1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *thread_native_entry(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  thread->initialize_thread_current();
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
685    os::current_thread_id(), (uintx) pthread_self());
686
687#ifdef __APPLE__
688  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
689  guarantee(unique_thread_id != 0, "unique thread id was not found");
690  osthread->set_unique_thread_id(unique_thread_id);
691#endif
692  // initialize signal mask for this thread
693  os::Bsd::hotspot_sigmask(thread);
694
695  // initialize floating point control register
696  os::Bsd::init_thread_fpu_state();
697
698#ifdef __APPLE__
699  // register thread with objc gc
700  if (objc_registerThreadWithCollectorFunction != NULL) {
701    objc_registerThreadWithCollectorFunction();
702  }
703#endif
704
705  // handshaking with parent thread
706  {
707    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
708
709    // notify parent thread
710    osthread->set_state(INITIALIZED);
711    sync->notify_all();
712
713    // wait until os::start_thread()
714    while (osthread->get_state() == INITIALIZED) {
715      sync->wait(Mutex::_no_safepoint_check_flag);
716    }
717  }
718
719  // call one more level start routine
720  thread->run();
721
722  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
723    os::current_thread_id(), (uintx) pthread_self());
724
725  // If a thread has not deleted itself ("delete this") as part of its
726  // termination sequence, we have to ensure thread-local-storage is
727  // cleared before we actually terminate. No threads should ever be
728  // deleted asynchronously with respect to their termination.
729  if (Thread::current_or_null_safe() != NULL) {
730    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
731    thread->clear_thread_current();
732  }
733
734  return 0;
735}
736
737bool os::create_thread(Thread* thread, ThreadType thr_type,
738                       size_t req_stack_size) {
739  assert(thread->osthread() == NULL, "caller responsible");
740
741  // Allocate the OSThread object
742  OSThread* osthread = new OSThread(NULL, NULL);
743  if (osthread == NULL) {
744    return false;
745  }
746
747  // set the correct thread state
748  osthread->set_thread_type(thr_type);
749
750  // Initial state is ALLOCATED but not INITIALIZED
751  osthread->set_state(ALLOCATED);
752
753  thread->set_osthread(osthread);
754
755  // init thread attributes
756  pthread_attr_t attr;
757  pthread_attr_init(&attr);
758  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
759
760  // calculate stack size if it's not specified by caller
761  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
762  pthread_attr_setstacksize(&attr, stack_size);
763
764  ThreadState state;
765
766  {
767    pthread_t tid;
768    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
769
770    char buf[64];
771    if (ret == 0) {
772      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
773        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
774    } else {
775      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
776        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
777    }
778
779    pthread_attr_destroy(&attr);
780
781    if (ret != 0) {
782      // Need to clean up stuff we've allocated so far
783      thread->set_osthread(NULL);
784      delete osthread;
785      return false;
786    }
787
788    // Store pthread info into the OSThread
789    osthread->set_pthread_id(tid);
790
791    // Wait until child thread is either initialized or aborted
792    {
793      Monitor* sync_with_child = osthread->startThread_lock();
794      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
795      while ((state = osthread->get_state()) == ALLOCATED) {
796        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
797      }
798    }
799
800  }
801
802  // Aborted due to thread limit being reached
803  if (state == ZOMBIE) {
804    thread->set_osthread(NULL);
805    delete osthread;
806    return false;
807  }
808
809  // The thread is returned suspended (in state INITIALIZED),
810  // and is started higher up in the call chain
811  assert(state == INITIALIZED, "race condition");
812  return true;
813}
814
815/////////////////////////////////////////////////////////////////////////////
816// attach existing thread
817
818// bootstrap the main thread
819bool os::create_main_thread(JavaThread* thread) {
820  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
821  return create_attached_thread(thread);
822}
823
824bool os::create_attached_thread(JavaThread* thread) {
825#ifdef ASSERT
826  thread->verify_not_published();
827#endif
828
829  // Allocate the OSThread object
830  OSThread* osthread = new OSThread(NULL, NULL);
831
832  if (osthread == NULL) {
833    return false;
834  }
835
836  osthread->set_thread_id(os::Bsd::gettid());
837
838  // Store pthread info into the OSThread
839#ifdef __APPLE__
840  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
841  guarantee(unique_thread_id != 0, "just checking");
842  osthread->set_unique_thread_id(unique_thread_id);
843#endif
844  osthread->set_pthread_id(::pthread_self());
845
846  // initialize floating point control register
847  os::Bsd::init_thread_fpu_state();
848
849  // Initial thread state is RUNNABLE
850  osthread->set_state(RUNNABLE);
851
852  thread->set_osthread(osthread);
853
854  // initialize signal mask for this thread
855  // and save the caller's signal mask
856  os::Bsd::hotspot_sigmask(thread);
857
858  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
859    os::current_thread_id(), (uintx) pthread_self());
860
861  return true;
862}
863
864void os::pd_start_thread(Thread* thread) {
865  OSThread * osthread = thread->osthread();
866  assert(osthread->get_state() != INITIALIZED, "just checking");
867  Monitor* sync_with_child = osthread->startThread_lock();
868  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
869  sync_with_child->notify();
870}
871
872// Free Bsd resources related to the OSThread
873void os::free_thread(OSThread* osthread) {
874  assert(osthread != NULL, "osthread not set");
875
876  // We are told to free resources of the argument thread,
877  // but we can only really operate on the current thread.
878  assert(Thread::current()->osthread() == osthread,
879         "os::free_thread but not current thread");
880
881  // Restore caller's signal mask
882  sigset_t sigmask = osthread->caller_sigmask();
883  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
884
885  delete osthread;
886}
887
888////////////////////////////////////////////////////////////////////////////////
889// time support
890
891// Time since start-up in seconds to a fine granularity.
892// Used by VMSelfDestructTimer and the MemProfiler.
893double os::elapsedTime() {
894
895  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
896}
897
898jlong os::elapsed_counter() {
899  return javaTimeNanos() - initial_time_count;
900}
901
902jlong os::elapsed_frequency() {
903  return NANOSECS_PER_SEC; // nanosecond resolution
904}
905
906bool os::supports_vtime() { return true; }
907bool os::enable_vtime()   { return false; }
908bool os::vtime_enabled()  { return false; }
909
910double os::elapsedVTime() {
911  // better than nothing, but not much
912  return elapsedTime();
913}
914
915jlong os::javaTimeMillis() {
916  timeval time;
917  int status = gettimeofday(&time, NULL);
918  assert(status != -1, "bsd error");
919  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
920}
921
922void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
923  timeval time;
924  int status = gettimeofday(&time, NULL);
925  assert(status != -1, "bsd error");
926  seconds = jlong(time.tv_sec);
927  nanos = jlong(time.tv_usec) * 1000;
928}
929
930#ifndef __APPLE__
931  #ifndef CLOCK_MONOTONIC
932    #define CLOCK_MONOTONIC (1)
933  #endif
934#endif
935
936#ifdef __APPLE__
937void os::Bsd::clock_init() {
938  mach_timebase_info(&_timebase_info);
939}
940#else
941void os::Bsd::clock_init() {
942  struct timespec res;
943  struct timespec tp;
944  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
945      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
946    // yes, monotonic clock is supported
947    _clock_gettime = ::clock_gettime;
948  }
949}
950#endif
951
952
953
954#ifdef __APPLE__
955
956jlong os::javaTimeNanos() {
957  const uint64_t tm = mach_absolute_time();
958  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
959  const uint64_t prev = Bsd::_max_abstime;
960  if (now <= prev) {
961    return prev;   // same or retrograde time;
962  }
963  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
964  assert(obsv >= prev, "invariant");   // Monotonicity
965  // If the CAS succeeded then we're done and return "now".
966  // If the CAS failed and the observed value "obsv" is >= now then
967  // we should return "obsv".  If the CAS failed and now > obsv > prv then
968  // some other thread raced this thread and installed a new value, in which case
969  // we could either (a) retry the entire operation, (b) retry trying to install now
970  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
971  // we might discard a higher "now" value in deference to a slightly lower but freshly
972  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
973  // to (a) or (b) -- and greatly reduces coherence traffic.
974  // We might also condition (c) on the magnitude of the delta between obsv and now.
975  // Avoiding excessive CAS operations to hot RW locations is critical.
976  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
977  return (prev == obsv) ? now : obsv;
978}
979
980#else // __APPLE__
981
982jlong os::javaTimeNanos() {
983  if (os::supports_monotonic_clock()) {
984    struct timespec tp;
985    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
986    assert(status == 0, "gettime error");
987    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
988    return result;
989  } else {
990    timeval time;
991    int status = gettimeofday(&time, NULL);
992    assert(status != -1, "bsd error");
993    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
994    return 1000 * usecs;
995  }
996}
997
998#endif // __APPLE__
999
1000void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1001  if (os::supports_monotonic_clock()) {
1002    info_ptr->max_value = ALL_64_BITS;
1003
1004    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1005    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1006    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1007  } else {
1008    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1009    info_ptr->max_value = ALL_64_BITS;
1010
1011    // gettimeofday is a real time clock so it skips
1012    info_ptr->may_skip_backward = true;
1013    info_ptr->may_skip_forward = true;
1014  }
1015
1016  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1017}
1018
1019// Return the real, user, and system times in seconds from an
1020// arbitrary fixed point in the past.
1021bool os::getTimesSecs(double* process_real_time,
1022                      double* process_user_time,
1023                      double* process_system_time) {
1024  struct tms ticks;
1025  clock_t real_ticks = times(&ticks);
1026
1027  if (real_ticks == (clock_t) (-1)) {
1028    return false;
1029  } else {
1030    double ticks_per_second = (double) clock_tics_per_sec;
1031    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1032    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1033    *process_real_time = ((double) real_ticks) / ticks_per_second;
1034
1035    return true;
1036  }
1037}
1038
1039
1040char * os::local_time_string(char *buf, size_t buflen) {
1041  struct tm t;
1042  time_t long_time;
1043  time(&long_time);
1044  localtime_r(&long_time, &t);
1045  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1046               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1047               t.tm_hour, t.tm_min, t.tm_sec);
1048  return buf;
1049}
1050
1051struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1052  return localtime_r(clock, res);
1053}
1054
1055////////////////////////////////////////////////////////////////////////////////
1056// runtime exit support
1057
1058// Note: os::shutdown() might be called very early during initialization, or
1059// called from signal handler. Before adding something to os::shutdown(), make
1060// sure it is async-safe and can handle partially initialized VM.
1061void os::shutdown() {
1062
1063  // allow PerfMemory to attempt cleanup of any persistent resources
1064  perfMemory_exit();
1065
1066  // needs to remove object in file system
1067  AttachListener::abort();
1068
1069  // flush buffered output, finish log files
1070  ostream_abort();
1071
1072  // Check for abort hook
1073  abort_hook_t abort_hook = Arguments::abort_hook();
1074  if (abort_hook != NULL) {
1075    abort_hook();
1076  }
1077
1078}
1079
1080// Note: os::abort() might be called very early during initialization, or
1081// called from signal handler. Before adding something to os::abort(), make
1082// sure it is async-safe and can handle partially initialized VM.
1083void os::abort(bool dump_core, void* siginfo, const void* context) {
1084  os::shutdown();
1085  if (dump_core) {
1086#ifndef PRODUCT
1087    fdStream out(defaultStream::output_fd());
1088    out.print_raw("Current thread is ");
1089    char buf[16];
1090    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1091    out.print_raw_cr(buf);
1092    out.print_raw_cr("Dumping core ...");
1093#endif
1094    ::abort(); // dump core
1095  }
1096
1097  ::exit(1);
1098}
1099
1100// Die immediately, no exit hook, no abort hook, no cleanup.
1101void os::die() {
1102  // _exit() on BsdThreads only kills current thread
1103  ::abort();
1104}
1105
1106// This method is a copy of JDK's sysGetLastErrorString
1107// from src/solaris/hpi/src/system_md.c
1108
1109size_t os::lasterror(char *buf, size_t len) {
1110  if (errno == 0)  return 0;
1111
1112  const char *s = os::strerror(errno);
1113  size_t n = ::strlen(s);
1114  if (n >= len) {
1115    n = len - 1;
1116  }
1117  ::strncpy(buf, s, n);
1118  buf[n] = '\0';
1119  return n;
1120}
1121
1122// Information of current thread in variety of formats
1123pid_t os::Bsd::gettid() {
1124  int retval = -1;
1125
1126#ifdef __APPLE__ //XNU kernel
1127  // despite the fact mach port is actually not a thread id use it
1128  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1129  retval = ::pthread_mach_thread_np(::pthread_self());
1130  guarantee(retval != 0, "just checking");
1131  return retval;
1132
1133#else
1134  #ifdef __FreeBSD__
1135  retval = syscall(SYS_thr_self);
1136  #else
1137    #ifdef __OpenBSD__
1138  retval = syscall(SYS_getthrid);
1139    #else
1140      #ifdef __NetBSD__
1141  retval = (pid_t) syscall(SYS__lwp_self);
1142      #endif
1143    #endif
1144  #endif
1145#endif
1146
1147  if (retval == -1) {
1148    return getpid();
1149  }
1150}
1151
1152intx os::current_thread_id() {
1153#ifdef __APPLE__
1154  return (intx)::pthread_mach_thread_np(::pthread_self());
1155#else
1156  return (intx)::pthread_self();
1157#endif
1158}
1159
1160int os::current_process_id() {
1161
1162  // Under the old bsd thread library, bsd gives each thread
1163  // its own process id. Because of this each thread will return
1164  // a different pid if this method were to return the result
1165  // of getpid(2). Bsd provides no api that returns the pid
1166  // of the launcher thread for the vm. This implementation
1167  // returns a unique pid, the pid of the launcher thread
1168  // that starts the vm 'process'.
1169
1170  // Under the NPTL, getpid() returns the same pid as the
1171  // launcher thread rather than a unique pid per thread.
1172  // Use gettid() if you want the old pre NPTL behaviour.
1173
1174  // if you are looking for the result of a call to getpid() that
1175  // returns a unique pid for the calling thread, then look at the
1176  // OSThread::thread_id() method in osThread_bsd.hpp file
1177
1178  return (int)(_initial_pid ? _initial_pid : getpid());
1179}
1180
1181// DLL functions
1182
1183#define JNI_LIB_PREFIX "lib"
1184#ifdef __APPLE__
1185  #define JNI_LIB_SUFFIX ".dylib"
1186#else
1187  #define JNI_LIB_SUFFIX ".so"
1188#endif
1189
1190const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1191
1192// This must be hard coded because it's the system's temporary
1193// directory not the java application's temp directory, ala java.io.tmpdir.
1194#ifdef __APPLE__
1195// macosx has a secure per-user temporary directory
1196char temp_path_storage[PATH_MAX];
1197const char* os::get_temp_directory() {
1198  static char *temp_path = NULL;
1199  if (temp_path == NULL) {
1200    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1201    if (pathSize == 0 || pathSize > PATH_MAX) {
1202      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1203    }
1204    temp_path = temp_path_storage;
1205  }
1206  return temp_path;
1207}
1208#else // __APPLE__
1209const char* os::get_temp_directory() { return "/tmp"; }
1210#endif // __APPLE__
1211
1212static bool file_exists(const char* filename) {
1213  struct stat statbuf;
1214  if (filename == NULL || strlen(filename) == 0) {
1215    return false;
1216  }
1217  return os::stat(filename, &statbuf) == 0;
1218}
1219
1220bool os::dll_build_name(char* buffer, size_t buflen,
1221                        const char* pname, const char* fname) {
1222  bool retval = false;
1223  // Copied from libhpi
1224  const size_t pnamelen = pname ? strlen(pname) : 0;
1225
1226  // Return error on buffer overflow.
1227  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1228    return retval;
1229  }
1230
1231  if (pnamelen == 0) {
1232    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1233    retval = true;
1234  } else if (strchr(pname, *os::path_separator()) != NULL) {
1235    int n;
1236    char** pelements = split_path(pname, &n);
1237    if (pelements == NULL) {
1238      return false;
1239    }
1240    for (int i = 0; i < n; i++) {
1241      // Really shouldn't be NULL, but check can't hurt
1242      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1243        continue; // skip the empty path values
1244      }
1245      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1246               pelements[i], fname);
1247      if (file_exists(buffer)) {
1248        retval = true;
1249        break;
1250      }
1251    }
1252    // release the storage
1253    for (int i = 0; i < n; i++) {
1254      if (pelements[i] != NULL) {
1255        FREE_C_HEAP_ARRAY(char, pelements[i]);
1256      }
1257    }
1258    if (pelements != NULL) {
1259      FREE_C_HEAP_ARRAY(char*, pelements);
1260    }
1261  } else {
1262    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1263    retval = true;
1264  }
1265  return retval;
1266}
1267
1268// check if addr is inside libjvm.so
1269bool os::address_is_in_vm(address addr) {
1270  static address libjvm_base_addr;
1271  Dl_info dlinfo;
1272
1273  if (libjvm_base_addr == NULL) {
1274    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1275      libjvm_base_addr = (address)dlinfo.dli_fbase;
1276    }
1277    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1278  }
1279
1280  if (dladdr((void *)addr, &dlinfo) != 0) {
1281    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1282  }
1283
1284  return false;
1285}
1286
1287
1288#define MACH_MAXSYMLEN 256
1289
1290bool os::dll_address_to_function_name(address addr, char *buf,
1291                                      int buflen, int *offset,
1292                                      bool demangle) {
1293  // buf is not optional, but offset is optional
1294  assert(buf != NULL, "sanity check");
1295
1296  Dl_info dlinfo;
1297  char localbuf[MACH_MAXSYMLEN];
1298
1299  if (dladdr((void*)addr, &dlinfo) != 0) {
1300    // see if we have a matching symbol
1301    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1302      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1303        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1304      }
1305      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1306      return true;
1307    }
1308    // no matching symbol so try for just file info
1309    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1310      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1311                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1312        return true;
1313      }
1314    }
1315
1316    // Handle non-dynamic manually:
1317    if (dlinfo.dli_fbase != NULL &&
1318        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1319                        dlinfo.dli_fbase)) {
1320      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1321        jio_snprintf(buf, buflen, "%s", localbuf);
1322      }
1323      return true;
1324    }
1325  }
1326  buf[0] = '\0';
1327  if (offset != NULL) *offset = -1;
1328  return false;
1329}
1330
1331// ported from solaris version
1332bool os::dll_address_to_library_name(address addr, char* buf,
1333                                     int buflen, int* offset) {
1334  // buf is not optional, but offset is optional
1335  assert(buf != NULL, "sanity check");
1336
1337  Dl_info dlinfo;
1338
1339  if (dladdr((void*)addr, &dlinfo) != 0) {
1340    if (dlinfo.dli_fname != NULL) {
1341      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1342    }
1343    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1344      *offset = addr - (address)dlinfo.dli_fbase;
1345    }
1346    return true;
1347  }
1348
1349  buf[0] = '\0';
1350  if (offset) *offset = -1;
1351  return false;
1352}
1353
1354// Loads .dll/.so and
1355// in case of error it checks if .dll/.so was built for the
1356// same architecture as Hotspot is running on
1357
1358#ifdef __APPLE__
1359void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1360#ifdef STATIC_BUILD
1361  return os::get_default_process_handle();
1362#else
1363  void * result= ::dlopen(filename, RTLD_LAZY);
1364  if (result != NULL) {
1365    // Successful loading
1366    return result;
1367  }
1368
1369  // Read system error message into ebuf
1370  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1371  ebuf[ebuflen-1]='\0';
1372
1373  return NULL;
1374#endif // STATIC_BUILD
1375}
1376#else
1377void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1378#ifdef STATIC_BUILD
1379  return os::get_default_process_handle();
1380#else
1381  void * result= ::dlopen(filename, RTLD_LAZY);
1382  if (result != NULL) {
1383    // Successful loading
1384    return result;
1385  }
1386
1387  Elf32_Ehdr elf_head;
1388
1389  // Read system error message into ebuf
1390  // It may or may not be overwritten below
1391  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1392  ebuf[ebuflen-1]='\0';
1393  int diag_msg_max_length=ebuflen-strlen(ebuf);
1394  char* diag_msg_buf=ebuf+strlen(ebuf);
1395
1396  if (diag_msg_max_length==0) {
1397    // No more space in ebuf for additional diagnostics message
1398    return NULL;
1399  }
1400
1401
1402  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1403
1404  if (file_descriptor < 0) {
1405    // Can't open library, report dlerror() message
1406    return NULL;
1407  }
1408
1409  bool failed_to_read_elf_head=
1410    (sizeof(elf_head)!=
1411     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1412
1413  ::close(file_descriptor);
1414  if (failed_to_read_elf_head) {
1415    // file i/o error - report dlerror() msg
1416    return NULL;
1417  }
1418
1419  typedef struct {
1420    Elf32_Half  code;         // Actual value as defined in elf.h
1421    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1422    char        elf_class;    // 32 or 64 bit
1423    char        endianess;    // MSB or LSB
1424    char*       name;         // String representation
1425  } arch_t;
1426
1427  #ifndef EM_486
1428    #define EM_486          6               /* Intel 80486 */
1429  #endif
1430
1431  #ifndef EM_MIPS_RS3_LE
1432    #define EM_MIPS_RS3_LE  10              /* MIPS */
1433  #endif
1434
1435  #ifndef EM_PPC64
1436    #define EM_PPC64        21              /* PowerPC64 */
1437  #endif
1438
1439  #ifndef EM_S390
1440    #define EM_S390         22              /* IBM System/390 */
1441  #endif
1442
1443  #ifndef EM_IA_64
1444    #define EM_IA_64        50              /* HP/Intel IA-64 */
1445  #endif
1446
1447  #ifndef EM_X86_64
1448    #define EM_X86_64       62              /* AMD x86-64 */
1449  #endif
1450
1451  static const arch_t arch_array[]={
1452    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1453    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1454    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1455    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1456    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1457    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1458    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1459    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1460    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1461    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1462    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1463    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1464    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1465    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1466    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1467    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1468  };
1469
1470  #if  (defined IA32)
1471  static  Elf32_Half running_arch_code=EM_386;
1472  #elif   (defined AMD64)
1473  static  Elf32_Half running_arch_code=EM_X86_64;
1474  #elif  (defined IA64)
1475  static  Elf32_Half running_arch_code=EM_IA_64;
1476  #elif  (defined __sparc) && (defined _LP64)
1477  static  Elf32_Half running_arch_code=EM_SPARCV9;
1478  #elif  (defined __sparc) && (!defined _LP64)
1479  static  Elf32_Half running_arch_code=EM_SPARC;
1480  #elif  (defined __powerpc64__)
1481  static  Elf32_Half running_arch_code=EM_PPC64;
1482  #elif  (defined __powerpc__)
1483  static  Elf32_Half running_arch_code=EM_PPC;
1484  #elif  (defined ARM)
1485  static  Elf32_Half running_arch_code=EM_ARM;
1486  #elif  (defined S390)
1487  static  Elf32_Half running_arch_code=EM_S390;
1488  #elif  (defined ALPHA)
1489  static  Elf32_Half running_arch_code=EM_ALPHA;
1490  #elif  (defined MIPSEL)
1491  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1492  #elif  (defined PARISC)
1493  static  Elf32_Half running_arch_code=EM_PARISC;
1494  #elif  (defined MIPS)
1495  static  Elf32_Half running_arch_code=EM_MIPS;
1496  #elif  (defined M68K)
1497  static  Elf32_Half running_arch_code=EM_68K;
1498  #else
1499    #error Method os::dll_load requires that one of following is defined:\
1500         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1501  #endif
1502
1503  // Identify compatability class for VM's architecture and library's architecture
1504  // Obtain string descriptions for architectures
1505
1506  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1507  int running_arch_index=-1;
1508
1509  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1510    if (running_arch_code == arch_array[i].code) {
1511      running_arch_index    = i;
1512    }
1513    if (lib_arch.code == arch_array[i].code) {
1514      lib_arch.compat_class = arch_array[i].compat_class;
1515      lib_arch.name         = arch_array[i].name;
1516    }
1517  }
1518
1519  assert(running_arch_index != -1,
1520         "Didn't find running architecture code (running_arch_code) in arch_array");
1521  if (running_arch_index == -1) {
1522    // Even though running architecture detection failed
1523    // we may still continue with reporting dlerror() message
1524    return NULL;
1525  }
1526
1527  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1528    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1529    return NULL;
1530  }
1531
1532#ifndef S390
1533  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1534    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1535    return NULL;
1536  }
1537#endif // !S390
1538
1539  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1540    if (lib_arch.name!=NULL) {
1541      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1542                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1543                 lib_arch.name, arch_array[running_arch_index].name);
1544    } else {
1545      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1547                 lib_arch.code,
1548                 arch_array[running_arch_index].name);
1549    }
1550  }
1551
1552  return NULL;
1553#endif // STATIC_BUILD
1554}
1555#endif // !__APPLE__
1556
1557void* os::get_default_process_handle() {
1558#ifdef __APPLE__
1559  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1560  // to avoid finding unexpected symbols on second (or later)
1561  // loads of a library.
1562  return (void*)::dlopen(NULL, RTLD_FIRST);
1563#else
1564  return (void*)::dlopen(NULL, RTLD_LAZY);
1565#endif
1566}
1567
1568// XXX: Do we need a lock around this as per Linux?
1569void* os::dll_lookup(void* handle, const char* name) {
1570  return dlsym(handle, name);
1571}
1572
1573int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1574  outputStream * out = (outputStream *) param;
1575  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1576  return 0;
1577}
1578
1579void os::print_dll_info(outputStream *st) {
1580  st->print_cr("Dynamic libraries:");
1581  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1582    st->print_cr("Error: Cannot print dynamic libraries.");
1583  }
1584}
1585
1586int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1587#ifdef RTLD_DI_LINKMAP
1588  Dl_info dli;
1589  void *handle;
1590  Link_map *map;
1591  Link_map *p;
1592
1593  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1594      dli.dli_fname == NULL) {
1595    return 1;
1596  }
1597  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1598  if (handle == NULL) {
1599    return 1;
1600  }
1601  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1602  if (map == NULL) {
1603    dlclose(handle);
1604    return 1;
1605  }
1606
1607  while (map->l_prev != NULL)
1608    map = map->l_prev;
1609
1610  while (map != NULL) {
1611    // Value for top_address is returned as 0 since we don't have any information about module size
1612    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1613      dlclose(handle);
1614      return 1;
1615    }
1616    map = map->l_next;
1617  }
1618
1619  dlclose(handle);
1620#elif defined(__APPLE__)
1621  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1622    // Value for top_address is returned as 0 since we don't have any information about module size
1623    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1624      return 1;
1625    }
1626  }
1627  return 0;
1628#else
1629  return 1;
1630#endif
1631}
1632
1633void os::get_summary_os_info(char* buf, size_t buflen) {
1634  // These buffers are small because we want this to be brief
1635  // and not use a lot of stack while generating the hs_err file.
1636  char os[100];
1637  size_t size = sizeof(os);
1638  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1639  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1640#ifdef __APPLE__
1641      strncpy(os, "Darwin", sizeof(os));
1642#elif __OpenBSD__
1643      strncpy(os, "OpenBSD", sizeof(os));
1644#else
1645      strncpy(os, "BSD", sizeof(os));
1646#endif
1647  }
1648
1649  char release[100];
1650  size = sizeof(release);
1651  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1652  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1653      // if error, leave blank
1654      strncpy(release, "", sizeof(release));
1655  }
1656  snprintf(buf, buflen, "%s %s", os, release);
1657}
1658
1659void os::print_os_info_brief(outputStream* st) {
1660  os::Posix::print_uname_info(st);
1661}
1662
1663void os::print_os_info(outputStream* st) {
1664  st->print("OS:");
1665
1666  os::Posix::print_uname_info(st);
1667
1668  os::Posix::print_rlimit_info(st);
1669
1670  os::Posix::print_load_average(st);
1671}
1672
1673void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1674  // Nothing to do for now.
1675}
1676
1677void os::get_summary_cpu_info(char* buf, size_t buflen) {
1678  unsigned int mhz;
1679  size_t size = sizeof(mhz);
1680  int mib[] = { CTL_HW, HW_CPU_FREQ };
1681  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1682    mhz = 1;  // looks like an error but can be divided by
1683  } else {
1684    mhz /= 1000000;  // reported in millions
1685  }
1686
1687  char model[100];
1688  size = sizeof(model);
1689  int mib_model[] = { CTL_HW, HW_MODEL };
1690  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1691    strncpy(model, cpu_arch, sizeof(model));
1692  }
1693
1694  char machine[100];
1695  size = sizeof(machine);
1696  int mib_machine[] = { CTL_HW, HW_MACHINE };
1697  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1698      strncpy(machine, "", sizeof(machine));
1699  }
1700
1701  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1702}
1703
1704void os::print_memory_info(outputStream* st) {
1705
1706  st->print("Memory:");
1707  st->print(" %dk page", os::vm_page_size()>>10);
1708
1709  st->print(", physical " UINT64_FORMAT "k",
1710            os::physical_memory() >> 10);
1711  st->print("(" UINT64_FORMAT "k free)",
1712            os::available_memory() >> 10);
1713  st->cr();
1714}
1715
1716static void print_signal_handler(outputStream* st, int sig,
1717                                 char* buf, size_t buflen);
1718
1719void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1720  st->print_cr("Signal Handlers:");
1721  print_signal_handler(st, SIGSEGV, buf, buflen);
1722  print_signal_handler(st, SIGBUS , buf, buflen);
1723  print_signal_handler(st, SIGFPE , buf, buflen);
1724  print_signal_handler(st, SIGPIPE, buf, buflen);
1725  print_signal_handler(st, SIGXFSZ, buf, buflen);
1726  print_signal_handler(st, SIGILL , buf, buflen);
1727  print_signal_handler(st, SR_signum, buf, buflen);
1728  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1729  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1730  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1731  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1732}
1733
1734static char saved_jvm_path[MAXPATHLEN] = {0};
1735
1736// Find the full path to the current module, libjvm
1737void os::jvm_path(char *buf, jint buflen) {
1738  // Error checking.
1739  if (buflen < MAXPATHLEN) {
1740    assert(false, "must use a large-enough buffer");
1741    buf[0] = '\0';
1742    return;
1743  }
1744  // Lazy resolve the path to current module.
1745  if (saved_jvm_path[0] != 0) {
1746    strcpy(buf, saved_jvm_path);
1747    return;
1748  }
1749
1750  char dli_fname[MAXPATHLEN];
1751  bool ret = dll_address_to_library_name(
1752                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1753                                         dli_fname, sizeof(dli_fname), NULL);
1754  assert(ret, "cannot locate libjvm");
1755  char *rp = NULL;
1756  if (ret && dli_fname[0] != '\0') {
1757    rp = realpath(dli_fname, buf);
1758  }
1759  if (rp == NULL) {
1760    return;
1761  }
1762
1763  if (Arguments::sun_java_launcher_is_altjvm()) {
1764    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1765    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1766    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1767    // appears at the right place in the string, then assume we are
1768    // installed in a JDK and we're done. Otherwise, check for a
1769    // JAVA_HOME environment variable and construct a path to the JVM
1770    // being overridden.
1771
1772    const char *p = buf + strlen(buf) - 1;
1773    for (int count = 0; p > buf && count < 5; ++count) {
1774      for (--p; p > buf && *p != '/'; --p)
1775        /* empty */ ;
1776    }
1777
1778    if (strncmp(p, "/jre/lib/", 9) != 0) {
1779      // Look for JAVA_HOME in the environment.
1780      char* java_home_var = ::getenv("JAVA_HOME");
1781      if (java_home_var != NULL && java_home_var[0] != 0) {
1782        char* jrelib_p;
1783        int len;
1784
1785        // Check the current module name "libjvm"
1786        p = strrchr(buf, '/');
1787        assert(strstr(p, "/libjvm") == p, "invalid library name");
1788
1789        rp = realpath(java_home_var, buf);
1790        if (rp == NULL) {
1791          return;
1792        }
1793
1794        // determine if this is a legacy image or modules image
1795        // modules image doesn't have "jre" subdirectory
1796        len = strlen(buf);
1797        assert(len < buflen, "Ran out of buffer space");
1798        jrelib_p = buf + len;
1799
1800        // Add the appropriate library subdir
1801        snprintf(jrelib_p, buflen-len, "/jre/lib");
1802        if (0 != access(buf, F_OK)) {
1803          snprintf(jrelib_p, buflen-len, "/lib");
1804        }
1805
1806        // Add the appropriate client or server subdir
1807        len = strlen(buf);
1808        jrelib_p = buf + len;
1809        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1810        if (0 != access(buf, F_OK)) {
1811          snprintf(jrelib_p, buflen-len, "%s", "");
1812        }
1813
1814        // If the path exists within JAVA_HOME, add the JVM library name
1815        // to complete the path to JVM being overridden.  Otherwise fallback
1816        // to the path to the current library.
1817        if (0 == access(buf, F_OK)) {
1818          // Use current module name "libjvm"
1819          len = strlen(buf);
1820          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1821        } else {
1822          // Fall back to path of current library
1823          rp = realpath(dli_fname, buf);
1824          if (rp == NULL) {
1825            return;
1826          }
1827        }
1828      }
1829    }
1830  }
1831
1832  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1833  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1834}
1835
1836void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1837  // no prefix required, not even "_"
1838}
1839
1840void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1841  // no suffix required
1842}
1843
1844////////////////////////////////////////////////////////////////////////////////
1845// sun.misc.Signal support
1846
1847static volatile jint sigint_count = 0;
1848
1849static void UserHandler(int sig, void *siginfo, void *context) {
1850  // 4511530 - sem_post is serialized and handled by the manager thread. When
1851  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1852  // don't want to flood the manager thread with sem_post requests.
1853  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1854    return;
1855  }
1856
1857  // Ctrl-C is pressed during error reporting, likely because the error
1858  // handler fails to abort. Let VM die immediately.
1859  if (sig == SIGINT && is_error_reported()) {
1860    os::die();
1861  }
1862
1863  os::signal_notify(sig);
1864}
1865
1866void* os::user_handler() {
1867  return CAST_FROM_FN_PTR(void*, UserHandler);
1868}
1869
1870extern "C" {
1871  typedef void (*sa_handler_t)(int);
1872  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1873}
1874
1875void* os::signal(int signal_number, void* handler) {
1876  struct sigaction sigAct, oldSigAct;
1877
1878  sigfillset(&(sigAct.sa_mask));
1879  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1880  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1881
1882  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1883    // -1 means registration failed
1884    return (void *)-1;
1885  }
1886
1887  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1888}
1889
1890void os::signal_raise(int signal_number) {
1891  ::raise(signal_number);
1892}
1893
1894// The following code is moved from os.cpp for making this
1895// code platform specific, which it is by its very nature.
1896
1897// Will be modified when max signal is changed to be dynamic
1898int os::sigexitnum_pd() {
1899  return NSIG;
1900}
1901
1902// a counter for each possible signal value
1903static volatile jint pending_signals[NSIG+1] = { 0 };
1904
1905// Bsd(POSIX) specific hand shaking semaphore.
1906#ifdef __APPLE__
1907typedef semaphore_t os_semaphore_t;
1908
1909  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1910  #define SEM_WAIT(sem)           semaphore_wait(sem)
1911  #define SEM_POST(sem)           semaphore_signal(sem)
1912  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1913#else
1914typedef sem_t os_semaphore_t;
1915
1916  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1917  #define SEM_WAIT(sem)           sem_wait(&sem)
1918  #define SEM_POST(sem)           sem_post(&sem)
1919  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1920#endif
1921
1922#ifdef __APPLE__
1923// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1924
1925static const char* sem_init_strerror(kern_return_t value) {
1926  switch (value) {
1927    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1928    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1929    default:                     return "Unknown";
1930  }
1931}
1932
1933OSXSemaphore::OSXSemaphore(uint value) {
1934  kern_return_t ret = SEM_INIT(_semaphore, value);
1935
1936  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1937}
1938
1939OSXSemaphore::~OSXSemaphore() {
1940  SEM_DESTROY(_semaphore);
1941}
1942
1943void OSXSemaphore::signal(uint count) {
1944  for (uint i = 0; i < count; i++) {
1945    kern_return_t ret = SEM_POST(_semaphore);
1946
1947    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1948  }
1949}
1950
1951void OSXSemaphore::wait() {
1952  kern_return_t ret;
1953  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1954    // Semaphore was interrupted. Retry.
1955  }
1956  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1957}
1958
1959jlong OSXSemaphore::currenttime() {
1960  struct timeval tv;
1961  gettimeofday(&tv, NULL);
1962  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1963}
1964
1965bool OSXSemaphore::trywait() {
1966  return timedwait(0, 0);
1967}
1968
1969bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1970  kern_return_t kr = KERN_ABORTED;
1971  mach_timespec_t waitspec;
1972  waitspec.tv_sec = sec;
1973  waitspec.tv_nsec = nsec;
1974
1975  jlong starttime = currenttime();
1976
1977  kr = semaphore_timedwait(_semaphore, waitspec);
1978  while (kr == KERN_ABORTED) {
1979    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1980
1981    jlong current = currenttime();
1982    jlong passedtime = current - starttime;
1983
1984    if (passedtime >= totalwait) {
1985      waitspec.tv_sec = 0;
1986      waitspec.tv_nsec = 0;
1987    } else {
1988      jlong waittime = totalwait - (current - starttime);
1989      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1990      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1991    }
1992
1993    kr = semaphore_timedwait(_semaphore, waitspec);
1994  }
1995
1996  return kr == KERN_SUCCESS;
1997}
1998
1999#else
2000// Use POSIX implementation of semaphores.
2001
2002struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2003  struct timespec ts;
2004  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2005
2006  return ts;
2007}
2008
2009#endif // __APPLE__
2010
2011static os_semaphore_t sig_sem;
2012
2013#ifdef __APPLE__
2014static OSXSemaphore sr_semaphore;
2015#else
2016static PosixSemaphore sr_semaphore;
2017#endif
2018
2019void os::signal_init_pd() {
2020  // Initialize signal structures
2021  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2022
2023  // Initialize signal semaphore
2024  ::SEM_INIT(sig_sem, 0);
2025}
2026
2027void os::signal_notify(int sig) {
2028  Atomic::inc(&pending_signals[sig]);
2029  ::SEM_POST(sig_sem);
2030}
2031
2032static int check_pending_signals(bool wait) {
2033  Atomic::store(0, &sigint_count);
2034  for (;;) {
2035    for (int i = 0; i < NSIG + 1; i++) {
2036      jint n = pending_signals[i];
2037      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2038        return i;
2039      }
2040    }
2041    if (!wait) {
2042      return -1;
2043    }
2044    JavaThread *thread = JavaThread::current();
2045    ThreadBlockInVM tbivm(thread);
2046
2047    bool threadIsSuspended;
2048    do {
2049      thread->set_suspend_equivalent();
2050      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2051      ::SEM_WAIT(sig_sem);
2052
2053      // were we externally suspended while we were waiting?
2054      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2055      if (threadIsSuspended) {
2056        // The semaphore has been incremented, but while we were waiting
2057        // another thread suspended us. We don't want to continue running
2058        // while suspended because that would surprise the thread that
2059        // suspended us.
2060        ::SEM_POST(sig_sem);
2061
2062        thread->java_suspend_self();
2063      }
2064    } while (threadIsSuspended);
2065  }
2066}
2067
2068int os::signal_lookup() {
2069  return check_pending_signals(false);
2070}
2071
2072int os::signal_wait() {
2073  return check_pending_signals(true);
2074}
2075
2076////////////////////////////////////////////////////////////////////////////////
2077// Virtual Memory
2078
2079int os::vm_page_size() {
2080  // Seems redundant as all get out
2081  assert(os::Bsd::page_size() != -1, "must call os::init");
2082  return os::Bsd::page_size();
2083}
2084
2085// Solaris allocates memory by pages.
2086int os::vm_allocation_granularity() {
2087  assert(os::Bsd::page_size() != -1, "must call os::init");
2088  return os::Bsd::page_size();
2089}
2090
2091// Rationale behind this function:
2092//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2093//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2094//  samples for JITted code. Here we create private executable mapping over the code cache
2095//  and then we can use standard (well, almost, as mapping can change) way to provide
2096//  info for the reporting script by storing timestamp and location of symbol
2097void bsd_wrap_code(char* base, size_t size) {
2098  static volatile jint cnt = 0;
2099
2100  if (!UseOprofile) {
2101    return;
2102  }
2103
2104  char buf[PATH_MAX + 1];
2105  int num = Atomic::add(1, &cnt);
2106
2107  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2108           os::get_temp_directory(), os::current_process_id(), num);
2109  unlink(buf);
2110
2111  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2112
2113  if (fd != -1) {
2114    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2115    if (rv != (off_t)-1) {
2116      if (::write(fd, "", 1) == 1) {
2117        mmap(base, size,
2118             PROT_READ|PROT_WRITE|PROT_EXEC,
2119             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2120      }
2121    }
2122    ::close(fd);
2123    unlink(buf);
2124  }
2125}
2126
2127static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2128                                    int err) {
2129  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2130          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2131          os::errno_name(err), err);
2132}
2133
2134// NOTE: Bsd kernel does not really reserve the pages for us.
2135//       All it does is to check if there are enough free pages
2136//       left at the time of mmap(). This could be a potential
2137//       problem.
2138bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2139  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2140#ifdef __OpenBSD__
2141  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2142  if (::mprotect(addr, size, prot) == 0) {
2143    return true;
2144  }
2145#else
2146  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2147                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2148  if (res != (uintptr_t) MAP_FAILED) {
2149    return true;
2150  }
2151#endif
2152
2153  // Warn about any commit errors we see in non-product builds just
2154  // in case mmap() doesn't work as described on the man page.
2155  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2156
2157  return false;
2158}
2159
2160bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2161                          bool exec) {
2162  // alignment_hint is ignored on this OS
2163  return pd_commit_memory(addr, size, exec);
2164}
2165
2166void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2167                                  const char* mesg) {
2168  assert(mesg != NULL, "mesg must be specified");
2169  if (!pd_commit_memory(addr, size, exec)) {
2170    // add extra info in product mode for vm_exit_out_of_memory():
2171    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2172    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2173  }
2174}
2175
2176void os::pd_commit_memory_or_exit(char* addr, size_t size,
2177                                  size_t alignment_hint, bool exec,
2178                                  const char* mesg) {
2179  // alignment_hint is ignored on this OS
2180  pd_commit_memory_or_exit(addr, size, exec, mesg);
2181}
2182
2183void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2184}
2185
2186void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2187  ::madvise(addr, bytes, MADV_DONTNEED);
2188}
2189
2190void os::numa_make_global(char *addr, size_t bytes) {
2191}
2192
2193void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2194}
2195
2196bool os::numa_topology_changed()   { return false; }
2197
2198size_t os::numa_get_groups_num() {
2199  return 1;
2200}
2201
2202int os::numa_get_group_id() {
2203  return 0;
2204}
2205
2206size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2207  if (size > 0) {
2208    ids[0] = 0;
2209    return 1;
2210  }
2211  return 0;
2212}
2213
2214bool os::get_page_info(char *start, page_info* info) {
2215  return false;
2216}
2217
2218char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2219  return end;
2220}
2221
2222
2223bool os::pd_uncommit_memory(char* addr, size_t size) {
2224#ifdef __OpenBSD__
2225  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2226  return ::mprotect(addr, size, PROT_NONE) == 0;
2227#else
2228  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2229                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2230  return res  != (uintptr_t) MAP_FAILED;
2231#endif
2232}
2233
2234bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2235  return os::commit_memory(addr, size, !ExecMem);
2236}
2237
2238// If this is a growable mapping, remove the guard pages entirely by
2239// munmap()ping them.  If not, just call uncommit_memory().
2240bool os::remove_stack_guard_pages(char* addr, size_t size) {
2241  return os::uncommit_memory(addr, size);
2242}
2243
2244// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2245// at 'requested_addr'. If there are existing memory mappings at the same
2246// location, however, they will be overwritten. If 'fixed' is false,
2247// 'requested_addr' is only treated as a hint, the return value may or
2248// may not start from the requested address. Unlike Bsd mmap(), this
2249// function returns NULL to indicate failure.
2250static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2251  char * addr;
2252  int flags;
2253
2254  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2255  if (fixed) {
2256    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2257    flags |= MAP_FIXED;
2258  }
2259
2260  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2261  // touch an uncommitted page. Otherwise, the read/write might
2262  // succeed if we have enough swap space to back the physical page.
2263  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2264                       flags, -1, 0);
2265
2266  return addr == MAP_FAILED ? NULL : addr;
2267}
2268
2269static int anon_munmap(char * addr, size_t size) {
2270  return ::munmap(addr, size) == 0;
2271}
2272
2273char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2274                            size_t alignment_hint) {
2275  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2276}
2277
2278bool os::pd_release_memory(char* addr, size_t size) {
2279  return anon_munmap(addr, size);
2280}
2281
2282static bool bsd_mprotect(char* addr, size_t size, int prot) {
2283  // Bsd wants the mprotect address argument to be page aligned.
2284  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2285
2286  // According to SUSv3, mprotect() should only be used with mappings
2287  // established by mmap(), and mmap() always maps whole pages. Unaligned
2288  // 'addr' likely indicates problem in the VM (e.g. trying to change
2289  // protection of malloc'ed or statically allocated memory). Check the
2290  // caller if you hit this assert.
2291  assert(addr == bottom, "sanity check");
2292
2293  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2294  return ::mprotect(bottom, size, prot) == 0;
2295}
2296
2297// Set protections specified
2298bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2299                        bool is_committed) {
2300  unsigned int p = 0;
2301  switch (prot) {
2302  case MEM_PROT_NONE: p = PROT_NONE; break;
2303  case MEM_PROT_READ: p = PROT_READ; break;
2304  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2305  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2306  default:
2307    ShouldNotReachHere();
2308  }
2309  // is_committed is unused.
2310  return bsd_mprotect(addr, bytes, p);
2311}
2312
2313bool os::guard_memory(char* addr, size_t size) {
2314  return bsd_mprotect(addr, size, PROT_NONE);
2315}
2316
2317bool os::unguard_memory(char* addr, size_t size) {
2318  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2319}
2320
2321bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2322  return false;
2323}
2324
2325// Large page support
2326
2327static size_t _large_page_size = 0;
2328
2329void os::large_page_init() {
2330}
2331
2332
2333char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2334  fatal("This code is not used or maintained.");
2335
2336  // "exec" is passed in but not used.  Creating the shared image for
2337  // the code cache doesn't have an SHM_X executable permission to check.
2338  assert(UseLargePages && UseSHM, "only for SHM large pages");
2339
2340  key_t key = IPC_PRIVATE;
2341  char *addr;
2342
2343  bool warn_on_failure = UseLargePages &&
2344                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2345                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2346
2347  // Create a large shared memory region to attach to based on size.
2348  // Currently, size is the total size of the heap
2349  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2350  if (shmid == -1) {
2351    // Possible reasons for shmget failure:
2352    // 1. shmmax is too small for Java heap.
2353    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2354    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2355    // 2. not enough large page memory.
2356    //    > check available large pages: cat /proc/meminfo
2357    //    > increase amount of large pages:
2358    //          echo new_value > /proc/sys/vm/nr_hugepages
2359    //      Note 1: different Bsd may use different name for this property,
2360    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2361    //      Note 2: it's possible there's enough physical memory available but
2362    //            they are so fragmented after a long run that they can't
2363    //            coalesce into large pages. Try to reserve large pages when
2364    //            the system is still "fresh".
2365    if (warn_on_failure) {
2366      warning("Failed to reserve shared memory (errno = %d).", errno);
2367    }
2368    return NULL;
2369  }
2370
2371  // attach to the region
2372  addr = (char*)shmat(shmid, req_addr, 0);
2373  int err = errno;
2374
2375  // Remove shmid. If shmat() is successful, the actual shared memory segment
2376  // will be deleted when it's detached by shmdt() or when the process
2377  // terminates. If shmat() is not successful this will remove the shared
2378  // segment immediately.
2379  shmctl(shmid, IPC_RMID, NULL);
2380
2381  if ((intptr_t)addr == -1) {
2382    if (warn_on_failure) {
2383      warning("Failed to attach shared memory (errno = %d).", err);
2384    }
2385    return NULL;
2386  }
2387
2388  // The memory is committed
2389  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2390
2391  return addr;
2392}
2393
2394bool os::release_memory_special(char* base, size_t bytes) {
2395  if (MemTracker::tracking_level() > NMT_minimal) {
2396    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2397    // detaching the SHM segment will also delete it, see reserve_memory_special()
2398    int rslt = shmdt(base);
2399    if (rslt == 0) {
2400      tkr.record((address)base, bytes);
2401      return true;
2402    } else {
2403      return false;
2404    }
2405  } else {
2406    return shmdt(base) == 0;
2407  }
2408}
2409
2410size_t os::large_page_size() {
2411  return _large_page_size;
2412}
2413
2414// HugeTLBFS allows application to commit large page memory on demand;
2415// with SysV SHM the entire memory region must be allocated as shared
2416// memory.
2417bool os::can_commit_large_page_memory() {
2418  return UseHugeTLBFS;
2419}
2420
2421bool os::can_execute_large_page_memory() {
2422  return UseHugeTLBFS;
2423}
2424
2425// Reserve memory at an arbitrary address, only if that area is
2426// available (and not reserved for something else).
2427
2428char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2429  const int max_tries = 10;
2430  char* base[max_tries];
2431  size_t size[max_tries];
2432  const size_t gap = 0x000000;
2433
2434  // Assert only that the size is a multiple of the page size, since
2435  // that's all that mmap requires, and since that's all we really know
2436  // about at this low abstraction level.  If we need higher alignment,
2437  // we can either pass an alignment to this method or verify alignment
2438  // in one of the methods further up the call chain.  See bug 5044738.
2439  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2440
2441  // Repeatedly allocate blocks until the block is allocated at the
2442  // right spot.
2443
2444  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2445  // if kernel honors the hint then we can return immediately.
2446  char * addr = anon_mmap(requested_addr, bytes, false);
2447  if (addr == requested_addr) {
2448    return requested_addr;
2449  }
2450
2451  if (addr != NULL) {
2452    // mmap() is successful but it fails to reserve at the requested address
2453    anon_munmap(addr, bytes);
2454  }
2455
2456  int i;
2457  for (i = 0; i < max_tries; ++i) {
2458    base[i] = reserve_memory(bytes);
2459
2460    if (base[i] != NULL) {
2461      // Is this the block we wanted?
2462      if (base[i] == requested_addr) {
2463        size[i] = bytes;
2464        break;
2465      }
2466
2467      // Does this overlap the block we wanted? Give back the overlapped
2468      // parts and try again.
2469
2470      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2471      if (top_overlap >= 0 && top_overlap < bytes) {
2472        unmap_memory(base[i], top_overlap);
2473        base[i] += top_overlap;
2474        size[i] = bytes - top_overlap;
2475      } else {
2476        size_t bottom_overlap = base[i] + bytes - requested_addr;
2477        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2478          unmap_memory(requested_addr, bottom_overlap);
2479          size[i] = bytes - bottom_overlap;
2480        } else {
2481          size[i] = bytes;
2482        }
2483      }
2484    }
2485  }
2486
2487  // Give back the unused reserved pieces.
2488
2489  for (int j = 0; j < i; ++j) {
2490    if (base[j] != NULL) {
2491      unmap_memory(base[j], size[j]);
2492    }
2493  }
2494
2495  if (i < max_tries) {
2496    return requested_addr;
2497  } else {
2498    return NULL;
2499  }
2500}
2501
2502size_t os::read(int fd, void *buf, unsigned int nBytes) {
2503  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2504}
2505
2506size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2507  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2508}
2509
2510void os::naked_short_sleep(jlong ms) {
2511  struct timespec req;
2512
2513  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2514  req.tv_sec = 0;
2515  if (ms > 0) {
2516    req.tv_nsec = (ms % 1000) * 1000000;
2517  } else {
2518    req.tv_nsec = 1;
2519  }
2520
2521  nanosleep(&req, NULL);
2522
2523  return;
2524}
2525
2526// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2527void os::infinite_sleep() {
2528  while (true) {    // sleep forever ...
2529    ::sleep(100);   // ... 100 seconds at a time
2530  }
2531}
2532
2533// Used to convert frequent JVM_Yield() to nops
2534bool os::dont_yield() {
2535  return DontYieldALot;
2536}
2537
2538void os::naked_yield() {
2539  sched_yield();
2540}
2541
2542////////////////////////////////////////////////////////////////////////////////
2543// thread priority support
2544
2545// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2546// only supports dynamic priority, static priority must be zero. For real-time
2547// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2548// However, for large multi-threaded applications, SCHED_RR is not only slower
2549// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2550// of 5 runs - Sep 2005).
2551//
2552// The following code actually changes the niceness of kernel-thread/LWP. It
2553// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2554// not the entire user process, and user level threads are 1:1 mapped to kernel
2555// threads. It has always been the case, but could change in the future. For
2556// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2557// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2558
2559#if !defined(__APPLE__)
2560int os::java_to_os_priority[CriticalPriority + 1] = {
2561  19,              // 0 Entry should never be used
2562
2563   0,              // 1 MinPriority
2564   3,              // 2
2565   6,              // 3
2566
2567  10,              // 4
2568  15,              // 5 NormPriority
2569  18,              // 6
2570
2571  21,              // 7
2572  25,              // 8
2573  28,              // 9 NearMaxPriority
2574
2575  31,              // 10 MaxPriority
2576
2577  31               // 11 CriticalPriority
2578};
2579#else
2580// Using Mach high-level priority assignments
2581int os::java_to_os_priority[CriticalPriority + 1] = {
2582   0,              // 0 Entry should never be used (MINPRI_USER)
2583
2584  27,              // 1 MinPriority
2585  28,              // 2
2586  29,              // 3
2587
2588  30,              // 4
2589  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2590  32,              // 6
2591
2592  33,              // 7
2593  34,              // 8
2594  35,              // 9 NearMaxPriority
2595
2596  36,              // 10 MaxPriority
2597
2598  36               // 11 CriticalPriority
2599};
2600#endif
2601
2602static int prio_init() {
2603  if (ThreadPriorityPolicy == 1) {
2604    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2605    // if effective uid is not root. Perhaps, a more elegant way of doing
2606    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2607    if (geteuid() != 0) {
2608      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2609        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2610      }
2611      ThreadPriorityPolicy = 0;
2612    }
2613  }
2614  if (UseCriticalJavaThreadPriority) {
2615    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2616  }
2617  return 0;
2618}
2619
2620OSReturn os::set_native_priority(Thread* thread, int newpri) {
2621  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2622
2623#ifdef __OpenBSD__
2624  // OpenBSD pthread_setprio starves low priority threads
2625  return OS_OK;
2626#elif defined(__FreeBSD__)
2627  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2628#elif defined(__APPLE__) || defined(__NetBSD__)
2629  struct sched_param sp;
2630  int policy;
2631  pthread_t self = pthread_self();
2632
2633  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2634    return OS_ERR;
2635  }
2636
2637  sp.sched_priority = newpri;
2638  if (pthread_setschedparam(self, policy, &sp) != 0) {
2639    return OS_ERR;
2640  }
2641
2642  return OS_OK;
2643#else
2644  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2645  return (ret == 0) ? OS_OK : OS_ERR;
2646#endif
2647}
2648
2649OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2650  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2651    *priority_ptr = java_to_os_priority[NormPriority];
2652    return OS_OK;
2653  }
2654
2655  errno = 0;
2656#if defined(__OpenBSD__) || defined(__FreeBSD__)
2657  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2658#elif defined(__APPLE__) || defined(__NetBSD__)
2659  int policy;
2660  struct sched_param sp;
2661
2662  pthread_getschedparam(pthread_self(), &policy, &sp);
2663  *priority_ptr = sp.sched_priority;
2664#else
2665  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2666#endif
2667  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2668}
2669
2670// Hint to the underlying OS that a task switch would not be good.
2671// Void return because it's a hint and can fail.
2672void os::hint_no_preempt() {}
2673
2674////////////////////////////////////////////////////////////////////////////////
2675// suspend/resume support
2676
2677//  the low-level signal-based suspend/resume support is a remnant from the
2678//  old VM-suspension that used to be for java-suspension, safepoints etc,
2679//  within hotspot. Now there is a single use-case for this:
2680//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2681//      that runs in the watcher thread.
2682//  The remaining code is greatly simplified from the more general suspension
2683//  code that used to be used.
2684//
2685//  The protocol is quite simple:
2686//  - suspend:
2687//      - sends a signal to the target thread
2688//      - polls the suspend state of the osthread using a yield loop
2689//      - target thread signal handler (SR_handler) sets suspend state
2690//        and blocks in sigsuspend until continued
2691//  - resume:
2692//      - sets target osthread state to continue
2693//      - sends signal to end the sigsuspend loop in the SR_handler
2694//
2695//  Note that the SR_lock plays no role in this suspend/resume protocol,
2696//  but is checked for NULL in SR_handler as a thread termination indicator.
2697
2698static void resume_clear_context(OSThread *osthread) {
2699  osthread->set_ucontext(NULL);
2700  osthread->set_siginfo(NULL);
2701}
2702
2703static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2704  osthread->set_ucontext(context);
2705  osthread->set_siginfo(siginfo);
2706}
2707
2708// Handler function invoked when a thread's execution is suspended or
2709// resumed. We have to be careful that only async-safe functions are
2710// called here (Note: most pthread functions are not async safe and
2711// should be avoided.)
2712//
2713// Note: sigwait() is a more natural fit than sigsuspend() from an
2714// interface point of view, but sigwait() prevents the signal hander
2715// from being run. libpthread would get very confused by not having
2716// its signal handlers run and prevents sigwait()'s use with the
2717// mutex granting granting signal.
2718//
2719// Currently only ever called on the VMThread or JavaThread
2720//
2721static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2722  // Save and restore errno to avoid confusing native code with EINTR
2723  // after sigsuspend.
2724  int old_errno = errno;
2725
2726  Thread* thread = Thread::current_or_null_safe();
2727  assert(thread != NULL, "Missing current thread in SR_handler");
2728
2729  // On some systems we have seen signal delivery get "stuck" until the signal
2730  // mask is changed as part of thread termination. Check that the current thread
2731  // has not already terminated (via SR_lock()) - else the following assertion
2732  // will fail because the thread is no longer a JavaThread as the ~JavaThread
2733  // destructor has completed.
2734
2735  if (thread->SR_lock() == NULL) {
2736    return;
2737  }
2738
2739  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2740
2741  OSThread* osthread = thread->osthread();
2742
2743  os::SuspendResume::State current = osthread->sr.state();
2744  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2745    suspend_save_context(osthread, siginfo, context);
2746
2747    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2748    os::SuspendResume::State state = osthread->sr.suspended();
2749    if (state == os::SuspendResume::SR_SUSPENDED) {
2750      sigset_t suspend_set;  // signals for sigsuspend()
2751
2752      // get current set of blocked signals and unblock resume signal
2753      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2754      sigdelset(&suspend_set, SR_signum);
2755
2756      sr_semaphore.signal();
2757      // wait here until we are resumed
2758      while (1) {
2759        sigsuspend(&suspend_set);
2760
2761        os::SuspendResume::State result = osthread->sr.running();
2762        if (result == os::SuspendResume::SR_RUNNING) {
2763          sr_semaphore.signal();
2764          break;
2765        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2766          ShouldNotReachHere();
2767        }
2768      }
2769
2770    } else if (state == os::SuspendResume::SR_RUNNING) {
2771      // request was cancelled, continue
2772    } else {
2773      ShouldNotReachHere();
2774    }
2775
2776    resume_clear_context(osthread);
2777  } else if (current == os::SuspendResume::SR_RUNNING) {
2778    // request was cancelled, continue
2779  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2780    // ignore
2781  } else {
2782    // ignore
2783  }
2784
2785  errno = old_errno;
2786}
2787
2788
2789static int SR_initialize() {
2790  struct sigaction act;
2791  char *s;
2792  // Get signal number to use for suspend/resume
2793  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2794    int sig = ::strtol(s, 0, 10);
2795    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2796        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2797      SR_signum = sig;
2798    } else {
2799      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2800              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2801    }
2802  }
2803
2804  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2805         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2806
2807  sigemptyset(&SR_sigset);
2808  sigaddset(&SR_sigset, SR_signum);
2809
2810  // Set up signal handler for suspend/resume
2811  act.sa_flags = SA_RESTART|SA_SIGINFO;
2812  act.sa_handler = (void (*)(int)) SR_handler;
2813
2814  // SR_signum is blocked by default.
2815  // 4528190 - We also need to block pthread restart signal (32 on all
2816  // supported Bsd platforms). Note that BsdThreads need to block
2817  // this signal for all threads to work properly. So we don't have
2818  // to use hard-coded signal number when setting up the mask.
2819  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2820
2821  if (sigaction(SR_signum, &act, 0) == -1) {
2822    return -1;
2823  }
2824
2825  // Save signal flag
2826  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2827  return 0;
2828}
2829
2830static int sr_notify(OSThread* osthread) {
2831  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2832  assert_status(status == 0, status, "pthread_kill");
2833  return status;
2834}
2835
2836// "Randomly" selected value for how long we want to spin
2837// before bailing out on suspending a thread, also how often
2838// we send a signal to a thread we want to resume
2839static const int RANDOMLY_LARGE_INTEGER = 1000000;
2840static const int RANDOMLY_LARGE_INTEGER2 = 100;
2841
2842// returns true on success and false on error - really an error is fatal
2843// but this seems the normal response to library errors
2844static bool do_suspend(OSThread* osthread) {
2845  assert(osthread->sr.is_running(), "thread should be running");
2846  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2847
2848  // mark as suspended and send signal
2849  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2850    // failed to switch, state wasn't running?
2851    ShouldNotReachHere();
2852    return false;
2853  }
2854
2855  if (sr_notify(osthread) != 0) {
2856    ShouldNotReachHere();
2857  }
2858
2859  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2860  while (true) {
2861    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2862      break;
2863    } else {
2864      // timeout
2865      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2866      if (cancelled == os::SuspendResume::SR_RUNNING) {
2867        return false;
2868      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2869        // make sure that we consume the signal on the semaphore as well
2870        sr_semaphore.wait();
2871        break;
2872      } else {
2873        ShouldNotReachHere();
2874        return false;
2875      }
2876    }
2877  }
2878
2879  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2880  return true;
2881}
2882
2883static void do_resume(OSThread* osthread) {
2884  assert(osthread->sr.is_suspended(), "thread should be suspended");
2885  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2886
2887  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2888    // failed to switch to WAKEUP_REQUEST
2889    ShouldNotReachHere();
2890    return;
2891  }
2892
2893  while (true) {
2894    if (sr_notify(osthread) == 0) {
2895      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2896        if (osthread->sr.is_running()) {
2897          return;
2898        }
2899      }
2900    } else {
2901      ShouldNotReachHere();
2902    }
2903  }
2904
2905  guarantee(osthread->sr.is_running(), "Must be running!");
2906}
2907
2908///////////////////////////////////////////////////////////////////////////////////
2909// signal handling (except suspend/resume)
2910
2911// This routine may be used by user applications as a "hook" to catch signals.
2912// The user-defined signal handler must pass unrecognized signals to this
2913// routine, and if it returns true (non-zero), then the signal handler must
2914// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2915// routine will never retun false (zero), but instead will execute a VM panic
2916// routine kill the process.
2917//
2918// If this routine returns false, it is OK to call it again.  This allows
2919// the user-defined signal handler to perform checks either before or after
2920// the VM performs its own checks.  Naturally, the user code would be making
2921// a serious error if it tried to handle an exception (such as a null check
2922// or breakpoint) that the VM was generating for its own correct operation.
2923//
2924// This routine may recognize any of the following kinds of signals:
2925//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2926// It should be consulted by handlers for any of those signals.
2927//
2928// The caller of this routine must pass in the three arguments supplied
2929// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2930// field of the structure passed to sigaction().  This routine assumes that
2931// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2932//
2933// Note that the VM will print warnings if it detects conflicting signal
2934// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2935//
2936extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2937                                               void* ucontext,
2938                                               int abort_if_unrecognized);
2939
2940void signalHandler(int sig, siginfo_t* info, void* uc) {
2941  assert(info != NULL && uc != NULL, "it must be old kernel");
2942  int orig_errno = errno;  // Preserve errno value over signal handler.
2943  JVM_handle_bsd_signal(sig, info, uc, true);
2944  errno = orig_errno;
2945}
2946
2947
2948// This boolean allows users to forward their own non-matching signals
2949// to JVM_handle_bsd_signal, harmlessly.
2950bool os::Bsd::signal_handlers_are_installed = false;
2951
2952// For signal-chaining
2953struct sigaction sigact[NSIG];
2954uint32_t sigs = 0;
2955#if (32 < NSIG-1)
2956#error "Not all signals can be encoded in sigs. Adapt its type!"
2957#endif
2958bool os::Bsd::libjsig_is_loaded = false;
2959typedef struct sigaction *(*get_signal_t)(int);
2960get_signal_t os::Bsd::get_signal_action = NULL;
2961
2962struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2963  struct sigaction *actp = NULL;
2964
2965  if (libjsig_is_loaded) {
2966    // Retrieve the old signal handler from libjsig
2967    actp = (*get_signal_action)(sig);
2968  }
2969  if (actp == NULL) {
2970    // Retrieve the preinstalled signal handler from jvm
2971    actp = get_preinstalled_handler(sig);
2972  }
2973
2974  return actp;
2975}
2976
2977static bool call_chained_handler(struct sigaction *actp, int sig,
2978                                 siginfo_t *siginfo, void *context) {
2979  // Call the old signal handler
2980  if (actp->sa_handler == SIG_DFL) {
2981    // It's more reasonable to let jvm treat it as an unexpected exception
2982    // instead of taking the default action.
2983    return false;
2984  } else if (actp->sa_handler != SIG_IGN) {
2985    if ((actp->sa_flags & SA_NODEFER) == 0) {
2986      // automaticlly block the signal
2987      sigaddset(&(actp->sa_mask), sig);
2988    }
2989
2990    sa_handler_t hand;
2991    sa_sigaction_t sa;
2992    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2993    // retrieve the chained handler
2994    if (siginfo_flag_set) {
2995      sa = actp->sa_sigaction;
2996    } else {
2997      hand = actp->sa_handler;
2998    }
2999
3000    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3001      actp->sa_handler = SIG_DFL;
3002    }
3003
3004    // try to honor the signal mask
3005    sigset_t oset;
3006    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3007
3008    // call into the chained handler
3009    if (siginfo_flag_set) {
3010      (*sa)(sig, siginfo, context);
3011    } else {
3012      (*hand)(sig);
3013    }
3014
3015    // restore the signal mask
3016    pthread_sigmask(SIG_SETMASK, &oset, 0);
3017  }
3018  // Tell jvm's signal handler the signal is taken care of.
3019  return true;
3020}
3021
3022bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3023  bool chained = false;
3024  // signal-chaining
3025  if (UseSignalChaining) {
3026    struct sigaction *actp = get_chained_signal_action(sig);
3027    if (actp != NULL) {
3028      chained = call_chained_handler(actp, sig, siginfo, context);
3029    }
3030  }
3031  return chained;
3032}
3033
3034struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3035  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3036    return &sigact[sig];
3037  }
3038  return NULL;
3039}
3040
3041void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3042  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3043  sigact[sig] = oldAct;
3044  sigs |= (uint32_t)1 << (sig-1);
3045}
3046
3047// for diagnostic
3048int sigflags[NSIG];
3049
3050int os::Bsd::get_our_sigflags(int sig) {
3051  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3052  return sigflags[sig];
3053}
3054
3055void os::Bsd::set_our_sigflags(int sig, int flags) {
3056  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3057  if (sig > 0 && sig < NSIG) {
3058    sigflags[sig] = flags;
3059  }
3060}
3061
3062void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3063  // Check for overwrite.
3064  struct sigaction oldAct;
3065  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3066
3067  void* oldhand = oldAct.sa_sigaction
3068                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3069                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3070  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3071      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3072      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3073    if (AllowUserSignalHandlers || !set_installed) {
3074      // Do not overwrite; user takes responsibility to forward to us.
3075      return;
3076    } else if (UseSignalChaining) {
3077      // save the old handler in jvm
3078      save_preinstalled_handler(sig, oldAct);
3079      // libjsig also interposes the sigaction() call below and saves the
3080      // old sigaction on it own.
3081    } else {
3082      fatal("Encountered unexpected pre-existing sigaction handler "
3083            "%#lx for signal %d.", (long)oldhand, sig);
3084    }
3085  }
3086
3087  struct sigaction sigAct;
3088  sigfillset(&(sigAct.sa_mask));
3089  sigAct.sa_handler = SIG_DFL;
3090  if (!set_installed) {
3091    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3092  } else {
3093    sigAct.sa_sigaction = signalHandler;
3094    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3095  }
3096#ifdef __APPLE__
3097  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3098  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3099  // if the signal handler declares it will handle it on alternate stack.
3100  // Notice we only declare we will handle it on alt stack, but we are not
3101  // actually going to use real alt stack - this is just a workaround.
3102  // Please see ux_exception.c, method catch_mach_exception_raise for details
3103  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3104  if (sig == SIGSEGV) {
3105    sigAct.sa_flags |= SA_ONSTACK;
3106  }
3107#endif
3108
3109  // Save flags, which are set by ours
3110  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3111  sigflags[sig] = sigAct.sa_flags;
3112
3113  int ret = sigaction(sig, &sigAct, &oldAct);
3114  assert(ret == 0, "check");
3115
3116  void* oldhand2  = oldAct.sa_sigaction
3117                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3118                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3119  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3120}
3121
3122// install signal handlers for signals that HotSpot needs to
3123// handle in order to support Java-level exception handling.
3124
3125void os::Bsd::install_signal_handlers() {
3126  if (!signal_handlers_are_installed) {
3127    signal_handlers_are_installed = true;
3128
3129    // signal-chaining
3130    typedef void (*signal_setting_t)();
3131    signal_setting_t begin_signal_setting = NULL;
3132    signal_setting_t end_signal_setting = NULL;
3133    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3134                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3135    if (begin_signal_setting != NULL) {
3136      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3137                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3138      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3139                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3140      libjsig_is_loaded = true;
3141      assert(UseSignalChaining, "should enable signal-chaining");
3142    }
3143    if (libjsig_is_loaded) {
3144      // Tell libjsig jvm is setting signal handlers
3145      (*begin_signal_setting)();
3146    }
3147
3148    set_signal_handler(SIGSEGV, true);
3149    set_signal_handler(SIGPIPE, true);
3150    set_signal_handler(SIGBUS, true);
3151    set_signal_handler(SIGILL, true);
3152    set_signal_handler(SIGFPE, true);
3153    set_signal_handler(SIGXFSZ, true);
3154
3155#if defined(__APPLE__)
3156    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3157    // signals caught and handled by the JVM. To work around this, we reset the mach task
3158    // signal handler that's placed on our process by CrashReporter. This disables
3159    // CrashReporter-based reporting.
3160    //
3161    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3162    // on caught fatal signals.
3163    //
3164    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3165    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3166    // exception handling, while leaving the standard BSD signal handlers functional.
3167    kern_return_t kr;
3168    kr = task_set_exception_ports(mach_task_self(),
3169                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3170                                  MACH_PORT_NULL,
3171                                  EXCEPTION_STATE_IDENTITY,
3172                                  MACHINE_THREAD_STATE);
3173
3174    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3175#endif
3176
3177    if (libjsig_is_loaded) {
3178      // Tell libjsig jvm finishes setting signal handlers
3179      (*end_signal_setting)();
3180    }
3181
3182    // We don't activate signal checker if libjsig is in place, we trust ourselves
3183    // and if UserSignalHandler is installed all bets are off
3184    if (CheckJNICalls) {
3185      if (libjsig_is_loaded) {
3186        if (PrintJNIResolving) {
3187          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3188        }
3189        check_signals = false;
3190      }
3191      if (AllowUserSignalHandlers) {
3192        if (PrintJNIResolving) {
3193          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3194        }
3195        check_signals = false;
3196      }
3197    }
3198  }
3199}
3200
3201
3202/////
3203// glibc on Bsd platform uses non-documented flag
3204// to indicate, that some special sort of signal
3205// trampoline is used.
3206// We will never set this flag, and we should
3207// ignore this flag in our diagnostic
3208#ifdef SIGNIFICANT_SIGNAL_MASK
3209  #undef SIGNIFICANT_SIGNAL_MASK
3210#endif
3211#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3212
3213static const char* get_signal_handler_name(address handler,
3214                                           char* buf, int buflen) {
3215  int offset;
3216  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3217  if (found) {
3218    // skip directory names
3219    const char *p1, *p2;
3220    p1 = buf;
3221    size_t len = strlen(os::file_separator());
3222    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3223    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3224  } else {
3225    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3226  }
3227  return buf;
3228}
3229
3230static void print_signal_handler(outputStream* st, int sig,
3231                                 char* buf, size_t buflen) {
3232  struct sigaction sa;
3233
3234  sigaction(sig, NULL, &sa);
3235
3236  // See comment for SIGNIFICANT_SIGNAL_MASK define
3237  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3238
3239  st->print("%s: ", os::exception_name(sig, buf, buflen));
3240
3241  address handler = (sa.sa_flags & SA_SIGINFO)
3242    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3243    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3244
3245  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3246    st->print("SIG_DFL");
3247  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3248    st->print("SIG_IGN");
3249  } else {
3250    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3251  }
3252
3253  st->print(", sa_mask[0]=");
3254  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3255
3256  address rh = VMError::get_resetted_sighandler(sig);
3257  // May be, handler was resetted by VMError?
3258  if (rh != NULL) {
3259    handler = rh;
3260    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3261  }
3262
3263  st->print(", sa_flags=");
3264  os::Posix::print_sa_flags(st, sa.sa_flags);
3265
3266  // Check: is it our handler?
3267  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3268      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3269    // It is our signal handler
3270    // check for flags, reset system-used one!
3271    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3272      st->print(
3273                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3274                os::Bsd::get_our_sigflags(sig));
3275    }
3276  }
3277  st->cr();
3278}
3279
3280
3281#define DO_SIGNAL_CHECK(sig)                      \
3282  do {                                            \
3283    if (!sigismember(&check_signal_done, sig)) {  \
3284      os::Bsd::check_signal_handler(sig);         \
3285    }                                             \
3286  } while (0)
3287
3288// This method is a periodic task to check for misbehaving JNI applications
3289// under CheckJNI, we can add any periodic checks here
3290
3291void os::run_periodic_checks() {
3292
3293  if (check_signals == false) return;
3294
3295  // SEGV and BUS if overridden could potentially prevent
3296  // generation of hs*.log in the event of a crash, debugging
3297  // such a case can be very challenging, so we absolutely
3298  // check the following for a good measure:
3299  DO_SIGNAL_CHECK(SIGSEGV);
3300  DO_SIGNAL_CHECK(SIGILL);
3301  DO_SIGNAL_CHECK(SIGFPE);
3302  DO_SIGNAL_CHECK(SIGBUS);
3303  DO_SIGNAL_CHECK(SIGPIPE);
3304  DO_SIGNAL_CHECK(SIGXFSZ);
3305
3306
3307  // ReduceSignalUsage allows the user to override these handlers
3308  // see comments at the very top and jvm_solaris.h
3309  if (!ReduceSignalUsage) {
3310    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3311    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3312    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3313    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3314  }
3315
3316  DO_SIGNAL_CHECK(SR_signum);
3317}
3318
3319typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3320
3321static os_sigaction_t os_sigaction = NULL;
3322
3323void os::Bsd::check_signal_handler(int sig) {
3324  char buf[O_BUFLEN];
3325  address jvmHandler = NULL;
3326
3327
3328  struct sigaction act;
3329  if (os_sigaction == NULL) {
3330    // only trust the default sigaction, in case it has been interposed
3331    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3332    if (os_sigaction == NULL) return;
3333  }
3334
3335  os_sigaction(sig, (struct sigaction*)NULL, &act);
3336
3337
3338  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3339
3340  address thisHandler = (act.sa_flags & SA_SIGINFO)
3341    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3342    : CAST_FROM_FN_PTR(address, act.sa_handler);
3343
3344
3345  switch (sig) {
3346  case SIGSEGV:
3347  case SIGBUS:
3348  case SIGFPE:
3349  case SIGPIPE:
3350  case SIGILL:
3351  case SIGXFSZ:
3352    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3353    break;
3354
3355  case SHUTDOWN1_SIGNAL:
3356  case SHUTDOWN2_SIGNAL:
3357  case SHUTDOWN3_SIGNAL:
3358  case BREAK_SIGNAL:
3359    jvmHandler = (address)user_handler();
3360    break;
3361
3362  default:
3363    if (sig == SR_signum) {
3364      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3365    } else {
3366      return;
3367    }
3368    break;
3369  }
3370
3371  if (thisHandler != jvmHandler) {
3372    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3373    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3374    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3375    // No need to check this sig any longer
3376    sigaddset(&check_signal_done, sig);
3377    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3378    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3379      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3380                    exception_name(sig, buf, O_BUFLEN));
3381    }
3382  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3383    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3384    tty->print("expected:");
3385    os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3386    tty->cr();
3387    tty->print("  found:");
3388    os::Posix::print_sa_flags(tty, act.sa_flags);
3389    tty->cr();
3390    // No need to check this sig any longer
3391    sigaddset(&check_signal_done, sig);
3392  }
3393
3394  // Dump all the signal
3395  if (sigismember(&check_signal_done, sig)) {
3396    print_signal_handlers(tty, buf, O_BUFLEN);
3397  }
3398}
3399
3400extern void report_error(char* file_name, int line_no, char* title,
3401                         char* format, ...);
3402
3403// this is called _before_ the most of global arguments have been parsed
3404void os::init(void) {
3405  char dummy;   // used to get a guess on initial stack address
3406//  first_hrtime = gethrtime();
3407
3408  // With BsdThreads the JavaMain thread pid (primordial thread)
3409  // is different than the pid of the java launcher thread.
3410  // So, on Bsd, the launcher thread pid is passed to the VM
3411  // via the sun.java.launcher.pid property.
3412  // Use this property instead of getpid() if it was correctly passed.
3413  // See bug 6351349.
3414  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3415
3416  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3417
3418  clock_tics_per_sec = CLK_TCK;
3419
3420  init_random(1234567);
3421
3422  ThreadCritical::initialize();
3423
3424  Bsd::set_page_size(getpagesize());
3425  if (Bsd::page_size() == -1) {
3426    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3427  }
3428  init_page_sizes((size_t) Bsd::page_size());
3429
3430  Bsd::initialize_system_info();
3431
3432  // main_thread points to the aboriginal thread
3433  Bsd::_main_thread = pthread_self();
3434
3435  Bsd::clock_init();
3436  initial_time_count = javaTimeNanos();
3437
3438#ifdef __APPLE__
3439  // XXXDARWIN
3440  // Work around the unaligned VM callbacks in hotspot's
3441  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3442  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3443  // alignment when doing symbol lookup. To work around this, we force early
3444  // binding of all symbols now, thus binding when alignment is known-good.
3445  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3446#endif
3447}
3448
3449// To install functions for atexit system call
3450extern "C" {
3451  static void perfMemory_exit_helper() {
3452    perfMemory_exit();
3453  }
3454}
3455
3456// this is called _after_ the global arguments have been parsed
3457jint os::init_2(void) {
3458  // Allocate a single page and mark it as readable for safepoint polling
3459  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3460  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3461
3462  os::set_polling_page(polling_page);
3463  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3464
3465  if (!UseMembar) {
3466    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3467    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3468    os::set_memory_serialize_page(mem_serialize_page);
3469    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3470  }
3471
3472  // initialize suspend/resume support - must do this before signal_sets_init()
3473  if (SR_initialize() != 0) {
3474    perror("SR_initialize failed");
3475    return JNI_ERR;
3476  }
3477
3478  Bsd::signal_sets_init();
3479  Bsd::install_signal_handlers();
3480
3481  // Check and sets minimum stack sizes against command line options
3482  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3483    return JNI_ERR;
3484  }
3485
3486  if (MaxFDLimit) {
3487    // set the number of file descriptors to max. print out error
3488    // if getrlimit/setrlimit fails but continue regardless.
3489    struct rlimit nbr_files;
3490    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3491    if (status != 0) {
3492      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3493    } else {
3494      nbr_files.rlim_cur = nbr_files.rlim_max;
3495
3496#ifdef __APPLE__
3497      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3498      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3499      // be used instead
3500      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3501#endif
3502
3503      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3504      if (status != 0) {
3505        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3506      }
3507    }
3508  }
3509
3510  // at-exit methods are called in the reverse order of their registration.
3511  // atexit functions are called on return from main or as a result of a
3512  // call to exit(3C). There can be only 32 of these functions registered
3513  // and atexit() does not set errno.
3514
3515  if (PerfAllowAtExitRegistration) {
3516    // only register atexit functions if PerfAllowAtExitRegistration is set.
3517    // atexit functions can be delayed until process exit time, which
3518    // can be problematic for embedded VM situations. Embedded VMs should
3519    // call DestroyJavaVM() to assure that VM resources are released.
3520
3521    // note: perfMemory_exit_helper atexit function may be removed in
3522    // the future if the appropriate cleanup code can be added to the
3523    // VM_Exit VMOperation's doit method.
3524    if (atexit(perfMemory_exit_helper) != 0) {
3525      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3526    }
3527  }
3528
3529  // initialize thread priority policy
3530  prio_init();
3531
3532#ifdef __APPLE__
3533  // dynamically link to objective c gc registration
3534  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3535  if (handleLibObjc != NULL) {
3536    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3537  }
3538#endif
3539
3540  return JNI_OK;
3541}
3542
3543// Mark the polling page as unreadable
3544void os::make_polling_page_unreadable(void) {
3545  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3546    fatal("Could not disable polling page");
3547  }
3548}
3549
3550// Mark the polling page as readable
3551void os::make_polling_page_readable(void) {
3552  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3553    fatal("Could not enable polling page");
3554  }
3555}
3556
3557int os::active_processor_count() {
3558  return _processor_count;
3559}
3560
3561void os::set_native_thread_name(const char *name) {
3562#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3563  // This is only supported in Snow Leopard and beyond
3564  if (name != NULL) {
3565    // Add a "Java: " prefix to the name
3566    char buf[MAXTHREADNAMESIZE];
3567    snprintf(buf, sizeof(buf), "Java: %s", name);
3568    pthread_setname_np(buf);
3569  }
3570#endif
3571}
3572
3573bool os::distribute_processes(uint length, uint* distribution) {
3574  // Not yet implemented.
3575  return false;
3576}
3577
3578bool os::bind_to_processor(uint processor_id) {
3579  // Not yet implemented.
3580  return false;
3581}
3582
3583void os::SuspendedThreadTask::internal_do_task() {
3584  if (do_suspend(_thread->osthread())) {
3585    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3586    do_task(context);
3587    do_resume(_thread->osthread());
3588  }
3589}
3590
3591///
3592class PcFetcher : public os::SuspendedThreadTask {
3593 public:
3594  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3595  ExtendedPC result();
3596 protected:
3597  void do_task(const os::SuspendedThreadTaskContext& context);
3598 private:
3599  ExtendedPC _epc;
3600};
3601
3602ExtendedPC PcFetcher::result() {
3603  guarantee(is_done(), "task is not done yet.");
3604  return _epc;
3605}
3606
3607void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3608  Thread* thread = context.thread();
3609  OSThread* osthread = thread->osthread();
3610  if (osthread->ucontext() != NULL) {
3611    _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3612  } else {
3613    // NULL context is unexpected, double-check this is the VMThread
3614    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3615  }
3616}
3617
3618// Suspends the target using the signal mechanism and then grabs the PC before
3619// resuming the target. Used by the flat-profiler only
3620ExtendedPC os::get_thread_pc(Thread* thread) {
3621  // Make sure that it is called by the watcher for the VMThread
3622  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3623  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3624
3625  PcFetcher fetcher(thread);
3626  fetcher.run();
3627  return fetcher.result();
3628}
3629
3630////////////////////////////////////////////////////////////////////////////////
3631// debug support
3632
3633bool os::find(address addr, outputStream* st) {
3634  Dl_info dlinfo;
3635  memset(&dlinfo, 0, sizeof(dlinfo));
3636  if (dladdr(addr, &dlinfo) != 0) {
3637    st->print(PTR_FORMAT ": ", addr);
3638    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3639      st->print("%s+%#x", dlinfo.dli_sname,
3640                addr - (intptr_t)dlinfo.dli_saddr);
3641    } else if (dlinfo.dli_fbase != NULL) {
3642      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3643    } else {
3644      st->print("<absolute address>");
3645    }
3646    if (dlinfo.dli_fname != NULL) {
3647      st->print(" in %s", dlinfo.dli_fname);
3648    }
3649    if (dlinfo.dli_fbase != NULL) {
3650      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3651    }
3652    st->cr();
3653
3654    if (Verbose) {
3655      // decode some bytes around the PC
3656      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3657      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3658      address       lowest = (address) dlinfo.dli_sname;
3659      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3660      if (begin < lowest)  begin = lowest;
3661      Dl_info dlinfo2;
3662      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3663          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3664        end = (address) dlinfo2.dli_saddr;
3665      }
3666      Disassembler::decode(begin, end, st);
3667    }
3668    return true;
3669  }
3670  return false;
3671}
3672
3673////////////////////////////////////////////////////////////////////////////////
3674// misc
3675
3676// This does not do anything on Bsd. This is basically a hook for being
3677// able to use structured exception handling (thread-local exception filters)
3678// on, e.g., Win32.
3679void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3680                              const methodHandle& method, JavaCallArguments* args,
3681                              Thread* thread) {
3682  f(value, method, args, thread);
3683}
3684
3685void os::print_statistics() {
3686}
3687
3688bool os::message_box(const char* title, const char* message) {
3689  int i;
3690  fdStream err(defaultStream::error_fd());
3691  for (i = 0; i < 78; i++) err.print_raw("=");
3692  err.cr();
3693  err.print_raw_cr(title);
3694  for (i = 0; i < 78; i++) err.print_raw("-");
3695  err.cr();
3696  err.print_raw_cr(message);
3697  for (i = 0; i < 78; i++) err.print_raw("=");
3698  err.cr();
3699
3700  char buf[16];
3701  // Prevent process from exiting upon "read error" without consuming all CPU
3702  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3703
3704  return buf[0] == 'y' || buf[0] == 'Y';
3705}
3706
3707int os::stat(const char *path, struct stat *sbuf) {
3708  char pathbuf[MAX_PATH];
3709  if (strlen(path) > MAX_PATH - 1) {
3710    errno = ENAMETOOLONG;
3711    return -1;
3712  }
3713  os::native_path(strcpy(pathbuf, path));
3714  return ::stat(pathbuf, sbuf);
3715}
3716
3717static inline struct timespec get_mtime(const char* filename) {
3718  struct stat st;
3719  int ret = os::stat(filename, &st);
3720  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3721#ifdef __APPLE__
3722  return st.st_mtimespec;
3723#else
3724  return st.st_mtim;
3725#endif
3726}
3727
3728int os::compare_file_modified_times(const char* file1, const char* file2) {
3729  struct timespec filetime1 = get_mtime(file1);
3730  struct timespec filetime2 = get_mtime(file2);
3731  int diff = filetime1.tv_sec - filetime2.tv_sec;
3732  if (diff == 0) {
3733    return filetime1.tv_nsec - filetime2.tv_nsec;
3734  }
3735  return diff;
3736}
3737
3738// Is a (classpath) directory empty?
3739bool os::dir_is_empty(const char* path) {
3740  DIR *dir = NULL;
3741  struct dirent *ptr;
3742
3743  dir = opendir(path);
3744  if (dir == NULL) return true;
3745
3746  // Scan the directory
3747  bool result = true;
3748  char buf[sizeof(struct dirent) + MAX_PATH];
3749  while (result && (ptr = ::readdir(dir)) != NULL) {
3750    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3751      result = false;
3752    }
3753  }
3754  closedir(dir);
3755  return result;
3756}
3757
3758// This code originates from JDK's sysOpen and open64_w
3759// from src/solaris/hpi/src/system_md.c
3760
3761int os::open(const char *path, int oflag, int mode) {
3762  if (strlen(path) > MAX_PATH - 1) {
3763    errno = ENAMETOOLONG;
3764    return -1;
3765  }
3766  int fd;
3767
3768  fd = ::open(path, oflag, mode);
3769  if (fd == -1) return -1;
3770
3771  // If the open succeeded, the file might still be a directory
3772  {
3773    struct stat buf;
3774    int ret = ::fstat(fd, &buf);
3775    int st_mode = buf.st_mode;
3776
3777    if (ret != -1) {
3778      if ((st_mode & S_IFMT) == S_IFDIR) {
3779        errno = EISDIR;
3780        ::close(fd);
3781        return -1;
3782      }
3783    } else {
3784      ::close(fd);
3785      return -1;
3786    }
3787  }
3788
3789  // All file descriptors that are opened in the JVM and not
3790  // specifically destined for a subprocess should have the
3791  // close-on-exec flag set.  If we don't set it, then careless 3rd
3792  // party native code might fork and exec without closing all
3793  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3794  // UNIXProcess.c), and this in turn might:
3795  //
3796  // - cause end-of-file to fail to be detected on some file
3797  //   descriptors, resulting in mysterious hangs, or
3798  //
3799  // - might cause an fopen in the subprocess to fail on a system
3800  //   suffering from bug 1085341.
3801  //
3802  // (Yes, the default setting of the close-on-exec flag is a Unix
3803  // design flaw)
3804  //
3805  // See:
3806  // 1085341: 32-bit stdio routines should support file descriptors >255
3807  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3808  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3809  //
3810#ifdef FD_CLOEXEC
3811  {
3812    int flags = ::fcntl(fd, F_GETFD);
3813    if (flags != -1) {
3814      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3815    }
3816  }
3817#endif
3818
3819  return fd;
3820}
3821
3822
3823// create binary file, rewriting existing file if required
3824int os::create_binary_file(const char* path, bool rewrite_existing) {
3825  int oflags = O_WRONLY | O_CREAT;
3826  if (!rewrite_existing) {
3827    oflags |= O_EXCL;
3828  }
3829  return ::open(path, oflags, S_IREAD | S_IWRITE);
3830}
3831
3832// return current position of file pointer
3833jlong os::current_file_offset(int fd) {
3834  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3835}
3836
3837// move file pointer to the specified offset
3838jlong os::seek_to_file_offset(int fd, jlong offset) {
3839  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3840}
3841
3842// This code originates from JDK's sysAvailable
3843// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3844
3845int os::available(int fd, jlong *bytes) {
3846  jlong cur, end;
3847  int mode;
3848  struct stat buf;
3849
3850  if (::fstat(fd, &buf) >= 0) {
3851    mode = buf.st_mode;
3852    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3853      int n;
3854      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3855        *bytes = n;
3856        return 1;
3857      }
3858    }
3859  }
3860  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3861    return 0;
3862  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3863    return 0;
3864  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3865    return 0;
3866  }
3867  *bytes = end - cur;
3868  return 1;
3869}
3870
3871// Map a block of memory.
3872char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3873                        char *addr, size_t bytes, bool read_only,
3874                        bool allow_exec) {
3875  int prot;
3876  int flags;
3877
3878  if (read_only) {
3879    prot = PROT_READ;
3880    flags = MAP_SHARED;
3881  } else {
3882    prot = PROT_READ | PROT_WRITE;
3883    flags = MAP_PRIVATE;
3884  }
3885
3886  if (allow_exec) {
3887    prot |= PROT_EXEC;
3888  }
3889
3890  if (addr != NULL) {
3891    flags |= MAP_FIXED;
3892  }
3893
3894  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3895                                     fd, file_offset);
3896  if (mapped_address == MAP_FAILED) {
3897    return NULL;
3898  }
3899  return mapped_address;
3900}
3901
3902
3903// Remap a block of memory.
3904char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3905                          char *addr, size_t bytes, bool read_only,
3906                          bool allow_exec) {
3907  // same as map_memory() on this OS
3908  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3909                        allow_exec);
3910}
3911
3912
3913// Unmap a block of memory.
3914bool os::pd_unmap_memory(char* addr, size_t bytes) {
3915  return munmap(addr, bytes) == 0;
3916}
3917
3918// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3919// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3920// of a thread.
3921//
3922// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3923// the fast estimate available on the platform.
3924
3925jlong os::current_thread_cpu_time() {
3926#ifdef __APPLE__
3927  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3928#else
3929  Unimplemented();
3930  return 0;
3931#endif
3932}
3933
3934jlong os::thread_cpu_time(Thread* thread) {
3935#ifdef __APPLE__
3936  return os::thread_cpu_time(thread, true /* user + sys */);
3937#else
3938  Unimplemented();
3939  return 0;
3940#endif
3941}
3942
3943jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3944#ifdef __APPLE__
3945  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3946#else
3947  Unimplemented();
3948  return 0;
3949#endif
3950}
3951
3952jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3953#ifdef __APPLE__
3954  struct thread_basic_info tinfo;
3955  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3956  kern_return_t kr;
3957  thread_t mach_thread;
3958
3959  mach_thread = thread->osthread()->thread_id();
3960  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3961  if (kr != KERN_SUCCESS) {
3962    return -1;
3963  }
3964
3965  if (user_sys_cpu_time) {
3966    jlong nanos;
3967    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3968    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3969    return nanos;
3970  } else {
3971    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3972  }
3973#else
3974  Unimplemented();
3975  return 0;
3976#endif
3977}
3978
3979
3980void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3981  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3982  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3983  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3984  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3985}
3986
3987void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3988  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3989  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3990  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3991  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3992}
3993
3994bool os::is_thread_cpu_time_supported() {
3995#ifdef __APPLE__
3996  return true;
3997#else
3998  return false;
3999#endif
4000}
4001
4002// System loadavg support.  Returns -1 if load average cannot be obtained.
4003// Bsd doesn't yet have a (official) notion of processor sets,
4004// so just return the system wide load average.
4005int os::loadavg(double loadavg[], int nelem) {
4006  return ::getloadavg(loadavg, nelem);
4007}
4008
4009void os::pause() {
4010  char filename[MAX_PATH];
4011  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4012    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4013  } else {
4014    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4015  }
4016
4017  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4018  if (fd != -1) {
4019    struct stat buf;
4020    ::close(fd);
4021    while (::stat(filename, &buf) == 0) {
4022      (void)::poll(NULL, 0, 100);
4023    }
4024  } else {
4025    jio_fprintf(stderr,
4026                "Could not open pause file '%s', continuing immediately.\n", filename);
4027  }
4028}
4029
4030
4031// Refer to the comments in os_solaris.cpp park-unpark. The next two
4032// comment paragraphs are worth repeating here:
4033//
4034// Assumption:
4035//    Only one parker can exist on an event, which is why we allocate
4036//    them per-thread. Multiple unparkers can coexist.
4037//
4038// _Event serves as a restricted-range semaphore.
4039//   -1 : thread is blocked, i.e. there is a waiter
4040//    0 : neutral: thread is running or ready,
4041//        could have been signaled after a wait started
4042//    1 : signaled - thread is running or ready
4043//
4044
4045// utility to compute the abstime argument to timedwait:
4046// millis is the relative timeout time
4047// abstime will be the absolute timeout time
4048// TODO: replace compute_abstime() with unpackTime()
4049
4050static struct timespec* compute_abstime(struct timespec* abstime,
4051                                        jlong millis) {
4052  if (millis < 0)  millis = 0;
4053  struct timeval now;
4054  int status = gettimeofday(&now, NULL);
4055  assert(status == 0, "gettimeofday");
4056  jlong seconds = millis / 1000;
4057  millis %= 1000;
4058  if (seconds > 50000000) { // see man cond_timedwait(3T)
4059    seconds = 50000000;
4060  }
4061  abstime->tv_sec = now.tv_sec  + seconds;
4062  long       usec = now.tv_usec + millis * 1000;
4063  if (usec >= 1000000) {
4064    abstime->tv_sec += 1;
4065    usec -= 1000000;
4066  }
4067  abstime->tv_nsec = usec * 1000;
4068  return abstime;
4069}
4070
4071void os::PlatformEvent::park() {       // AKA "down()"
4072  // Transitions for _Event:
4073  //   -1 => -1 : illegal
4074  //    1 =>  0 : pass - return immediately
4075  //    0 => -1 : block; then set _Event to 0 before returning
4076
4077  // Invariant: Only the thread associated with the Event/PlatformEvent
4078  // may call park().
4079  // TODO: assert that _Assoc != NULL or _Assoc == Self
4080  assert(_nParked == 0, "invariant");
4081
4082  int v;
4083  for (;;) {
4084    v = _Event;
4085    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4086  }
4087  guarantee(v >= 0, "invariant");
4088  if (v == 0) {
4089    // Do this the hard way by blocking ...
4090    int status = pthread_mutex_lock(_mutex);
4091    assert_status(status == 0, status, "mutex_lock");
4092    guarantee(_nParked == 0, "invariant");
4093    ++_nParked;
4094    while (_Event < 0) {
4095      status = pthread_cond_wait(_cond, _mutex);
4096      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4097      // Treat this the same as if the wait was interrupted
4098      if (status == ETIMEDOUT) { status = EINTR; }
4099      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4100    }
4101    --_nParked;
4102
4103    _Event = 0;
4104    status = pthread_mutex_unlock(_mutex);
4105    assert_status(status == 0, status, "mutex_unlock");
4106    // Paranoia to ensure our locked and lock-free paths interact
4107    // correctly with each other.
4108    OrderAccess::fence();
4109  }
4110  guarantee(_Event >= 0, "invariant");
4111}
4112
4113int os::PlatformEvent::park(jlong millis) {
4114  // Transitions for _Event:
4115  //   -1 => -1 : illegal
4116  //    1 =>  0 : pass - return immediately
4117  //    0 => -1 : block; then set _Event to 0 before returning
4118
4119  guarantee(_nParked == 0, "invariant");
4120
4121  int v;
4122  for (;;) {
4123    v = _Event;
4124    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4125  }
4126  guarantee(v >= 0, "invariant");
4127  if (v != 0) return OS_OK;
4128
4129  // We do this the hard way, by blocking the thread.
4130  // Consider enforcing a minimum timeout value.
4131  struct timespec abst;
4132  compute_abstime(&abst, millis);
4133
4134  int ret = OS_TIMEOUT;
4135  int status = pthread_mutex_lock(_mutex);
4136  assert_status(status == 0, status, "mutex_lock");
4137  guarantee(_nParked == 0, "invariant");
4138  ++_nParked;
4139
4140  // Object.wait(timo) will return because of
4141  // (a) notification
4142  // (b) timeout
4143  // (c) thread.interrupt
4144  //
4145  // Thread.interrupt and object.notify{All} both call Event::set.
4146  // That is, we treat thread.interrupt as a special case of notification.
4147  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4148  // We assume all ETIME returns are valid.
4149  //
4150  // TODO: properly differentiate simultaneous notify+interrupt.
4151  // In that case, we should propagate the notify to another waiter.
4152
4153  while (_Event < 0) {
4154    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4155    assert_status(status == 0 || status == EINTR ||
4156                  status == ETIMEDOUT,
4157                  status, "cond_timedwait");
4158    if (!FilterSpuriousWakeups) break;                 // previous semantics
4159    if (status == ETIMEDOUT) break;
4160    // We consume and ignore EINTR and spurious wakeups.
4161  }
4162  --_nParked;
4163  if (_Event >= 0) {
4164    ret = OS_OK;
4165  }
4166  _Event = 0;
4167  status = pthread_mutex_unlock(_mutex);
4168  assert_status(status == 0, status, "mutex_unlock");
4169  assert(_nParked == 0, "invariant");
4170  // Paranoia to ensure our locked and lock-free paths interact
4171  // correctly with each other.
4172  OrderAccess::fence();
4173  return ret;
4174}
4175
4176void os::PlatformEvent::unpark() {
4177  // Transitions for _Event:
4178  //    0 => 1 : just return
4179  //    1 => 1 : just return
4180  //   -1 => either 0 or 1; must signal target thread
4181  //         That is, we can safely transition _Event from -1 to either
4182  //         0 or 1.
4183  // See also: "Semaphores in Plan 9" by Mullender & Cox
4184  //
4185  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4186  // that it will take two back-to-back park() calls for the owning
4187  // thread to block. This has the benefit of forcing a spurious return
4188  // from the first park() call after an unpark() call which will help
4189  // shake out uses of park() and unpark() without condition variables.
4190
4191  if (Atomic::xchg(1, &_Event) >= 0) return;
4192
4193  // Wait for the thread associated with the event to vacate
4194  int status = pthread_mutex_lock(_mutex);
4195  assert_status(status == 0, status, "mutex_lock");
4196  int AnyWaiters = _nParked;
4197  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4198  status = pthread_mutex_unlock(_mutex);
4199  assert_status(status == 0, status, "mutex_unlock");
4200  if (AnyWaiters != 0) {
4201    // Note that we signal() *after* dropping the lock for "immortal" Events.
4202    // This is safe and avoids a common class of  futile wakeups.  In rare
4203    // circumstances this can cause a thread to return prematurely from
4204    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4205    // will simply re-test the condition and re-park itself.
4206    // This provides particular benefit if the underlying platform does not
4207    // provide wait morphing.
4208    status = pthread_cond_signal(_cond);
4209    assert_status(status == 0, status, "cond_signal");
4210  }
4211}
4212
4213
4214// JSR166
4215// -------------------------------------------------------
4216
4217// The solaris and bsd implementations of park/unpark are fairly
4218// conservative for now, but can be improved. They currently use a
4219// mutex/condvar pair, plus a a count.
4220// Park decrements count if > 0, else does a condvar wait.  Unpark
4221// sets count to 1 and signals condvar.  Only one thread ever waits
4222// on the condvar. Contention seen when trying to park implies that someone
4223// is unparking you, so don't wait. And spurious returns are fine, so there
4224// is no need to track notifications.
4225
4226#define MAX_SECS 100000000
4227
4228// This code is common to bsd and solaris and will be moved to a
4229// common place in dolphin.
4230//
4231// The passed in time value is either a relative time in nanoseconds
4232// or an absolute time in milliseconds. Either way it has to be unpacked
4233// into suitable seconds and nanoseconds components and stored in the
4234// given timespec structure.
4235// Given time is a 64-bit value and the time_t used in the timespec is only
4236// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4237// overflow if times way in the future are given. Further on Solaris versions
4238// prior to 10 there is a restriction (see cond_timedwait) that the specified
4239// number of seconds, in abstime, is less than current_time  + 100,000,000.
4240// As it will be 28 years before "now + 100000000" will overflow we can
4241// ignore overflow and just impose a hard-limit on seconds using the value
4242// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4243// years from "now".
4244
4245static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4246  assert(time > 0, "convertTime");
4247
4248  struct timeval now;
4249  int status = gettimeofday(&now, NULL);
4250  assert(status == 0, "gettimeofday");
4251
4252  time_t max_secs = now.tv_sec + MAX_SECS;
4253
4254  if (isAbsolute) {
4255    jlong secs = time / 1000;
4256    if (secs > max_secs) {
4257      absTime->tv_sec = max_secs;
4258    } else {
4259      absTime->tv_sec = secs;
4260    }
4261    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4262  } else {
4263    jlong secs = time / NANOSECS_PER_SEC;
4264    if (secs >= MAX_SECS) {
4265      absTime->tv_sec = max_secs;
4266      absTime->tv_nsec = 0;
4267    } else {
4268      absTime->tv_sec = now.tv_sec + secs;
4269      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4270      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4271        absTime->tv_nsec -= NANOSECS_PER_SEC;
4272        ++absTime->tv_sec; // note: this must be <= max_secs
4273      }
4274    }
4275  }
4276  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4277  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4278  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4279  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4280}
4281
4282void Parker::park(bool isAbsolute, jlong time) {
4283  // Ideally we'd do something useful while spinning, such
4284  // as calling unpackTime().
4285
4286  // Optional fast-path check:
4287  // Return immediately if a permit is available.
4288  // We depend on Atomic::xchg() having full barrier semantics
4289  // since we are doing a lock-free update to _counter.
4290  if (Atomic::xchg(0, &_counter) > 0) return;
4291
4292  Thread* thread = Thread::current();
4293  assert(thread->is_Java_thread(), "Must be JavaThread");
4294  JavaThread *jt = (JavaThread *)thread;
4295
4296  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4297  // Check interrupt before trying to wait
4298  if (Thread::is_interrupted(thread, false)) {
4299    return;
4300  }
4301
4302  // Next, demultiplex/decode time arguments
4303  struct timespec absTime;
4304  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4305    return;
4306  }
4307  if (time > 0) {
4308    unpackTime(&absTime, isAbsolute, time);
4309  }
4310
4311
4312  // Enter safepoint region
4313  // Beware of deadlocks such as 6317397.
4314  // The per-thread Parker:: mutex is a classic leaf-lock.
4315  // In particular a thread must never block on the Threads_lock while
4316  // holding the Parker:: mutex.  If safepoints are pending both the
4317  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4318  ThreadBlockInVM tbivm(jt);
4319
4320  // Don't wait if cannot get lock since interference arises from
4321  // unblocking.  Also. check interrupt before trying wait
4322  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4323    return;
4324  }
4325
4326  int status;
4327  if (_counter > 0)  { // no wait needed
4328    _counter = 0;
4329    status = pthread_mutex_unlock(_mutex);
4330    assert_status(status == 0, status, "invariant");
4331    // Paranoia to ensure our locked and lock-free paths interact
4332    // correctly with each other and Java-level accesses.
4333    OrderAccess::fence();
4334    return;
4335  }
4336
4337#ifdef ASSERT
4338  // Don't catch signals while blocked; let the running threads have the signals.
4339  // (This allows a debugger to break into the running thread.)
4340  sigset_t oldsigs;
4341  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4342  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4343#endif
4344
4345  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4346  jt->set_suspend_equivalent();
4347  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4348
4349  if (time == 0) {
4350    status = pthread_cond_wait(_cond, _mutex);
4351  } else {
4352    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4353  }
4354  assert_status(status == 0 || status == EINTR ||
4355                status == ETIMEDOUT,
4356                status, "cond_timedwait");
4357
4358#ifdef ASSERT
4359  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4360#endif
4361
4362  _counter = 0;
4363  status = pthread_mutex_unlock(_mutex);
4364  assert_status(status == 0, status, "invariant");
4365  // Paranoia to ensure our locked and lock-free paths interact
4366  // correctly with each other and Java-level accesses.
4367  OrderAccess::fence();
4368
4369  // If externally suspended while waiting, re-suspend
4370  if (jt->handle_special_suspend_equivalent_condition()) {
4371    jt->java_suspend_self();
4372  }
4373}
4374
4375void Parker::unpark() {
4376  int status = pthread_mutex_lock(_mutex);
4377  assert_status(status == 0, status, "invariant");
4378  const int s = _counter;
4379  _counter = 1;
4380  status = pthread_mutex_unlock(_mutex);
4381  assert_status(status == 0, status, "invariant");
4382  if (s < 1) {
4383    status = pthread_cond_signal(_cond);
4384    assert_status(status == 0, status, "invariant");
4385  }
4386}
4387
4388
4389// Darwin has no "environ" in a dynamic library.
4390#ifdef __APPLE__
4391  #include <crt_externs.h>
4392  #define environ (*_NSGetEnviron())
4393#else
4394extern char** environ;
4395#endif
4396
4397// Run the specified command in a separate process. Return its exit value,
4398// or -1 on failure (e.g. can't fork a new process).
4399// Unlike system(), this function can be called from signal handler. It
4400// doesn't block SIGINT et al.
4401int os::fork_and_exec(char* cmd) {
4402  const char * argv[4] = {"sh", "-c", cmd, NULL};
4403
4404  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4405  // pthread_atfork handlers and reset pthread library. All we need is a
4406  // separate process to execve. Make a direct syscall to fork process.
4407  // On IA64 there's no fork syscall, we have to use fork() and hope for
4408  // the best...
4409  pid_t pid = fork();
4410
4411  if (pid < 0) {
4412    // fork failed
4413    return -1;
4414
4415  } else if (pid == 0) {
4416    // child process
4417
4418    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4419    // first to kill every thread on the thread list. Because this list is
4420    // not reset by fork() (see notes above), execve() will instead kill
4421    // every thread in the parent process. We know this is the only thread
4422    // in the new process, so make a system call directly.
4423    // IA64 should use normal execve() from glibc to match the glibc fork()
4424    // above.
4425    execve("/bin/sh", (char* const*)argv, environ);
4426
4427    // execve failed
4428    _exit(-1);
4429
4430  } else  {
4431    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4432    // care about the actual exit code, for now.
4433
4434    int status;
4435
4436    // Wait for the child process to exit.  This returns immediately if
4437    // the child has already exited. */
4438    while (waitpid(pid, &status, 0) < 0) {
4439      switch (errno) {
4440      case ECHILD: return 0;
4441      case EINTR: break;
4442      default: return -1;
4443      }
4444    }
4445
4446    if (WIFEXITED(status)) {
4447      // The child exited normally; get its exit code.
4448      return WEXITSTATUS(status);
4449    } else if (WIFSIGNALED(status)) {
4450      // The child exited because of a signal
4451      // The best value to return is 0x80 + signal number,
4452      // because that is what all Unix shells do, and because
4453      // it allows callers to distinguish between process exit and
4454      // process death by signal.
4455      return 0x80 + WTERMSIG(status);
4456    } else {
4457      // Unknown exit code; pass it through
4458      return status;
4459    }
4460  }
4461}
4462
4463// is_headless_jre()
4464//
4465// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4466// in order to report if we are running in a headless jre
4467//
4468// Since JDK8 xawt/libmawt.so was moved into the same directory
4469// as libawt.so, and renamed libawt_xawt.so
4470//
4471bool os::is_headless_jre() {
4472#ifdef __APPLE__
4473  // We no longer build headless-only on Mac OS X
4474  return false;
4475#else
4476  struct stat statbuf;
4477  char buf[MAXPATHLEN];
4478  char libmawtpath[MAXPATHLEN];
4479  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4480  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4481  char *p;
4482
4483  // Get path to libjvm.so
4484  os::jvm_path(buf, sizeof(buf));
4485
4486  // Get rid of libjvm.so
4487  p = strrchr(buf, '/');
4488  if (p == NULL) {
4489    return false;
4490  } else {
4491    *p = '\0';
4492  }
4493
4494  // Get rid of client or server
4495  p = strrchr(buf, '/');
4496  if (p == NULL) {
4497    return false;
4498  } else {
4499    *p = '\0';
4500  }
4501
4502  // check xawt/libmawt.so
4503  strcpy(libmawtpath, buf);
4504  strcat(libmawtpath, xawtstr);
4505  if (::stat(libmawtpath, &statbuf) == 0) return false;
4506
4507  // check libawt_xawt.so
4508  strcpy(libmawtpath, buf);
4509  strcat(libmawtpath, new_xawtstr);
4510  if (::stat(libmawtpath, &statbuf) == 0) return false;
4511
4512  return true;
4513#endif
4514}
4515
4516// Get the default path to the core file
4517// Returns the length of the string
4518int os::get_core_path(char* buffer, size_t bufferSize) {
4519  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4520
4521  // Truncate if theoretical string was longer than bufferSize
4522  n = MIN2(n, (int)bufferSize);
4523
4524  return n;
4525}
4526
4527#ifndef PRODUCT
4528void TestReserveMemorySpecial_test() {
4529  // No tests available for this platform
4530}
4531#endif
4532
4533bool os::start_debugging(char *buf, int buflen) {
4534  int len = (int)strlen(buf);
4535  char *p = &buf[len];
4536
4537  jio_snprintf(p, buflen-len,
4538             "\n\n"
4539             "Do you want to debug the problem?\n\n"
4540             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4541             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4542             "Otherwise, press RETURN to abort...",
4543             os::current_process_id(), os::current_process_id(),
4544             os::current_thread_id(), os::current_thread_id());
4545
4546  bool yes = os::message_box("Unexpected Error", buf);
4547
4548  if (yes) {
4549    // yes, user asked VM to launch debugger
4550    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4551                     os::current_process_id(), os::current_process_id());
4552
4553    os::fork_and_exec(buf);
4554    yes = false;
4555  }
4556  return yes;
4557}
4558