os_bsd.cpp revision 7765:fca33371ff0b
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109  #include <elf.h>
110#endif
111
112#ifdef __APPLE__
113  #include <mach/mach.h> // semaphore_* API
114  #include <mach-o/dyld.h>
115  #include <sys/proc_info.h>
116  #include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120  #define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235  #ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237  #else
238static char cpu_arch[] = "sparc";
239  #endif
240#else
241  #error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246  #define COMPILER_VARIANT "server"
247#else
248  #define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  // get processors count via hw.ncpus sysctl
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263    assert(len == sizeof(cpu_val), "unexpected data size");
264    set_processor_count(cpu_val);
265  } else {
266    set_processor_count(1);   // fallback
267  }
268
269  // get physical memory via hw.memsize sysctl (hw.memsize is used
270  // since it returns a 64 bit value)
271  mib[0] = CTL_HW;
272
273#if defined (HW_MEMSIZE) // Apple
274  mib[1] = HW_MEMSIZE;
275#elif defined(HW_PHYSMEM) // Most of BSD
276  mib[1] = HW_PHYSMEM;
277#elif defined(HW_REALMEM) // Old FreeBSD
278  mib[1] = HW_REALMEM;
279#else
280  #error No ways to get physmem
281#endif
282
283  len = sizeof(mem_val);
284  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
285    assert(len == sizeof(mem_val), "unexpected data size");
286    _physical_memory = mem_val;
287  } else {
288    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
289  }
290
291#ifdef __OpenBSD__
292  {
293    // limit _physical_memory memory view on OpenBSD since
294    // datasize rlimit restricts us anyway.
295    struct rlimit limits;
296    getrlimit(RLIMIT_DATA, &limits);
297    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
298  }
299#endif
300}
301
302#ifdef __APPLE__
303static const char *get_home() {
304  const char *home_dir = ::getenv("HOME");
305  if ((home_dir == NULL) || (*home_dir == '\0')) {
306    struct passwd *passwd_info = getpwuid(geteuid());
307    if (passwd_info != NULL) {
308      home_dir = passwd_info->pw_dir;
309    }
310  }
311
312  return home_dir;
313}
314#endif
315
316void os::init_system_properties_values() {
317  // The next steps are taken in the product version:
318  //
319  // Obtain the JAVA_HOME value from the location of libjvm.so.
320  // This library should be located at:
321  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
322  //
323  // If "/jre/lib/" appears at the right place in the path, then we
324  // assume libjvm.so is installed in a JDK and we use this path.
325  //
326  // Otherwise exit with message: "Could not create the Java virtual machine."
327  //
328  // The following extra steps are taken in the debugging version:
329  //
330  // If "/jre/lib/" does NOT appear at the right place in the path
331  // instead of exit check for $JAVA_HOME environment variable.
332  //
333  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334  // then we append a fake suffix "hotspot/libjvm.so" to this path so
335  // it looks like libjvm.so is installed there
336  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
337  //
338  // Otherwise exit.
339  //
340  // Important note: if the location of libjvm.so changes this
341  // code needs to be changed accordingly.
342
343  // See ld(1):
344  //      The linker uses the following search paths to locate required
345  //      shared libraries:
346  //        1: ...
347  //        ...
348  //        7: The default directories, normally /lib and /usr/lib.
349#ifndef DEFAULT_LIBPATH
350  #define DEFAULT_LIBPATH "/lib:/usr/lib"
351#endif
352
353// Base path of extensions installed on the system.
354#define SYS_EXT_DIR     "/usr/java/packages"
355#define EXTENSIONS_DIR  "/lib/ext"
356
357#ifndef __APPLE__
358
359  // Buffer that fits several sprintfs.
360  // Note that the space for the colon and the trailing null are provided
361  // by the nulls included by the sizeof operator.
362  const size_t bufsize =
363    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
364         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
365  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
366
367  // sysclasspath, java_home, dll_dir
368  {
369    char *pslash;
370    os::jvm_path(buf, bufsize);
371
372    // Found the full path to libjvm.so.
373    // Now cut the path to <java_home>/jre if we can.
374    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
375    pslash = strrchr(buf, '/');
376    if (pslash != NULL) {
377      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
378    }
379    Arguments::set_dll_dir(buf);
380
381    if (pslash != NULL) {
382      pslash = strrchr(buf, '/');
383      if (pslash != NULL) {
384        *pslash = '\0';          // Get rid of /<arch>.
385        pslash = strrchr(buf, '/');
386        if (pslash != NULL) {
387          *pslash = '\0';        // Get rid of /lib.
388        }
389      }
390    }
391    Arguments::set_java_home(buf);
392    set_boot_path('/', ':');
393  }
394
395  // Where to look for native libraries.
396  //
397  // Note: Due to a legacy implementation, most of the library path
398  // is set in the launcher. This was to accomodate linking restrictions
399  // on legacy Bsd implementations (which are no longer supported).
400  // Eventually, all the library path setting will be done here.
401  //
402  // However, to prevent the proliferation of improperly built native
403  // libraries, the new path component /usr/java/packages is added here.
404  // Eventually, all the library path setting will be done here.
405  {
406    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
407    // should always exist (until the legacy problem cited above is
408    // addressed).
409    const char *v = ::getenv("LD_LIBRARY_PATH");
410    const char *v_colon = ":";
411    if (v == NULL) { v = ""; v_colon = ""; }
412    // That's +1 for the colon and +1 for the trailing '\0'.
413    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
414                                                     strlen(v) + 1 +
415                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
416                                                     mtInternal);
417    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
418    Arguments::set_library_path(ld_library_path);
419    FREE_C_HEAP_ARRAY(char, ld_library_path);
420  }
421
422  // Extensions directories.
423  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
424  Arguments::set_ext_dirs(buf);
425
426  FREE_C_HEAP_ARRAY(char, buf);
427
428#else // __APPLE__
429
430  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
431  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
432
433  const char *user_home_dir = get_home();
434  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
435  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
436    sizeof(SYS_EXTENSIONS_DIRS);
437
438  // Buffer that fits several sprintfs.
439  // Note that the space for the colon and the trailing null are provided
440  // by the nulls included by the sizeof operator.
441  const size_t bufsize =
442    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
443         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
444  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
445
446  // sysclasspath, java_home, dll_dir
447  {
448    char *pslash;
449    os::jvm_path(buf, bufsize);
450
451    // Found the full path to libjvm.so.
452    // Now cut the path to <java_home>/jre if we can.
453    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
454    pslash = strrchr(buf, '/');
455    if (pslash != NULL) {
456      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
457    }
458    Arguments::set_dll_dir(buf);
459
460    if (pslash != NULL) {
461      pslash = strrchr(buf, '/');
462      if (pslash != NULL) {
463        *pslash = '\0';          // Get rid of /lib.
464      }
465    }
466    Arguments::set_java_home(buf);
467    set_boot_path('/', ':');
468  }
469
470  // Where to look for native libraries.
471  //
472  // Note: Due to a legacy implementation, most of the library path
473  // is set in the launcher. This was to accomodate linking restrictions
474  // on legacy Bsd implementations (which are no longer supported).
475  // Eventually, all the library path setting will be done here.
476  //
477  // However, to prevent the proliferation of improperly built native
478  // libraries, the new path component /usr/java/packages is added here.
479  // Eventually, all the library path setting will be done here.
480  {
481    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
482    // should always exist (until the legacy problem cited above is
483    // addressed).
484    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
485    // can specify a directory inside an app wrapper
486    const char *l = ::getenv("JAVA_LIBRARY_PATH");
487    const char *l_colon = ":";
488    if (l == NULL) { l = ""; l_colon = ""; }
489
490    const char *v = ::getenv("DYLD_LIBRARY_PATH");
491    const char *v_colon = ":";
492    if (v == NULL) { v = ""; v_colon = ""; }
493
494    // Apple's Java6 has "." at the beginning of java.library.path.
495    // OpenJDK on Windows has "." at the end of java.library.path.
496    // OpenJDK on Linux and Solaris don't have "." in java.library.path
497    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
498    // "." is appended to the end of java.library.path. Yes, this
499    // could cause a change in behavior, but Apple's Java6 behavior
500    // can be achieved by putting "." at the beginning of the
501    // JAVA_LIBRARY_PATH environment variable.
502    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
503                                                     strlen(v) + 1 + strlen(l) + 1 +
504                                                     system_ext_size + 3,
505                                                     mtInternal);
506    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
507            v, v_colon, l, l_colon, user_home_dir);
508    Arguments::set_library_path(ld_library_path);
509    FREE_C_HEAP_ARRAY(char, ld_library_path);
510  }
511
512  // Extensions directories.
513  //
514  // Note that the space for the colon and the trailing null are provided
515  // by the nulls included by the sizeof operator (so actually one byte more
516  // than necessary is allocated).
517  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
518          user_home_dir, Arguments::get_java_home());
519  Arguments::set_ext_dirs(buf);
520
521  FREE_C_HEAP_ARRAY(char, buf);
522
523#undef SYS_EXTENSIONS_DIR
524#undef SYS_EXTENSIONS_DIRS
525
526#endif // __APPLE__
527
528#undef SYS_EXT_DIR
529#undef EXTENSIONS_DIR
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// breakpoint support
534
535void os::breakpoint() {
536  BREAKPOINT;
537}
538
539extern "C" void breakpoint() {
540  // use debugger to set breakpoint here
541}
542
543////////////////////////////////////////////////////////////////////////////////
544// signal support
545
546debug_only(static bool signal_sets_initialized = false);
547static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
548
549bool os::Bsd::is_sig_ignored(int sig) {
550  struct sigaction oact;
551  sigaction(sig, (struct sigaction*)NULL, &oact);
552  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
553                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
554  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
555    return true;
556  } else {
557    return false;
558  }
559}
560
561void os::Bsd::signal_sets_init() {
562  // Should also have an assertion stating we are still single-threaded.
563  assert(!signal_sets_initialized, "Already initialized");
564  // Fill in signals that are necessarily unblocked for all threads in
565  // the VM. Currently, we unblock the following signals:
566  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567  //                         by -Xrs (=ReduceSignalUsage));
568  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570  // the dispositions or masks wrt these signals.
571  // Programs embedding the VM that want to use the above signals for their
572  // own purposes must, at this time, use the "-Xrs" option to prevent
573  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574  // (See bug 4345157, and other related bugs).
575  // In reality, though, unblocking these signals is really a nop, since
576  // these signals are not blocked by default.
577  sigemptyset(&unblocked_sigs);
578  sigemptyset(&allowdebug_blocked_sigs);
579  sigaddset(&unblocked_sigs, SIGILL);
580  sigaddset(&unblocked_sigs, SIGSEGV);
581  sigaddset(&unblocked_sigs, SIGBUS);
582  sigaddset(&unblocked_sigs, SIGFPE);
583  sigaddset(&unblocked_sigs, SR_signum);
584
585  if (!ReduceSignalUsage) {
586    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589    }
590    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593    }
594    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597    }
598  }
599  // Fill in signals that are blocked by all but the VM thread.
600  sigemptyset(&vm_sigs);
601  if (!ReduceSignalUsage) {
602    sigaddset(&vm_sigs, BREAK_SIGNAL);
603  }
604  debug_only(signal_sets_initialized = true);
605
606}
607
608// These are signals that are unblocked while a thread is running Java.
609// (For some reason, they get blocked by default.)
610sigset_t* os::Bsd::unblocked_signals() {
611  assert(signal_sets_initialized, "Not initialized");
612  return &unblocked_sigs;
613}
614
615// These are the signals that are blocked while a (non-VM) thread is
616// running Java. Only the VM thread handles these signals.
617sigset_t* os::Bsd::vm_signals() {
618  assert(signal_sets_initialized, "Not initialized");
619  return &vm_sigs;
620}
621
622// These are signals that are blocked during cond_wait to allow debugger in
623sigset_t* os::Bsd::allowdebug_blocked_signals() {
624  assert(signal_sets_initialized, "Not initialized");
625  return &allowdebug_blocked_sigs;
626}
627
628void os::Bsd::hotspot_sigmask(Thread* thread) {
629
630  //Save caller's signal mask before setting VM signal mask
631  sigset_t caller_sigmask;
632  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
633
634  OSThread* osthread = thread->osthread();
635  osthread->set_caller_sigmask(caller_sigmask);
636
637  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
638
639  if (!ReduceSignalUsage) {
640    if (thread->is_VM_thread()) {
641      // Only the VM thread handles BREAK_SIGNAL ...
642      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
643    } else {
644      // ... all other threads block BREAK_SIGNAL
645      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
646    }
647  }
648}
649
650
651//////////////////////////////////////////////////////////////////////////////
652// create new thread
653
654// check if it's safe to start a new thread
655static bool _thread_safety_check(Thread* thread) {
656  return true;
657}
658
659#ifdef __APPLE__
660// library handle for calling objc_registerThreadWithCollector()
661// without static linking to the libobjc library
662  #define OBJC_LIB "/usr/lib/libobjc.dylib"
663  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
664typedef void (*objc_registerThreadWithCollector_t)();
665extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
666objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
667#endif
668
669#ifdef __APPLE__
670static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
671  // Additional thread_id used to correlate threads in SA
672  thread_identifier_info_data_t     m_ident_info;
673  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
674
675  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
676              (thread_info_t) &m_ident_info, &count);
677
678  return m_ident_info.thread_id;
679}
680#endif
681
682// Thread start routine for all newly created threads
683static void *java_start(Thread *thread) {
684  // Try to randomize the cache line index of hot stack frames.
685  // This helps when threads of the same stack traces evict each other's
686  // cache lines. The threads can be either from the same JVM instance, or
687  // from different JVM instances. The benefit is especially true for
688  // processors with hyperthreading technology.
689  static int counter = 0;
690  int pid = os::current_process_id();
691  alloca(((pid ^ counter++) & 7) * 128);
692
693  ThreadLocalStorage::set_thread(thread);
694
695  OSThread* osthread = thread->osthread();
696  Monitor* sync = osthread->startThread_lock();
697
698  // non floating stack BsdThreads needs extra check, see above
699  if (!_thread_safety_check(thread)) {
700    // notify parent thread
701    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
702    osthread->set_state(ZOMBIE);
703    sync->notify_all();
704    return NULL;
705  }
706
707  osthread->set_thread_id(os::Bsd::gettid());
708
709#ifdef __APPLE__
710  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
711  guarantee(unique_thread_id != 0, "unique thread id was not found");
712  osthread->set_unique_thread_id(unique_thread_id);
713#endif
714  // initialize signal mask for this thread
715  os::Bsd::hotspot_sigmask(thread);
716
717  // initialize floating point control register
718  os::Bsd::init_thread_fpu_state();
719
720#ifdef __APPLE__
721  // register thread with objc gc
722  if (objc_registerThreadWithCollectorFunction != NULL) {
723    objc_registerThreadWithCollectorFunction();
724  }
725#endif
726
727  // handshaking with parent thread
728  {
729    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
730
731    // notify parent thread
732    osthread->set_state(INITIALIZED);
733    sync->notify_all();
734
735    // wait until os::start_thread()
736    while (osthread->get_state() == INITIALIZED) {
737      sync->wait(Mutex::_no_safepoint_check_flag);
738    }
739  }
740
741  // call one more level start routine
742  thread->run();
743
744  return 0;
745}
746
747bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
748  assert(thread->osthread() == NULL, "caller responsible");
749
750  // Allocate the OSThread object
751  OSThread* osthread = new OSThread(NULL, NULL);
752  if (osthread == NULL) {
753    return false;
754  }
755
756  // set the correct thread state
757  osthread->set_thread_type(thr_type);
758
759  // Initial state is ALLOCATED but not INITIALIZED
760  osthread->set_state(ALLOCATED);
761
762  thread->set_osthread(osthread);
763
764  // init thread attributes
765  pthread_attr_t attr;
766  pthread_attr_init(&attr);
767  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
768
769  // stack size
770  if (os::Bsd::supports_variable_stack_size()) {
771    // calculate stack size if it's not specified by caller
772    if (stack_size == 0) {
773      stack_size = os::Bsd::default_stack_size(thr_type);
774
775      switch (thr_type) {
776      case os::java_thread:
777        // Java threads use ThreadStackSize which default value can be
778        // changed with the flag -Xss
779        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
780        stack_size = JavaThread::stack_size_at_create();
781        break;
782      case os::compiler_thread:
783        if (CompilerThreadStackSize > 0) {
784          stack_size = (size_t)(CompilerThreadStackSize * K);
785          break;
786        } // else fall through:
787          // use VMThreadStackSize if CompilerThreadStackSize is not defined
788      case os::vm_thread:
789      case os::pgc_thread:
790      case os::cgc_thread:
791      case os::watcher_thread:
792        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
793        break;
794      }
795    }
796
797    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
798    pthread_attr_setstacksize(&attr, stack_size);
799  } else {
800    // let pthread_create() pick the default value.
801  }
802
803  ThreadState state;
804
805  {
806    pthread_t tid;
807    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
808
809    pthread_attr_destroy(&attr);
810
811    if (ret != 0) {
812      if (PrintMiscellaneous && (Verbose || WizardMode)) {
813        perror("pthread_create()");
814      }
815      // Need to clean up stuff we've allocated so far
816      thread->set_osthread(NULL);
817      delete osthread;
818      return false;
819    }
820
821    // Store pthread info into the OSThread
822    osthread->set_pthread_id(tid);
823
824    // Wait until child thread is either initialized or aborted
825    {
826      Monitor* sync_with_child = osthread->startThread_lock();
827      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
828      while ((state = osthread->get_state()) == ALLOCATED) {
829        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
830      }
831    }
832
833  }
834
835  // Aborted due to thread limit being reached
836  if (state == ZOMBIE) {
837    thread->set_osthread(NULL);
838    delete osthread;
839    return false;
840  }
841
842  // The thread is returned suspended (in state INITIALIZED),
843  // and is started higher up in the call chain
844  assert(state == INITIALIZED, "race condition");
845  return true;
846}
847
848/////////////////////////////////////////////////////////////////////////////
849// attach existing thread
850
851// bootstrap the main thread
852bool os::create_main_thread(JavaThread* thread) {
853  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
854  return create_attached_thread(thread);
855}
856
857bool os::create_attached_thread(JavaThread* thread) {
858#ifdef ASSERT
859  thread->verify_not_published();
860#endif
861
862  // Allocate the OSThread object
863  OSThread* osthread = new OSThread(NULL, NULL);
864
865  if (osthread == NULL) {
866    return false;
867  }
868
869  osthread->set_thread_id(os::Bsd::gettid());
870
871  // Store pthread info into the OSThread
872#ifdef __APPLE__
873  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
874  guarantee(unique_thread_id != 0, "just checking");
875  osthread->set_unique_thread_id(unique_thread_id);
876#endif
877  osthread->set_pthread_id(::pthread_self());
878
879  // initialize floating point control register
880  os::Bsd::init_thread_fpu_state();
881
882  // Initial thread state is RUNNABLE
883  osthread->set_state(RUNNABLE);
884
885  thread->set_osthread(osthread);
886
887  // initialize signal mask for this thread
888  // and save the caller's signal mask
889  os::Bsd::hotspot_sigmask(thread);
890
891  return true;
892}
893
894void os::pd_start_thread(Thread* thread) {
895  OSThread * osthread = thread->osthread();
896  assert(osthread->get_state() != INITIALIZED, "just checking");
897  Monitor* sync_with_child = osthread->startThread_lock();
898  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
899  sync_with_child->notify();
900}
901
902// Free Bsd resources related to the OSThread
903void os::free_thread(OSThread* osthread) {
904  assert(osthread != NULL, "osthread not set");
905
906  if (Thread::current()->osthread() == osthread) {
907    // Restore caller's signal mask
908    sigset_t sigmask = osthread->caller_sigmask();
909    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
910  }
911
912  delete osthread;
913}
914
915//////////////////////////////////////////////////////////////////////////////
916// thread local storage
917
918// Restore the thread pointer if the destructor is called. This is in case
919// someone from JNI code sets up a destructor with pthread_key_create to run
920// detachCurrentThread on thread death. Unless we restore the thread pointer we
921// will hang or crash. When detachCurrentThread is called the key will be set
922// to null and we will not be called again. If detachCurrentThread is never
923// called we could loop forever depending on the pthread implementation.
924static void restore_thread_pointer(void* p) {
925  Thread* thread = (Thread*) p;
926  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
927}
928
929int os::allocate_thread_local_storage() {
930  pthread_key_t key;
931  int rslt = pthread_key_create(&key, restore_thread_pointer);
932  assert(rslt == 0, "cannot allocate thread local storage");
933  return (int)key;
934}
935
936// Note: This is currently not used by VM, as we don't destroy TLS key
937// on VM exit.
938void os::free_thread_local_storage(int index) {
939  int rslt = pthread_key_delete((pthread_key_t)index);
940  assert(rslt == 0, "invalid index");
941}
942
943void os::thread_local_storage_at_put(int index, void* value) {
944  int rslt = pthread_setspecific((pthread_key_t)index, value);
945  assert(rslt == 0, "pthread_setspecific failed");
946}
947
948extern "C" Thread* get_thread() {
949  return ThreadLocalStorage::thread();
950}
951
952
953////////////////////////////////////////////////////////////////////////////////
954// time support
955
956// Time since start-up in seconds to a fine granularity.
957// Used by VMSelfDestructTimer and the MemProfiler.
958double os::elapsedTime() {
959
960  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
961}
962
963jlong os::elapsed_counter() {
964  return javaTimeNanos() - initial_time_count;
965}
966
967jlong os::elapsed_frequency() {
968  return NANOSECS_PER_SEC; // nanosecond resolution
969}
970
971bool os::supports_vtime() { return true; }
972bool os::enable_vtime()   { return false; }
973bool os::vtime_enabled()  { return false; }
974
975double os::elapsedVTime() {
976  // better than nothing, but not much
977  return elapsedTime();
978}
979
980jlong os::javaTimeMillis() {
981  timeval time;
982  int status = gettimeofday(&time, NULL);
983  assert(status != -1, "bsd error");
984  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
985}
986
987void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
988  timeval time;
989  int status = gettimeofday(&time, NULL);
990  assert(status != -1, "bsd error");
991  seconds = jlong(time.tv_sec);
992  nanos = jlong(time.tv_usec) * 1000;
993}
994
995#ifndef __APPLE__
996  #ifndef CLOCK_MONOTONIC
997    #define CLOCK_MONOTONIC (1)
998  #endif
999#endif
1000
1001#ifdef __APPLE__
1002void os::Bsd::clock_init() {
1003  mach_timebase_info(&_timebase_info);
1004}
1005#else
1006void os::Bsd::clock_init() {
1007  struct timespec res;
1008  struct timespec tp;
1009  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1010      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1011    // yes, monotonic clock is supported
1012    _clock_gettime = ::clock_gettime;
1013  }
1014}
1015#endif
1016
1017
1018
1019#ifdef __APPLE__
1020
1021jlong os::javaTimeNanos() {
1022  const uint64_t tm = mach_absolute_time();
1023  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1024  const uint64_t prev = Bsd::_max_abstime;
1025  if (now <= prev) {
1026    return prev;   // same or retrograde time;
1027  }
1028  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1029  assert(obsv >= prev, "invariant");   // Monotonicity
1030  // If the CAS succeeded then we're done and return "now".
1031  // If the CAS failed and the observed value "obsv" is >= now then
1032  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1033  // some other thread raced this thread and installed a new value, in which case
1034  // we could either (a) retry the entire operation, (b) retry trying to install now
1035  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1036  // we might discard a higher "now" value in deference to a slightly lower but freshly
1037  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1038  // to (a) or (b) -- and greatly reduces coherence traffic.
1039  // We might also condition (c) on the magnitude of the delta between obsv and now.
1040  // Avoiding excessive CAS operations to hot RW locations is critical.
1041  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1042  return (prev == obsv) ? now : obsv;
1043}
1044
1045#else // __APPLE__
1046
1047jlong os::javaTimeNanos() {
1048  if (os::supports_monotonic_clock()) {
1049    struct timespec tp;
1050    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1051    assert(status == 0, "gettime error");
1052    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1053    return result;
1054  } else {
1055    timeval time;
1056    int status = gettimeofday(&time, NULL);
1057    assert(status != -1, "bsd error");
1058    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1059    return 1000 * usecs;
1060  }
1061}
1062
1063#endif // __APPLE__
1064
1065void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1066  if (os::supports_monotonic_clock()) {
1067    info_ptr->max_value = ALL_64_BITS;
1068
1069    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1070    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1071    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1072  } else {
1073    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1074    info_ptr->max_value = ALL_64_BITS;
1075
1076    // gettimeofday is a real time clock so it skips
1077    info_ptr->may_skip_backward = true;
1078    info_ptr->may_skip_forward = true;
1079  }
1080
1081  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1082}
1083
1084// Return the real, user, and system times in seconds from an
1085// arbitrary fixed point in the past.
1086bool os::getTimesSecs(double* process_real_time,
1087                      double* process_user_time,
1088                      double* process_system_time) {
1089  struct tms ticks;
1090  clock_t real_ticks = times(&ticks);
1091
1092  if (real_ticks == (clock_t) (-1)) {
1093    return false;
1094  } else {
1095    double ticks_per_second = (double) clock_tics_per_sec;
1096    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1097    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1098    *process_real_time = ((double) real_ticks) / ticks_per_second;
1099
1100    return true;
1101  }
1102}
1103
1104
1105char * os::local_time_string(char *buf, size_t buflen) {
1106  struct tm t;
1107  time_t long_time;
1108  time(&long_time);
1109  localtime_r(&long_time, &t);
1110  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1111               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1112               t.tm_hour, t.tm_min, t.tm_sec);
1113  return buf;
1114}
1115
1116struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1117  return localtime_r(clock, res);
1118}
1119
1120////////////////////////////////////////////////////////////////////////////////
1121// runtime exit support
1122
1123// Note: os::shutdown() might be called very early during initialization, or
1124// called from signal handler. Before adding something to os::shutdown(), make
1125// sure it is async-safe and can handle partially initialized VM.
1126void os::shutdown() {
1127
1128  // allow PerfMemory to attempt cleanup of any persistent resources
1129  perfMemory_exit();
1130
1131  // needs to remove object in file system
1132  AttachListener::abort();
1133
1134  // flush buffered output, finish log files
1135  ostream_abort();
1136
1137  // Check for abort hook
1138  abort_hook_t abort_hook = Arguments::abort_hook();
1139  if (abort_hook != NULL) {
1140    abort_hook();
1141  }
1142
1143}
1144
1145// Note: os::abort() might be called very early during initialization, or
1146// called from signal handler. Before adding something to os::abort(), make
1147// sure it is async-safe and can handle partially initialized VM.
1148void os::abort(bool dump_core) {
1149  os::shutdown();
1150  if (dump_core) {
1151#ifndef PRODUCT
1152    fdStream out(defaultStream::output_fd());
1153    out.print_raw("Current thread is ");
1154    char buf[16];
1155    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1156    out.print_raw_cr(buf);
1157    out.print_raw_cr("Dumping core ...");
1158#endif
1159    ::abort(); // dump core
1160  }
1161
1162  ::exit(1);
1163}
1164
1165// Die immediately, no exit hook, no abort hook, no cleanup.
1166void os::die() {
1167  // _exit() on BsdThreads only kills current thread
1168  ::abort();
1169}
1170
1171// This method is a copy of JDK's sysGetLastErrorString
1172// from src/solaris/hpi/src/system_md.c
1173
1174size_t os::lasterror(char *buf, size_t len) {
1175  if (errno == 0)  return 0;
1176
1177  const char *s = ::strerror(errno);
1178  size_t n = ::strlen(s);
1179  if (n >= len) {
1180    n = len - 1;
1181  }
1182  ::strncpy(buf, s, n);
1183  buf[n] = '\0';
1184  return n;
1185}
1186
1187// Information of current thread in variety of formats
1188pid_t os::Bsd::gettid() {
1189  int retval = -1;
1190
1191#ifdef __APPLE__ //XNU kernel
1192  // despite the fact mach port is actually not a thread id use it
1193  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1194  retval = ::pthread_mach_thread_np(::pthread_self());
1195  guarantee(retval != 0, "just checking");
1196  return retval;
1197
1198#elif __FreeBSD__
1199  retval = syscall(SYS_thr_self);
1200#elif __OpenBSD__
1201  retval = syscall(SYS_getthrid);
1202#elif __NetBSD__
1203  retval = (pid_t) syscall(SYS__lwp_self);
1204#endif
1205
1206  if (retval == -1) {
1207    return getpid();
1208  }
1209}
1210
1211intx os::current_thread_id() {
1212#ifdef __APPLE__
1213  return (intx)::pthread_mach_thread_np(::pthread_self());
1214#else
1215  return (intx)::pthread_self();
1216#endif
1217}
1218
1219int os::current_process_id() {
1220
1221  // Under the old bsd thread library, bsd gives each thread
1222  // its own process id. Because of this each thread will return
1223  // a different pid if this method were to return the result
1224  // of getpid(2). Bsd provides no api that returns the pid
1225  // of the launcher thread for the vm. This implementation
1226  // returns a unique pid, the pid of the launcher thread
1227  // that starts the vm 'process'.
1228
1229  // Under the NPTL, getpid() returns the same pid as the
1230  // launcher thread rather than a unique pid per thread.
1231  // Use gettid() if you want the old pre NPTL behaviour.
1232
1233  // if you are looking for the result of a call to getpid() that
1234  // returns a unique pid for the calling thread, then look at the
1235  // OSThread::thread_id() method in osThread_bsd.hpp file
1236
1237  return (int)(_initial_pid ? _initial_pid : getpid());
1238}
1239
1240// DLL functions
1241
1242#define JNI_LIB_PREFIX "lib"
1243#ifdef __APPLE__
1244  #define JNI_LIB_SUFFIX ".dylib"
1245#else
1246  #define JNI_LIB_SUFFIX ".so"
1247#endif
1248
1249const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1250
1251// This must be hard coded because it's the system's temporary
1252// directory not the java application's temp directory, ala java.io.tmpdir.
1253#ifdef __APPLE__
1254// macosx has a secure per-user temporary directory
1255char temp_path_storage[PATH_MAX];
1256const char* os::get_temp_directory() {
1257  static char *temp_path = NULL;
1258  if (temp_path == NULL) {
1259    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1260    if (pathSize == 0 || pathSize > PATH_MAX) {
1261      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1262    }
1263    temp_path = temp_path_storage;
1264  }
1265  return temp_path;
1266}
1267#else // __APPLE__
1268const char* os::get_temp_directory() { return "/tmp"; }
1269#endif // __APPLE__
1270
1271static bool file_exists(const char* filename) {
1272  struct stat statbuf;
1273  if (filename == NULL || strlen(filename) == 0) {
1274    return false;
1275  }
1276  return os::stat(filename, &statbuf) == 0;
1277}
1278
1279bool os::dll_build_name(char* buffer, size_t buflen,
1280                        const char* pname, const char* fname) {
1281  bool retval = false;
1282  // Copied from libhpi
1283  const size_t pnamelen = pname ? strlen(pname) : 0;
1284
1285  // Return error on buffer overflow.
1286  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1287    return retval;
1288  }
1289
1290  if (pnamelen == 0) {
1291    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1292    retval = true;
1293  } else if (strchr(pname, *os::path_separator()) != NULL) {
1294    int n;
1295    char** pelements = split_path(pname, &n);
1296    if (pelements == NULL) {
1297      return false;
1298    }
1299    for (int i = 0; i < n; i++) {
1300      // Really shouldn't be NULL, but check can't hurt
1301      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1302        continue; // skip the empty path values
1303      }
1304      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1305               pelements[i], fname);
1306      if (file_exists(buffer)) {
1307        retval = true;
1308        break;
1309      }
1310    }
1311    // release the storage
1312    for (int i = 0; i < n; i++) {
1313      if (pelements[i] != NULL) {
1314        FREE_C_HEAP_ARRAY(char, pelements[i]);
1315      }
1316    }
1317    if (pelements != NULL) {
1318      FREE_C_HEAP_ARRAY(char*, pelements);
1319    }
1320  } else {
1321    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1322    retval = true;
1323  }
1324  return retval;
1325}
1326
1327// check if addr is inside libjvm.so
1328bool os::address_is_in_vm(address addr) {
1329  static address libjvm_base_addr;
1330  Dl_info dlinfo;
1331
1332  if (libjvm_base_addr == NULL) {
1333    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1334      libjvm_base_addr = (address)dlinfo.dli_fbase;
1335    }
1336    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1337  }
1338
1339  if (dladdr((void *)addr, &dlinfo) != 0) {
1340    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1341  }
1342
1343  return false;
1344}
1345
1346
1347#define MACH_MAXSYMLEN 256
1348
1349bool os::dll_address_to_function_name(address addr, char *buf,
1350                                      int buflen, int *offset) {
1351  // buf is not optional, but offset is optional
1352  assert(buf != NULL, "sanity check");
1353
1354  Dl_info dlinfo;
1355  char localbuf[MACH_MAXSYMLEN];
1356
1357  if (dladdr((void*)addr, &dlinfo) != 0) {
1358    // see if we have a matching symbol
1359    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1360      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1361        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1362      }
1363      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1364      return true;
1365    }
1366    // no matching symbol so try for just file info
1367    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1368      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1369                          buf, buflen, offset, dlinfo.dli_fname)) {
1370        return true;
1371      }
1372    }
1373
1374    // Handle non-dynamic manually:
1375    if (dlinfo.dli_fbase != NULL &&
1376        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1377      if (!Decoder::demangle(localbuf, buf, buflen)) {
1378        jio_snprintf(buf, buflen, "%s", localbuf);
1379      }
1380      return true;
1381    }
1382  }
1383  buf[0] = '\0';
1384  if (offset != NULL) *offset = -1;
1385  return false;
1386}
1387
1388// ported from solaris version
1389bool os::dll_address_to_library_name(address addr, char* buf,
1390                                     int buflen, int* offset) {
1391  // buf is not optional, but offset is optional
1392  assert(buf != NULL, "sanity check");
1393
1394  Dl_info dlinfo;
1395
1396  if (dladdr((void*)addr, &dlinfo) != 0) {
1397    if (dlinfo.dli_fname != NULL) {
1398      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1399    }
1400    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1401      *offset = addr - (address)dlinfo.dli_fbase;
1402    }
1403    return true;
1404  }
1405
1406  buf[0] = '\0';
1407  if (offset) *offset = -1;
1408  return false;
1409}
1410
1411// Loads .dll/.so and
1412// in case of error it checks if .dll/.so was built for the
1413// same architecture as Hotspot is running on
1414
1415#ifdef __APPLE__
1416void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1417  void * result= ::dlopen(filename, RTLD_LAZY);
1418  if (result != NULL) {
1419    // Successful loading
1420    return result;
1421  }
1422
1423  // Read system error message into ebuf
1424  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1425  ebuf[ebuflen-1]='\0';
1426
1427  return NULL;
1428}
1429#else
1430void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1431  void * result= ::dlopen(filename, RTLD_LAZY);
1432  if (result != NULL) {
1433    // Successful loading
1434    return result;
1435  }
1436
1437  Elf32_Ehdr elf_head;
1438
1439  // Read system error message into ebuf
1440  // It may or may not be overwritten below
1441  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1442  ebuf[ebuflen-1]='\0';
1443  int diag_msg_max_length=ebuflen-strlen(ebuf);
1444  char* diag_msg_buf=ebuf+strlen(ebuf);
1445
1446  if (diag_msg_max_length==0) {
1447    // No more space in ebuf for additional diagnostics message
1448    return NULL;
1449  }
1450
1451
1452  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1453
1454  if (file_descriptor < 0) {
1455    // Can't open library, report dlerror() message
1456    return NULL;
1457  }
1458
1459  bool failed_to_read_elf_head=
1460    (sizeof(elf_head)!=
1461     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1462
1463  ::close(file_descriptor);
1464  if (failed_to_read_elf_head) {
1465    // file i/o error - report dlerror() msg
1466    return NULL;
1467  }
1468
1469  typedef struct {
1470    Elf32_Half  code;         // Actual value as defined in elf.h
1471    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1472    char        elf_class;    // 32 or 64 bit
1473    char        endianess;    // MSB or LSB
1474    char*       name;         // String representation
1475  } arch_t;
1476
1477  #ifndef EM_486
1478    #define EM_486          6               /* Intel 80486 */
1479  #endif
1480
1481  #ifndef EM_MIPS_RS3_LE
1482    #define EM_MIPS_RS3_LE  10              /* MIPS */
1483  #endif
1484
1485  #ifndef EM_PPC64
1486    #define EM_PPC64        21              /* PowerPC64 */
1487  #endif
1488
1489  #ifndef EM_S390
1490    #define EM_S390         22              /* IBM System/390 */
1491  #endif
1492
1493  #ifndef EM_IA_64
1494    #define EM_IA_64        50              /* HP/Intel IA-64 */
1495  #endif
1496
1497  #ifndef EM_X86_64
1498    #define EM_X86_64       62              /* AMD x86-64 */
1499  #endif
1500
1501  static const arch_t arch_array[]={
1502    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1503    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1504    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1505    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1506    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1507    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1508    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1509    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1510    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1511    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1512    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1513    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1514    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1515    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1516    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1517    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1518  };
1519
1520  #if  (defined IA32)
1521  static  Elf32_Half running_arch_code=EM_386;
1522  #elif   (defined AMD64)
1523  static  Elf32_Half running_arch_code=EM_X86_64;
1524  #elif  (defined IA64)
1525  static  Elf32_Half running_arch_code=EM_IA_64;
1526  #elif  (defined __sparc) && (defined _LP64)
1527  static  Elf32_Half running_arch_code=EM_SPARCV9;
1528  #elif  (defined __sparc) && (!defined _LP64)
1529  static  Elf32_Half running_arch_code=EM_SPARC;
1530  #elif  (defined __powerpc64__)
1531  static  Elf32_Half running_arch_code=EM_PPC64;
1532  #elif  (defined __powerpc__)
1533  static  Elf32_Half running_arch_code=EM_PPC;
1534  #elif  (defined ARM)
1535  static  Elf32_Half running_arch_code=EM_ARM;
1536  #elif  (defined S390)
1537  static  Elf32_Half running_arch_code=EM_S390;
1538  #elif  (defined ALPHA)
1539  static  Elf32_Half running_arch_code=EM_ALPHA;
1540  #elif  (defined MIPSEL)
1541  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1542  #elif  (defined PARISC)
1543  static  Elf32_Half running_arch_code=EM_PARISC;
1544  #elif  (defined MIPS)
1545  static  Elf32_Half running_arch_code=EM_MIPS;
1546  #elif  (defined M68K)
1547  static  Elf32_Half running_arch_code=EM_68K;
1548  #else
1549    #error Method os::dll_load requires that one of following is defined:\
1550         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1551  #endif
1552
1553  // Identify compatability class for VM's architecture and library's architecture
1554  // Obtain string descriptions for architectures
1555
1556  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1557  int running_arch_index=-1;
1558
1559  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1560    if (running_arch_code == arch_array[i].code) {
1561      running_arch_index    = i;
1562    }
1563    if (lib_arch.code == arch_array[i].code) {
1564      lib_arch.compat_class = arch_array[i].compat_class;
1565      lib_arch.name         = arch_array[i].name;
1566    }
1567  }
1568
1569  assert(running_arch_index != -1,
1570         "Didn't find running architecture code (running_arch_code) in arch_array");
1571  if (running_arch_index == -1) {
1572    // Even though running architecture detection failed
1573    // we may still continue with reporting dlerror() message
1574    return NULL;
1575  }
1576
1577  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1578    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1579    return NULL;
1580  }
1581
1582#ifndef S390
1583  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1584    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1585    return NULL;
1586  }
1587#endif // !S390
1588
1589  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1590    if (lib_arch.name!=NULL) {
1591      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1592                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1593                 lib_arch.name, arch_array[running_arch_index].name);
1594    } else {
1595      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1596                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1597                 lib_arch.code,
1598                 arch_array[running_arch_index].name);
1599    }
1600  }
1601
1602  return NULL;
1603}
1604#endif // !__APPLE__
1605
1606void* os::get_default_process_handle() {
1607#ifdef __APPLE__
1608  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1609  // to avoid finding unexpected symbols on second (or later)
1610  // loads of a library.
1611  return (void*)::dlopen(NULL, RTLD_FIRST);
1612#else
1613  return (void*)::dlopen(NULL, RTLD_LAZY);
1614#endif
1615}
1616
1617// XXX: Do we need a lock around this as per Linux?
1618void* os::dll_lookup(void* handle, const char* name) {
1619  return dlsym(handle, name);
1620}
1621
1622
1623static bool _print_ascii_file(const char* filename, outputStream* st) {
1624  int fd = ::open(filename, O_RDONLY);
1625  if (fd == -1) {
1626    return false;
1627  }
1628
1629  char buf[32];
1630  int bytes;
1631  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1632    st->print_raw(buf, bytes);
1633  }
1634
1635  ::close(fd);
1636
1637  return true;
1638}
1639
1640int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1641  outputStream * out = (outputStream *) param;
1642  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1643  return 0;
1644}
1645
1646void os::print_dll_info(outputStream *st) {
1647  st->print_cr("Dynamic libraries:");
1648  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1649    st->print_cr("Error: Cannot print dynamic libraries.");
1650  }
1651}
1652
1653int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1654#ifdef RTLD_DI_LINKMAP
1655  Dl_info dli;
1656  void *handle;
1657  Link_map *map;
1658  Link_map *p;
1659
1660  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1661      dli.dli_fname == NULL) {
1662    return 1;
1663  }
1664  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1665  if (handle == NULL) {
1666    return 1;
1667  }
1668  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1669  if (map == NULL) {
1670    dlclose(handle);
1671    return 1;
1672  }
1673
1674  while (map->l_prev != NULL)
1675    map = map->l_prev;
1676
1677  while (map != NULL) {
1678    // Value for top_address is returned as 0 since we don't have any information about module size
1679    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1680      dlclose(handle);
1681      return 1;
1682    }
1683    map = map->l_next;
1684  }
1685
1686  dlclose(handle);
1687#elif defined(__APPLE__)
1688  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1689    // Value for top_address is returned as 0 since we don't have any information about module size
1690    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1691      return 1;
1692    }
1693  }
1694  return 0;
1695#else
1696  return 1;
1697#endif
1698}
1699
1700void os::print_os_info_brief(outputStream* st) {
1701  st->print("Bsd");
1702
1703  os::Posix::print_uname_info(st);
1704}
1705
1706void os::print_os_info(outputStream* st) {
1707  st->print("OS:");
1708  st->print("Bsd");
1709
1710  os::Posix::print_uname_info(st);
1711
1712  os::Posix::print_rlimit_info(st);
1713
1714  os::Posix::print_load_average(st);
1715}
1716
1717void os::pd_print_cpu_info(outputStream* st) {
1718  // Nothing to do for now.
1719}
1720
1721void os::print_memory_info(outputStream* st) {
1722
1723  st->print("Memory:");
1724  st->print(" %dk page", os::vm_page_size()>>10);
1725
1726  st->print(", physical " UINT64_FORMAT "k",
1727            os::physical_memory() >> 10);
1728  st->print("(" UINT64_FORMAT "k free)",
1729            os::available_memory() >> 10);
1730  st->cr();
1731
1732  // meminfo
1733  st->print("\n/proc/meminfo:\n");
1734  _print_ascii_file("/proc/meminfo", st);
1735  st->cr();
1736}
1737
1738void os::print_siginfo(outputStream* st, void* siginfo) {
1739  const siginfo_t* si = (const siginfo_t*)siginfo;
1740
1741  os::Posix::print_siginfo_brief(st, si);
1742
1743  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1744      UseSharedSpaces) {
1745    FileMapInfo* mapinfo = FileMapInfo::current_info();
1746    if (mapinfo->is_in_shared_space(si->si_addr)) {
1747      st->print("\n\nError accessing class data sharing archive."   \
1748                " Mapped file inaccessible during execution, "      \
1749                " possible disk/network problem.");
1750    }
1751  }
1752  st->cr();
1753}
1754
1755
1756static void print_signal_handler(outputStream* st, int sig,
1757                                 char* buf, size_t buflen);
1758
1759void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1760  st->print_cr("Signal Handlers:");
1761  print_signal_handler(st, SIGSEGV, buf, buflen);
1762  print_signal_handler(st, SIGBUS , buf, buflen);
1763  print_signal_handler(st, SIGFPE , buf, buflen);
1764  print_signal_handler(st, SIGPIPE, buf, buflen);
1765  print_signal_handler(st, SIGXFSZ, buf, buflen);
1766  print_signal_handler(st, SIGILL , buf, buflen);
1767  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1768  print_signal_handler(st, SR_signum, buf, buflen);
1769  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1770  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1771  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1772  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1773}
1774
1775static char saved_jvm_path[MAXPATHLEN] = {0};
1776
1777// Find the full path to the current module, libjvm
1778void os::jvm_path(char *buf, jint buflen) {
1779  // Error checking.
1780  if (buflen < MAXPATHLEN) {
1781    assert(false, "must use a large-enough buffer");
1782    buf[0] = '\0';
1783    return;
1784  }
1785  // Lazy resolve the path to current module.
1786  if (saved_jvm_path[0] != 0) {
1787    strcpy(buf, saved_jvm_path);
1788    return;
1789  }
1790
1791  char dli_fname[MAXPATHLEN];
1792  bool ret = dll_address_to_library_name(
1793                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1794                                         dli_fname, sizeof(dli_fname), NULL);
1795  assert(ret, "cannot locate libjvm");
1796  char *rp = NULL;
1797  if (ret && dli_fname[0] != '\0') {
1798    rp = realpath(dli_fname, buf);
1799  }
1800  if (rp == NULL) {
1801    return;
1802  }
1803
1804  if (Arguments::sun_java_launcher_is_altjvm()) {
1805    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1806    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1807    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1808    // appears at the right place in the string, then assume we are
1809    // installed in a JDK and we're done. Otherwise, check for a
1810    // JAVA_HOME environment variable and construct a path to the JVM
1811    // being overridden.
1812
1813    const char *p = buf + strlen(buf) - 1;
1814    for (int count = 0; p > buf && count < 5; ++count) {
1815      for (--p; p > buf && *p != '/'; --p)
1816        /* empty */ ;
1817    }
1818
1819    if (strncmp(p, "/jre/lib/", 9) != 0) {
1820      // Look for JAVA_HOME in the environment.
1821      char* java_home_var = ::getenv("JAVA_HOME");
1822      if (java_home_var != NULL && java_home_var[0] != 0) {
1823        char* jrelib_p;
1824        int len;
1825
1826        // Check the current module name "libjvm"
1827        p = strrchr(buf, '/');
1828        assert(strstr(p, "/libjvm") == p, "invalid library name");
1829
1830        rp = realpath(java_home_var, buf);
1831        if (rp == NULL) {
1832          return;
1833        }
1834
1835        // determine if this is a legacy image or modules image
1836        // modules image doesn't have "jre" subdirectory
1837        len = strlen(buf);
1838        assert(len < buflen, "Ran out of buffer space");
1839        jrelib_p = buf + len;
1840
1841        // Add the appropriate library subdir
1842        snprintf(jrelib_p, buflen-len, "/jre/lib");
1843        if (0 != access(buf, F_OK)) {
1844          snprintf(jrelib_p, buflen-len, "/lib");
1845        }
1846
1847        // Add the appropriate client or server subdir
1848        len = strlen(buf);
1849        jrelib_p = buf + len;
1850        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1851        if (0 != access(buf, F_OK)) {
1852          snprintf(jrelib_p, buflen-len, "%s", "");
1853        }
1854
1855        // If the path exists within JAVA_HOME, add the JVM library name
1856        // to complete the path to JVM being overridden.  Otherwise fallback
1857        // to the path to the current library.
1858        if (0 == access(buf, F_OK)) {
1859          // Use current module name "libjvm"
1860          len = strlen(buf);
1861          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1862        } else {
1863          // Fall back to path of current library
1864          rp = realpath(dli_fname, buf);
1865          if (rp == NULL) {
1866            return;
1867          }
1868        }
1869      }
1870    }
1871  }
1872
1873  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1874  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1875}
1876
1877void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1878  // no prefix required, not even "_"
1879}
1880
1881void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1882  // no suffix required
1883}
1884
1885////////////////////////////////////////////////////////////////////////////////
1886// sun.misc.Signal support
1887
1888static volatile jint sigint_count = 0;
1889
1890static void UserHandler(int sig, void *siginfo, void *context) {
1891  // 4511530 - sem_post is serialized and handled by the manager thread. When
1892  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1893  // don't want to flood the manager thread with sem_post requests.
1894  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1895    return;
1896  }
1897
1898  // Ctrl-C is pressed during error reporting, likely because the error
1899  // handler fails to abort. Let VM die immediately.
1900  if (sig == SIGINT && is_error_reported()) {
1901    os::die();
1902  }
1903
1904  os::signal_notify(sig);
1905}
1906
1907void* os::user_handler() {
1908  return CAST_FROM_FN_PTR(void*, UserHandler);
1909}
1910
1911extern "C" {
1912  typedef void (*sa_handler_t)(int);
1913  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1914}
1915
1916void* os::signal(int signal_number, void* handler) {
1917  struct sigaction sigAct, oldSigAct;
1918
1919  sigfillset(&(sigAct.sa_mask));
1920  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1921  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1922
1923  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1924    // -1 means registration failed
1925    return (void *)-1;
1926  }
1927
1928  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1929}
1930
1931void os::signal_raise(int signal_number) {
1932  ::raise(signal_number);
1933}
1934
1935// The following code is moved from os.cpp for making this
1936// code platform specific, which it is by its very nature.
1937
1938// Will be modified when max signal is changed to be dynamic
1939int os::sigexitnum_pd() {
1940  return NSIG;
1941}
1942
1943// a counter for each possible signal value
1944static volatile jint pending_signals[NSIG+1] = { 0 };
1945
1946// Bsd(POSIX) specific hand shaking semaphore.
1947#ifdef __APPLE__
1948typedef semaphore_t os_semaphore_t;
1949
1950  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1951  #define SEM_WAIT(sem)           semaphore_wait(sem)
1952  #define SEM_POST(sem)           semaphore_signal(sem)
1953  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1954#else
1955typedef sem_t os_semaphore_t;
1956
1957  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1958  #define SEM_WAIT(sem)           sem_wait(&sem)
1959  #define SEM_POST(sem)           sem_post(&sem)
1960  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1961#endif
1962
1963class Semaphore : public StackObj {
1964 public:
1965  Semaphore();
1966  ~Semaphore();
1967  void signal();
1968  void wait();
1969  bool trywait();
1970  bool timedwait(unsigned int sec, int nsec);
1971 private:
1972  jlong currenttime() const;
1973  os_semaphore_t _semaphore;
1974};
1975
1976Semaphore::Semaphore() : _semaphore(0) {
1977  SEM_INIT(_semaphore, 0);
1978}
1979
1980Semaphore::~Semaphore() {
1981  SEM_DESTROY(_semaphore);
1982}
1983
1984void Semaphore::signal() {
1985  SEM_POST(_semaphore);
1986}
1987
1988void Semaphore::wait() {
1989  SEM_WAIT(_semaphore);
1990}
1991
1992jlong Semaphore::currenttime() const {
1993  struct timeval tv;
1994  gettimeofday(&tv, NULL);
1995  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1996}
1997
1998#ifdef __APPLE__
1999bool Semaphore::trywait() {
2000  return timedwait(0, 0);
2001}
2002
2003bool Semaphore::timedwait(unsigned int sec, int nsec) {
2004  kern_return_t kr = KERN_ABORTED;
2005  mach_timespec_t waitspec;
2006  waitspec.tv_sec = sec;
2007  waitspec.tv_nsec = nsec;
2008
2009  jlong starttime = currenttime();
2010
2011  kr = semaphore_timedwait(_semaphore, waitspec);
2012  while (kr == KERN_ABORTED) {
2013    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2014
2015    jlong current = currenttime();
2016    jlong passedtime = current - starttime;
2017
2018    if (passedtime >= totalwait) {
2019      waitspec.tv_sec = 0;
2020      waitspec.tv_nsec = 0;
2021    } else {
2022      jlong waittime = totalwait - (current - starttime);
2023      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2024      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2025    }
2026
2027    kr = semaphore_timedwait(_semaphore, waitspec);
2028  }
2029
2030  return kr == KERN_SUCCESS;
2031}
2032
2033#else
2034
2035bool Semaphore::trywait() {
2036  return sem_trywait(&_semaphore) == 0;
2037}
2038
2039bool Semaphore::timedwait(unsigned int sec, int nsec) {
2040  struct timespec ts;
2041  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2042
2043  while (1) {
2044    int result = sem_timedwait(&_semaphore, &ts);
2045    if (result == 0) {
2046      return true;
2047    } else if (errno == EINTR) {
2048      continue;
2049    } else if (errno == ETIMEDOUT) {
2050      return false;
2051    } else {
2052      return false;
2053    }
2054  }
2055}
2056
2057#endif // __APPLE__
2058
2059static os_semaphore_t sig_sem;
2060static Semaphore sr_semaphore;
2061
2062void os::signal_init_pd() {
2063  // Initialize signal structures
2064  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2065
2066  // Initialize signal semaphore
2067  ::SEM_INIT(sig_sem, 0);
2068}
2069
2070void os::signal_notify(int sig) {
2071  Atomic::inc(&pending_signals[sig]);
2072  ::SEM_POST(sig_sem);
2073}
2074
2075static int check_pending_signals(bool wait) {
2076  Atomic::store(0, &sigint_count);
2077  for (;;) {
2078    for (int i = 0; i < NSIG + 1; i++) {
2079      jint n = pending_signals[i];
2080      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2081        return i;
2082      }
2083    }
2084    if (!wait) {
2085      return -1;
2086    }
2087    JavaThread *thread = JavaThread::current();
2088    ThreadBlockInVM tbivm(thread);
2089
2090    bool threadIsSuspended;
2091    do {
2092      thread->set_suspend_equivalent();
2093      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2094      ::SEM_WAIT(sig_sem);
2095
2096      // were we externally suspended while we were waiting?
2097      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2098      if (threadIsSuspended) {
2099        // The semaphore has been incremented, but while we were waiting
2100        // another thread suspended us. We don't want to continue running
2101        // while suspended because that would surprise the thread that
2102        // suspended us.
2103        ::SEM_POST(sig_sem);
2104
2105        thread->java_suspend_self();
2106      }
2107    } while (threadIsSuspended);
2108  }
2109}
2110
2111int os::signal_lookup() {
2112  return check_pending_signals(false);
2113}
2114
2115int os::signal_wait() {
2116  return check_pending_signals(true);
2117}
2118
2119////////////////////////////////////////////////////////////////////////////////
2120// Virtual Memory
2121
2122int os::vm_page_size() {
2123  // Seems redundant as all get out
2124  assert(os::Bsd::page_size() != -1, "must call os::init");
2125  return os::Bsd::page_size();
2126}
2127
2128// Solaris allocates memory by pages.
2129int os::vm_allocation_granularity() {
2130  assert(os::Bsd::page_size() != -1, "must call os::init");
2131  return os::Bsd::page_size();
2132}
2133
2134// Rationale behind this function:
2135//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2136//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2137//  samples for JITted code. Here we create private executable mapping over the code cache
2138//  and then we can use standard (well, almost, as mapping can change) way to provide
2139//  info for the reporting script by storing timestamp and location of symbol
2140void bsd_wrap_code(char* base, size_t size) {
2141  static volatile jint cnt = 0;
2142
2143  if (!UseOprofile) {
2144    return;
2145  }
2146
2147  char buf[PATH_MAX + 1];
2148  int num = Atomic::add(1, &cnt);
2149
2150  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2151           os::get_temp_directory(), os::current_process_id(), num);
2152  unlink(buf);
2153
2154  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2155
2156  if (fd != -1) {
2157    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2158    if (rv != (off_t)-1) {
2159      if (::write(fd, "", 1) == 1) {
2160        mmap(base, size,
2161             PROT_READ|PROT_WRITE|PROT_EXEC,
2162             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2163      }
2164    }
2165    ::close(fd);
2166    unlink(buf);
2167  }
2168}
2169
2170static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2171                                    int err) {
2172  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2173          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2174          strerror(err), err);
2175}
2176
2177// NOTE: Bsd kernel does not really reserve the pages for us.
2178//       All it does is to check if there are enough free pages
2179//       left at the time of mmap(). This could be a potential
2180//       problem.
2181bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2182  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2183#ifdef __OpenBSD__
2184  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2185  if (::mprotect(addr, size, prot) == 0) {
2186    return true;
2187  }
2188#else
2189  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2190                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2191  if (res != (uintptr_t) MAP_FAILED) {
2192    return true;
2193  }
2194#endif
2195
2196  // Warn about any commit errors we see in non-product builds just
2197  // in case mmap() doesn't work as described on the man page.
2198  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2199
2200  return false;
2201}
2202
2203bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2204                          bool exec) {
2205  // alignment_hint is ignored on this OS
2206  return pd_commit_memory(addr, size, exec);
2207}
2208
2209void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2210                                  const char* mesg) {
2211  assert(mesg != NULL, "mesg must be specified");
2212  if (!pd_commit_memory(addr, size, exec)) {
2213    // add extra info in product mode for vm_exit_out_of_memory():
2214    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2215    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2216  }
2217}
2218
2219void os::pd_commit_memory_or_exit(char* addr, size_t size,
2220                                  size_t alignment_hint, bool exec,
2221                                  const char* mesg) {
2222  // alignment_hint is ignored on this OS
2223  pd_commit_memory_or_exit(addr, size, exec, mesg);
2224}
2225
2226void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2227}
2228
2229void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2230  ::madvise(addr, bytes, MADV_DONTNEED);
2231}
2232
2233void os::numa_make_global(char *addr, size_t bytes) {
2234}
2235
2236void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2237}
2238
2239bool os::numa_topology_changed()   { return false; }
2240
2241size_t os::numa_get_groups_num() {
2242  return 1;
2243}
2244
2245int os::numa_get_group_id() {
2246  return 0;
2247}
2248
2249size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2250  if (size > 0) {
2251    ids[0] = 0;
2252    return 1;
2253  }
2254  return 0;
2255}
2256
2257bool os::get_page_info(char *start, page_info* info) {
2258  return false;
2259}
2260
2261char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2262  return end;
2263}
2264
2265
2266bool os::pd_uncommit_memory(char* addr, size_t size) {
2267#ifdef __OpenBSD__
2268  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2269  return ::mprotect(addr, size, PROT_NONE) == 0;
2270#else
2271  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2272                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2273  return res  != (uintptr_t) MAP_FAILED;
2274#endif
2275}
2276
2277bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2278  return os::commit_memory(addr, size, !ExecMem);
2279}
2280
2281// If this is a growable mapping, remove the guard pages entirely by
2282// munmap()ping them.  If not, just call uncommit_memory().
2283bool os::remove_stack_guard_pages(char* addr, size_t size) {
2284  return os::uncommit_memory(addr, size);
2285}
2286
2287static address _highest_vm_reserved_address = NULL;
2288
2289// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2290// at 'requested_addr'. If there are existing memory mappings at the same
2291// location, however, they will be overwritten. If 'fixed' is false,
2292// 'requested_addr' is only treated as a hint, the return value may or
2293// may not start from the requested address. Unlike Bsd mmap(), this
2294// function returns NULL to indicate failure.
2295static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2296  char * addr;
2297  int flags;
2298
2299  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2300  if (fixed) {
2301    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2302    flags |= MAP_FIXED;
2303  }
2304
2305  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2306  // touch an uncommitted page. Otherwise, the read/write might
2307  // succeed if we have enough swap space to back the physical page.
2308  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2309                       flags, -1, 0);
2310
2311  if (addr != MAP_FAILED) {
2312    // anon_mmap() should only get called during VM initialization,
2313    // don't need lock (actually we can skip locking even it can be called
2314    // from multiple threads, because _highest_vm_reserved_address is just a
2315    // hint about the upper limit of non-stack memory regions.)
2316    if ((address)addr + bytes > _highest_vm_reserved_address) {
2317      _highest_vm_reserved_address = (address)addr + bytes;
2318    }
2319  }
2320
2321  return addr == MAP_FAILED ? NULL : addr;
2322}
2323
2324// Don't update _highest_vm_reserved_address, because there might be memory
2325// regions above addr + size. If so, releasing a memory region only creates
2326// a hole in the address space, it doesn't help prevent heap-stack collision.
2327//
2328static int anon_munmap(char * addr, size_t size) {
2329  return ::munmap(addr, size) == 0;
2330}
2331
2332char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2333                            size_t alignment_hint) {
2334  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2335}
2336
2337bool os::pd_release_memory(char* addr, size_t size) {
2338  return anon_munmap(addr, size);
2339}
2340
2341static bool bsd_mprotect(char* addr, size_t size, int prot) {
2342  // Bsd wants the mprotect address argument to be page aligned.
2343  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2344
2345  // According to SUSv3, mprotect() should only be used with mappings
2346  // established by mmap(), and mmap() always maps whole pages. Unaligned
2347  // 'addr' likely indicates problem in the VM (e.g. trying to change
2348  // protection of malloc'ed or statically allocated memory). Check the
2349  // caller if you hit this assert.
2350  assert(addr == bottom, "sanity check");
2351
2352  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2353  return ::mprotect(bottom, size, prot) == 0;
2354}
2355
2356// Set protections specified
2357bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2358                        bool is_committed) {
2359  unsigned int p = 0;
2360  switch (prot) {
2361  case MEM_PROT_NONE: p = PROT_NONE; break;
2362  case MEM_PROT_READ: p = PROT_READ; break;
2363  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2364  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2365  default:
2366    ShouldNotReachHere();
2367  }
2368  // is_committed is unused.
2369  return bsd_mprotect(addr, bytes, p);
2370}
2371
2372bool os::guard_memory(char* addr, size_t size) {
2373  return bsd_mprotect(addr, size, PROT_NONE);
2374}
2375
2376bool os::unguard_memory(char* addr, size_t size) {
2377  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2378}
2379
2380bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2381  return false;
2382}
2383
2384// Large page support
2385
2386static size_t _large_page_size = 0;
2387
2388void os::large_page_init() {
2389}
2390
2391
2392char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2393  fatal("This code is not used or maintained.");
2394
2395  // "exec" is passed in but not used.  Creating the shared image for
2396  // the code cache doesn't have an SHM_X executable permission to check.
2397  assert(UseLargePages && UseSHM, "only for SHM large pages");
2398
2399  key_t key = IPC_PRIVATE;
2400  char *addr;
2401
2402  bool warn_on_failure = UseLargePages &&
2403                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2404                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2405
2406  // Create a large shared memory region to attach to based on size.
2407  // Currently, size is the total size of the heap
2408  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2409  if (shmid == -1) {
2410    // Possible reasons for shmget failure:
2411    // 1. shmmax is too small for Java heap.
2412    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2413    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2414    // 2. not enough large page memory.
2415    //    > check available large pages: cat /proc/meminfo
2416    //    > increase amount of large pages:
2417    //          echo new_value > /proc/sys/vm/nr_hugepages
2418    //      Note 1: different Bsd may use different name for this property,
2419    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2420    //      Note 2: it's possible there's enough physical memory available but
2421    //            they are so fragmented after a long run that they can't
2422    //            coalesce into large pages. Try to reserve large pages when
2423    //            the system is still "fresh".
2424    if (warn_on_failure) {
2425      warning("Failed to reserve shared memory (errno = %d).", errno);
2426    }
2427    return NULL;
2428  }
2429
2430  // attach to the region
2431  addr = (char*)shmat(shmid, req_addr, 0);
2432  int err = errno;
2433
2434  // Remove shmid. If shmat() is successful, the actual shared memory segment
2435  // will be deleted when it's detached by shmdt() or when the process
2436  // terminates. If shmat() is not successful this will remove the shared
2437  // segment immediately.
2438  shmctl(shmid, IPC_RMID, NULL);
2439
2440  if ((intptr_t)addr == -1) {
2441    if (warn_on_failure) {
2442      warning("Failed to attach shared memory (errno = %d).", err);
2443    }
2444    return NULL;
2445  }
2446
2447  // The memory is committed
2448  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2449
2450  return addr;
2451}
2452
2453bool os::release_memory_special(char* base, size_t bytes) {
2454  if (MemTracker::tracking_level() > NMT_minimal) {
2455    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2456    // detaching the SHM segment will also delete it, see reserve_memory_special()
2457    int rslt = shmdt(base);
2458    if (rslt == 0) {
2459      tkr.record((address)base, bytes);
2460      return true;
2461    } else {
2462      return false;
2463    }
2464  } else {
2465    return shmdt(base) == 0;
2466  }
2467}
2468
2469size_t os::large_page_size() {
2470  return _large_page_size;
2471}
2472
2473// HugeTLBFS allows application to commit large page memory on demand;
2474// with SysV SHM the entire memory region must be allocated as shared
2475// memory.
2476bool os::can_commit_large_page_memory() {
2477  return UseHugeTLBFS;
2478}
2479
2480bool os::can_execute_large_page_memory() {
2481  return UseHugeTLBFS;
2482}
2483
2484// Reserve memory at an arbitrary address, only if that area is
2485// available (and not reserved for something else).
2486
2487char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2488  const int max_tries = 10;
2489  char* base[max_tries];
2490  size_t size[max_tries];
2491  const size_t gap = 0x000000;
2492
2493  // Assert only that the size is a multiple of the page size, since
2494  // that's all that mmap requires, and since that's all we really know
2495  // about at this low abstraction level.  If we need higher alignment,
2496  // we can either pass an alignment to this method or verify alignment
2497  // in one of the methods further up the call chain.  See bug 5044738.
2498  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2499
2500  // Repeatedly allocate blocks until the block is allocated at the
2501  // right spot. Give up after max_tries. Note that reserve_memory() will
2502  // automatically update _highest_vm_reserved_address if the call is
2503  // successful. The variable tracks the highest memory address every reserved
2504  // by JVM. It is used to detect heap-stack collision if running with
2505  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2506  // space than needed, it could confuse the collision detecting code. To
2507  // solve the problem, save current _highest_vm_reserved_address and
2508  // calculate the correct value before return.
2509  address old_highest = _highest_vm_reserved_address;
2510
2511  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2512  // if kernel honors the hint then we can return immediately.
2513  char * addr = anon_mmap(requested_addr, bytes, false);
2514  if (addr == requested_addr) {
2515    return requested_addr;
2516  }
2517
2518  if (addr != NULL) {
2519    // mmap() is successful but it fails to reserve at the requested address
2520    anon_munmap(addr, bytes);
2521  }
2522
2523  int i;
2524  for (i = 0; i < max_tries; ++i) {
2525    base[i] = reserve_memory(bytes);
2526
2527    if (base[i] != NULL) {
2528      // Is this the block we wanted?
2529      if (base[i] == requested_addr) {
2530        size[i] = bytes;
2531        break;
2532      }
2533
2534      // Does this overlap the block we wanted? Give back the overlapped
2535      // parts and try again.
2536
2537      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2538      if (top_overlap >= 0 && top_overlap < bytes) {
2539        unmap_memory(base[i], top_overlap);
2540        base[i] += top_overlap;
2541        size[i] = bytes - top_overlap;
2542      } else {
2543        size_t bottom_overlap = base[i] + bytes - requested_addr;
2544        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2545          unmap_memory(requested_addr, bottom_overlap);
2546          size[i] = bytes - bottom_overlap;
2547        } else {
2548          size[i] = bytes;
2549        }
2550      }
2551    }
2552  }
2553
2554  // Give back the unused reserved pieces.
2555
2556  for (int j = 0; j < i; ++j) {
2557    if (base[j] != NULL) {
2558      unmap_memory(base[j], size[j]);
2559    }
2560  }
2561
2562  if (i < max_tries) {
2563    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2564    return requested_addr;
2565  } else {
2566    _highest_vm_reserved_address = old_highest;
2567    return NULL;
2568  }
2569}
2570
2571size_t os::read(int fd, void *buf, unsigned int nBytes) {
2572  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2573}
2574
2575size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2576  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2577}
2578
2579void os::naked_short_sleep(jlong ms) {
2580  struct timespec req;
2581
2582  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2583  req.tv_sec = 0;
2584  if (ms > 0) {
2585    req.tv_nsec = (ms % 1000) * 1000000;
2586  } else {
2587    req.tv_nsec = 1;
2588  }
2589
2590  nanosleep(&req, NULL);
2591
2592  return;
2593}
2594
2595// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2596void os::infinite_sleep() {
2597  while (true) {    // sleep forever ...
2598    ::sleep(100);   // ... 100 seconds at a time
2599  }
2600}
2601
2602// Used to convert frequent JVM_Yield() to nops
2603bool os::dont_yield() {
2604  return DontYieldALot;
2605}
2606
2607void os::naked_yield() {
2608  sched_yield();
2609}
2610
2611////////////////////////////////////////////////////////////////////////////////
2612// thread priority support
2613
2614// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2615// only supports dynamic priority, static priority must be zero. For real-time
2616// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2617// However, for large multi-threaded applications, SCHED_RR is not only slower
2618// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2619// of 5 runs - Sep 2005).
2620//
2621// The following code actually changes the niceness of kernel-thread/LWP. It
2622// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2623// not the entire user process, and user level threads are 1:1 mapped to kernel
2624// threads. It has always been the case, but could change in the future. For
2625// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2626// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2627
2628#if !defined(__APPLE__)
2629int os::java_to_os_priority[CriticalPriority + 1] = {
2630  19,              // 0 Entry should never be used
2631
2632   0,              // 1 MinPriority
2633   3,              // 2
2634   6,              // 3
2635
2636  10,              // 4
2637  15,              // 5 NormPriority
2638  18,              // 6
2639
2640  21,              // 7
2641  25,              // 8
2642  28,              // 9 NearMaxPriority
2643
2644  31,              // 10 MaxPriority
2645
2646  31               // 11 CriticalPriority
2647};
2648#else
2649// Using Mach high-level priority assignments
2650int os::java_to_os_priority[CriticalPriority + 1] = {
2651   0,              // 0 Entry should never be used (MINPRI_USER)
2652
2653  27,              // 1 MinPriority
2654  28,              // 2
2655  29,              // 3
2656
2657  30,              // 4
2658  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2659  32,              // 6
2660
2661  33,              // 7
2662  34,              // 8
2663  35,              // 9 NearMaxPriority
2664
2665  36,              // 10 MaxPriority
2666
2667  36               // 11 CriticalPriority
2668};
2669#endif
2670
2671static int prio_init() {
2672  if (ThreadPriorityPolicy == 1) {
2673    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2674    // if effective uid is not root. Perhaps, a more elegant way of doing
2675    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2676    if (geteuid() != 0) {
2677      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2678        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2679      }
2680      ThreadPriorityPolicy = 0;
2681    }
2682  }
2683  if (UseCriticalJavaThreadPriority) {
2684    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2685  }
2686  return 0;
2687}
2688
2689OSReturn os::set_native_priority(Thread* thread, int newpri) {
2690  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2691
2692#ifdef __OpenBSD__
2693  // OpenBSD pthread_setprio starves low priority threads
2694  return OS_OK;
2695#elif defined(__FreeBSD__)
2696  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2697#elif defined(__APPLE__) || defined(__NetBSD__)
2698  struct sched_param sp;
2699  int policy;
2700  pthread_t self = pthread_self();
2701
2702  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2703    return OS_ERR;
2704  }
2705
2706  sp.sched_priority = newpri;
2707  if (pthread_setschedparam(self, policy, &sp) != 0) {
2708    return OS_ERR;
2709  }
2710
2711  return OS_OK;
2712#else
2713  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2714  return (ret == 0) ? OS_OK : OS_ERR;
2715#endif
2716}
2717
2718OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2719  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2720    *priority_ptr = java_to_os_priority[NormPriority];
2721    return OS_OK;
2722  }
2723
2724  errno = 0;
2725#if defined(__OpenBSD__) || defined(__FreeBSD__)
2726  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2727#elif defined(__APPLE__) || defined(__NetBSD__)
2728  int policy;
2729  struct sched_param sp;
2730
2731  pthread_getschedparam(pthread_self(), &policy, &sp);
2732  *priority_ptr = sp.sched_priority;
2733#else
2734  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2735#endif
2736  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2737}
2738
2739// Hint to the underlying OS that a task switch would not be good.
2740// Void return because it's a hint and can fail.
2741void os::hint_no_preempt() {}
2742
2743////////////////////////////////////////////////////////////////////////////////
2744// suspend/resume support
2745
2746//  the low-level signal-based suspend/resume support is a remnant from the
2747//  old VM-suspension that used to be for java-suspension, safepoints etc,
2748//  within hotspot. Now there is a single use-case for this:
2749//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2750//      that runs in the watcher thread.
2751//  The remaining code is greatly simplified from the more general suspension
2752//  code that used to be used.
2753//
2754//  The protocol is quite simple:
2755//  - suspend:
2756//      - sends a signal to the target thread
2757//      - polls the suspend state of the osthread using a yield loop
2758//      - target thread signal handler (SR_handler) sets suspend state
2759//        and blocks in sigsuspend until continued
2760//  - resume:
2761//      - sets target osthread state to continue
2762//      - sends signal to end the sigsuspend loop in the SR_handler
2763//
2764//  Note that the SR_lock plays no role in this suspend/resume protocol.
2765
2766static void resume_clear_context(OSThread *osthread) {
2767  osthread->set_ucontext(NULL);
2768  osthread->set_siginfo(NULL);
2769}
2770
2771static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2772  osthread->set_ucontext(context);
2773  osthread->set_siginfo(siginfo);
2774}
2775
2776// Handler function invoked when a thread's execution is suspended or
2777// resumed. We have to be careful that only async-safe functions are
2778// called here (Note: most pthread functions are not async safe and
2779// should be avoided.)
2780//
2781// Note: sigwait() is a more natural fit than sigsuspend() from an
2782// interface point of view, but sigwait() prevents the signal hander
2783// from being run. libpthread would get very confused by not having
2784// its signal handlers run and prevents sigwait()'s use with the
2785// mutex granting granting signal.
2786//
2787// Currently only ever called on the VMThread or JavaThread
2788//
2789static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2790  // Save and restore errno to avoid confusing native code with EINTR
2791  // after sigsuspend.
2792  int old_errno = errno;
2793
2794  Thread* thread = Thread::current();
2795  OSThread* osthread = thread->osthread();
2796  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2797
2798  os::SuspendResume::State current = osthread->sr.state();
2799  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2800    suspend_save_context(osthread, siginfo, context);
2801
2802    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2803    os::SuspendResume::State state = osthread->sr.suspended();
2804    if (state == os::SuspendResume::SR_SUSPENDED) {
2805      sigset_t suspend_set;  // signals for sigsuspend()
2806
2807      // get current set of blocked signals and unblock resume signal
2808      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2809      sigdelset(&suspend_set, SR_signum);
2810
2811      sr_semaphore.signal();
2812      // wait here until we are resumed
2813      while (1) {
2814        sigsuspend(&suspend_set);
2815
2816        os::SuspendResume::State result = osthread->sr.running();
2817        if (result == os::SuspendResume::SR_RUNNING) {
2818          sr_semaphore.signal();
2819          break;
2820        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2821          ShouldNotReachHere();
2822        }
2823      }
2824
2825    } else if (state == os::SuspendResume::SR_RUNNING) {
2826      // request was cancelled, continue
2827    } else {
2828      ShouldNotReachHere();
2829    }
2830
2831    resume_clear_context(osthread);
2832  } else if (current == os::SuspendResume::SR_RUNNING) {
2833    // request was cancelled, continue
2834  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2835    // ignore
2836  } else {
2837    // ignore
2838  }
2839
2840  errno = old_errno;
2841}
2842
2843
2844static int SR_initialize() {
2845  struct sigaction act;
2846  char *s;
2847  // Get signal number to use for suspend/resume
2848  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2849    int sig = ::strtol(s, 0, 10);
2850    if (sig > 0 || sig < NSIG) {
2851      SR_signum = sig;
2852    }
2853  }
2854
2855  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2856         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2857
2858  sigemptyset(&SR_sigset);
2859  sigaddset(&SR_sigset, SR_signum);
2860
2861  // Set up signal handler for suspend/resume
2862  act.sa_flags = SA_RESTART|SA_SIGINFO;
2863  act.sa_handler = (void (*)(int)) SR_handler;
2864
2865  // SR_signum is blocked by default.
2866  // 4528190 - We also need to block pthread restart signal (32 on all
2867  // supported Bsd platforms). Note that BsdThreads need to block
2868  // this signal for all threads to work properly. So we don't have
2869  // to use hard-coded signal number when setting up the mask.
2870  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2871
2872  if (sigaction(SR_signum, &act, 0) == -1) {
2873    return -1;
2874  }
2875
2876  // Save signal flag
2877  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2878  return 0;
2879}
2880
2881static int sr_notify(OSThread* osthread) {
2882  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2883  assert_status(status == 0, status, "pthread_kill");
2884  return status;
2885}
2886
2887// "Randomly" selected value for how long we want to spin
2888// before bailing out on suspending a thread, also how often
2889// we send a signal to a thread we want to resume
2890static const int RANDOMLY_LARGE_INTEGER = 1000000;
2891static const int RANDOMLY_LARGE_INTEGER2 = 100;
2892
2893// returns true on success and false on error - really an error is fatal
2894// but this seems the normal response to library errors
2895static bool do_suspend(OSThread* osthread) {
2896  assert(osthread->sr.is_running(), "thread should be running");
2897  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2898
2899  // mark as suspended and send signal
2900  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2901    // failed to switch, state wasn't running?
2902    ShouldNotReachHere();
2903    return false;
2904  }
2905
2906  if (sr_notify(osthread) != 0) {
2907    ShouldNotReachHere();
2908  }
2909
2910  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2911  while (true) {
2912    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2913      break;
2914    } else {
2915      // timeout
2916      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2917      if (cancelled == os::SuspendResume::SR_RUNNING) {
2918        return false;
2919      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2920        // make sure that we consume the signal on the semaphore as well
2921        sr_semaphore.wait();
2922        break;
2923      } else {
2924        ShouldNotReachHere();
2925        return false;
2926      }
2927    }
2928  }
2929
2930  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2931  return true;
2932}
2933
2934static void do_resume(OSThread* osthread) {
2935  assert(osthread->sr.is_suspended(), "thread should be suspended");
2936  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2937
2938  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2939    // failed to switch to WAKEUP_REQUEST
2940    ShouldNotReachHere();
2941    return;
2942  }
2943
2944  while (true) {
2945    if (sr_notify(osthread) == 0) {
2946      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2947        if (osthread->sr.is_running()) {
2948          return;
2949        }
2950      }
2951    } else {
2952      ShouldNotReachHere();
2953    }
2954  }
2955
2956  guarantee(osthread->sr.is_running(), "Must be running!");
2957}
2958
2959///////////////////////////////////////////////////////////////////////////////////
2960// signal handling (except suspend/resume)
2961
2962// This routine may be used by user applications as a "hook" to catch signals.
2963// The user-defined signal handler must pass unrecognized signals to this
2964// routine, and if it returns true (non-zero), then the signal handler must
2965// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2966// routine will never retun false (zero), but instead will execute a VM panic
2967// routine kill the process.
2968//
2969// If this routine returns false, it is OK to call it again.  This allows
2970// the user-defined signal handler to perform checks either before or after
2971// the VM performs its own checks.  Naturally, the user code would be making
2972// a serious error if it tried to handle an exception (such as a null check
2973// or breakpoint) that the VM was generating for its own correct operation.
2974//
2975// This routine may recognize any of the following kinds of signals:
2976//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2977// It should be consulted by handlers for any of those signals.
2978//
2979// The caller of this routine must pass in the three arguments supplied
2980// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2981// field of the structure passed to sigaction().  This routine assumes that
2982// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2983//
2984// Note that the VM will print warnings if it detects conflicting signal
2985// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2986//
2987extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2988                                               void* ucontext,
2989                                               int abort_if_unrecognized);
2990
2991void signalHandler(int sig, siginfo_t* info, void* uc) {
2992  assert(info != NULL && uc != NULL, "it must be old kernel");
2993  int orig_errno = errno;  // Preserve errno value over signal handler.
2994  JVM_handle_bsd_signal(sig, info, uc, true);
2995  errno = orig_errno;
2996}
2997
2998
2999// This boolean allows users to forward their own non-matching signals
3000// to JVM_handle_bsd_signal, harmlessly.
3001bool os::Bsd::signal_handlers_are_installed = false;
3002
3003// For signal-chaining
3004struct sigaction os::Bsd::sigact[MAXSIGNUM];
3005unsigned int os::Bsd::sigs = 0;
3006bool os::Bsd::libjsig_is_loaded = false;
3007typedef struct sigaction *(*get_signal_t)(int);
3008get_signal_t os::Bsd::get_signal_action = NULL;
3009
3010struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3011  struct sigaction *actp = NULL;
3012
3013  if (libjsig_is_loaded) {
3014    // Retrieve the old signal handler from libjsig
3015    actp = (*get_signal_action)(sig);
3016  }
3017  if (actp == NULL) {
3018    // Retrieve the preinstalled signal handler from jvm
3019    actp = get_preinstalled_handler(sig);
3020  }
3021
3022  return actp;
3023}
3024
3025static bool call_chained_handler(struct sigaction *actp, int sig,
3026                                 siginfo_t *siginfo, void *context) {
3027  // Call the old signal handler
3028  if (actp->sa_handler == SIG_DFL) {
3029    // It's more reasonable to let jvm treat it as an unexpected exception
3030    // instead of taking the default action.
3031    return false;
3032  } else if (actp->sa_handler != SIG_IGN) {
3033    if ((actp->sa_flags & SA_NODEFER) == 0) {
3034      // automaticlly block the signal
3035      sigaddset(&(actp->sa_mask), sig);
3036    }
3037
3038    sa_handler_t hand;
3039    sa_sigaction_t sa;
3040    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3041    // retrieve the chained handler
3042    if (siginfo_flag_set) {
3043      sa = actp->sa_sigaction;
3044    } else {
3045      hand = actp->sa_handler;
3046    }
3047
3048    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3049      actp->sa_handler = SIG_DFL;
3050    }
3051
3052    // try to honor the signal mask
3053    sigset_t oset;
3054    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3055
3056    // call into the chained handler
3057    if (siginfo_flag_set) {
3058      (*sa)(sig, siginfo, context);
3059    } else {
3060      (*hand)(sig);
3061    }
3062
3063    // restore the signal mask
3064    pthread_sigmask(SIG_SETMASK, &oset, 0);
3065  }
3066  // Tell jvm's signal handler the signal is taken care of.
3067  return true;
3068}
3069
3070bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3071  bool chained = false;
3072  // signal-chaining
3073  if (UseSignalChaining) {
3074    struct sigaction *actp = get_chained_signal_action(sig);
3075    if (actp != NULL) {
3076      chained = call_chained_handler(actp, sig, siginfo, context);
3077    }
3078  }
3079  return chained;
3080}
3081
3082struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3083  if ((((unsigned int)1 << sig) & sigs) != 0) {
3084    return &sigact[sig];
3085  }
3086  return NULL;
3087}
3088
3089void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3090  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3091  sigact[sig] = oldAct;
3092  sigs |= (unsigned int)1 << sig;
3093}
3094
3095// for diagnostic
3096int os::Bsd::sigflags[MAXSIGNUM];
3097
3098int os::Bsd::get_our_sigflags(int sig) {
3099  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3100  return sigflags[sig];
3101}
3102
3103void os::Bsd::set_our_sigflags(int sig, int flags) {
3104  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3105  sigflags[sig] = flags;
3106}
3107
3108void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3109  // Check for overwrite.
3110  struct sigaction oldAct;
3111  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3112
3113  void* oldhand = oldAct.sa_sigaction
3114                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3115                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3116  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3117      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3118      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3119    if (AllowUserSignalHandlers || !set_installed) {
3120      // Do not overwrite; user takes responsibility to forward to us.
3121      return;
3122    } else if (UseSignalChaining) {
3123      // save the old handler in jvm
3124      save_preinstalled_handler(sig, oldAct);
3125      // libjsig also interposes the sigaction() call below and saves the
3126      // old sigaction on it own.
3127    } else {
3128      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3129                    "%#lx for signal %d.", (long)oldhand, sig));
3130    }
3131  }
3132
3133  struct sigaction sigAct;
3134  sigfillset(&(sigAct.sa_mask));
3135  sigAct.sa_handler = SIG_DFL;
3136  if (!set_installed) {
3137    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3138  } else {
3139    sigAct.sa_sigaction = signalHandler;
3140    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3141  }
3142#ifdef __APPLE__
3143  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3144  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3145  // if the signal handler declares it will handle it on alternate stack.
3146  // Notice we only declare we will handle it on alt stack, but we are not
3147  // actually going to use real alt stack - this is just a workaround.
3148  // Please see ux_exception.c, method catch_mach_exception_raise for details
3149  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3150  if (sig == SIGSEGV) {
3151    sigAct.sa_flags |= SA_ONSTACK;
3152  }
3153#endif
3154
3155  // Save flags, which are set by ours
3156  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3157  sigflags[sig] = sigAct.sa_flags;
3158
3159  int ret = sigaction(sig, &sigAct, &oldAct);
3160  assert(ret == 0, "check");
3161
3162  void* oldhand2  = oldAct.sa_sigaction
3163                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3164                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3165  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3166}
3167
3168// install signal handlers for signals that HotSpot needs to
3169// handle in order to support Java-level exception handling.
3170
3171void os::Bsd::install_signal_handlers() {
3172  if (!signal_handlers_are_installed) {
3173    signal_handlers_are_installed = true;
3174
3175    // signal-chaining
3176    typedef void (*signal_setting_t)();
3177    signal_setting_t begin_signal_setting = NULL;
3178    signal_setting_t end_signal_setting = NULL;
3179    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3180                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3181    if (begin_signal_setting != NULL) {
3182      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3183                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3184      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3185                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3186      libjsig_is_loaded = true;
3187      assert(UseSignalChaining, "should enable signal-chaining");
3188    }
3189    if (libjsig_is_loaded) {
3190      // Tell libjsig jvm is setting signal handlers
3191      (*begin_signal_setting)();
3192    }
3193
3194    set_signal_handler(SIGSEGV, true);
3195    set_signal_handler(SIGPIPE, true);
3196    set_signal_handler(SIGBUS, true);
3197    set_signal_handler(SIGILL, true);
3198    set_signal_handler(SIGFPE, true);
3199    set_signal_handler(SIGXFSZ, true);
3200
3201#if defined(__APPLE__)
3202    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3203    // signals caught and handled by the JVM. To work around this, we reset the mach task
3204    // signal handler that's placed on our process by CrashReporter. This disables
3205    // CrashReporter-based reporting.
3206    //
3207    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3208    // on caught fatal signals.
3209    //
3210    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3211    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3212    // exception handling, while leaving the standard BSD signal handlers functional.
3213    kern_return_t kr;
3214    kr = task_set_exception_ports(mach_task_self(),
3215                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3216                                  MACH_PORT_NULL,
3217                                  EXCEPTION_STATE_IDENTITY,
3218                                  MACHINE_THREAD_STATE);
3219
3220    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3221#endif
3222
3223    if (libjsig_is_loaded) {
3224      // Tell libjsig jvm finishes setting signal handlers
3225      (*end_signal_setting)();
3226    }
3227
3228    // We don't activate signal checker if libjsig is in place, we trust ourselves
3229    // and if UserSignalHandler is installed all bets are off
3230    if (CheckJNICalls) {
3231      if (libjsig_is_loaded) {
3232        if (PrintJNIResolving) {
3233          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3234        }
3235        check_signals = false;
3236      }
3237      if (AllowUserSignalHandlers) {
3238        if (PrintJNIResolving) {
3239          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3240        }
3241        check_signals = false;
3242      }
3243    }
3244  }
3245}
3246
3247
3248/////
3249// glibc on Bsd platform uses non-documented flag
3250// to indicate, that some special sort of signal
3251// trampoline is used.
3252// We will never set this flag, and we should
3253// ignore this flag in our diagnostic
3254#ifdef SIGNIFICANT_SIGNAL_MASK
3255  #undef SIGNIFICANT_SIGNAL_MASK
3256#endif
3257#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3258
3259static const char* get_signal_handler_name(address handler,
3260                                           char* buf, int buflen) {
3261  int offset;
3262  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3263  if (found) {
3264    // skip directory names
3265    const char *p1, *p2;
3266    p1 = buf;
3267    size_t len = strlen(os::file_separator());
3268    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3269    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3270  } else {
3271    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3272  }
3273  return buf;
3274}
3275
3276static void print_signal_handler(outputStream* st, int sig,
3277                                 char* buf, size_t buflen) {
3278  struct sigaction sa;
3279
3280  sigaction(sig, NULL, &sa);
3281
3282  // See comment for SIGNIFICANT_SIGNAL_MASK define
3283  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3284
3285  st->print("%s: ", os::exception_name(sig, buf, buflen));
3286
3287  address handler = (sa.sa_flags & SA_SIGINFO)
3288    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3289    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3290
3291  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3292    st->print("SIG_DFL");
3293  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3294    st->print("SIG_IGN");
3295  } else {
3296    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3297  }
3298
3299  st->print(", sa_mask[0]=");
3300  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3301
3302  address rh = VMError::get_resetted_sighandler(sig);
3303  // May be, handler was resetted by VMError?
3304  if (rh != NULL) {
3305    handler = rh;
3306    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3307  }
3308
3309  st->print(", sa_flags=");
3310  os::Posix::print_sa_flags(st, sa.sa_flags);
3311
3312  // Check: is it our handler?
3313  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3314      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3315    // It is our signal handler
3316    // check for flags, reset system-used one!
3317    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3318      st->print(
3319                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3320                os::Bsd::get_our_sigflags(sig));
3321    }
3322  }
3323  st->cr();
3324}
3325
3326
3327#define DO_SIGNAL_CHECK(sig)                      \
3328  do {                                            \
3329    if (!sigismember(&check_signal_done, sig)) {  \
3330      os::Bsd::check_signal_handler(sig);         \
3331    }                                             \
3332  } while (0)
3333
3334// This method is a periodic task to check for misbehaving JNI applications
3335// under CheckJNI, we can add any periodic checks here
3336
3337void os::run_periodic_checks() {
3338
3339  if (check_signals == false) return;
3340
3341  // SEGV and BUS if overridden could potentially prevent
3342  // generation of hs*.log in the event of a crash, debugging
3343  // such a case can be very challenging, so we absolutely
3344  // check the following for a good measure:
3345  DO_SIGNAL_CHECK(SIGSEGV);
3346  DO_SIGNAL_CHECK(SIGILL);
3347  DO_SIGNAL_CHECK(SIGFPE);
3348  DO_SIGNAL_CHECK(SIGBUS);
3349  DO_SIGNAL_CHECK(SIGPIPE);
3350  DO_SIGNAL_CHECK(SIGXFSZ);
3351
3352
3353  // ReduceSignalUsage allows the user to override these handlers
3354  // see comments at the very top and jvm_solaris.h
3355  if (!ReduceSignalUsage) {
3356    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3357    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3358    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3359    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3360  }
3361
3362  DO_SIGNAL_CHECK(SR_signum);
3363  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3364}
3365
3366typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3367
3368static os_sigaction_t os_sigaction = NULL;
3369
3370void os::Bsd::check_signal_handler(int sig) {
3371  char buf[O_BUFLEN];
3372  address jvmHandler = NULL;
3373
3374
3375  struct sigaction act;
3376  if (os_sigaction == NULL) {
3377    // only trust the default sigaction, in case it has been interposed
3378    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3379    if (os_sigaction == NULL) return;
3380  }
3381
3382  os_sigaction(sig, (struct sigaction*)NULL, &act);
3383
3384
3385  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3386
3387  address thisHandler = (act.sa_flags & SA_SIGINFO)
3388    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3389    : CAST_FROM_FN_PTR(address, act.sa_handler);
3390
3391
3392  switch (sig) {
3393  case SIGSEGV:
3394  case SIGBUS:
3395  case SIGFPE:
3396  case SIGPIPE:
3397  case SIGILL:
3398  case SIGXFSZ:
3399    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3400    break;
3401
3402  case SHUTDOWN1_SIGNAL:
3403  case SHUTDOWN2_SIGNAL:
3404  case SHUTDOWN3_SIGNAL:
3405  case BREAK_SIGNAL:
3406    jvmHandler = (address)user_handler();
3407    break;
3408
3409  case INTERRUPT_SIGNAL:
3410    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3411    break;
3412
3413  default:
3414    if (sig == SR_signum) {
3415      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3416    } else {
3417      return;
3418    }
3419    break;
3420  }
3421
3422  if (thisHandler != jvmHandler) {
3423    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3424    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3425    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3426    // No need to check this sig any longer
3427    sigaddset(&check_signal_done, sig);
3428    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3429    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3430      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3431                    exception_name(sig, buf, O_BUFLEN));
3432    }
3433  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3434    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3435    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3436    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3437    // No need to check this sig any longer
3438    sigaddset(&check_signal_done, sig);
3439  }
3440
3441  // Dump all the signal
3442  if (sigismember(&check_signal_done, sig)) {
3443    print_signal_handlers(tty, buf, O_BUFLEN);
3444  }
3445}
3446
3447extern void report_error(char* file_name, int line_no, char* title,
3448                         char* format, ...);
3449
3450extern bool signal_name(int signo, char* buf, size_t len);
3451
3452const char* os::exception_name(int exception_code, char* buf, size_t size) {
3453  if (0 < exception_code && exception_code <= SIGRTMAX) {
3454    // signal
3455    if (!signal_name(exception_code, buf, size)) {
3456      jio_snprintf(buf, size, "SIG%d", exception_code);
3457    }
3458    return buf;
3459  } else {
3460    return NULL;
3461  }
3462}
3463
3464// this is called _before_ the most of global arguments have been parsed
3465void os::init(void) {
3466  char dummy;   // used to get a guess on initial stack address
3467//  first_hrtime = gethrtime();
3468
3469  // With BsdThreads the JavaMain thread pid (primordial thread)
3470  // is different than the pid of the java launcher thread.
3471  // So, on Bsd, the launcher thread pid is passed to the VM
3472  // via the sun.java.launcher.pid property.
3473  // Use this property instead of getpid() if it was correctly passed.
3474  // See bug 6351349.
3475  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3476
3477  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3478
3479  clock_tics_per_sec = CLK_TCK;
3480
3481  init_random(1234567);
3482
3483  ThreadCritical::initialize();
3484
3485  Bsd::set_page_size(getpagesize());
3486  if (Bsd::page_size() == -1) {
3487    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3488                  strerror(errno)));
3489  }
3490  init_page_sizes((size_t) Bsd::page_size());
3491
3492  Bsd::initialize_system_info();
3493
3494  // main_thread points to the aboriginal thread
3495  Bsd::_main_thread = pthread_self();
3496
3497  Bsd::clock_init();
3498  initial_time_count = javaTimeNanos();
3499
3500#ifdef __APPLE__
3501  // XXXDARWIN
3502  // Work around the unaligned VM callbacks in hotspot's
3503  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3504  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3505  // alignment when doing symbol lookup. To work around this, we force early
3506  // binding of all symbols now, thus binding when alignment is known-good.
3507  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3508#endif
3509}
3510
3511// To install functions for atexit system call
3512extern "C" {
3513  static void perfMemory_exit_helper() {
3514    perfMemory_exit();
3515  }
3516}
3517
3518// this is called _after_ the global arguments have been parsed
3519jint os::init_2(void) {
3520  // Allocate a single page and mark it as readable for safepoint polling
3521  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3522  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3523
3524  os::set_polling_page(polling_page);
3525
3526#ifndef PRODUCT
3527  if (Verbose && PrintMiscellaneous) {
3528    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3529               (intptr_t)polling_page);
3530  }
3531#endif
3532
3533  if (!UseMembar) {
3534    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3535    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3536    os::set_memory_serialize_page(mem_serialize_page);
3537
3538#ifndef PRODUCT
3539    if (Verbose && PrintMiscellaneous) {
3540      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3541                 (intptr_t)mem_serialize_page);
3542    }
3543#endif
3544  }
3545
3546  // initialize suspend/resume support - must do this before signal_sets_init()
3547  if (SR_initialize() != 0) {
3548    perror("SR_initialize failed");
3549    return JNI_ERR;
3550  }
3551
3552  Bsd::signal_sets_init();
3553  Bsd::install_signal_handlers();
3554
3555  // Check minimum allowable stack size for thread creation and to initialize
3556  // the java system classes, including StackOverflowError - depends on page
3557  // size.  Add a page for compiler2 recursion in main thread.
3558  // Add in 2*BytesPerWord times page size to account for VM stack during
3559  // class initialization depending on 32 or 64 bit VM.
3560  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3561                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3562                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3563
3564  size_t threadStackSizeInBytes = ThreadStackSize * K;
3565  if (threadStackSizeInBytes != 0 &&
3566      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3567    tty->print_cr("\nThe stack size specified is too small, "
3568                  "Specify at least %dk",
3569                  os::Bsd::min_stack_allowed/ K);
3570    return JNI_ERR;
3571  }
3572
3573  // Make the stack size a multiple of the page size so that
3574  // the yellow/red zones can be guarded.
3575  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3576                                                vm_page_size()));
3577
3578  if (MaxFDLimit) {
3579    // set the number of file descriptors to max. print out error
3580    // if getrlimit/setrlimit fails but continue regardless.
3581    struct rlimit nbr_files;
3582    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3583    if (status != 0) {
3584      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3585        perror("os::init_2 getrlimit failed");
3586      }
3587    } else {
3588      nbr_files.rlim_cur = nbr_files.rlim_max;
3589
3590#ifdef __APPLE__
3591      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3592      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3593      // be used instead
3594      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3595#endif
3596
3597      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3598      if (status != 0) {
3599        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3600          perror("os::init_2 setrlimit failed");
3601        }
3602      }
3603    }
3604  }
3605
3606  // at-exit methods are called in the reverse order of their registration.
3607  // atexit functions are called on return from main or as a result of a
3608  // call to exit(3C). There can be only 32 of these functions registered
3609  // and atexit() does not set errno.
3610
3611  if (PerfAllowAtExitRegistration) {
3612    // only register atexit functions if PerfAllowAtExitRegistration is set.
3613    // atexit functions can be delayed until process exit time, which
3614    // can be problematic for embedded VM situations. Embedded VMs should
3615    // call DestroyJavaVM() to assure that VM resources are released.
3616
3617    // note: perfMemory_exit_helper atexit function may be removed in
3618    // the future if the appropriate cleanup code can be added to the
3619    // VM_Exit VMOperation's doit method.
3620    if (atexit(perfMemory_exit_helper) != 0) {
3621      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3622    }
3623  }
3624
3625  // initialize thread priority policy
3626  prio_init();
3627
3628#ifdef __APPLE__
3629  // dynamically link to objective c gc registration
3630  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3631  if (handleLibObjc != NULL) {
3632    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3633  }
3634#endif
3635
3636  return JNI_OK;
3637}
3638
3639// Mark the polling page as unreadable
3640void os::make_polling_page_unreadable(void) {
3641  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3642    fatal("Could not disable polling page");
3643  }
3644}
3645
3646// Mark the polling page as readable
3647void os::make_polling_page_readable(void) {
3648  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3649    fatal("Could not enable polling page");
3650  }
3651}
3652
3653int os::active_processor_count() {
3654  return _processor_count;
3655}
3656
3657void os::set_native_thread_name(const char *name) {
3658#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3659  // This is only supported in Snow Leopard and beyond
3660  if (name != NULL) {
3661    // Add a "Java: " prefix to the name
3662    char buf[MAXTHREADNAMESIZE];
3663    snprintf(buf, sizeof(buf), "Java: %s", name);
3664    pthread_setname_np(buf);
3665  }
3666#endif
3667}
3668
3669bool os::distribute_processes(uint length, uint* distribution) {
3670  // Not yet implemented.
3671  return false;
3672}
3673
3674bool os::bind_to_processor(uint processor_id) {
3675  // Not yet implemented.
3676  return false;
3677}
3678
3679void os::SuspendedThreadTask::internal_do_task() {
3680  if (do_suspend(_thread->osthread())) {
3681    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3682    do_task(context);
3683    do_resume(_thread->osthread());
3684  }
3685}
3686
3687///
3688class PcFetcher : public os::SuspendedThreadTask {
3689 public:
3690  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3691  ExtendedPC result();
3692 protected:
3693  void do_task(const os::SuspendedThreadTaskContext& context);
3694 private:
3695  ExtendedPC _epc;
3696};
3697
3698ExtendedPC PcFetcher::result() {
3699  guarantee(is_done(), "task is not done yet.");
3700  return _epc;
3701}
3702
3703void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3704  Thread* thread = context.thread();
3705  OSThread* osthread = thread->osthread();
3706  if (osthread->ucontext() != NULL) {
3707    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3708  } else {
3709    // NULL context is unexpected, double-check this is the VMThread
3710    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3711  }
3712}
3713
3714// Suspends the target using the signal mechanism and then grabs the PC before
3715// resuming the target. Used by the flat-profiler only
3716ExtendedPC os::get_thread_pc(Thread* thread) {
3717  // Make sure that it is called by the watcher for the VMThread
3718  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3719  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3720
3721  PcFetcher fetcher(thread);
3722  fetcher.run();
3723  return fetcher.result();
3724}
3725
3726int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3727                                 pthread_mutex_t *_mutex,
3728                                 const struct timespec *_abstime) {
3729  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3730}
3731
3732////////////////////////////////////////////////////////////////////////////////
3733// debug support
3734
3735bool os::find(address addr, outputStream* st) {
3736  Dl_info dlinfo;
3737  memset(&dlinfo, 0, sizeof(dlinfo));
3738  if (dladdr(addr, &dlinfo) != 0) {
3739    st->print(PTR_FORMAT ": ", addr);
3740    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3741      st->print("%s+%#x", dlinfo.dli_sname,
3742                addr - (intptr_t)dlinfo.dli_saddr);
3743    } else if (dlinfo.dli_fbase != NULL) {
3744      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3745    } else {
3746      st->print("<absolute address>");
3747    }
3748    if (dlinfo.dli_fname != NULL) {
3749      st->print(" in %s", dlinfo.dli_fname);
3750    }
3751    if (dlinfo.dli_fbase != NULL) {
3752      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3753    }
3754    st->cr();
3755
3756    if (Verbose) {
3757      // decode some bytes around the PC
3758      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3759      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3760      address       lowest = (address) dlinfo.dli_sname;
3761      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3762      if (begin < lowest)  begin = lowest;
3763      Dl_info dlinfo2;
3764      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3765          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3766        end = (address) dlinfo2.dli_saddr;
3767      }
3768      Disassembler::decode(begin, end, st);
3769    }
3770    return true;
3771  }
3772  return false;
3773}
3774
3775////////////////////////////////////////////////////////////////////////////////
3776// misc
3777
3778// This does not do anything on Bsd. This is basically a hook for being
3779// able to use structured exception handling (thread-local exception filters)
3780// on, e.g., Win32.
3781void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3782                              methodHandle* method, JavaCallArguments* args,
3783                              Thread* thread) {
3784  f(value, method, args, thread);
3785}
3786
3787void os::print_statistics() {
3788}
3789
3790int os::message_box(const char* title, const char* message) {
3791  int i;
3792  fdStream err(defaultStream::error_fd());
3793  for (i = 0; i < 78; i++) err.print_raw("=");
3794  err.cr();
3795  err.print_raw_cr(title);
3796  for (i = 0; i < 78; i++) err.print_raw("-");
3797  err.cr();
3798  err.print_raw_cr(message);
3799  for (i = 0; i < 78; i++) err.print_raw("=");
3800  err.cr();
3801
3802  char buf[16];
3803  // Prevent process from exiting upon "read error" without consuming all CPU
3804  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3805
3806  return buf[0] == 'y' || buf[0] == 'Y';
3807}
3808
3809int os::stat(const char *path, struct stat *sbuf) {
3810  char pathbuf[MAX_PATH];
3811  if (strlen(path) > MAX_PATH - 1) {
3812    errno = ENAMETOOLONG;
3813    return -1;
3814  }
3815  os::native_path(strcpy(pathbuf, path));
3816  return ::stat(pathbuf, sbuf);
3817}
3818
3819bool os::check_heap(bool force) {
3820  return true;
3821}
3822
3823// Is a (classpath) directory empty?
3824bool os::dir_is_empty(const char* path) {
3825  DIR *dir = NULL;
3826  struct dirent *ptr;
3827
3828  dir = opendir(path);
3829  if (dir == NULL) return true;
3830
3831  // Scan the directory
3832  bool result = true;
3833  char buf[sizeof(struct dirent) + MAX_PATH];
3834  while (result && (ptr = ::readdir(dir)) != NULL) {
3835    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3836      result = false;
3837    }
3838  }
3839  closedir(dir);
3840  return result;
3841}
3842
3843// This code originates from JDK's sysOpen and open64_w
3844// from src/solaris/hpi/src/system_md.c
3845
3846int os::open(const char *path, int oflag, int mode) {
3847  if (strlen(path) > MAX_PATH - 1) {
3848    errno = ENAMETOOLONG;
3849    return -1;
3850  }
3851  int fd;
3852
3853  fd = ::open(path, oflag, mode);
3854  if (fd == -1) return -1;
3855
3856  // If the open succeeded, the file might still be a directory
3857  {
3858    struct stat buf;
3859    int ret = ::fstat(fd, &buf);
3860    int st_mode = buf.st_mode;
3861
3862    if (ret != -1) {
3863      if ((st_mode & S_IFMT) == S_IFDIR) {
3864        errno = EISDIR;
3865        ::close(fd);
3866        return -1;
3867      }
3868    } else {
3869      ::close(fd);
3870      return -1;
3871    }
3872  }
3873
3874  // All file descriptors that are opened in the JVM and not
3875  // specifically destined for a subprocess should have the
3876  // close-on-exec flag set.  If we don't set it, then careless 3rd
3877  // party native code might fork and exec without closing all
3878  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3879  // UNIXProcess.c), and this in turn might:
3880  //
3881  // - cause end-of-file to fail to be detected on some file
3882  //   descriptors, resulting in mysterious hangs, or
3883  //
3884  // - might cause an fopen in the subprocess to fail on a system
3885  //   suffering from bug 1085341.
3886  //
3887  // (Yes, the default setting of the close-on-exec flag is a Unix
3888  // design flaw)
3889  //
3890  // See:
3891  // 1085341: 32-bit stdio routines should support file descriptors >255
3892  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3893  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3894  //
3895#ifdef FD_CLOEXEC
3896  {
3897    int flags = ::fcntl(fd, F_GETFD);
3898    if (flags != -1) {
3899      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3900    }
3901  }
3902#endif
3903
3904  return fd;
3905}
3906
3907
3908// create binary file, rewriting existing file if required
3909int os::create_binary_file(const char* path, bool rewrite_existing) {
3910  int oflags = O_WRONLY | O_CREAT;
3911  if (!rewrite_existing) {
3912    oflags |= O_EXCL;
3913  }
3914  return ::open(path, oflags, S_IREAD | S_IWRITE);
3915}
3916
3917// return current position of file pointer
3918jlong os::current_file_offset(int fd) {
3919  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3920}
3921
3922// move file pointer to the specified offset
3923jlong os::seek_to_file_offset(int fd, jlong offset) {
3924  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3925}
3926
3927// This code originates from JDK's sysAvailable
3928// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3929
3930int os::available(int fd, jlong *bytes) {
3931  jlong cur, end;
3932  int mode;
3933  struct stat buf;
3934
3935  if (::fstat(fd, &buf) >= 0) {
3936    mode = buf.st_mode;
3937    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3938      // XXX: is the following call interruptible? If so, this might
3939      // need to go through the INTERRUPT_IO() wrapper as for other
3940      // blocking, interruptible calls in this file.
3941      int n;
3942      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3943        *bytes = n;
3944        return 1;
3945      }
3946    }
3947  }
3948  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3949    return 0;
3950  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3951    return 0;
3952  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3953    return 0;
3954  }
3955  *bytes = end - cur;
3956  return 1;
3957}
3958
3959// Map a block of memory.
3960char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3961                        char *addr, size_t bytes, bool read_only,
3962                        bool allow_exec) {
3963  int prot;
3964  int flags;
3965
3966  if (read_only) {
3967    prot = PROT_READ;
3968    flags = MAP_SHARED;
3969  } else {
3970    prot = PROT_READ | PROT_WRITE;
3971    flags = MAP_PRIVATE;
3972  }
3973
3974  if (allow_exec) {
3975    prot |= PROT_EXEC;
3976  }
3977
3978  if (addr != NULL) {
3979    flags |= MAP_FIXED;
3980  }
3981
3982  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3983                                     fd, file_offset);
3984  if (mapped_address == MAP_FAILED) {
3985    return NULL;
3986  }
3987  return mapped_address;
3988}
3989
3990
3991// Remap a block of memory.
3992char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3993                          char *addr, size_t bytes, bool read_only,
3994                          bool allow_exec) {
3995  // same as map_memory() on this OS
3996  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3997                        allow_exec);
3998}
3999
4000
4001// Unmap a block of memory.
4002bool os::pd_unmap_memory(char* addr, size_t bytes) {
4003  return munmap(addr, bytes) == 0;
4004}
4005
4006// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4007// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4008// of a thread.
4009//
4010// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4011// the fast estimate available on the platform.
4012
4013jlong os::current_thread_cpu_time() {
4014#ifdef __APPLE__
4015  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4016#else
4017  Unimplemented();
4018  return 0;
4019#endif
4020}
4021
4022jlong os::thread_cpu_time(Thread* thread) {
4023#ifdef __APPLE__
4024  return os::thread_cpu_time(thread, true /* user + sys */);
4025#else
4026  Unimplemented();
4027  return 0;
4028#endif
4029}
4030
4031jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4032#ifdef __APPLE__
4033  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4034#else
4035  Unimplemented();
4036  return 0;
4037#endif
4038}
4039
4040jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4041#ifdef __APPLE__
4042  struct thread_basic_info tinfo;
4043  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4044  kern_return_t kr;
4045  thread_t mach_thread;
4046
4047  mach_thread = thread->osthread()->thread_id();
4048  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4049  if (kr != KERN_SUCCESS) {
4050    return -1;
4051  }
4052
4053  if (user_sys_cpu_time) {
4054    jlong nanos;
4055    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4056    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4057    return nanos;
4058  } else {
4059    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4060  }
4061#else
4062  Unimplemented();
4063  return 0;
4064#endif
4065}
4066
4067
4068void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4069  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4070  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4071  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4072  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4073}
4074
4075void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4076  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4077  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4078  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4079  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4080}
4081
4082bool os::is_thread_cpu_time_supported() {
4083#ifdef __APPLE__
4084  return true;
4085#else
4086  return false;
4087#endif
4088}
4089
4090// System loadavg support.  Returns -1 if load average cannot be obtained.
4091// Bsd doesn't yet have a (official) notion of processor sets,
4092// so just return the system wide load average.
4093int os::loadavg(double loadavg[], int nelem) {
4094  return ::getloadavg(loadavg, nelem);
4095}
4096
4097void os::pause() {
4098  char filename[MAX_PATH];
4099  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4100    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4101  } else {
4102    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4103  }
4104
4105  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4106  if (fd != -1) {
4107    struct stat buf;
4108    ::close(fd);
4109    while (::stat(filename, &buf) == 0) {
4110      (void)::poll(NULL, 0, 100);
4111    }
4112  } else {
4113    jio_fprintf(stderr,
4114                "Could not open pause file '%s', continuing immediately.\n", filename);
4115  }
4116}
4117
4118
4119// Refer to the comments in os_solaris.cpp park-unpark. The next two
4120// comment paragraphs are worth repeating here:
4121//
4122// Assumption:
4123//    Only one parker can exist on an event, which is why we allocate
4124//    them per-thread. Multiple unparkers can coexist.
4125//
4126// _Event serves as a restricted-range semaphore.
4127//   -1 : thread is blocked, i.e. there is a waiter
4128//    0 : neutral: thread is running or ready,
4129//        could have been signaled after a wait started
4130//    1 : signaled - thread is running or ready
4131//
4132// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4133// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4134// For specifics regarding the bug see GLIBC BUGID 261237 :
4135//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4136// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4137// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4138// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4139// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4140// and monitorenter when we're using 1-0 locking.  All those operations may result in
4141// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4142// of libpthread avoids the problem, but isn't practical.
4143//
4144// Possible remedies:
4145//
4146// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4147//      This is palliative and probabilistic, however.  If the thread is preempted
4148//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4149//      than the minimum period may have passed, and the abstime may be stale (in the
4150//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4151//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4152//
4153// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4154//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4155//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4156//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4157//      thread.
4158//
4159// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4160//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4161//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4162//      This also works well.  In fact it avoids kernel-level scalability impediments
4163//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4164//      timers in a graceful fashion.
4165//
4166// 4.   When the abstime value is in the past it appears that control returns
4167//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4168//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4169//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4170//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4171//      It may be possible to avoid reinitialization by checking the return
4172//      value from pthread_cond_timedwait().  In addition to reinitializing the
4173//      condvar we must establish the invariant that cond_signal() is only called
4174//      within critical sections protected by the adjunct mutex.  This prevents
4175//      cond_signal() from "seeing" a condvar that's in the midst of being
4176//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4177//      desirable signal-after-unlock optimization that avoids futile context switching.
4178//
4179//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4180//      structure when a condvar is used or initialized.  cond_destroy()  would
4181//      release the helper structure.  Our reinitialize-after-timedwait fix
4182//      put excessive stress on malloc/free and locks protecting the c-heap.
4183//
4184// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4185// It may be possible to refine (4) by checking the kernel and NTPL verisons
4186// and only enabling the work-around for vulnerable environments.
4187
4188// utility to compute the abstime argument to timedwait:
4189// millis is the relative timeout time
4190// abstime will be the absolute timeout time
4191// TODO: replace compute_abstime() with unpackTime()
4192
4193static struct timespec* compute_abstime(struct timespec* abstime,
4194                                        jlong millis) {
4195  if (millis < 0)  millis = 0;
4196  struct timeval now;
4197  int status = gettimeofday(&now, NULL);
4198  assert(status == 0, "gettimeofday");
4199  jlong seconds = millis / 1000;
4200  millis %= 1000;
4201  if (seconds > 50000000) { // see man cond_timedwait(3T)
4202    seconds = 50000000;
4203  }
4204  abstime->tv_sec = now.tv_sec  + seconds;
4205  long       usec = now.tv_usec + millis * 1000;
4206  if (usec >= 1000000) {
4207    abstime->tv_sec += 1;
4208    usec -= 1000000;
4209  }
4210  abstime->tv_nsec = usec * 1000;
4211  return abstime;
4212}
4213
4214void os::PlatformEvent::park() {       // AKA "down()"
4215  // Transitions for _Event:
4216  //   -1 => -1 : illegal
4217  //    1 =>  0 : pass - return immediately
4218  //    0 => -1 : block; then set _Event to 0 before returning
4219
4220  // Invariant: Only the thread associated with the Event/PlatformEvent
4221  // may call park().
4222  // TODO: assert that _Assoc != NULL or _Assoc == Self
4223  assert(_nParked == 0, "invariant");
4224
4225  int v;
4226  for (;;) {
4227    v = _Event;
4228    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4229  }
4230  guarantee(v >= 0, "invariant");
4231  if (v == 0) {
4232    // Do this the hard way by blocking ...
4233    int status = pthread_mutex_lock(_mutex);
4234    assert_status(status == 0, status, "mutex_lock");
4235    guarantee(_nParked == 0, "invariant");
4236    ++_nParked;
4237    while (_Event < 0) {
4238      status = pthread_cond_wait(_cond, _mutex);
4239      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4240      // Treat this the same as if the wait was interrupted
4241      if (status == ETIMEDOUT) { status = EINTR; }
4242      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4243    }
4244    --_nParked;
4245
4246    _Event = 0;
4247    status = pthread_mutex_unlock(_mutex);
4248    assert_status(status == 0, status, "mutex_unlock");
4249    // Paranoia to ensure our locked and lock-free paths interact
4250    // correctly with each other.
4251    OrderAccess::fence();
4252  }
4253  guarantee(_Event >= 0, "invariant");
4254}
4255
4256int os::PlatformEvent::park(jlong millis) {
4257  // Transitions for _Event:
4258  //   -1 => -1 : illegal
4259  //    1 =>  0 : pass - return immediately
4260  //    0 => -1 : block; then set _Event to 0 before returning
4261
4262  guarantee(_nParked == 0, "invariant");
4263
4264  int v;
4265  for (;;) {
4266    v = _Event;
4267    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4268  }
4269  guarantee(v >= 0, "invariant");
4270  if (v != 0) return OS_OK;
4271
4272  // We do this the hard way, by blocking the thread.
4273  // Consider enforcing a minimum timeout value.
4274  struct timespec abst;
4275  compute_abstime(&abst, millis);
4276
4277  int ret = OS_TIMEOUT;
4278  int status = pthread_mutex_lock(_mutex);
4279  assert_status(status == 0, status, "mutex_lock");
4280  guarantee(_nParked == 0, "invariant");
4281  ++_nParked;
4282
4283  // Object.wait(timo) will return because of
4284  // (a) notification
4285  // (b) timeout
4286  // (c) thread.interrupt
4287  //
4288  // Thread.interrupt and object.notify{All} both call Event::set.
4289  // That is, we treat thread.interrupt as a special case of notification.
4290  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4291  // We assume all ETIME returns are valid.
4292  //
4293  // TODO: properly differentiate simultaneous notify+interrupt.
4294  // In that case, we should propagate the notify to another waiter.
4295
4296  while (_Event < 0) {
4297    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4298    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4299      pthread_cond_destroy(_cond);
4300      pthread_cond_init(_cond, NULL);
4301    }
4302    assert_status(status == 0 || status == EINTR ||
4303                  status == ETIMEDOUT,
4304                  status, "cond_timedwait");
4305    if (!FilterSpuriousWakeups) break;                 // previous semantics
4306    if (status == ETIMEDOUT) break;
4307    // We consume and ignore EINTR and spurious wakeups.
4308  }
4309  --_nParked;
4310  if (_Event >= 0) {
4311    ret = OS_OK;
4312  }
4313  _Event = 0;
4314  status = pthread_mutex_unlock(_mutex);
4315  assert_status(status == 0, status, "mutex_unlock");
4316  assert(_nParked == 0, "invariant");
4317  // Paranoia to ensure our locked and lock-free paths interact
4318  // correctly with each other.
4319  OrderAccess::fence();
4320  return ret;
4321}
4322
4323void os::PlatformEvent::unpark() {
4324  // Transitions for _Event:
4325  //    0 => 1 : just return
4326  //    1 => 1 : just return
4327  //   -1 => either 0 or 1; must signal target thread
4328  //         That is, we can safely transition _Event from -1 to either
4329  //         0 or 1.
4330  // See also: "Semaphores in Plan 9" by Mullender & Cox
4331  //
4332  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4333  // that it will take two back-to-back park() calls for the owning
4334  // thread to block. This has the benefit of forcing a spurious return
4335  // from the first park() call after an unpark() call which will help
4336  // shake out uses of park() and unpark() without condition variables.
4337
4338  if (Atomic::xchg(1, &_Event) >= 0) return;
4339
4340  // Wait for the thread associated with the event to vacate
4341  int status = pthread_mutex_lock(_mutex);
4342  assert_status(status == 0, status, "mutex_lock");
4343  int AnyWaiters = _nParked;
4344  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4345  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4346    AnyWaiters = 0;
4347    pthread_cond_signal(_cond);
4348  }
4349  status = pthread_mutex_unlock(_mutex);
4350  assert_status(status == 0, status, "mutex_unlock");
4351  if (AnyWaiters != 0) {
4352    // Note that we signal() *after* dropping the lock for "immortal" Events.
4353    // This is safe and avoids a common class of  futile wakeups.  In rare
4354    // circumstances this can cause a thread to return prematurely from
4355    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4356    // will simply re-test the condition and re-park itself.
4357    // This provides particular benefit if the underlying platform does not
4358    // provide wait morphing.
4359    status = pthread_cond_signal(_cond);
4360    assert_status(status == 0, status, "cond_signal");
4361  }
4362}
4363
4364
4365// JSR166
4366// -------------------------------------------------------
4367
4368// The solaris and bsd implementations of park/unpark are fairly
4369// conservative for now, but can be improved. They currently use a
4370// mutex/condvar pair, plus a a count.
4371// Park decrements count if > 0, else does a condvar wait.  Unpark
4372// sets count to 1 and signals condvar.  Only one thread ever waits
4373// on the condvar. Contention seen when trying to park implies that someone
4374// is unparking you, so don't wait. And spurious returns are fine, so there
4375// is no need to track notifications.
4376
4377#define MAX_SECS 100000000
4378
4379// This code is common to bsd and solaris and will be moved to a
4380// common place in dolphin.
4381//
4382// The passed in time value is either a relative time in nanoseconds
4383// or an absolute time in milliseconds. Either way it has to be unpacked
4384// into suitable seconds and nanoseconds components and stored in the
4385// given timespec structure.
4386// Given time is a 64-bit value and the time_t used in the timespec is only
4387// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4388// overflow if times way in the future are given. Further on Solaris versions
4389// prior to 10 there is a restriction (see cond_timedwait) that the specified
4390// number of seconds, in abstime, is less than current_time  + 100,000,000.
4391// As it will be 28 years before "now + 100000000" will overflow we can
4392// ignore overflow and just impose a hard-limit on seconds using the value
4393// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4394// years from "now".
4395
4396static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4397  assert(time > 0, "convertTime");
4398
4399  struct timeval now;
4400  int status = gettimeofday(&now, NULL);
4401  assert(status == 0, "gettimeofday");
4402
4403  time_t max_secs = now.tv_sec + MAX_SECS;
4404
4405  if (isAbsolute) {
4406    jlong secs = time / 1000;
4407    if (secs > max_secs) {
4408      absTime->tv_sec = max_secs;
4409    } else {
4410      absTime->tv_sec = secs;
4411    }
4412    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4413  } else {
4414    jlong secs = time / NANOSECS_PER_SEC;
4415    if (secs >= MAX_SECS) {
4416      absTime->tv_sec = max_secs;
4417      absTime->tv_nsec = 0;
4418    } else {
4419      absTime->tv_sec = now.tv_sec + secs;
4420      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4421      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4422        absTime->tv_nsec -= NANOSECS_PER_SEC;
4423        ++absTime->tv_sec; // note: this must be <= max_secs
4424      }
4425    }
4426  }
4427  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4428  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4429  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4430  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4431}
4432
4433void Parker::park(bool isAbsolute, jlong time) {
4434  // Ideally we'd do something useful while spinning, such
4435  // as calling unpackTime().
4436
4437  // Optional fast-path check:
4438  // Return immediately if a permit is available.
4439  // We depend on Atomic::xchg() having full barrier semantics
4440  // since we are doing a lock-free update to _counter.
4441  if (Atomic::xchg(0, &_counter) > 0) return;
4442
4443  Thread* thread = Thread::current();
4444  assert(thread->is_Java_thread(), "Must be JavaThread");
4445  JavaThread *jt = (JavaThread *)thread;
4446
4447  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4448  // Check interrupt before trying to wait
4449  if (Thread::is_interrupted(thread, false)) {
4450    return;
4451  }
4452
4453  // Next, demultiplex/decode time arguments
4454  struct timespec absTime;
4455  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4456    return;
4457  }
4458  if (time > 0) {
4459    unpackTime(&absTime, isAbsolute, time);
4460  }
4461
4462
4463  // Enter safepoint region
4464  // Beware of deadlocks such as 6317397.
4465  // The per-thread Parker:: mutex is a classic leaf-lock.
4466  // In particular a thread must never block on the Threads_lock while
4467  // holding the Parker:: mutex.  If safepoints are pending both the
4468  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4469  ThreadBlockInVM tbivm(jt);
4470
4471  // Don't wait if cannot get lock since interference arises from
4472  // unblocking.  Also. check interrupt before trying wait
4473  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4474    return;
4475  }
4476
4477  int status;
4478  if (_counter > 0)  { // no wait needed
4479    _counter = 0;
4480    status = pthread_mutex_unlock(_mutex);
4481    assert(status == 0, "invariant");
4482    // Paranoia to ensure our locked and lock-free paths interact
4483    // correctly with each other and Java-level accesses.
4484    OrderAccess::fence();
4485    return;
4486  }
4487
4488#ifdef ASSERT
4489  // Don't catch signals while blocked; let the running threads have the signals.
4490  // (This allows a debugger to break into the running thread.)
4491  sigset_t oldsigs;
4492  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4493  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4494#endif
4495
4496  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4497  jt->set_suspend_equivalent();
4498  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4499
4500  if (time == 0) {
4501    status = pthread_cond_wait(_cond, _mutex);
4502  } else {
4503    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4504    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4505      pthread_cond_destroy(_cond);
4506      pthread_cond_init(_cond, NULL);
4507    }
4508  }
4509  assert_status(status == 0 || status == EINTR ||
4510                status == ETIMEDOUT,
4511                status, "cond_timedwait");
4512
4513#ifdef ASSERT
4514  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4515#endif
4516
4517  _counter = 0;
4518  status = pthread_mutex_unlock(_mutex);
4519  assert_status(status == 0, status, "invariant");
4520  // Paranoia to ensure our locked and lock-free paths interact
4521  // correctly with each other and Java-level accesses.
4522  OrderAccess::fence();
4523
4524  // If externally suspended while waiting, re-suspend
4525  if (jt->handle_special_suspend_equivalent_condition()) {
4526    jt->java_suspend_self();
4527  }
4528}
4529
4530void Parker::unpark() {
4531  int status = pthread_mutex_lock(_mutex);
4532  assert(status == 0, "invariant");
4533  const int s = _counter;
4534  _counter = 1;
4535  if (s < 1) {
4536    if (WorkAroundNPTLTimedWaitHang) {
4537      status = pthread_cond_signal(_cond);
4538      assert(status == 0, "invariant");
4539      status = pthread_mutex_unlock(_mutex);
4540      assert(status == 0, "invariant");
4541    } else {
4542      status = pthread_mutex_unlock(_mutex);
4543      assert(status == 0, "invariant");
4544      status = pthread_cond_signal(_cond);
4545      assert(status == 0, "invariant");
4546    }
4547  } else {
4548    pthread_mutex_unlock(_mutex);
4549    assert(status == 0, "invariant");
4550  }
4551}
4552
4553
4554// Darwin has no "environ" in a dynamic library.
4555#ifdef __APPLE__
4556  #include <crt_externs.h>
4557  #define environ (*_NSGetEnviron())
4558#else
4559extern char** environ;
4560#endif
4561
4562// Run the specified command in a separate process. Return its exit value,
4563// or -1 on failure (e.g. can't fork a new process).
4564// Unlike system(), this function can be called from signal handler. It
4565// doesn't block SIGINT et al.
4566int os::fork_and_exec(char* cmd) {
4567  const char * argv[4] = {"sh", "-c", cmd, NULL};
4568
4569  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4570  // pthread_atfork handlers and reset pthread library. All we need is a
4571  // separate process to execve. Make a direct syscall to fork process.
4572  // On IA64 there's no fork syscall, we have to use fork() and hope for
4573  // the best...
4574  pid_t pid = fork();
4575
4576  if (pid < 0) {
4577    // fork failed
4578    return -1;
4579
4580  } else if (pid == 0) {
4581    // child process
4582
4583    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4584    // first to kill every thread on the thread list. Because this list is
4585    // not reset by fork() (see notes above), execve() will instead kill
4586    // every thread in the parent process. We know this is the only thread
4587    // in the new process, so make a system call directly.
4588    // IA64 should use normal execve() from glibc to match the glibc fork()
4589    // above.
4590    execve("/bin/sh", (char* const*)argv, environ);
4591
4592    // execve failed
4593    _exit(-1);
4594
4595  } else  {
4596    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4597    // care about the actual exit code, for now.
4598
4599    int status;
4600
4601    // Wait for the child process to exit.  This returns immediately if
4602    // the child has already exited. */
4603    while (waitpid(pid, &status, 0) < 0) {
4604      switch (errno) {
4605      case ECHILD: return 0;
4606      case EINTR: break;
4607      default: return -1;
4608      }
4609    }
4610
4611    if (WIFEXITED(status)) {
4612      // The child exited normally; get its exit code.
4613      return WEXITSTATUS(status);
4614    } else if (WIFSIGNALED(status)) {
4615      // The child exited because of a signal
4616      // The best value to return is 0x80 + signal number,
4617      // because that is what all Unix shells do, and because
4618      // it allows callers to distinguish between process exit and
4619      // process death by signal.
4620      return 0x80 + WTERMSIG(status);
4621    } else {
4622      // Unknown exit code; pass it through
4623      return status;
4624    }
4625  }
4626}
4627
4628// is_headless_jre()
4629//
4630// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4631// in order to report if we are running in a headless jre
4632//
4633// Since JDK8 xawt/libmawt.so was moved into the same directory
4634// as libawt.so, and renamed libawt_xawt.so
4635//
4636bool os::is_headless_jre() {
4637#ifdef __APPLE__
4638  // We no longer build headless-only on Mac OS X
4639  return false;
4640#else
4641  struct stat statbuf;
4642  char buf[MAXPATHLEN];
4643  char libmawtpath[MAXPATHLEN];
4644  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4645  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4646  char *p;
4647
4648  // Get path to libjvm.so
4649  os::jvm_path(buf, sizeof(buf));
4650
4651  // Get rid of libjvm.so
4652  p = strrchr(buf, '/');
4653  if (p == NULL) {
4654    return false;
4655  } else {
4656    *p = '\0';
4657  }
4658
4659  // Get rid of client or server
4660  p = strrchr(buf, '/');
4661  if (p == NULL) {
4662    return false;
4663  } else {
4664    *p = '\0';
4665  }
4666
4667  // check xawt/libmawt.so
4668  strcpy(libmawtpath, buf);
4669  strcat(libmawtpath, xawtstr);
4670  if (::stat(libmawtpath, &statbuf) == 0) return false;
4671
4672  // check libawt_xawt.so
4673  strcpy(libmawtpath, buf);
4674  strcat(libmawtpath, new_xawtstr);
4675  if (::stat(libmawtpath, &statbuf) == 0) return false;
4676
4677  return true;
4678#endif
4679}
4680
4681// Get the default path to the core file
4682// Returns the length of the string
4683int os::get_core_path(char* buffer, size_t bufferSize) {
4684  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4685
4686  // Truncate if theoretical string was longer than bufferSize
4687  n = MIN2(n, (int)bufferSize);
4688
4689  return n;
4690}
4691
4692#ifndef PRODUCT
4693void TestReserveMemorySpecial_test() {
4694  // No tests available for this platform
4695}
4696#endif
4697