
3576static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3577  osthread->set_ucontext(context);
3578}
3579
3580static PosixSemaphore sr_semaphore;
3581
3582void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3583  // Save and restore errno to avoid confusing native code with EINTR
3584  // after sigsuspend.
3585  int old_errno = errno;
3586
3587  OSThread* osthread = thread->osthread();
3588  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3589
3590  os::SuspendResume::State current = osthread->sr.state();
3591  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3592    suspend_save_context(osthread, uc);
3593
3594    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3595    os::SuspendResume::State state = osthread->sr.suspended();
3596    if (state == os::SuspendResume::SR_SUSPENDED) {
3597      sigset_t suspend_set;  // signals for sigsuspend()
3598
3599      // get current set of blocked signals and unblock resume signal
3600      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3601      sigdelset(&suspend_set, os::Solaris::SIGasync());
3602
3603      sr_semaphore.signal();
3604      // wait here until we are resumed
3605      while (1) {
3606        sigsuspend(&suspend_set);
3607
3608        os::SuspendResume::State result = osthread->sr.running();
3609        if (result == os::SuspendResume::SR_RUNNING) {
3610          sr_semaphore.signal();
3611          break;
3612        }
3613      }
3614
3615    } else if (state == os::SuspendResume::SR_RUNNING) {
3616      // request was cancelled, continue
3617    } else {
3618      ShouldNotReachHere();
3619    }
3620
3621    resume_clear_context(osthread);
3622  } else if (current == os::SuspendResume::SR_RUNNING) {
3623    // request was cancelled, continue
3624  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3625    // ignore
3626  } else {
3627    // ignore
3628  }
3629
3630  errno = old_errno;
3631}
3632
3633void os::print_statistics() {
3634}
3635
3636bool os::message_box(const char* title, const char* message) {
3637  int i;
3638  fdStream err(defaultStream::error_fd());
3639  for (i = 0; i < 78; i++) err.print_raw("=");
3640  err.cr();
3641  err.print_raw_cr(title);
3642  for (i = 0; i < 78; i++) err.print_raw("-");
3643  err.cr();
3644  err.print_raw_cr(message);
3645  for (i = 0; i < 78; i++) err.print_raw("=");
3646  err.cr();
3647
3648  char buf[16];
3649  // Prevent process from exiting upon "read error" without consuming all CPU
3650  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3651
3652  return buf[0] == 'y' || buf[0] == 'Y';
3653}
3654
3655static int sr_notify(OSThread* osthread) {
3656  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3657  assert_status(status == 0, status, "thr_kill");
3658  return status;
3659}
3660
3661// "Randomly" selected value for how long we want to spin
3662// before bailing out on suspending a thread, also how often
3663// we send a signal to a thread we want to resume
3664static const int RANDOMLY_LARGE_INTEGER = 1000000;
3665static const int RANDOMLY_LARGE_INTEGER2 = 100;
3666
3667static bool do_suspend(OSThread* osthread) {
3668  assert(osthread->sr.is_running(), "thread should be running");
3669  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3670
3671  // mark as suspended and send signal
3672  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3673    // failed to switch, state wasn't running?
3674    ShouldNotReachHere();
3675    return false;
3676  }
3677
3678  if (sr_notify(osthread) != 0) {
3679    ShouldNotReachHere();
3680  }
3681
3682  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3683  while (true) {
3684    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3685      break;
3686    } else {
3687      // timeout
3688      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3689      if (cancelled == os::SuspendResume::SR_RUNNING) {
3690        return false;
3691      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3692        // make sure that we consume the signal on the semaphore as well
3693        sr_semaphore.wait();
3694        break;
3695      } else {
3696        ShouldNotReachHere();
3697        return false;
3698      }
3699    }
3700  }
3701
3702  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3703  return true;
3704}
3705
3706static void do_resume(OSThread* osthread) {
3707  assert(osthread->sr.is_suspended(), "thread should be suspended");
3708  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3709
3710  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3711    // failed to switch to WAKEUP_REQUEST
3712    ShouldNotReachHere();
3713    return;
3714  }
3715
3716  while (true) {
3717    if (sr_notify(osthread) == 0) {
3718      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3719        if (osthread->sr.is_running()) {
3720          return;
3721        }
3722      }
3723    } else {
3724      ShouldNotReachHere();
3725    }
3726  }
3727
3728  guarantee(osthread->sr.is_running(), "Must be running!");
3729}
3730
3731void os::SuspendedThreadTask::internal_do_task() {
3732  if (do_suspend(_thread->osthread())) {
3733    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3734    do_task(context);
3735    do_resume(_thread->osthread());
3736  }
3737}
3738
3739class PcFetcher : public os::SuspendedThreadTask {
3740 public:
3741  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3742  ExtendedPC result();
3743 protected:
3744  void do_task(const os::SuspendedThreadTaskContext& context);
3745 private:
3746  ExtendedPC _epc;
3747};
3748
3749ExtendedPC PcFetcher::result() {
3750  guarantee(is_done(), "task is not done yet.");
3751  return _epc;
3752}
3753
3754void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3755  Thread* thread = context.thread();
3756  OSThread* osthread = thread->osthread();
3757  if (osthread->ucontext() != NULL) {
3758    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3759  } else {
3760    // NULL context is unexpected, double-check this is the VMThread
3761    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3762  }
3763}
3764
3765// A lightweight implementation that does not suspend the target thread and
3766// thus returns only a hint. Used for profiling only!
3767ExtendedPC os::get_thread_pc(Thread* thread) {
3768  // Make sure that it is called by the watcher and the Threads lock is owned.
3769  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3770  // For now, is only used to profile the VM Thread
3771  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3772  PcFetcher fetcher(thread);
3773  fetcher.run();
3774  return fetcher.result();
3775}
3776
3777
3778// This does not do anything on Solaris. This is basically a hook for being
3779// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3780void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3781                              const methodHandle& method, JavaCallArguments* args,
3782                              Thread* thread) {
3783  f(value, method, args, thread);
3784}
3785
3786// This routine may be used by user applications as a "hook" to catch signals.
3787// The user-defined signal handler must pass unrecognized signals to this
3788// routine, and if it returns true (non-zero), then the signal handler must
3789// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3790// routine will never retun false (zero), but instead will execute a VM panic
3791// routine kill the process.
3792//
3793// If this routine returns false, it is OK to call it again.  This allows
3794// the user-defined signal handler to perform checks either before or after
3795// the VM performs its own checks.  Naturally, the user code would be making
3796// a serious error if it tried to handle an exception (such as a null check
3797// or breakpoint) that the VM was generating for its own correct operation.
3798//
3799// This routine may recognize any of the following kinds of signals:
3800// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3801// os::Solaris::SIGasync
3802// It should be consulted by handlers for any of those signals.
3803//
3804// The caller of this routine must pass in the three arguments supplied
3805// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3806// field of the structure passed to sigaction().  This routine assumes that
3807// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3808//
3809// Note that the VM will print warnings if it detects conflicting signal
3810// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3811//
3812extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3813                                                   siginfo_t* siginfo,
3814                                                   void* ucontext,
3815                                                   int abort_if_unrecognized);
3816
3817
3818void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3819  int orig_errno = errno;  // Preserve errno value over signal handler.
3820  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3821  errno = orig_errno;
3822}
3823
3824// This boolean allows users to forward their own non-matching signals
3825// to JVM_handle_solaris_signal, harmlessly.
3826bool os::Solaris::signal_handlers_are_installed = false;
3827
3828// For signal-chaining
3829bool os::Solaris::libjsig_is_loaded = false;
3830typedef struct sigaction *(*get_signal_t)(int);
3831get_signal_t os::Solaris::get_signal_action = NULL;
3832
3833struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3834  struct sigaction *actp = NULL;
3835
3836  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3837    // Retrieve the old signal handler from libjsig
3838    actp = (*get_signal_action)(sig);
3839  }
3840  if (actp == NULL) {
3841    // Retrieve the preinstalled signal handler from jvm
3842    actp = get_preinstalled_handler(sig);
3843  }
3844
3845  return actp;
3846}
3847
3848static bool call_chained_handler(struct sigaction *actp, int sig,
3849                                 siginfo_t *siginfo, void *context) {
3850  // Call the old signal handler
3851  if (actp->sa_handler == SIG_DFL) {
3852    // It's more reasonable to let jvm treat it as an unexpected exception
3853    // instead of taking the default action.
3854    return false;
3855  } else if (actp->sa_handler != SIG_IGN) {
3856    if ((actp->sa_flags & SA_NODEFER) == 0) {
3857      // automaticlly block the signal
3858      sigaddset(&(actp->sa_mask), sig);
3859    }
3860
3861    sa_handler_t hand;
3862    sa_sigaction_t sa;
3863    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3864    // retrieve the chained handler
3865    if (siginfo_flag_set) {
3866      sa = actp->sa_sigaction;
3867    } else {
3868      hand = actp->sa_handler;
3869    }
3870
3871    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3872      actp->sa_handler = SIG_DFL;
3873    }
3874
3875    // try to honor the signal mask
3876    sigset_t oset;
3877    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3878
3879    // call into the chained handler
3880    if (siginfo_flag_set) {
3881      (*sa)(sig, siginfo, context);
3882    } else {
3883      (*hand)(sig);
3884    }
3885
3886    // restore the signal mask
3887    pthread_sigmask(SIG_SETMASK, &oset, 0);
3888  }
3889  // Tell jvm's signal handler the signal is taken care of.
3890  return true;
3891}
3892
3893bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3894  bool chained = false;
3895  // signal-chaining
3896  if (UseSignalChaining) {
3897    struct sigaction *actp = get_chained_signal_action(sig);
3898    if (actp != NULL) {
3899      chained = call_chained_handler(actp, sig, siginfo, context);
3900    }
3901  }
3902  return chained;
3903}
3904
3905struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3906  assert((chainedsigactions != (struct sigaction *)NULL) &&
3907         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3908  if (preinstalled_sigs[sig] != 0) {
3909    return &chainedsigactions[sig];
3910  }
3911  return NULL;
3912}
3913
3914void os::Solaris::save_preinstalled_handler(int sig,
3915                                            struct sigaction& oldAct) {
3916  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3917  assert((chainedsigactions != (struct sigaction *)NULL) &&
3918         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3919  chainedsigactions[sig] = oldAct;
3920  preinstalled_sigs[sig] = 1;
3921}
3922
3923void os::Solaris::set_signal_handler(int sig, bool set_installed,
3924                                     bool oktochain) {
3925  // Check for overwrite.
3926  struct sigaction oldAct;
3927  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3928  void* oldhand =
3929      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3930                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3931  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3932      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3933      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3934    if (AllowUserSignalHandlers || !set_installed) {
3935      // Do not overwrite; user takes responsibility to forward to us.
3936      return;
3937    } else if (UseSignalChaining) {
3938      if (oktochain) {
3939        // save the old handler in jvm
3940        save_preinstalled_handler(sig, oldAct);
3941      } else {
3942        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3943      }
3944      // libjsig also interposes the sigaction() call below and saves the
3945      // old sigaction on it own.
3946    } else {
3947      fatal("Encountered unexpected pre-existing sigaction handler "
3948            "%#lx for signal %d.", (long)oldhand, sig);
3949    }
3950  }
3951
3952  struct sigaction sigAct;
3953  sigfillset(&(sigAct.sa_mask));
3954  sigAct.sa_handler = SIG_DFL;
3955
3956  sigAct.sa_sigaction = signalHandler;
3957  // Handle SIGSEGV on alternate signal stack if
3958  // not using stack banging
3959  if (!UseStackBanging && sig == SIGSEGV) {
3960    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3961  } else {
3962    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3963  }
3964  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3965
3966  sigaction(sig, &sigAct, &oldAct);
3967
3968  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3969                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3970  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3971}
3972
3973
3974#define DO_SIGNAL_CHECK(sig)                      \
3975  do {                                            \
3976    if (!sigismember(&check_signal_done, sig)) {  \
3977      os::Solaris::check_signal_handler(sig);     \
3978    }                                             \
3979  } while (0)
3980
3981// This method is a periodic task to check for misbehaving JNI applications
3982// under CheckJNI, we can add any periodic checks here
3983
3984void os::run_periodic_checks() {
3985  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3986  // thereby preventing a NULL checks.
3987  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3988
3989  if (check_signals == false) return;
3990
3991  // SEGV and BUS if overridden could potentially prevent
3992  // generation of hs*.log in the event of a crash, debugging
3993  // such a case can be very challenging, so we absolutely
3994  // check for the following for a good measure:
3995  DO_SIGNAL_CHECK(SIGSEGV);
3996  DO_SIGNAL_CHECK(SIGILL);
3997  DO_SIGNAL_CHECK(SIGFPE);
3998  DO_SIGNAL_CHECK(SIGBUS);
3999  DO_SIGNAL_CHECK(SIGPIPE);
4000  DO_SIGNAL_CHECK(SIGXFSZ);
4001
4002  // ReduceSignalUsage allows the user to override these handlers
4003  // see comments at the very top and jvm_solaris.h
4004  if (!ReduceSignalUsage) {
4005    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4006    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4007    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4008    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4009  }
4010
4011  // See comments above for using JVM1/JVM2
4012  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4013
4014}
4015
4016typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4017
4018static os_sigaction_t os_sigaction = NULL;
4019
4020void os::Solaris::check_signal_handler(int sig) {
4021  char buf[O_BUFLEN];
4022  address jvmHandler = NULL;
4023
4024  struct sigaction act;
4025  if (os_sigaction == NULL) {
4026    // only trust the default sigaction, in case it has been interposed
4027    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4028    if (os_sigaction == NULL) return;
4029  }
4030
4031  os_sigaction(sig, (struct sigaction*)NULL, &act);
4032
4033  address thisHandler = (act.sa_flags & SA_SIGINFO)
4034    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4035    : CAST_FROM_FN_PTR(address, act.sa_handler);
4036
4037
4038  switch (sig) {
4039  case SIGSEGV:
4040  case SIGBUS:
4041  case SIGFPE:
4042  case SIGPIPE:
4043  case SIGXFSZ:
4044  case SIGILL:
4045    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4046    break;
4047
4048  case SHUTDOWN1_SIGNAL:
4049  case SHUTDOWN2_SIGNAL:
4050  case SHUTDOWN3_SIGNAL:
4051  case BREAK_SIGNAL:
4052    jvmHandler = (address)user_handler();
4053    break;
4054
4055  default:
4056    int asynsig = os::Solaris::SIGasync();
4057
4058    if (sig == asynsig) {
4059      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4060    } else {
4061      return;
4062    }
4063    break;
4064  }
4065
4066
4067  if (thisHandler != jvmHandler) {
4068    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4069    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4070    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4071    // No need to check this sig any longer
4072    sigaddset(&check_signal_done, sig);
4073    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4074    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4075      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4076                    exception_name(sig, buf, O_BUFLEN));
4077    }
4078  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4079    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4080    tty->print("expected:");
4081    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4082    tty->cr();
4083    tty->print("  found:");
4084    os::Posix::print_sa_flags(tty, act.sa_flags);
4085    tty->cr();
4086    // No need to check this sig any longer
4087    sigaddset(&check_signal_done, sig);
4088  }
4089
4090  // Print all the signal handler state
4091  if (sigismember(&check_signal_done, sig)) {
4092    print_signal_handlers(tty, buf, O_BUFLEN);
4093  }
4094
4095}
4096
4097void os::Solaris::install_signal_handlers() {
4098  bool libjsigdone = false;
4099  signal_handlers_are_installed = true;
4100
4101  // signal-chaining
4102  typedef void (*signal_setting_t)();
4103  signal_setting_t begin_signal_setting = NULL;
4104  signal_setting_t end_signal_setting = NULL;
4105  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4106                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4107  if (begin_signal_setting != NULL) {
4108    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4109                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4110    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4111                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4112    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4113                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4114    libjsig_is_loaded = true;
4115    if (os::Solaris::get_libjsig_version != NULL) {
4116      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4117    }
4118    assert(UseSignalChaining, "should enable signal-chaining");
4119  }
4120  if (libjsig_is_loaded) {
4121    // Tell libjsig jvm is setting signal handlers
4122    (*begin_signal_setting)();
4123  }
4124
4125  set_signal_handler(SIGSEGV, true, true);
4126  set_signal_handler(SIGPIPE, true, true);
4127  set_signal_handler(SIGXFSZ, true, true);
4128  set_signal_handler(SIGBUS, true, true);
4129  set_signal_handler(SIGILL, true, true);
4130  set_signal_handler(SIGFPE, true, true);
4131
4132
4133  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4134    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4135    // can not register overridable signals which might be > 32
4136    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4137      // Tell libjsig jvm has finished setting signal handlers
4138      (*end_signal_setting)();
4139      libjsigdone = true;
4140    }
4141  }
4142
4143  set_signal_handler(os::Solaris::SIGasync(), true, true);
4144
4145  if (libjsig_is_loaded && !libjsigdone) {
4146    // Tell libjsig jvm finishes setting signal handlers
4147    (*end_signal_setting)();
4148  }
4149
4150  // We don't activate signal checker if libjsig is in place, we trust ourselves
4151  // and if UserSignalHandler is installed all bets are off.
4152  // Log that signal checking is off only if -verbose:jni is specified.
4153  if (CheckJNICalls) {
4154    if (libjsig_is_loaded) {
4155      if (PrintJNIResolving) {
4156        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4157      }
4158      check_signals = false;
4159    }
4160    if (AllowUserSignalHandlers) {
4161      if (PrintJNIResolving) {
4162        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4163      }
4164      check_signals = false;
4165    }
4166  }
4167}
4168
4169
4170void report_error(const char* file_name, int line_no, const char* title,
4171                  const char* format, ...);
4172
4173// (Static) wrapper for getisax(2) call.
4174os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4175
4176// (Static) wrappers for the liblgrp API
4177os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4178os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4179os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4180os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4181os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4182os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4183os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4184os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4185os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4186
4187// (Static) wrapper for meminfo() call.
4188os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4189
4190static address resolve_symbol_lazy(const char* name) {
4191  address addr = (address) dlsym(RTLD_DEFAULT, name);
4192  if (addr == NULL) {
4193    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4194    addr = (address) dlsym(RTLD_NEXT, name);
4195  }
4196  return addr;
4197}
4198
4199static address resolve_symbol(const char* name) {
4200  address addr = resolve_symbol_lazy(name);
4201  if (addr == NULL) {
4202    fatal(dlerror());
4203  }
4204  return addr;
4205}
4206
4207void os::Solaris::libthread_init() {
4208  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4209
4210  lwp_priocntl_init();
4211
4212  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4213  if (func == NULL) {
4214    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4215    // Guarantee that this VM is running on an new enough OS (5.6 or
4216    // later) that it will have a new enough libthread.so.
4217    guarantee(func != NULL, "libthread.so is too old.");
4218  }
4219
4220  int size;
4221  void (*handler_info_func)(address *, int *);
4222  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4223  handler_info_func(&handler_start, &size);
4224  handler_end = handler_start + size;
4225}
4226
4227
4228int_fnP_mutex_tP os::Solaris::_mutex_lock;
4229int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4230int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4231int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4232int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4233int os::Solaris::_mutex_scope = USYNC_THREAD;
4234
4235int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4236int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4237int_fnP_cond_tP os::Solaris::_cond_signal;
4238int_fnP_cond_tP os::Solaris::_cond_broadcast;
4239int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4240int_fnP_cond_tP os::Solaris::_cond_destroy;
4241int os::Solaris::_cond_scope = USYNC_THREAD;
4242
4243void os::Solaris::synchronization_init() {
4244  if (UseLWPSynchronization) {
4245    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4246    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4247    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4248    os::Solaris::set_mutex_init(lwp_mutex_init);
4249    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4250    os::Solaris::set_mutex_scope(USYNC_THREAD);
4251
4252    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4253    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4254    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4255    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4256    os::Solaris::set_cond_init(lwp_cond_init);
4257    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4258    os::Solaris::set_cond_scope(USYNC_THREAD);
4259  } else {
4260    os::Solaris::set_mutex_scope(USYNC_THREAD);
4261    os::Solaris::set_cond_scope(USYNC_THREAD);
4262
4263    if (UsePthreads) {
4264      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4265      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4266      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4267      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4268      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4269
4270      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4271      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4272      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4273      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4274      os::Solaris::set_cond_init(pthread_cond_default_init);
4275      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4276    } else {
4277      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4278      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4279      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4280      os::Solaris::set_mutex_init(::mutex_init);
4281      os::Solaris::set_mutex_destroy(::mutex_destroy);
4282
4283      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4284      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4285      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4286      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4287      os::Solaris::set_cond_init(::cond_init);
4288      os::Solaris::set_cond_destroy(::cond_destroy);
4289    }
4290  }
4291}
4292
4293bool os::Solaris::liblgrp_init() {
4294  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4295  if (handle != NULL) {
4296    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4297    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4298    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4299    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4300    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4301    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4302    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4303    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4304                                                      dlsym(handle, "lgrp_cookie_stale")));
4305
4306    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4307    set_lgrp_cookie(c);
4308    return true;
4309  }
4310  return false;
4311}
4312
4313void os::Solaris::misc_sym_init() {
4314  address func;
4315
4316  // getisax
4317  func = resolve_symbol_lazy("getisax");
4318  if (func != NULL) {
4319    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4320  }
4321
4322  // meminfo
4323  func = resolve_symbol_lazy("meminfo");
4324  if (func != NULL) {
4325    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4326  }
4327}
4328
4329uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4330  assert(_getisax != NULL, "_getisax not set");
4331  return _getisax(array, n);
4332}
4333
4334// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4335typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4336static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4337
4338void init_pset_getloadavg_ptr(void) {
4339  pset_getloadavg_ptr =
4340    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4341  if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4342    warning("pset_getloadavg function not found");
4343  }
4344}
4345
4346int os::Solaris::_dev_zero_fd = -1;
4347
4348// this is called _before_ the global arguments have been parsed
4349void os::init(void) {
4350  _initial_pid = getpid();
4351
4352  max_hrtime = first_hrtime = gethrtime();
4353
4354  init_random(1234567);
4355
4356  page_size = sysconf(_SC_PAGESIZE);
4357  if (page_size == -1) {
4358    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4359  }
4360  init_page_sizes((size_t) page_size);
4361
4362  Solaris::initialize_system_info();
4363
4364  // Initialize misc. symbols as soon as possible, so we can use them
4365  // if we need them.
4366  Solaris::misc_sym_init();
4367
4368  int fd = ::open("/dev/zero", O_RDWR);
4369  if (fd < 0) {
4370    fatal("os::init: cannot open /dev/zero (%s)", strerror(errno));
4371  } else {
4372    Solaris::set_dev_zero_fd(fd);
4373
4374    // Close on exec, child won't inherit.
4375    fcntl(fd, F_SETFD, FD_CLOEXEC);
4376  }
4377
4378  clock_tics_per_sec = CLK_TCK;
4379
4380  // check if dladdr1() exists; dladdr1 can provide more information than
4381  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4382  // and is available on linker patches for 5.7 and 5.8.
4383  // libdl.so must have been loaded, this call is just an entry lookup
4384  void * hdl = dlopen("libdl.so", RTLD_NOW);
4385  if (hdl) {
4386    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4387  }
4388
4389  // (Solaris only) this switches to calls that actually do locking.
4390  ThreadCritical::initialize();
4391
4392  main_thread = thr_self();
4393
4394  // Constant minimum stack size allowed. It must be at least
4395  // the minimum of what the OS supports (thr_min_stack()), and
4396  // enough to allow the thread to get to user bytecode execution.
4397  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4398}
4399
4400// To install functions for atexit system call
4401extern "C" {
4402  static void perfMemory_exit_helper() {
4403    perfMemory_exit();
4404  }
4405}
4406
4407// this is called _after_ the global arguments have been parsed
4408jint os::init_2(void) {
4409  // try to enable extended file IO ASAP, see 6431278
4410  os::Solaris::try_enable_extended_io();
4411
4412  // Allocate a single page and mark it as readable for safepoint polling.  Also
4413  // use this first mmap call to check support for MAP_ALIGN.
4414  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4415                                                      page_size,
4416                                                      MAP_PRIVATE | MAP_ALIGN,
4417                                                      PROT_READ);
4418  if (polling_page == NULL) {
4419    has_map_align = false;
4420    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4421                                                PROT_READ);
4422  }
4423
4424  os::set_polling_page(polling_page);
4425
4426#ifndef PRODUCT
4427  if (Verbose && PrintMiscellaneous) {
4428    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4429               (intptr_t)polling_page);
4430  }
4431#endif
4432
4433  if (!UseMembar) {
4434    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4435    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4436    os::set_memory_serialize_page(mem_serialize_page);
4437
4438#ifndef PRODUCT
4439    if (Verbose && PrintMiscellaneous) {
4440      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4441                 (intptr_t)mem_serialize_page);
4442    }
4443#endif
4444  }
4445
4446  // Check minimum allowable stack size for thread creation and to initialize
4447  // the java system classes, including StackOverflowError - depends on page
4448  // size.  Add a page for compiler2 recursion in main thread.
4449  // Add in 2*BytesPerWord times page size to account for VM stack during
4450  // class initialization depending on 32 or 64 bit VM.
4451  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4452                                        JavaThread::stack_guard_zone_size() +
4453                                        JavaThread::stack_shadow_zone_size() +
4454                                        (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4455
4456  size_t threadStackSizeInBytes = ThreadStackSize * K;
4457  if (threadStackSizeInBytes != 0 &&
4458      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4459    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4460                  os::Solaris::min_stack_allowed/K);
4461    return JNI_ERR;
4462  }
4463
4464  // For 64kbps there will be a 64kb page size, which makes
4465  // the usable default stack size quite a bit less.  Increase the
4466  // stack for 64kb (or any > than 8kb) pages, this increases
4467  // virtual memory fragmentation (since we're not creating the
4468  // stack on a power of 2 boundary.  The real fix for this
4469  // should be to fix the guard page mechanism.
4470
4471  if (vm_page_size() > 8*K) {
4472    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4473       ? threadStackSizeInBytes +
4474         JavaThread::stack_red_zone_size() +
4475         JavaThread::stack_yellow_zone_size()
4476       : 0;
4477    ThreadStackSize = threadStackSizeInBytes/K;
4478  }
4479
4480  // Make the stack size a multiple of the page size so that
4481  // the yellow/red zones can be guarded.
4482  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4483                                                vm_page_size()));
4484
4485  Solaris::libthread_init();
4486
4487  if (UseNUMA) {
4488    if (!Solaris::liblgrp_init()) {
4489      UseNUMA = false;
4490    } else {
4491      size_t lgrp_limit = os::numa_get_groups_num();
4492      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4493      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4494      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4495      if (lgrp_num < 2) {
4496        // There's only one locality group, disable NUMA.
4497        UseNUMA = false;
4498      }
4499    }
4500    if (!UseNUMA && ForceNUMA) {
4501      UseNUMA = true;
4502    }
4503  }
4504
4505  Solaris::signal_sets_init();
4506  Solaris::init_signal_mem();
4507  Solaris::install_signal_handlers();
4508
4509  if (libjsigversion < JSIG_VERSION_1_4_1) {
4510    Maxlibjsigsigs = OLDMAXSIGNUM;
4511  }
4512
4513  // initialize synchronization primitives to use either thread or
4514  // lwp synchronization (controlled by UseLWPSynchronization)
4515  Solaris::synchronization_init();
4516
4517  if (MaxFDLimit) {
4518    // set the number of file descriptors to max. print out error
4519    // if getrlimit/setrlimit fails but continue regardless.
4520    struct rlimit nbr_files;
4521    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4522    if (status != 0) {
4523      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4524        perror("os::init_2 getrlimit failed");
4525      }
4526    } else {
4527      nbr_files.rlim_cur = nbr_files.rlim_max;
4528      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4529      if (status != 0) {
4530        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4531          perror("os::init_2 setrlimit failed");
4532        }
4533      }
4534    }
4535  }
4536
4537  // Calculate theoretical max. size of Threads to guard gainst
4538  // artifical out-of-memory situations, where all available address-
4539  // space has been reserved by thread stacks. Default stack size is 1Mb.
4540  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4541    JavaThread::stack_size_at_create() : (1*K*K);
4542  assert(pre_thread_stack_size != 0, "Must have a stack");
4543  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4544  // we should start doing Virtual Memory banging. Currently when the threads will
4545  // have used all but 200Mb of space.
4546  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4547  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4548
4549  // at-exit methods are called in the reverse order of their registration.
4550  // In Solaris 7 and earlier, atexit functions are called on return from
4551  // main or as a result of a call to exit(3C). There can be only 32 of
4552  // these functions registered and atexit() does not set errno. In Solaris
4553  // 8 and later, there is no limit to the number of functions registered
4554  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4555  // functions are called upon dlclose(3DL) in addition to return from main
4556  // and exit(3C).
4557
4558  if (PerfAllowAtExitRegistration) {
4559    // only register atexit functions if PerfAllowAtExitRegistration is set.
4560    // atexit functions can be delayed until process exit time, which
4561    // can be problematic for embedded VM situations. Embedded VMs should
4562    // call DestroyJavaVM() to assure that VM resources are released.
4563
4564    // note: perfMemory_exit_helper atexit function may be removed in
4565    // the future if the appropriate cleanup code can be added to the
4566    // VM_Exit VMOperation's doit method.
4567    if (atexit(perfMemory_exit_helper) != 0) {
4568      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4569    }
4570  }
4571
4572  // Init pset_loadavg function pointer
4573  init_pset_getloadavg_ptr();
4574
4575  return JNI_OK;
4576}
4577
4578// Mark the polling page as unreadable
4579void os::make_polling_page_unreadable(void) {
4580  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4581    fatal("Could not disable polling page");
4582  }
4583}
4584
4585// Mark the polling page as readable
4586void os::make_polling_page_readable(void) {
4587  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4588    fatal("Could not enable polling page");
4589  }
4590}
4591
4592// OS interface.
4593
4594bool os::check_heap(bool force) { return true; }
4595
4596// Is a (classpath) directory empty?
4597bool os::dir_is_empty(const char* path) {
4598  DIR *dir = NULL;
4599  struct dirent *ptr;
4600
4601  dir = opendir(path);
4602  if (dir == NULL) return true;
4603
4604  // Scan the directory
4605  bool result = true;
4606  char buf[sizeof(struct dirent) + MAX_PATH];
4607  struct dirent *dbuf = (struct dirent *) buf;
4608  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4609    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4610      result = false;
4611    }
4612  }
4613  closedir(dir);
4614  return result;
4615}
4616
4617// This code originates from JDK's sysOpen and open64_w
4618// from src/solaris/hpi/src/system_md.c
4619
4620int os::open(const char *path, int oflag, int mode) {
4621  if (strlen(path) > MAX_PATH - 1) {
4622    errno = ENAMETOOLONG;
4623    return -1;
4624  }
4625  int fd;
4626
4627  fd = ::open64(path, oflag, mode);
4628  if (fd == -1) return -1;
4629
4630  // If the open succeeded, the file might still be a directory
4631  {
4632    struct stat64 buf64;
4633    int ret = ::fstat64(fd, &buf64);
4634    int st_mode = buf64.st_mode;
4635
4636    if (ret != -1) {
4637      if ((st_mode & S_IFMT) == S_IFDIR) {
4638        errno = EISDIR;
4639        ::close(fd);
4640        return -1;
4641      }
4642    } else {
4643      ::close(fd);
4644      return -1;
4645    }
4646  }
4647
4648  // 32-bit Solaris systems suffer from:
4649  //
4650  // - an historical default soft limit of 256 per-process file
4651  //   descriptors that is too low for many Java programs.
4652  //
4653  // - a design flaw where file descriptors created using stdio
4654  //   fopen must be less than 256, _even_ when the first limit above
4655  //   has been raised.  This can cause calls to fopen (but not calls to
4656  //   open, for example) to fail mysteriously, perhaps in 3rd party
4657  //   native code (although the JDK itself uses fopen).  One can hardly
4658  //   criticize them for using this most standard of all functions.
4659  //
4660  // We attempt to make everything work anyways by:
4661  //
4662  // - raising the soft limit on per-process file descriptors beyond
4663  //   256
4664  //
4665  // - As of Solaris 10u4, we can request that Solaris raise the 256
4666  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4667  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4668  //
4669  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4670  //   workaround the bug by remapping non-stdio file descriptors below
4671  //   256 to ones beyond 256, which is done below.
4672  //
4673  // See:
4674  // 1085341: 32-bit stdio routines should support file descriptors >255
4675  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4676  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4677  //          enable_extended_FILE_stdio() in VM initialisation
4678  // Giri Mandalika's blog
4679  // http://technopark02.blogspot.com/2005_05_01_archive.html
4680  //
4681#ifndef  _LP64
4682  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4683    int newfd = ::fcntl(fd, F_DUPFD, 256);
4684    if (newfd != -1) {
4685      ::close(fd);
4686      fd = newfd;
4687    }
4688  }
4689#endif // 32-bit Solaris
4690
4691  // All file descriptors that are opened in the JVM and not
4692  // specifically destined for a subprocess should have the
4693  // close-on-exec flag set.  If we don't set it, then careless 3rd
4694  // party native code might fork and exec without closing all
4695  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4696  // UNIXProcess.c), and this in turn might:
4697  //
4698  // - cause end-of-file to fail to be detected on some file
4699  //   descriptors, resulting in mysterious hangs, or
4700  //
4701  // - might cause an fopen in the subprocess to fail on a system
4702  //   suffering from bug 1085341.
4703  //
4704  // (Yes, the default setting of the close-on-exec flag is a Unix
4705  // design flaw)
4706  //
4707  // See:
4708  // 1085341: 32-bit stdio routines should support file descriptors >255
4709  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4710  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4711  //
4712#ifdef FD_CLOEXEC
4713  {
4714    int flags = ::fcntl(fd, F_GETFD);
4715    if (flags != -1) {
4716      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4717    }
4718  }
4719#endif
4720
4721  return fd;
4722}
4723
4724// create binary file, rewriting existing file if required
4725int os::create_binary_file(const char* path, bool rewrite_existing) {
4726  int oflags = O_WRONLY | O_CREAT;
4727  if (!rewrite_existing) {
4728    oflags |= O_EXCL;
4729  }
4730  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4731}
4732
4733// return current position of file pointer
4734jlong os::current_file_offset(int fd) {
4735  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4736}
4737
4738// move file pointer to the specified offset
4739jlong os::seek_to_file_offset(int fd, jlong offset) {
4740  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4741}
4742
4743jlong os::lseek(int fd, jlong offset, int whence) {
4744  return (jlong) ::lseek64(fd, offset, whence);
4745}
4746
4747char * os::native_path(char *path) {
4748  return path;
4749}
4750
4751int os::ftruncate(int fd, jlong length) {
4752  return ::ftruncate64(fd, length);
4753}
4754
4755int os::fsync(int fd)  {
4756  RESTARTABLE_RETURN_INT(::fsync(fd));
4757}
4758
4759int os::available(int fd, jlong *bytes) {
4760  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4761         "Assumed _thread_in_native");
4762  jlong cur, end;
4763  int mode;
4764  struct stat64 buf64;
4765
4766  if (::fstat64(fd, &buf64) >= 0) {
4767    mode = buf64.st_mode;
4768    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4769      int n,ioctl_return;
4770
4771      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4772      if (ioctl_return>= 0) {
4773        *bytes = n;
4774        return 1;
4775      }
4776    }
4777  }
4778  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4779    return 0;
4780  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4781    return 0;
4782  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4783    return 0;
4784  }
4785  *bytes = end - cur;
4786  return 1;
4787}
4788
4789// Map a block of memory.
4790char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4791                        char *addr, size_t bytes, bool read_only,
4792                        bool allow_exec) {
4793  int prot;
4794  int flags;
4795
4796  if (read_only) {
4797    prot = PROT_READ;
4798    flags = MAP_SHARED;
4799  } else {
4800    prot = PROT_READ | PROT_WRITE;
4801    flags = MAP_PRIVATE;
4802  }
4803
4804  if (allow_exec) {
4805    prot |= PROT_EXEC;
4806  }
4807
4808  if (addr != NULL) {
4809    flags |= MAP_FIXED;
4810  }
4811
4812  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4813                                     fd, file_offset);
4814  if (mapped_address == MAP_FAILED) {
4815    return NULL;
4816  }
4817  return mapped_address;
4818}
4819
4820
4821// Remap a block of memory.
4822char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4823                          char *addr, size_t bytes, bool read_only,
4824                          bool allow_exec) {
4825  // same as map_memory() on this OS
4826  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4827                        allow_exec);
4828}
4829
4830
4831// Unmap a block of memory.
4832bool os::pd_unmap_memory(char* addr, size_t bytes) {
4833  return munmap(addr, bytes) == 0;
4834}
4835
4836void os::pause() {
4837  char filename[MAX_PATH];
4838  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4839    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4840  } else {
4841    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4842  }
4843
4844  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4845  if (fd != -1) {
4846    struct stat buf;
4847    ::close(fd);
4848    while (::stat(filename, &buf) == 0) {
4849      (void)::poll(NULL, 0, 100);
4850    }
4851  } else {
4852    jio_fprintf(stderr,
4853                "Could not open pause file '%s', continuing immediately.\n", filename);
4854  }
4855}
4856
4857#ifndef PRODUCT
4858#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4859// Turn this on if you need to trace synch operations.
4860// Set RECORD_SYNCH_LIMIT to a large-enough value,
4861// and call record_synch_enable and record_synch_disable
4862// around the computation of interest.
4863
4864void record_synch(char* name, bool returning);  // defined below
4865
4866class RecordSynch {
4867  char* _name;
4868 public:
4869  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4870  ~RecordSynch()                       { record_synch(_name, true); }
4871};
4872
4873#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4874extern "C" ret name params {                                    \
4875  typedef ret name##_t params;                                  \
4876  static name##_t* implem = NULL;                               \
4877  static int callcount = 0;                                     \
4878  if (implem == NULL) {                                         \
4879    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4880    if (implem == NULL)  fatal(dlerror());                      \
4881  }                                                             \
4882  ++callcount;                                                  \
4883  RecordSynch _rs(#name);                                       \
4884  inner;                                                        \
4885  return implem args;                                           \
4886}
4887// in dbx, examine callcounts this way:
4888// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4889
4890#define CHECK_POINTER_OK(p) \
4891  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4892#define CHECK_MU \
4893  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4894#define CHECK_CV \
4895  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4896#define CHECK_P(p) \
4897  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4898
4899#define CHECK_MUTEX(mutex_op) \
4900  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4901
4902CHECK_MUTEX(   mutex_lock)
4903CHECK_MUTEX(  _mutex_lock)
4904CHECK_MUTEX( mutex_unlock)
4905CHECK_MUTEX(_mutex_unlock)
4906CHECK_MUTEX( mutex_trylock)
4907CHECK_MUTEX(_mutex_trylock)
4908
4909#define CHECK_COND(cond_op) \
4910  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4911
4912CHECK_COND( cond_wait);
4913CHECK_COND(_cond_wait);
4914CHECK_COND(_cond_wait_cancel);
4915
4916#define CHECK_COND2(cond_op) \
4917  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4918
4919CHECK_COND2( cond_timedwait);
4920CHECK_COND2(_cond_timedwait);
4921CHECK_COND2(_cond_timedwait_cancel);
4922
4923// do the _lwp_* versions too
4924#define mutex_t lwp_mutex_t
4925#define cond_t  lwp_cond_t
4926CHECK_MUTEX(  _lwp_mutex_lock)
4927CHECK_MUTEX(  _lwp_mutex_unlock)
4928CHECK_MUTEX(  _lwp_mutex_trylock)
4929CHECK_MUTEX( __lwp_mutex_lock)
4930CHECK_MUTEX( __lwp_mutex_unlock)
4931CHECK_MUTEX( __lwp_mutex_trylock)
4932CHECK_MUTEX(___lwp_mutex_lock)
4933CHECK_MUTEX(___lwp_mutex_unlock)
4934
4935CHECK_COND(  _lwp_cond_wait);
4936CHECK_COND( __lwp_cond_wait);
4937CHECK_COND(___lwp_cond_wait);
4938
4939CHECK_COND2(  _lwp_cond_timedwait);
4940CHECK_COND2( __lwp_cond_timedwait);
4941#undef mutex_t
4942#undef cond_t
4943
4944CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4945CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4946CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4947CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4948CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4949CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4950CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4951CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4952
4953
4954// recording machinery:
4955
4956enum { RECORD_SYNCH_LIMIT = 200 };
4957char* record_synch_name[RECORD_SYNCH_LIMIT];
4958void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4959bool record_synch_returning[RECORD_SYNCH_LIMIT];
4960thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4961int record_synch_count = 0;
4962bool record_synch_enabled = false;
4963
4964// in dbx, examine recorded data this way:
4965// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4966
4967void record_synch(char* name, bool returning) {
4968  if (record_synch_enabled) {
4969    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4970      record_synch_name[record_synch_count] = name;
4971      record_synch_returning[record_synch_count] = returning;
4972      record_synch_thread[record_synch_count] = thr_self();
4973      record_synch_arg0ptr[record_synch_count] = &name;
4974      record_synch_count++;
4975    }
4976    // put more checking code here:
4977    // ...
4978  }
4979}
4980
4981void record_synch_enable() {
4982  // start collecting trace data, if not already doing so
4983  if (!record_synch_enabled)  record_synch_count = 0;
4984  record_synch_enabled = true;
4985}
4986
4987void record_synch_disable() {
4988  // stop collecting trace data
4989  record_synch_enabled = false;
4990}
4991
4992#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4993#endif // PRODUCT
4994
4995const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4996const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4997                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4998
4999
5000// JVMTI & JVM monitoring and management support
5001// The thread_cpu_time() and current_thread_cpu_time() are only
5002// supported if is_thread_cpu_time_supported() returns true.
5003// They are not supported on Solaris T1.
5004
5005// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5006// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5007// of a thread.
5008//
5009// current_thread_cpu_time() and thread_cpu_time(Thread *)
5010// returns the fast estimate available on the platform.
5011
5012// hrtime_t gethrvtime() return value includes
5013// user time but does not include system time
5014jlong os::current_thread_cpu_time() {
5015  return (jlong) gethrvtime();
5016}
5017
5018jlong os::thread_cpu_time(Thread *thread) {
5019  // return user level CPU time only to be consistent with
5020  // what current_thread_cpu_time returns.
5021  // thread_cpu_time_info() must be changed if this changes
5022  return os::thread_cpu_time(thread, false /* user time only */);
5023}
5024
5025jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5026  if (user_sys_cpu_time) {
5027    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5028  } else {
5029    return os::current_thread_cpu_time();
5030  }
5031}
5032
5033jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5034  char proc_name[64];
5035  int count;
5036  prusage_t prusage;
5037  jlong lwp_time;
5038  int fd;
5039
5040  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5041          getpid(),
5042          thread->osthread()->lwp_id());
5043  fd = ::open(proc_name, O_RDONLY);
5044  if (fd == -1) return -1;
5045
5046  do {
5047    count = ::pread(fd,
5048                    (void *)&prusage.pr_utime,
5049                    thr_time_size,
5050                    thr_time_off);
5051  } while (count < 0 && errno == EINTR);
5052  ::close(fd);
5053  if (count < 0) return -1;
5054
5055  if (user_sys_cpu_time) {
5056    // user + system CPU time
5057    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5058                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5059                 (jlong)prusage.pr_stime.tv_nsec +
5060                 (jlong)prusage.pr_utime.tv_nsec;
5061  } else {
5062    // user level CPU time only
5063    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5064                (jlong)prusage.pr_utime.tv_nsec;
5065  }
5066
5067  return (lwp_time);
5068}
5069
5070void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5071  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5072  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5073  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5074  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5075}
5076
5077void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5078  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5079  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5080  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5081  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5082}
5083
5084bool os::is_thread_cpu_time_supported() {
5085  return true;
5086}
5087
5088// System loadavg support.  Returns -1 if load average cannot be obtained.
5089// Return the load average for our processor set if the primitive exists
5090// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5091int os::loadavg(double loadavg[], int nelem) {
5092  if (pset_getloadavg_ptr != NULL) {
5093    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5094  } else {
5095    return ::getloadavg(loadavg, nelem);
5096  }
5097}
5098
5099//---------------------------------------------------------------------------------
5100
5101bool os::find(address addr, outputStream* st) {
5102  Dl_info dlinfo;
5103  memset(&dlinfo, 0, sizeof(dlinfo));
5104  if (dladdr(addr, &dlinfo) != 0) {
5105    st->print(PTR_FORMAT ": ", addr);
5106    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5107      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5108    } else if (dlinfo.dli_fbase != NULL) {
5109      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5110    } else {
5111      st->print("<absolute address>");
5112    }
5113    if (dlinfo.dli_fname != NULL) {
5114      st->print(" in %s", dlinfo.dli_fname);
5115    }
5116    if (dlinfo.dli_fbase != NULL) {
5117      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5118    }
5119    st->cr();
5120
5121    if (Verbose) {
5122      // decode some bytes around the PC
5123      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5124      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5125      address       lowest = (address) dlinfo.dli_sname;
5126      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5127      if (begin < lowest)  begin = lowest;
5128      Dl_info dlinfo2;
5129      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5130          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5131        end = (address) dlinfo2.dli_saddr;
5132      }
5133      Disassembler::decode(begin, end, st);
5134    }
5135    return true;
5136  }
5137  return false;
5138}
5139
5140// Following function has been added to support HotSparc's libjvm.so running
5141// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5142// src/solaris/hpi/native_threads in the EVM codebase.
5143//
5144// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5145// libraries and should thus be removed. We will leave it behind for a while
5146// until we no longer want to able to run on top of 1.3.0 Solaris production
5147// JDK. See 4341971.
5148
5149#define STACK_SLACK 0x800
5150
5151extern "C" {
5152  intptr_t sysThreadAvailableStackWithSlack() {
5153    stack_t st;
5154    intptr_t retval, stack_top;
5155    retval = thr_stksegment(&st);
5156    assert(retval == 0, "incorrect return value from thr_stksegment");
5157    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5158    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5159    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5160    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5161  }
5162}
5163
5164// ObjectMonitor park-unpark infrastructure ...
5165//
5166// We implement Solaris and Linux PlatformEvents with the
5167// obvious condvar-mutex-flag triple.
5168// Another alternative that works quite well is pipes:
5169// Each PlatformEvent consists of a pipe-pair.
5170// The thread associated with the PlatformEvent
5171// calls park(), which reads from the input end of the pipe.
5172// Unpark() writes into the other end of the pipe.
5173// The write-side of the pipe must be set NDELAY.
5174// Unfortunately pipes consume a large # of handles.
5175// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5176// Using pipes for the 1st few threads might be workable, however.
5177//
5178// park() is permitted to return spuriously.
5179// Callers of park() should wrap the call to park() in
5180// an appropriate loop.  A litmus test for the correct
5181// usage of park is the following: if park() were modified
5182// to immediately return 0 your code should still work,
5183// albeit degenerating to a spin loop.
5184//
5185// In a sense, park()-unpark() just provides more polite spinning
5186// and polling with the key difference over naive spinning being
5187// that a parked thread needs to be explicitly unparked() in order
5188// to wake up and to poll the underlying condition.
5189//
5190// Assumption:
5191//    Only one parker can exist on an event, which is why we allocate
5192//    them per-thread. Multiple unparkers can coexist.
5193//
5194// _Event transitions in park()
5195//   -1 => -1 : illegal
5196//    1 =>  0 : pass - return immediately
5197//    0 => -1 : block; then set _Event to 0 before returning
5198//
5199// _Event transitions in unpark()
5200//    0 => 1 : just return
5201//    1 => 1 : just return
5202//   -1 => either 0 or 1; must signal target thread
5203//         That is, we can safely transition _Event from -1 to either
5204//         0 or 1.
5205//
5206// _Event serves as a restricted-range semaphore.
5207//   -1 : thread is blocked, i.e. there is a waiter
5208//    0 : neutral: thread is running or ready,
5209//        could have been signaled after a wait started
5210//    1 : signaled - thread is running or ready
5211//
5212// Another possible encoding of _Event would be with
5213// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5214//
5215// TODO-FIXME: add DTRACE probes for:
5216// 1.   Tx parks
5217// 2.   Ty unparks Tx
5218// 3.   Tx resumes from park
5219
5220
5221// value determined through experimentation
5222#define ROUNDINGFIX 11
5223
5224// utility to compute the abstime argument to timedwait.
5225// TODO-FIXME: switch from compute_abstime() to unpackTime().
5226
5227static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5228  // millis is the relative timeout time
5229  // abstime will be the absolute timeout time
5230  if (millis < 0)  millis = 0;
5231  struct timeval now;
5232  int status = gettimeofday(&now, NULL);
5233  assert(status == 0, "gettimeofday");
5234  jlong seconds = millis / 1000;
5235  jlong max_wait_period;
5236
5237  if (UseLWPSynchronization) {
5238    // forward port of fix for 4275818 (not sleeping long enough)
5239    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5240    // _lwp_cond_timedwait() used a round_down algorithm rather
5241    // than a round_up. For millis less than our roundfactor
5242    // it rounded down to 0 which doesn't meet the spec.
5243    // For millis > roundfactor we may return a bit sooner, but
5244    // since we can not accurately identify the patch level and
5245    // this has already been fixed in Solaris 9 and 8 we will
5246    // leave it alone rather than always rounding down.
5247
5248    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5249    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5250    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5251    max_wait_period = 21000000;
5252  } else {
5253    max_wait_period = 50000000;
5254  }
5255  millis %= 1000;
5256  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5257    seconds = max_wait_period;
5258  }
5259  abstime->tv_sec = now.tv_sec  + seconds;
5260  long       usec = now.tv_usec + millis * 1000;
5261  if (usec >= 1000000) {
5262    abstime->tv_sec += 1;
5263    usec -= 1000000;
5264  }
5265  abstime->tv_nsec = usec * 1000;
5266  return abstime;
5267}
5268
5269void os::PlatformEvent::park() {           // AKA: down()
5270  // Transitions for _Event:
5271  //   -1 => -1 : illegal
5272  //    1 =>  0 : pass - return immediately
5273  //    0 => -1 : block; then set _Event to 0 before returning
5274
5275  // Invariant: Only the thread associated with the Event/PlatformEvent
5276  // may call park().
5277  assert(_nParked == 0, "invariant");
5278
5279  int v;
5280  for (;;) {
5281    v = _Event;
5282    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5283  }
5284  guarantee(v >= 0, "invariant");
5285  if (v == 0) {
5286    // Do this the hard way by blocking ...
5287    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5288    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5289    // Only for SPARC >= V8PlusA
5290#if defined(__sparc) && defined(COMPILER2)
5291    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5292#endif
5293    int status = os::Solaris::mutex_lock(_mutex);
5294    assert_status(status == 0, status, "mutex_lock");
5295    guarantee(_nParked == 0, "invariant");
5296    ++_nParked;
5297    while (_Event < 0) {
5298      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5299      // Treat this the same as if the wait was interrupted
5300      // With usr/lib/lwp going to kernel, always handle ETIME
5301      status = os::Solaris::cond_wait(_cond, _mutex);
5302      if (status == ETIME) status = EINTR;
5303      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5304    }
5305    --_nParked;
5306    _Event = 0;
5307    status = os::Solaris::mutex_unlock(_mutex);
5308    assert_status(status == 0, status, "mutex_unlock");
5309    // Paranoia to ensure our locked and lock-free paths interact
5310    // correctly with each other.
5311    OrderAccess::fence();
5312  }
5313}
5314
5315int os::PlatformEvent::park(jlong millis) {
5316  // Transitions for _Event:
5317  //   -1 => -1 : illegal
5318  //    1 =>  0 : pass - return immediately
5319  //    0 => -1 : block; then set _Event to 0 before returning
5320
5321  guarantee(_nParked == 0, "invariant");
5322  int v;
5323  for (;;) {
5324    v = _Event;
5325    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5326  }
5327  guarantee(v >= 0, "invariant");
5328  if (v != 0) return OS_OK;
5329
5330  int ret = OS_TIMEOUT;
5331  timestruc_t abst;
5332  compute_abstime(&abst, millis);
5333
5334  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5335  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5336  // Only for SPARC >= V8PlusA
5337#if defined(__sparc) && defined(COMPILER2)
5338  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5339#endif
5340  int status = os::Solaris::mutex_lock(_mutex);
5341  assert_status(status == 0, status, "mutex_lock");
5342  guarantee(_nParked == 0, "invariant");
5343  ++_nParked;
5344  while (_Event < 0) {
5345    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5346    assert_status(status == 0 || status == EINTR ||
5347                  status == ETIME || status == ETIMEDOUT,
5348                  status, "cond_timedwait");
5349    if (!FilterSpuriousWakeups) break;                // previous semantics
5350    if (status == ETIME || status == ETIMEDOUT) break;
5351    // We consume and ignore EINTR and spurious wakeups.
5352  }
5353  --_nParked;
5354  if (_Event >= 0) ret = OS_OK;
5355  _Event = 0;
5356  status = os::Solaris::mutex_unlock(_mutex);
5357  assert_status(status == 0, status, "mutex_unlock");
5358  // Paranoia to ensure our locked and lock-free paths interact
5359  // correctly with each other.
5360  OrderAccess::fence();
5361  return ret;
5362}
5363
5364void os::PlatformEvent::unpark() {
5365  // Transitions for _Event:
5366  //    0 => 1 : just return
5367  //    1 => 1 : just return
5368  //   -1 => either 0 or 1; must signal target thread
5369  //         That is, we can safely transition _Event from -1 to either
5370  //         0 or 1.
5371  // See also: "Semaphores in Plan 9" by Mullender & Cox
5372  //
5373  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5374  // that it will take two back-to-back park() calls for the owning
5375  // thread to block. This has the benefit of forcing a spurious return
5376  // from the first park() call after an unpark() call which will help
5377  // shake out uses of park() and unpark() without condition variables.
5378
5379  if (Atomic::xchg(1, &_Event) >= 0) return;
5380
5381  // If the thread associated with the event was parked, wake it.
5382  // Wait for the thread assoc with the PlatformEvent to vacate.
5383  int status = os::Solaris::mutex_lock(_mutex);
5384  assert_status(status == 0, status, "mutex_lock");
5385  int AnyWaiters = _nParked;
5386  status = os::Solaris::mutex_unlock(_mutex);
5387  assert_status(status == 0, status, "mutex_unlock");
5388  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5389  if (AnyWaiters != 0) {
5390    // Note that we signal() *after* dropping the lock for "immortal" Events.
5391    // This is safe and avoids a common class of  futile wakeups.  In rare
5392    // circumstances this can cause a thread to return prematurely from
5393    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5394    // will simply re-test the condition and re-park itself.
5395    // This provides particular benefit if the underlying platform does not
5396    // provide wait morphing.
5397    status = os::Solaris::cond_signal(_cond);
5398    assert_status(status == 0, status, "cond_signal");
5399  }
5400}
5401
5402// JSR166
5403// -------------------------------------------------------
5404
5405// The solaris and linux implementations of park/unpark are fairly
5406// conservative for now, but can be improved. They currently use a
5407// mutex/condvar pair, plus _counter.
5408// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5409// sets count to 1 and signals condvar.  Only one thread ever waits
5410// on the condvar. Contention seen when trying to park implies that someone
5411// is unparking you, so don't wait. And spurious returns are fine, so there
5412// is no need to track notifications.
5413
5414#define MAX_SECS 100000000
5415
5416// This code is common to linux and solaris and will be moved to a
5417// common place in dolphin.
5418//
5419// The passed in time value is either a relative time in nanoseconds
5420// or an absolute time in milliseconds. Either way it has to be unpacked
5421// into suitable seconds and nanoseconds components and stored in the
5422// given timespec structure.
5423// Given time is a 64-bit value and the time_t used in the timespec is only
5424// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5425// overflow if times way in the future are given. Further on Solaris versions
5426// prior to 10 there is a restriction (see cond_timedwait) that the specified
5427// number of seconds, in abstime, is less than current_time  + 100,000,000.
5428// As it will be 28 years before "now + 100000000" will overflow we can
5429// ignore overflow and just impose a hard-limit on seconds using the value
5430// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5431// years from "now".
5432//
5433static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5434  assert(time > 0, "convertTime");
5435
5436  struct timeval now;
5437  int status = gettimeofday(&now, NULL);
5438  assert(status == 0, "gettimeofday");
5439
5440  time_t max_secs = now.tv_sec + MAX_SECS;
5441
5442  if (isAbsolute) {
5443    jlong secs = time / 1000;
5444    if (secs > max_secs) {
5445      absTime->tv_sec = max_secs;
5446    } else {
5447      absTime->tv_sec = secs;
5448    }
5449    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5450  } else {
5451    jlong secs = time / NANOSECS_PER_SEC;
5452    if (secs >= MAX_SECS) {
5453      absTime->tv_sec = max_secs;
5454      absTime->tv_nsec = 0;
5455    } else {
5456      absTime->tv_sec = now.tv_sec + secs;
5457      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5458      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5459        absTime->tv_nsec -= NANOSECS_PER_SEC;
5460        ++absTime->tv_sec; // note: this must be <= max_secs
5461      }
5462    }
5463  }
5464  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5465  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5466  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5467  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5468}
5469
5470void Parker::park(bool isAbsolute, jlong time) {
5471  // Ideally we'd do something useful while spinning, such
5472  // as calling unpackTime().
5473
5474  // Optional fast-path check:
5475  // Return immediately if a permit is available.
5476  // We depend on Atomic::xchg() having full barrier semantics
5477  // since we are doing a lock-free update to _counter.
5478  if (Atomic::xchg(0, &_counter) > 0) return;
5479
5480  // Optional fast-exit: Check interrupt before trying to wait
5481  Thread* thread = Thread::current();
5482  assert(thread->is_Java_thread(), "Must be JavaThread");
5483  JavaThread *jt = (JavaThread *)thread;
5484  if (Thread::is_interrupted(thread, false)) {
5485    return;
5486  }
5487
5488  // First, demultiplex/decode time arguments
5489  timespec absTime;
5490  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5491    return;
5492  }
5493  if (time > 0) {
5494    // Warning: this code might be exposed to the old Solaris time
5495    // round-down bugs.  Grep "roundingFix" for details.
5496    unpackTime(&absTime, isAbsolute, time);
5497  }
5498
5499  // Enter safepoint region
5500  // Beware of deadlocks such as 6317397.
5501  // The per-thread Parker:: _mutex is a classic leaf-lock.
5502  // In particular a thread must never block on the Threads_lock while
5503  // holding the Parker:: mutex.  If safepoints are pending both the
5504  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5505  ThreadBlockInVM tbivm(jt);
5506
5507  // Don't wait if cannot get lock since interference arises from
5508  // unblocking.  Also. check interrupt before trying wait
5509  if (Thread::is_interrupted(thread, false) ||
5510      os::Solaris::mutex_trylock(_mutex) != 0) {
5511    return;
5512  }
5513
5514  int status;
5515
5516  if (_counter > 0)  { // no wait needed
5517    _counter = 0;
5518    status = os::Solaris::mutex_unlock(_mutex);
5519    assert(status == 0, "invariant");
5520    // Paranoia to ensure our locked and lock-free paths interact
5521    // correctly with each other and Java-level accesses.
5522    OrderAccess::fence();
5523    return;
5524  }
5525
5526#ifdef ASSERT
5527  // Don't catch signals while blocked; let the running threads have the signals.
5528  // (This allows a debugger to break into the running thread.)
5529  sigset_t oldsigs;
5530  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5531  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5532#endif
5533
5534  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5535  jt->set_suspend_equivalent();
5536  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5537
5538  // Do this the hard way by blocking ...
5539  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5540  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5541  // Only for SPARC >= V8PlusA
5542#if defined(__sparc) && defined(COMPILER2)
5543  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5544#endif
5545
5546  if (time == 0) {
5547    status = os::Solaris::cond_wait(_cond, _mutex);
5548  } else {
5549    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5550  }
5551  // Note that an untimed cond_wait() can sometimes return ETIME on older
5552  // versions of the Solaris.
5553  assert_status(status == 0 || status == EINTR ||
5554                status == ETIME || status == ETIMEDOUT,
5555                status, "cond_timedwait");
5556
5557#ifdef ASSERT
5558  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5559#endif
5560  _counter = 0;
5561  status = os::Solaris::mutex_unlock(_mutex);
5562  assert_status(status == 0, status, "mutex_unlock");
5563  // Paranoia to ensure our locked and lock-free paths interact
5564  // correctly with each other and Java-level accesses.
5565  OrderAccess::fence();
5566
5567  // If externally suspended while waiting, re-suspend
5568  if (jt->handle_special_suspend_equivalent_condition()) {
5569    jt->java_suspend_self();
5570  }
5571}
5572
5573void Parker::unpark() {
5574  int status = os::Solaris::mutex_lock(_mutex);
5575  assert(status == 0, "invariant");
5576  const int s = _counter;
5577  _counter = 1;
5578  status = os::Solaris::mutex_unlock(_mutex);
5579  assert(status == 0, "invariant");
5580
5581  if (s < 1) {
5582    status = os::Solaris::cond_signal(_cond);
5583    assert(status == 0, "invariant");
5584  }
5585}
5586
5587extern char** environ;
5588
5589// Run the specified command in a separate process. Return its exit value,
5590// or -1 on failure (e.g. can't fork a new process).
5591// Unlike system(), this function can be called from signal handler. It
5592// doesn't block SIGINT et al.
5593int os::fork_and_exec(char* cmd) {
5594  char * argv[4];
5595  argv[0] = (char *)"sh";
5596  argv[1] = (char *)"-c";
5597  argv[2] = cmd;
5598  argv[3] = NULL;
5599
5600  // fork is async-safe, fork1 is not so can't use in signal handler
5601  pid_t pid;
5602  Thread* t = Thread::current_or_null_safe();
5603  if (t != NULL && t->is_inside_signal_handler()) {
5604    pid = fork();
5605  } else {
5606    pid = fork1();
5607  }
5608
5609  if (pid < 0) {
5610    // fork failed
5611    warning("fork failed: %s", strerror(errno));
5612    return -1;
5613
5614  } else if (pid == 0) {
5615    // child process
5616
5617    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5618    execve("/usr/bin/sh", argv, environ);
5619
5620    // execve failed
5621    _exit(-1);
5622
5623  } else  {
5624    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5625    // care about the actual exit code, for now.
5626
5627    int status;
5628
5629    // Wait for the child process to exit.  This returns immediately if
5630    // the child has already exited. */
5631    while (waitpid(pid, &status, 0) < 0) {
5632      switch (errno) {
5633      case ECHILD: return 0;
5634      case EINTR: break;
5635      default: return -1;
5636      }
5637    }
5638
5639    if (WIFEXITED(status)) {
5640      // The child exited normally; get its exit code.
5641      return WEXITSTATUS(status);
5642    } else if (WIFSIGNALED(status)) {
5643      // The child exited because of a signal
5644      // The best value to return is 0x80 + signal number,
5645      // because that is what all Unix shells do, and because
5646      // it allows callers to distinguish between process exit and
5647      // process death by signal.
5648      return 0x80 + WTERMSIG(status);
5649    } else {
5650      // Unknown exit code; pass it through
5651      return status;
5652    }
5653  }
5654}
5655
5656// is_headless_jre()
5657//
5658// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5659// in order to report if we are running in a headless jre
5660//
5661// Since JDK8 xawt/libmawt.so was moved into the same directory
5662// as libawt.so, and renamed libawt_xawt.so
5663//
5664bool os::is_headless_jre() {
5665  struct stat statbuf;
5666  char buf[MAXPATHLEN];
5667  char libmawtpath[MAXPATHLEN];
5668  const char *xawtstr  = "/xawt/libmawt.so";
5669  const char *new_xawtstr = "/libawt_xawt.so";
5670  char *p;
5671
5672  // Get path to libjvm.so
5673  os::jvm_path(buf, sizeof(buf));
5674
5675  // Get rid of libjvm.so
5676  p = strrchr(buf, '/');
5677  if (p == NULL) {
5678    return false;
5679  } else {
5680    *p = '\0';
5681  }
5682
5683  // Get rid of client or server
5684  p = strrchr(buf, '/');
5685  if (p == NULL) {
5686    return false;
5687  } else {
5688    *p = '\0';
5689  }
5690
5691  // check xawt/libmawt.so
5692  strcpy(libmawtpath, buf);
5693  strcat(libmawtpath, xawtstr);
5694  if (::stat(libmawtpath, &statbuf) == 0) return false;
5695
5696  // check libawt_xawt.so
5697  strcpy(libmawtpath, buf);
5698  strcat(libmawtpath, new_xawtstr);
5699  if (::stat(libmawtpath, &statbuf) == 0) return false;
5700
5701  return true;
5702}
5703
5704size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5705  size_t res;
5706  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5707  return res;
5708}
5709
5710int os::close(int fd) {
5711  return ::close(fd);
5712}
5713
5714int os::socket_close(int fd) {
5715  return ::close(fd);
5716}
5717
5718int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5719  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5720         "Assumed _thread_in_native");
5721  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5722}
5723
5724int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5725  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5726         "Assumed _thread_in_native");
5727  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5728}
5729
5730int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5731  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5732}
5733
5734// As both poll and select can be interrupted by signals, we have to be
5735// prepared to restart the system call after updating the timeout, unless
5736// a poll() is done with timeout == -1, in which case we repeat with this
5737// "wait forever" value.
5738
5739int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5740  int _result;
5741  _result = ::connect(fd, him, len);
5742
5743  // On Solaris, when a connect() call is interrupted, the connection
5744  // can be established asynchronously (see 6343810). Subsequent calls
5745  // to connect() must check the errno value which has the semantic
5746  // described below (copied from the connect() man page). Handling
5747  // of asynchronously established connections is required for both
5748  // blocking and non-blocking sockets.
5749  //     EINTR            The  connection  attempt  was   interrupted
5750  //                      before  any data arrived by the delivery of
5751  //                      a signal. The connection, however, will  be
5752  //                      established asynchronously.
5753  //
5754  //     EINPROGRESS      The socket is non-blocking, and the connec-
5755  //                      tion  cannot  be completed immediately.
5756  //
5757  //     EALREADY         The socket is non-blocking,  and a previous
5758  //                      connection  attempt  has  not yet been com-
5759  //                      pleted.
5760  //
5761  //     EISCONN          The socket is already connected.
5762  if (_result == OS_ERR && errno == EINTR) {
5763    // restarting a connect() changes its errno semantics
5764    RESTARTABLE(::connect(fd, him, len), _result);
5765    // undo these changes
5766    if (_result == OS_ERR) {
5767      if (errno == EALREADY) {
5768        errno = EINPROGRESS; // fall through
5769      } else if (errno == EISCONN) {
5770        errno = 0;
5771        return OS_OK;
5772      }
5773    }
5774  }
5775  return _result;
5776}
5777
5778// Get the default path to the core file
5779// Returns the length of the string
5780int os::get_core_path(char* buffer, size_t bufferSize) {
5781  const char* p = get_current_directory(buffer, bufferSize);
5782
5783  if (p == NULL) {
5784    assert(p != NULL, "failed to get current directory");
5785    return 0;
5786  }
5787
5788  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5789                                              p, current_process_id());
5790
5791  return strlen(buffer);
5792}
5793
5794#ifndef PRODUCT
5795void TestReserveMemorySpecial_test() {
5796  // No tests available for this platform
5797}
5798#endif
5799
5800bool os::start_debugging(char *buf, int buflen) {
5801  int len = (int)strlen(buf);
5802  char *p = &buf[len];
5803
5804  jio_snprintf(p, buflen-len,
5805               "\n\n"
5806               "Do you want to debug the problem?\n\n"
5807               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5808               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5809               "Otherwise, press RETURN to abort...",
5810               os::current_process_id(), os::current_thread_id());
5811
5812  bool yes = os::message_box("Unexpected Error", buf);
5813
5814  if (yes) {
5815    // yes, user asked VM to launch debugger
5816    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5817
5818    os::fork_and_exec(buf);
5819    yes = false;
5820  }
5821  return yes;
5822}
5823