1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "c1/c1_Defs.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "interpreter/interpreter.hpp"
31#include "nativeInst_x86.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/jvmtiExport.hpp"
35#include "register_x86.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/signature.hpp"
38#include "runtime/vframeArray.hpp"
39#include "utilities/macros.hpp"
40#include "vmreg_x86.inline.hpp"
41#if INCLUDE_ALL_GCS
42#include "gc/g1/g1SATBCardTableModRefBS.hpp"
43#endif
44
45
46// Implementation of StubAssembler
47
48int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
49  // setup registers
50  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
51  assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
52  assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
53  assert(args_size >= 0, "illegal args_size");
54  bool align_stack = false;
55#ifdef _LP64
56  // At a method handle call, the stack may not be properly aligned
57  // when returning with an exception.
58  align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
59#endif
60
61#ifdef _LP64
62  mov(c_rarg0, thread);
63  set_num_rt_args(0); // Nothing on stack
64#else
65  set_num_rt_args(1 + args_size);
66
67  // push java thread (becomes first argument of C function)
68  get_thread(thread);
69  push(thread);
70#endif // _LP64
71
72  int call_offset;
73  if (!align_stack) {
74    set_last_Java_frame(thread, noreg, rbp, NULL);
75  } else {
76    address the_pc = pc();
77    call_offset = offset();
78    set_last_Java_frame(thread, noreg, rbp, the_pc);
79    andptr(rsp, -(StackAlignmentInBytes));    // Align stack
80  }
81
82  // do the call
83  call(RuntimeAddress(entry));
84  if (!align_stack) {
85    call_offset = offset();
86  }
87  // verify callee-saved register
88#ifdef ASSERT
89  guarantee(thread != rax, "change this code");
90  push(rax);
91  { Label L;
92    get_thread(rax);
93    cmpptr(thread, rax);
94    jcc(Assembler::equal, L);
95    int3();
96    stop("StubAssembler::call_RT: rdi not callee saved?");
97    bind(L);
98  }
99  pop(rax);
100#endif
101  reset_last_Java_frame(thread, true);
102
103  // discard thread and arguments
104  NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
105
106  // check for pending exceptions
107  { Label L;
108    cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
109    jcc(Assembler::equal, L);
110    // exception pending => remove activation and forward to exception handler
111    movptr(rax, Address(thread, Thread::pending_exception_offset()));
112    // make sure that the vm_results are cleared
113    if (oop_result1->is_valid()) {
114      movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
115    }
116    if (metadata_result->is_valid()) {
117      movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
118    }
119    if (frame_size() == no_frame_size) {
120      leave();
121      jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
122    } else if (_stub_id == Runtime1::forward_exception_id) {
123      should_not_reach_here();
124    } else {
125      jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
126    }
127    bind(L);
128  }
129  // get oop results if there are any and reset the values in the thread
130  if (oop_result1->is_valid()) {
131    get_vm_result(oop_result1, thread);
132  }
133  if (metadata_result->is_valid()) {
134    get_vm_result_2(metadata_result, thread);
135  }
136  return call_offset;
137}
138
139
140int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
141#ifdef _LP64
142  mov(c_rarg1, arg1);
143#else
144  push(arg1);
145#endif // _LP64
146  return call_RT(oop_result1, metadata_result, entry, 1);
147}
148
149
150int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
151#ifdef _LP64
152  if (c_rarg1 == arg2) {
153    if (c_rarg2 == arg1) {
154      xchgq(arg1, arg2);
155    } else {
156      mov(c_rarg2, arg2);
157      mov(c_rarg1, arg1);
158    }
159  } else {
160    mov(c_rarg1, arg1);
161    mov(c_rarg2, arg2);
162  }
163#else
164  push(arg2);
165  push(arg1);
166#endif // _LP64
167  return call_RT(oop_result1, metadata_result, entry, 2);
168}
169
170
171int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
172#ifdef _LP64
173  // if there is any conflict use the stack
174  if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
175      arg2 == c_rarg1 || arg1 == c_rarg3 ||
176      arg3 == c_rarg1 || arg1 == c_rarg2) {
177    push(arg3);
178    push(arg2);
179    push(arg1);
180    pop(c_rarg1);
181    pop(c_rarg2);
182    pop(c_rarg3);
183  } else {
184    mov(c_rarg1, arg1);
185    mov(c_rarg2, arg2);
186    mov(c_rarg3, arg3);
187  }
188#else
189  push(arg3);
190  push(arg2);
191  push(arg1);
192#endif // _LP64
193  return call_RT(oop_result1, metadata_result, entry, 3);
194}
195
196
197// Implementation of StubFrame
198
199class StubFrame: public StackObj {
200 private:
201  StubAssembler* _sasm;
202
203 public:
204  StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
205  void load_argument(int offset_in_words, Register reg);
206
207  ~StubFrame();
208};
209
210
211#define __ _sasm->
212
213StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
214  _sasm = sasm;
215  __ set_info(name, must_gc_arguments);
216  __ enter();
217}
218
219// load parameters that were stored with LIR_Assembler::store_parameter
220// Note: offsets for store_parameter and load_argument must match
221void StubFrame::load_argument(int offset_in_words, Register reg) {
222  // rbp, + 0: link
223  //     + 1: return address
224  //     + 2: argument with offset 0
225  //     + 3: argument with offset 1
226  //     + 4: ...
227
228  __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
229}
230
231
232StubFrame::~StubFrame() {
233  __ leave();
234  __ ret(0);
235}
236
237#undef __
238
239
240// Implementation of Runtime1
241
242#define __ sasm->
243
244const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
245const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
246
247// Stack layout for saving/restoring  all the registers needed during a runtime
248// call (this includes deoptimization)
249// Note: note that users of this frame may well have arguments to some runtime
250// while these values are on the stack. These positions neglect those arguments
251// but the code in save_live_registers will take the argument count into
252// account.
253//
254#ifdef _LP64
255  #define SLOT2(x) x,
256  #define SLOT_PER_WORD 2
257#else
258  #define SLOT2(x)
259  #define SLOT_PER_WORD 1
260#endif // _LP64
261
262enum reg_save_layout {
263  // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
264  // happen and will assert if the stack size we create is misaligned
265#ifdef _LP64
266  align_dummy_0, align_dummy_1,
267#endif // _LP64
268#ifdef _WIN64
269  // Windows always allocates space for it's argument registers (see
270  // frame::arg_reg_save_area_bytes).
271  arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
272  arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
273  arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
274  arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
275#endif // _WIN64
276  xmm_regs_as_doubles_off,                                                                  // 32
277  float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
278  fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
279  // fpu_state_end_off is exclusive
280  fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
281  marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
282  extra_space_offset,                                                                       // 360
283#ifdef _LP64
284  r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
285  r14_off, r14H_off,                                                                        // 368, 372
286  r13_off, r13H_off,                                                                        // 376, 380
287  r12_off, r12H_off,                                                                        // 384, 388
288  r11_off, r11H_off,                                                                        // 392, 396
289  r10_off, r10H_off,                                                                        // 400, 404
290  r9_off, r9H_off,                                                                          // 408, 412
291  r8_off, r8H_off,                                                                          // 416, 420
292  rdi_off, rdiH_off,                                                                        // 424, 428
293#else
294  rdi_off = extra_space_offset,
295#endif // _LP64
296  rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
297  rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
298  rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
299  rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
300  rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
301  rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
302  rax_off, SLOT2(raxH_off)                                                                  // 480, 484
303  saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
304  return_off, SLOT2(returnH_off)                                                            // 496, 500
305  reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
306};
307
308
309
310// Save off registers which might be killed by calls into the runtime.
311// Tries to smart of about FP registers.  In particular we separate
312// saving and describing the FPU registers for deoptimization since we
313// have to save the FPU registers twice if we describe them and on P4
314// saving FPU registers which don't contain anything appears
315// expensive.  The deopt blob is the only thing which needs to
316// describe FPU registers.  In all other cases it should be sufficient
317// to simply save their current value.
318
319static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
320                                bool save_fpu_registers = true) {
321
322  // In 64bit all the args are in regs so there are no additional stack slots
323  LP64_ONLY(num_rt_args = 0);
324  LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
325  int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
326  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
327
328  // record saved value locations in an OopMap
329  // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
330  OopMap* map = new OopMap(frame_size_in_slots, 0);
331  map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
332  map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
333  map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
334  map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
335  map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
336  map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
337#ifdef _LP64
338  map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
339  map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
340  map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
341  map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
342  map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
343  map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
344  map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
345  map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
346
347  // This is stupid but needed.
348  map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
349  map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
350  map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
351  map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
352  map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
353  map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
354
355  map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
356  map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
357  map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
358  map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
359  map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
360  map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
361  map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
362  map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
363#endif // _LP64
364
365  int xmm_bypass_limit = FrameMap::nof_xmm_regs;
366#ifdef _LP64
367  if (UseAVX < 3) {
368    xmm_bypass_limit = xmm_bypass_limit / 2;
369  }
370#endif
371
372  if (save_fpu_registers) {
373    if (UseSSE < 2) {
374      int fpu_off = float_regs_as_doubles_off;
375      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
376        VMReg fpu_name_0 = FrameMap::fpu_regname(n);
377        map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
378        // %%% This is really a waste but we'll keep things as they were for now
379        if (true) {
380          map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
381        }
382        fpu_off += 2;
383      }
384      assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
385    }
386
387    if (UseSSE >= 2) {
388      int xmm_off = xmm_regs_as_doubles_off;
389      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
390        if (n < xmm_bypass_limit) {
391          VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
392          map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
393          // %%% This is really a waste but we'll keep things as they were for now
394          if (true) {
395            map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
396          }
397        }
398        xmm_off += 2;
399      }
400      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
401
402    } else if (UseSSE == 1) {
403      int xmm_off = xmm_regs_as_doubles_off;
404      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
405        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
406        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
407        xmm_off += 2;
408      }
409      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
410    }
411  }
412
413  return map;
414}
415
416static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
417                                   bool save_fpu_registers = true) {
418  __ block_comment("save_live_registers");
419
420  __ pusha();         // integer registers
421
422  // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
423  // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
424
425  __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
426
427#ifdef ASSERT
428  __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
429#endif
430
431  if (save_fpu_registers) {
432    if (UseSSE < 2) {
433      // save FPU stack
434      __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
435      __ fwait();
436
437#ifdef ASSERT
438      Label ok;
439      __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
440      __ jccb(Assembler::equal, ok);
441      __ stop("corrupted control word detected");
442      __ bind(ok);
443#endif
444
445      // Reset the control word to guard against exceptions being unmasked
446      // since fstp_d can cause FPU stack underflow exceptions.  Write it
447      // into the on stack copy and then reload that to make sure that the
448      // current and future values are correct.
449      __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
450      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
451
452      // Save the FPU registers in de-opt-able form
453      int offset = 0;
454      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
455        __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
456        offset += 8;
457      }
458    }
459
460    if (UseSSE >= 2) {
461      // save XMM registers
462      // XMM registers can contain float or double values, but this is not known here,
463      // so always save them as doubles.
464      // note that float values are _not_ converted automatically, so for float values
465      // the second word contains only garbage data.
466      int xmm_bypass_limit = FrameMap::nof_xmm_regs;
467      int offset = 0;
468#ifdef _LP64
469      if (UseAVX < 3) {
470        xmm_bypass_limit = xmm_bypass_limit / 2;
471      }
472#endif
473      for (int n = 0; n < xmm_bypass_limit; n++) {
474        XMMRegister xmm_name = as_XMMRegister(n);
475        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
476        offset += 8;
477      }
478    } else if (UseSSE == 1) {
479      // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
480      int offset = 0;
481      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
482        XMMRegister xmm_name = as_XMMRegister(n);
483        __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
484        offset += 8;
485      }
486    }
487  }
488
489  // FPU stack must be empty now
490  __ verify_FPU(0, "save_live_registers");
491
492  return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
493}
494
495
496static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
497  if (restore_fpu_registers) {
498    if (UseSSE >= 2) {
499      // restore XMM registers
500      int xmm_bypass_limit = FrameMap::nof_xmm_regs;
501#ifdef _LP64
502      if (UseAVX < 3) {
503        xmm_bypass_limit = xmm_bypass_limit / 2;
504      }
505#endif
506      int offset = 0;
507      for (int n = 0; n < xmm_bypass_limit; n++) {
508        XMMRegister xmm_name = as_XMMRegister(n);
509        __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
510        offset += 8;
511      }
512    } else if (UseSSE == 1) {
513      // restore XMM registers(num MMX == num fpu)
514      int offset = 0;
515      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
516        XMMRegister xmm_name = as_XMMRegister(n);
517        __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
518        offset += 8;
519      }
520    }
521
522    if (UseSSE < 2) {
523      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
524    } else {
525      // check that FPU stack is really empty
526      __ verify_FPU(0, "restore_live_registers");
527    }
528
529  } else {
530    // check that FPU stack is really empty
531    __ verify_FPU(0, "restore_live_registers");
532  }
533
534#ifdef ASSERT
535  {
536    Label ok;
537    __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
538    __ jcc(Assembler::equal, ok);
539    __ stop("bad offsets in frame");
540    __ bind(ok);
541  }
542#endif // ASSERT
543
544  __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
545}
546
547
548static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
549  __ block_comment("restore_live_registers");
550
551  restore_fpu(sasm, restore_fpu_registers);
552  __ popa();
553}
554
555
556static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
557  __ block_comment("restore_live_registers_except_rax");
558
559  restore_fpu(sasm, restore_fpu_registers);
560
561#ifdef _LP64
562  __ movptr(r15, Address(rsp, 0));
563  __ movptr(r14, Address(rsp, wordSize));
564  __ movptr(r13, Address(rsp, 2 * wordSize));
565  __ movptr(r12, Address(rsp, 3 * wordSize));
566  __ movptr(r11, Address(rsp, 4 * wordSize));
567  __ movptr(r10, Address(rsp, 5 * wordSize));
568  __ movptr(r9,  Address(rsp, 6 * wordSize));
569  __ movptr(r8,  Address(rsp, 7 * wordSize));
570  __ movptr(rdi, Address(rsp, 8 * wordSize));
571  __ movptr(rsi, Address(rsp, 9 * wordSize));
572  __ movptr(rbp, Address(rsp, 10 * wordSize));
573  // skip rsp
574  __ movptr(rbx, Address(rsp, 12 * wordSize));
575  __ movptr(rdx, Address(rsp, 13 * wordSize));
576  __ movptr(rcx, Address(rsp, 14 * wordSize));
577
578  __ addptr(rsp, 16 * wordSize);
579#else
580
581  __ pop(rdi);
582  __ pop(rsi);
583  __ pop(rbp);
584  __ pop(rbx); // skip this value
585  __ pop(rbx);
586  __ pop(rdx);
587  __ pop(rcx);
588  __ addptr(rsp, BytesPerWord);
589#endif // _LP64
590}
591
592
593void Runtime1::initialize_pd() {
594  // nothing to do
595}
596
597
598// target: the entry point of the method that creates and posts the exception oop
599// has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
600
601OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
602  // preserve all registers
603  int num_rt_args = has_argument ? 2 : 1;
604  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
605
606  // now all registers are saved and can be used freely
607  // verify that no old value is used accidentally
608  __ invalidate_registers(true, true, true, true, true, true);
609
610  // registers used by this stub
611  const Register temp_reg = rbx;
612
613  // load argument for exception that is passed as an argument into the stub
614  if (has_argument) {
615#ifdef _LP64
616    __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
617#else
618    __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
619    __ push(temp_reg);
620#endif // _LP64
621  }
622  int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
623
624  OopMapSet* oop_maps = new OopMapSet();
625  oop_maps->add_gc_map(call_offset, oop_map);
626
627  __ stop("should not reach here");
628
629  return oop_maps;
630}
631
632
633OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
634  __ block_comment("generate_handle_exception");
635
636  // incoming parameters
637  const Register exception_oop = rax;
638  const Register exception_pc  = rdx;
639  // other registers used in this stub
640  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
641
642  // Save registers, if required.
643  OopMapSet* oop_maps = new OopMapSet();
644  OopMap* oop_map = NULL;
645  switch (id) {
646  case forward_exception_id:
647    // We're handling an exception in the context of a compiled frame.
648    // The registers have been saved in the standard places.  Perform
649    // an exception lookup in the caller and dispatch to the handler
650    // if found.  Otherwise unwind and dispatch to the callers
651    // exception handler.
652    oop_map = generate_oop_map(sasm, 1 /*thread*/);
653
654    // load and clear pending exception oop into RAX
655    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
656    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
657
658    // load issuing PC (the return address for this stub) into rdx
659    __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
660
661    // make sure that the vm_results are cleared (may be unnecessary)
662    __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
663    __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
664    break;
665  case handle_exception_nofpu_id:
666  case handle_exception_id:
667    // At this point all registers MAY be live.
668    oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
669    break;
670  case handle_exception_from_callee_id: {
671    // At this point all registers except exception oop (RAX) and
672    // exception pc (RDX) are dead.
673    const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
674    oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
675    sasm->set_frame_size(frame_size);
676    WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
677    break;
678  }
679  default:  ShouldNotReachHere();
680  }
681
682#ifdef TIERED
683  // C2 can leave the fpu stack dirty
684  if (UseSSE < 2) {
685    __ empty_FPU_stack();
686  }
687#endif // TIERED
688
689  // verify that only rax, and rdx is valid at this time
690  __ invalidate_registers(false, true, true, false, true, true);
691  // verify that rax, contains a valid exception
692  __ verify_not_null_oop(exception_oop);
693
694  // load address of JavaThread object for thread-local data
695  NOT_LP64(__ get_thread(thread);)
696
697#ifdef ASSERT
698  // check that fields in JavaThread for exception oop and issuing pc are
699  // empty before writing to them
700  Label oop_empty;
701  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
702  __ jcc(Assembler::equal, oop_empty);
703  __ stop("exception oop already set");
704  __ bind(oop_empty);
705
706  Label pc_empty;
707  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
708  __ jcc(Assembler::equal, pc_empty);
709  __ stop("exception pc already set");
710  __ bind(pc_empty);
711#endif
712
713  // save exception oop and issuing pc into JavaThread
714  // (exception handler will load it from here)
715  __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
716  __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
717
718  // patch throwing pc into return address (has bci & oop map)
719  __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
720
721  // compute the exception handler.
722  // the exception oop and the throwing pc are read from the fields in JavaThread
723  int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
724  oop_maps->add_gc_map(call_offset, oop_map);
725
726  // rax: handler address
727  //      will be the deopt blob if nmethod was deoptimized while we looked up
728  //      handler regardless of whether handler existed in the nmethod.
729
730  // only rax, is valid at this time, all other registers have been destroyed by the runtime call
731  __ invalidate_registers(false, true, true, true, true, true);
732
733  // patch the return address, this stub will directly return to the exception handler
734  __ movptr(Address(rbp, 1*BytesPerWord), rax);
735
736  switch (id) {
737  case forward_exception_id:
738  case handle_exception_nofpu_id:
739  case handle_exception_id:
740    // Restore the registers that were saved at the beginning.
741    restore_live_registers(sasm, id != handle_exception_nofpu_id);
742    break;
743  case handle_exception_from_callee_id:
744    // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
745    // since we do a leave anyway.
746
747    // Pop the return address.
748    __ leave();
749    __ pop(rcx);
750    __ jmp(rcx);  // jump to exception handler
751    break;
752  default:  ShouldNotReachHere();
753  }
754
755  return oop_maps;
756}
757
758
759void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
760  // incoming parameters
761  const Register exception_oop = rax;
762  // callee-saved copy of exception_oop during runtime call
763  const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
764  // other registers used in this stub
765  const Register exception_pc = rdx;
766  const Register handler_addr = rbx;
767  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
768
769  // verify that only rax, is valid at this time
770  __ invalidate_registers(false, true, true, true, true, true);
771
772#ifdef ASSERT
773  // check that fields in JavaThread for exception oop and issuing pc are empty
774  NOT_LP64(__ get_thread(thread);)
775  Label oop_empty;
776  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
777  __ jcc(Assembler::equal, oop_empty);
778  __ stop("exception oop must be empty");
779  __ bind(oop_empty);
780
781  Label pc_empty;
782  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
783  __ jcc(Assembler::equal, pc_empty);
784  __ stop("exception pc must be empty");
785  __ bind(pc_empty);
786#endif
787
788  // clear the FPU stack in case any FPU results are left behind
789  __ empty_FPU_stack();
790
791  // save exception_oop in callee-saved register to preserve it during runtime calls
792  __ verify_not_null_oop(exception_oop);
793  __ movptr(exception_oop_callee_saved, exception_oop);
794
795  NOT_LP64(__ get_thread(thread);)
796  // Get return address (is on top of stack after leave).
797  __ movptr(exception_pc, Address(rsp, 0));
798
799  // search the exception handler address of the caller (using the return address)
800  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
801  // rax: exception handler address of the caller
802
803  // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
804  __ invalidate_registers(false, true, true, true, false, true);
805
806  // move result of call into correct register
807  __ movptr(handler_addr, rax);
808
809  // Restore exception oop to RAX (required convention of exception handler).
810  __ movptr(exception_oop, exception_oop_callee_saved);
811
812  // verify that there is really a valid exception in rax
813  __ verify_not_null_oop(exception_oop);
814
815  // get throwing pc (= return address).
816  // rdx has been destroyed by the call, so it must be set again
817  // the pop is also necessary to simulate the effect of a ret(0)
818  __ pop(exception_pc);
819
820  // continue at exception handler (return address removed)
821  // note: do *not* remove arguments when unwinding the
822  //       activation since the caller assumes having
823  //       all arguments on the stack when entering the
824  //       runtime to determine the exception handler
825  //       (GC happens at call site with arguments!)
826  // rax: exception oop
827  // rdx: throwing pc
828  // rbx: exception handler
829  __ jmp(handler_addr);
830}
831
832
833OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
834  // use the maximum number of runtime-arguments here because it is difficult to
835  // distinguish each RT-Call.
836  // Note: This number affects also the RT-Call in generate_handle_exception because
837  //       the oop-map is shared for all calls.
838  const int num_rt_args = 2;  // thread + dummy
839
840  DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
841  assert(deopt_blob != NULL, "deoptimization blob must have been created");
842
843  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
844
845#ifdef _LP64
846  const Register thread = r15_thread;
847  // No need to worry about dummy
848  __ mov(c_rarg0, thread);
849#else
850  __ push(rax); // push dummy
851
852  const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
853  // push java thread (becomes first argument of C function)
854  __ get_thread(thread);
855  __ push(thread);
856#endif // _LP64
857  __ set_last_Java_frame(thread, noreg, rbp, NULL);
858  // do the call
859  __ call(RuntimeAddress(target));
860  OopMapSet* oop_maps = new OopMapSet();
861  oop_maps->add_gc_map(__ offset(), oop_map);
862  // verify callee-saved register
863#ifdef ASSERT
864  guarantee(thread != rax, "change this code");
865  __ push(rax);
866  { Label L;
867    __ get_thread(rax);
868    __ cmpptr(thread, rax);
869    __ jcc(Assembler::equal, L);
870    __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
871    __ bind(L);
872  }
873  __ pop(rax);
874#endif
875  __ reset_last_Java_frame(thread, true);
876#ifndef _LP64
877  __ pop(rcx); // discard thread arg
878  __ pop(rcx); // discard dummy
879#endif // _LP64
880
881  // check for pending exceptions
882  { Label L;
883    __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
884    __ jcc(Assembler::equal, L);
885    // exception pending => remove activation and forward to exception handler
886
887    __ testptr(rax, rax);                                   // have we deoptimized?
888    __ jump_cc(Assembler::equal,
889               RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
890
891    // the deopt blob expects exceptions in the special fields of
892    // JavaThread, so copy and clear pending exception.
893
894    // load and clear pending exception
895    __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
896    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
897
898    // check that there is really a valid exception
899    __ verify_not_null_oop(rax);
900
901    // load throwing pc: this is the return address of the stub
902    __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
903
904#ifdef ASSERT
905    // check that fields in JavaThread for exception oop and issuing pc are empty
906    Label oop_empty;
907    __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
908    __ jcc(Assembler::equal, oop_empty);
909    __ stop("exception oop must be empty");
910    __ bind(oop_empty);
911
912    Label pc_empty;
913    __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
914    __ jcc(Assembler::equal, pc_empty);
915    __ stop("exception pc must be empty");
916    __ bind(pc_empty);
917#endif
918
919    // store exception oop and throwing pc to JavaThread
920    __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
921    __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
922
923    restore_live_registers(sasm);
924
925    __ leave();
926    __ addptr(rsp, BytesPerWord);  // remove return address from stack
927
928    // Forward the exception directly to deopt blob. We can blow no
929    // registers and must leave throwing pc on the stack.  A patch may
930    // have values live in registers so the entry point with the
931    // exception in tls.
932    __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
933
934    __ bind(L);
935  }
936
937
938  // Runtime will return true if the nmethod has been deoptimized during
939  // the patching process. In that case we must do a deopt reexecute instead.
940
941  Label reexecuteEntry, cont;
942
943  __ testptr(rax, rax);                                 // have we deoptimized?
944  __ jcc(Assembler::equal, cont);                       // no
945
946  // Will reexecute. Proper return address is already on the stack we just restore
947  // registers, pop all of our frame but the return address and jump to the deopt blob
948  restore_live_registers(sasm);
949  __ leave();
950  __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
951
952  __ bind(cont);
953  restore_live_registers(sasm);
954  __ leave();
955  __ ret(0);
956
957  return oop_maps;
958}
959
960
961OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
962
963  // for better readability
964  const bool must_gc_arguments = true;
965  const bool dont_gc_arguments = false;
966
967  // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
968  bool save_fpu_registers = true;
969
970  // stub code & info for the different stubs
971  OopMapSet* oop_maps = NULL;
972  switch (id) {
973    case forward_exception_id:
974      {
975        oop_maps = generate_handle_exception(id, sasm);
976        __ leave();
977        __ ret(0);
978      }
979      break;
980
981    case new_instance_id:
982    case fast_new_instance_id:
983    case fast_new_instance_init_check_id:
984      {
985        Register klass = rdx; // Incoming
986        Register obj   = rax; // Result
987
988        if (id == new_instance_id) {
989          __ set_info("new_instance", dont_gc_arguments);
990        } else if (id == fast_new_instance_id) {
991          __ set_info("fast new_instance", dont_gc_arguments);
992        } else {
993          assert(id == fast_new_instance_init_check_id, "bad StubID");
994          __ set_info("fast new_instance init check", dont_gc_arguments);
995        }
996
997        if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
998            UseTLAB && FastTLABRefill) {
999          Label slow_path;
1000          Register obj_size = rcx;
1001          Register t1       = rbx;
1002          Register t2       = rsi;
1003          assert_different_registers(klass, obj, obj_size, t1, t2);
1004
1005          __ push(rdi);
1006          __ push(rbx);
1007
1008          if (id == fast_new_instance_init_check_id) {
1009            // make sure the klass is initialized
1010            __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1011            __ jcc(Assembler::notEqual, slow_path);
1012          }
1013
1014#ifdef ASSERT
1015          // assert object can be fast path allocated
1016          {
1017            Label ok, not_ok;
1018            __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1019            __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1020            __ jcc(Assembler::lessEqual, not_ok);
1021            __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1022            __ jcc(Assembler::zero, ok);
1023            __ bind(not_ok);
1024            __ stop("assert(can be fast path allocated)");
1025            __ should_not_reach_here();
1026            __ bind(ok);
1027          }
1028#endif // ASSERT
1029
1030          // if we got here then the TLAB allocation failed, so try
1031          // refilling the TLAB or allocating directly from eden.
1032          Label retry_tlab, try_eden;
1033          const Register thread =
1034            __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1035
1036          __ bind(retry_tlab);
1037
1038          // get the instance size (size is postive so movl is fine for 64bit)
1039          __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1040
1041          __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1042
1043          __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ true);
1044          __ verify_oop(obj);
1045          __ pop(rbx);
1046          __ pop(rdi);
1047          __ ret(0);
1048
1049          __ bind(try_eden);
1050          // get the instance size (size is postive so movl is fine for 64bit)
1051          __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1052
1053          __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1054          __ incr_allocated_bytes(thread, obj_size, 0);
1055
1056          __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1057          __ verify_oop(obj);
1058          __ pop(rbx);
1059          __ pop(rdi);
1060          __ ret(0);
1061
1062          __ bind(slow_path);
1063          __ pop(rbx);
1064          __ pop(rdi);
1065        }
1066
1067        __ enter();
1068        OopMap* map = save_live_registers(sasm, 2);
1069        int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1070        oop_maps = new OopMapSet();
1071        oop_maps->add_gc_map(call_offset, map);
1072        restore_live_registers_except_rax(sasm);
1073        __ verify_oop(obj);
1074        __ leave();
1075        __ ret(0);
1076
1077        // rax,: new instance
1078      }
1079
1080      break;
1081
1082    case counter_overflow_id:
1083      {
1084        Register bci = rax, method = rbx;
1085        __ enter();
1086        OopMap* map = save_live_registers(sasm, 3);
1087        // Retrieve bci
1088        __ movl(bci, Address(rbp, 2*BytesPerWord));
1089        // And a pointer to the Method*
1090        __ movptr(method, Address(rbp, 3*BytesPerWord));
1091        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1092        oop_maps = new OopMapSet();
1093        oop_maps->add_gc_map(call_offset, map);
1094        restore_live_registers(sasm);
1095        __ leave();
1096        __ ret(0);
1097      }
1098      break;
1099
1100    case new_type_array_id:
1101    case new_object_array_id:
1102      {
1103        Register length   = rbx; // Incoming
1104        Register klass    = rdx; // Incoming
1105        Register obj      = rax; // Result
1106
1107        if (id == new_type_array_id) {
1108          __ set_info("new_type_array", dont_gc_arguments);
1109        } else {
1110          __ set_info("new_object_array", dont_gc_arguments);
1111        }
1112
1113#ifdef ASSERT
1114        // assert object type is really an array of the proper kind
1115        {
1116          Label ok;
1117          Register t0 = obj;
1118          __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1119          __ sarl(t0, Klass::_lh_array_tag_shift);
1120          int tag = ((id == new_type_array_id)
1121                     ? Klass::_lh_array_tag_type_value
1122                     : Klass::_lh_array_tag_obj_value);
1123          __ cmpl(t0, tag);
1124          __ jcc(Assembler::equal, ok);
1125          __ stop("assert(is an array klass)");
1126          __ should_not_reach_here();
1127          __ bind(ok);
1128        }
1129#endif // ASSERT
1130
1131        if (UseTLAB && FastTLABRefill) {
1132          Register arr_size = rsi;
1133          Register t1       = rcx;  // must be rcx for use as shift count
1134          Register t2       = rdi;
1135          Label slow_path;
1136          assert_different_registers(length, klass, obj, arr_size, t1, t2);
1137
1138          // check that array length is small enough for fast path.
1139          __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1140          __ jcc(Assembler::above, slow_path);
1141
1142          // if we got here then the TLAB allocation failed, so try
1143          // refilling the TLAB or allocating directly from eden.
1144          Label retry_tlab, try_eden;
1145          const Register thread =
1146            __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1147
1148          __ bind(retry_tlab);
1149
1150          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1151          // since size is positive movl does right thing on 64bit
1152          __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1153          // since size is postive movl does right thing on 64bit
1154          __ movl(arr_size, length);
1155          assert(t1 == rcx, "fixed register usage");
1156          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1157          __ shrptr(t1, Klass::_lh_header_size_shift);
1158          __ andptr(t1, Klass::_lh_header_size_mask);
1159          __ addptr(arr_size, t1);
1160          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1161          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1162
1163          __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1164
1165          __ initialize_header(obj, klass, length, t1, t2);
1166          __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1167          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1168          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1169          __ andptr(t1, Klass::_lh_header_size_mask);
1170          __ subptr(arr_size, t1);  // body length
1171          __ addptr(t1, obj);       // body start
1172          if (!ZeroTLAB) {
1173            __ initialize_body(t1, arr_size, 0, t2);
1174          }
1175          __ verify_oop(obj);
1176          __ ret(0);
1177
1178          __ bind(try_eden);
1179          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1180          // since size is positive movl does right thing on 64bit
1181          __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1182          // since size is postive movl does right thing on 64bit
1183          __ movl(arr_size, length);
1184          assert(t1 == rcx, "fixed register usage");
1185          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1186          __ shrptr(t1, Klass::_lh_header_size_shift);
1187          __ andptr(t1, Klass::_lh_header_size_mask);
1188          __ addptr(arr_size, t1);
1189          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1190          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1191
1192          __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1193          __ incr_allocated_bytes(thread, arr_size, 0);
1194
1195          __ initialize_header(obj, klass, length, t1, t2);
1196          __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1197          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1198          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1199          __ andptr(t1, Klass::_lh_header_size_mask);
1200          __ subptr(arr_size, t1);  // body length
1201          __ addptr(t1, obj);       // body start
1202          __ initialize_body(t1, arr_size, 0, t2);
1203          __ verify_oop(obj);
1204          __ ret(0);
1205
1206          __ bind(slow_path);
1207        }
1208
1209        __ enter();
1210        OopMap* map = save_live_registers(sasm, 3);
1211        int call_offset;
1212        if (id == new_type_array_id) {
1213          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1214        } else {
1215          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1216        }
1217
1218        oop_maps = new OopMapSet();
1219        oop_maps->add_gc_map(call_offset, map);
1220        restore_live_registers_except_rax(sasm);
1221
1222        __ verify_oop(obj);
1223        __ leave();
1224        __ ret(0);
1225
1226        // rax,: new array
1227      }
1228      break;
1229
1230    case new_multi_array_id:
1231      { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1232        // rax,: klass
1233        // rbx,: rank
1234        // rcx: address of 1st dimension
1235        OopMap* map = save_live_registers(sasm, 4);
1236        int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1237
1238        oop_maps = new OopMapSet();
1239        oop_maps->add_gc_map(call_offset, map);
1240        restore_live_registers_except_rax(sasm);
1241
1242        // rax,: new multi array
1243        __ verify_oop(rax);
1244      }
1245      break;
1246
1247    case register_finalizer_id:
1248      {
1249        __ set_info("register_finalizer", dont_gc_arguments);
1250
1251        // This is called via call_runtime so the arguments
1252        // will be place in C abi locations
1253
1254#ifdef _LP64
1255        __ verify_oop(c_rarg0);
1256        __ mov(rax, c_rarg0);
1257#else
1258        // The object is passed on the stack and we haven't pushed a
1259        // frame yet so it's one work away from top of stack.
1260        __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1261        __ verify_oop(rax);
1262#endif // _LP64
1263
1264        // load the klass and check the has finalizer flag
1265        Label register_finalizer;
1266        Register t = rsi;
1267        __ load_klass(t, rax);
1268        __ movl(t, Address(t, Klass::access_flags_offset()));
1269        __ testl(t, JVM_ACC_HAS_FINALIZER);
1270        __ jcc(Assembler::notZero, register_finalizer);
1271        __ ret(0);
1272
1273        __ bind(register_finalizer);
1274        __ enter();
1275        OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1276        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1277        oop_maps = new OopMapSet();
1278        oop_maps->add_gc_map(call_offset, oop_map);
1279
1280        // Now restore all the live registers
1281        restore_live_registers(sasm);
1282
1283        __ leave();
1284        __ ret(0);
1285      }
1286      break;
1287
1288    case throw_range_check_failed_id:
1289      { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1290        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1291      }
1292      break;
1293
1294    case throw_index_exception_id:
1295      { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1296        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1297      }
1298      break;
1299
1300    case throw_div0_exception_id:
1301      { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1302        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1303      }
1304      break;
1305
1306    case throw_null_pointer_exception_id:
1307      { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1308        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1309      }
1310      break;
1311
1312    case handle_exception_nofpu_id:
1313    case handle_exception_id:
1314      { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1315        oop_maps = generate_handle_exception(id, sasm);
1316      }
1317      break;
1318
1319    case handle_exception_from_callee_id:
1320      { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1321        oop_maps = generate_handle_exception(id, sasm);
1322      }
1323      break;
1324
1325    case unwind_exception_id:
1326      { __ set_info("unwind_exception", dont_gc_arguments);
1327        // note: no stubframe since we are about to leave the current
1328        //       activation and we are calling a leaf VM function only.
1329        generate_unwind_exception(sasm);
1330      }
1331      break;
1332
1333    case throw_array_store_exception_id:
1334      { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1335        // tos + 0: link
1336        //     + 1: return address
1337        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1338      }
1339      break;
1340
1341    case throw_class_cast_exception_id:
1342      { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1343        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1344      }
1345      break;
1346
1347    case throw_incompatible_class_change_error_id:
1348      { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1349        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1350      }
1351      break;
1352
1353    case slow_subtype_check_id:
1354      {
1355        // Typical calling sequence:
1356        // __ push(klass_RInfo);  // object klass or other subclass
1357        // __ push(sup_k_RInfo);  // array element klass or other superclass
1358        // __ call(slow_subtype_check);
1359        // Note that the subclass is pushed first, and is therefore deepest.
1360        // Previous versions of this code reversed the names 'sub' and 'super'.
1361        // This was operationally harmless but made the code unreadable.
1362        enum layout {
1363          rax_off, SLOT2(raxH_off)
1364          rcx_off, SLOT2(rcxH_off)
1365          rsi_off, SLOT2(rsiH_off)
1366          rdi_off, SLOT2(rdiH_off)
1367          // saved_rbp_off, SLOT2(saved_rbpH_off)
1368          return_off, SLOT2(returnH_off)
1369          sup_k_off, SLOT2(sup_kH_off)
1370          klass_off, SLOT2(superH_off)
1371          framesize,
1372          result_off = klass_off  // deepest argument is also the return value
1373        };
1374
1375        __ set_info("slow_subtype_check", dont_gc_arguments);
1376        __ push(rdi);
1377        __ push(rsi);
1378        __ push(rcx);
1379        __ push(rax);
1380
1381        // This is called by pushing args and not with C abi
1382        __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1383        __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1384
1385        Label miss;
1386        __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1387
1388        // fallthrough on success:
1389        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1390        __ pop(rax);
1391        __ pop(rcx);
1392        __ pop(rsi);
1393        __ pop(rdi);
1394        __ ret(0);
1395
1396        __ bind(miss);
1397        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1398        __ pop(rax);
1399        __ pop(rcx);
1400        __ pop(rsi);
1401        __ pop(rdi);
1402        __ ret(0);
1403      }
1404      break;
1405
1406    case monitorenter_nofpu_id:
1407      save_fpu_registers = false;
1408      // fall through
1409    case monitorenter_id:
1410      {
1411        StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1412        OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1413
1414        // Called with store_parameter and not C abi
1415
1416        f.load_argument(1, rax); // rax,: object
1417        f.load_argument(0, rbx); // rbx,: lock address
1418
1419        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1420
1421        oop_maps = new OopMapSet();
1422        oop_maps->add_gc_map(call_offset, map);
1423        restore_live_registers(sasm, save_fpu_registers);
1424      }
1425      break;
1426
1427    case monitorexit_nofpu_id:
1428      save_fpu_registers = false;
1429      // fall through
1430    case monitorexit_id:
1431      {
1432        StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1433        OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1434
1435        // Called with store_parameter and not C abi
1436
1437        f.load_argument(0, rax); // rax,: lock address
1438
1439        // note: really a leaf routine but must setup last java sp
1440        //       => use call_RT for now (speed can be improved by
1441        //       doing last java sp setup manually)
1442        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1443
1444        oop_maps = new OopMapSet();
1445        oop_maps->add_gc_map(call_offset, map);
1446        restore_live_registers(sasm, save_fpu_registers);
1447      }
1448      break;
1449
1450    case deoptimize_id:
1451      {
1452        StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1453        const int num_rt_args = 2;  // thread, trap_request
1454        OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1455        f.load_argument(0, rax);
1456        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1457        oop_maps = new OopMapSet();
1458        oop_maps->add_gc_map(call_offset, oop_map);
1459        restore_live_registers(sasm);
1460        DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1461        assert(deopt_blob != NULL, "deoptimization blob must have been created");
1462        __ leave();
1463        __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1464      }
1465      break;
1466
1467    case access_field_patching_id:
1468      { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1469        // we should set up register map
1470        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1471      }
1472      break;
1473
1474    case load_klass_patching_id:
1475      { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1476        // we should set up register map
1477        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1478      }
1479      break;
1480
1481    case load_mirror_patching_id:
1482      { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1483        // we should set up register map
1484        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1485      }
1486      break;
1487
1488    case load_appendix_patching_id:
1489      { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1490        // we should set up register map
1491        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1492      }
1493      break;
1494
1495    case dtrace_object_alloc_id:
1496      { // rax,: object
1497        StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1498        // we can't gc here so skip the oopmap but make sure that all
1499        // the live registers get saved.
1500        save_live_registers(sasm, 1);
1501
1502        __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1503        __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1504        NOT_LP64(__ pop(rax));
1505
1506        restore_live_registers(sasm);
1507      }
1508      break;
1509
1510    case fpu2long_stub_id:
1511      {
1512        // rax, and rdx are destroyed, but should be free since the result is returned there
1513        // preserve rsi,ecx
1514        __ push(rsi);
1515        __ push(rcx);
1516        LP64_ONLY(__ push(rdx);)
1517
1518        // check for NaN
1519        Label return0, do_return, return_min_jlong, do_convert;
1520
1521        Address value_high_word(rsp, wordSize + 4);
1522        Address value_low_word(rsp, wordSize);
1523        Address result_high_word(rsp, 3*wordSize + 4);
1524        Address result_low_word(rsp, 3*wordSize);
1525
1526        __ subptr(rsp, 32);                    // more than enough on 32bit
1527        __ fst_d(value_low_word);
1528        __ movl(rax, value_high_word);
1529        __ andl(rax, 0x7ff00000);
1530        __ cmpl(rax, 0x7ff00000);
1531        __ jcc(Assembler::notEqual, do_convert);
1532        __ movl(rax, value_high_word);
1533        __ andl(rax, 0xfffff);
1534        __ orl(rax, value_low_word);
1535        __ jcc(Assembler::notZero, return0);
1536
1537        __ bind(do_convert);
1538        __ fnstcw(Address(rsp, 0));
1539        __ movzwl(rax, Address(rsp, 0));
1540        __ orl(rax, 0xc00);
1541        __ movw(Address(rsp, 2), rax);
1542        __ fldcw(Address(rsp, 2));
1543        __ fwait();
1544        __ fistp_d(result_low_word);
1545        __ fldcw(Address(rsp, 0));
1546        __ fwait();
1547        // This gets the entire long in rax on 64bit
1548        __ movptr(rax, result_low_word);
1549        // testing of high bits
1550        __ movl(rdx, result_high_word);
1551        __ mov(rcx, rax);
1552        // What the heck is the point of the next instruction???
1553        __ xorl(rcx, 0x0);
1554        __ movl(rsi, 0x80000000);
1555        __ xorl(rsi, rdx);
1556        __ orl(rcx, rsi);
1557        __ jcc(Assembler::notEqual, do_return);
1558        __ fldz();
1559        __ fcomp_d(value_low_word);
1560        __ fnstsw_ax();
1561#ifdef _LP64
1562        __ testl(rax, 0x4100);  // ZF & CF == 0
1563        __ jcc(Assembler::equal, return_min_jlong);
1564#else
1565        __ sahf();
1566        __ jcc(Assembler::above, return_min_jlong);
1567#endif // _LP64
1568        // return max_jlong
1569#ifndef _LP64
1570        __ movl(rdx, 0x7fffffff);
1571        __ movl(rax, 0xffffffff);
1572#else
1573        __ mov64(rax, CONST64(0x7fffffffffffffff));
1574#endif // _LP64
1575        __ jmp(do_return);
1576
1577        __ bind(return_min_jlong);
1578#ifndef _LP64
1579        __ movl(rdx, 0x80000000);
1580        __ xorl(rax, rax);
1581#else
1582        __ mov64(rax, UCONST64(0x8000000000000000));
1583#endif // _LP64
1584        __ jmp(do_return);
1585
1586        __ bind(return0);
1587        __ fpop();
1588#ifndef _LP64
1589        __ xorptr(rdx,rdx);
1590        __ xorptr(rax,rax);
1591#else
1592        __ xorptr(rax, rax);
1593#endif // _LP64
1594
1595        __ bind(do_return);
1596        __ addptr(rsp, 32);
1597        LP64_ONLY(__ pop(rdx);)
1598        __ pop(rcx);
1599        __ pop(rsi);
1600        __ ret(0);
1601      }
1602      break;
1603
1604#if INCLUDE_ALL_GCS
1605    case g1_pre_barrier_slow_id:
1606      {
1607        StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1608        // arg0 : previous value of memory
1609
1610        BarrierSet* bs = Universe::heap()->barrier_set();
1611        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1612          __ movptr(rax, (int)id);
1613          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1614          __ should_not_reach_here();
1615          break;
1616        }
1617        __ push(rax);
1618        __ push(rdx);
1619
1620        const Register pre_val = rax;
1621        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1622        const Register tmp = rdx;
1623
1624        NOT_LP64(__ get_thread(thread);)
1625
1626        Address queue_active(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1627                                              SATBMarkQueue::byte_offset_of_active()));
1628        Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1629                                             SATBMarkQueue::byte_offset_of_index()));
1630        Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1631                                        SATBMarkQueue::byte_offset_of_buf()));
1632
1633        Label done;
1634        Label runtime;
1635
1636        // Is marking still active?
1637        if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1638          __ cmpl(queue_active, 0);
1639        } else {
1640          assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
1641          __ cmpb(queue_active, 0);
1642        }
1643        __ jcc(Assembler::equal, done);
1644
1645        // Can we store original value in the thread's buffer?
1646
1647        __ movptr(tmp, queue_index);
1648        __ testptr(tmp, tmp);
1649        __ jcc(Assembler::zero, runtime);
1650        __ subptr(tmp, wordSize);
1651        __ movptr(queue_index, tmp);
1652        __ addptr(tmp, buffer);
1653
1654        // prev_val (rax)
1655        f.load_argument(0, pre_val);
1656        __ movptr(Address(tmp, 0), pre_val);
1657        __ jmp(done);
1658
1659        __ bind(runtime);
1660
1661        save_live_registers(sasm, 3);
1662
1663        // load the pre-value
1664        f.load_argument(0, rcx);
1665        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1666
1667        restore_live_registers(sasm);
1668
1669        __ bind(done);
1670
1671        __ pop(rdx);
1672        __ pop(rax);
1673      }
1674      break;
1675
1676    case g1_post_barrier_slow_id:
1677      {
1678        StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1679
1680
1681        // arg0: store_address
1682        Address store_addr(rbp, 2*BytesPerWord);
1683
1684        CardTableModRefBS* ct =
1685          barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
1686        assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1687
1688        Label done;
1689        Label enqueued;
1690        Label runtime;
1691
1692        // At this point we know new_value is non-NULL and the new_value crosses regions.
1693        // Must check to see if card is already dirty
1694
1695        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1696
1697        Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1698                                             DirtyCardQueue::byte_offset_of_index()));
1699        Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1700                                        DirtyCardQueue::byte_offset_of_buf()));
1701
1702        __ push(rax);
1703        __ push(rcx);
1704
1705        const Register cardtable = rax;
1706        const Register card_addr = rcx;
1707
1708        f.load_argument(0, card_addr);
1709        __ shrptr(card_addr, CardTableModRefBS::card_shift);
1710        // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
1711        // a valid address and therefore is not properly handled by the relocation code.
1712        __ movptr(cardtable, (intptr_t)ct->byte_map_base);
1713        __ addptr(card_addr, cardtable);
1714
1715        NOT_LP64(__ get_thread(thread);)
1716
1717        __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
1718        __ jcc(Assembler::equal, done);
1719
1720        __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1721        __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1722        __ jcc(Assembler::equal, done);
1723
1724        // storing region crossing non-NULL, card is clean.
1725        // dirty card and log.
1726
1727        __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1728
1729        const Register tmp = rdx;
1730        __ push(rdx);
1731
1732        __ movptr(tmp, queue_index);
1733        __ testptr(tmp, tmp);
1734        __ jcc(Assembler::zero, runtime);
1735        __ subptr(tmp, wordSize);
1736        __ movptr(queue_index, tmp);
1737        __ addptr(tmp, buffer);
1738        __ movptr(Address(tmp, 0), card_addr);
1739        __ jmp(enqueued);
1740
1741        __ bind(runtime);
1742
1743        save_live_registers(sasm, 3);
1744
1745        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1746
1747        restore_live_registers(sasm);
1748
1749        __ bind(enqueued);
1750        __ pop(rdx);
1751
1752        __ bind(done);
1753        __ pop(rcx);
1754        __ pop(rax);
1755      }
1756      break;
1757#endif // INCLUDE_ALL_GCS
1758
1759    case predicate_failed_trap_id:
1760      {
1761        StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1762
1763        OopMap* map = save_live_registers(sasm, 1);
1764
1765        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1766        oop_maps = new OopMapSet();
1767        oop_maps->add_gc_map(call_offset, map);
1768        restore_live_registers(sasm);
1769        __ leave();
1770        DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1771        assert(deopt_blob != NULL, "deoptimization blob must have been created");
1772
1773        __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1774      }
1775      break;
1776
1777    default:
1778      { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1779        __ movptr(rax, (int)id);
1780        __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1781        __ should_not_reach_here();
1782      }
1783      break;
1784  }
1785  return oop_maps;
1786}
1787
1788#undef __
1789
1790const char *Runtime1::pd_name_for_address(address entry) {
1791  return "<unknown function>";
1792}
1793