os_bsd.cpp revision 10835:a6b1b83401c7
11590Srgrimes/*
21590Srgrimes * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
31590Srgrimes * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
41590Srgrimes *
51590Srgrimes * This code is free software; you can redistribute it and/or modify it
61590Srgrimes * under the terms of the GNU General Public License version 2 only, as
71590Srgrimes * published by the Free Software Foundation.
81590Srgrimes *
91590Srgrimes * This code is distributed in the hope that it will be useful, but WITHOUT
101590Srgrimes * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
111590Srgrimes * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
121590Srgrimes * version 2 for more details (a copy is included in the LICENSE file that
131590Srgrimes * accompanied this code).
141590Srgrimes *
151590Srgrimes * You should have received a copy of the GNU General Public License version
161590Srgrimes * 2 along with this work; if not, write to the Free Software Foundation,
171590Srgrimes * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
181590Srgrimes *
191590Srgrimes * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
201590Srgrimes * or visit www.oracle.com if you need additional information or have any
211590Srgrimes * questions.
221590Srgrimes *
231590Srgrimes */
241590Srgrimes
251590Srgrimes// no precompiled headers
261590Srgrimes#include "classfile/classLoader.hpp"
271590Srgrimes#include "classfile/systemDictionary.hpp"
281590Srgrimes#include "classfile/vmSymbols.hpp"
29216370Sjoel#include "code/icBuffer.hpp"
30216370Sjoel#include "code/vtableStubs.hpp"
311590Srgrimes#include "compiler/compileBroker.hpp"
321590Srgrimes#include "compiler/disassembler.hpp"
331590Srgrimes#include "interpreter/interpreter.hpp"
341590Srgrimes#include "jvm_bsd.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_bsd.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_bsd.inline.hpp"
41#include "os_share_bsd.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_bsd.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <sys/types.h>
75# include <sys/mman.h>
76# include <sys/stat.h>
77# include <sys/select.h>
78# include <pthread.h>
79# include <signal.h>
80# include <errno.h>
81# include <dlfcn.h>
82# include <stdio.h>
83# include <unistd.h>
84# include <sys/resource.h>
85# include <pthread.h>
86# include <sys/stat.h>
87# include <sys/time.h>
88# include <sys/times.h>
89# include <sys/utsname.h>
90# include <sys/socket.h>
91# include <sys/wait.h>
92# include <time.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <sys/param.h>
99# include <sys/sysctl.h>
100# include <sys/ipc.h>
101# include <sys/shm.h>
102#ifndef __APPLE__
103# include <link.h>
104#endif
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108# include <sys/syscall.h>
109
110#if defined(__FreeBSD__) || defined(__NetBSD__)
111  #include <elf.h>
112#endif
113
114#ifdef __APPLE__
115  #include <mach/mach.h> // semaphore_* API
116  #include <mach-o/dyld.h>
117  #include <sys/proc_info.h>
118  #include <objc/objc-auto.h>
119#endif
120
121#ifndef MAP_ANONYMOUS
122  #define MAP_ANONYMOUS MAP_ANON
123#endif
124
125#define MAX_PATH    (2 * K)
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#define LARGEPAGES_BIT (1 << 6)
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193// Return true if user is running as root.
194
195bool os::have_special_privileges() {
196  static bool init = false;
197  static bool privileges = false;
198  if (!init) {
199    privileges = (getuid() != geteuid()) || (getgid() != getegid());
200    init = true;
201  }
202  return privileges;
203}
204
205
206
207// Cpu architecture string
208#if   defined(ZERO)
209static char cpu_arch[] = ZERO_LIBARCH;
210#elif defined(IA64)
211static char cpu_arch[] = "ia64";
212#elif defined(IA32)
213static char cpu_arch[] = "i386";
214#elif defined(AMD64)
215static char cpu_arch[] = "amd64";
216#elif defined(ARM)
217static char cpu_arch[] = "arm";
218#elif defined(PPC32)
219static char cpu_arch[] = "ppc";
220#elif defined(SPARC)
221  #ifdef _LP64
222static char cpu_arch[] = "sparcv9";
223  #else
224static char cpu_arch[] = "sparc";
225  #endif
226#else
227  #error Add appropriate cpu_arch setting
228#endif
229
230// Compiler variant
231#ifdef COMPILER2
232  #define COMPILER_VARIANT "server"
233#else
234  #define COMPILER_VARIANT "client"
235#endif
236
237
238void os::Bsd::initialize_system_info() {
239  int mib[2];
240  size_t len;
241  int cpu_val;
242  julong mem_val;
243
244  // get processors count via hw.ncpus sysctl
245  mib[0] = CTL_HW;
246  mib[1] = HW_NCPU;
247  len = sizeof(cpu_val);
248  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
249    assert(len == sizeof(cpu_val), "unexpected data size");
250    set_processor_count(cpu_val);
251  } else {
252    set_processor_count(1);   // fallback
253  }
254
255  // get physical memory via hw.memsize sysctl (hw.memsize is used
256  // since it returns a 64 bit value)
257  mib[0] = CTL_HW;
258
259#if defined (HW_MEMSIZE) // Apple
260  mib[1] = HW_MEMSIZE;
261#elif defined(HW_PHYSMEM) // Most of BSD
262  mib[1] = HW_PHYSMEM;
263#elif defined(HW_REALMEM) // Old FreeBSD
264  mib[1] = HW_REALMEM;
265#else
266  #error No ways to get physmem
267#endif
268
269  len = sizeof(mem_val);
270  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
271    assert(len == sizeof(mem_val), "unexpected data size");
272    _physical_memory = mem_val;
273  } else {
274    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
275  }
276
277#ifdef __OpenBSD__
278  {
279    // limit _physical_memory memory view on OpenBSD since
280    // datasize rlimit restricts us anyway.
281    struct rlimit limits;
282    getrlimit(RLIMIT_DATA, &limits);
283    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
284  }
285#endif
286}
287
288#ifdef __APPLE__
289static const char *get_home() {
290  const char *home_dir = ::getenv("HOME");
291  if ((home_dir == NULL) || (*home_dir == '\0')) {
292    struct passwd *passwd_info = getpwuid(geteuid());
293    if (passwd_info != NULL) {
294      home_dir = passwd_info->pw_dir;
295    }
296  }
297
298  return home_dir;
299}
300#endif
301
302void os::init_system_properties_values() {
303  // The next steps are taken in the product version:
304  //
305  // Obtain the JAVA_HOME value from the location of libjvm.so.
306  // This library should be located at:
307  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
308  //
309  // If "/jre/lib/" appears at the right place in the path, then we
310  // assume libjvm.so is installed in a JDK and we use this path.
311  //
312  // Otherwise exit with message: "Could not create the Java virtual machine."
313  //
314  // The following extra steps are taken in the debugging version:
315  //
316  // If "/jre/lib/" does NOT appear at the right place in the path
317  // instead of exit check for $JAVA_HOME environment variable.
318  //
319  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
320  // then we append a fake suffix "hotspot/libjvm.so" to this path so
321  // it looks like libjvm.so is installed there
322  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
323  //
324  // Otherwise exit.
325  //
326  // Important note: if the location of libjvm.so changes this
327  // code needs to be changed accordingly.
328
329  // See ld(1):
330  //      The linker uses the following search paths to locate required
331  //      shared libraries:
332  //        1: ...
333  //        ...
334  //        7: The default directories, normally /lib and /usr/lib.
335#ifndef DEFAULT_LIBPATH
336  #define DEFAULT_LIBPATH "/lib:/usr/lib"
337#endif
338
339// Base path of extensions installed on the system.
340#define SYS_EXT_DIR     "/usr/java/packages"
341#define EXTENSIONS_DIR  "/lib/ext"
342
343#ifndef __APPLE__
344
345  // Buffer that fits several sprintfs.
346  // Note that the space for the colon and the trailing null are provided
347  // by the nulls included by the sizeof operator.
348  const size_t bufsize =
349    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
350         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
351  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
352
353  // sysclasspath, java_home, dll_dir
354  {
355    char *pslash;
356    os::jvm_path(buf, bufsize);
357
358    // Found the full path to libjvm.so.
359    // Now cut the path to <java_home>/jre if we can.
360    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
361    pslash = strrchr(buf, '/');
362    if (pslash != NULL) {
363      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
364    }
365    Arguments::set_dll_dir(buf);
366
367    if (pslash != NULL) {
368      pslash = strrchr(buf, '/');
369      if (pslash != NULL) {
370        *pslash = '\0';          // Get rid of /<arch>.
371        pslash = strrchr(buf, '/');
372        if (pslash != NULL) {
373          *pslash = '\0';        // Get rid of /lib.
374        }
375      }
376    }
377    Arguments::set_java_home(buf);
378    set_boot_path('/', ':');
379  }
380
381  // Where to look for native libraries.
382  //
383  // Note: Due to a legacy implementation, most of the library path
384  // is set in the launcher. This was to accomodate linking restrictions
385  // on legacy Bsd implementations (which are no longer supported).
386  // Eventually, all the library path setting will be done here.
387  //
388  // However, to prevent the proliferation of improperly built native
389  // libraries, the new path component /usr/java/packages is added here.
390  // Eventually, all the library path setting will be done here.
391  {
392    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
393    // should always exist (until the legacy problem cited above is
394    // addressed).
395    const char *v = ::getenv("LD_LIBRARY_PATH");
396    const char *v_colon = ":";
397    if (v == NULL) { v = ""; v_colon = ""; }
398    // That's +1 for the colon and +1 for the trailing '\0'.
399    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
400                                                     strlen(v) + 1 +
401                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
402                                                     mtInternal);
403    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
404    Arguments::set_library_path(ld_library_path);
405    FREE_C_HEAP_ARRAY(char, ld_library_path);
406  }
407
408  // Extensions directories.
409  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
410  Arguments::set_ext_dirs(buf);
411
412  FREE_C_HEAP_ARRAY(char, buf);
413
414#else // __APPLE__
415
416  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
417  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
418
419  const char *user_home_dir = get_home();
420  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
421  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
422    sizeof(SYS_EXTENSIONS_DIRS);
423
424  // Buffer that fits several sprintfs.
425  // Note that the space for the colon and the trailing null are provided
426  // by the nulls included by the sizeof operator.
427  const size_t bufsize =
428    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
429         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
430  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
431
432  // sysclasspath, java_home, dll_dir
433  {
434    char *pslash;
435    os::jvm_path(buf, bufsize);
436
437    // Found the full path to libjvm.so.
438    // Now cut the path to <java_home>/jre if we can.
439    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
440    pslash = strrchr(buf, '/');
441    if (pslash != NULL) {
442      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
443    }
444#ifdef STATIC_BUILD
445    strcat(buf, "/lib");
446#endif
447
448    Arguments::set_dll_dir(buf);
449
450    if (pslash != NULL) {
451      pslash = strrchr(buf, '/');
452      if (pslash != NULL) {
453        *pslash = '\0';          // Get rid of /lib.
454      }
455    }
456    Arguments::set_java_home(buf);
457    set_boot_path('/', ':');
458  }
459
460  // Where to look for native libraries.
461  //
462  // Note: Due to a legacy implementation, most of the library path
463  // is set in the launcher. This was to accomodate linking restrictions
464  // on legacy Bsd implementations (which are no longer supported).
465  // Eventually, all the library path setting will be done here.
466  //
467  // However, to prevent the proliferation of improperly built native
468  // libraries, the new path component /usr/java/packages is added here.
469  // Eventually, all the library path setting will be done here.
470  {
471    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
472    // should always exist (until the legacy problem cited above is
473    // addressed).
474    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
475    // can specify a directory inside an app wrapper
476    const char *l = ::getenv("JAVA_LIBRARY_PATH");
477    const char *l_colon = ":";
478    if (l == NULL) { l = ""; l_colon = ""; }
479
480    const char *v = ::getenv("DYLD_LIBRARY_PATH");
481    const char *v_colon = ":";
482    if (v == NULL) { v = ""; v_colon = ""; }
483
484    // Apple's Java6 has "." at the beginning of java.library.path.
485    // OpenJDK on Windows has "." at the end of java.library.path.
486    // OpenJDK on Linux and Solaris don't have "." in java.library.path
487    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
488    // "." is appended to the end of java.library.path. Yes, this
489    // could cause a change in behavior, but Apple's Java6 behavior
490    // can be achieved by putting "." at the beginning of the
491    // JAVA_LIBRARY_PATH environment variable.
492    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
493                                                     strlen(v) + 1 + strlen(l) + 1 +
494                                                     system_ext_size + 3,
495                                                     mtInternal);
496    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
497            v, v_colon, l, l_colon, user_home_dir);
498    Arguments::set_library_path(ld_library_path);
499    FREE_C_HEAP_ARRAY(char, ld_library_path);
500  }
501
502  // Extensions directories.
503  //
504  // Note that the space for the colon and the trailing null are provided
505  // by the nulls included by the sizeof operator (so actually one byte more
506  // than necessary is allocated).
507  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
508          user_home_dir, Arguments::get_java_home());
509  Arguments::set_ext_dirs(buf);
510
511  FREE_C_HEAP_ARRAY(char, buf);
512
513#undef SYS_EXTENSIONS_DIR
514#undef SYS_EXTENSIONS_DIRS
515
516#endif // __APPLE__
517
518#undef SYS_EXT_DIR
519#undef EXTENSIONS_DIR
520}
521
522////////////////////////////////////////////////////////////////////////////////
523// breakpoint support
524
525void os::breakpoint() {
526  BREAKPOINT;
527}
528
529extern "C" void breakpoint() {
530  // use debugger to set breakpoint here
531}
532
533////////////////////////////////////////////////////////////////////////////////
534// signal support
535
536debug_only(static bool signal_sets_initialized = false);
537static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
538
539bool os::Bsd::is_sig_ignored(int sig) {
540  struct sigaction oact;
541  sigaction(sig, (struct sigaction*)NULL, &oact);
542  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
543                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
544  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
545    return true;
546  } else {
547    return false;
548  }
549}
550
551void os::Bsd::signal_sets_init() {
552  // Should also have an assertion stating we are still single-threaded.
553  assert(!signal_sets_initialized, "Already initialized");
554  // Fill in signals that are necessarily unblocked for all threads in
555  // the VM. Currently, we unblock the following signals:
556  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
557  //                         by -Xrs (=ReduceSignalUsage));
558  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
559  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
560  // the dispositions or masks wrt these signals.
561  // Programs embedding the VM that want to use the above signals for their
562  // own purposes must, at this time, use the "-Xrs" option to prevent
563  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
564  // (See bug 4345157, and other related bugs).
565  // In reality, though, unblocking these signals is really a nop, since
566  // these signals are not blocked by default.
567  sigemptyset(&unblocked_sigs);
568  sigemptyset(&allowdebug_blocked_sigs);
569  sigaddset(&unblocked_sigs, SIGILL);
570  sigaddset(&unblocked_sigs, SIGSEGV);
571  sigaddset(&unblocked_sigs, SIGBUS);
572  sigaddset(&unblocked_sigs, SIGFPE);
573  sigaddset(&unblocked_sigs, SR_signum);
574
575  if (!ReduceSignalUsage) {
576    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
577      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
578      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
579    }
580    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
581      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
582      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
583    }
584    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
585      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
586      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
587    }
588  }
589  // Fill in signals that are blocked by all but the VM thread.
590  sigemptyset(&vm_sigs);
591  if (!ReduceSignalUsage) {
592    sigaddset(&vm_sigs, BREAK_SIGNAL);
593  }
594  debug_only(signal_sets_initialized = true);
595
596}
597
598// These are signals that are unblocked while a thread is running Java.
599// (For some reason, they get blocked by default.)
600sigset_t* os::Bsd::unblocked_signals() {
601  assert(signal_sets_initialized, "Not initialized");
602  return &unblocked_sigs;
603}
604
605// These are the signals that are blocked while a (non-VM) thread is
606// running Java. Only the VM thread handles these signals.
607sigset_t* os::Bsd::vm_signals() {
608  assert(signal_sets_initialized, "Not initialized");
609  return &vm_sigs;
610}
611
612// These are signals that are blocked during cond_wait to allow debugger in
613sigset_t* os::Bsd::allowdebug_blocked_signals() {
614  assert(signal_sets_initialized, "Not initialized");
615  return &allowdebug_blocked_sigs;
616}
617
618void os::Bsd::hotspot_sigmask(Thread* thread) {
619
620  //Save caller's signal mask before setting VM signal mask
621  sigset_t caller_sigmask;
622  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
623
624  OSThread* osthread = thread->osthread();
625  osthread->set_caller_sigmask(caller_sigmask);
626
627  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
628
629  if (!ReduceSignalUsage) {
630    if (thread->is_VM_thread()) {
631      // Only the VM thread handles BREAK_SIGNAL ...
632      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
633    } else {
634      // ... all other threads block BREAK_SIGNAL
635      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
636    }
637  }
638}
639
640
641//////////////////////////////////////////////////////////////////////////////
642// create new thread
643
644#ifdef __APPLE__
645// library handle for calling objc_registerThreadWithCollector()
646// without static linking to the libobjc library
647  #define OBJC_LIB "/usr/lib/libobjc.dylib"
648  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
649typedef void (*objc_registerThreadWithCollector_t)();
650extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
651objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
652#endif
653
654#ifdef __APPLE__
655static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
656  // Additional thread_id used to correlate threads in SA
657  thread_identifier_info_data_t     m_ident_info;
658  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
659
660  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
661              (thread_info_t) &m_ident_info, &count);
662
663  return m_ident_info.thread_id;
664}
665#endif
666
667// Thread start routine for all newly created threads
668static void *java_start(Thread *thread) {
669  // Try to randomize the cache line index of hot stack frames.
670  // This helps when threads of the same stack traces evict each other's
671  // cache lines. The threads can be either from the same JVM instance, or
672  // from different JVM instances. The benefit is especially true for
673  // processors with hyperthreading technology.
674  static int counter = 0;
675  int pid = os::current_process_id();
676  alloca(((pid ^ counter++) & 7) * 128);
677
678  thread->initialize_thread_current();
679
680  OSThread* osthread = thread->osthread();
681  Monitor* sync = osthread->startThread_lock();
682
683  osthread->set_thread_id(os::Bsd::gettid());
684
685  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
686    os::current_thread_id(), (uintx) pthread_self());
687
688#ifdef __APPLE__
689  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
690  guarantee(unique_thread_id != 0, "unique thread id was not found");
691  osthread->set_unique_thread_id(unique_thread_id);
692#endif
693  // initialize signal mask for this thread
694  os::Bsd::hotspot_sigmask(thread);
695
696  // initialize floating point control register
697  os::Bsd::init_thread_fpu_state();
698
699#ifdef __APPLE__
700  // register thread with objc gc
701  if (objc_registerThreadWithCollectorFunction != NULL) {
702    objc_registerThreadWithCollectorFunction();
703  }
704#endif
705
706  // handshaking with parent thread
707  {
708    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
709
710    // notify parent thread
711    osthread->set_state(INITIALIZED);
712    sync->notify_all();
713
714    // wait until os::start_thread()
715    while (osthread->get_state() == INITIALIZED) {
716      sync->wait(Mutex::_no_safepoint_check_flag);
717    }
718  }
719
720  // call one more level start routine
721  thread->run();
722
723  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
724    os::current_thread_id(), (uintx) pthread_self());
725
726  return 0;
727}
728
729bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
730  assert(thread->osthread() == NULL, "caller responsible");
731
732  // Allocate the OSThread object
733  OSThread* osthread = new OSThread(NULL, NULL);
734  if (osthread == NULL) {
735    return false;
736  }
737
738  // set the correct thread state
739  osthread->set_thread_type(thr_type);
740
741  // Initial state is ALLOCATED but not INITIALIZED
742  osthread->set_state(ALLOCATED);
743
744  thread->set_osthread(osthread);
745
746  // init thread attributes
747  pthread_attr_t attr;
748  pthread_attr_init(&attr);
749  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
750
751  // calculate stack size if it's not specified by caller
752  if (stack_size == 0) {
753    stack_size = os::Bsd::default_stack_size(thr_type);
754
755    switch (thr_type) {
756    case os::java_thread:
757      // Java threads use ThreadStackSize which default value can be
758      // changed with the flag -Xss
759      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
760      stack_size = JavaThread::stack_size_at_create();
761      break;
762    case os::compiler_thread:
763      if (CompilerThreadStackSize > 0) {
764        stack_size = (size_t)(CompilerThreadStackSize * K);
765        break;
766      } // else fall through:
767        // use VMThreadStackSize if CompilerThreadStackSize is not defined
768    case os::vm_thread:
769    case os::pgc_thread:
770    case os::cgc_thread:
771    case os::watcher_thread:
772      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
773      break;
774    }
775  }
776
777  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
778  pthread_attr_setstacksize(&attr, stack_size);
779
780  ThreadState state;
781
782  {
783    pthread_t tid;
784    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
785
786    char buf[64];
787    if (ret == 0) {
788      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
789        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
790    } else {
791      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
792        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
793    }
794
795    pthread_attr_destroy(&attr);
796
797    if (ret != 0) {
798      // Need to clean up stuff we've allocated so far
799      thread->set_osthread(NULL);
800      delete osthread;
801      return false;
802    }
803
804    // Store pthread info into the OSThread
805    osthread->set_pthread_id(tid);
806
807    // Wait until child thread is either initialized or aborted
808    {
809      Monitor* sync_with_child = osthread->startThread_lock();
810      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
811      while ((state = osthread->get_state()) == ALLOCATED) {
812        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
813      }
814    }
815
816  }
817
818  // Aborted due to thread limit being reached
819  if (state == ZOMBIE) {
820    thread->set_osthread(NULL);
821    delete osthread;
822    return false;
823  }
824
825  // The thread is returned suspended (in state INITIALIZED),
826  // and is started higher up in the call chain
827  assert(state == INITIALIZED, "race condition");
828  return true;
829}
830
831/////////////////////////////////////////////////////////////////////////////
832// attach existing thread
833
834// bootstrap the main thread
835bool os::create_main_thread(JavaThread* thread) {
836  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
837  return create_attached_thread(thread);
838}
839
840bool os::create_attached_thread(JavaThread* thread) {
841#ifdef ASSERT
842  thread->verify_not_published();
843#endif
844
845  // Allocate the OSThread object
846  OSThread* osthread = new OSThread(NULL, NULL);
847
848  if (osthread == NULL) {
849    return false;
850  }
851
852  osthread->set_thread_id(os::Bsd::gettid());
853
854  // Store pthread info into the OSThread
855#ifdef __APPLE__
856  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
857  guarantee(unique_thread_id != 0, "just checking");
858  osthread->set_unique_thread_id(unique_thread_id);
859#endif
860  osthread->set_pthread_id(::pthread_self());
861
862  // initialize floating point control register
863  os::Bsd::init_thread_fpu_state();
864
865  // Initial thread state is RUNNABLE
866  osthread->set_state(RUNNABLE);
867
868  thread->set_osthread(osthread);
869
870  // initialize signal mask for this thread
871  // and save the caller's signal mask
872  os::Bsd::hotspot_sigmask(thread);
873
874  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
875    os::current_thread_id(), (uintx) pthread_self());
876
877  return true;
878}
879
880void os::pd_start_thread(Thread* thread) {
881  OSThread * osthread = thread->osthread();
882  assert(osthread->get_state() != INITIALIZED, "just checking");
883  Monitor* sync_with_child = osthread->startThread_lock();
884  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
885  sync_with_child->notify();
886}
887
888// Free Bsd resources related to the OSThread
889void os::free_thread(OSThread* osthread) {
890  assert(osthread != NULL, "osthread not set");
891
892  if (Thread::current()->osthread() == osthread) {
893    // Restore caller's signal mask
894    sigset_t sigmask = osthread->caller_sigmask();
895    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
896  }
897
898  delete osthread;
899}
900
901////////////////////////////////////////////////////////////////////////////////
902// time support
903
904// Time since start-up in seconds to a fine granularity.
905// Used by VMSelfDestructTimer and the MemProfiler.
906double os::elapsedTime() {
907
908  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
909}
910
911jlong os::elapsed_counter() {
912  return javaTimeNanos() - initial_time_count;
913}
914
915jlong os::elapsed_frequency() {
916  return NANOSECS_PER_SEC; // nanosecond resolution
917}
918
919bool os::supports_vtime() { return true; }
920bool os::enable_vtime()   { return false; }
921bool os::vtime_enabled()  { return false; }
922
923double os::elapsedVTime() {
924  // better than nothing, but not much
925  return elapsedTime();
926}
927
928jlong os::javaTimeMillis() {
929  timeval time;
930  int status = gettimeofday(&time, NULL);
931  assert(status != -1, "bsd error");
932  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
933}
934
935void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
936  timeval time;
937  int status = gettimeofday(&time, NULL);
938  assert(status != -1, "bsd error");
939  seconds = jlong(time.tv_sec);
940  nanos = jlong(time.tv_usec) * 1000;
941}
942
943#ifndef __APPLE__
944  #ifndef CLOCK_MONOTONIC
945    #define CLOCK_MONOTONIC (1)
946  #endif
947#endif
948
949#ifdef __APPLE__
950void os::Bsd::clock_init() {
951  mach_timebase_info(&_timebase_info);
952}
953#else
954void os::Bsd::clock_init() {
955  struct timespec res;
956  struct timespec tp;
957  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
958      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
959    // yes, monotonic clock is supported
960    _clock_gettime = ::clock_gettime;
961  }
962}
963#endif
964
965
966
967#ifdef __APPLE__
968
969jlong os::javaTimeNanos() {
970  const uint64_t tm = mach_absolute_time();
971  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
972  const uint64_t prev = Bsd::_max_abstime;
973  if (now <= prev) {
974    return prev;   // same or retrograde time;
975  }
976  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
977  assert(obsv >= prev, "invariant");   // Monotonicity
978  // If the CAS succeeded then we're done and return "now".
979  // If the CAS failed and the observed value "obsv" is >= now then
980  // we should return "obsv".  If the CAS failed and now > obsv > prv then
981  // some other thread raced this thread and installed a new value, in which case
982  // we could either (a) retry the entire operation, (b) retry trying to install now
983  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
984  // we might discard a higher "now" value in deference to a slightly lower but freshly
985  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
986  // to (a) or (b) -- and greatly reduces coherence traffic.
987  // We might also condition (c) on the magnitude of the delta between obsv and now.
988  // Avoiding excessive CAS operations to hot RW locations is critical.
989  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
990  return (prev == obsv) ? now : obsv;
991}
992
993#else // __APPLE__
994
995jlong os::javaTimeNanos() {
996  if (os::supports_monotonic_clock()) {
997    struct timespec tp;
998    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
999    assert(status == 0, "gettime error");
1000    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1001    return result;
1002  } else {
1003    timeval time;
1004    int status = gettimeofday(&time, NULL);
1005    assert(status != -1, "bsd error");
1006    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1007    return 1000 * usecs;
1008  }
1009}
1010
1011#endif // __APPLE__
1012
1013void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1014  if (os::supports_monotonic_clock()) {
1015    info_ptr->max_value = ALL_64_BITS;
1016
1017    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1018    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1019    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1020  } else {
1021    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1022    info_ptr->max_value = ALL_64_BITS;
1023
1024    // gettimeofday is a real time clock so it skips
1025    info_ptr->may_skip_backward = true;
1026    info_ptr->may_skip_forward = true;
1027  }
1028
1029  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1030}
1031
1032// Return the real, user, and system times in seconds from an
1033// arbitrary fixed point in the past.
1034bool os::getTimesSecs(double* process_real_time,
1035                      double* process_user_time,
1036                      double* process_system_time) {
1037  struct tms ticks;
1038  clock_t real_ticks = times(&ticks);
1039
1040  if (real_ticks == (clock_t) (-1)) {
1041    return false;
1042  } else {
1043    double ticks_per_second = (double) clock_tics_per_sec;
1044    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1045    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1046    *process_real_time = ((double) real_ticks) / ticks_per_second;
1047
1048    return true;
1049  }
1050}
1051
1052
1053char * os::local_time_string(char *buf, size_t buflen) {
1054  struct tm t;
1055  time_t long_time;
1056  time(&long_time);
1057  localtime_r(&long_time, &t);
1058  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1059               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1060               t.tm_hour, t.tm_min, t.tm_sec);
1061  return buf;
1062}
1063
1064struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1065  return localtime_r(clock, res);
1066}
1067
1068////////////////////////////////////////////////////////////////////////////////
1069// runtime exit support
1070
1071// Note: os::shutdown() might be called very early during initialization, or
1072// called from signal handler. Before adding something to os::shutdown(), make
1073// sure it is async-safe and can handle partially initialized VM.
1074void os::shutdown() {
1075
1076  // allow PerfMemory to attempt cleanup of any persistent resources
1077  perfMemory_exit();
1078
1079  // needs to remove object in file system
1080  AttachListener::abort();
1081
1082  // flush buffered output, finish log files
1083  ostream_abort();
1084
1085  // Check for abort hook
1086  abort_hook_t abort_hook = Arguments::abort_hook();
1087  if (abort_hook != NULL) {
1088    abort_hook();
1089  }
1090
1091}
1092
1093// Note: os::abort() might be called very early during initialization, or
1094// called from signal handler. Before adding something to os::abort(), make
1095// sure it is async-safe and can handle partially initialized VM.
1096void os::abort(bool dump_core, void* siginfo, const void* context) {
1097  os::shutdown();
1098  if (dump_core) {
1099#ifndef PRODUCT
1100    fdStream out(defaultStream::output_fd());
1101    out.print_raw("Current thread is ");
1102    char buf[16];
1103    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1104    out.print_raw_cr(buf);
1105    out.print_raw_cr("Dumping core ...");
1106#endif
1107    ::abort(); // dump core
1108  }
1109
1110  ::exit(1);
1111}
1112
1113// Die immediately, no exit hook, no abort hook, no cleanup.
1114void os::die() {
1115  // _exit() on BsdThreads only kills current thread
1116  ::abort();
1117}
1118
1119// This method is a copy of JDK's sysGetLastErrorString
1120// from src/solaris/hpi/src/system_md.c
1121
1122size_t os::lasterror(char *buf, size_t len) {
1123  if (errno == 0)  return 0;
1124
1125  const char *s = os::strerror(errno);
1126  size_t n = ::strlen(s);
1127  if (n >= len) {
1128    n = len - 1;
1129  }
1130  ::strncpy(buf, s, n);
1131  buf[n] = '\0';
1132  return n;
1133}
1134
1135// Information of current thread in variety of formats
1136pid_t os::Bsd::gettid() {
1137  int retval = -1;
1138
1139#ifdef __APPLE__ //XNU kernel
1140  // despite the fact mach port is actually not a thread id use it
1141  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1142  retval = ::pthread_mach_thread_np(::pthread_self());
1143  guarantee(retval != 0, "just checking");
1144  return retval;
1145
1146#else
1147  #ifdef __FreeBSD__
1148  retval = syscall(SYS_thr_self);
1149  #else
1150    #ifdef __OpenBSD__
1151  retval = syscall(SYS_getthrid);
1152    #else
1153      #ifdef __NetBSD__
1154  retval = (pid_t) syscall(SYS__lwp_self);
1155      #endif
1156    #endif
1157  #endif
1158#endif
1159
1160  if (retval == -1) {
1161    return getpid();
1162  }
1163}
1164
1165intx os::current_thread_id() {
1166#ifdef __APPLE__
1167  return (intx)::pthread_mach_thread_np(::pthread_self());
1168#else
1169  return (intx)::pthread_self();
1170#endif
1171}
1172
1173int os::current_process_id() {
1174
1175  // Under the old bsd thread library, bsd gives each thread
1176  // its own process id. Because of this each thread will return
1177  // a different pid if this method were to return the result
1178  // of getpid(2). Bsd provides no api that returns the pid
1179  // of the launcher thread for the vm. This implementation
1180  // returns a unique pid, the pid of the launcher thread
1181  // that starts the vm 'process'.
1182
1183  // Under the NPTL, getpid() returns the same pid as the
1184  // launcher thread rather than a unique pid per thread.
1185  // Use gettid() if you want the old pre NPTL behaviour.
1186
1187  // if you are looking for the result of a call to getpid() that
1188  // returns a unique pid for the calling thread, then look at the
1189  // OSThread::thread_id() method in osThread_bsd.hpp file
1190
1191  return (int)(_initial_pid ? _initial_pid : getpid());
1192}
1193
1194// DLL functions
1195
1196#define JNI_LIB_PREFIX "lib"
1197#ifdef __APPLE__
1198  #define JNI_LIB_SUFFIX ".dylib"
1199#else
1200  #define JNI_LIB_SUFFIX ".so"
1201#endif
1202
1203const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1204
1205// This must be hard coded because it's the system's temporary
1206// directory not the java application's temp directory, ala java.io.tmpdir.
1207#ifdef __APPLE__
1208// macosx has a secure per-user temporary directory
1209char temp_path_storage[PATH_MAX];
1210const char* os::get_temp_directory() {
1211  static char *temp_path = NULL;
1212  if (temp_path == NULL) {
1213    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1214    if (pathSize == 0 || pathSize > PATH_MAX) {
1215      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1216    }
1217    temp_path = temp_path_storage;
1218  }
1219  return temp_path;
1220}
1221#else // __APPLE__
1222const char* os::get_temp_directory() { return "/tmp"; }
1223#endif // __APPLE__
1224
1225static bool file_exists(const char* filename) {
1226  struct stat statbuf;
1227  if (filename == NULL || strlen(filename) == 0) {
1228    return false;
1229  }
1230  return os::stat(filename, &statbuf) == 0;
1231}
1232
1233bool os::dll_build_name(char* buffer, size_t buflen,
1234                        const char* pname, const char* fname) {
1235  bool retval = false;
1236  // Copied from libhpi
1237  const size_t pnamelen = pname ? strlen(pname) : 0;
1238
1239  // Return error on buffer overflow.
1240  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1241    return retval;
1242  }
1243
1244  if (pnamelen == 0) {
1245    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1246    retval = true;
1247  } else if (strchr(pname, *os::path_separator()) != NULL) {
1248    int n;
1249    char** pelements = split_path(pname, &n);
1250    if (pelements == NULL) {
1251      return false;
1252    }
1253    for (int i = 0; i < n; i++) {
1254      // Really shouldn't be NULL, but check can't hurt
1255      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1256        continue; // skip the empty path values
1257      }
1258      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1259               pelements[i], fname);
1260      if (file_exists(buffer)) {
1261        retval = true;
1262        break;
1263      }
1264    }
1265    // release the storage
1266    for (int i = 0; i < n; i++) {
1267      if (pelements[i] != NULL) {
1268        FREE_C_HEAP_ARRAY(char, pelements[i]);
1269      }
1270    }
1271    if (pelements != NULL) {
1272      FREE_C_HEAP_ARRAY(char*, pelements);
1273    }
1274  } else {
1275    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1276    retval = true;
1277  }
1278  return retval;
1279}
1280
1281// check if addr is inside libjvm.so
1282bool os::address_is_in_vm(address addr) {
1283  static address libjvm_base_addr;
1284  Dl_info dlinfo;
1285
1286  if (libjvm_base_addr == NULL) {
1287    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1288      libjvm_base_addr = (address)dlinfo.dli_fbase;
1289    }
1290    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1291  }
1292
1293  if (dladdr((void *)addr, &dlinfo) != 0) {
1294    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1295  }
1296
1297  return false;
1298}
1299
1300
1301#define MACH_MAXSYMLEN 256
1302
1303bool os::dll_address_to_function_name(address addr, char *buf,
1304                                      int buflen, int *offset,
1305                                      bool demangle) {
1306  // buf is not optional, but offset is optional
1307  assert(buf != NULL, "sanity check");
1308
1309  Dl_info dlinfo;
1310  char localbuf[MACH_MAXSYMLEN];
1311
1312  if (dladdr((void*)addr, &dlinfo) != 0) {
1313    // see if we have a matching symbol
1314    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1315      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1316        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1317      }
1318      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1319      return true;
1320    }
1321    // no matching symbol so try for just file info
1322    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1323      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1324                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1325        return true;
1326      }
1327    }
1328
1329    // Handle non-dynamic manually:
1330    if (dlinfo.dli_fbase != NULL &&
1331        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1332                        dlinfo.dli_fbase)) {
1333      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1334        jio_snprintf(buf, buflen, "%s", localbuf);
1335      }
1336      return true;
1337    }
1338  }
1339  buf[0] = '\0';
1340  if (offset != NULL) *offset = -1;
1341  return false;
1342}
1343
1344// ported from solaris version
1345bool os::dll_address_to_library_name(address addr, char* buf,
1346                                     int buflen, int* offset) {
1347  // buf is not optional, but offset is optional
1348  assert(buf != NULL, "sanity check");
1349
1350  Dl_info dlinfo;
1351
1352  if (dladdr((void*)addr, &dlinfo) != 0) {
1353    if (dlinfo.dli_fname != NULL) {
1354      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1355    }
1356    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1357      *offset = addr - (address)dlinfo.dli_fbase;
1358    }
1359    return true;
1360  }
1361
1362  buf[0] = '\0';
1363  if (offset) *offset = -1;
1364  return false;
1365}
1366
1367// Loads .dll/.so and
1368// in case of error it checks if .dll/.so was built for the
1369// same architecture as Hotspot is running on
1370
1371#ifdef __APPLE__
1372void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1373#ifdef STATIC_BUILD
1374  return os::get_default_process_handle();
1375#else
1376  void * result= ::dlopen(filename, RTLD_LAZY);
1377  if (result != NULL) {
1378    // Successful loading
1379    return result;
1380  }
1381
1382  // Read system error message into ebuf
1383  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1384  ebuf[ebuflen-1]='\0';
1385
1386  return NULL;
1387#endif // STATIC_BUILD
1388}
1389#else
1390void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1391#ifdef STATIC_BUILD
1392  return os::get_default_process_handle();
1393#else
1394  void * result= ::dlopen(filename, RTLD_LAZY);
1395  if (result != NULL) {
1396    // Successful loading
1397    return result;
1398  }
1399
1400  Elf32_Ehdr elf_head;
1401
1402  // Read system error message into ebuf
1403  // It may or may not be overwritten below
1404  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1405  ebuf[ebuflen-1]='\0';
1406  int diag_msg_max_length=ebuflen-strlen(ebuf);
1407  char* diag_msg_buf=ebuf+strlen(ebuf);
1408
1409  if (diag_msg_max_length==0) {
1410    // No more space in ebuf for additional diagnostics message
1411    return NULL;
1412  }
1413
1414
1415  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1416
1417  if (file_descriptor < 0) {
1418    // Can't open library, report dlerror() message
1419    return NULL;
1420  }
1421
1422  bool failed_to_read_elf_head=
1423    (sizeof(elf_head)!=
1424     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1425
1426  ::close(file_descriptor);
1427  if (failed_to_read_elf_head) {
1428    // file i/o error - report dlerror() msg
1429    return NULL;
1430  }
1431
1432  typedef struct {
1433    Elf32_Half  code;         // Actual value as defined in elf.h
1434    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1435    char        elf_class;    // 32 or 64 bit
1436    char        endianess;    // MSB or LSB
1437    char*       name;         // String representation
1438  } arch_t;
1439
1440  #ifndef EM_486
1441    #define EM_486          6               /* Intel 80486 */
1442  #endif
1443
1444  #ifndef EM_MIPS_RS3_LE
1445    #define EM_MIPS_RS3_LE  10              /* MIPS */
1446  #endif
1447
1448  #ifndef EM_PPC64
1449    #define EM_PPC64        21              /* PowerPC64 */
1450  #endif
1451
1452  #ifndef EM_S390
1453    #define EM_S390         22              /* IBM System/390 */
1454  #endif
1455
1456  #ifndef EM_IA_64
1457    #define EM_IA_64        50              /* HP/Intel IA-64 */
1458  #endif
1459
1460  #ifndef EM_X86_64
1461    #define EM_X86_64       62              /* AMD x86-64 */
1462  #endif
1463
1464  static const arch_t arch_array[]={
1465    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1466    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1467    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1468    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1469    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1470    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1471    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1472    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1473    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1474    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1475    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1476    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1477    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1478    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1479    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1480    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1481  };
1482
1483  #if  (defined IA32)
1484  static  Elf32_Half running_arch_code=EM_386;
1485  #elif   (defined AMD64)
1486  static  Elf32_Half running_arch_code=EM_X86_64;
1487  #elif  (defined IA64)
1488  static  Elf32_Half running_arch_code=EM_IA_64;
1489  #elif  (defined __sparc) && (defined _LP64)
1490  static  Elf32_Half running_arch_code=EM_SPARCV9;
1491  #elif  (defined __sparc) && (!defined _LP64)
1492  static  Elf32_Half running_arch_code=EM_SPARC;
1493  #elif  (defined __powerpc64__)
1494  static  Elf32_Half running_arch_code=EM_PPC64;
1495  #elif  (defined __powerpc__)
1496  static  Elf32_Half running_arch_code=EM_PPC;
1497  #elif  (defined ARM)
1498  static  Elf32_Half running_arch_code=EM_ARM;
1499  #elif  (defined S390)
1500  static  Elf32_Half running_arch_code=EM_S390;
1501  #elif  (defined ALPHA)
1502  static  Elf32_Half running_arch_code=EM_ALPHA;
1503  #elif  (defined MIPSEL)
1504  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1505  #elif  (defined PARISC)
1506  static  Elf32_Half running_arch_code=EM_PARISC;
1507  #elif  (defined MIPS)
1508  static  Elf32_Half running_arch_code=EM_MIPS;
1509  #elif  (defined M68K)
1510  static  Elf32_Half running_arch_code=EM_68K;
1511  #else
1512    #error Method os::dll_load requires that one of following is defined:\
1513         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1514  #endif
1515
1516  // Identify compatability class for VM's architecture and library's architecture
1517  // Obtain string descriptions for architectures
1518
1519  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1520  int running_arch_index=-1;
1521
1522  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1523    if (running_arch_code == arch_array[i].code) {
1524      running_arch_index    = i;
1525    }
1526    if (lib_arch.code == arch_array[i].code) {
1527      lib_arch.compat_class = arch_array[i].compat_class;
1528      lib_arch.name         = arch_array[i].name;
1529    }
1530  }
1531
1532  assert(running_arch_index != -1,
1533         "Didn't find running architecture code (running_arch_code) in arch_array");
1534  if (running_arch_index == -1) {
1535    // Even though running architecture detection failed
1536    // we may still continue with reporting dlerror() message
1537    return NULL;
1538  }
1539
1540  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1541    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1542    return NULL;
1543  }
1544
1545#ifndef S390
1546  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1547    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1548    return NULL;
1549  }
1550#endif // !S390
1551
1552  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1553    if (lib_arch.name!=NULL) {
1554      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1555                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1556                 lib_arch.name, arch_array[running_arch_index].name);
1557    } else {
1558      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1559                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1560                 lib_arch.code,
1561                 arch_array[running_arch_index].name);
1562    }
1563  }
1564
1565  return NULL;
1566#endif // STATIC_BUILD
1567}
1568#endif // !__APPLE__
1569
1570void* os::get_default_process_handle() {
1571#ifdef __APPLE__
1572  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1573  // to avoid finding unexpected symbols on second (or later)
1574  // loads of a library.
1575  return (void*)::dlopen(NULL, RTLD_FIRST);
1576#else
1577  return (void*)::dlopen(NULL, RTLD_LAZY);
1578#endif
1579}
1580
1581// XXX: Do we need a lock around this as per Linux?
1582void* os::dll_lookup(void* handle, const char* name) {
1583  return dlsym(handle, name);
1584}
1585
1586int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1587  outputStream * out = (outputStream *) param;
1588  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1589  return 0;
1590}
1591
1592void os::print_dll_info(outputStream *st) {
1593  st->print_cr("Dynamic libraries:");
1594  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1595    st->print_cr("Error: Cannot print dynamic libraries.");
1596  }
1597}
1598
1599int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1600#ifdef RTLD_DI_LINKMAP
1601  Dl_info dli;
1602  void *handle;
1603  Link_map *map;
1604  Link_map *p;
1605
1606  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1607      dli.dli_fname == NULL) {
1608    return 1;
1609  }
1610  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1611  if (handle == NULL) {
1612    return 1;
1613  }
1614  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1615  if (map == NULL) {
1616    dlclose(handle);
1617    return 1;
1618  }
1619
1620  while (map->l_prev != NULL)
1621    map = map->l_prev;
1622
1623  while (map != NULL) {
1624    // Value for top_address is returned as 0 since we don't have any information about module size
1625    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1626      dlclose(handle);
1627      return 1;
1628    }
1629    map = map->l_next;
1630  }
1631
1632  dlclose(handle);
1633#elif defined(__APPLE__)
1634  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1635    // Value for top_address is returned as 0 since we don't have any information about module size
1636    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1637      return 1;
1638    }
1639  }
1640  return 0;
1641#else
1642  return 1;
1643#endif
1644}
1645
1646void os::get_summary_os_info(char* buf, size_t buflen) {
1647  // These buffers are small because we want this to be brief
1648  // and not use a lot of stack while generating the hs_err file.
1649  char os[100];
1650  size_t size = sizeof(os);
1651  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1652  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1653#ifdef __APPLE__
1654      strncpy(os, "Darwin", sizeof(os));
1655#elif __OpenBSD__
1656      strncpy(os, "OpenBSD", sizeof(os));
1657#else
1658      strncpy(os, "BSD", sizeof(os));
1659#endif
1660  }
1661
1662  char release[100];
1663  size = sizeof(release);
1664  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1665  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1666      // if error, leave blank
1667      strncpy(release, "", sizeof(release));
1668  }
1669  snprintf(buf, buflen, "%s %s", os, release);
1670}
1671
1672void os::print_os_info_brief(outputStream* st) {
1673  os::Posix::print_uname_info(st);
1674}
1675
1676void os::print_os_info(outputStream* st) {
1677  st->print("OS:");
1678
1679  os::Posix::print_uname_info(st);
1680
1681  os::Posix::print_rlimit_info(st);
1682
1683  os::Posix::print_load_average(st);
1684}
1685
1686void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1687  // Nothing to do for now.
1688}
1689
1690void os::get_summary_cpu_info(char* buf, size_t buflen) {
1691  unsigned int mhz;
1692  size_t size = sizeof(mhz);
1693  int mib[] = { CTL_HW, HW_CPU_FREQ };
1694  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1695    mhz = 1;  // looks like an error but can be divided by
1696  } else {
1697    mhz /= 1000000;  // reported in millions
1698  }
1699
1700  char model[100];
1701  size = sizeof(model);
1702  int mib_model[] = { CTL_HW, HW_MODEL };
1703  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1704    strncpy(model, cpu_arch, sizeof(model));
1705  }
1706
1707  char machine[100];
1708  size = sizeof(machine);
1709  int mib_machine[] = { CTL_HW, HW_MACHINE };
1710  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1711      strncpy(machine, "", sizeof(machine));
1712  }
1713
1714  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1715}
1716
1717void os::print_memory_info(outputStream* st) {
1718
1719  st->print("Memory:");
1720  st->print(" %dk page", os::vm_page_size()>>10);
1721
1722  st->print(", physical " UINT64_FORMAT "k",
1723            os::physical_memory() >> 10);
1724  st->print("(" UINT64_FORMAT "k free)",
1725            os::available_memory() >> 10);
1726  st->cr();
1727}
1728
1729static void print_signal_handler(outputStream* st, int sig,
1730                                 char* buf, size_t buflen);
1731
1732void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1733  st->print_cr("Signal Handlers:");
1734  print_signal_handler(st, SIGSEGV, buf, buflen);
1735  print_signal_handler(st, SIGBUS , buf, buflen);
1736  print_signal_handler(st, SIGFPE , buf, buflen);
1737  print_signal_handler(st, SIGPIPE, buf, buflen);
1738  print_signal_handler(st, SIGXFSZ, buf, buflen);
1739  print_signal_handler(st, SIGILL , buf, buflen);
1740  print_signal_handler(st, SR_signum, buf, buflen);
1741  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1742  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1743  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1744  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1745}
1746
1747static char saved_jvm_path[MAXPATHLEN] = {0};
1748
1749// Find the full path to the current module, libjvm
1750void os::jvm_path(char *buf, jint buflen) {
1751  // Error checking.
1752  if (buflen < MAXPATHLEN) {
1753    assert(false, "must use a large-enough buffer");
1754    buf[0] = '\0';
1755    return;
1756  }
1757  // Lazy resolve the path to current module.
1758  if (saved_jvm_path[0] != 0) {
1759    strcpy(buf, saved_jvm_path);
1760    return;
1761  }
1762
1763  char dli_fname[MAXPATHLEN];
1764  bool ret = dll_address_to_library_name(
1765                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1766                                         dli_fname, sizeof(dli_fname), NULL);
1767  assert(ret, "cannot locate libjvm");
1768  char *rp = NULL;
1769  if (ret && dli_fname[0] != '\0') {
1770    rp = realpath(dli_fname, buf);
1771  }
1772  if (rp == NULL) {
1773    return;
1774  }
1775
1776  if (Arguments::sun_java_launcher_is_altjvm()) {
1777    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1778    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1779    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1780    // appears at the right place in the string, then assume we are
1781    // installed in a JDK and we're done. Otherwise, check for a
1782    // JAVA_HOME environment variable and construct a path to the JVM
1783    // being overridden.
1784
1785    const char *p = buf + strlen(buf) - 1;
1786    for (int count = 0; p > buf && count < 5; ++count) {
1787      for (--p; p > buf && *p != '/'; --p)
1788        /* empty */ ;
1789    }
1790
1791    if (strncmp(p, "/jre/lib/", 9) != 0) {
1792      // Look for JAVA_HOME in the environment.
1793      char* java_home_var = ::getenv("JAVA_HOME");
1794      if (java_home_var != NULL && java_home_var[0] != 0) {
1795        char* jrelib_p;
1796        int len;
1797
1798        // Check the current module name "libjvm"
1799        p = strrchr(buf, '/');
1800        assert(strstr(p, "/libjvm") == p, "invalid library name");
1801
1802        rp = realpath(java_home_var, buf);
1803        if (rp == NULL) {
1804          return;
1805        }
1806
1807        // determine if this is a legacy image or modules image
1808        // modules image doesn't have "jre" subdirectory
1809        len = strlen(buf);
1810        assert(len < buflen, "Ran out of buffer space");
1811        jrelib_p = buf + len;
1812
1813        // Add the appropriate library subdir
1814        snprintf(jrelib_p, buflen-len, "/jre/lib");
1815        if (0 != access(buf, F_OK)) {
1816          snprintf(jrelib_p, buflen-len, "/lib");
1817        }
1818
1819        // Add the appropriate client or server subdir
1820        len = strlen(buf);
1821        jrelib_p = buf + len;
1822        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1823        if (0 != access(buf, F_OK)) {
1824          snprintf(jrelib_p, buflen-len, "%s", "");
1825        }
1826
1827        // If the path exists within JAVA_HOME, add the JVM library name
1828        // to complete the path to JVM being overridden.  Otherwise fallback
1829        // to the path to the current library.
1830        if (0 == access(buf, F_OK)) {
1831          // Use current module name "libjvm"
1832          len = strlen(buf);
1833          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1834        } else {
1835          // Fall back to path of current library
1836          rp = realpath(dli_fname, buf);
1837          if (rp == NULL) {
1838            return;
1839          }
1840        }
1841      }
1842    }
1843  }
1844
1845  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1846  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1847}
1848
1849void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1850  // no prefix required, not even "_"
1851}
1852
1853void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1854  // no suffix required
1855}
1856
1857////////////////////////////////////////////////////////////////////////////////
1858// sun.misc.Signal support
1859
1860static volatile jint sigint_count = 0;
1861
1862static void UserHandler(int sig, void *siginfo, void *context) {
1863  // 4511530 - sem_post is serialized and handled by the manager thread. When
1864  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1865  // don't want to flood the manager thread with sem_post requests.
1866  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1867    return;
1868  }
1869
1870  // Ctrl-C is pressed during error reporting, likely because the error
1871  // handler fails to abort. Let VM die immediately.
1872  if (sig == SIGINT && is_error_reported()) {
1873    os::die();
1874  }
1875
1876  os::signal_notify(sig);
1877}
1878
1879void* os::user_handler() {
1880  return CAST_FROM_FN_PTR(void*, UserHandler);
1881}
1882
1883extern "C" {
1884  typedef void (*sa_handler_t)(int);
1885  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1886}
1887
1888void* os::signal(int signal_number, void* handler) {
1889  struct sigaction sigAct, oldSigAct;
1890
1891  sigfillset(&(sigAct.sa_mask));
1892  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1893  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1894
1895  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1896    // -1 means registration failed
1897    return (void *)-1;
1898  }
1899
1900  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1901}
1902
1903void os::signal_raise(int signal_number) {
1904  ::raise(signal_number);
1905}
1906
1907// The following code is moved from os.cpp for making this
1908// code platform specific, which it is by its very nature.
1909
1910// Will be modified when max signal is changed to be dynamic
1911int os::sigexitnum_pd() {
1912  return NSIG;
1913}
1914
1915// a counter for each possible signal value
1916static volatile jint pending_signals[NSIG+1] = { 0 };
1917
1918// Bsd(POSIX) specific hand shaking semaphore.
1919#ifdef __APPLE__
1920typedef semaphore_t os_semaphore_t;
1921
1922  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1923  #define SEM_WAIT(sem)           semaphore_wait(sem)
1924  #define SEM_POST(sem)           semaphore_signal(sem)
1925  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1926#else
1927typedef sem_t os_semaphore_t;
1928
1929  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1930  #define SEM_WAIT(sem)           sem_wait(&sem)
1931  #define SEM_POST(sem)           sem_post(&sem)
1932  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1933#endif
1934
1935#ifdef __APPLE__
1936// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1937
1938static const char* sem_init_strerror(kern_return_t value) {
1939  switch (value) {
1940    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1941    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1942    default:                     return "Unknown";
1943  }
1944}
1945
1946OSXSemaphore::OSXSemaphore(uint value) {
1947  kern_return_t ret = SEM_INIT(_semaphore, value);
1948
1949  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1950}
1951
1952OSXSemaphore::~OSXSemaphore() {
1953  SEM_DESTROY(_semaphore);
1954}
1955
1956void OSXSemaphore::signal(uint count) {
1957  for (uint i = 0; i < count; i++) {
1958    kern_return_t ret = SEM_POST(_semaphore);
1959
1960    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1961  }
1962}
1963
1964void OSXSemaphore::wait() {
1965  kern_return_t ret;
1966  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1967    // Semaphore was interrupted. Retry.
1968  }
1969  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1970}
1971
1972jlong OSXSemaphore::currenttime() {
1973  struct timeval tv;
1974  gettimeofday(&tv, NULL);
1975  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1976}
1977
1978bool OSXSemaphore::trywait() {
1979  return timedwait(0, 0);
1980}
1981
1982bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1983  kern_return_t kr = KERN_ABORTED;
1984  mach_timespec_t waitspec;
1985  waitspec.tv_sec = sec;
1986  waitspec.tv_nsec = nsec;
1987
1988  jlong starttime = currenttime();
1989
1990  kr = semaphore_timedwait(_semaphore, waitspec);
1991  while (kr == KERN_ABORTED) {
1992    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1993
1994    jlong current = currenttime();
1995    jlong passedtime = current - starttime;
1996
1997    if (passedtime >= totalwait) {
1998      waitspec.tv_sec = 0;
1999      waitspec.tv_nsec = 0;
2000    } else {
2001      jlong waittime = totalwait - (current - starttime);
2002      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2003      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2004    }
2005
2006    kr = semaphore_timedwait(_semaphore, waitspec);
2007  }
2008
2009  return kr == KERN_SUCCESS;
2010}
2011
2012#else
2013// Use POSIX implementation of semaphores.
2014
2015struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2016  struct timespec ts;
2017  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2018
2019  return ts;
2020}
2021
2022#endif // __APPLE__
2023
2024static os_semaphore_t sig_sem;
2025
2026#ifdef __APPLE__
2027static OSXSemaphore sr_semaphore;
2028#else
2029static PosixSemaphore sr_semaphore;
2030#endif
2031
2032void os::signal_init_pd() {
2033  // Initialize signal structures
2034  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2035
2036  // Initialize signal semaphore
2037  ::SEM_INIT(sig_sem, 0);
2038}
2039
2040void os::signal_notify(int sig) {
2041  Atomic::inc(&pending_signals[sig]);
2042  ::SEM_POST(sig_sem);
2043}
2044
2045static int check_pending_signals(bool wait) {
2046  Atomic::store(0, &sigint_count);
2047  for (;;) {
2048    for (int i = 0; i < NSIG + 1; i++) {
2049      jint n = pending_signals[i];
2050      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2051        return i;
2052      }
2053    }
2054    if (!wait) {
2055      return -1;
2056    }
2057    JavaThread *thread = JavaThread::current();
2058    ThreadBlockInVM tbivm(thread);
2059
2060    bool threadIsSuspended;
2061    do {
2062      thread->set_suspend_equivalent();
2063      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2064      ::SEM_WAIT(sig_sem);
2065
2066      // were we externally suspended while we were waiting?
2067      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2068      if (threadIsSuspended) {
2069        // The semaphore has been incremented, but while we were waiting
2070        // another thread suspended us. We don't want to continue running
2071        // while suspended because that would surprise the thread that
2072        // suspended us.
2073        ::SEM_POST(sig_sem);
2074
2075        thread->java_suspend_self();
2076      }
2077    } while (threadIsSuspended);
2078  }
2079}
2080
2081int os::signal_lookup() {
2082  return check_pending_signals(false);
2083}
2084
2085int os::signal_wait() {
2086  return check_pending_signals(true);
2087}
2088
2089////////////////////////////////////////////////////////////////////////////////
2090// Virtual Memory
2091
2092int os::vm_page_size() {
2093  // Seems redundant as all get out
2094  assert(os::Bsd::page_size() != -1, "must call os::init");
2095  return os::Bsd::page_size();
2096}
2097
2098// Solaris allocates memory by pages.
2099int os::vm_allocation_granularity() {
2100  assert(os::Bsd::page_size() != -1, "must call os::init");
2101  return os::Bsd::page_size();
2102}
2103
2104// Rationale behind this function:
2105//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2106//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2107//  samples for JITted code. Here we create private executable mapping over the code cache
2108//  and then we can use standard (well, almost, as mapping can change) way to provide
2109//  info for the reporting script by storing timestamp and location of symbol
2110void bsd_wrap_code(char* base, size_t size) {
2111  static volatile jint cnt = 0;
2112
2113  if (!UseOprofile) {
2114    return;
2115  }
2116
2117  char buf[PATH_MAX + 1];
2118  int num = Atomic::add(1, &cnt);
2119
2120  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2121           os::get_temp_directory(), os::current_process_id(), num);
2122  unlink(buf);
2123
2124  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2125
2126  if (fd != -1) {
2127    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2128    if (rv != (off_t)-1) {
2129      if (::write(fd, "", 1) == 1) {
2130        mmap(base, size,
2131             PROT_READ|PROT_WRITE|PROT_EXEC,
2132             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2133      }
2134    }
2135    ::close(fd);
2136    unlink(buf);
2137  }
2138}
2139
2140static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2141                                    int err) {
2142  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2143          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2144          os::errno_name(err), err);
2145}
2146
2147// NOTE: Bsd kernel does not really reserve the pages for us.
2148//       All it does is to check if there are enough free pages
2149//       left at the time of mmap(). This could be a potential
2150//       problem.
2151bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2152  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2153#ifdef __OpenBSD__
2154  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2155  if (::mprotect(addr, size, prot) == 0) {
2156    return true;
2157  }
2158#else
2159  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2160                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2161  if (res != (uintptr_t) MAP_FAILED) {
2162    return true;
2163  }
2164#endif
2165
2166  // Warn about any commit errors we see in non-product builds just
2167  // in case mmap() doesn't work as described on the man page.
2168  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2169
2170  return false;
2171}
2172
2173bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2174                          bool exec) {
2175  // alignment_hint is ignored on this OS
2176  return pd_commit_memory(addr, size, exec);
2177}
2178
2179void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2180                                  const char* mesg) {
2181  assert(mesg != NULL, "mesg must be specified");
2182  if (!pd_commit_memory(addr, size, exec)) {
2183    // add extra info in product mode for vm_exit_out_of_memory():
2184    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2185    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2186  }
2187}
2188
2189void os::pd_commit_memory_or_exit(char* addr, size_t size,
2190                                  size_t alignment_hint, bool exec,
2191                                  const char* mesg) {
2192  // alignment_hint is ignored on this OS
2193  pd_commit_memory_or_exit(addr, size, exec, mesg);
2194}
2195
2196void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2197}
2198
2199void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2200  ::madvise(addr, bytes, MADV_DONTNEED);
2201}
2202
2203void os::numa_make_global(char *addr, size_t bytes) {
2204}
2205
2206void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2207}
2208
2209bool os::numa_topology_changed()   { return false; }
2210
2211size_t os::numa_get_groups_num() {
2212  return 1;
2213}
2214
2215int os::numa_get_group_id() {
2216  return 0;
2217}
2218
2219size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2220  if (size > 0) {
2221    ids[0] = 0;
2222    return 1;
2223  }
2224  return 0;
2225}
2226
2227bool os::get_page_info(char *start, page_info* info) {
2228  return false;
2229}
2230
2231char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2232  return end;
2233}
2234
2235
2236bool os::pd_uncommit_memory(char* addr, size_t size) {
2237#ifdef __OpenBSD__
2238  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2239  return ::mprotect(addr, size, PROT_NONE) == 0;
2240#else
2241  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2242                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2243  return res  != (uintptr_t) MAP_FAILED;
2244#endif
2245}
2246
2247bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2248  return os::commit_memory(addr, size, !ExecMem);
2249}
2250
2251// If this is a growable mapping, remove the guard pages entirely by
2252// munmap()ping them.  If not, just call uncommit_memory().
2253bool os::remove_stack_guard_pages(char* addr, size_t size) {
2254  return os::uncommit_memory(addr, size);
2255}
2256
2257// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2258// at 'requested_addr'. If there are existing memory mappings at the same
2259// location, however, they will be overwritten. If 'fixed' is false,
2260// 'requested_addr' is only treated as a hint, the return value may or
2261// may not start from the requested address. Unlike Bsd mmap(), this
2262// function returns NULL to indicate failure.
2263static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2264  char * addr;
2265  int flags;
2266
2267  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2268  if (fixed) {
2269    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2270    flags |= MAP_FIXED;
2271  }
2272
2273  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2274  // touch an uncommitted page. Otherwise, the read/write might
2275  // succeed if we have enough swap space to back the physical page.
2276  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2277                       flags, -1, 0);
2278
2279  return addr == MAP_FAILED ? NULL : addr;
2280}
2281
2282static int anon_munmap(char * addr, size_t size) {
2283  return ::munmap(addr, size) == 0;
2284}
2285
2286char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2287                            size_t alignment_hint) {
2288  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2289}
2290
2291bool os::pd_release_memory(char* addr, size_t size) {
2292  return anon_munmap(addr, size);
2293}
2294
2295static bool bsd_mprotect(char* addr, size_t size, int prot) {
2296  // Bsd wants the mprotect address argument to be page aligned.
2297  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2298
2299  // According to SUSv3, mprotect() should only be used with mappings
2300  // established by mmap(), and mmap() always maps whole pages. Unaligned
2301  // 'addr' likely indicates problem in the VM (e.g. trying to change
2302  // protection of malloc'ed or statically allocated memory). Check the
2303  // caller if you hit this assert.
2304  assert(addr == bottom, "sanity check");
2305
2306  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2307  return ::mprotect(bottom, size, prot) == 0;
2308}
2309
2310// Set protections specified
2311bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2312                        bool is_committed) {
2313  unsigned int p = 0;
2314  switch (prot) {
2315  case MEM_PROT_NONE: p = PROT_NONE; break;
2316  case MEM_PROT_READ: p = PROT_READ; break;
2317  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2318  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2319  default:
2320    ShouldNotReachHere();
2321  }
2322  // is_committed is unused.
2323  return bsd_mprotect(addr, bytes, p);
2324}
2325
2326bool os::guard_memory(char* addr, size_t size) {
2327  return bsd_mprotect(addr, size, PROT_NONE);
2328}
2329
2330bool os::unguard_memory(char* addr, size_t size) {
2331  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2332}
2333
2334bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2335  return false;
2336}
2337
2338// Large page support
2339
2340static size_t _large_page_size = 0;
2341
2342void os::large_page_init() {
2343}
2344
2345
2346char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2347  fatal("This code is not used or maintained.");
2348
2349  // "exec" is passed in but not used.  Creating the shared image for
2350  // the code cache doesn't have an SHM_X executable permission to check.
2351  assert(UseLargePages && UseSHM, "only for SHM large pages");
2352
2353  key_t key = IPC_PRIVATE;
2354  char *addr;
2355
2356  bool warn_on_failure = UseLargePages &&
2357                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2358                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2359
2360  // Create a large shared memory region to attach to based on size.
2361  // Currently, size is the total size of the heap
2362  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2363  if (shmid == -1) {
2364    // Possible reasons for shmget failure:
2365    // 1. shmmax is too small for Java heap.
2366    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2367    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2368    // 2. not enough large page memory.
2369    //    > check available large pages: cat /proc/meminfo
2370    //    > increase amount of large pages:
2371    //          echo new_value > /proc/sys/vm/nr_hugepages
2372    //      Note 1: different Bsd may use different name for this property,
2373    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2374    //      Note 2: it's possible there's enough physical memory available but
2375    //            they are so fragmented after a long run that they can't
2376    //            coalesce into large pages. Try to reserve large pages when
2377    //            the system is still "fresh".
2378    if (warn_on_failure) {
2379      warning("Failed to reserve shared memory (errno = %d).", errno);
2380    }
2381    return NULL;
2382  }
2383
2384  // attach to the region
2385  addr = (char*)shmat(shmid, req_addr, 0);
2386  int err = errno;
2387
2388  // Remove shmid. If shmat() is successful, the actual shared memory segment
2389  // will be deleted when it's detached by shmdt() or when the process
2390  // terminates. If shmat() is not successful this will remove the shared
2391  // segment immediately.
2392  shmctl(shmid, IPC_RMID, NULL);
2393
2394  if ((intptr_t)addr == -1) {
2395    if (warn_on_failure) {
2396      warning("Failed to attach shared memory (errno = %d).", err);
2397    }
2398    return NULL;
2399  }
2400
2401  // The memory is committed
2402  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2403
2404  return addr;
2405}
2406
2407bool os::release_memory_special(char* base, size_t bytes) {
2408  if (MemTracker::tracking_level() > NMT_minimal) {
2409    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2410    // detaching the SHM segment will also delete it, see reserve_memory_special()
2411    int rslt = shmdt(base);
2412    if (rslt == 0) {
2413      tkr.record((address)base, bytes);
2414      return true;
2415    } else {
2416      return false;
2417    }
2418  } else {
2419    return shmdt(base) == 0;
2420  }
2421}
2422
2423size_t os::large_page_size() {
2424  return _large_page_size;
2425}
2426
2427// HugeTLBFS allows application to commit large page memory on demand;
2428// with SysV SHM the entire memory region must be allocated as shared
2429// memory.
2430bool os::can_commit_large_page_memory() {
2431  return UseHugeTLBFS;
2432}
2433
2434bool os::can_execute_large_page_memory() {
2435  return UseHugeTLBFS;
2436}
2437
2438// Reserve memory at an arbitrary address, only if that area is
2439// available (and not reserved for something else).
2440
2441char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2442  const int max_tries = 10;
2443  char* base[max_tries];
2444  size_t size[max_tries];
2445  const size_t gap = 0x000000;
2446
2447  // Assert only that the size is a multiple of the page size, since
2448  // that's all that mmap requires, and since that's all we really know
2449  // about at this low abstraction level.  If we need higher alignment,
2450  // we can either pass an alignment to this method or verify alignment
2451  // in one of the methods further up the call chain.  See bug 5044738.
2452  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2453
2454  // Repeatedly allocate blocks until the block is allocated at the
2455  // right spot.
2456
2457  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2458  // if kernel honors the hint then we can return immediately.
2459  char * addr = anon_mmap(requested_addr, bytes, false);
2460  if (addr == requested_addr) {
2461    return requested_addr;
2462  }
2463
2464  if (addr != NULL) {
2465    // mmap() is successful but it fails to reserve at the requested address
2466    anon_munmap(addr, bytes);
2467  }
2468
2469  int i;
2470  for (i = 0; i < max_tries; ++i) {
2471    base[i] = reserve_memory(bytes);
2472
2473    if (base[i] != NULL) {
2474      // Is this the block we wanted?
2475      if (base[i] == requested_addr) {
2476        size[i] = bytes;
2477        break;
2478      }
2479
2480      // Does this overlap the block we wanted? Give back the overlapped
2481      // parts and try again.
2482
2483      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2484      if (top_overlap >= 0 && top_overlap < bytes) {
2485        unmap_memory(base[i], top_overlap);
2486        base[i] += top_overlap;
2487        size[i] = bytes - top_overlap;
2488      } else {
2489        size_t bottom_overlap = base[i] + bytes - requested_addr;
2490        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2491          unmap_memory(requested_addr, bottom_overlap);
2492          size[i] = bytes - bottom_overlap;
2493        } else {
2494          size[i] = bytes;
2495        }
2496      }
2497    }
2498  }
2499
2500  // Give back the unused reserved pieces.
2501
2502  for (int j = 0; j < i; ++j) {
2503    if (base[j] != NULL) {
2504      unmap_memory(base[j], size[j]);
2505    }
2506  }
2507
2508  if (i < max_tries) {
2509    return requested_addr;
2510  } else {
2511    return NULL;
2512  }
2513}
2514
2515size_t os::read(int fd, void *buf, unsigned int nBytes) {
2516  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2517}
2518
2519size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2520  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2521}
2522
2523void os::naked_short_sleep(jlong ms) {
2524  struct timespec req;
2525
2526  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2527  req.tv_sec = 0;
2528  if (ms > 0) {
2529    req.tv_nsec = (ms % 1000) * 1000000;
2530  } else {
2531    req.tv_nsec = 1;
2532  }
2533
2534  nanosleep(&req, NULL);
2535
2536  return;
2537}
2538
2539// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2540void os::infinite_sleep() {
2541  while (true) {    // sleep forever ...
2542    ::sleep(100);   // ... 100 seconds at a time
2543  }
2544}
2545
2546// Used to convert frequent JVM_Yield() to nops
2547bool os::dont_yield() {
2548  return DontYieldALot;
2549}
2550
2551void os::naked_yield() {
2552  sched_yield();
2553}
2554
2555////////////////////////////////////////////////////////////////////////////////
2556// thread priority support
2557
2558// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2559// only supports dynamic priority, static priority must be zero. For real-time
2560// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2561// However, for large multi-threaded applications, SCHED_RR is not only slower
2562// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2563// of 5 runs - Sep 2005).
2564//
2565// The following code actually changes the niceness of kernel-thread/LWP. It
2566// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2567// not the entire user process, and user level threads are 1:1 mapped to kernel
2568// threads. It has always been the case, but could change in the future. For
2569// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2570// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2571
2572#if !defined(__APPLE__)
2573int os::java_to_os_priority[CriticalPriority + 1] = {
2574  19,              // 0 Entry should never be used
2575
2576   0,              // 1 MinPriority
2577   3,              // 2
2578   6,              // 3
2579
2580  10,              // 4
2581  15,              // 5 NormPriority
2582  18,              // 6
2583
2584  21,              // 7
2585  25,              // 8
2586  28,              // 9 NearMaxPriority
2587
2588  31,              // 10 MaxPriority
2589
2590  31               // 11 CriticalPriority
2591};
2592#else
2593// Using Mach high-level priority assignments
2594int os::java_to_os_priority[CriticalPriority + 1] = {
2595   0,              // 0 Entry should never be used (MINPRI_USER)
2596
2597  27,              // 1 MinPriority
2598  28,              // 2
2599  29,              // 3
2600
2601  30,              // 4
2602  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2603  32,              // 6
2604
2605  33,              // 7
2606  34,              // 8
2607  35,              // 9 NearMaxPriority
2608
2609  36,              // 10 MaxPriority
2610
2611  36               // 11 CriticalPriority
2612};
2613#endif
2614
2615static int prio_init() {
2616  if (ThreadPriorityPolicy == 1) {
2617    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2618    // if effective uid is not root. Perhaps, a more elegant way of doing
2619    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2620    if (geteuid() != 0) {
2621      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2622        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2623      }
2624      ThreadPriorityPolicy = 0;
2625    }
2626  }
2627  if (UseCriticalJavaThreadPriority) {
2628    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2629  }
2630  return 0;
2631}
2632
2633OSReturn os::set_native_priority(Thread* thread, int newpri) {
2634  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2635
2636#ifdef __OpenBSD__
2637  // OpenBSD pthread_setprio starves low priority threads
2638  return OS_OK;
2639#elif defined(__FreeBSD__)
2640  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2641#elif defined(__APPLE__) || defined(__NetBSD__)
2642  struct sched_param sp;
2643  int policy;
2644  pthread_t self = pthread_self();
2645
2646  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2647    return OS_ERR;
2648  }
2649
2650  sp.sched_priority = newpri;
2651  if (pthread_setschedparam(self, policy, &sp) != 0) {
2652    return OS_ERR;
2653  }
2654
2655  return OS_OK;
2656#else
2657  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2658  return (ret == 0) ? OS_OK : OS_ERR;
2659#endif
2660}
2661
2662OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2663  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2664    *priority_ptr = java_to_os_priority[NormPriority];
2665    return OS_OK;
2666  }
2667
2668  errno = 0;
2669#if defined(__OpenBSD__) || defined(__FreeBSD__)
2670  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2671#elif defined(__APPLE__) || defined(__NetBSD__)
2672  int policy;
2673  struct sched_param sp;
2674
2675  pthread_getschedparam(pthread_self(), &policy, &sp);
2676  *priority_ptr = sp.sched_priority;
2677#else
2678  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2679#endif
2680  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2681}
2682
2683// Hint to the underlying OS that a task switch would not be good.
2684// Void return because it's a hint and can fail.
2685void os::hint_no_preempt() {}
2686
2687////////////////////////////////////////////////////////////////////////////////
2688// suspend/resume support
2689
2690//  the low-level signal-based suspend/resume support is a remnant from the
2691//  old VM-suspension that used to be for java-suspension, safepoints etc,
2692//  within hotspot. Now there is a single use-case for this:
2693//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2694//      that runs in the watcher thread.
2695//  The remaining code is greatly simplified from the more general suspension
2696//  code that used to be used.
2697//
2698//  The protocol is quite simple:
2699//  - suspend:
2700//      - sends a signal to the target thread
2701//      - polls the suspend state of the osthread using a yield loop
2702//      - target thread signal handler (SR_handler) sets suspend state
2703//        and blocks in sigsuspend until continued
2704//  - resume:
2705//      - sets target osthread state to continue
2706//      - sends signal to end the sigsuspend loop in the SR_handler
2707//
2708//  Note that the SR_lock plays no role in this suspend/resume protocol.
2709
2710static void resume_clear_context(OSThread *osthread) {
2711  osthread->set_ucontext(NULL);
2712  osthread->set_siginfo(NULL);
2713}
2714
2715static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2716  osthread->set_ucontext(context);
2717  osthread->set_siginfo(siginfo);
2718}
2719
2720// Handler function invoked when a thread's execution is suspended or
2721// resumed. We have to be careful that only async-safe functions are
2722// called here (Note: most pthread functions are not async safe and
2723// should be avoided.)
2724//
2725// Note: sigwait() is a more natural fit than sigsuspend() from an
2726// interface point of view, but sigwait() prevents the signal hander
2727// from being run. libpthread would get very confused by not having
2728// its signal handlers run and prevents sigwait()'s use with the
2729// mutex granting granting signal.
2730//
2731// Currently only ever called on the VMThread or JavaThread
2732//
2733static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2734  // Save and restore errno to avoid confusing native code with EINTR
2735  // after sigsuspend.
2736  int old_errno = errno;
2737
2738  Thread* thread = Thread::current();
2739  OSThread* osthread = thread->osthread();
2740  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2741
2742  os::SuspendResume::State current = osthread->sr.state();
2743  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2744    suspend_save_context(osthread, siginfo, context);
2745
2746    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2747    os::SuspendResume::State state = osthread->sr.suspended();
2748    if (state == os::SuspendResume::SR_SUSPENDED) {
2749      sigset_t suspend_set;  // signals for sigsuspend()
2750
2751      // get current set of blocked signals and unblock resume signal
2752      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2753      sigdelset(&suspend_set, SR_signum);
2754
2755      sr_semaphore.signal();
2756      // wait here until we are resumed
2757      while (1) {
2758        sigsuspend(&suspend_set);
2759
2760        os::SuspendResume::State result = osthread->sr.running();
2761        if (result == os::SuspendResume::SR_RUNNING) {
2762          sr_semaphore.signal();
2763          break;
2764        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2765          ShouldNotReachHere();
2766        }
2767      }
2768
2769    } else if (state == os::SuspendResume::SR_RUNNING) {
2770      // request was cancelled, continue
2771    } else {
2772      ShouldNotReachHere();
2773    }
2774
2775    resume_clear_context(osthread);
2776  } else if (current == os::SuspendResume::SR_RUNNING) {
2777    // request was cancelled, continue
2778  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2779    // ignore
2780  } else {
2781    // ignore
2782  }
2783
2784  errno = old_errno;
2785}
2786
2787
2788static int SR_initialize() {
2789  struct sigaction act;
2790  char *s;
2791  // Get signal number to use for suspend/resume
2792  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2793    int sig = ::strtol(s, 0, 10);
2794    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2795        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2796      SR_signum = sig;
2797    } else {
2798      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2799              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2800    }
2801  }
2802
2803  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2804         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2805
2806  sigemptyset(&SR_sigset);
2807  sigaddset(&SR_sigset, SR_signum);
2808
2809  // Set up signal handler for suspend/resume
2810  act.sa_flags = SA_RESTART|SA_SIGINFO;
2811  act.sa_handler = (void (*)(int)) SR_handler;
2812
2813  // SR_signum is blocked by default.
2814  // 4528190 - We also need to block pthread restart signal (32 on all
2815  // supported Bsd platforms). Note that BsdThreads need to block
2816  // this signal for all threads to work properly. So we don't have
2817  // to use hard-coded signal number when setting up the mask.
2818  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2819
2820  if (sigaction(SR_signum, &act, 0) == -1) {
2821    return -1;
2822  }
2823
2824  // Save signal flag
2825  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2826  return 0;
2827}
2828
2829static int sr_notify(OSThread* osthread) {
2830  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2831  assert_status(status == 0, status, "pthread_kill");
2832  return status;
2833}
2834
2835// "Randomly" selected value for how long we want to spin
2836// before bailing out on suspending a thread, also how often
2837// we send a signal to a thread we want to resume
2838static const int RANDOMLY_LARGE_INTEGER = 1000000;
2839static const int RANDOMLY_LARGE_INTEGER2 = 100;
2840
2841// returns true on success and false on error - really an error is fatal
2842// but this seems the normal response to library errors
2843static bool do_suspend(OSThread* osthread) {
2844  assert(osthread->sr.is_running(), "thread should be running");
2845  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2846
2847  // mark as suspended and send signal
2848  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2849    // failed to switch, state wasn't running?
2850    ShouldNotReachHere();
2851    return false;
2852  }
2853
2854  if (sr_notify(osthread) != 0) {
2855    ShouldNotReachHere();
2856  }
2857
2858  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2859  while (true) {
2860    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2861      break;
2862    } else {
2863      // timeout
2864      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2865      if (cancelled == os::SuspendResume::SR_RUNNING) {
2866        return false;
2867      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2868        // make sure that we consume the signal on the semaphore as well
2869        sr_semaphore.wait();
2870        break;
2871      } else {
2872        ShouldNotReachHere();
2873        return false;
2874      }
2875    }
2876  }
2877
2878  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2879  return true;
2880}
2881
2882static void do_resume(OSThread* osthread) {
2883  assert(osthread->sr.is_suspended(), "thread should be suspended");
2884  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2885
2886  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2887    // failed to switch to WAKEUP_REQUEST
2888    ShouldNotReachHere();
2889    return;
2890  }
2891
2892  while (true) {
2893    if (sr_notify(osthread) == 0) {
2894      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2895        if (osthread->sr.is_running()) {
2896          return;
2897        }
2898      }
2899    } else {
2900      ShouldNotReachHere();
2901    }
2902  }
2903
2904  guarantee(osthread->sr.is_running(), "Must be running!");
2905}
2906
2907///////////////////////////////////////////////////////////////////////////////////
2908// signal handling (except suspend/resume)
2909
2910// This routine may be used by user applications as a "hook" to catch signals.
2911// The user-defined signal handler must pass unrecognized signals to this
2912// routine, and if it returns true (non-zero), then the signal handler must
2913// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2914// routine will never retun false (zero), but instead will execute a VM panic
2915// routine kill the process.
2916//
2917// If this routine returns false, it is OK to call it again.  This allows
2918// the user-defined signal handler to perform checks either before or after
2919// the VM performs its own checks.  Naturally, the user code would be making
2920// a serious error if it tried to handle an exception (such as a null check
2921// or breakpoint) that the VM was generating for its own correct operation.
2922//
2923// This routine may recognize any of the following kinds of signals:
2924//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2925// It should be consulted by handlers for any of those signals.
2926//
2927// The caller of this routine must pass in the three arguments supplied
2928// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2929// field of the structure passed to sigaction().  This routine assumes that
2930// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2931//
2932// Note that the VM will print warnings if it detects conflicting signal
2933// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2934//
2935extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2936                                               void* ucontext,
2937                                               int abort_if_unrecognized);
2938
2939void signalHandler(int sig, siginfo_t* info, void* uc) {
2940  assert(info != NULL && uc != NULL, "it must be old kernel");
2941  int orig_errno = errno;  // Preserve errno value over signal handler.
2942  JVM_handle_bsd_signal(sig, info, uc, true);
2943  errno = orig_errno;
2944}
2945
2946
2947// This boolean allows users to forward their own non-matching signals
2948// to JVM_handle_bsd_signal, harmlessly.
2949bool os::Bsd::signal_handlers_are_installed = false;
2950
2951// For signal-chaining
2952struct sigaction sigact[NSIG];
2953uint32_t sigs = 0;
2954#if (32 < NSIG-1)
2955#error "Not all signals can be encoded in sigs. Adapt its type!"
2956#endif
2957bool os::Bsd::libjsig_is_loaded = false;
2958typedef struct sigaction *(*get_signal_t)(int);
2959get_signal_t os::Bsd::get_signal_action = NULL;
2960
2961struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2962  struct sigaction *actp = NULL;
2963
2964  if (libjsig_is_loaded) {
2965    // Retrieve the old signal handler from libjsig
2966    actp = (*get_signal_action)(sig);
2967  }
2968  if (actp == NULL) {
2969    // Retrieve the preinstalled signal handler from jvm
2970    actp = get_preinstalled_handler(sig);
2971  }
2972
2973  return actp;
2974}
2975
2976static bool call_chained_handler(struct sigaction *actp, int sig,
2977                                 siginfo_t *siginfo, void *context) {
2978  // Call the old signal handler
2979  if (actp->sa_handler == SIG_DFL) {
2980    // It's more reasonable to let jvm treat it as an unexpected exception
2981    // instead of taking the default action.
2982    return false;
2983  } else if (actp->sa_handler != SIG_IGN) {
2984    if ((actp->sa_flags & SA_NODEFER) == 0) {
2985      // automaticlly block the signal
2986      sigaddset(&(actp->sa_mask), sig);
2987    }
2988
2989    sa_handler_t hand;
2990    sa_sigaction_t sa;
2991    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2992    // retrieve the chained handler
2993    if (siginfo_flag_set) {
2994      sa = actp->sa_sigaction;
2995    } else {
2996      hand = actp->sa_handler;
2997    }
2998
2999    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3000      actp->sa_handler = SIG_DFL;
3001    }
3002
3003    // try to honor the signal mask
3004    sigset_t oset;
3005    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3006
3007    // call into the chained handler
3008    if (siginfo_flag_set) {
3009      (*sa)(sig, siginfo, context);
3010    } else {
3011      (*hand)(sig);
3012    }
3013
3014    // restore the signal mask
3015    pthread_sigmask(SIG_SETMASK, &oset, 0);
3016  }
3017  // Tell jvm's signal handler the signal is taken care of.
3018  return true;
3019}
3020
3021bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3022  bool chained = false;
3023  // signal-chaining
3024  if (UseSignalChaining) {
3025    struct sigaction *actp = get_chained_signal_action(sig);
3026    if (actp != NULL) {
3027      chained = call_chained_handler(actp, sig, siginfo, context);
3028    }
3029  }
3030  return chained;
3031}
3032
3033struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3034  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3035    return &sigact[sig];
3036  }
3037  return NULL;
3038}
3039
3040void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3041  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3042  sigact[sig] = oldAct;
3043  sigs |= (uint32_t)1 << (sig-1);
3044}
3045
3046// for diagnostic
3047int sigflags[NSIG];
3048
3049int os::Bsd::get_our_sigflags(int sig) {
3050  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3051  return sigflags[sig];
3052}
3053
3054void os::Bsd::set_our_sigflags(int sig, int flags) {
3055  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3056  if (sig > 0 && sig < NSIG) {
3057    sigflags[sig] = flags;
3058  }
3059}
3060
3061void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3062  // Check for overwrite.
3063  struct sigaction oldAct;
3064  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3065
3066  void* oldhand = oldAct.sa_sigaction
3067                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3068                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3069  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3070      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3071      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3072    if (AllowUserSignalHandlers || !set_installed) {
3073      // Do not overwrite; user takes responsibility to forward to us.
3074      return;
3075    } else if (UseSignalChaining) {
3076      // save the old handler in jvm
3077      save_preinstalled_handler(sig, oldAct);
3078      // libjsig also interposes the sigaction() call below and saves the
3079      // old sigaction on it own.
3080    } else {
3081      fatal("Encountered unexpected pre-existing sigaction handler "
3082            "%#lx for signal %d.", (long)oldhand, sig);
3083    }
3084  }
3085
3086  struct sigaction sigAct;
3087  sigfillset(&(sigAct.sa_mask));
3088  sigAct.sa_handler = SIG_DFL;
3089  if (!set_installed) {
3090    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3091  } else {
3092    sigAct.sa_sigaction = signalHandler;
3093    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3094  }
3095#ifdef __APPLE__
3096  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3097  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3098  // if the signal handler declares it will handle it on alternate stack.
3099  // Notice we only declare we will handle it on alt stack, but we are not
3100  // actually going to use real alt stack - this is just a workaround.
3101  // Please see ux_exception.c, method catch_mach_exception_raise for details
3102  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3103  if (sig == SIGSEGV) {
3104    sigAct.sa_flags |= SA_ONSTACK;
3105  }
3106#endif
3107
3108  // Save flags, which are set by ours
3109  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3110  sigflags[sig] = sigAct.sa_flags;
3111
3112  int ret = sigaction(sig, &sigAct, &oldAct);
3113  assert(ret == 0, "check");
3114
3115  void* oldhand2  = oldAct.sa_sigaction
3116                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3117                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3118  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3119}
3120
3121// install signal handlers for signals that HotSpot needs to
3122// handle in order to support Java-level exception handling.
3123
3124void os::Bsd::install_signal_handlers() {
3125  if (!signal_handlers_are_installed) {
3126    signal_handlers_are_installed = true;
3127
3128    // signal-chaining
3129    typedef void (*signal_setting_t)();
3130    signal_setting_t begin_signal_setting = NULL;
3131    signal_setting_t end_signal_setting = NULL;
3132    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3133                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3134    if (begin_signal_setting != NULL) {
3135      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3136                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3137      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3138                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3139      libjsig_is_loaded = true;
3140      assert(UseSignalChaining, "should enable signal-chaining");
3141    }
3142    if (libjsig_is_loaded) {
3143      // Tell libjsig jvm is setting signal handlers
3144      (*begin_signal_setting)();
3145    }
3146
3147    set_signal_handler(SIGSEGV, true);
3148    set_signal_handler(SIGPIPE, true);
3149    set_signal_handler(SIGBUS, true);
3150    set_signal_handler(SIGILL, true);
3151    set_signal_handler(SIGFPE, true);
3152    set_signal_handler(SIGXFSZ, true);
3153
3154#if defined(__APPLE__)
3155    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3156    // signals caught and handled by the JVM. To work around this, we reset the mach task
3157    // signal handler that's placed on our process by CrashReporter. This disables
3158    // CrashReporter-based reporting.
3159    //
3160    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3161    // on caught fatal signals.
3162    //
3163    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3164    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3165    // exception handling, while leaving the standard BSD signal handlers functional.
3166    kern_return_t kr;
3167    kr = task_set_exception_ports(mach_task_self(),
3168                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3169                                  MACH_PORT_NULL,
3170                                  EXCEPTION_STATE_IDENTITY,
3171                                  MACHINE_THREAD_STATE);
3172
3173    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3174#endif
3175
3176    if (libjsig_is_loaded) {
3177      // Tell libjsig jvm finishes setting signal handlers
3178      (*end_signal_setting)();
3179    }
3180
3181    // We don't activate signal checker if libjsig is in place, we trust ourselves
3182    // and if UserSignalHandler is installed all bets are off
3183    if (CheckJNICalls) {
3184      if (libjsig_is_loaded) {
3185        if (PrintJNIResolving) {
3186          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3187        }
3188        check_signals = false;
3189      }
3190      if (AllowUserSignalHandlers) {
3191        if (PrintJNIResolving) {
3192          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3193        }
3194        check_signals = false;
3195      }
3196    }
3197  }
3198}
3199
3200
3201/////
3202// glibc on Bsd platform uses non-documented flag
3203// to indicate, that some special sort of signal
3204// trampoline is used.
3205// We will never set this flag, and we should
3206// ignore this flag in our diagnostic
3207#ifdef SIGNIFICANT_SIGNAL_MASK
3208  #undef SIGNIFICANT_SIGNAL_MASK
3209#endif
3210#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3211
3212static const char* get_signal_handler_name(address handler,
3213                                           char* buf, int buflen) {
3214  int offset;
3215  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3216  if (found) {
3217    // skip directory names
3218    const char *p1, *p2;
3219    p1 = buf;
3220    size_t len = strlen(os::file_separator());
3221    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3222    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3223  } else {
3224    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3225  }
3226  return buf;
3227}
3228
3229static void print_signal_handler(outputStream* st, int sig,
3230                                 char* buf, size_t buflen) {
3231  struct sigaction sa;
3232
3233  sigaction(sig, NULL, &sa);
3234
3235  // See comment for SIGNIFICANT_SIGNAL_MASK define
3236  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3237
3238  st->print("%s: ", os::exception_name(sig, buf, buflen));
3239
3240  address handler = (sa.sa_flags & SA_SIGINFO)
3241    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3242    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3243
3244  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3245    st->print("SIG_DFL");
3246  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3247    st->print("SIG_IGN");
3248  } else {
3249    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3250  }
3251
3252  st->print(", sa_mask[0]=");
3253  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3254
3255  address rh = VMError::get_resetted_sighandler(sig);
3256  // May be, handler was resetted by VMError?
3257  if (rh != NULL) {
3258    handler = rh;
3259    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3260  }
3261
3262  st->print(", sa_flags=");
3263  os::Posix::print_sa_flags(st, sa.sa_flags);
3264
3265  // Check: is it our handler?
3266  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3267      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3268    // It is our signal handler
3269    // check for flags, reset system-used one!
3270    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3271      st->print(
3272                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3273                os::Bsd::get_our_sigflags(sig));
3274    }
3275  }
3276  st->cr();
3277}
3278
3279
3280#define DO_SIGNAL_CHECK(sig)                      \
3281  do {                                            \
3282    if (!sigismember(&check_signal_done, sig)) {  \
3283      os::Bsd::check_signal_handler(sig);         \
3284    }                                             \
3285  } while (0)
3286
3287// This method is a periodic task to check for misbehaving JNI applications
3288// under CheckJNI, we can add any periodic checks here
3289
3290void os::run_periodic_checks() {
3291
3292  if (check_signals == false) return;
3293
3294  // SEGV and BUS if overridden could potentially prevent
3295  // generation of hs*.log in the event of a crash, debugging
3296  // such a case can be very challenging, so we absolutely
3297  // check the following for a good measure:
3298  DO_SIGNAL_CHECK(SIGSEGV);
3299  DO_SIGNAL_CHECK(SIGILL);
3300  DO_SIGNAL_CHECK(SIGFPE);
3301  DO_SIGNAL_CHECK(SIGBUS);
3302  DO_SIGNAL_CHECK(SIGPIPE);
3303  DO_SIGNAL_CHECK(SIGXFSZ);
3304
3305
3306  // ReduceSignalUsage allows the user to override these handlers
3307  // see comments at the very top and jvm_solaris.h
3308  if (!ReduceSignalUsage) {
3309    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3310    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3311    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3312    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3313  }
3314
3315  DO_SIGNAL_CHECK(SR_signum);
3316}
3317
3318typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3319
3320static os_sigaction_t os_sigaction = NULL;
3321
3322void os::Bsd::check_signal_handler(int sig) {
3323  char buf[O_BUFLEN];
3324  address jvmHandler = NULL;
3325
3326
3327  struct sigaction act;
3328  if (os_sigaction == NULL) {
3329    // only trust the default sigaction, in case it has been interposed
3330    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3331    if (os_sigaction == NULL) return;
3332  }
3333
3334  os_sigaction(sig, (struct sigaction*)NULL, &act);
3335
3336
3337  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3338
3339  address thisHandler = (act.sa_flags & SA_SIGINFO)
3340    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3341    : CAST_FROM_FN_PTR(address, act.sa_handler);
3342
3343
3344  switch (sig) {
3345  case SIGSEGV:
3346  case SIGBUS:
3347  case SIGFPE:
3348  case SIGPIPE:
3349  case SIGILL:
3350  case SIGXFSZ:
3351    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3352    break;
3353
3354  case SHUTDOWN1_SIGNAL:
3355  case SHUTDOWN2_SIGNAL:
3356  case SHUTDOWN3_SIGNAL:
3357  case BREAK_SIGNAL:
3358    jvmHandler = (address)user_handler();
3359    break;
3360
3361  default:
3362    if (sig == SR_signum) {
3363      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3364    } else {
3365      return;
3366    }
3367    break;
3368  }
3369
3370  if (thisHandler != jvmHandler) {
3371    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3372    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3373    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3374    // No need to check this sig any longer
3375    sigaddset(&check_signal_done, sig);
3376    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3377    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3378      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3379                    exception_name(sig, buf, O_BUFLEN));
3380    }
3381  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3382    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3383    tty->print("expected:");
3384    os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3385    tty->cr();
3386    tty->print("  found:");
3387    os::Posix::print_sa_flags(tty, act.sa_flags);
3388    tty->cr();
3389    // No need to check this sig any longer
3390    sigaddset(&check_signal_done, sig);
3391  }
3392
3393  // Dump all the signal
3394  if (sigismember(&check_signal_done, sig)) {
3395    print_signal_handlers(tty, buf, O_BUFLEN);
3396  }
3397}
3398
3399extern void report_error(char* file_name, int line_no, char* title,
3400                         char* format, ...);
3401
3402// this is called _before_ the most of global arguments have been parsed
3403void os::init(void) {
3404  char dummy;   // used to get a guess on initial stack address
3405//  first_hrtime = gethrtime();
3406
3407  // With BsdThreads the JavaMain thread pid (primordial thread)
3408  // is different than the pid of the java launcher thread.
3409  // So, on Bsd, the launcher thread pid is passed to the VM
3410  // via the sun.java.launcher.pid property.
3411  // Use this property instead of getpid() if it was correctly passed.
3412  // See bug 6351349.
3413  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3414
3415  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3416
3417  clock_tics_per_sec = CLK_TCK;
3418
3419  init_random(1234567);
3420
3421  ThreadCritical::initialize();
3422
3423  Bsd::set_page_size(getpagesize());
3424  if (Bsd::page_size() == -1) {
3425    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3426  }
3427  init_page_sizes((size_t) Bsd::page_size());
3428
3429  Bsd::initialize_system_info();
3430
3431  // main_thread points to the aboriginal thread
3432  Bsd::_main_thread = pthread_self();
3433
3434  Bsd::clock_init();
3435  initial_time_count = javaTimeNanos();
3436
3437#ifdef __APPLE__
3438  // XXXDARWIN
3439  // Work around the unaligned VM callbacks in hotspot's
3440  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3441  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3442  // alignment when doing symbol lookup. To work around this, we force early
3443  // binding of all symbols now, thus binding when alignment is known-good.
3444  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3445#endif
3446}
3447
3448// To install functions for atexit system call
3449extern "C" {
3450  static void perfMemory_exit_helper() {
3451    perfMemory_exit();
3452  }
3453}
3454
3455// this is called _after_ the global arguments have been parsed
3456jint os::init_2(void) {
3457  // Allocate a single page and mark it as readable for safepoint polling
3458  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3459  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3460
3461  os::set_polling_page(polling_page);
3462  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3463
3464  if (!UseMembar) {
3465    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3466    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3467    os::set_memory_serialize_page(mem_serialize_page);
3468    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3469  }
3470
3471  // initialize suspend/resume support - must do this before signal_sets_init()
3472  if (SR_initialize() != 0) {
3473    perror("SR_initialize failed");
3474    return JNI_ERR;
3475  }
3476
3477  Bsd::signal_sets_init();
3478  Bsd::install_signal_handlers();
3479
3480  // Check minimum allowable stack size for thread creation and to initialize
3481  // the java system classes, including StackOverflowError - depends on page
3482  // size.  Add a page for compiler2 recursion in main thread.
3483  // Add in 2*BytesPerWord times page size to account for VM stack during
3484  // class initialization depending on 32 or 64 bit VM.
3485  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3486                                    JavaThread::stack_guard_zone_size() +
3487                                    JavaThread::stack_shadow_zone_size() +
3488                                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3489
3490  size_t threadStackSizeInBytes = ThreadStackSize * K;
3491  if (threadStackSizeInBytes != 0 &&
3492      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3493    tty->print_cr("\nThe stack size specified is too small, "
3494                  "Specify at least %dk",
3495                  os::Bsd::min_stack_allowed/ K);
3496    return JNI_ERR;
3497  }
3498
3499  // Make the stack size a multiple of the page size so that
3500  // the yellow/red zones can be guarded.
3501  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3502                                                vm_page_size()));
3503
3504  if (MaxFDLimit) {
3505    // set the number of file descriptors to max. print out error
3506    // if getrlimit/setrlimit fails but continue regardless.
3507    struct rlimit nbr_files;
3508    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3509    if (status != 0) {
3510      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3511    } else {
3512      nbr_files.rlim_cur = nbr_files.rlim_max;
3513
3514#ifdef __APPLE__
3515      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3516      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3517      // be used instead
3518      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3519#endif
3520
3521      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3522      if (status != 0) {
3523        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3524      }
3525    }
3526  }
3527
3528  // at-exit methods are called in the reverse order of their registration.
3529  // atexit functions are called on return from main or as a result of a
3530  // call to exit(3C). There can be only 32 of these functions registered
3531  // and atexit() does not set errno.
3532
3533  if (PerfAllowAtExitRegistration) {
3534    // only register atexit functions if PerfAllowAtExitRegistration is set.
3535    // atexit functions can be delayed until process exit time, which
3536    // can be problematic for embedded VM situations. Embedded VMs should
3537    // call DestroyJavaVM() to assure that VM resources are released.
3538
3539    // note: perfMemory_exit_helper atexit function may be removed in
3540    // the future if the appropriate cleanup code can be added to the
3541    // VM_Exit VMOperation's doit method.
3542    if (atexit(perfMemory_exit_helper) != 0) {
3543      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3544    }
3545  }
3546
3547  // initialize thread priority policy
3548  prio_init();
3549
3550#ifdef __APPLE__
3551  // dynamically link to objective c gc registration
3552  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3553  if (handleLibObjc != NULL) {
3554    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3555  }
3556#endif
3557
3558  return JNI_OK;
3559}
3560
3561// Mark the polling page as unreadable
3562void os::make_polling_page_unreadable(void) {
3563  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3564    fatal("Could not disable polling page");
3565  }
3566}
3567
3568// Mark the polling page as readable
3569void os::make_polling_page_readable(void) {
3570  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3571    fatal("Could not enable polling page");
3572  }
3573}
3574
3575int os::active_processor_count() {
3576  return _processor_count;
3577}
3578
3579void os::set_native_thread_name(const char *name) {
3580#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3581  // This is only supported in Snow Leopard and beyond
3582  if (name != NULL) {
3583    // Add a "Java: " prefix to the name
3584    char buf[MAXTHREADNAMESIZE];
3585    snprintf(buf, sizeof(buf), "Java: %s", name);
3586    pthread_setname_np(buf);
3587  }
3588#endif
3589}
3590
3591bool os::distribute_processes(uint length, uint* distribution) {
3592  // Not yet implemented.
3593  return false;
3594}
3595
3596bool os::bind_to_processor(uint processor_id) {
3597  // Not yet implemented.
3598  return false;
3599}
3600
3601void os::SuspendedThreadTask::internal_do_task() {
3602  if (do_suspend(_thread->osthread())) {
3603    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3604    do_task(context);
3605    do_resume(_thread->osthread());
3606  }
3607}
3608
3609///
3610class PcFetcher : public os::SuspendedThreadTask {
3611 public:
3612  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3613  ExtendedPC result();
3614 protected:
3615  void do_task(const os::SuspendedThreadTaskContext& context);
3616 private:
3617  ExtendedPC _epc;
3618};
3619
3620ExtendedPC PcFetcher::result() {
3621  guarantee(is_done(), "task is not done yet.");
3622  return _epc;
3623}
3624
3625void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3626  Thread* thread = context.thread();
3627  OSThread* osthread = thread->osthread();
3628  if (osthread->ucontext() != NULL) {
3629    _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3630  } else {
3631    // NULL context is unexpected, double-check this is the VMThread
3632    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3633  }
3634}
3635
3636// Suspends the target using the signal mechanism and then grabs the PC before
3637// resuming the target. Used by the flat-profiler only
3638ExtendedPC os::get_thread_pc(Thread* thread) {
3639  // Make sure that it is called by the watcher for the VMThread
3640  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3641  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3642
3643  PcFetcher fetcher(thread);
3644  fetcher.run();
3645  return fetcher.result();
3646}
3647
3648////////////////////////////////////////////////////////////////////////////////
3649// debug support
3650
3651bool os::find(address addr, outputStream* st) {
3652  Dl_info dlinfo;
3653  memset(&dlinfo, 0, sizeof(dlinfo));
3654  if (dladdr(addr, &dlinfo) != 0) {
3655    st->print(PTR_FORMAT ": ", addr);
3656    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3657      st->print("%s+%#x", dlinfo.dli_sname,
3658                addr - (intptr_t)dlinfo.dli_saddr);
3659    } else if (dlinfo.dli_fbase != NULL) {
3660      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3661    } else {
3662      st->print("<absolute address>");
3663    }
3664    if (dlinfo.dli_fname != NULL) {
3665      st->print(" in %s", dlinfo.dli_fname);
3666    }
3667    if (dlinfo.dli_fbase != NULL) {
3668      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3669    }
3670    st->cr();
3671
3672    if (Verbose) {
3673      // decode some bytes around the PC
3674      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3675      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3676      address       lowest = (address) dlinfo.dli_sname;
3677      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3678      if (begin < lowest)  begin = lowest;
3679      Dl_info dlinfo2;
3680      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3681          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3682        end = (address) dlinfo2.dli_saddr;
3683      }
3684      Disassembler::decode(begin, end, st);
3685    }
3686    return true;
3687  }
3688  return false;
3689}
3690
3691////////////////////////////////////////////////////////////////////////////////
3692// misc
3693
3694// This does not do anything on Bsd. This is basically a hook for being
3695// able to use structured exception handling (thread-local exception filters)
3696// on, e.g., Win32.
3697void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3698                              const methodHandle& method, JavaCallArguments* args,
3699                              Thread* thread) {
3700  f(value, method, args, thread);
3701}
3702
3703void os::print_statistics() {
3704}
3705
3706bool os::message_box(const char* title, const char* message) {
3707  int i;
3708  fdStream err(defaultStream::error_fd());
3709  for (i = 0; i < 78; i++) err.print_raw("=");
3710  err.cr();
3711  err.print_raw_cr(title);
3712  for (i = 0; i < 78; i++) err.print_raw("-");
3713  err.cr();
3714  err.print_raw_cr(message);
3715  for (i = 0; i < 78; i++) err.print_raw("=");
3716  err.cr();
3717
3718  char buf[16];
3719  // Prevent process from exiting upon "read error" without consuming all CPU
3720  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3721
3722  return buf[0] == 'y' || buf[0] == 'Y';
3723}
3724
3725int os::stat(const char *path, struct stat *sbuf) {
3726  char pathbuf[MAX_PATH];
3727  if (strlen(path) > MAX_PATH - 1) {
3728    errno = ENAMETOOLONG;
3729    return -1;
3730  }
3731  os::native_path(strcpy(pathbuf, path));
3732  return ::stat(pathbuf, sbuf);
3733}
3734
3735bool os::check_heap(bool force) {
3736  return true;
3737}
3738
3739// Is a (classpath) directory empty?
3740bool os::dir_is_empty(const char* path) {
3741  DIR *dir = NULL;
3742  struct dirent *ptr;
3743
3744  dir = opendir(path);
3745  if (dir == NULL) return true;
3746
3747  // Scan the directory
3748  bool result = true;
3749  char buf[sizeof(struct dirent) + MAX_PATH];
3750  while (result && (ptr = ::readdir(dir)) != NULL) {
3751    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3752      result = false;
3753    }
3754  }
3755  closedir(dir);
3756  return result;
3757}
3758
3759// This code originates from JDK's sysOpen and open64_w
3760// from src/solaris/hpi/src/system_md.c
3761
3762int os::open(const char *path, int oflag, int mode) {
3763  if (strlen(path) > MAX_PATH - 1) {
3764    errno = ENAMETOOLONG;
3765    return -1;
3766  }
3767  int fd;
3768
3769  fd = ::open(path, oflag, mode);
3770  if (fd == -1) return -1;
3771
3772  // If the open succeeded, the file might still be a directory
3773  {
3774    struct stat buf;
3775    int ret = ::fstat(fd, &buf);
3776    int st_mode = buf.st_mode;
3777
3778    if (ret != -1) {
3779      if ((st_mode & S_IFMT) == S_IFDIR) {
3780        errno = EISDIR;
3781        ::close(fd);
3782        return -1;
3783      }
3784    } else {
3785      ::close(fd);
3786      return -1;
3787    }
3788  }
3789
3790  // All file descriptors that are opened in the JVM and not
3791  // specifically destined for a subprocess should have the
3792  // close-on-exec flag set.  If we don't set it, then careless 3rd
3793  // party native code might fork and exec without closing all
3794  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3795  // UNIXProcess.c), and this in turn might:
3796  //
3797  // - cause end-of-file to fail to be detected on some file
3798  //   descriptors, resulting in mysterious hangs, or
3799  //
3800  // - might cause an fopen in the subprocess to fail on a system
3801  //   suffering from bug 1085341.
3802  //
3803  // (Yes, the default setting of the close-on-exec flag is a Unix
3804  // design flaw)
3805  //
3806  // See:
3807  // 1085341: 32-bit stdio routines should support file descriptors >255
3808  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3809  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3810  //
3811#ifdef FD_CLOEXEC
3812  {
3813    int flags = ::fcntl(fd, F_GETFD);
3814    if (flags != -1) {
3815      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3816    }
3817  }
3818#endif
3819
3820  return fd;
3821}
3822
3823
3824// create binary file, rewriting existing file if required
3825int os::create_binary_file(const char* path, bool rewrite_existing) {
3826  int oflags = O_WRONLY | O_CREAT;
3827  if (!rewrite_existing) {
3828    oflags |= O_EXCL;
3829  }
3830  return ::open(path, oflags, S_IREAD | S_IWRITE);
3831}
3832
3833// return current position of file pointer
3834jlong os::current_file_offset(int fd) {
3835  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3836}
3837
3838// move file pointer to the specified offset
3839jlong os::seek_to_file_offset(int fd, jlong offset) {
3840  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3841}
3842
3843// This code originates from JDK's sysAvailable
3844// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3845
3846int os::available(int fd, jlong *bytes) {
3847  jlong cur, end;
3848  int mode;
3849  struct stat buf;
3850
3851  if (::fstat(fd, &buf) >= 0) {
3852    mode = buf.st_mode;
3853    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3854      int n;
3855      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3856        *bytes = n;
3857        return 1;
3858      }
3859    }
3860  }
3861  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3862    return 0;
3863  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3864    return 0;
3865  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3866    return 0;
3867  }
3868  *bytes = end - cur;
3869  return 1;
3870}
3871
3872// Map a block of memory.
3873char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3874                        char *addr, size_t bytes, bool read_only,
3875                        bool allow_exec) {
3876  int prot;
3877  int flags;
3878
3879  if (read_only) {
3880    prot = PROT_READ;
3881    flags = MAP_SHARED;
3882  } else {
3883    prot = PROT_READ | PROT_WRITE;
3884    flags = MAP_PRIVATE;
3885  }
3886
3887  if (allow_exec) {
3888    prot |= PROT_EXEC;
3889  }
3890
3891  if (addr != NULL) {
3892    flags |= MAP_FIXED;
3893  }
3894
3895  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3896                                     fd, file_offset);
3897  if (mapped_address == MAP_FAILED) {
3898    return NULL;
3899  }
3900  return mapped_address;
3901}
3902
3903
3904// Remap a block of memory.
3905char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3906                          char *addr, size_t bytes, bool read_only,
3907                          bool allow_exec) {
3908  // same as map_memory() on this OS
3909  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3910                        allow_exec);
3911}
3912
3913
3914// Unmap a block of memory.
3915bool os::pd_unmap_memory(char* addr, size_t bytes) {
3916  return munmap(addr, bytes) == 0;
3917}
3918
3919// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3920// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3921// of a thread.
3922//
3923// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3924// the fast estimate available on the platform.
3925
3926jlong os::current_thread_cpu_time() {
3927#ifdef __APPLE__
3928  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3929#else
3930  Unimplemented();
3931  return 0;
3932#endif
3933}
3934
3935jlong os::thread_cpu_time(Thread* thread) {
3936#ifdef __APPLE__
3937  return os::thread_cpu_time(thread, true /* user + sys */);
3938#else
3939  Unimplemented();
3940  return 0;
3941#endif
3942}
3943
3944jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3945#ifdef __APPLE__
3946  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3947#else
3948  Unimplemented();
3949  return 0;
3950#endif
3951}
3952
3953jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3954#ifdef __APPLE__
3955  struct thread_basic_info tinfo;
3956  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3957  kern_return_t kr;
3958  thread_t mach_thread;
3959
3960  mach_thread = thread->osthread()->thread_id();
3961  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3962  if (kr != KERN_SUCCESS) {
3963    return -1;
3964  }
3965
3966  if (user_sys_cpu_time) {
3967    jlong nanos;
3968    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3969    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3970    return nanos;
3971  } else {
3972    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3973  }
3974#else
3975  Unimplemented();
3976  return 0;
3977#endif
3978}
3979
3980
3981void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3982  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3983  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3984  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3985  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3986}
3987
3988void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3989  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3990  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3991  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3992  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3993}
3994
3995bool os::is_thread_cpu_time_supported() {
3996#ifdef __APPLE__
3997  return true;
3998#else
3999  return false;
4000#endif
4001}
4002
4003// System loadavg support.  Returns -1 if load average cannot be obtained.
4004// Bsd doesn't yet have a (official) notion of processor sets,
4005// so just return the system wide load average.
4006int os::loadavg(double loadavg[], int nelem) {
4007  return ::getloadavg(loadavg, nelem);
4008}
4009
4010void os::pause() {
4011  char filename[MAX_PATH];
4012  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4013    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4014  } else {
4015    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4016  }
4017
4018  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4019  if (fd != -1) {
4020    struct stat buf;
4021    ::close(fd);
4022    while (::stat(filename, &buf) == 0) {
4023      (void)::poll(NULL, 0, 100);
4024    }
4025  } else {
4026    jio_fprintf(stderr,
4027                "Could not open pause file '%s', continuing immediately.\n", filename);
4028  }
4029}
4030
4031
4032// Refer to the comments in os_solaris.cpp park-unpark. The next two
4033// comment paragraphs are worth repeating here:
4034//
4035// Assumption:
4036//    Only one parker can exist on an event, which is why we allocate
4037//    them per-thread. Multiple unparkers can coexist.
4038//
4039// _Event serves as a restricted-range semaphore.
4040//   -1 : thread is blocked, i.e. there is a waiter
4041//    0 : neutral: thread is running or ready,
4042//        could have been signaled after a wait started
4043//    1 : signaled - thread is running or ready
4044//
4045
4046// utility to compute the abstime argument to timedwait:
4047// millis is the relative timeout time
4048// abstime will be the absolute timeout time
4049// TODO: replace compute_abstime() with unpackTime()
4050
4051static struct timespec* compute_abstime(struct timespec* abstime,
4052                                        jlong millis) {
4053  if (millis < 0)  millis = 0;
4054  struct timeval now;
4055  int status = gettimeofday(&now, NULL);
4056  assert(status == 0, "gettimeofday");
4057  jlong seconds = millis / 1000;
4058  millis %= 1000;
4059  if (seconds > 50000000) { // see man cond_timedwait(3T)
4060    seconds = 50000000;
4061  }
4062  abstime->tv_sec = now.tv_sec  + seconds;
4063  long       usec = now.tv_usec + millis * 1000;
4064  if (usec >= 1000000) {
4065    abstime->tv_sec += 1;
4066    usec -= 1000000;
4067  }
4068  abstime->tv_nsec = usec * 1000;
4069  return abstime;
4070}
4071
4072void os::PlatformEvent::park() {       // AKA "down()"
4073  // Transitions for _Event:
4074  //   -1 => -1 : illegal
4075  //    1 =>  0 : pass - return immediately
4076  //    0 => -1 : block; then set _Event to 0 before returning
4077
4078  // Invariant: Only the thread associated with the Event/PlatformEvent
4079  // may call park().
4080  // TODO: assert that _Assoc != NULL or _Assoc == Self
4081  assert(_nParked == 0, "invariant");
4082
4083  int v;
4084  for (;;) {
4085    v = _Event;
4086    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4087  }
4088  guarantee(v >= 0, "invariant");
4089  if (v == 0) {
4090    // Do this the hard way by blocking ...
4091    int status = pthread_mutex_lock(_mutex);
4092    assert_status(status == 0, status, "mutex_lock");
4093    guarantee(_nParked == 0, "invariant");
4094    ++_nParked;
4095    while (_Event < 0) {
4096      status = pthread_cond_wait(_cond, _mutex);
4097      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4098      // Treat this the same as if the wait was interrupted
4099      if (status == ETIMEDOUT) { status = EINTR; }
4100      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4101    }
4102    --_nParked;
4103
4104    _Event = 0;
4105    status = pthread_mutex_unlock(_mutex);
4106    assert_status(status == 0, status, "mutex_unlock");
4107    // Paranoia to ensure our locked and lock-free paths interact
4108    // correctly with each other.
4109    OrderAccess::fence();
4110  }
4111  guarantee(_Event >= 0, "invariant");
4112}
4113
4114int os::PlatformEvent::park(jlong millis) {
4115  // Transitions for _Event:
4116  //   -1 => -1 : illegal
4117  //    1 =>  0 : pass - return immediately
4118  //    0 => -1 : block; then set _Event to 0 before returning
4119
4120  guarantee(_nParked == 0, "invariant");
4121
4122  int v;
4123  for (;;) {
4124    v = _Event;
4125    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4126  }
4127  guarantee(v >= 0, "invariant");
4128  if (v != 0) return OS_OK;
4129
4130  // We do this the hard way, by blocking the thread.
4131  // Consider enforcing a minimum timeout value.
4132  struct timespec abst;
4133  compute_abstime(&abst, millis);
4134
4135  int ret = OS_TIMEOUT;
4136  int status = pthread_mutex_lock(_mutex);
4137  assert_status(status == 0, status, "mutex_lock");
4138  guarantee(_nParked == 0, "invariant");
4139  ++_nParked;
4140
4141  // Object.wait(timo) will return because of
4142  // (a) notification
4143  // (b) timeout
4144  // (c) thread.interrupt
4145  //
4146  // Thread.interrupt and object.notify{All} both call Event::set.
4147  // That is, we treat thread.interrupt as a special case of notification.
4148  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4149  // We assume all ETIME returns are valid.
4150  //
4151  // TODO: properly differentiate simultaneous notify+interrupt.
4152  // In that case, we should propagate the notify to another waiter.
4153
4154  while (_Event < 0) {
4155    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4156    assert_status(status == 0 || status == EINTR ||
4157                  status == ETIMEDOUT,
4158                  status, "cond_timedwait");
4159    if (!FilterSpuriousWakeups) break;                 // previous semantics
4160    if (status == ETIMEDOUT) break;
4161    // We consume and ignore EINTR and spurious wakeups.
4162  }
4163  --_nParked;
4164  if (_Event >= 0) {
4165    ret = OS_OK;
4166  }
4167  _Event = 0;
4168  status = pthread_mutex_unlock(_mutex);
4169  assert_status(status == 0, status, "mutex_unlock");
4170  assert(_nParked == 0, "invariant");
4171  // Paranoia to ensure our locked and lock-free paths interact
4172  // correctly with each other.
4173  OrderAccess::fence();
4174  return ret;
4175}
4176
4177void os::PlatformEvent::unpark() {
4178  // Transitions for _Event:
4179  //    0 => 1 : just return
4180  //    1 => 1 : just return
4181  //   -1 => either 0 or 1; must signal target thread
4182  //         That is, we can safely transition _Event from -1 to either
4183  //         0 or 1.
4184  // See also: "Semaphores in Plan 9" by Mullender & Cox
4185  //
4186  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4187  // that it will take two back-to-back park() calls for the owning
4188  // thread to block. This has the benefit of forcing a spurious return
4189  // from the first park() call after an unpark() call which will help
4190  // shake out uses of park() and unpark() without condition variables.
4191
4192  if (Atomic::xchg(1, &_Event) >= 0) return;
4193
4194  // Wait for the thread associated with the event to vacate
4195  int status = pthread_mutex_lock(_mutex);
4196  assert_status(status == 0, status, "mutex_lock");
4197  int AnyWaiters = _nParked;
4198  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4199  status = pthread_mutex_unlock(_mutex);
4200  assert_status(status == 0, status, "mutex_unlock");
4201  if (AnyWaiters != 0) {
4202    // Note that we signal() *after* dropping the lock for "immortal" Events.
4203    // This is safe and avoids a common class of  futile wakeups.  In rare
4204    // circumstances this can cause a thread to return prematurely from
4205    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4206    // will simply re-test the condition and re-park itself.
4207    // This provides particular benefit if the underlying platform does not
4208    // provide wait morphing.
4209    status = pthread_cond_signal(_cond);
4210    assert_status(status == 0, status, "cond_signal");
4211  }
4212}
4213
4214
4215// JSR166
4216// -------------------------------------------------------
4217
4218// The solaris and bsd implementations of park/unpark are fairly
4219// conservative for now, but can be improved. They currently use a
4220// mutex/condvar pair, plus a a count.
4221// Park decrements count if > 0, else does a condvar wait.  Unpark
4222// sets count to 1 and signals condvar.  Only one thread ever waits
4223// on the condvar. Contention seen when trying to park implies that someone
4224// is unparking you, so don't wait. And spurious returns are fine, so there
4225// is no need to track notifications.
4226
4227#define MAX_SECS 100000000
4228
4229// This code is common to bsd and solaris and will be moved to a
4230// common place in dolphin.
4231//
4232// The passed in time value is either a relative time in nanoseconds
4233// or an absolute time in milliseconds. Either way it has to be unpacked
4234// into suitable seconds and nanoseconds components and stored in the
4235// given timespec structure.
4236// Given time is a 64-bit value and the time_t used in the timespec is only
4237// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4238// overflow if times way in the future are given. Further on Solaris versions
4239// prior to 10 there is a restriction (see cond_timedwait) that the specified
4240// number of seconds, in abstime, is less than current_time  + 100,000,000.
4241// As it will be 28 years before "now + 100000000" will overflow we can
4242// ignore overflow and just impose a hard-limit on seconds using the value
4243// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4244// years from "now".
4245
4246static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4247  assert(time > 0, "convertTime");
4248
4249  struct timeval now;
4250  int status = gettimeofday(&now, NULL);
4251  assert(status == 0, "gettimeofday");
4252
4253  time_t max_secs = now.tv_sec + MAX_SECS;
4254
4255  if (isAbsolute) {
4256    jlong secs = time / 1000;
4257    if (secs > max_secs) {
4258      absTime->tv_sec = max_secs;
4259    } else {
4260      absTime->tv_sec = secs;
4261    }
4262    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4263  } else {
4264    jlong secs = time / NANOSECS_PER_SEC;
4265    if (secs >= MAX_SECS) {
4266      absTime->tv_sec = max_secs;
4267      absTime->tv_nsec = 0;
4268    } else {
4269      absTime->tv_sec = now.tv_sec + secs;
4270      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4271      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4272        absTime->tv_nsec -= NANOSECS_PER_SEC;
4273        ++absTime->tv_sec; // note: this must be <= max_secs
4274      }
4275    }
4276  }
4277  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4278  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4279  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4280  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4281}
4282
4283void Parker::park(bool isAbsolute, jlong time) {
4284  // Ideally we'd do something useful while spinning, such
4285  // as calling unpackTime().
4286
4287  // Optional fast-path check:
4288  // Return immediately if a permit is available.
4289  // We depend on Atomic::xchg() having full barrier semantics
4290  // since we are doing a lock-free update to _counter.
4291  if (Atomic::xchg(0, &_counter) > 0) return;
4292
4293  Thread* thread = Thread::current();
4294  assert(thread->is_Java_thread(), "Must be JavaThread");
4295  JavaThread *jt = (JavaThread *)thread;
4296
4297  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4298  // Check interrupt before trying to wait
4299  if (Thread::is_interrupted(thread, false)) {
4300    return;
4301  }
4302
4303  // Next, demultiplex/decode time arguments
4304  struct timespec absTime;
4305  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4306    return;
4307  }
4308  if (time > 0) {
4309    unpackTime(&absTime, isAbsolute, time);
4310  }
4311
4312
4313  // Enter safepoint region
4314  // Beware of deadlocks such as 6317397.
4315  // The per-thread Parker:: mutex is a classic leaf-lock.
4316  // In particular a thread must never block on the Threads_lock while
4317  // holding the Parker:: mutex.  If safepoints are pending both the
4318  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4319  ThreadBlockInVM tbivm(jt);
4320
4321  // Don't wait if cannot get lock since interference arises from
4322  // unblocking.  Also. check interrupt before trying wait
4323  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4324    return;
4325  }
4326
4327  int status;
4328  if (_counter > 0)  { // no wait needed
4329    _counter = 0;
4330    status = pthread_mutex_unlock(_mutex);
4331    assert_status(status == 0, status, "invariant");
4332    // Paranoia to ensure our locked and lock-free paths interact
4333    // correctly with each other and Java-level accesses.
4334    OrderAccess::fence();
4335    return;
4336  }
4337
4338#ifdef ASSERT
4339  // Don't catch signals while blocked; let the running threads have the signals.
4340  // (This allows a debugger to break into the running thread.)
4341  sigset_t oldsigs;
4342  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4343  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4344#endif
4345
4346  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4347  jt->set_suspend_equivalent();
4348  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4349
4350  if (time == 0) {
4351    status = pthread_cond_wait(_cond, _mutex);
4352  } else {
4353    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4354  }
4355  assert_status(status == 0 || status == EINTR ||
4356                status == ETIMEDOUT,
4357                status, "cond_timedwait");
4358
4359#ifdef ASSERT
4360  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4361#endif
4362
4363  _counter = 0;
4364  status = pthread_mutex_unlock(_mutex);
4365  assert_status(status == 0, status, "invariant");
4366  // Paranoia to ensure our locked and lock-free paths interact
4367  // correctly with each other and Java-level accesses.
4368  OrderAccess::fence();
4369
4370  // If externally suspended while waiting, re-suspend
4371  if (jt->handle_special_suspend_equivalent_condition()) {
4372    jt->java_suspend_self();
4373  }
4374}
4375
4376void Parker::unpark() {
4377  int status = pthread_mutex_lock(_mutex);
4378  assert_status(status == 0, status, "invariant");
4379  const int s = _counter;
4380  _counter = 1;
4381  status = pthread_mutex_unlock(_mutex);
4382  assert_status(status == 0, status, "invariant");
4383  if (s < 1) {
4384    status = pthread_cond_signal(_cond);
4385    assert_status(status == 0, status, "invariant");
4386  }
4387}
4388
4389
4390// Darwin has no "environ" in a dynamic library.
4391#ifdef __APPLE__
4392  #include <crt_externs.h>
4393  #define environ (*_NSGetEnviron())
4394#else
4395extern char** environ;
4396#endif
4397
4398// Run the specified command in a separate process. Return its exit value,
4399// or -1 on failure (e.g. can't fork a new process).
4400// Unlike system(), this function can be called from signal handler. It
4401// doesn't block SIGINT et al.
4402int os::fork_and_exec(char* cmd) {
4403  const char * argv[4] = {"sh", "-c", cmd, NULL};
4404
4405  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4406  // pthread_atfork handlers and reset pthread library. All we need is a
4407  // separate process to execve. Make a direct syscall to fork process.
4408  // On IA64 there's no fork syscall, we have to use fork() and hope for
4409  // the best...
4410  pid_t pid = fork();
4411
4412  if (pid < 0) {
4413    // fork failed
4414    return -1;
4415
4416  } else if (pid == 0) {
4417    // child process
4418
4419    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4420    // first to kill every thread on the thread list. Because this list is
4421    // not reset by fork() (see notes above), execve() will instead kill
4422    // every thread in the parent process. We know this is the only thread
4423    // in the new process, so make a system call directly.
4424    // IA64 should use normal execve() from glibc to match the glibc fork()
4425    // above.
4426    execve("/bin/sh", (char* const*)argv, environ);
4427
4428    // execve failed
4429    _exit(-1);
4430
4431  } else  {
4432    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4433    // care about the actual exit code, for now.
4434
4435    int status;
4436
4437    // Wait for the child process to exit.  This returns immediately if
4438    // the child has already exited. */
4439    while (waitpid(pid, &status, 0) < 0) {
4440      switch (errno) {
4441      case ECHILD: return 0;
4442      case EINTR: break;
4443      default: return -1;
4444      }
4445    }
4446
4447    if (WIFEXITED(status)) {
4448      // The child exited normally; get its exit code.
4449      return WEXITSTATUS(status);
4450    } else if (WIFSIGNALED(status)) {
4451      // The child exited because of a signal
4452      // The best value to return is 0x80 + signal number,
4453      // because that is what all Unix shells do, and because
4454      // it allows callers to distinguish between process exit and
4455      // process death by signal.
4456      return 0x80 + WTERMSIG(status);
4457    } else {
4458      // Unknown exit code; pass it through
4459      return status;
4460    }
4461  }
4462}
4463
4464// is_headless_jre()
4465//
4466// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4467// in order to report if we are running in a headless jre
4468//
4469// Since JDK8 xawt/libmawt.so was moved into the same directory
4470// as libawt.so, and renamed libawt_xawt.so
4471//
4472bool os::is_headless_jre() {
4473#ifdef __APPLE__
4474  // We no longer build headless-only on Mac OS X
4475  return false;
4476#else
4477  struct stat statbuf;
4478  char buf[MAXPATHLEN];
4479  char libmawtpath[MAXPATHLEN];
4480  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4481  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4482  char *p;
4483
4484  // Get path to libjvm.so
4485  os::jvm_path(buf, sizeof(buf));
4486
4487  // Get rid of libjvm.so
4488  p = strrchr(buf, '/');
4489  if (p == NULL) {
4490    return false;
4491  } else {
4492    *p = '\0';
4493  }
4494
4495  // Get rid of client or server
4496  p = strrchr(buf, '/');
4497  if (p == NULL) {
4498    return false;
4499  } else {
4500    *p = '\0';
4501  }
4502
4503  // check xawt/libmawt.so
4504  strcpy(libmawtpath, buf);
4505  strcat(libmawtpath, xawtstr);
4506  if (::stat(libmawtpath, &statbuf) == 0) return false;
4507
4508  // check libawt_xawt.so
4509  strcpy(libmawtpath, buf);
4510  strcat(libmawtpath, new_xawtstr);
4511  if (::stat(libmawtpath, &statbuf) == 0) return false;
4512
4513  return true;
4514#endif
4515}
4516
4517// Get the default path to the core file
4518// Returns the length of the string
4519int os::get_core_path(char* buffer, size_t bufferSize) {
4520  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4521
4522  // Truncate if theoretical string was longer than bufferSize
4523  n = MIN2(n, (int)bufferSize);
4524
4525  return n;
4526}
4527
4528#ifndef PRODUCT
4529void TestReserveMemorySpecial_test() {
4530  // No tests available for this platform
4531}
4532#endif
4533
4534bool os::start_debugging(char *buf, int buflen) {
4535  int len = (int)strlen(buf);
4536  char *p = &buf[len];
4537
4538  jio_snprintf(p, buflen-len,
4539             "\n\n"
4540             "Do you want to debug the problem?\n\n"
4541             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4542             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4543             "Otherwise, press RETURN to abort...",
4544             os::current_process_id(), os::current_process_id(),
4545             os::current_thread_id(), os::current_thread_id());
4546
4547  bool yes = os::message_box("Unexpected Error", buf);
4548
4549  if (yes) {
4550    // yes, user asked VM to launch debugger
4551    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4552                     os::current_process_id(), os::current_process_id());
4553
4554    os::fork_and_exec(buf);
4555    yes = false;
4556  }
4557  return yes;
4558}
4559