os_bsd.cpp revision 6268:6dda607500e3
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130
131int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132pthread_t os::Bsd::_main_thread;
133int os::Bsd::_page_size = -1;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151
152////////////////////////////////////////////////////////////////////////////////
153// utility functions
154
155static int SR_initialize();
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158julong os::available_memory() {
159  return Bsd::available_memory();
160}
161
162// available here means free
163julong os::Bsd::available_memory() {
164  uint64_t available = physical_memory() >> 2;
165#ifdef __APPLE__
166  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
167  vm_statistics64_data_t vmstat;
168  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
169                                         (host_info64_t)&vmstat, &count);
170  assert(kerr == KERN_SUCCESS,
171         "host_statistics64 failed - check mach_host_self() and count");
172  if (kerr == KERN_SUCCESS) {
173    available = vmstat.free_count * os::vm_page_size();
174  }
175#endif
176  return available;
177}
178
179julong os::physical_memory() {
180  return Bsd::physical_memory();
181}
182
183////////////////////////////////////////////////////////////////////////////////
184// environment support
185
186bool os::getenv(const char* name, char* buf, int len) {
187  const char* val = ::getenv(name);
188  if (val != NULL && strlen(val) < (size_t)len) {
189    strcpy(buf, val);
190    return true;
191  }
192  if (len > 0) buf[0] = 0;  // return a null string
193  return false;
194}
195
196
197// Return true if user is running as root.
198
199bool os::have_special_privileges() {
200  static bool init = false;
201  static bool privileges = false;
202  if (!init) {
203    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204    init = true;
205  }
206  return privileges;
207}
208
209
210
211// Cpu architecture string
212#if   defined(ZERO)
213static char cpu_arch[] = ZERO_LIBARCH;
214#elif defined(IA64)
215static char cpu_arch[] = "ia64";
216#elif defined(IA32)
217static char cpu_arch[] = "i386";
218#elif defined(AMD64)
219static char cpu_arch[] = "amd64";
220#elif defined(ARM)
221static char cpu_arch[] = "arm";
222#elif defined(PPC32)
223static char cpu_arch[] = "ppc";
224#elif defined(SPARC)
225#  ifdef _LP64
226static char cpu_arch[] = "sparcv9";
227#  else
228static char cpu_arch[] = "sparc";
229#  endif
230#else
231#error Add appropriate cpu_arch setting
232#endif
233
234// Compiler variant
235#ifdef COMPILER2
236#define COMPILER_VARIANT "server"
237#else
238#define COMPILER_VARIANT "client"
239#endif
240
241
242void os::Bsd::initialize_system_info() {
243  int mib[2];
244  size_t len;
245  int cpu_val;
246  julong mem_val;
247
248  /* get processors count via hw.ncpus sysctl */
249  mib[0] = CTL_HW;
250  mib[1] = HW_NCPU;
251  len = sizeof(cpu_val);
252  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253       assert(len == sizeof(cpu_val), "unexpected data size");
254       set_processor_count(cpu_val);
255  }
256  else {
257       set_processor_count(1);   // fallback
258  }
259
260  /* get physical memory via hw.memsize sysctl (hw.memsize is used
261   * since it returns a 64 bit value)
262   */
263  mib[0] = CTL_HW;
264
265#if defined (HW_MEMSIZE) // Apple
266  mib[1] = HW_MEMSIZE;
267#elif defined(HW_PHYSMEM) // Most of BSD
268  mib[1] = HW_PHYSMEM;
269#elif defined(HW_REALMEM) // Old FreeBSD
270  mib[1] = HW_REALMEM;
271#else
272  #error No ways to get physmem
273#endif
274
275  len = sizeof(mem_val);
276  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
277       assert(len == sizeof(mem_val), "unexpected data size");
278       _physical_memory = mem_val;
279  } else {
280       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
281  }
282
283#ifdef __OpenBSD__
284  {
285       // limit _physical_memory memory view on OpenBSD since
286       // datasize rlimit restricts us anyway.
287       struct rlimit limits;
288       getrlimit(RLIMIT_DATA, &limits);
289       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
290  }
291#endif
292}
293
294#ifdef __APPLE__
295static const char *get_home() {
296  const char *home_dir = ::getenv("HOME");
297  if ((home_dir == NULL) || (*home_dir == '\0')) {
298    struct passwd *passwd_info = getpwuid(geteuid());
299    if (passwd_info != NULL) {
300      home_dir = passwd_info->pw_dir;
301    }
302  }
303
304  return home_dir;
305}
306#endif
307
308void os::init_system_properties_values() {
309  // The next steps are taken in the product version:
310  //
311  // Obtain the JAVA_HOME value from the location of libjvm.so.
312  // This library should be located at:
313  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
314  //
315  // If "/jre/lib/" appears at the right place in the path, then we
316  // assume libjvm.so is installed in a JDK and we use this path.
317  //
318  // Otherwise exit with message: "Could not create the Java virtual machine."
319  //
320  // The following extra steps are taken in the debugging version:
321  //
322  // If "/jre/lib/" does NOT appear at the right place in the path
323  // instead of exit check for $JAVA_HOME environment variable.
324  //
325  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
326  // then we append a fake suffix "hotspot/libjvm.so" to this path so
327  // it looks like libjvm.so is installed there
328  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
329  //
330  // Otherwise exit.
331  //
332  // Important note: if the location of libjvm.so changes this
333  // code needs to be changed accordingly.
334
335// See ld(1):
336//      The linker uses the following search paths to locate required
337//      shared libraries:
338//        1: ...
339//        ...
340//        7: The default directories, normally /lib and /usr/lib.
341#ifndef DEFAULT_LIBPATH
342#define DEFAULT_LIBPATH "/lib:/usr/lib"
343#endif
344
345// Base path of extensions installed on the system.
346#define SYS_EXT_DIR     "/usr/java/packages"
347#define EXTENSIONS_DIR  "/lib/ext"
348#define ENDORSED_DIR    "/lib/endorsed"
349
350#ifndef __APPLE__
351
352  // Buffer that fits several sprintfs.
353  // Note that the space for the colon and the trailing null are provided
354  // by the nulls included by the sizeof operator.
355  const size_t bufsize =
356    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
357         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
358         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
359  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
360
361  // sysclasspath, java_home, dll_dir
362  {
363    char *pslash;
364    os::jvm_path(buf, bufsize);
365
366    // Found the full path to libjvm.so.
367    // Now cut the path to <java_home>/jre if we can.
368    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
369    pslash = strrchr(buf, '/');
370    if (pslash != NULL) {
371      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
372    }
373    Arguments::set_dll_dir(buf);
374
375    if (pslash != NULL) {
376      pslash = strrchr(buf, '/');
377      if (pslash != NULL) {
378        *pslash = '\0';          // Get rid of /<arch>.
379        pslash = strrchr(buf, '/');
380        if (pslash != NULL) {
381          *pslash = '\0';        // Get rid of /lib.
382        }
383      }
384    }
385    Arguments::set_java_home(buf);
386    set_boot_path('/', ':');
387  }
388
389  // Where to look for native libraries.
390  //
391  // Note: Due to a legacy implementation, most of the library path
392  // is set in the launcher. This was to accomodate linking restrictions
393  // on legacy Bsd implementations (which are no longer supported).
394  // Eventually, all the library path setting will be done here.
395  //
396  // However, to prevent the proliferation of improperly built native
397  // libraries, the new path component /usr/java/packages is added here.
398  // Eventually, all the library path setting will be done here.
399  {
400    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
401    // should always exist (until the legacy problem cited above is
402    // addressed).
403    const char *v = ::getenv("LD_LIBRARY_PATH");
404    const char *v_colon = ":";
405    if (v == NULL) { v = ""; v_colon = ""; }
406    // That's +1 for the colon and +1 for the trailing '\0'.
407    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
408                                                     strlen(v) + 1 +
409                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
410                                                     mtInternal);
411    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
412    Arguments::set_library_path(ld_library_path);
413    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
414  }
415
416  // Extensions directories.
417  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
418  Arguments::set_ext_dirs(buf);
419
420  // Endorsed standards default directory.
421  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
422  Arguments::set_endorsed_dirs(buf);
423
424  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
425
426#else // __APPLE__
427
428#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
429#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
430
431  const char *user_home_dir = get_home();
432  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
433  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
434    sizeof(SYS_EXTENSIONS_DIRS);
435
436  // Buffer that fits several sprintfs.
437  // Note that the space for the colon and the trailing null are provided
438  // by the nulls included by the sizeof operator.
439  const size_t bufsize =
440    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
441         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
442         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
443  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
444
445  // sysclasspath, java_home, dll_dir
446  {
447    char *pslash;
448    os::jvm_path(buf, bufsize);
449
450    // Found the full path to libjvm.so.
451    // Now cut the path to <java_home>/jre if we can.
452    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
453    pslash = strrchr(buf, '/');
454    if (pslash != NULL) {
455      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
456    }
457    Arguments::set_dll_dir(buf);
458
459    if (pslash != NULL) {
460      pslash = strrchr(buf, '/');
461      if (pslash != NULL) {
462        *pslash = '\0';          // Get rid of /lib.
463      }
464    }
465    Arguments::set_java_home(buf);
466    set_boot_path('/', ':');
467  }
468
469  // Where to look for native libraries.
470  //
471  // Note: Due to a legacy implementation, most of the library path
472  // is set in the launcher. This was to accomodate linking restrictions
473  // on legacy Bsd implementations (which are no longer supported).
474  // Eventually, all the library path setting will be done here.
475  //
476  // However, to prevent the proliferation of improperly built native
477  // libraries, the new path component /usr/java/packages is added here.
478  // Eventually, all the library path setting will be done here.
479  {
480    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
481    // should always exist (until the legacy problem cited above is
482    // addressed).
483    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
484    // can specify a directory inside an app wrapper
485    const char *l = ::getenv("JAVA_LIBRARY_PATH");
486    const char *l_colon = ":";
487    if (l == NULL) { l = ""; l_colon = ""; }
488
489    const char *v = ::getenv("DYLD_LIBRARY_PATH");
490    const char *v_colon = ":";
491    if (v == NULL) { v = ""; v_colon = ""; }
492
493    // Apple's Java6 has "." at the beginning of java.library.path.
494    // OpenJDK on Windows has "." at the end of java.library.path.
495    // OpenJDK on Linux and Solaris don't have "." in java.library.path
496    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
497    // "." is appended to the end of java.library.path. Yes, this
498    // could cause a change in behavior, but Apple's Java6 behavior
499    // can be achieved by putting "." at the beginning of the
500    // JAVA_LIBRARY_PATH environment variable.
501    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
502                                                     strlen(v) + 1 + strlen(l) + 1 +
503                                                     system_ext_size + 3,
504                                                     mtInternal);
505    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
506            v, v_colon, l, l_colon, user_home_dir);
507    Arguments::set_library_path(ld_library_path);
508    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
509  }
510
511  // Extensions directories.
512  //
513  // Note that the space for the colon and the trailing null are provided
514  // by the nulls included by the sizeof operator (so actually one byte more
515  // than necessary is allocated).
516  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
517          user_home_dir, Arguments::get_java_home());
518  Arguments::set_ext_dirs(buf);
519
520  // Endorsed standards default directory.
521  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
522  Arguments::set_endorsed_dirs(buf);
523
524  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
525
526#undef SYS_EXTENSIONS_DIR
527#undef SYS_EXTENSIONS_DIRS
528
529#endif // __APPLE__
530
531#undef SYS_EXT_DIR
532#undef EXTENSIONS_DIR
533#undef ENDORSED_DIR
534}
535
536////////////////////////////////////////////////////////////////////////////////
537// breakpoint support
538
539void os::breakpoint() {
540  BREAKPOINT;
541}
542
543extern "C" void breakpoint() {
544  // use debugger to set breakpoint here
545}
546
547////////////////////////////////////////////////////////////////////////////////
548// signal support
549
550debug_only(static bool signal_sets_initialized = false);
551static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
552
553bool os::Bsd::is_sig_ignored(int sig) {
554      struct sigaction oact;
555      sigaction(sig, (struct sigaction*)NULL, &oact);
556      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
557                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
558      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
559           return true;
560      else
561           return false;
562}
563
564void os::Bsd::signal_sets_init() {
565  // Should also have an assertion stating we are still single-threaded.
566  assert(!signal_sets_initialized, "Already initialized");
567  // Fill in signals that are necessarily unblocked for all threads in
568  // the VM. Currently, we unblock the following signals:
569  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
570  //                         by -Xrs (=ReduceSignalUsage));
571  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
572  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
573  // the dispositions or masks wrt these signals.
574  // Programs embedding the VM that want to use the above signals for their
575  // own purposes must, at this time, use the "-Xrs" option to prevent
576  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
577  // (See bug 4345157, and other related bugs).
578  // In reality, though, unblocking these signals is really a nop, since
579  // these signals are not blocked by default.
580  sigemptyset(&unblocked_sigs);
581  sigemptyset(&allowdebug_blocked_sigs);
582  sigaddset(&unblocked_sigs, SIGILL);
583  sigaddset(&unblocked_sigs, SIGSEGV);
584  sigaddset(&unblocked_sigs, SIGBUS);
585  sigaddset(&unblocked_sigs, SIGFPE);
586  sigaddset(&unblocked_sigs, SR_signum);
587
588  if (!ReduceSignalUsage) {
589   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
590      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
591      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
592   }
593   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
594      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
595      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
596   }
597   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
598      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
599      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
600   }
601  }
602  // Fill in signals that are blocked by all but the VM thread.
603  sigemptyset(&vm_sigs);
604  if (!ReduceSignalUsage)
605    sigaddset(&vm_sigs, BREAK_SIGNAL);
606  debug_only(signal_sets_initialized = true);
607
608}
609
610// These are signals that are unblocked while a thread is running Java.
611// (For some reason, they get blocked by default.)
612sigset_t* os::Bsd::unblocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &unblocked_sigs;
615}
616
617// These are the signals that are blocked while a (non-VM) thread is
618// running Java. Only the VM thread handles these signals.
619sigset_t* os::Bsd::vm_signals() {
620  assert(signal_sets_initialized, "Not initialized");
621  return &vm_sigs;
622}
623
624// These are signals that are blocked during cond_wait to allow debugger in
625sigset_t* os::Bsd::allowdebug_blocked_signals() {
626  assert(signal_sets_initialized, "Not initialized");
627  return &allowdebug_blocked_sigs;
628}
629
630void os::Bsd::hotspot_sigmask(Thread* thread) {
631
632  //Save caller's signal mask before setting VM signal mask
633  sigset_t caller_sigmask;
634  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
635
636  OSThread* osthread = thread->osthread();
637  osthread->set_caller_sigmask(caller_sigmask);
638
639  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
640
641  if (!ReduceSignalUsage) {
642    if (thread->is_VM_thread()) {
643      // Only the VM thread handles BREAK_SIGNAL ...
644      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
645    } else {
646      // ... all other threads block BREAK_SIGNAL
647      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
648    }
649  }
650}
651
652
653//////////////////////////////////////////////////////////////////////////////
654// create new thread
655
656// check if it's safe to start a new thread
657static bool _thread_safety_check(Thread* thread) {
658  return true;
659}
660
661#ifdef __APPLE__
662// library handle for calling objc_registerThreadWithCollector()
663// without static linking to the libobjc library
664#define OBJC_LIB "/usr/lib/libobjc.dylib"
665#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
666typedef void (*objc_registerThreadWithCollector_t)();
667extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
668objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
669#endif
670
671#ifdef __APPLE__
672static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
673  // Additional thread_id used to correlate threads in SA
674  thread_identifier_info_data_t     m_ident_info;
675  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
676
677  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
678              (thread_info_t) &m_ident_info, &count);
679
680  return m_ident_info.thread_id;
681}
682#endif
683
684// Thread start routine for all newly created threads
685static void *java_start(Thread *thread) {
686  // Try to randomize the cache line index of hot stack frames.
687  // This helps when threads of the same stack traces evict each other's
688  // cache lines. The threads can be either from the same JVM instance, or
689  // from different JVM instances. The benefit is especially true for
690  // processors with hyperthreading technology.
691  static int counter = 0;
692  int pid = os::current_process_id();
693  alloca(((pid ^ counter++) & 7) * 128);
694
695  ThreadLocalStorage::set_thread(thread);
696
697  OSThread* osthread = thread->osthread();
698  Monitor* sync = osthread->startThread_lock();
699
700  // non floating stack BsdThreads needs extra check, see above
701  if (!_thread_safety_check(thread)) {
702    // notify parent thread
703    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
704    osthread->set_state(ZOMBIE);
705    sync->notify_all();
706    return NULL;
707  }
708
709  osthread->set_thread_id(os::Bsd::gettid());
710
711#ifdef __APPLE__
712  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
713  guarantee(unique_thread_id != 0, "unique thread id was not found");
714  osthread->set_unique_thread_id(unique_thread_id);
715#endif
716  // initialize signal mask for this thread
717  os::Bsd::hotspot_sigmask(thread);
718
719  // initialize floating point control register
720  os::Bsd::init_thread_fpu_state();
721
722#ifdef __APPLE__
723  // register thread with objc gc
724  if (objc_registerThreadWithCollectorFunction != NULL) {
725    objc_registerThreadWithCollectorFunction();
726  }
727#endif
728
729  // handshaking with parent thread
730  {
731    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
732
733    // notify parent thread
734    osthread->set_state(INITIALIZED);
735    sync->notify_all();
736
737    // wait until os::start_thread()
738    while (osthread->get_state() == INITIALIZED) {
739      sync->wait(Mutex::_no_safepoint_check_flag);
740    }
741  }
742
743  // call one more level start routine
744  thread->run();
745
746  return 0;
747}
748
749bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
750  assert(thread->osthread() == NULL, "caller responsible");
751
752  // Allocate the OSThread object
753  OSThread* osthread = new OSThread(NULL, NULL);
754  if (osthread == NULL) {
755    return false;
756  }
757
758  // set the correct thread state
759  osthread->set_thread_type(thr_type);
760
761  // Initial state is ALLOCATED but not INITIALIZED
762  osthread->set_state(ALLOCATED);
763
764  thread->set_osthread(osthread);
765
766  // init thread attributes
767  pthread_attr_t attr;
768  pthread_attr_init(&attr);
769  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
770
771  // stack size
772  if (os::Bsd::supports_variable_stack_size()) {
773    // calculate stack size if it's not specified by caller
774    if (stack_size == 0) {
775      stack_size = os::Bsd::default_stack_size(thr_type);
776
777      switch (thr_type) {
778      case os::java_thread:
779        // Java threads use ThreadStackSize which default value can be
780        // changed with the flag -Xss
781        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
782        stack_size = JavaThread::stack_size_at_create();
783        break;
784      case os::compiler_thread:
785        if (CompilerThreadStackSize > 0) {
786          stack_size = (size_t)(CompilerThreadStackSize * K);
787          break;
788        } // else fall through:
789          // use VMThreadStackSize if CompilerThreadStackSize is not defined
790      case os::vm_thread:
791      case os::pgc_thread:
792      case os::cgc_thread:
793      case os::watcher_thread:
794        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
795        break;
796      }
797    }
798
799    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
800    pthread_attr_setstacksize(&attr, stack_size);
801  } else {
802    // let pthread_create() pick the default value.
803  }
804
805  ThreadState state;
806
807  {
808    pthread_t tid;
809    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
810
811    pthread_attr_destroy(&attr);
812
813    if (ret != 0) {
814      if (PrintMiscellaneous && (Verbose || WizardMode)) {
815        perror("pthread_create()");
816      }
817      // Need to clean up stuff we've allocated so far
818      thread->set_osthread(NULL);
819      delete osthread;
820      return false;
821    }
822
823    // Store pthread info into the OSThread
824    osthread->set_pthread_id(tid);
825
826    // Wait until child thread is either initialized or aborted
827    {
828      Monitor* sync_with_child = osthread->startThread_lock();
829      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
830      while ((state = osthread->get_state()) == ALLOCATED) {
831        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
832      }
833    }
834
835  }
836
837  // Aborted due to thread limit being reached
838  if (state == ZOMBIE) {
839      thread->set_osthread(NULL);
840      delete osthread;
841      return false;
842  }
843
844  // The thread is returned suspended (in state INITIALIZED),
845  // and is started higher up in the call chain
846  assert(state == INITIALIZED, "race condition");
847  return true;
848}
849
850/////////////////////////////////////////////////////////////////////////////
851// attach existing thread
852
853// bootstrap the main thread
854bool os::create_main_thread(JavaThread* thread) {
855  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
856  return create_attached_thread(thread);
857}
858
859bool os::create_attached_thread(JavaThread* thread) {
860#ifdef ASSERT
861    thread->verify_not_published();
862#endif
863
864  // Allocate the OSThread object
865  OSThread* osthread = new OSThread(NULL, NULL);
866
867  if (osthread == NULL) {
868    return false;
869  }
870
871  osthread->set_thread_id(os::Bsd::gettid());
872
873  // Store pthread info into the OSThread
874#ifdef __APPLE__
875  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
876  guarantee(unique_thread_id != 0, "just checking");
877  osthread->set_unique_thread_id(unique_thread_id);
878#endif
879  osthread->set_pthread_id(::pthread_self());
880
881  // initialize floating point control register
882  os::Bsd::init_thread_fpu_state();
883
884  // Initial thread state is RUNNABLE
885  osthread->set_state(RUNNABLE);
886
887  thread->set_osthread(osthread);
888
889  // initialize signal mask for this thread
890  // and save the caller's signal mask
891  os::Bsd::hotspot_sigmask(thread);
892
893  return true;
894}
895
896void os::pd_start_thread(Thread* thread) {
897  OSThread * osthread = thread->osthread();
898  assert(osthread->get_state() != INITIALIZED, "just checking");
899  Monitor* sync_with_child = osthread->startThread_lock();
900  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
901  sync_with_child->notify();
902}
903
904// Free Bsd resources related to the OSThread
905void os::free_thread(OSThread* osthread) {
906  assert(osthread != NULL, "osthread not set");
907
908  if (Thread::current()->osthread() == osthread) {
909    // Restore caller's signal mask
910    sigset_t sigmask = osthread->caller_sigmask();
911    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
912   }
913
914  delete osthread;
915}
916
917//////////////////////////////////////////////////////////////////////////////
918// thread local storage
919
920// Restore the thread pointer if the destructor is called. This is in case
921// someone from JNI code sets up a destructor with pthread_key_create to run
922// detachCurrentThread on thread death. Unless we restore the thread pointer we
923// will hang or crash. When detachCurrentThread is called the key will be set
924// to null and we will not be called again. If detachCurrentThread is never
925// called we could loop forever depending on the pthread implementation.
926static void restore_thread_pointer(void* p) {
927  Thread* thread = (Thread*) p;
928  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
929}
930
931int os::allocate_thread_local_storage() {
932  pthread_key_t key;
933  int rslt = pthread_key_create(&key, restore_thread_pointer);
934  assert(rslt == 0, "cannot allocate thread local storage");
935  return (int)key;
936}
937
938// Note: This is currently not used by VM, as we don't destroy TLS key
939// on VM exit.
940void os::free_thread_local_storage(int index) {
941  int rslt = pthread_key_delete((pthread_key_t)index);
942  assert(rslt == 0, "invalid index");
943}
944
945void os::thread_local_storage_at_put(int index, void* value) {
946  int rslt = pthread_setspecific((pthread_key_t)index, value);
947  assert(rslt == 0, "pthread_setspecific failed");
948}
949
950extern "C" Thread* get_thread() {
951  return ThreadLocalStorage::thread();
952}
953
954
955////////////////////////////////////////////////////////////////////////////////
956// time support
957
958// Time since start-up in seconds to a fine granularity.
959// Used by VMSelfDestructTimer and the MemProfiler.
960double os::elapsedTime() {
961
962  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
963}
964
965jlong os::elapsed_counter() {
966  return javaTimeNanos() - initial_time_count;
967}
968
969jlong os::elapsed_frequency() {
970  return NANOSECS_PER_SEC; // nanosecond resolution
971}
972
973bool os::supports_vtime() { return true; }
974bool os::enable_vtime()   { return false; }
975bool os::vtime_enabled()  { return false; }
976
977double os::elapsedVTime() {
978  // better than nothing, but not much
979  return elapsedTime();
980}
981
982jlong os::javaTimeMillis() {
983  timeval time;
984  int status = gettimeofday(&time, NULL);
985  assert(status != -1, "bsd error");
986  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
987}
988
989#ifndef CLOCK_MONOTONIC
990#define CLOCK_MONOTONIC (1)
991#endif
992
993#ifdef __APPLE__
994void os::Bsd::clock_init() {
995        // XXXDARWIN: Investigate replacement monotonic clock
996}
997#else
998void os::Bsd::clock_init() {
999  struct timespec res;
1000  struct timespec tp;
1001  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1002      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1003    // yes, monotonic clock is supported
1004    _clock_gettime = ::clock_gettime;
1005  }
1006}
1007#endif
1008
1009
1010jlong os::javaTimeNanos() {
1011  if (os::supports_monotonic_clock()) {
1012    struct timespec tp;
1013    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1014    assert(status == 0, "gettime error");
1015    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1016    return result;
1017  } else {
1018    timeval time;
1019    int status = gettimeofday(&time, NULL);
1020    assert(status != -1, "bsd error");
1021    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1022    return 1000 * usecs;
1023  }
1024}
1025
1026void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1027  if (os::supports_monotonic_clock()) {
1028    info_ptr->max_value = ALL_64_BITS;
1029
1030    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1031    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1032    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1033  } else {
1034    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1035    info_ptr->max_value = ALL_64_BITS;
1036
1037    // gettimeofday is a real time clock so it skips
1038    info_ptr->may_skip_backward = true;
1039    info_ptr->may_skip_forward = true;
1040  }
1041
1042  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1043}
1044
1045// Return the real, user, and system times in seconds from an
1046// arbitrary fixed point in the past.
1047bool os::getTimesSecs(double* process_real_time,
1048                      double* process_user_time,
1049                      double* process_system_time) {
1050  struct tms ticks;
1051  clock_t real_ticks = times(&ticks);
1052
1053  if (real_ticks == (clock_t) (-1)) {
1054    return false;
1055  } else {
1056    double ticks_per_second = (double) clock_tics_per_sec;
1057    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1058    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1059    *process_real_time = ((double) real_ticks) / ticks_per_second;
1060
1061    return true;
1062  }
1063}
1064
1065
1066char * os::local_time_string(char *buf, size_t buflen) {
1067  struct tm t;
1068  time_t long_time;
1069  time(&long_time);
1070  localtime_r(&long_time, &t);
1071  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1072               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1073               t.tm_hour, t.tm_min, t.tm_sec);
1074  return buf;
1075}
1076
1077struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1078  return localtime_r(clock, res);
1079}
1080
1081////////////////////////////////////////////////////////////////////////////////
1082// runtime exit support
1083
1084// Note: os::shutdown() might be called very early during initialization, or
1085// called from signal handler. Before adding something to os::shutdown(), make
1086// sure it is async-safe and can handle partially initialized VM.
1087void os::shutdown() {
1088
1089  // allow PerfMemory to attempt cleanup of any persistent resources
1090  perfMemory_exit();
1091
1092  // needs to remove object in file system
1093  AttachListener::abort();
1094
1095  // flush buffered output, finish log files
1096  ostream_abort();
1097
1098  // Check for abort hook
1099  abort_hook_t abort_hook = Arguments::abort_hook();
1100  if (abort_hook != NULL) {
1101    abort_hook();
1102  }
1103
1104}
1105
1106// Note: os::abort() might be called very early during initialization, or
1107// called from signal handler. Before adding something to os::abort(), make
1108// sure it is async-safe and can handle partially initialized VM.
1109void os::abort(bool dump_core) {
1110  os::shutdown();
1111  if (dump_core) {
1112#ifndef PRODUCT
1113    fdStream out(defaultStream::output_fd());
1114    out.print_raw("Current thread is ");
1115    char buf[16];
1116    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1117    out.print_raw_cr(buf);
1118    out.print_raw_cr("Dumping core ...");
1119#endif
1120    ::abort(); // dump core
1121  }
1122
1123  ::exit(1);
1124}
1125
1126// Die immediately, no exit hook, no abort hook, no cleanup.
1127void os::die() {
1128  // _exit() on BsdThreads only kills current thread
1129  ::abort();
1130}
1131
1132// unused on bsd for now.
1133void os::set_error_file(const char *logfile) {}
1134
1135
1136// This method is a copy of JDK's sysGetLastErrorString
1137// from src/solaris/hpi/src/system_md.c
1138
1139size_t os::lasterror(char *buf, size_t len) {
1140
1141  if (errno == 0)  return 0;
1142
1143  const char *s = ::strerror(errno);
1144  size_t n = ::strlen(s);
1145  if (n >= len) {
1146    n = len - 1;
1147  }
1148  ::strncpy(buf, s, n);
1149  buf[n] = '\0';
1150  return n;
1151}
1152
1153// Information of current thread in variety of formats
1154pid_t os::Bsd::gettid() {
1155  int retval = -1;
1156
1157#ifdef __APPLE__ //XNU kernel
1158  // despite the fact mach port is actually not a thread id use it
1159  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1160  retval = ::pthread_mach_thread_np(::pthread_self());
1161  guarantee(retval != 0, "just checking");
1162  return retval;
1163
1164#elif __FreeBSD__
1165  retval = syscall(SYS_thr_self);
1166#elif __OpenBSD__
1167  retval = syscall(SYS_getthrid);
1168#elif __NetBSD__
1169  retval = (pid_t) syscall(SYS__lwp_self);
1170#endif
1171
1172  if (retval == -1) {
1173    return getpid();
1174  }
1175}
1176
1177intx os::current_thread_id() {
1178#ifdef __APPLE__
1179  return (intx)::pthread_mach_thread_np(::pthread_self());
1180#else
1181  return (intx)::pthread_self();
1182#endif
1183}
1184
1185int os::current_process_id() {
1186
1187  // Under the old bsd thread library, bsd gives each thread
1188  // its own process id. Because of this each thread will return
1189  // a different pid if this method were to return the result
1190  // of getpid(2). Bsd provides no api that returns the pid
1191  // of the launcher thread for the vm. This implementation
1192  // returns a unique pid, the pid of the launcher thread
1193  // that starts the vm 'process'.
1194
1195  // Under the NPTL, getpid() returns the same pid as the
1196  // launcher thread rather than a unique pid per thread.
1197  // Use gettid() if you want the old pre NPTL behaviour.
1198
1199  // if you are looking for the result of a call to getpid() that
1200  // returns a unique pid for the calling thread, then look at the
1201  // OSThread::thread_id() method in osThread_bsd.hpp file
1202
1203  return (int)(_initial_pid ? _initial_pid : getpid());
1204}
1205
1206// DLL functions
1207
1208#define JNI_LIB_PREFIX "lib"
1209#ifdef __APPLE__
1210#define JNI_LIB_SUFFIX ".dylib"
1211#else
1212#define JNI_LIB_SUFFIX ".so"
1213#endif
1214
1215const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1216
1217// This must be hard coded because it's the system's temporary
1218// directory not the java application's temp directory, ala java.io.tmpdir.
1219#ifdef __APPLE__
1220// macosx has a secure per-user temporary directory
1221char temp_path_storage[PATH_MAX];
1222const char* os::get_temp_directory() {
1223  static char *temp_path = NULL;
1224  if (temp_path == NULL) {
1225    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1226    if (pathSize == 0 || pathSize > PATH_MAX) {
1227      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1228    }
1229    temp_path = temp_path_storage;
1230  }
1231  return temp_path;
1232}
1233#else /* __APPLE__ */
1234const char* os::get_temp_directory() { return "/tmp"; }
1235#endif /* __APPLE__ */
1236
1237static bool file_exists(const char* filename) {
1238  struct stat statbuf;
1239  if (filename == NULL || strlen(filename) == 0) {
1240    return false;
1241  }
1242  return os::stat(filename, &statbuf) == 0;
1243}
1244
1245bool os::dll_build_name(char* buffer, size_t buflen,
1246                        const char* pname, const char* fname) {
1247  bool retval = false;
1248  // Copied from libhpi
1249  const size_t pnamelen = pname ? strlen(pname) : 0;
1250
1251  // Return error on buffer overflow.
1252  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1253    return retval;
1254  }
1255
1256  if (pnamelen == 0) {
1257    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1258    retval = true;
1259  } else if (strchr(pname, *os::path_separator()) != NULL) {
1260    int n;
1261    char** pelements = split_path(pname, &n);
1262    if (pelements == NULL) {
1263      return false;
1264    }
1265    for (int i = 0 ; i < n ; i++) {
1266      // Really shouldn't be NULL, but check can't hurt
1267      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1268        continue; // skip the empty path values
1269      }
1270      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1271          pelements[i], fname);
1272      if (file_exists(buffer)) {
1273        retval = true;
1274        break;
1275      }
1276    }
1277    // release the storage
1278    for (int i = 0 ; i < n ; i++) {
1279      if (pelements[i] != NULL) {
1280        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1281      }
1282    }
1283    if (pelements != NULL) {
1284      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1285    }
1286  } else {
1287    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1288    retval = true;
1289  }
1290  return retval;
1291}
1292
1293// check if addr is inside libjvm.so
1294bool os::address_is_in_vm(address addr) {
1295  static address libjvm_base_addr;
1296  Dl_info dlinfo;
1297
1298  if (libjvm_base_addr == NULL) {
1299    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1300      libjvm_base_addr = (address)dlinfo.dli_fbase;
1301    }
1302    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1303  }
1304
1305  if (dladdr((void *)addr, &dlinfo) != 0) {
1306    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1307  }
1308
1309  return false;
1310}
1311
1312
1313#define MACH_MAXSYMLEN 256
1314
1315bool os::dll_address_to_function_name(address addr, char *buf,
1316                                      int buflen, int *offset) {
1317  // buf is not optional, but offset is optional
1318  assert(buf != NULL, "sanity check");
1319
1320  Dl_info dlinfo;
1321  char localbuf[MACH_MAXSYMLEN];
1322
1323  if (dladdr((void*)addr, &dlinfo) != 0) {
1324    // see if we have a matching symbol
1325    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1326      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1327        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1328      }
1329      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1330      return true;
1331    }
1332    // no matching symbol so try for just file info
1333    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1334      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1335                          buf, buflen, offset, dlinfo.dli_fname)) {
1336         return true;
1337      }
1338    }
1339
1340    // Handle non-dynamic manually:
1341    if (dlinfo.dli_fbase != NULL &&
1342        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1343                        dlinfo.dli_fbase)) {
1344      if (!Decoder::demangle(localbuf, buf, buflen)) {
1345        jio_snprintf(buf, buflen, "%s", localbuf);
1346      }
1347      return true;
1348    }
1349  }
1350  buf[0] = '\0';
1351  if (offset != NULL) *offset = -1;
1352  return false;
1353}
1354
1355// ported from solaris version
1356bool os::dll_address_to_library_name(address addr, char* buf,
1357                                     int buflen, int* offset) {
1358  // buf is not optional, but offset is optional
1359  assert(buf != NULL, "sanity check");
1360
1361  Dl_info dlinfo;
1362
1363  if (dladdr((void*)addr, &dlinfo) != 0) {
1364    if (dlinfo.dli_fname != NULL) {
1365      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1366    }
1367    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1368      *offset = addr - (address)dlinfo.dli_fbase;
1369    }
1370    return true;
1371  }
1372
1373  buf[0] = '\0';
1374  if (offset) *offset = -1;
1375  return false;
1376}
1377
1378// Loads .dll/.so and
1379// in case of error it checks if .dll/.so was built for the
1380// same architecture as Hotspot is running on
1381
1382#ifdef __APPLE__
1383void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1384  void * result= ::dlopen(filename, RTLD_LAZY);
1385  if (result != NULL) {
1386    // Successful loading
1387    return result;
1388  }
1389
1390  // Read system error message into ebuf
1391  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1392  ebuf[ebuflen-1]='\0';
1393
1394  return NULL;
1395}
1396#else
1397void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1398{
1399  void * result= ::dlopen(filename, RTLD_LAZY);
1400  if (result != NULL) {
1401    // Successful loading
1402    return result;
1403  }
1404
1405  Elf32_Ehdr elf_head;
1406
1407  // Read system error message into ebuf
1408  // It may or may not be overwritten below
1409  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1410  ebuf[ebuflen-1]='\0';
1411  int diag_msg_max_length=ebuflen-strlen(ebuf);
1412  char* diag_msg_buf=ebuf+strlen(ebuf);
1413
1414  if (diag_msg_max_length==0) {
1415    // No more space in ebuf for additional diagnostics message
1416    return NULL;
1417  }
1418
1419
1420  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1421
1422  if (file_descriptor < 0) {
1423    // Can't open library, report dlerror() message
1424    return NULL;
1425  }
1426
1427  bool failed_to_read_elf_head=
1428    (sizeof(elf_head)!=
1429        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1430
1431  ::close(file_descriptor);
1432  if (failed_to_read_elf_head) {
1433    // file i/o error - report dlerror() msg
1434    return NULL;
1435  }
1436
1437  typedef struct {
1438    Elf32_Half  code;         // Actual value as defined in elf.h
1439    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1440    char        elf_class;    // 32 or 64 bit
1441    char        endianess;    // MSB or LSB
1442    char*       name;         // String representation
1443  } arch_t;
1444
1445  #ifndef EM_486
1446  #define EM_486          6               /* Intel 80486 */
1447  #endif
1448
1449  #ifndef EM_MIPS_RS3_LE
1450  #define EM_MIPS_RS3_LE  10              /* MIPS */
1451  #endif
1452
1453  #ifndef EM_PPC64
1454  #define EM_PPC64        21              /* PowerPC64 */
1455  #endif
1456
1457  #ifndef EM_S390
1458  #define EM_S390         22              /* IBM System/390 */
1459  #endif
1460
1461  #ifndef EM_IA_64
1462  #define EM_IA_64        50              /* HP/Intel IA-64 */
1463  #endif
1464
1465  #ifndef EM_X86_64
1466  #define EM_X86_64       62              /* AMD x86-64 */
1467  #endif
1468
1469  static const arch_t arch_array[]={
1470    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1471    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1472    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1473    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1474    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1475    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1476    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1477    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1478    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1479    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1480    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1481    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1482    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1483    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1484    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1485    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1486  };
1487
1488  #if  (defined IA32)
1489    static  Elf32_Half running_arch_code=EM_386;
1490  #elif   (defined AMD64)
1491    static  Elf32_Half running_arch_code=EM_X86_64;
1492  #elif  (defined IA64)
1493    static  Elf32_Half running_arch_code=EM_IA_64;
1494  #elif  (defined __sparc) && (defined _LP64)
1495    static  Elf32_Half running_arch_code=EM_SPARCV9;
1496  #elif  (defined __sparc) && (!defined _LP64)
1497    static  Elf32_Half running_arch_code=EM_SPARC;
1498  #elif  (defined __powerpc64__)
1499    static  Elf32_Half running_arch_code=EM_PPC64;
1500  #elif  (defined __powerpc__)
1501    static  Elf32_Half running_arch_code=EM_PPC;
1502  #elif  (defined ARM)
1503    static  Elf32_Half running_arch_code=EM_ARM;
1504  #elif  (defined S390)
1505    static  Elf32_Half running_arch_code=EM_S390;
1506  #elif  (defined ALPHA)
1507    static  Elf32_Half running_arch_code=EM_ALPHA;
1508  #elif  (defined MIPSEL)
1509    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1510  #elif  (defined PARISC)
1511    static  Elf32_Half running_arch_code=EM_PARISC;
1512  #elif  (defined MIPS)
1513    static  Elf32_Half running_arch_code=EM_MIPS;
1514  #elif  (defined M68K)
1515    static  Elf32_Half running_arch_code=EM_68K;
1516  #else
1517    #error Method os::dll_load requires that one of following is defined:\
1518         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1519  #endif
1520
1521  // Identify compatability class for VM's architecture and library's architecture
1522  // Obtain string descriptions for architectures
1523
1524  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1525  int running_arch_index=-1;
1526
1527  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1528    if (running_arch_code == arch_array[i].code) {
1529      running_arch_index    = i;
1530    }
1531    if (lib_arch.code == arch_array[i].code) {
1532      lib_arch.compat_class = arch_array[i].compat_class;
1533      lib_arch.name         = arch_array[i].name;
1534    }
1535  }
1536
1537  assert(running_arch_index != -1,
1538    "Didn't find running architecture code (running_arch_code) in arch_array");
1539  if (running_arch_index == -1) {
1540    // Even though running architecture detection failed
1541    // we may still continue with reporting dlerror() message
1542    return NULL;
1543  }
1544
1545  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1546    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1547    return NULL;
1548  }
1549
1550#ifndef S390
1551  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1552    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1553    return NULL;
1554  }
1555#endif // !S390
1556
1557  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1558    if ( lib_arch.name!=NULL ) {
1559      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1560        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1561        lib_arch.name, arch_array[running_arch_index].name);
1562    } else {
1563      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1564      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1565        lib_arch.code,
1566        arch_array[running_arch_index].name);
1567    }
1568  }
1569
1570  return NULL;
1571}
1572#endif /* !__APPLE__ */
1573
1574void* os::get_default_process_handle() {
1575#ifdef __APPLE__
1576  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1577  // to avoid finding unexpected symbols on second (or later)
1578  // loads of a library.
1579  return (void*)::dlopen(NULL, RTLD_FIRST);
1580#else
1581  return (void*)::dlopen(NULL, RTLD_LAZY);
1582#endif
1583}
1584
1585// XXX: Do we need a lock around this as per Linux?
1586void* os::dll_lookup(void* handle, const char* name) {
1587  return dlsym(handle, name);
1588}
1589
1590
1591static bool _print_ascii_file(const char* filename, outputStream* st) {
1592  int fd = ::open(filename, O_RDONLY);
1593  if (fd == -1) {
1594     return false;
1595  }
1596
1597  char buf[32];
1598  int bytes;
1599  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1600    st->print_raw(buf, bytes);
1601  }
1602
1603  ::close(fd);
1604
1605  return true;
1606}
1607
1608void os::print_dll_info(outputStream *st) {
1609  st->print_cr("Dynamic libraries:");
1610#ifdef RTLD_DI_LINKMAP
1611  Dl_info dli;
1612  void *handle;
1613  Link_map *map;
1614  Link_map *p;
1615
1616  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1617      dli.dli_fname == NULL) {
1618    st->print_cr("Error: Cannot print dynamic libraries.");
1619    return;
1620  }
1621  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1622  if (handle == NULL) {
1623    st->print_cr("Error: Cannot print dynamic libraries.");
1624    return;
1625  }
1626  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1627  if (map == NULL) {
1628    st->print_cr("Error: Cannot print dynamic libraries.");
1629    return;
1630  }
1631
1632  while (map->l_prev != NULL)
1633    map = map->l_prev;
1634
1635  while (map != NULL) {
1636    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1637    map = map->l_next;
1638  }
1639
1640  dlclose(handle);
1641#elif defined(__APPLE__)
1642  uint32_t count;
1643  uint32_t i;
1644
1645  count = _dyld_image_count();
1646  for (i = 1; i < count; i++) {
1647    const char *name = _dyld_get_image_name(i);
1648    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1649    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1650  }
1651#else
1652  st->print_cr("Error: Cannot print dynamic libraries.");
1653#endif
1654}
1655
1656void os::print_os_info_brief(outputStream* st) {
1657  st->print("Bsd");
1658
1659  os::Posix::print_uname_info(st);
1660}
1661
1662void os::print_os_info(outputStream* st) {
1663  st->print("OS:");
1664  st->print("Bsd");
1665
1666  os::Posix::print_uname_info(st);
1667
1668  os::Posix::print_rlimit_info(st);
1669
1670  os::Posix::print_load_average(st);
1671}
1672
1673void os::pd_print_cpu_info(outputStream* st) {
1674  // Nothing to do for now.
1675}
1676
1677void os::print_memory_info(outputStream* st) {
1678
1679  st->print("Memory:");
1680  st->print(" %dk page", os::vm_page_size()>>10);
1681
1682  st->print(", physical " UINT64_FORMAT "k",
1683            os::physical_memory() >> 10);
1684  st->print("(" UINT64_FORMAT "k free)",
1685            os::available_memory() >> 10);
1686  st->cr();
1687
1688  // meminfo
1689  st->print("\n/proc/meminfo:\n");
1690  _print_ascii_file("/proc/meminfo", st);
1691  st->cr();
1692}
1693
1694void os::print_siginfo(outputStream* st, void* siginfo) {
1695  const siginfo_t* si = (const siginfo_t*)siginfo;
1696
1697  os::Posix::print_siginfo_brief(st, si);
1698
1699  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1700      UseSharedSpaces) {
1701    FileMapInfo* mapinfo = FileMapInfo::current_info();
1702    if (mapinfo->is_in_shared_space(si->si_addr)) {
1703      st->print("\n\nError accessing class data sharing archive."   \
1704                " Mapped file inaccessible during execution, "      \
1705                " possible disk/network problem.");
1706    }
1707  }
1708  st->cr();
1709}
1710
1711
1712static void print_signal_handler(outputStream* st, int sig,
1713                                 char* buf, size_t buflen);
1714
1715void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1716  st->print_cr("Signal Handlers:");
1717  print_signal_handler(st, SIGSEGV, buf, buflen);
1718  print_signal_handler(st, SIGBUS , buf, buflen);
1719  print_signal_handler(st, SIGFPE , buf, buflen);
1720  print_signal_handler(st, SIGPIPE, buf, buflen);
1721  print_signal_handler(st, SIGXFSZ, buf, buflen);
1722  print_signal_handler(st, SIGILL , buf, buflen);
1723  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1724  print_signal_handler(st, SR_signum, buf, buflen);
1725  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1726  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1727  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1728  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1729}
1730
1731static char saved_jvm_path[MAXPATHLEN] = {0};
1732
1733// Find the full path to the current module, libjvm
1734void os::jvm_path(char *buf, jint buflen) {
1735  // Error checking.
1736  if (buflen < MAXPATHLEN) {
1737    assert(false, "must use a large-enough buffer");
1738    buf[0] = '\0';
1739    return;
1740  }
1741  // Lazy resolve the path to current module.
1742  if (saved_jvm_path[0] != 0) {
1743    strcpy(buf, saved_jvm_path);
1744    return;
1745  }
1746
1747  char dli_fname[MAXPATHLEN];
1748  bool ret = dll_address_to_library_name(
1749                CAST_FROM_FN_PTR(address, os::jvm_path),
1750                dli_fname, sizeof(dli_fname), NULL);
1751  assert(ret, "cannot locate libjvm");
1752  char *rp = NULL;
1753  if (ret && dli_fname[0] != '\0') {
1754    rp = realpath(dli_fname, buf);
1755  }
1756  if (rp == NULL)
1757    return;
1758
1759  if (Arguments::sun_java_launcher_is_altjvm()) {
1760    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1761    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1762    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1763    // appears at the right place in the string, then assume we are
1764    // installed in a JDK and we're done. Otherwise, check for a
1765    // JAVA_HOME environment variable and construct a path to the JVM
1766    // being overridden.
1767
1768    const char *p = buf + strlen(buf) - 1;
1769    for (int count = 0; p > buf && count < 5; ++count) {
1770      for (--p; p > buf && *p != '/'; --p)
1771        /* empty */ ;
1772    }
1773
1774    if (strncmp(p, "/jre/lib/", 9) != 0) {
1775      // Look for JAVA_HOME in the environment.
1776      char* java_home_var = ::getenv("JAVA_HOME");
1777      if (java_home_var != NULL && java_home_var[0] != 0) {
1778        char* jrelib_p;
1779        int len;
1780
1781        // Check the current module name "libjvm"
1782        p = strrchr(buf, '/');
1783        assert(strstr(p, "/libjvm") == p, "invalid library name");
1784
1785        rp = realpath(java_home_var, buf);
1786        if (rp == NULL)
1787          return;
1788
1789        // determine if this is a legacy image or modules image
1790        // modules image doesn't have "jre" subdirectory
1791        len = strlen(buf);
1792        jrelib_p = buf + len;
1793
1794        // Add the appropriate library subdir
1795        snprintf(jrelib_p, buflen-len, "/jre/lib");
1796        if (0 != access(buf, F_OK)) {
1797          snprintf(jrelib_p, buflen-len, "/lib");
1798        }
1799
1800        // Add the appropriate client or server subdir
1801        len = strlen(buf);
1802        jrelib_p = buf + len;
1803        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1804        if (0 != access(buf, F_OK)) {
1805          snprintf(jrelib_p, buflen-len, "%s", "");
1806        }
1807
1808        // If the path exists within JAVA_HOME, add the JVM library name
1809        // to complete the path to JVM being overridden.  Otherwise fallback
1810        // to the path to the current library.
1811        if (0 == access(buf, F_OK)) {
1812          // Use current module name "libjvm"
1813          len = strlen(buf);
1814          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1815        } else {
1816          // Fall back to path of current library
1817          rp = realpath(dli_fname, buf);
1818          if (rp == NULL)
1819            return;
1820        }
1821      }
1822    }
1823  }
1824
1825  strcpy(saved_jvm_path, buf);
1826}
1827
1828void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1829  // no prefix required, not even "_"
1830}
1831
1832void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1833  // no suffix required
1834}
1835
1836////////////////////////////////////////////////////////////////////////////////
1837// sun.misc.Signal support
1838
1839static volatile jint sigint_count = 0;
1840
1841static void
1842UserHandler(int sig, void *siginfo, void *context) {
1843  // 4511530 - sem_post is serialized and handled by the manager thread. When
1844  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1845  // don't want to flood the manager thread with sem_post requests.
1846  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1847      return;
1848
1849  // Ctrl-C is pressed during error reporting, likely because the error
1850  // handler fails to abort. Let VM die immediately.
1851  if (sig == SIGINT && is_error_reported()) {
1852     os::die();
1853  }
1854
1855  os::signal_notify(sig);
1856}
1857
1858void* os::user_handler() {
1859  return CAST_FROM_FN_PTR(void*, UserHandler);
1860}
1861
1862extern "C" {
1863  typedef void (*sa_handler_t)(int);
1864  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1865}
1866
1867void* os::signal(int signal_number, void* handler) {
1868  struct sigaction sigAct, oldSigAct;
1869
1870  sigfillset(&(sigAct.sa_mask));
1871  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1872  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1873
1874  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1875    // -1 means registration failed
1876    return (void *)-1;
1877  }
1878
1879  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1880}
1881
1882void os::signal_raise(int signal_number) {
1883  ::raise(signal_number);
1884}
1885
1886/*
1887 * The following code is moved from os.cpp for making this
1888 * code platform specific, which it is by its very nature.
1889 */
1890
1891// Will be modified when max signal is changed to be dynamic
1892int os::sigexitnum_pd() {
1893  return NSIG;
1894}
1895
1896// a counter for each possible signal value
1897static volatile jint pending_signals[NSIG+1] = { 0 };
1898
1899// Bsd(POSIX) specific hand shaking semaphore.
1900#ifdef __APPLE__
1901typedef semaphore_t os_semaphore_t;
1902#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1903#define SEM_WAIT(sem)           semaphore_wait(sem)
1904#define SEM_POST(sem)           semaphore_signal(sem)
1905#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1906#else
1907typedef sem_t os_semaphore_t;
1908#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1909#define SEM_WAIT(sem)           sem_wait(&sem)
1910#define SEM_POST(sem)           sem_post(&sem)
1911#define SEM_DESTROY(sem)        sem_destroy(&sem)
1912#endif
1913
1914class Semaphore : public StackObj {
1915  public:
1916    Semaphore();
1917    ~Semaphore();
1918    void signal();
1919    void wait();
1920    bool trywait();
1921    bool timedwait(unsigned int sec, int nsec);
1922  private:
1923    jlong currenttime() const;
1924    os_semaphore_t _semaphore;
1925};
1926
1927Semaphore::Semaphore() : _semaphore(0) {
1928  SEM_INIT(_semaphore, 0);
1929}
1930
1931Semaphore::~Semaphore() {
1932  SEM_DESTROY(_semaphore);
1933}
1934
1935void Semaphore::signal() {
1936  SEM_POST(_semaphore);
1937}
1938
1939void Semaphore::wait() {
1940  SEM_WAIT(_semaphore);
1941}
1942
1943jlong Semaphore::currenttime() const {
1944    struct timeval tv;
1945    gettimeofday(&tv, NULL);
1946    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1947}
1948
1949#ifdef __APPLE__
1950bool Semaphore::trywait() {
1951  return timedwait(0, 0);
1952}
1953
1954bool Semaphore::timedwait(unsigned int sec, int nsec) {
1955  kern_return_t kr = KERN_ABORTED;
1956  mach_timespec_t waitspec;
1957  waitspec.tv_sec = sec;
1958  waitspec.tv_nsec = nsec;
1959
1960  jlong starttime = currenttime();
1961
1962  kr = semaphore_timedwait(_semaphore, waitspec);
1963  while (kr == KERN_ABORTED) {
1964    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1965
1966    jlong current = currenttime();
1967    jlong passedtime = current - starttime;
1968
1969    if (passedtime >= totalwait) {
1970      waitspec.tv_sec = 0;
1971      waitspec.tv_nsec = 0;
1972    } else {
1973      jlong waittime = totalwait - (current - starttime);
1974      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1975      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1976    }
1977
1978    kr = semaphore_timedwait(_semaphore, waitspec);
1979  }
1980
1981  return kr == KERN_SUCCESS;
1982}
1983
1984#else
1985
1986bool Semaphore::trywait() {
1987  return sem_trywait(&_semaphore) == 0;
1988}
1989
1990bool Semaphore::timedwait(unsigned int sec, int nsec) {
1991  struct timespec ts;
1992  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1993
1994  while (1) {
1995    int result = sem_timedwait(&_semaphore, &ts);
1996    if (result == 0) {
1997      return true;
1998    } else if (errno == EINTR) {
1999      continue;
2000    } else if (errno == ETIMEDOUT) {
2001      return false;
2002    } else {
2003      return false;
2004    }
2005  }
2006}
2007
2008#endif // __APPLE__
2009
2010static os_semaphore_t sig_sem;
2011static Semaphore sr_semaphore;
2012
2013void os::signal_init_pd() {
2014  // Initialize signal structures
2015  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2016
2017  // Initialize signal semaphore
2018  ::SEM_INIT(sig_sem, 0);
2019}
2020
2021void os::signal_notify(int sig) {
2022  Atomic::inc(&pending_signals[sig]);
2023  ::SEM_POST(sig_sem);
2024}
2025
2026static int check_pending_signals(bool wait) {
2027  Atomic::store(0, &sigint_count);
2028  for (;;) {
2029    for (int i = 0; i < NSIG + 1; i++) {
2030      jint n = pending_signals[i];
2031      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2032        return i;
2033      }
2034    }
2035    if (!wait) {
2036      return -1;
2037    }
2038    JavaThread *thread = JavaThread::current();
2039    ThreadBlockInVM tbivm(thread);
2040
2041    bool threadIsSuspended;
2042    do {
2043      thread->set_suspend_equivalent();
2044      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2045      ::SEM_WAIT(sig_sem);
2046
2047      // were we externally suspended while we were waiting?
2048      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2049      if (threadIsSuspended) {
2050        //
2051        // The semaphore has been incremented, but while we were waiting
2052        // another thread suspended us. We don't want to continue running
2053        // while suspended because that would surprise the thread that
2054        // suspended us.
2055        //
2056        ::SEM_POST(sig_sem);
2057
2058        thread->java_suspend_self();
2059      }
2060    } while (threadIsSuspended);
2061  }
2062}
2063
2064int os::signal_lookup() {
2065  return check_pending_signals(false);
2066}
2067
2068int os::signal_wait() {
2069  return check_pending_signals(true);
2070}
2071
2072////////////////////////////////////////////////////////////////////////////////
2073// Virtual Memory
2074
2075int os::vm_page_size() {
2076  // Seems redundant as all get out
2077  assert(os::Bsd::page_size() != -1, "must call os::init");
2078  return os::Bsd::page_size();
2079}
2080
2081// Solaris allocates memory by pages.
2082int os::vm_allocation_granularity() {
2083  assert(os::Bsd::page_size() != -1, "must call os::init");
2084  return os::Bsd::page_size();
2085}
2086
2087// Rationale behind this function:
2088//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2089//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2090//  samples for JITted code. Here we create private executable mapping over the code cache
2091//  and then we can use standard (well, almost, as mapping can change) way to provide
2092//  info for the reporting script by storing timestamp and location of symbol
2093void bsd_wrap_code(char* base, size_t size) {
2094  static volatile jint cnt = 0;
2095
2096  if (!UseOprofile) {
2097    return;
2098  }
2099
2100  char buf[PATH_MAX + 1];
2101  int num = Atomic::add(1, &cnt);
2102
2103  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2104           os::get_temp_directory(), os::current_process_id(), num);
2105  unlink(buf);
2106
2107  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2108
2109  if (fd != -1) {
2110    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2111    if (rv != (off_t)-1) {
2112      if (::write(fd, "", 1) == 1) {
2113        mmap(base, size,
2114             PROT_READ|PROT_WRITE|PROT_EXEC,
2115             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2116      }
2117    }
2118    ::close(fd);
2119    unlink(buf);
2120  }
2121}
2122
2123static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2124                                    int err) {
2125  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2126          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2127          strerror(err), err);
2128}
2129
2130// NOTE: Bsd kernel does not really reserve the pages for us.
2131//       All it does is to check if there are enough free pages
2132//       left at the time of mmap(). This could be a potential
2133//       problem.
2134bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2135  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2136#ifdef __OpenBSD__
2137  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2138  if (::mprotect(addr, size, prot) == 0) {
2139    return true;
2140  }
2141#else
2142  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2143                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2144  if (res != (uintptr_t) MAP_FAILED) {
2145    return true;
2146  }
2147#endif
2148
2149  // Warn about any commit errors we see in non-product builds just
2150  // in case mmap() doesn't work as described on the man page.
2151  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2152
2153  return false;
2154}
2155
2156bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2157                       bool exec) {
2158  // alignment_hint is ignored on this OS
2159  return pd_commit_memory(addr, size, exec);
2160}
2161
2162void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2163                                  const char* mesg) {
2164  assert(mesg != NULL, "mesg must be specified");
2165  if (!pd_commit_memory(addr, size, exec)) {
2166    // add extra info in product mode for vm_exit_out_of_memory():
2167    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2168    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2169  }
2170}
2171
2172void os::pd_commit_memory_or_exit(char* addr, size_t size,
2173                                  size_t alignment_hint, bool exec,
2174                                  const char* mesg) {
2175  // alignment_hint is ignored on this OS
2176  pd_commit_memory_or_exit(addr, size, exec, mesg);
2177}
2178
2179void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2180}
2181
2182void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2183  ::madvise(addr, bytes, MADV_DONTNEED);
2184}
2185
2186void os::numa_make_global(char *addr, size_t bytes) {
2187}
2188
2189void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2190}
2191
2192bool os::numa_topology_changed()   { return false; }
2193
2194size_t os::numa_get_groups_num() {
2195  return 1;
2196}
2197
2198int os::numa_get_group_id() {
2199  return 0;
2200}
2201
2202size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2203  if (size > 0) {
2204    ids[0] = 0;
2205    return 1;
2206  }
2207  return 0;
2208}
2209
2210bool os::get_page_info(char *start, page_info* info) {
2211  return false;
2212}
2213
2214char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2215  return end;
2216}
2217
2218
2219bool os::pd_uncommit_memory(char* addr, size_t size) {
2220#ifdef __OpenBSD__
2221  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2222  return ::mprotect(addr, size, PROT_NONE) == 0;
2223#else
2224  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2225                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2226  return res  != (uintptr_t) MAP_FAILED;
2227#endif
2228}
2229
2230bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2231  return os::commit_memory(addr, size, !ExecMem);
2232}
2233
2234// If this is a growable mapping, remove the guard pages entirely by
2235// munmap()ping them.  If not, just call uncommit_memory().
2236bool os::remove_stack_guard_pages(char* addr, size_t size) {
2237  return os::uncommit_memory(addr, size);
2238}
2239
2240static address _highest_vm_reserved_address = NULL;
2241
2242// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2243// at 'requested_addr'. If there are existing memory mappings at the same
2244// location, however, they will be overwritten. If 'fixed' is false,
2245// 'requested_addr' is only treated as a hint, the return value may or
2246// may not start from the requested address. Unlike Bsd mmap(), this
2247// function returns NULL to indicate failure.
2248static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2249  char * addr;
2250  int flags;
2251
2252  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2253  if (fixed) {
2254    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2255    flags |= MAP_FIXED;
2256  }
2257
2258  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2259  // touch an uncommitted page. Otherwise, the read/write might
2260  // succeed if we have enough swap space to back the physical page.
2261  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2262                       flags, -1, 0);
2263
2264  if (addr != MAP_FAILED) {
2265    // anon_mmap() should only get called during VM initialization,
2266    // don't need lock (actually we can skip locking even it can be called
2267    // from multiple threads, because _highest_vm_reserved_address is just a
2268    // hint about the upper limit of non-stack memory regions.)
2269    if ((address)addr + bytes > _highest_vm_reserved_address) {
2270      _highest_vm_reserved_address = (address)addr + bytes;
2271    }
2272  }
2273
2274  return addr == MAP_FAILED ? NULL : addr;
2275}
2276
2277// Don't update _highest_vm_reserved_address, because there might be memory
2278// regions above addr + size. If so, releasing a memory region only creates
2279// a hole in the address space, it doesn't help prevent heap-stack collision.
2280//
2281static int anon_munmap(char * addr, size_t size) {
2282  return ::munmap(addr, size) == 0;
2283}
2284
2285char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2286                         size_t alignment_hint) {
2287  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2288}
2289
2290bool os::pd_release_memory(char* addr, size_t size) {
2291  return anon_munmap(addr, size);
2292}
2293
2294static bool bsd_mprotect(char* addr, size_t size, int prot) {
2295  // Bsd wants the mprotect address argument to be page aligned.
2296  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2297
2298  // According to SUSv3, mprotect() should only be used with mappings
2299  // established by mmap(), and mmap() always maps whole pages. Unaligned
2300  // 'addr' likely indicates problem in the VM (e.g. trying to change
2301  // protection of malloc'ed or statically allocated memory). Check the
2302  // caller if you hit this assert.
2303  assert(addr == bottom, "sanity check");
2304
2305  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2306  return ::mprotect(bottom, size, prot) == 0;
2307}
2308
2309// Set protections specified
2310bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2311                        bool is_committed) {
2312  unsigned int p = 0;
2313  switch (prot) {
2314  case MEM_PROT_NONE: p = PROT_NONE; break;
2315  case MEM_PROT_READ: p = PROT_READ; break;
2316  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2317  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2318  default:
2319    ShouldNotReachHere();
2320  }
2321  // is_committed is unused.
2322  return bsd_mprotect(addr, bytes, p);
2323}
2324
2325bool os::guard_memory(char* addr, size_t size) {
2326  return bsd_mprotect(addr, size, PROT_NONE);
2327}
2328
2329bool os::unguard_memory(char* addr, size_t size) {
2330  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2331}
2332
2333bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2334  return false;
2335}
2336
2337// Large page support
2338
2339static size_t _large_page_size = 0;
2340
2341void os::large_page_init() {
2342}
2343
2344
2345char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2346  fatal("This code is not used or maintained.");
2347
2348  // "exec" is passed in but not used.  Creating the shared image for
2349  // the code cache doesn't have an SHM_X executable permission to check.
2350  assert(UseLargePages && UseSHM, "only for SHM large pages");
2351
2352  key_t key = IPC_PRIVATE;
2353  char *addr;
2354
2355  bool warn_on_failure = UseLargePages &&
2356                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2357                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2358                        );
2359  char msg[128];
2360
2361  // Create a large shared memory region to attach to based on size.
2362  // Currently, size is the total size of the heap
2363  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2364  if (shmid == -1) {
2365     // Possible reasons for shmget failure:
2366     // 1. shmmax is too small for Java heap.
2367     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2368     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2369     // 2. not enough large page memory.
2370     //    > check available large pages: cat /proc/meminfo
2371     //    > increase amount of large pages:
2372     //          echo new_value > /proc/sys/vm/nr_hugepages
2373     //      Note 1: different Bsd may use different name for this property,
2374     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2375     //      Note 2: it's possible there's enough physical memory available but
2376     //            they are so fragmented after a long run that they can't
2377     //            coalesce into large pages. Try to reserve large pages when
2378     //            the system is still "fresh".
2379     if (warn_on_failure) {
2380       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2381       warning(msg);
2382     }
2383     return NULL;
2384  }
2385
2386  // attach to the region
2387  addr = (char*)shmat(shmid, req_addr, 0);
2388  int err = errno;
2389
2390  // Remove shmid. If shmat() is successful, the actual shared memory segment
2391  // will be deleted when it's detached by shmdt() or when the process
2392  // terminates. If shmat() is not successful this will remove the shared
2393  // segment immediately.
2394  shmctl(shmid, IPC_RMID, NULL);
2395
2396  if ((intptr_t)addr == -1) {
2397     if (warn_on_failure) {
2398       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2399       warning(msg);
2400     }
2401     return NULL;
2402  }
2403
2404  // The memory is committed
2405  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2406
2407  return addr;
2408}
2409
2410bool os::release_memory_special(char* base, size_t bytes) {
2411  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2412  // detaching the SHM segment will also delete it, see reserve_memory_special()
2413  int rslt = shmdt(base);
2414  if (rslt == 0) {
2415    tkr.record((address)base, bytes);
2416    return true;
2417  } else {
2418    tkr.discard();
2419    return false;
2420  }
2421
2422}
2423
2424size_t os::large_page_size() {
2425  return _large_page_size;
2426}
2427
2428// HugeTLBFS allows application to commit large page memory on demand;
2429// with SysV SHM the entire memory region must be allocated as shared
2430// memory.
2431bool os::can_commit_large_page_memory() {
2432  return UseHugeTLBFS;
2433}
2434
2435bool os::can_execute_large_page_memory() {
2436  return UseHugeTLBFS;
2437}
2438
2439// Reserve memory at an arbitrary address, only if that area is
2440// available (and not reserved for something else).
2441
2442char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2443  const int max_tries = 10;
2444  char* base[max_tries];
2445  size_t size[max_tries];
2446  const size_t gap = 0x000000;
2447
2448  // Assert only that the size is a multiple of the page size, since
2449  // that's all that mmap requires, and since that's all we really know
2450  // about at this low abstraction level.  If we need higher alignment,
2451  // we can either pass an alignment to this method or verify alignment
2452  // in one of the methods further up the call chain.  See bug 5044738.
2453  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2454
2455  // Repeatedly allocate blocks until the block is allocated at the
2456  // right spot. Give up after max_tries. Note that reserve_memory() will
2457  // automatically update _highest_vm_reserved_address if the call is
2458  // successful. The variable tracks the highest memory address every reserved
2459  // by JVM. It is used to detect heap-stack collision if running with
2460  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2461  // space than needed, it could confuse the collision detecting code. To
2462  // solve the problem, save current _highest_vm_reserved_address and
2463  // calculate the correct value before return.
2464  address old_highest = _highest_vm_reserved_address;
2465
2466  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2467  // if kernel honors the hint then we can return immediately.
2468  char * addr = anon_mmap(requested_addr, bytes, false);
2469  if (addr == requested_addr) {
2470     return requested_addr;
2471  }
2472
2473  if (addr != NULL) {
2474     // mmap() is successful but it fails to reserve at the requested address
2475     anon_munmap(addr, bytes);
2476  }
2477
2478  int i;
2479  for (i = 0; i < max_tries; ++i) {
2480    base[i] = reserve_memory(bytes);
2481
2482    if (base[i] != NULL) {
2483      // Is this the block we wanted?
2484      if (base[i] == requested_addr) {
2485        size[i] = bytes;
2486        break;
2487      }
2488
2489      // Does this overlap the block we wanted? Give back the overlapped
2490      // parts and try again.
2491
2492      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2493      if (top_overlap >= 0 && top_overlap < bytes) {
2494        unmap_memory(base[i], top_overlap);
2495        base[i] += top_overlap;
2496        size[i] = bytes - top_overlap;
2497      } else {
2498        size_t bottom_overlap = base[i] + bytes - requested_addr;
2499        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2500          unmap_memory(requested_addr, bottom_overlap);
2501          size[i] = bytes - bottom_overlap;
2502        } else {
2503          size[i] = bytes;
2504        }
2505      }
2506    }
2507  }
2508
2509  // Give back the unused reserved pieces.
2510
2511  for (int j = 0; j < i; ++j) {
2512    if (base[j] != NULL) {
2513      unmap_memory(base[j], size[j]);
2514    }
2515  }
2516
2517  if (i < max_tries) {
2518    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2519    return requested_addr;
2520  } else {
2521    _highest_vm_reserved_address = old_highest;
2522    return NULL;
2523  }
2524}
2525
2526size_t os::read(int fd, void *buf, unsigned int nBytes) {
2527  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2528}
2529
2530void os::naked_short_sleep(jlong ms) {
2531  struct timespec req;
2532
2533  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2534  req.tv_sec = 0;
2535  if (ms > 0) {
2536    req.tv_nsec = (ms % 1000) * 1000000;
2537  }
2538  else {
2539    req.tv_nsec = 1;
2540  }
2541
2542  nanosleep(&req, NULL);
2543
2544  return;
2545}
2546
2547// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2548void os::infinite_sleep() {
2549  while (true) {    // sleep forever ...
2550    ::sleep(100);   // ... 100 seconds at a time
2551  }
2552}
2553
2554// Used to convert frequent JVM_Yield() to nops
2555bool os::dont_yield() {
2556  return DontYieldALot;
2557}
2558
2559void os::yield() {
2560  sched_yield();
2561}
2562
2563os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2564
2565void os::yield_all() {
2566  // Yields to all threads, including threads with lower priorities
2567  // Threads on Bsd are all with same priority. The Solaris style
2568  // os::yield_all() with nanosleep(1ms) is not necessary.
2569  sched_yield();
2570}
2571
2572////////////////////////////////////////////////////////////////////////////////
2573// thread priority support
2574
2575// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2576// only supports dynamic priority, static priority must be zero. For real-time
2577// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2578// However, for large multi-threaded applications, SCHED_RR is not only slower
2579// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2580// of 5 runs - Sep 2005).
2581//
2582// The following code actually changes the niceness of kernel-thread/LWP. It
2583// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2584// not the entire user process, and user level threads are 1:1 mapped to kernel
2585// threads. It has always been the case, but could change in the future. For
2586// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2587// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2588
2589#if !defined(__APPLE__)
2590int os::java_to_os_priority[CriticalPriority + 1] = {
2591  19,              // 0 Entry should never be used
2592
2593   0,              // 1 MinPriority
2594   3,              // 2
2595   6,              // 3
2596
2597  10,              // 4
2598  15,              // 5 NormPriority
2599  18,              // 6
2600
2601  21,              // 7
2602  25,              // 8
2603  28,              // 9 NearMaxPriority
2604
2605  31,              // 10 MaxPriority
2606
2607  31               // 11 CriticalPriority
2608};
2609#else
2610/* Using Mach high-level priority assignments */
2611int os::java_to_os_priority[CriticalPriority + 1] = {
2612   0,              // 0 Entry should never be used (MINPRI_USER)
2613
2614  27,              // 1 MinPriority
2615  28,              // 2
2616  29,              // 3
2617
2618  30,              // 4
2619  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2620  32,              // 6
2621
2622  33,              // 7
2623  34,              // 8
2624  35,              // 9 NearMaxPriority
2625
2626  36,              // 10 MaxPriority
2627
2628  36               // 11 CriticalPriority
2629};
2630#endif
2631
2632static int prio_init() {
2633  if (ThreadPriorityPolicy == 1) {
2634    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2635    // if effective uid is not root. Perhaps, a more elegant way of doing
2636    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2637    if (geteuid() != 0) {
2638      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2639        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2640      }
2641      ThreadPriorityPolicy = 0;
2642    }
2643  }
2644  if (UseCriticalJavaThreadPriority) {
2645    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2646  }
2647  return 0;
2648}
2649
2650OSReturn os::set_native_priority(Thread* thread, int newpri) {
2651  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2652
2653#ifdef __OpenBSD__
2654  // OpenBSD pthread_setprio starves low priority threads
2655  return OS_OK;
2656#elif defined(__FreeBSD__)
2657  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2658#elif defined(__APPLE__) || defined(__NetBSD__)
2659  struct sched_param sp;
2660  int policy;
2661  pthread_t self = pthread_self();
2662
2663  if (pthread_getschedparam(self, &policy, &sp) != 0)
2664    return OS_ERR;
2665
2666  sp.sched_priority = newpri;
2667  if (pthread_setschedparam(self, policy, &sp) != 0)
2668    return OS_ERR;
2669
2670  return OS_OK;
2671#else
2672  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2673  return (ret == 0) ? OS_OK : OS_ERR;
2674#endif
2675}
2676
2677OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2678  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2679    *priority_ptr = java_to_os_priority[NormPriority];
2680    return OS_OK;
2681  }
2682
2683  errno = 0;
2684#if defined(__OpenBSD__) || defined(__FreeBSD__)
2685  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2686#elif defined(__APPLE__) || defined(__NetBSD__)
2687  int policy;
2688  struct sched_param sp;
2689
2690  pthread_getschedparam(pthread_self(), &policy, &sp);
2691  *priority_ptr = sp.sched_priority;
2692#else
2693  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2694#endif
2695  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2696}
2697
2698// Hint to the underlying OS that a task switch would not be good.
2699// Void return because it's a hint and can fail.
2700void os::hint_no_preempt() {}
2701
2702////////////////////////////////////////////////////////////////////////////////
2703// suspend/resume support
2704
2705//  the low-level signal-based suspend/resume support is a remnant from the
2706//  old VM-suspension that used to be for java-suspension, safepoints etc,
2707//  within hotspot. Now there is a single use-case for this:
2708//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2709//      that runs in the watcher thread.
2710//  The remaining code is greatly simplified from the more general suspension
2711//  code that used to be used.
2712//
2713//  The protocol is quite simple:
2714//  - suspend:
2715//      - sends a signal to the target thread
2716//      - polls the suspend state of the osthread using a yield loop
2717//      - target thread signal handler (SR_handler) sets suspend state
2718//        and blocks in sigsuspend until continued
2719//  - resume:
2720//      - sets target osthread state to continue
2721//      - sends signal to end the sigsuspend loop in the SR_handler
2722//
2723//  Note that the SR_lock plays no role in this suspend/resume protocol.
2724//
2725
2726static void resume_clear_context(OSThread *osthread) {
2727  osthread->set_ucontext(NULL);
2728  osthread->set_siginfo(NULL);
2729}
2730
2731static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2732  osthread->set_ucontext(context);
2733  osthread->set_siginfo(siginfo);
2734}
2735
2736//
2737// Handler function invoked when a thread's execution is suspended or
2738// resumed. We have to be careful that only async-safe functions are
2739// called here (Note: most pthread functions are not async safe and
2740// should be avoided.)
2741//
2742// Note: sigwait() is a more natural fit than sigsuspend() from an
2743// interface point of view, but sigwait() prevents the signal hander
2744// from being run. libpthread would get very confused by not having
2745// its signal handlers run and prevents sigwait()'s use with the
2746// mutex granting granting signal.
2747//
2748// Currently only ever called on the VMThread or JavaThread
2749//
2750static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2751  // Save and restore errno to avoid confusing native code with EINTR
2752  // after sigsuspend.
2753  int old_errno = errno;
2754
2755  Thread* thread = Thread::current();
2756  OSThread* osthread = thread->osthread();
2757  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2758
2759  os::SuspendResume::State current = osthread->sr.state();
2760  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2761    suspend_save_context(osthread, siginfo, context);
2762
2763    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2764    os::SuspendResume::State state = osthread->sr.suspended();
2765    if (state == os::SuspendResume::SR_SUSPENDED) {
2766      sigset_t suspend_set;  // signals for sigsuspend()
2767
2768      // get current set of blocked signals and unblock resume signal
2769      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2770      sigdelset(&suspend_set, SR_signum);
2771
2772      sr_semaphore.signal();
2773      // wait here until we are resumed
2774      while (1) {
2775        sigsuspend(&suspend_set);
2776
2777        os::SuspendResume::State result = osthread->sr.running();
2778        if (result == os::SuspendResume::SR_RUNNING) {
2779          sr_semaphore.signal();
2780          break;
2781        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2782          ShouldNotReachHere();
2783        }
2784      }
2785
2786    } else if (state == os::SuspendResume::SR_RUNNING) {
2787      // request was cancelled, continue
2788    } else {
2789      ShouldNotReachHere();
2790    }
2791
2792    resume_clear_context(osthread);
2793  } else if (current == os::SuspendResume::SR_RUNNING) {
2794    // request was cancelled, continue
2795  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2796    // ignore
2797  } else {
2798    // ignore
2799  }
2800
2801  errno = old_errno;
2802}
2803
2804
2805static int SR_initialize() {
2806  struct sigaction act;
2807  char *s;
2808  /* Get signal number to use for suspend/resume */
2809  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2810    int sig = ::strtol(s, 0, 10);
2811    if (sig > 0 || sig < NSIG) {
2812        SR_signum = sig;
2813    }
2814  }
2815
2816  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2817        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2818
2819  sigemptyset(&SR_sigset);
2820  sigaddset(&SR_sigset, SR_signum);
2821
2822  /* Set up signal handler for suspend/resume */
2823  act.sa_flags = SA_RESTART|SA_SIGINFO;
2824  act.sa_handler = (void (*)(int)) SR_handler;
2825
2826  // SR_signum is blocked by default.
2827  // 4528190 - We also need to block pthread restart signal (32 on all
2828  // supported Bsd platforms). Note that BsdThreads need to block
2829  // this signal for all threads to work properly. So we don't have
2830  // to use hard-coded signal number when setting up the mask.
2831  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2832
2833  if (sigaction(SR_signum, &act, 0) == -1) {
2834    return -1;
2835  }
2836
2837  // Save signal flag
2838  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2839  return 0;
2840}
2841
2842static int sr_notify(OSThread* osthread) {
2843  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2844  assert_status(status == 0, status, "pthread_kill");
2845  return status;
2846}
2847
2848// "Randomly" selected value for how long we want to spin
2849// before bailing out on suspending a thread, also how often
2850// we send a signal to a thread we want to resume
2851static const int RANDOMLY_LARGE_INTEGER = 1000000;
2852static const int RANDOMLY_LARGE_INTEGER2 = 100;
2853
2854// returns true on success and false on error - really an error is fatal
2855// but this seems the normal response to library errors
2856static bool do_suspend(OSThread* osthread) {
2857  assert(osthread->sr.is_running(), "thread should be running");
2858  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2859
2860  // mark as suspended and send signal
2861  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2862    // failed to switch, state wasn't running?
2863    ShouldNotReachHere();
2864    return false;
2865  }
2866
2867  if (sr_notify(osthread) != 0) {
2868    ShouldNotReachHere();
2869  }
2870
2871  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2872  while (true) {
2873    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2874      break;
2875    } else {
2876      // timeout
2877      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2878      if (cancelled == os::SuspendResume::SR_RUNNING) {
2879        return false;
2880      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2881        // make sure that we consume the signal on the semaphore as well
2882        sr_semaphore.wait();
2883        break;
2884      } else {
2885        ShouldNotReachHere();
2886        return false;
2887      }
2888    }
2889  }
2890
2891  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2892  return true;
2893}
2894
2895static void do_resume(OSThread* osthread) {
2896  assert(osthread->sr.is_suspended(), "thread should be suspended");
2897  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2898
2899  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2900    // failed to switch to WAKEUP_REQUEST
2901    ShouldNotReachHere();
2902    return;
2903  }
2904
2905  while (true) {
2906    if (sr_notify(osthread) == 0) {
2907      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2908        if (osthread->sr.is_running()) {
2909          return;
2910        }
2911      }
2912    } else {
2913      ShouldNotReachHere();
2914    }
2915  }
2916
2917  guarantee(osthread->sr.is_running(), "Must be running!");
2918}
2919
2920///////////////////////////////////////////////////////////////////////////////////
2921// signal handling (except suspend/resume)
2922
2923// This routine may be used by user applications as a "hook" to catch signals.
2924// The user-defined signal handler must pass unrecognized signals to this
2925// routine, and if it returns true (non-zero), then the signal handler must
2926// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2927// routine will never retun false (zero), but instead will execute a VM panic
2928// routine kill the process.
2929//
2930// If this routine returns false, it is OK to call it again.  This allows
2931// the user-defined signal handler to perform checks either before or after
2932// the VM performs its own checks.  Naturally, the user code would be making
2933// a serious error if it tried to handle an exception (such as a null check
2934// or breakpoint) that the VM was generating for its own correct operation.
2935//
2936// This routine may recognize any of the following kinds of signals:
2937//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2938// It should be consulted by handlers for any of those signals.
2939//
2940// The caller of this routine must pass in the three arguments supplied
2941// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2942// field of the structure passed to sigaction().  This routine assumes that
2943// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2944//
2945// Note that the VM will print warnings if it detects conflicting signal
2946// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2947//
2948extern "C" JNIEXPORT int
2949JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2950                        void* ucontext, int abort_if_unrecognized);
2951
2952void signalHandler(int sig, siginfo_t* info, void* uc) {
2953  assert(info != NULL && uc != NULL, "it must be old kernel");
2954  int orig_errno = errno;  // Preserve errno value over signal handler.
2955  JVM_handle_bsd_signal(sig, info, uc, true);
2956  errno = orig_errno;
2957}
2958
2959
2960// This boolean allows users to forward their own non-matching signals
2961// to JVM_handle_bsd_signal, harmlessly.
2962bool os::Bsd::signal_handlers_are_installed = false;
2963
2964// For signal-chaining
2965struct sigaction os::Bsd::sigact[MAXSIGNUM];
2966unsigned int os::Bsd::sigs = 0;
2967bool os::Bsd::libjsig_is_loaded = false;
2968typedef struct sigaction *(*get_signal_t)(int);
2969get_signal_t os::Bsd::get_signal_action = NULL;
2970
2971struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2972  struct sigaction *actp = NULL;
2973
2974  if (libjsig_is_loaded) {
2975    // Retrieve the old signal handler from libjsig
2976    actp = (*get_signal_action)(sig);
2977  }
2978  if (actp == NULL) {
2979    // Retrieve the preinstalled signal handler from jvm
2980    actp = get_preinstalled_handler(sig);
2981  }
2982
2983  return actp;
2984}
2985
2986static bool call_chained_handler(struct sigaction *actp, int sig,
2987                                 siginfo_t *siginfo, void *context) {
2988  // Call the old signal handler
2989  if (actp->sa_handler == SIG_DFL) {
2990    // It's more reasonable to let jvm treat it as an unexpected exception
2991    // instead of taking the default action.
2992    return false;
2993  } else if (actp->sa_handler != SIG_IGN) {
2994    if ((actp->sa_flags & SA_NODEFER) == 0) {
2995      // automaticlly block the signal
2996      sigaddset(&(actp->sa_mask), sig);
2997    }
2998
2999    sa_handler_t hand;
3000    sa_sigaction_t sa;
3001    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3002    // retrieve the chained handler
3003    if (siginfo_flag_set) {
3004      sa = actp->sa_sigaction;
3005    } else {
3006      hand = actp->sa_handler;
3007    }
3008
3009    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3010      actp->sa_handler = SIG_DFL;
3011    }
3012
3013    // try to honor the signal mask
3014    sigset_t oset;
3015    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3016
3017    // call into the chained handler
3018    if (siginfo_flag_set) {
3019      (*sa)(sig, siginfo, context);
3020    } else {
3021      (*hand)(sig);
3022    }
3023
3024    // restore the signal mask
3025    pthread_sigmask(SIG_SETMASK, &oset, 0);
3026  }
3027  // Tell jvm's signal handler the signal is taken care of.
3028  return true;
3029}
3030
3031bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3032  bool chained = false;
3033  // signal-chaining
3034  if (UseSignalChaining) {
3035    struct sigaction *actp = get_chained_signal_action(sig);
3036    if (actp != NULL) {
3037      chained = call_chained_handler(actp, sig, siginfo, context);
3038    }
3039  }
3040  return chained;
3041}
3042
3043struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3044  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3045    return &sigact[sig];
3046  }
3047  return NULL;
3048}
3049
3050void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3051  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3052  sigact[sig] = oldAct;
3053  sigs |= (unsigned int)1 << sig;
3054}
3055
3056// for diagnostic
3057int os::Bsd::sigflags[MAXSIGNUM];
3058
3059int os::Bsd::get_our_sigflags(int sig) {
3060  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3061  return sigflags[sig];
3062}
3063
3064void os::Bsd::set_our_sigflags(int sig, int flags) {
3065  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3066  sigflags[sig] = flags;
3067}
3068
3069void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3070  // Check for overwrite.
3071  struct sigaction oldAct;
3072  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3073
3074  void* oldhand = oldAct.sa_sigaction
3075                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3076                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3077  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3078      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3079      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3080    if (AllowUserSignalHandlers || !set_installed) {
3081      // Do not overwrite; user takes responsibility to forward to us.
3082      return;
3083    } else if (UseSignalChaining) {
3084      // save the old handler in jvm
3085      save_preinstalled_handler(sig, oldAct);
3086      // libjsig also interposes the sigaction() call below and saves the
3087      // old sigaction on it own.
3088    } else {
3089      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3090                    "%#lx for signal %d.", (long)oldhand, sig));
3091    }
3092  }
3093
3094  struct sigaction sigAct;
3095  sigfillset(&(sigAct.sa_mask));
3096  sigAct.sa_handler = SIG_DFL;
3097  if (!set_installed) {
3098    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3099  } else {
3100    sigAct.sa_sigaction = signalHandler;
3101    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3102  }
3103#ifdef __APPLE__
3104  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3105  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3106  // if the signal handler declares it will handle it on alternate stack.
3107  // Notice we only declare we will handle it on alt stack, but we are not
3108  // actually going to use real alt stack - this is just a workaround.
3109  // Please see ux_exception.c, method catch_mach_exception_raise for details
3110  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3111  if (sig == SIGSEGV) {
3112    sigAct.sa_flags |= SA_ONSTACK;
3113  }
3114#endif
3115
3116  // Save flags, which are set by ours
3117  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3118  sigflags[sig] = sigAct.sa_flags;
3119
3120  int ret = sigaction(sig, &sigAct, &oldAct);
3121  assert(ret == 0, "check");
3122
3123  void* oldhand2  = oldAct.sa_sigaction
3124                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3125                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3126  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3127}
3128
3129// install signal handlers for signals that HotSpot needs to
3130// handle in order to support Java-level exception handling.
3131
3132void os::Bsd::install_signal_handlers() {
3133  if (!signal_handlers_are_installed) {
3134    signal_handlers_are_installed = true;
3135
3136    // signal-chaining
3137    typedef void (*signal_setting_t)();
3138    signal_setting_t begin_signal_setting = NULL;
3139    signal_setting_t end_signal_setting = NULL;
3140    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3141                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3142    if (begin_signal_setting != NULL) {
3143      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3144                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3145      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3146                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3147      libjsig_is_loaded = true;
3148      assert(UseSignalChaining, "should enable signal-chaining");
3149    }
3150    if (libjsig_is_loaded) {
3151      // Tell libjsig jvm is setting signal handlers
3152      (*begin_signal_setting)();
3153    }
3154
3155    set_signal_handler(SIGSEGV, true);
3156    set_signal_handler(SIGPIPE, true);
3157    set_signal_handler(SIGBUS, true);
3158    set_signal_handler(SIGILL, true);
3159    set_signal_handler(SIGFPE, true);
3160    set_signal_handler(SIGXFSZ, true);
3161
3162#if defined(__APPLE__)
3163    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3164    // signals caught and handled by the JVM. To work around this, we reset the mach task
3165    // signal handler that's placed on our process by CrashReporter. This disables
3166    // CrashReporter-based reporting.
3167    //
3168    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3169    // on caught fatal signals.
3170    //
3171    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3172    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3173    // exception handling, while leaving the standard BSD signal handlers functional.
3174    kern_return_t kr;
3175    kr = task_set_exception_ports(mach_task_self(),
3176        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3177        MACH_PORT_NULL,
3178        EXCEPTION_STATE_IDENTITY,
3179        MACHINE_THREAD_STATE);
3180
3181    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3182#endif
3183
3184    if (libjsig_is_loaded) {
3185      // Tell libjsig jvm finishes setting signal handlers
3186      (*end_signal_setting)();
3187    }
3188
3189    // We don't activate signal checker if libjsig is in place, we trust ourselves
3190    // and if UserSignalHandler is installed all bets are off
3191    if (CheckJNICalls) {
3192      if (libjsig_is_loaded) {
3193        if (PrintJNIResolving) {
3194          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3195        }
3196        check_signals = false;
3197      }
3198      if (AllowUserSignalHandlers) {
3199        if (PrintJNIResolving) {
3200          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3201        }
3202        check_signals = false;
3203      }
3204    }
3205  }
3206}
3207
3208
3209/////
3210// glibc on Bsd platform uses non-documented flag
3211// to indicate, that some special sort of signal
3212// trampoline is used.
3213// We will never set this flag, and we should
3214// ignore this flag in our diagnostic
3215#ifdef SIGNIFICANT_SIGNAL_MASK
3216#undef SIGNIFICANT_SIGNAL_MASK
3217#endif
3218#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3219
3220static const char* get_signal_handler_name(address handler,
3221                                           char* buf, int buflen) {
3222  int offset;
3223  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3224  if (found) {
3225    // skip directory names
3226    const char *p1, *p2;
3227    p1 = buf;
3228    size_t len = strlen(os::file_separator());
3229    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3230    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3231  } else {
3232    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3233  }
3234  return buf;
3235}
3236
3237static void print_signal_handler(outputStream* st, int sig,
3238                                 char* buf, size_t buflen) {
3239  struct sigaction sa;
3240
3241  sigaction(sig, NULL, &sa);
3242
3243  // See comment for SIGNIFICANT_SIGNAL_MASK define
3244  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3245
3246  st->print("%s: ", os::exception_name(sig, buf, buflen));
3247
3248  address handler = (sa.sa_flags & SA_SIGINFO)
3249    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3250    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3251
3252  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3253    st->print("SIG_DFL");
3254  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3255    st->print("SIG_IGN");
3256  } else {
3257    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3258  }
3259
3260  st->print(", sa_mask[0]=");
3261  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3262
3263  address rh = VMError::get_resetted_sighandler(sig);
3264  // May be, handler was resetted by VMError?
3265  if(rh != NULL) {
3266    handler = rh;
3267    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3268  }
3269
3270  st->print(", sa_flags=");
3271  os::Posix::print_sa_flags(st, sa.sa_flags);
3272
3273  // Check: is it our handler?
3274  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3275     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3276    // It is our signal handler
3277    // check for flags, reset system-used one!
3278    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3279      st->print(
3280                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3281                os::Bsd::get_our_sigflags(sig));
3282    }
3283  }
3284  st->cr();
3285}
3286
3287
3288#define DO_SIGNAL_CHECK(sig) \
3289  if (!sigismember(&check_signal_done, sig)) \
3290    os::Bsd::check_signal_handler(sig)
3291
3292// This method is a periodic task to check for misbehaving JNI applications
3293// under CheckJNI, we can add any periodic checks here
3294
3295void os::run_periodic_checks() {
3296
3297  if (check_signals == false) return;
3298
3299  // SEGV and BUS if overridden could potentially prevent
3300  // generation of hs*.log in the event of a crash, debugging
3301  // such a case can be very challenging, so we absolutely
3302  // check the following for a good measure:
3303  DO_SIGNAL_CHECK(SIGSEGV);
3304  DO_SIGNAL_CHECK(SIGILL);
3305  DO_SIGNAL_CHECK(SIGFPE);
3306  DO_SIGNAL_CHECK(SIGBUS);
3307  DO_SIGNAL_CHECK(SIGPIPE);
3308  DO_SIGNAL_CHECK(SIGXFSZ);
3309
3310
3311  // ReduceSignalUsage allows the user to override these handlers
3312  // see comments at the very top and jvm_solaris.h
3313  if (!ReduceSignalUsage) {
3314    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3315    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3316    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3317    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3318  }
3319
3320  DO_SIGNAL_CHECK(SR_signum);
3321  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3322}
3323
3324typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3325
3326static os_sigaction_t os_sigaction = NULL;
3327
3328void os::Bsd::check_signal_handler(int sig) {
3329  char buf[O_BUFLEN];
3330  address jvmHandler = NULL;
3331
3332
3333  struct sigaction act;
3334  if (os_sigaction == NULL) {
3335    // only trust the default sigaction, in case it has been interposed
3336    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3337    if (os_sigaction == NULL) return;
3338  }
3339
3340  os_sigaction(sig, (struct sigaction*)NULL, &act);
3341
3342
3343  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3344
3345  address thisHandler = (act.sa_flags & SA_SIGINFO)
3346    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3347    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3348
3349
3350  switch(sig) {
3351  case SIGSEGV:
3352  case SIGBUS:
3353  case SIGFPE:
3354  case SIGPIPE:
3355  case SIGILL:
3356  case SIGXFSZ:
3357    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3358    break;
3359
3360  case SHUTDOWN1_SIGNAL:
3361  case SHUTDOWN2_SIGNAL:
3362  case SHUTDOWN3_SIGNAL:
3363  case BREAK_SIGNAL:
3364    jvmHandler = (address)user_handler();
3365    break;
3366
3367  case INTERRUPT_SIGNAL:
3368    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3369    break;
3370
3371  default:
3372    if (sig == SR_signum) {
3373      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3374    } else {
3375      return;
3376    }
3377    break;
3378  }
3379
3380  if (thisHandler != jvmHandler) {
3381    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3382    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3383    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3384    // No need to check this sig any longer
3385    sigaddset(&check_signal_done, sig);
3386    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3387    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3388      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3389                    exception_name(sig, buf, O_BUFLEN));
3390    }
3391  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3392    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3393    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3394    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3395    // No need to check this sig any longer
3396    sigaddset(&check_signal_done, sig);
3397  }
3398
3399  // Dump all the signal
3400  if (sigismember(&check_signal_done, sig)) {
3401    print_signal_handlers(tty, buf, O_BUFLEN);
3402  }
3403}
3404
3405extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3406
3407extern bool signal_name(int signo, char* buf, size_t len);
3408
3409const char* os::exception_name(int exception_code, char* buf, size_t size) {
3410  if (0 < exception_code && exception_code <= SIGRTMAX) {
3411    // signal
3412    if (!signal_name(exception_code, buf, size)) {
3413      jio_snprintf(buf, size, "SIG%d", exception_code);
3414    }
3415    return buf;
3416  } else {
3417    return NULL;
3418  }
3419}
3420
3421// this is called _before_ the most of global arguments have been parsed
3422void os::init(void) {
3423  char dummy;   /* used to get a guess on initial stack address */
3424//  first_hrtime = gethrtime();
3425
3426  // With BsdThreads the JavaMain thread pid (primordial thread)
3427  // is different than the pid of the java launcher thread.
3428  // So, on Bsd, the launcher thread pid is passed to the VM
3429  // via the sun.java.launcher.pid property.
3430  // Use this property instead of getpid() if it was correctly passed.
3431  // See bug 6351349.
3432  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3433
3434  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3435
3436  clock_tics_per_sec = CLK_TCK;
3437
3438  init_random(1234567);
3439
3440  ThreadCritical::initialize();
3441
3442  Bsd::set_page_size(getpagesize());
3443  if (Bsd::page_size() == -1) {
3444    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3445                  strerror(errno)));
3446  }
3447  init_page_sizes((size_t) Bsd::page_size());
3448
3449  Bsd::initialize_system_info();
3450
3451  // main_thread points to the aboriginal thread
3452  Bsd::_main_thread = pthread_self();
3453
3454  Bsd::clock_init();
3455  initial_time_count = javaTimeNanos();
3456
3457#ifdef __APPLE__
3458  // XXXDARWIN
3459  // Work around the unaligned VM callbacks in hotspot's
3460  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3461  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3462  // alignment when doing symbol lookup. To work around this, we force early
3463  // binding of all symbols now, thus binding when alignment is known-good.
3464  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3465#endif
3466}
3467
3468// To install functions for atexit system call
3469extern "C" {
3470  static void perfMemory_exit_helper() {
3471    perfMemory_exit();
3472  }
3473}
3474
3475// this is called _after_ the global arguments have been parsed
3476jint os::init_2(void)
3477{
3478  // Allocate a single page and mark it as readable for safepoint polling
3479  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3480  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3481
3482  os::set_polling_page( polling_page );
3483
3484#ifndef PRODUCT
3485  if(Verbose && PrintMiscellaneous)
3486    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3487#endif
3488
3489  if (!UseMembar) {
3490    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3491    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3492    os::set_memory_serialize_page( mem_serialize_page );
3493
3494#ifndef PRODUCT
3495    if(Verbose && PrintMiscellaneous)
3496      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3497#endif
3498  }
3499
3500  // initialize suspend/resume support - must do this before signal_sets_init()
3501  if (SR_initialize() != 0) {
3502    perror("SR_initialize failed");
3503    return JNI_ERR;
3504  }
3505
3506  Bsd::signal_sets_init();
3507  Bsd::install_signal_handlers();
3508
3509  // Check minimum allowable stack size for thread creation and to initialize
3510  // the java system classes, including StackOverflowError - depends on page
3511  // size.  Add a page for compiler2 recursion in main thread.
3512  // Add in 2*BytesPerWord times page size to account for VM stack during
3513  // class initialization depending on 32 or 64 bit VM.
3514  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3515            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3516                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3517
3518  size_t threadStackSizeInBytes = ThreadStackSize * K;
3519  if (threadStackSizeInBytes != 0 &&
3520      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3521        tty->print_cr("\nThe stack size specified is too small, "
3522                      "Specify at least %dk",
3523                      os::Bsd::min_stack_allowed/ K);
3524        return JNI_ERR;
3525  }
3526
3527  // Make the stack size a multiple of the page size so that
3528  // the yellow/red zones can be guarded.
3529  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3530        vm_page_size()));
3531
3532  if (MaxFDLimit) {
3533    // set the number of file descriptors to max. print out error
3534    // if getrlimit/setrlimit fails but continue regardless.
3535    struct rlimit nbr_files;
3536    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3537    if (status != 0) {
3538      if (PrintMiscellaneous && (Verbose || WizardMode))
3539        perror("os::init_2 getrlimit failed");
3540    } else {
3541      nbr_files.rlim_cur = nbr_files.rlim_max;
3542
3543#ifdef __APPLE__
3544      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3545      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3546      // be used instead
3547      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3548#endif
3549
3550      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3551      if (status != 0) {
3552        if (PrintMiscellaneous && (Verbose || WizardMode))
3553          perror("os::init_2 setrlimit failed");
3554      }
3555    }
3556  }
3557
3558  // at-exit methods are called in the reverse order of their registration.
3559  // atexit functions are called on return from main or as a result of a
3560  // call to exit(3C). There can be only 32 of these functions registered
3561  // and atexit() does not set errno.
3562
3563  if (PerfAllowAtExitRegistration) {
3564    // only register atexit functions if PerfAllowAtExitRegistration is set.
3565    // atexit functions can be delayed until process exit time, which
3566    // can be problematic for embedded VM situations. Embedded VMs should
3567    // call DestroyJavaVM() to assure that VM resources are released.
3568
3569    // note: perfMemory_exit_helper atexit function may be removed in
3570    // the future if the appropriate cleanup code can be added to the
3571    // VM_Exit VMOperation's doit method.
3572    if (atexit(perfMemory_exit_helper) != 0) {
3573      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3574    }
3575  }
3576
3577  // initialize thread priority policy
3578  prio_init();
3579
3580#ifdef __APPLE__
3581  // dynamically link to objective c gc registration
3582  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3583  if (handleLibObjc != NULL) {
3584    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3585  }
3586#endif
3587
3588  return JNI_OK;
3589}
3590
3591// this is called at the end of vm_initialization
3592void os::init_3(void) { }
3593
3594// Mark the polling page as unreadable
3595void os::make_polling_page_unreadable(void) {
3596  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3597    fatal("Could not disable polling page");
3598};
3599
3600// Mark the polling page as readable
3601void os::make_polling_page_readable(void) {
3602  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3603    fatal("Could not enable polling page");
3604  }
3605};
3606
3607int os::active_processor_count() {
3608  return _processor_count;
3609}
3610
3611void os::set_native_thread_name(const char *name) {
3612#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3613  // This is only supported in Snow Leopard and beyond
3614  if (name != NULL) {
3615    // Add a "Java: " prefix to the name
3616    char buf[MAXTHREADNAMESIZE];
3617    snprintf(buf, sizeof(buf), "Java: %s", name);
3618    pthread_setname_np(buf);
3619  }
3620#endif
3621}
3622
3623bool os::distribute_processes(uint length, uint* distribution) {
3624  // Not yet implemented.
3625  return false;
3626}
3627
3628bool os::bind_to_processor(uint processor_id) {
3629  // Not yet implemented.
3630  return false;
3631}
3632
3633void os::SuspendedThreadTask::internal_do_task() {
3634  if (do_suspend(_thread->osthread())) {
3635    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3636    do_task(context);
3637    do_resume(_thread->osthread());
3638  }
3639}
3640
3641///
3642class PcFetcher : public os::SuspendedThreadTask {
3643public:
3644  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3645  ExtendedPC result();
3646protected:
3647  void do_task(const os::SuspendedThreadTaskContext& context);
3648private:
3649  ExtendedPC _epc;
3650};
3651
3652ExtendedPC PcFetcher::result() {
3653  guarantee(is_done(), "task is not done yet.");
3654  return _epc;
3655}
3656
3657void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3658  Thread* thread = context.thread();
3659  OSThread* osthread = thread->osthread();
3660  if (osthread->ucontext() != NULL) {
3661    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3662  } else {
3663    // NULL context is unexpected, double-check this is the VMThread
3664    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3665  }
3666}
3667
3668// Suspends the target using the signal mechanism and then grabs the PC before
3669// resuming the target. Used by the flat-profiler only
3670ExtendedPC os::get_thread_pc(Thread* thread) {
3671  // Make sure that it is called by the watcher for the VMThread
3672  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3673  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3674
3675  PcFetcher fetcher(thread);
3676  fetcher.run();
3677  return fetcher.result();
3678}
3679
3680int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3681{
3682  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3683}
3684
3685////////////////////////////////////////////////////////////////////////////////
3686// debug support
3687
3688bool os::find(address addr, outputStream* st) {
3689  Dl_info dlinfo;
3690  memset(&dlinfo, 0, sizeof(dlinfo));
3691  if (dladdr(addr, &dlinfo) != 0) {
3692    st->print(PTR_FORMAT ": ", addr);
3693    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3694      st->print("%s+%#x", dlinfo.dli_sname,
3695                 addr - (intptr_t)dlinfo.dli_saddr);
3696    } else if (dlinfo.dli_fbase != NULL) {
3697      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3698    } else {
3699      st->print("<absolute address>");
3700    }
3701    if (dlinfo.dli_fname != NULL) {
3702      st->print(" in %s", dlinfo.dli_fname);
3703    }
3704    if (dlinfo.dli_fbase != NULL) {
3705      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3706    }
3707    st->cr();
3708
3709    if (Verbose) {
3710      // decode some bytes around the PC
3711      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3712      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3713      address       lowest = (address) dlinfo.dli_sname;
3714      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3715      if (begin < lowest)  begin = lowest;
3716      Dl_info dlinfo2;
3717      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3718          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3719        end = (address) dlinfo2.dli_saddr;
3720      Disassembler::decode(begin, end, st);
3721    }
3722    return true;
3723  }
3724  return false;
3725}
3726
3727////////////////////////////////////////////////////////////////////////////////
3728// misc
3729
3730// This does not do anything on Bsd. This is basically a hook for being
3731// able to use structured exception handling (thread-local exception filters)
3732// on, e.g., Win32.
3733void
3734os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3735                         JavaCallArguments* args, Thread* thread) {
3736  f(value, method, args, thread);
3737}
3738
3739void os::print_statistics() {
3740}
3741
3742int os::message_box(const char* title, const char* message) {
3743  int i;
3744  fdStream err(defaultStream::error_fd());
3745  for (i = 0; i < 78; i++) err.print_raw("=");
3746  err.cr();
3747  err.print_raw_cr(title);
3748  for (i = 0; i < 78; i++) err.print_raw("-");
3749  err.cr();
3750  err.print_raw_cr(message);
3751  for (i = 0; i < 78; i++) err.print_raw("=");
3752  err.cr();
3753
3754  char buf[16];
3755  // Prevent process from exiting upon "read error" without consuming all CPU
3756  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3757
3758  return buf[0] == 'y' || buf[0] == 'Y';
3759}
3760
3761int os::stat(const char *path, struct stat *sbuf) {
3762  char pathbuf[MAX_PATH];
3763  if (strlen(path) > MAX_PATH - 1) {
3764    errno = ENAMETOOLONG;
3765    return -1;
3766  }
3767  os::native_path(strcpy(pathbuf, path));
3768  return ::stat(pathbuf, sbuf);
3769}
3770
3771bool os::check_heap(bool force) {
3772  return true;
3773}
3774
3775int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3776  return ::vsnprintf(buf, count, format, args);
3777}
3778
3779// Is a (classpath) directory empty?
3780bool os::dir_is_empty(const char* path) {
3781  DIR *dir = NULL;
3782  struct dirent *ptr;
3783
3784  dir = opendir(path);
3785  if (dir == NULL) return true;
3786
3787  /* Scan the directory */
3788  bool result = true;
3789  char buf[sizeof(struct dirent) + MAX_PATH];
3790  while (result && (ptr = ::readdir(dir)) != NULL) {
3791    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3792      result = false;
3793    }
3794  }
3795  closedir(dir);
3796  return result;
3797}
3798
3799// This code originates from JDK's sysOpen and open64_w
3800// from src/solaris/hpi/src/system_md.c
3801
3802#ifndef O_DELETE
3803#define O_DELETE 0x10000
3804#endif
3805
3806// Open a file. Unlink the file immediately after open returns
3807// if the specified oflag has the O_DELETE flag set.
3808// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3809
3810int os::open(const char *path, int oflag, int mode) {
3811
3812  if (strlen(path) > MAX_PATH - 1) {
3813    errno = ENAMETOOLONG;
3814    return -1;
3815  }
3816  int fd;
3817  int o_delete = (oflag & O_DELETE);
3818  oflag = oflag & ~O_DELETE;
3819
3820  fd = ::open(path, oflag, mode);
3821  if (fd == -1) return -1;
3822
3823  //If the open succeeded, the file might still be a directory
3824  {
3825    struct stat buf;
3826    int ret = ::fstat(fd, &buf);
3827    int st_mode = buf.st_mode;
3828
3829    if (ret != -1) {
3830      if ((st_mode & S_IFMT) == S_IFDIR) {
3831        errno = EISDIR;
3832        ::close(fd);
3833        return -1;
3834      }
3835    } else {
3836      ::close(fd);
3837      return -1;
3838    }
3839  }
3840
3841    /*
3842     * All file descriptors that are opened in the JVM and not
3843     * specifically destined for a subprocess should have the
3844     * close-on-exec flag set.  If we don't set it, then careless 3rd
3845     * party native code might fork and exec without closing all
3846     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3847     * UNIXProcess.c), and this in turn might:
3848     *
3849     * - cause end-of-file to fail to be detected on some file
3850     *   descriptors, resulting in mysterious hangs, or
3851     *
3852     * - might cause an fopen in the subprocess to fail on a system
3853     *   suffering from bug 1085341.
3854     *
3855     * (Yes, the default setting of the close-on-exec flag is a Unix
3856     * design flaw)
3857     *
3858     * See:
3859     * 1085341: 32-bit stdio routines should support file descriptors >255
3860     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3861     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3862     */
3863#ifdef FD_CLOEXEC
3864    {
3865        int flags = ::fcntl(fd, F_GETFD);
3866        if (flags != -1)
3867            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3868    }
3869#endif
3870
3871  if (o_delete != 0) {
3872    ::unlink(path);
3873  }
3874  return fd;
3875}
3876
3877
3878// create binary file, rewriting existing file if required
3879int os::create_binary_file(const char* path, bool rewrite_existing) {
3880  int oflags = O_WRONLY | O_CREAT;
3881  if (!rewrite_existing) {
3882    oflags |= O_EXCL;
3883  }
3884  return ::open(path, oflags, S_IREAD | S_IWRITE);
3885}
3886
3887// return current position of file pointer
3888jlong os::current_file_offset(int fd) {
3889  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3890}
3891
3892// move file pointer to the specified offset
3893jlong os::seek_to_file_offset(int fd, jlong offset) {
3894  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3895}
3896
3897// This code originates from JDK's sysAvailable
3898// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3899
3900int os::available(int fd, jlong *bytes) {
3901  jlong cur, end;
3902  int mode;
3903  struct stat buf;
3904
3905  if (::fstat(fd, &buf) >= 0) {
3906    mode = buf.st_mode;
3907    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3908      /*
3909      * XXX: is the following call interruptible? If so, this might
3910      * need to go through the INTERRUPT_IO() wrapper as for other
3911      * blocking, interruptible calls in this file.
3912      */
3913      int n;
3914      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3915        *bytes = n;
3916        return 1;
3917      }
3918    }
3919  }
3920  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3921    return 0;
3922  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3923    return 0;
3924  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3925    return 0;
3926  }
3927  *bytes = end - cur;
3928  return 1;
3929}
3930
3931int os::socket_available(int fd, jint *pbytes) {
3932   if (fd < 0)
3933     return OS_OK;
3934
3935   int ret;
3936
3937   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3938
3939   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3940   // is expected to return 0 on failure and 1 on success to the jdk.
3941
3942   return (ret == OS_ERR) ? 0 : 1;
3943}
3944
3945// Map a block of memory.
3946char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3947                     char *addr, size_t bytes, bool read_only,
3948                     bool allow_exec) {
3949  int prot;
3950  int flags;
3951
3952  if (read_only) {
3953    prot = PROT_READ;
3954    flags = MAP_SHARED;
3955  } else {
3956    prot = PROT_READ | PROT_WRITE;
3957    flags = MAP_PRIVATE;
3958  }
3959
3960  if (allow_exec) {
3961    prot |= PROT_EXEC;
3962  }
3963
3964  if (addr != NULL) {
3965    flags |= MAP_FIXED;
3966  }
3967
3968  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3969                                     fd, file_offset);
3970  if (mapped_address == MAP_FAILED) {
3971    return NULL;
3972  }
3973  return mapped_address;
3974}
3975
3976
3977// Remap a block of memory.
3978char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3979                       char *addr, size_t bytes, bool read_only,
3980                       bool allow_exec) {
3981  // same as map_memory() on this OS
3982  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3983                        allow_exec);
3984}
3985
3986
3987// Unmap a block of memory.
3988bool os::pd_unmap_memory(char* addr, size_t bytes) {
3989  return munmap(addr, bytes) == 0;
3990}
3991
3992// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3993// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3994// of a thread.
3995//
3996// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3997// the fast estimate available on the platform.
3998
3999jlong os::current_thread_cpu_time() {
4000#ifdef __APPLE__
4001  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4002#else
4003  Unimplemented();
4004  return 0;
4005#endif
4006}
4007
4008jlong os::thread_cpu_time(Thread* thread) {
4009#ifdef __APPLE__
4010  return os::thread_cpu_time(thread, true /* user + sys */);
4011#else
4012  Unimplemented();
4013  return 0;
4014#endif
4015}
4016
4017jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4018#ifdef __APPLE__
4019  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4020#else
4021  Unimplemented();
4022  return 0;
4023#endif
4024}
4025
4026jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4027#ifdef __APPLE__
4028  struct thread_basic_info tinfo;
4029  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4030  kern_return_t kr;
4031  thread_t mach_thread;
4032
4033  mach_thread = thread->osthread()->thread_id();
4034  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4035  if (kr != KERN_SUCCESS)
4036    return -1;
4037
4038  if (user_sys_cpu_time) {
4039    jlong nanos;
4040    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4041    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4042    return nanos;
4043  } else {
4044    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4045  }
4046#else
4047  Unimplemented();
4048  return 0;
4049#endif
4050}
4051
4052
4053void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4054  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4055  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4056  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4057  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4058}
4059
4060void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4061  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4062  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4063  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4064  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4065}
4066
4067bool os::is_thread_cpu_time_supported() {
4068#ifdef __APPLE__
4069  return true;
4070#else
4071  return false;
4072#endif
4073}
4074
4075// System loadavg support.  Returns -1 if load average cannot be obtained.
4076// Bsd doesn't yet have a (official) notion of processor sets,
4077// so just return the system wide load average.
4078int os::loadavg(double loadavg[], int nelem) {
4079  return ::getloadavg(loadavg, nelem);
4080}
4081
4082void os::pause() {
4083  char filename[MAX_PATH];
4084  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4085    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4086  } else {
4087    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4088  }
4089
4090  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4091  if (fd != -1) {
4092    struct stat buf;
4093    ::close(fd);
4094    while (::stat(filename, &buf) == 0) {
4095      (void)::poll(NULL, 0, 100);
4096    }
4097  } else {
4098    jio_fprintf(stderr,
4099      "Could not open pause file '%s', continuing immediately.\n", filename);
4100  }
4101}
4102
4103
4104// Refer to the comments in os_solaris.cpp park-unpark.
4105//
4106// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4107// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4108// For specifics regarding the bug see GLIBC BUGID 261237 :
4109//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4110// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4111// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4112// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4113// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4114// and monitorenter when we're using 1-0 locking.  All those operations may result in
4115// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4116// of libpthread avoids the problem, but isn't practical.
4117//
4118// Possible remedies:
4119//
4120// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4121//      This is palliative and probabilistic, however.  If the thread is preempted
4122//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4123//      than the minimum period may have passed, and the abstime may be stale (in the
4124//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4125//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4126//
4127// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4128//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4129//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4130//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4131//      thread.
4132//
4133// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4134//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4135//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4136//      This also works well.  In fact it avoids kernel-level scalability impediments
4137//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4138//      timers in a graceful fashion.
4139//
4140// 4.   When the abstime value is in the past it appears that control returns
4141//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4142//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4143//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4144//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4145//      It may be possible to avoid reinitialization by checking the return
4146//      value from pthread_cond_timedwait().  In addition to reinitializing the
4147//      condvar we must establish the invariant that cond_signal() is only called
4148//      within critical sections protected by the adjunct mutex.  This prevents
4149//      cond_signal() from "seeing" a condvar that's in the midst of being
4150//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4151//      desirable signal-after-unlock optimization that avoids futile context switching.
4152//
4153//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4154//      structure when a condvar is used or initialized.  cond_destroy()  would
4155//      release the helper structure.  Our reinitialize-after-timedwait fix
4156//      put excessive stress on malloc/free and locks protecting the c-heap.
4157//
4158// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4159// It may be possible to refine (4) by checking the kernel and NTPL verisons
4160// and only enabling the work-around for vulnerable environments.
4161
4162// utility to compute the abstime argument to timedwait:
4163// millis is the relative timeout time
4164// abstime will be the absolute timeout time
4165// TODO: replace compute_abstime() with unpackTime()
4166
4167static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4168  if (millis < 0)  millis = 0;
4169  struct timeval now;
4170  int status = gettimeofday(&now, NULL);
4171  assert(status == 0, "gettimeofday");
4172  jlong seconds = millis / 1000;
4173  millis %= 1000;
4174  if (seconds > 50000000) { // see man cond_timedwait(3T)
4175    seconds = 50000000;
4176  }
4177  abstime->tv_sec = now.tv_sec  + seconds;
4178  long       usec = now.tv_usec + millis * 1000;
4179  if (usec >= 1000000) {
4180    abstime->tv_sec += 1;
4181    usec -= 1000000;
4182  }
4183  abstime->tv_nsec = usec * 1000;
4184  return abstime;
4185}
4186
4187
4188// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4189// Conceptually TryPark() should be equivalent to park(0).
4190
4191int os::PlatformEvent::TryPark() {
4192  for (;;) {
4193    const int v = _Event ;
4194    guarantee ((v == 0) || (v == 1), "invariant") ;
4195    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4196  }
4197}
4198
4199void os::PlatformEvent::park() {       // AKA "down()"
4200  // Invariant: Only the thread associated with the Event/PlatformEvent
4201  // may call park().
4202  // TODO: assert that _Assoc != NULL or _Assoc == Self
4203  int v ;
4204  for (;;) {
4205      v = _Event ;
4206      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4207  }
4208  guarantee (v >= 0, "invariant") ;
4209  if (v == 0) {
4210     // Do this the hard way by blocking ...
4211     int status = pthread_mutex_lock(_mutex);
4212     assert_status(status == 0, status, "mutex_lock");
4213     guarantee (_nParked == 0, "invariant") ;
4214     ++ _nParked ;
4215     while (_Event < 0) {
4216        status = pthread_cond_wait(_cond, _mutex);
4217        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4218        // Treat this the same as if the wait was interrupted
4219        if (status == ETIMEDOUT) { status = EINTR; }
4220        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4221     }
4222     -- _nParked ;
4223
4224    _Event = 0 ;
4225     status = pthread_mutex_unlock(_mutex);
4226     assert_status(status == 0, status, "mutex_unlock");
4227    // Paranoia to ensure our locked and lock-free paths interact
4228    // correctly with each other.
4229    OrderAccess::fence();
4230  }
4231  guarantee (_Event >= 0, "invariant") ;
4232}
4233
4234int os::PlatformEvent::park(jlong millis) {
4235  guarantee (_nParked == 0, "invariant") ;
4236
4237  int v ;
4238  for (;;) {
4239      v = _Event ;
4240      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4241  }
4242  guarantee (v >= 0, "invariant") ;
4243  if (v != 0) return OS_OK ;
4244
4245  // We do this the hard way, by blocking the thread.
4246  // Consider enforcing a minimum timeout value.
4247  struct timespec abst;
4248  compute_abstime(&abst, millis);
4249
4250  int ret = OS_TIMEOUT;
4251  int status = pthread_mutex_lock(_mutex);
4252  assert_status(status == 0, status, "mutex_lock");
4253  guarantee (_nParked == 0, "invariant") ;
4254  ++_nParked ;
4255
4256  // Object.wait(timo) will return because of
4257  // (a) notification
4258  // (b) timeout
4259  // (c) thread.interrupt
4260  //
4261  // Thread.interrupt and object.notify{All} both call Event::set.
4262  // That is, we treat thread.interrupt as a special case of notification.
4263  // The underlying Solaris implementation, cond_timedwait, admits
4264  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4265  // JVM from making those visible to Java code.  As such, we must
4266  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4267  //
4268  // TODO: properly differentiate simultaneous notify+interrupt.
4269  // In that case, we should propagate the notify to another waiter.
4270
4271  while (_Event < 0) {
4272    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4273    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4274      pthread_cond_destroy (_cond);
4275      pthread_cond_init (_cond, NULL) ;
4276    }
4277    assert_status(status == 0 || status == EINTR ||
4278                  status == ETIMEDOUT,
4279                  status, "cond_timedwait");
4280    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4281    if (status == ETIMEDOUT) break ;
4282    // We consume and ignore EINTR and spurious wakeups.
4283  }
4284  --_nParked ;
4285  if (_Event >= 0) {
4286     ret = OS_OK;
4287  }
4288  _Event = 0 ;
4289  status = pthread_mutex_unlock(_mutex);
4290  assert_status(status == 0, status, "mutex_unlock");
4291  assert (_nParked == 0, "invariant") ;
4292  // Paranoia to ensure our locked and lock-free paths interact
4293  // correctly with each other.
4294  OrderAccess::fence();
4295  return ret;
4296}
4297
4298void os::PlatformEvent::unpark() {
4299  // Transitions for _Event:
4300  //    0 :=> 1
4301  //    1 :=> 1
4302  //   -1 :=> either 0 or 1; must signal target thread
4303  //          That is, we can safely transition _Event from -1 to either
4304  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4305  //          unpark() calls.
4306  // See also: "Semaphores in Plan 9" by Mullender & Cox
4307  //
4308  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4309  // that it will take two back-to-back park() calls for the owning
4310  // thread to block. This has the benefit of forcing a spurious return
4311  // from the first park() call after an unpark() call which will help
4312  // shake out uses of park() and unpark() without condition variables.
4313
4314  if (Atomic::xchg(1, &_Event) >= 0) return;
4315
4316  // Wait for the thread associated with the event to vacate
4317  int status = pthread_mutex_lock(_mutex);
4318  assert_status(status == 0, status, "mutex_lock");
4319  int AnyWaiters = _nParked;
4320  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4321  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4322    AnyWaiters = 0;
4323    pthread_cond_signal(_cond);
4324  }
4325  status = pthread_mutex_unlock(_mutex);
4326  assert_status(status == 0, status, "mutex_unlock");
4327  if (AnyWaiters != 0) {
4328    status = pthread_cond_signal(_cond);
4329    assert_status(status == 0, status, "cond_signal");
4330  }
4331
4332  // Note that we signal() _after dropping the lock for "immortal" Events.
4333  // This is safe and avoids a common class of  futile wakeups.  In rare
4334  // circumstances this can cause a thread to return prematurely from
4335  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4336  // simply re-test the condition and re-park itself.
4337}
4338
4339
4340// JSR166
4341// -------------------------------------------------------
4342
4343/*
4344 * The solaris and bsd implementations of park/unpark are fairly
4345 * conservative for now, but can be improved. They currently use a
4346 * mutex/condvar pair, plus a a count.
4347 * Park decrements count if > 0, else does a condvar wait.  Unpark
4348 * sets count to 1 and signals condvar.  Only one thread ever waits
4349 * on the condvar. Contention seen when trying to park implies that someone
4350 * is unparking you, so don't wait. And spurious returns are fine, so there
4351 * is no need to track notifications.
4352 */
4353
4354#define MAX_SECS 100000000
4355/*
4356 * This code is common to bsd and solaris and will be moved to a
4357 * common place in dolphin.
4358 *
4359 * The passed in time value is either a relative time in nanoseconds
4360 * or an absolute time in milliseconds. Either way it has to be unpacked
4361 * into suitable seconds and nanoseconds components and stored in the
4362 * given timespec structure.
4363 * Given time is a 64-bit value and the time_t used in the timespec is only
4364 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4365 * overflow if times way in the future are given. Further on Solaris versions
4366 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4367 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4368 * As it will be 28 years before "now + 100000000" will overflow we can
4369 * ignore overflow and just impose a hard-limit on seconds using the value
4370 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4371 * years from "now".
4372 */
4373
4374static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4375  assert (time > 0, "convertTime");
4376
4377  struct timeval now;
4378  int status = gettimeofday(&now, NULL);
4379  assert(status == 0, "gettimeofday");
4380
4381  time_t max_secs = now.tv_sec + MAX_SECS;
4382
4383  if (isAbsolute) {
4384    jlong secs = time / 1000;
4385    if (secs > max_secs) {
4386      absTime->tv_sec = max_secs;
4387    }
4388    else {
4389      absTime->tv_sec = secs;
4390    }
4391    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4392  }
4393  else {
4394    jlong secs = time / NANOSECS_PER_SEC;
4395    if (secs >= MAX_SECS) {
4396      absTime->tv_sec = max_secs;
4397      absTime->tv_nsec = 0;
4398    }
4399    else {
4400      absTime->tv_sec = now.tv_sec + secs;
4401      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4402      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4403        absTime->tv_nsec -= NANOSECS_PER_SEC;
4404        ++absTime->tv_sec; // note: this must be <= max_secs
4405      }
4406    }
4407  }
4408  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4409  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4410  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4411  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4412}
4413
4414void Parker::park(bool isAbsolute, jlong time) {
4415  // Ideally we'd do something useful while spinning, such
4416  // as calling unpackTime().
4417
4418  // Optional fast-path check:
4419  // Return immediately if a permit is available.
4420  // We depend on Atomic::xchg() having full barrier semantics
4421  // since we are doing a lock-free update to _counter.
4422  if (Atomic::xchg(0, &_counter) > 0) return;
4423
4424  Thread* thread = Thread::current();
4425  assert(thread->is_Java_thread(), "Must be JavaThread");
4426  JavaThread *jt = (JavaThread *)thread;
4427
4428  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4429  // Check interrupt before trying to wait
4430  if (Thread::is_interrupted(thread, false)) {
4431    return;
4432  }
4433
4434  // Next, demultiplex/decode time arguments
4435  struct timespec absTime;
4436  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4437    return;
4438  }
4439  if (time > 0) {
4440    unpackTime(&absTime, isAbsolute, time);
4441  }
4442
4443
4444  // Enter safepoint region
4445  // Beware of deadlocks such as 6317397.
4446  // The per-thread Parker:: mutex is a classic leaf-lock.
4447  // In particular a thread must never block on the Threads_lock while
4448  // holding the Parker:: mutex.  If safepoints are pending both the
4449  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4450  ThreadBlockInVM tbivm(jt);
4451
4452  // Don't wait if cannot get lock since interference arises from
4453  // unblocking.  Also. check interrupt before trying wait
4454  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4455    return;
4456  }
4457
4458  int status ;
4459  if (_counter > 0)  { // no wait needed
4460    _counter = 0;
4461    status = pthread_mutex_unlock(_mutex);
4462    assert (status == 0, "invariant") ;
4463    // Paranoia to ensure our locked and lock-free paths interact
4464    // correctly with each other and Java-level accesses.
4465    OrderAccess::fence();
4466    return;
4467  }
4468
4469#ifdef ASSERT
4470  // Don't catch signals while blocked; let the running threads have the signals.
4471  // (This allows a debugger to break into the running thread.)
4472  sigset_t oldsigs;
4473  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4474  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4475#endif
4476
4477  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4478  jt->set_suspend_equivalent();
4479  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4480
4481  if (time == 0) {
4482    status = pthread_cond_wait (_cond, _mutex) ;
4483  } else {
4484    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4485    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4486      pthread_cond_destroy (_cond) ;
4487      pthread_cond_init    (_cond, NULL);
4488    }
4489  }
4490  assert_status(status == 0 || status == EINTR ||
4491                status == ETIMEDOUT,
4492                status, "cond_timedwait");
4493
4494#ifdef ASSERT
4495  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4496#endif
4497
4498  _counter = 0 ;
4499  status = pthread_mutex_unlock(_mutex) ;
4500  assert_status(status == 0, status, "invariant") ;
4501  // Paranoia to ensure our locked and lock-free paths interact
4502  // correctly with each other and Java-level accesses.
4503  OrderAccess::fence();
4504
4505  // If externally suspended while waiting, re-suspend
4506  if (jt->handle_special_suspend_equivalent_condition()) {
4507    jt->java_suspend_self();
4508  }
4509}
4510
4511void Parker::unpark() {
4512  int s, status ;
4513  status = pthread_mutex_lock(_mutex);
4514  assert (status == 0, "invariant") ;
4515  s = _counter;
4516  _counter = 1;
4517  if (s < 1) {
4518     if (WorkAroundNPTLTimedWaitHang) {
4519        status = pthread_cond_signal (_cond) ;
4520        assert (status == 0, "invariant") ;
4521        status = pthread_mutex_unlock(_mutex);
4522        assert (status == 0, "invariant") ;
4523     } else {
4524        status = pthread_mutex_unlock(_mutex);
4525        assert (status == 0, "invariant") ;
4526        status = pthread_cond_signal (_cond) ;
4527        assert (status == 0, "invariant") ;
4528     }
4529  } else {
4530    pthread_mutex_unlock(_mutex);
4531    assert (status == 0, "invariant") ;
4532  }
4533}
4534
4535
4536/* Darwin has no "environ" in a dynamic library. */
4537#ifdef __APPLE__
4538#include <crt_externs.h>
4539#define environ (*_NSGetEnviron())
4540#else
4541extern char** environ;
4542#endif
4543
4544// Run the specified command in a separate process. Return its exit value,
4545// or -1 on failure (e.g. can't fork a new process).
4546// Unlike system(), this function can be called from signal handler. It
4547// doesn't block SIGINT et al.
4548int os::fork_and_exec(char* cmd) {
4549  const char * argv[4] = {"sh", "-c", cmd, NULL};
4550
4551  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4552  // pthread_atfork handlers and reset pthread library. All we need is a
4553  // separate process to execve. Make a direct syscall to fork process.
4554  // On IA64 there's no fork syscall, we have to use fork() and hope for
4555  // the best...
4556  pid_t pid = fork();
4557
4558  if (pid < 0) {
4559    // fork failed
4560    return -1;
4561
4562  } else if (pid == 0) {
4563    // child process
4564
4565    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4566    // first to kill every thread on the thread list. Because this list is
4567    // not reset by fork() (see notes above), execve() will instead kill
4568    // every thread in the parent process. We know this is the only thread
4569    // in the new process, so make a system call directly.
4570    // IA64 should use normal execve() from glibc to match the glibc fork()
4571    // above.
4572    execve("/bin/sh", (char* const*)argv, environ);
4573
4574    // execve failed
4575    _exit(-1);
4576
4577  } else  {
4578    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4579    // care about the actual exit code, for now.
4580
4581    int status;
4582
4583    // Wait for the child process to exit.  This returns immediately if
4584    // the child has already exited. */
4585    while (waitpid(pid, &status, 0) < 0) {
4586        switch (errno) {
4587        case ECHILD: return 0;
4588        case EINTR: break;
4589        default: return -1;
4590        }
4591    }
4592
4593    if (WIFEXITED(status)) {
4594       // The child exited normally; get its exit code.
4595       return WEXITSTATUS(status);
4596    } else if (WIFSIGNALED(status)) {
4597       // The child exited because of a signal
4598       // The best value to return is 0x80 + signal number,
4599       // because that is what all Unix shells do, and because
4600       // it allows callers to distinguish between process exit and
4601       // process death by signal.
4602       return 0x80 + WTERMSIG(status);
4603    } else {
4604       // Unknown exit code; pass it through
4605       return status;
4606    }
4607  }
4608}
4609
4610// is_headless_jre()
4611//
4612// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4613// in order to report if we are running in a headless jre
4614//
4615// Since JDK8 xawt/libmawt.so was moved into the same directory
4616// as libawt.so, and renamed libawt_xawt.so
4617//
4618bool os::is_headless_jre() {
4619#ifdef __APPLE__
4620    // We no longer build headless-only on Mac OS X
4621    return false;
4622#else
4623    struct stat statbuf;
4624    char buf[MAXPATHLEN];
4625    char libmawtpath[MAXPATHLEN];
4626    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4627    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4628    char *p;
4629
4630    // Get path to libjvm.so
4631    os::jvm_path(buf, sizeof(buf));
4632
4633    // Get rid of libjvm.so
4634    p = strrchr(buf, '/');
4635    if (p == NULL) return false;
4636    else *p = '\0';
4637
4638    // Get rid of client or server
4639    p = strrchr(buf, '/');
4640    if (p == NULL) return false;
4641    else *p = '\0';
4642
4643    // check xawt/libmawt.so
4644    strcpy(libmawtpath, buf);
4645    strcat(libmawtpath, xawtstr);
4646    if (::stat(libmawtpath, &statbuf) == 0) return false;
4647
4648    // check libawt_xawt.so
4649    strcpy(libmawtpath, buf);
4650    strcat(libmawtpath, new_xawtstr);
4651    if (::stat(libmawtpath, &statbuf) == 0) return false;
4652
4653    return true;
4654#endif
4655}
4656
4657// Get the default path to the core file
4658// Returns the length of the string
4659int os::get_core_path(char* buffer, size_t bufferSize) {
4660  int n = jio_snprintf(buffer, bufferSize, "/cores");
4661
4662  // Truncate if theoretical string was longer than bufferSize
4663  n = MIN2(n, (int)bufferSize);
4664
4665  return n;
4666}
4667
4668#ifndef PRODUCT
4669void TestReserveMemorySpecial_test() {
4670  // No tests available for this platform
4671}
4672#endif
4673