c1_Runtime1_x86.cpp revision 1988:b1a2afa37ec4
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Defs.hpp"
27#include "c1/c1_MacroAssembler.hpp"
28#include "c1/c1_Runtime1.hpp"
29#include "interpreter/interpreter.hpp"
30#include "nativeInst_x86.hpp"
31#include "oops/compiledICHolderOop.hpp"
32#include "oops/oop.inline.hpp"
33#include "prims/jvmtiExport.hpp"
34#include "register_x86.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/signature.hpp"
37#include "runtime/vframeArray.hpp"
38#include "vmreg_x86.inline.hpp"
39
40
41// Implementation of StubAssembler
42
43int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
44  // setup registers
45  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
46  assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
47  assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
48  assert(args_size >= 0, "illegal args_size");
49
50#ifdef _LP64
51  mov(c_rarg0, thread);
52  set_num_rt_args(0); // Nothing on stack
53#else
54  set_num_rt_args(1 + args_size);
55
56  // push java thread (becomes first argument of C function)
57  get_thread(thread);
58  push(thread);
59#endif // _LP64
60
61  set_last_Java_frame(thread, noreg, rbp, NULL);
62
63  // do the call
64  call(RuntimeAddress(entry));
65  int call_offset = offset();
66  // verify callee-saved register
67#ifdef ASSERT
68  guarantee(thread != rax, "change this code");
69  push(rax);
70  { Label L;
71    get_thread(rax);
72    cmpptr(thread, rax);
73    jcc(Assembler::equal, L);
74    int3();
75    stop("StubAssembler::call_RT: rdi not callee saved?");
76    bind(L);
77  }
78  pop(rax);
79#endif
80  reset_last_Java_frame(thread, true, false);
81
82  // discard thread and arguments
83  NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
84
85  // check for pending exceptions
86  { Label L;
87    cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
88    jcc(Assembler::equal, L);
89    // exception pending => remove activation and forward to exception handler
90    movptr(rax, Address(thread, Thread::pending_exception_offset()));
91    // make sure that the vm_results are cleared
92    if (oop_result1->is_valid()) {
93      movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
94    }
95    if (oop_result2->is_valid()) {
96      movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
97    }
98    if (frame_size() == no_frame_size) {
99      leave();
100      jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
101    } else if (_stub_id == Runtime1::forward_exception_id) {
102      should_not_reach_here();
103    } else {
104      jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
105    }
106    bind(L);
107  }
108  // get oop results if there are any and reset the values in the thread
109  if (oop_result1->is_valid()) {
110    movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
111    movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
112    verify_oop(oop_result1);
113  }
114  if (oop_result2->is_valid()) {
115    movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
116    movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
117    verify_oop(oop_result2);
118  }
119  return call_offset;
120}
121
122
123int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
124#ifdef _LP64
125  mov(c_rarg1, arg1);
126#else
127  push(arg1);
128#endif // _LP64
129  return call_RT(oop_result1, oop_result2, entry, 1);
130}
131
132
133int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
134#ifdef _LP64
135  if (c_rarg1 == arg2) {
136    if (c_rarg2 == arg1) {
137      xchgq(arg1, arg2);
138    } else {
139      mov(c_rarg2, arg2);
140      mov(c_rarg1, arg1);
141    }
142  } else {
143    mov(c_rarg1, arg1);
144    mov(c_rarg2, arg2);
145  }
146#else
147  push(arg2);
148  push(arg1);
149#endif // _LP64
150  return call_RT(oop_result1, oop_result2, entry, 2);
151}
152
153
154int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
155#ifdef _LP64
156  // if there is any conflict use the stack
157  if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
158      arg2 == c_rarg1 || arg1 == c_rarg3 ||
159      arg3 == c_rarg1 || arg1 == c_rarg2) {
160    push(arg3);
161    push(arg2);
162    push(arg1);
163    pop(c_rarg1);
164    pop(c_rarg2);
165    pop(c_rarg3);
166  } else {
167    mov(c_rarg1, arg1);
168    mov(c_rarg2, arg2);
169    mov(c_rarg3, arg3);
170  }
171#else
172  push(arg3);
173  push(arg2);
174  push(arg1);
175#endif // _LP64
176  return call_RT(oop_result1, oop_result2, entry, 3);
177}
178
179
180// Implementation of StubFrame
181
182class StubFrame: public StackObj {
183 private:
184  StubAssembler* _sasm;
185
186 public:
187  StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
188  void load_argument(int offset_in_words, Register reg);
189
190  ~StubFrame();
191};
192
193
194#define __ _sasm->
195
196StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
197  _sasm = sasm;
198  __ set_info(name, must_gc_arguments);
199  __ enter();
200}
201
202// load parameters that were stored with LIR_Assembler::store_parameter
203// Note: offsets for store_parameter and load_argument must match
204void StubFrame::load_argument(int offset_in_words, Register reg) {
205  // rbp, + 0: link
206  //     + 1: return address
207  //     + 2: argument with offset 0
208  //     + 3: argument with offset 1
209  //     + 4: ...
210
211  __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
212}
213
214
215StubFrame::~StubFrame() {
216  __ leave();
217  __ ret(0);
218}
219
220#undef __
221
222
223// Implementation of Runtime1
224
225#define __ sasm->
226
227const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
228const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
229
230// Stack layout for saving/restoring  all the registers needed during a runtime
231// call (this includes deoptimization)
232// Note: note that users of this frame may well have arguments to some runtime
233// while these values are on the stack. These positions neglect those arguments
234// but the code in save_live_registers will take the argument count into
235// account.
236//
237#ifdef _LP64
238  #define SLOT2(x) x,
239  #define SLOT_PER_WORD 2
240#else
241  #define SLOT2(x)
242  #define SLOT_PER_WORD 1
243#endif // _LP64
244
245enum reg_save_layout {
246  // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
247  // happen and will assert if the stack size we create is misaligned
248#ifdef _LP64
249  align_dummy_0, align_dummy_1,
250#endif // _LP64
251  dummy1, SLOT2(dummy1H)                                                                    // 0, 4
252  dummy2, SLOT2(dummy2H)                                                                    // 8, 12
253  // Two temps to be used as needed by users of save/restore callee registers
254  temp_2_off, SLOT2(temp_2H_off)                                                            // 16, 20
255  temp_1_off, SLOT2(temp_1H_off)                                                            // 24, 28
256  xmm_regs_as_doubles_off,                                                                  // 32
257  float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
258  fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
259  // fpu_state_end_off is exclusive
260  fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
261  marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
262  extra_space_offset,                                                                       // 360
263#ifdef _LP64
264  r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
265  r14_off, r14H_off,                                                                        // 368, 372
266  r13_off, r13H_off,                                                                        // 376, 380
267  r12_off, r12H_off,                                                                        // 384, 388
268  r11_off, r11H_off,                                                                        // 392, 396
269  r10_off, r10H_off,                                                                        // 400, 404
270  r9_off, r9H_off,                                                                          // 408, 412
271  r8_off, r8H_off,                                                                          // 416, 420
272  rdi_off, rdiH_off,                                                                        // 424, 428
273#else
274  rdi_off = extra_space_offset,
275#endif // _LP64
276  rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
277  rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
278  rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
279  rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
280  rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
281  rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
282  rax_off, SLOT2(raxH_off)                                                                  // 480, 484
283  saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
284  return_off, SLOT2(returnH_off)                                                            // 496, 500
285  reg_save_frame_size,  // As noted: neglects any parameters to runtime                     // 504
286
287#ifdef _WIN64
288  c_rarg0_off = rcx_off,
289#else
290  c_rarg0_off = rdi_off,
291#endif // WIN64
292
293  // equates
294
295  // illegal instruction handler
296  continue_dest_off = temp_1_off,
297
298  // deoptimization equates
299  fp0_off = float_regs_as_doubles_off, // slot for java float/double return value
300  xmm0_off = xmm_regs_as_doubles_off,  // slot for java float/double return value
301  deopt_type = temp_2_off,             // slot for type of deopt in progress
302  ret_type = temp_1_off                // slot for return type
303};
304
305
306
307// Save off registers which might be killed by calls into the runtime.
308// Tries to smart of about FP registers.  In particular we separate
309// saving and describing the FPU registers for deoptimization since we
310// have to save the FPU registers twice if we describe them and on P4
311// saving FPU registers which don't contain anything appears
312// expensive.  The deopt blob is the only thing which needs to
313// describe FPU registers.  In all other cases it should be sufficient
314// to simply save their current value.
315
316static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
317                                bool save_fpu_registers = true) {
318
319  // In 64bit all the args are in regs so there are no additional stack slots
320  LP64_ONLY(num_rt_args = 0);
321  LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
322  int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
323  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
324
325  // record saved value locations in an OopMap
326  // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
327  OopMap* map = new OopMap(frame_size_in_slots, 0);
328  map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
329  map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
330  map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
331  map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
332  map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
333  map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
334#ifdef _LP64
335  map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
336  map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
337  map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
338  map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
339  map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
340  map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
341  map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
342  map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
343
344  // This is stupid but needed.
345  map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
346  map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
347  map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
348  map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
349  map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
350  map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
351
352  map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
353  map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
354  map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
355  map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
356  map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
357  map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
358  map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
359  map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
360#endif // _LP64
361
362  if (save_fpu_registers) {
363    if (UseSSE < 2) {
364      int fpu_off = float_regs_as_doubles_off;
365      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
366        VMReg fpu_name_0 = FrameMap::fpu_regname(n);
367        map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
368        // %%% This is really a waste but we'll keep things as they were for now
369        if (true) {
370          map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
371        }
372        fpu_off += 2;
373      }
374      assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
375    }
376
377    if (UseSSE >= 2) {
378      int xmm_off = xmm_regs_as_doubles_off;
379      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
380        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
381        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
382        // %%% This is really a waste but we'll keep things as they were for now
383        if (true) {
384          map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
385        }
386        xmm_off += 2;
387      }
388      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
389
390    } else if (UseSSE == 1) {
391      int xmm_off = xmm_regs_as_doubles_off;
392      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
393        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
394        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
395        xmm_off += 2;
396      }
397      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
398    }
399  }
400
401  return map;
402}
403
404static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
405                                   bool save_fpu_registers = true) {
406  __ block_comment("save_live_registers");
407
408  // 64bit passes the args in regs to the c++ runtime
409  int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread
410  // frame_size = round_to(frame_size, 4);
411  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
412
413  __ pusha();         // integer registers
414
415  // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
416  // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
417
418  __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
419
420#ifdef ASSERT
421  __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
422#endif
423
424  if (save_fpu_registers) {
425    if (UseSSE < 2) {
426      // save FPU stack
427      __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
428      __ fwait();
429
430#ifdef ASSERT
431      Label ok;
432      __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
433      __ jccb(Assembler::equal, ok);
434      __ stop("corrupted control word detected");
435      __ bind(ok);
436#endif
437
438      // Reset the control word to guard against exceptions being unmasked
439      // since fstp_d can cause FPU stack underflow exceptions.  Write it
440      // into the on stack copy and then reload that to make sure that the
441      // current and future values are correct.
442      __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
443      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
444
445      // Save the FPU registers in de-opt-able form
446      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
447      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
448      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
449      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
450      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
451      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
452      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
453      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
454    }
455
456    if (UseSSE >= 2) {
457      // save XMM registers
458      // XMM registers can contain float or double values, but this is not known here,
459      // so always save them as doubles.
460      // note that float values are _not_ converted automatically, so for float values
461      // the second word contains only garbage data.
462      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
463      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
464      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
465      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
466      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
467      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
468      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
469      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
470#ifdef _LP64
471      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
472      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
473      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
474      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
475      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
476      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
477      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
478      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
479#endif // _LP64
480    } else if (UseSSE == 1) {
481      // save XMM registers as float because double not supported without SSE2
482      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
483      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
484      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
485      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
486      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
487      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
488      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
489      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
490    }
491  }
492
493  // FPU stack must be empty now
494  __ verify_FPU(0, "save_live_registers");
495
496  return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
497}
498
499
500static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
501  if (restore_fpu_registers) {
502    if (UseSSE >= 2) {
503      // restore XMM registers
504      __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
505      __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
506      __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
507      __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
508      __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
509      __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
510      __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
511      __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
512#ifdef _LP64
513      __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
514      __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
515      __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
516      __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
517      __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
518      __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
519      __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
520      __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
521#endif // _LP64
522    } else if (UseSSE == 1) {
523      // restore XMM registers
524      __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
525      __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
526      __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
527      __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
528      __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
529      __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
530      __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
531      __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
532    }
533
534    if (UseSSE < 2) {
535      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
536    } else {
537      // check that FPU stack is really empty
538      __ verify_FPU(0, "restore_live_registers");
539    }
540
541  } else {
542    // check that FPU stack is really empty
543    __ verify_FPU(0, "restore_live_registers");
544  }
545
546#ifdef ASSERT
547  {
548    Label ok;
549    __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
550    __ jcc(Assembler::equal, ok);
551    __ stop("bad offsets in frame");
552    __ bind(ok);
553  }
554#endif // ASSERT
555
556  __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
557}
558
559
560static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
561  __ block_comment("restore_live_registers");
562
563  restore_fpu(sasm, restore_fpu_registers);
564  __ popa();
565}
566
567
568static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
569  __ block_comment("restore_live_registers_except_rax");
570
571  restore_fpu(sasm, restore_fpu_registers);
572
573#ifdef _LP64
574  __ movptr(r15, Address(rsp, 0));
575  __ movptr(r14, Address(rsp, wordSize));
576  __ movptr(r13, Address(rsp, 2 * wordSize));
577  __ movptr(r12, Address(rsp, 3 * wordSize));
578  __ movptr(r11, Address(rsp, 4 * wordSize));
579  __ movptr(r10, Address(rsp, 5 * wordSize));
580  __ movptr(r9,  Address(rsp, 6 * wordSize));
581  __ movptr(r8,  Address(rsp, 7 * wordSize));
582  __ movptr(rdi, Address(rsp, 8 * wordSize));
583  __ movptr(rsi, Address(rsp, 9 * wordSize));
584  __ movptr(rbp, Address(rsp, 10 * wordSize));
585  // skip rsp
586  __ movptr(rbx, Address(rsp, 12 * wordSize));
587  __ movptr(rdx, Address(rsp, 13 * wordSize));
588  __ movptr(rcx, Address(rsp, 14 * wordSize));
589
590  __ addptr(rsp, 16 * wordSize);
591#else
592
593  __ pop(rdi);
594  __ pop(rsi);
595  __ pop(rbp);
596  __ pop(rbx); // skip this value
597  __ pop(rbx);
598  __ pop(rdx);
599  __ pop(rcx);
600  __ addptr(rsp, BytesPerWord);
601#endif // _LP64
602}
603
604
605void Runtime1::initialize_pd() {
606  // nothing to do
607}
608
609
610// target: the entry point of the method that creates and posts the exception oop
611// has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
612
613OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
614  // preserve all registers
615  int num_rt_args = has_argument ? 2 : 1;
616  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
617
618  // now all registers are saved and can be used freely
619  // verify that no old value is used accidentally
620  __ invalidate_registers(true, true, true, true, true, true);
621
622  // registers used by this stub
623  const Register temp_reg = rbx;
624
625  // load argument for exception that is passed as an argument into the stub
626  if (has_argument) {
627#ifdef _LP64
628    __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
629#else
630    __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
631    __ push(temp_reg);
632#endif // _LP64
633  }
634  int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
635
636  OopMapSet* oop_maps = new OopMapSet();
637  oop_maps->add_gc_map(call_offset, oop_map);
638
639  __ stop("should not reach here");
640
641  return oop_maps;
642}
643
644
645void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) {
646  // incoming parameters
647  const Register exception_oop = rax;
648  const Register exception_pc = rdx;
649  // other registers used in this stub
650  const Register real_return_addr = rbx;
651  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
652
653  __ block_comment("generate_handle_exception");
654
655#ifdef TIERED
656  // C2 can leave the fpu stack dirty
657  if (UseSSE < 2 ) {
658    __ empty_FPU_stack();
659  }
660#endif // TIERED
661
662  // verify that only rax, and rdx is valid at this time
663  __ invalidate_registers(false, true, true, false, true, true);
664  // verify that rax, contains a valid exception
665  __ verify_not_null_oop(exception_oop);
666
667  // load address of JavaThread object for thread-local data
668  NOT_LP64(__ get_thread(thread);)
669
670#ifdef ASSERT
671  // check that fields in JavaThread for exception oop and issuing pc are
672  // empty before writing to them
673  Label oop_empty;
674  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
675  __ jcc(Assembler::equal, oop_empty);
676  __ stop("exception oop already set");
677  __ bind(oop_empty);
678
679  Label pc_empty;
680  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
681  __ jcc(Assembler::equal, pc_empty);
682  __ stop("exception pc already set");
683  __ bind(pc_empty);
684#endif
685
686  // save exception oop and issuing pc into JavaThread
687  // (exception handler will load it from here)
688  __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
689  __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
690
691  // save real return address (pc that called this stub)
692  __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord));
693  __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr);
694
695  // patch throwing pc into return address (has bci & oop map)
696  __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
697
698  // compute the exception handler.
699  // the exception oop and the throwing pc are read from the fields in JavaThread
700  int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
701  oop_maps->add_gc_map(call_offset, oop_map);
702
703  // rax,: handler address
704  //      will be the deopt blob if nmethod was deoptimized while we looked up
705  //      handler regardless of whether handler existed in the nmethod.
706
707  // only rax, is valid at this time, all other registers have been destroyed by the runtime call
708  __ invalidate_registers(false, true, true, true, true, true);
709
710#ifdef ASSERT
711  // Do we have an exception handler in the nmethod?
712  Label done;
713  __ testptr(rax, rax);
714  __ jcc(Assembler::notZero, done);
715  __ stop("no handler found");
716  __ bind(done);
717#endif
718
719  // exception handler found
720  // patch the return address -> the stub will directly return to the exception handler
721  __ movptr(Address(rbp, 1*BytesPerWord), rax);
722
723  // restore registers
724  restore_live_registers(sasm, save_fpu_registers);
725
726  // return to exception handler
727  __ leave();
728  __ ret(0);
729
730}
731
732
733void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
734  // incoming parameters
735  const Register exception_oop = rax;
736  // callee-saved copy of exception_oop during runtime call
737  const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
738  // other registers used in this stub
739  const Register exception_pc = rdx;
740  const Register handler_addr = rbx;
741  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
742
743  // verify that only rax, is valid at this time
744  __ invalidate_registers(false, true, true, true, true, true);
745
746#ifdef ASSERT
747  // check that fields in JavaThread for exception oop and issuing pc are empty
748  NOT_LP64(__ get_thread(thread);)
749  Label oop_empty;
750  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
751  __ jcc(Assembler::equal, oop_empty);
752  __ stop("exception oop must be empty");
753  __ bind(oop_empty);
754
755  Label pc_empty;
756  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
757  __ jcc(Assembler::equal, pc_empty);
758  __ stop("exception pc must be empty");
759  __ bind(pc_empty);
760#endif
761
762  // clear the FPU stack in case any FPU results are left behind
763  __ empty_FPU_stack();
764
765  // save exception_oop in callee-saved register to preserve it during runtime calls
766  __ verify_not_null_oop(exception_oop);
767  __ movptr(exception_oop_callee_saved, exception_oop);
768
769  NOT_LP64(__ get_thread(thread);)
770  // Get return address (is on top of stack after leave).
771  __ movptr(exception_pc, Address(rsp, 0));
772
773  // search the exception handler address of the caller (using the return address)
774  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
775  // rax: exception handler address of the caller
776
777  // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
778  __ invalidate_registers(false, true, true, true, false, true);
779
780  // move result of call into correct register
781  __ movptr(handler_addr, rax);
782
783  // Restore exception oop to RAX (required convention of exception handler).
784  __ movptr(exception_oop, exception_oop_callee_saved);
785
786  // verify that there is really a valid exception in rax
787  __ verify_not_null_oop(exception_oop);
788
789  // get throwing pc (= return address).
790  // rdx has been destroyed by the call, so it must be set again
791  // the pop is also necessary to simulate the effect of a ret(0)
792  __ pop(exception_pc);
793
794  // Restore SP from BP if the exception PC is a MethodHandle call site.
795  NOT_LP64(__ get_thread(thread);)
796  __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
797  __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
798
799  // continue at exception handler (return address removed)
800  // note: do *not* remove arguments when unwinding the
801  //       activation since the caller assumes having
802  //       all arguments on the stack when entering the
803  //       runtime to determine the exception handler
804  //       (GC happens at call site with arguments!)
805  // rax: exception oop
806  // rdx: throwing pc
807  // rbx: exception handler
808  __ jmp(handler_addr);
809}
810
811
812OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
813  // use the maximum number of runtime-arguments here because it is difficult to
814  // distinguish each RT-Call.
815  // Note: This number affects also the RT-Call in generate_handle_exception because
816  //       the oop-map is shared for all calls.
817  const int num_rt_args = 2;  // thread + dummy
818
819  DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
820  assert(deopt_blob != NULL, "deoptimization blob must have been created");
821
822  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
823
824#ifdef _LP64
825  const Register thread = r15_thread;
826  // No need to worry about dummy
827  __ mov(c_rarg0, thread);
828#else
829  __ push(rax); // push dummy
830
831  const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
832  // push java thread (becomes first argument of C function)
833  __ get_thread(thread);
834  __ push(thread);
835#endif // _LP64
836  __ set_last_Java_frame(thread, noreg, rbp, NULL);
837  // do the call
838  __ call(RuntimeAddress(target));
839  OopMapSet* oop_maps = new OopMapSet();
840  oop_maps->add_gc_map(__ offset(), oop_map);
841  // verify callee-saved register
842#ifdef ASSERT
843  guarantee(thread != rax, "change this code");
844  __ push(rax);
845  { Label L;
846    __ get_thread(rax);
847    __ cmpptr(thread, rax);
848    __ jcc(Assembler::equal, L);
849    __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
850    __ bind(L);
851  }
852  __ pop(rax);
853#endif
854  __ reset_last_Java_frame(thread, true, false);
855#ifndef _LP64
856  __ pop(rcx); // discard thread arg
857  __ pop(rcx); // discard dummy
858#endif // _LP64
859
860  // check for pending exceptions
861  { Label L;
862    __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
863    __ jcc(Assembler::equal, L);
864    // exception pending => remove activation and forward to exception handler
865
866    __ testptr(rax, rax);                                   // have we deoptimized?
867    __ jump_cc(Assembler::equal,
868               RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
869
870    // the deopt blob expects exceptions in the special fields of
871    // JavaThread, so copy and clear pending exception.
872
873    // load and clear pending exception
874    __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
875    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
876
877    // check that there is really a valid exception
878    __ verify_not_null_oop(rax);
879
880    // load throwing pc: this is the return address of the stub
881    __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
882
883#ifdef ASSERT
884    // check that fields in JavaThread for exception oop and issuing pc are empty
885    Label oop_empty;
886    __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
887    __ jcc(Assembler::equal, oop_empty);
888    __ stop("exception oop must be empty");
889    __ bind(oop_empty);
890
891    Label pc_empty;
892    __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
893    __ jcc(Assembler::equal, pc_empty);
894    __ stop("exception pc must be empty");
895    __ bind(pc_empty);
896#endif
897
898    // store exception oop and throwing pc to JavaThread
899    __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
900    __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
901
902    restore_live_registers(sasm);
903
904    __ leave();
905    __ addptr(rsp, BytesPerWord);  // remove return address from stack
906
907    // Forward the exception directly to deopt blob. We can blow no
908    // registers and must leave throwing pc on the stack.  A patch may
909    // have values live in registers so the entry point with the
910    // exception in tls.
911    __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
912
913    __ bind(L);
914  }
915
916
917  // Runtime will return true if the nmethod has been deoptimized during
918  // the patching process. In that case we must do a deopt reexecute instead.
919
920  Label reexecuteEntry, cont;
921
922  __ testptr(rax, rax);                                 // have we deoptimized?
923  __ jcc(Assembler::equal, cont);                       // no
924
925  // Will reexecute. Proper return address is already on the stack we just restore
926  // registers, pop all of our frame but the return address and jump to the deopt blob
927  restore_live_registers(sasm);
928  __ leave();
929  __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
930
931  __ bind(cont);
932  restore_live_registers(sasm);
933  __ leave();
934  __ ret(0);
935
936  return oop_maps;
937
938}
939
940
941OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
942
943  // for better readability
944  const bool must_gc_arguments = true;
945  const bool dont_gc_arguments = false;
946
947  // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
948  bool save_fpu_registers = true;
949
950  // stub code & info for the different stubs
951  OopMapSet* oop_maps = NULL;
952  switch (id) {
953    case forward_exception_id:
954      {
955        // we're handling an exception in the context of a compiled
956        // frame.  The registers have been saved in the standard
957        // places.  Perform an exception lookup in the caller and
958        // dispatch to the handler if found.  Otherwise unwind and
959        // dispatch to the callers exception handler.
960
961        const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
962        const Register exception_oop = rax;
963        const Register exception_pc = rdx;
964
965        // load pending exception oop into rax,
966        __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
967        // clear pending exception
968        __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
969
970        // load issuing PC (the return address for this stub) into rdx
971        __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
972
973        // make sure that the vm_results are cleared (may be unnecessary)
974        __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
975        __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
976
977        // verify that that there is really a valid exception in rax,
978        __ verify_not_null_oop(exception_oop);
979
980        oop_maps = new OopMapSet();
981        OopMap* oop_map = generate_oop_map(sasm, 1);
982        generate_handle_exception(sasm, oop_maps, oop_map);
983        __ stop("should not reach here");
984      }
985      break;
986
987    case new_instance_id:
988    case fast_new_instance_id:
989    case fast_new_instance_init_check_id:
990      {
991        Register klass = rdx; // Incoming
992        Register obj   = rax; // Result
993
994        if (id == new_instance_id) {
995          __ set_info("new_instance", dont_gc_arguments);
996        } else if (id == fast_new_instance_id) {
997          __ set_info("fast new_instance", dont_gc_arguments);
998        } else {
999          assert(id == fast_new_instance_init_check_id, "bad StubID");
1000          __ set_info("fast new_instance init check", dont_gc_arguments);
1001        }
1002
1003        if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1004            UseTLAB && FastTLABRefill) {
1005          Label slow_path;
1006          Register obj_size = rcx;
1007          Register t1       = rbx;
1008          Register t2       = rsi;
1009          assert_different_registers(klass, obj, obj_size, t1, t2);
1010
1011          __ push(rdi);
1012          __ push(rbx);
1013
1014          if (id == fast_new_instance_init_check_id) {
1015            // make sure the klass is initialized
1016            __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
1017            __ jcc(Assembler::notEqual, slow_path);
1018          }
1019
1020#ifdef ASSERT
1021          // assert object can be fast path allocated
1022          {
1023            Label ok, not_ok;
1024            __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
1025            __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1026            __ jcc(Assembler::lessEqual, not_ok);
1027            __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1028            __ jcc(Assembler::zero, ok);
1029            __ bind(not_ok);
1030            __ stop("assert(can be fast path allocated)");
1031            __ should_not_reach_here();
1032            __ bind(ok);
1033          }
1034#endif // ASSERT
1035
1036          // if we got here then the TLAB allocation failed, so try
1037          // refilling the TLAB or allocating directly from eden.
1038          Label retry_tlab, try_eden;
1039          const Register thread =
1040            __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1041
1042          __ bind(retry_tlab);
1043
1044          // get the instance size (size is postive so movl is fine for 64bit)
1045          __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1046
1047          __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1048
1049          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1050          __ verify_oop(obj);
1051          __ pop(rbx);
1052          __ pop(rdi);
1053          __ ret(0);
1054
1055          __ bind(try_eden);
1056          // get the instance size (size is postive so movl is fine for 64bit)
1057          __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1058
1059          __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1060          __ incr_allocated_bytes(thread, obj_size, 0);
1061
1062          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1063          __ verify_oop(obj);
1064          __ pop(rbx);
1065          __ pop(rdi);
1066          __ ret(0);
1067
1068          __ bind(slow_path);
1069          __ pop(rbx);
1070          __ pop(rdi);
1071        }
1072
1073        __ enter();
1074        OopMap* map = save_live_registers(sasm, 2);
1075        int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1076        oop_maps = new OopMapSet();
1077        oop_maps->add_gc_map(call_offset, map);
1078        restore_live_registers_except_rax(sasm);
1079        __ verify_oop(obj);
1080        __ leave();
1081        __ ret(0);
1082
1083        // rax,: new instance
1084      }
1085
1086      break;
1087
1088    case counter_overflow_id:
1089      {
1090        Register bci = rax, method = rbx;
1091        __ enter();
1092        OopMap* map = save_live_registers(sasm, 3);
1093        // Retrieve bci
1094        __ movl(bci, Address(rbp, 2*BytesPerWord));
1095        // And a pointer to the methodOop
1096        __ movptr(method, Address(rbp, 3*BytesPerWord));
1097        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1098        oop_maps = new OopMapSet();
1099        oop_maps->add_gc_map(call_offset, map);
1100        restore_live_registers(sasm);
1101        __ leave();
1102        __ ret(0);
1103      }
1104      break;
1105
1106    case new_type_array_id:
1107    case new_object_array_id:
1108      {
1109        Register length   = rbx; // Incoming
1110        Register klass    = rdx; // Incoming
1111        Register obj      = rax; // Result
1112
1113        if (id == new_type_array_id) {
1114          __ set_info("new_type_array", dont_gc_arguments);
1115        } else {
1116          __ set_info("new_object_array", dont_gc_arguments);
1117        }
1118
1119#ifdef ASSERT
1120        // assert object type is really an array of the proper kind
1121        {
1122          Label ok;
1123          Register t0 = obj;
1124          __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
1125          __ sarl(t0, Klass::_lh_array_tag_shift);
1126          int tag = ((id == new_type_array_id)
1127                     ? Klass::_lh_array_tag_type_value
1128                     : Klass::_lh_array_tag_obj_value);
1129          __ cmpl(t0, tag);
1130          __ jcc(Assembler::equal, ok);
1131          __ stop("assert(is an array klass)");
1132          __ should_not_reach_here();
1133          __ bind(ok);
1134        }
1135#endif // ASSERT
1136
1137        if (UseTLAB && FastTLABRefill) {
1138          Register arr_size = rsi;
1139          Register t1       = rcx;  // must be rcx for use as shift count
1140          Register t2       = rdi;
1141          Label slow_path;
1142          assert_different_registers(length, klass, obj, arr_size, t1, t2);
1143
1144          // check that array length is small enough for fast path.
1145          __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1146          __ jcc(Assembler::above, slow_path);
1147
1148          // if we got here then the TLAB allocation failed, so try
1149          // refilling the TLAB or allocating directly from eden.
1150          Label retry_tlab, try_eden;
1151          const Register thread =
1152            __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1153
1154          __ bind(retry_tlab);
1155
1156          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1157          // since size is positive movl does right thing on 64bit
1158          __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1159          // since size is postive movl does right thing on 64bit
1160          __ movl(arr_size, length);
1161          assert(t1 == rcx, "fixed register usage");
1162          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1163          __ shrptr(t1, Klass::_lh_header_size_shift);
1164          __ andptr(t1, Klass::_lh_header_size_mask);
1165          __ addptr(arr_size, t1);
1166          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1167          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1168
1169          __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1170
1171          __ initialize_header(obj, klass, length, t1, t2);
1172          __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
1173          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1174          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1175          __ andptr(t1, Klass::_lh_header_size_mask);
1176          __ subptr(arr_size, t1);  // body length
1177          __ addptr(t1, obj);       // body start
1178          __ initialize_body(t1, arr_size, 0, t2);
1179          __ verify_oop(obj);
1180          __ ret(0);
1181
1182          __ bind(try_eden);
1183          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1184          // since size is positive movl does right thing on 64bit
1185          __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1186          // since size is postive movl does right thing on 64bit
1187          __ movl(arr_size, length);
1188          assert(t1 == rcx, "fixed register usage");
1189          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1190          __ shrptr(t1, Klass::_lh_header_size_shift);
1191          __ andptr(t1, Klass::_lh_header_size_mask);
1192          __ addptr(arr_size, t1);
1193          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1194          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1195
1196          __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1197          __ incr_allocated_bytes(thread, arr_size, 0);
1198
1199          __ initialize_header(obj, klass, length, t1, t2);
1200          __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
1201          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1202          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1203          __ andptr(t1, Klass::_lh_header_size_mask);
1204          __ subptr(arr_size, t1);  // body length
1205          __ addptr(t1, obj);       // body start
1206          __ initialize_body(t1, arr_size, 0, t2);
1207          __ verify_oop(obj);
1208          __ ret(0);
1209
1210          __ bind(slow_path);
1211        }
1212
1213        __ enter();
1214        OopMap* map = save_live_registers(sasm, 3);
1215        int call_offset;
1216        if (id == new_type_array_id) {
1217          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1218        } else {
1219          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1220        }
1221
1222        oop_maps = new OopMapSet();
1223        oop_maps->add_gc_map(call_offset, map);
1224        restore_live_registers_except_rax(sasm);
1225
1226        __ verify_oop(obj);
1227        __ leave();
1228        __ ret(0);
1229
1230        // rax,: new array
1231      }
1232      break;
1233
1234    case new_multi_array_id:
1235      { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1236        // rax,: klass
1237        // rbx,: rank
1238        // rcx: address of 1st dimension
1239        OopMap* map = save_live_registers(sasm, 4);
1240        int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1241
1242        oop_maps = new OopMapSet();
1243        oop_maps->add_gc_map(call_offset, map);
1244        restore_live_registers_except_rax(sasm);
1245
1246        // rax,: new multi array
1247        __ verify_oop(rax);
1248      }
1249      break;
1250
1251    case register_finalizer_id:
1252      {
1253        __ set_info("register_finalizer", dont_gc_arguments);
1254
1255        // This is called via call_runtime so the arguments
1256        // will be place in C abi locations
1257
1258#ifdef _LP64
1259        __ verify_oop(c_rarg0);
1260        __ mov(rax, c_rarg0);
1261#else
1262        // The object is passed on the stack and we haven't pushed a
1263        // frame yet so it's one work away from top of stack.
1264        __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1265        __ verify_oop(rax);
1266#endif // _LP64
1267
1268        // load the klass and check the has finalizer flag
1269        Label register_finalizer;
1270        Register t = rsi;
1271        __ load_klass(t, rax);
1272        __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
1273        __ testl(t, JVM_ACC_HAS_FINALIZER);
1274        __ jcc(Assembler::notZero, register_finalizer);
1275        __ ret(0);
1276
1277        __ bind(register_finalizer);
1278        __ enter();
1279        OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1280        int call_offset = __ call_RT(noreg, noreg,
1281                                     CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1282        oop_maps = new OopMapSet();
1283        oop_maps->add_gc_map(call_offset, oop_map);
1284
1285        // Now restore all the live registers
1286        restore_live_registers(sasm);
1287
1288        __ leave();
1289        __ ret(0);
1290      }
1291      break;
1292
1293    case throw_range_check_failed_id:
1294      { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1295        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1296      }
1297      break;
1298
1299    case throw_index_exception_id:
1300      { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1301        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1302      }
1303      break;
1304
1305    case throw_div0_exception_id:
1306      { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1307        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1308      }
1309      break;
1310
1311    case throw_null_pointer_exception_id:
1312      { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1313        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1314      }
1315      break;
1316
1317    case handle_exception_nofpu_id:
1318      save_fpu_registers = false;
1319      // fall through
1320    case handle_exception_id:
1321      { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1322        oop_maps = new OopMapSet();
1323        OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers);
1324        generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers);
1325      }
1326      break;
1327
1328    case unwind_exception_id:
1329      { __ set_info("unwind_exception", dont_gc_arguments);
1330        // note: no stubframe since we are about to leave the current
1331        //       activation and we are calling a leaf VM function only.
1332        generate_unwind_exception(sasm);
1333      }
1334      break;
1335
1336    case throw_array_store_exception_id:
1337      { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1338        // tos + 0: link
1339        //     + 1: return address
1340        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false);
1341      }
1342      break;
1343
1344    case throw_class_cast_exception_id:
1345      { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1346        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1347      }
1348      break;
1349
1350    case throw_incompatible_class_change_error_id:
1351      { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1352        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1353      }
1354      break;
1355
1356    case slow_subtype_check_id:
1357      {
1358        // Typical calling sequence:
1359        // __ push(klass_RInfo);  // object klass or other subclass
1360        // __ push(sup_k_RInfo);  // array element klass or other superclass
1361        // __ call(slow_subtype_check);
1362        // Note that the subclass is pushed first, and is therefore deepest.
1363        // Previous versions of this code reversed the names 'sub' and 'super'.
1364        // This was operationally harmless but made the code unreadable.
1365        enum layout {
1366          rax_off, SLOT2(raxH_off)
1367          rcx_off, SLOT2(rcxH_off)
1368          rsi_off, SLOT2(rsiH_off)
1369          rdi_off, SLOT2(rdiH_off)
1370          // saved_rbp_off, SLOT2(saved_rbpH_off)
1371          return_off, SLOT2(returnH_off)
1372          sup_k_off, SLOT2(sup_kH_off)
1373          klass_off, SLOT2(superH_off)
1374          framesize,
1375          result_off = klass_off  // deepest argument is also the return value
1376        };
1377
1378        __ set_info("slow_subtype_check", dont_gc_arguments);
1379        __ push(rdi);
1380        __ push(rsi);
1381        __ push(rcx);
1382        __ push(rax);
1383
1384        // This is called by pushing args and not with C abi
1385        __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1386        __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1387
1388        Label miss;
1389        __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1390
1391        // fallthrough on success:
1392        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1393        __ pop(rax);
1394        __ pop(rcx);
1395        __ pop(rsi);
1396        __ pop(rdi);
1397        __ ret(0);
1398
1399        __ bind(miss);
1400        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1401        __ pop(rax);
1402        __ pop(rcx);
1403        __ pop(rsi);
1404        __ pop(rdi);
1405        __ ret(0);
1406      }
1407      break;
1408
1409    case monitorenter_nofpu_id:
1410      save_fpu_registers = false;
1411      // fall through
1412    case monitorenter_id:
1413      {
1414        StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1415        OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1416
1417        // Called with store_parameter and not C abi
1418
1419        f.load_argument(1, rax); // rax,: object
1420        f.load_argument(0, rbx); // rbx,: lock address
1421
1422        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1423
1424        oop_maps = new OopMapSet();
1425        oop_maps->add_gc_map(call_offset, map);
1426        restore_live_registers(sasm, save_fpu_registers);
1427      }
1428      break;
1429
1430    case monitorexit_nofpu_id:
1431      save_fpu_registers = false;
1432      // fall through
1433    case monitorexit_id:
1434      {
1435        StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1436        OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1437
1438        // Called with store_parameter and not C abi
1439
1440        f.load_argument(0, rax); // rax,: lock address
1441
1442        // note: really a leaf routine but must setup last java sp
1443        //       => use call_RT for now (speed can be improved by
1444        //       doing last java sp setup manually)
1445        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1446
1447        oop_maps = new OopMapSet();
1448        oop_maps->add_gc_map(call_offset, map);
1449        restore_live_registers(sasm, save_fpu_registers);
1450
1451      }
1452      break;
1453
1454    case access_field_patching_id:
1455      { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1456        // we should set up register map
1457        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1458      }
1459      break;
1460
1461    case load_klass_patching_id:
1462      { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1463        // we should set up register map
1464        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1465      }
1466      break;
1467
1468    case jvmti_exception_throw_id:
1469      { // rax,: exception oop
1470        StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
1471        // Preserve all registers across this potentially blocking call
1472        const int num_rt_args = 2;  // thread, exception oop
1473        OopMap* map = save_live_registers(sasm, num_rt_args);
1474        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
1475        oop_maps = new OopMapSet();
1476        oop_maps->add_gc_map(call_offset, map);
1477        restore_live_registers(sasm);
1478      }
1479      break;
1480
1481    case dtrace_object_alloc_id:
1482      { // rax,: object
1483        StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1484        // we can't gc here so skip the oopmap but make sure that all
1485        // the live registers get saved.
1486        save_live_registers(sasm, 1);
1487
1488        __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1489        __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1490        NOT_LP64(__ pop(rax));
1491
1492        restore_live_registers(sasm);
1493      }
1494      break;
1495
1496    case fpu2long_stub_id:
1497      {
1498        // rax, and rdx are destroyed, but should be free since the result is returned there
1499        // preserve rsi,ecx
1500        __ push(rsi);
1501        __ push(rcx);
1502        LP64_ONLY(__ push(rdx);)
1503
1504        // check for NaN
1505        Label return0, do_return, return_min_jlong, do_convert;
1506
1507        Address value_high_word(rsp, wordSize + 4);
1508        Address value_low_word(rsp, wordSize);
1509        Address result_high_word(rsp, 3*wordSize + 4);
1510        Address result_low_word(rsp, 3*wordSize);
1511
1512        __ subptr(rsp, 32);                    // more than enough on 32bit
1513        __ fst_d(value_low_word);
1514        __ movl(rax, value_high_word);
1515        __ andl(rax, 0x7ff00000);
1516        __ cmpl(rax, 0x7ff00000);
1517        __ jcc(Assembler::notEqual, do_convert);
1518        __ movl(rax, value_high_word);
1519        __ andl(rax, 0xfffff);
1520        __ orl(rax, value_low_word);
1521        __ jcc(Assembler::notZero, return0);
1522
1523        __ bind(do_convert);
1524        __ fnstcw(Address(rsp, 0));
1525        __ movzwl(rax, Address(rsp, 0));
1526        __ orl(rax, 0xc00);
1527        __ movw(Address(rsp, 2), rax);
1528        __ fldcw(Address(rsp, 2));
1529        __ fwait();
1530        __ fistp_d(result_low_word);
1531        __ fldcw(Address(rsp, 0));
1532        __ fwait();
1533        // This gets the entire long in rax on 64bit
1534        __ movptr(rax, result_low_word);
1535        // testing of high bits
1536        __ movl(rdx, result_high_word);
1537        __ mov(rcx, rax);
1538        // What the heck is the point of the next instruction???
1539        __ xorl(rcx, 0x0);
1540        __ movl(rsi, 0x80000000);
1541        __ xorl(rsi, rdx);
1542        __ orl(rcx, rsi);
1543        __ jcc(Assembler::notEqual, do_return);
1544        __ fldz();
1545        __ fcomp_d(value_low_word);
1546        __ fnstsw_ax();
1547#ifdef _LP64
1548        __ testl(rax, 0x4100);  // ZF & CF == 0
1549        __ jcc(Assembler::equal, return_min_jlong);
1550#else
1551        __ sahf();
1552        __ jcc(Assembler::above, return_min_jlong);
1553#endif // _LP64
1554        // return max_jlong
1555#ifndef _LP64
1556        __ movl(rdx, 0x7fffffff);
1557        __ movl(rax, 0xffffffff);
1558#else
1559        __ mov64(rax, CONST64(0x7fffffffffffffff));
1560#endif // _LP64
1561        __ jmp(do_return);
1562
1563        __ bind(return_min_jlong);
1564#ifndef _LP64
1565        __ movl(rdx, 0x80000000);
1566        __ xorl(rax, rax);
1567#else
1568        __ mov64(rax, CONST64(0x8000000000000000));
1569#endif // _LP64
1570        __ jmp(do_return);
1571
1572        __ bind(return0);
1573        __ fpop();
1574#ifndef _LP64
1575        __ xorptr(rdx,rdx);
1576        __ xorptr(rax,rax);
1577#else
1578        __ xorptr(rax, rax);
1579#endif // _LP64
1580
1581        __ bind(do_return);
1582        __ addptr(rsp, 32);
1583        LP64_ONLY(__ pop(rdx);)
1584        __ pop(rcx);
1585        __ pop(rsi);
1586        __ ret(0);
1587      }
1588      break;
1589
1590#ifndef SERIALGC
1591    case g1_pre_barrier_slow_id:
1592      {
1593        StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1594        // arg0 : previous value of memory
1595
1596        BarrierSet* bs = Universe::heap()->barrier_set();
1597        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1598          __ movptr(rax, (int)id);
1599          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1600          __ should_not_reach_here();
1601          break;
1602        }
1603        __ push(rax);
1604        __ push(rdx);
1605
1606        const Register pre_val = rax;
1607        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1608        const Register tmp = rdx;
1609
1610        NOT_LP64(__ get_thread(thread);)
1611
1612        Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1613                                             PtrQueue::byte_offset_of_active()));
1614
1615        Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1616                                             PtrQueue::byte_offset_of_index()));
1617        Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1618                                        PtrQueue::byte_offset_of_buf()));
1619
1620
1621        Label done;
1622        Label runtime;
1623
1624        // Can we store original value in the thread's buffer?
1625
1626#ifdef _LP64
1627        __ movslq(tmp, queue_index);
1628        __ cmpq(tmp, 0);
1629#else
1630        __ cmpl(queue_index, 0);
1631#endif
1632        __ jcc(Assembler::equal, runtime);
1633#ifdef _LP64
1634        __ subq(tmp, wordSize);
1635        __ movl(queue_index, tmp);
1636        __ addq(tmp, buffer);
1637#else
1638        __ subl(queue_index, wordSize);
1639        __ movl(tmp, buffer);
1640        __ addl(tmp, queue_index);
1641#endif
1642
1643        // prev_val (rax)
1644        f.load_argument(0, pre_val);
1645        __ movptr(Address(tmp, 0), pre_val);
1646        __ jmp(done);
1647
1648        __ bind(runtime);
1649        __ push(rcx);
1650#ifdef _LP64
1651        __ push(r8);
1652        __ push(r9);
1653        __ push(r10);
1654        __ push(r11);
1655#  ifndef _WIN64
1656        __ push(rdi);
1657        __ push(rsi);
1658#  endif
1659#endif
1660        // load the pre-value
1661        f.load_argument(0, rcx);
1662        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1663#ifdef _LP64
1664#  ifndef _WIN64
1665        __ pop(rsi);
1666        __ pop(rdi);
1667#  endif
1668        __ pop(r11);
1669        __ pop(r10);
1670        __ pop(r9);
1671        __ pop(r8);
1672#endif
1673        __ pop(rcx);
1674        __ bind(done);
1675
1676        __ pop(rdx);
1677        __ pop(rax);
1678      }
1679      break;
1680
1681    case g1_post_barrier_slow_id:
1682      {
1683        StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1684
1685
1686        // arg0: store_address
1687        Address store_addr(rbp, 2*BytesPerWord);
1688
1689        BarrierSet* bs = Universe::heap()->barrier_set();
1690        CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1691        Label done;
1692        Label runtime;
1693
1694        // At this point we know new_value is non-NULL and the new_value crosses regsion.
1695        // Must check to see if card is already dirty
1696
1697        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1698
1699        Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1700                                             PtrQueue::byte_offset_of_index()));
1701        Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1702                                        PtrQueue::byte_offset_of_buf()));
1703
1704        __ push(rax);
1705        __ push(rcx);
1706
1707        NOT_LP64(__ get_thread(thread);)
1708        ExternalAddress cardtable((address)ct->byte_map_base);
1709        assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1710
1711        const Register card_addr = rcx;
1712#ifdef _LP64
1713        const Register tmp = rscratch1;
1714        f.load_argument(0, card_addr);
1715        __ shrq(card_addr, CardTableModRefBS::card_shift);
1716        __ lea(tmp, cardtable);
1717        // get the address of the card
1718        __ addq(card_addr, tmp);
1719#else
1720        const Register card_index = rcx;
1721        f.load_argument(0, card_index);
1722        __ shrl(card_index, CardTableModRefBS::card_shift);
1723
1724        Address index(noreg, card_index, Address::times_1);
1725        __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
1726#endif
1727
1728        __ cmpb(Address(card_addr, 0), 0);
1729        __ jcc(Assembler::equal, done);
1730
1731        // storing region crossing non-NULL, card is clean.
1732        // dirty card and log.
1733
1734        __ movb(Address(card_addr, 0), 0);
1735
1736        __ cmpl(queue_index, 0);
1737        __ jcc(Assembler::equal, runtime);
1738        __ subl(queue_index, wordSize);
1739
1740        const Register buffer_addr = rbx;
1741        __ push(rbx);
1742
1743        __ movptr(buffer_addr, buffer);
1744
1745#ifdef _LP64
1746        __ movslq(rscratch1, queue_index);
1747        __ addptr(buffer_addr, rscratch1);
1748#else
1749        __ addptr(buffer_addr, queue_index);
1750#endif
1751        __ movptr(Address(buffer_addr, 0), card_addr);
1752
1753        __ pop(rbx);
1754        __ jmp(done);
1755
1756        __ bind(runtime);
1757        __ push(rdx);
1758#ifdef _LP64
1759        __ push(r8);
1760        __ push(r9);
1761        __ push(r10);
1762        __ push(r11);
1763#  ifndef _WIN64
1764        __ push(rdi);
1765        __ push(rsi);
1766#  endif
1767#endif
1768        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1769#ifdef _LP64
1770#  ifndef _WIN64
1771        __ pop(rsi);
1772        __ pop(rdi);
1773#  endif
1774        __ pop(r11);
1775        __ pop(r10);
1776        __ pop(r9);
1777        __ pop(r8);
1778#endif
1779        __ pop(rdx);
1780        __ bind(done);
1781
1782        __ pop(rcx);
1783        __ pop(rax);
1784
1785      }
1786      break;
1787#endif // !SERIALGC
1788
1789    default:
1790      { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1791        __ movptr(rax, (int)id);
1792        __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1793        __ should_not_reach_here();
1794      }
1795      break;
1796  }
1797  return oop_maps;
1798}
1799
1800#undef __
1801
1802const char *Runtime1::pd_name_for_address(address entry) {
1803  return "<unknown function>";
1804}
1805