c1_Runtime1_x86.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_Runtime1_x86.cpp.incl"
27
28
29// Implementation of StubAssembler
30
31int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
32  // setup registers
33  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
34  assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
35  assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
36  assert(args_size >= 0, "illegal args_size");
37
38#ifdef _LP64
39  mov(c_rarg0, thread);
40  set_num_rt_args(0); // Nothing on stack
41#else
42  set_num_rt_args(1 + args_size);
43
44  // push java thread (becomes first argument of C function)
45  get_thread(thread);
46  push(thread);
47#endif // _LP64
48
49  set_last_Java_frame(thread, noreg, rbp, NULL);
50
51  // do the call
52  call(RuntimeAddress(entry));
53  int call_offset = offset();
54  // verify callee-saved register
55#ifdef ASSERT
56  guarantee(thread != rax, "change this code");
57  push(rax);
58  { Label L;
59    get_thread(rax);
60    cmpptr(thread, rax);
61    jcc(Assembler::equal, L);
62    int3();
63    stop("StubAssembler::call_RT: rdi not callee saved?");
64    bind(L);
65  }
66  pop(rax);
67#endif
68  reset_last_Java_frame(thread, true, false);
69
70  // discard thread and arguments
71  NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
72
73  // check for pending exceptions
74  { Label L;
75    cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
76    jcc(Assembler::equal, L);
77    // exception pending => remove activation and forward to exception handler
78    movptr(rax, Address(thread, Thread::pending_exception_offset()));
79    // make sure that the vm_results are cleared
80    if (oop_result1->is_valid()) {
81      movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
82    }
83    if (oop_result2->is_valid()) {
84      movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
85    }
86    if (frame_size() == no_frame_size) {
87      leave();
88      jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
89    } else if (_stub_id == Runtime1::forward_exception_id) {
90      should_not_reach_here();
91    } else {
92      jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
93    }
94    bind(L);
95  }
96  // get oop results if there are any and reset the values in the thread
97  if (oop_result1->is_valid()) {
98    movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
99    movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
100    verify_oop(oop_result1);
101  }
102  if (oop_result2->is_valid()) {
103    movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
104    movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
105    verify_oop(oop_result2);
106  }
107  return call_offset;
108}
109
110
111int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
112#ifdef _LP64
113  mov(c_rarg1, arg1);
114#else
115  push(arg1);
116#endif // _LP64
117  return call_RT(oop_result1, oop_result2, entry, 1);
118}
119
120
121int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
122#ifdef _LP64
123  if (c_rarg1 == arg2) {
124    if (c_rarg2 == arg1) {
125      xchgq(arg1, arg2);
126    } else {
127      mov(c_rarg2, arg2);
128      mov(c_rarg1, arg1);
129    }
130  } else {
131    mov(c_rarg1, arg1);
132    mov(c_rarg2, arg2);
133  }
134#else
135  push(arg2);
136  push(arg1);
137#endif // _LP64
138  return call_RT(oop_result1, oop_result2, entry, 2);
139}
140
141
142int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
143#ifdef _LP64
144  // if there is any conflict use the stack
145  if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
146      arg2 == c_rarg1 || arg1 == c_rarg3 ||
147      arg3 == c_rarg1 || arg1 == c_rarg2) {
148    push(arg3);
149    push(arg2);
150    push(arg1);
151    pop(c_rarg1);
152    pop(c_rarg2);
153    pop(c_rarg3);
154  } else {
155    mov(c_rarg1, arg1);
156    mov(c_rarg2, arg2);
157    mov(c_rarg3, arg3);
158  }
159#else
160  push(arg3);
161  push(arg2);
162  push(arg1);
163#endif // _LP64
164  return call_RT(oop_result1, oop_result2, entry, 3);
165}
166
167
168// Implementation of StubFrame
169
170class StubFrame: public StackObj {
171 private:
172  StubAssembler* _sasm;
173
174 public:
175  StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
176  void load_argument(int offset_in_words, Register reg);
177
178  ~StubFrame();
179};
180
181
182#define __ _sasm->
183
184StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
185  _sasm = sasm;
186  __ set_info(name, must_gc_arguments);
187  __ enter();
188}
189
190// load parameters that were stored with LIR_Assembler::store_parameter
191// Note: offsets for store_parameter and load_argument must match
192void StubFrame::load_argument(int offset_in_words, Register reg) {
193  // rbp, + 0: link
194  //     + 1: return address
195  //     + 2: argument with offset 0
196  //     + 3: argument with offset 1
197  //     + 4: ...
198
199  __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
200}
201
202
203StubFrame::~StubFrame() {
204  __ leave();
205  __ ret(0);
206}
207
208#undef __
209
210
211// Implementation of Runtime1
212
213#define __ sasm->
214
215const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
216const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
217
218// Stack layout for saving/restoring  all the registers needed during a runtime
219// call (this includes deoptimization)
220// Note: note that users of this frame may well have arguments to some runtime
221// while these values are on the stack. These positions neglect those arguments
222// but the code in save_live_registers will take the argument count into
223// account.
224//
225#ifdef _LP64
226  #define SLOT2(x) x,
227  #define SLOT_PER_WORD 2
228#else
229  #define SLOT2(x)
230  #define SLOT_PER_WORD 1
231#endif // _LP64
232
233enum reg_save_layout {
234  // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
235  // happen and will assert if the stack size we create is misaligned
236#ifdef _LP64
237  align_dummy_0, align_dummy_1,
238#endif // _LP64
239  dummy1, SLOT2(dummy1H)                                                                    // 0, 4
240  dummy2, SLOT2(dummy2H)                                                                    // 8, 12
241  // Two temps to be used as needed by users of save/restore callee registers
242  temp_2_off, SLOT2(temp_2H_off)                                                            // 16, 20
243  temp_1_off, SLOT2(temp_1H_off)                                                            // 24, 28
244  xmm_regs_as_doubles_off,                                                                  // 32
245  float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
246  fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
247  // fpu_state_end_off is exclusive
248  fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
249  marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
250  extra_space_offset,                                                                       // 360
251#ifdef _LP64
252  r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
253  r14_off, r14H_off,                                                                        // 368, 372
254  r13_off, r13H_off,                                                                        // 376, 380
255  r12_off, r12H_off,                                                                        // 384, 388
256  r11_off, r11H_off,                                                                        // 392, 396
257  r10_off, r10H_off,                                                                        // 400, 404
258  r9_off, r9H_off,                                                                          // 408, 412
259  r8_off, r8H_off,                                                                          // 416, 420
260  rdi_off, rdiH_off,                                                                        // 424, 428
261#else
262  rdi_off = extra_space_offset,
263#endif // _LP64
264  rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
265  rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
266  rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
267  rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
268  rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
269  rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
270  rax_off, SLOT2(raxH_off)                                                                  // 480, 484
271  saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
272  return_off, SLOT2(returnH_off)                                                            // 496, 500
273  reg_save_frame_size,  // As noted: neglects any parameters to runtime                     // 504
274
275#ifdef _WIN64
276  c_rarg0_off = rcx_off,
277#else
278  c_rarg0_off = rdi_off,
279#endif // WIN64
280
281  // equates
282
283  // illegal instruction handler
284  continue_dest_off = temp_1_off,
285
286  // deoptimization equates
287  fp0_off = float_regs_as_doubles_off, // slot for java float/double return value
288  xmm0_off = xmm_regs_as_doubles_off,  // slot for java float/double return value
289  deopt_type = temp_2_off,             // slot for type of deopt in progress
290  ret_type = temp_1_off                // slot for return type
291};
292
293
294
295// Save off registers which might be killed by calls into the runtime.
296// Tries to smart of about FP registers.  In particular we separate
297// saving and describing the FPU registers for deoptimization since we
298// have to save the FPU registers twice if we describe them and on P4
299// saving FPU registers which don't contain anything appears
300// expensive.  The deopt blob is the only thing which needs to
301// describe FPU registers.  In all other cases it should be sufficient
302// to simply save their current value.
303
304static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
305                                bool save_fpu_registers = true) {
306
307  // In 64bit all the args are in regs so there are no additional stack slots
308  LP64_ONLY(num_rt_args = 0);
309  LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
310  int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
311  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
312
313  // record saved value locations in an OopMap
314  // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
315  OopMap* map = new OopMap(frame_size_in_slots, 0);
316  map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
317  map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
318  map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
319  map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
320  map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
321  map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
322#ifdef _LP64
323  map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
324  map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
325  map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
326  map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
327  map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
328  map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
329  map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
330  map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
331
332  // This is stupid but needed.
333  map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
334  map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
335  map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
336  map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
337  map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
338  map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
339
340  map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
341  map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
342  map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
343  map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
344  map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
345  map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
346  map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
347  map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
348#endif // _LP64
349
350  if (save_fpu_registers) {
351    if (UseSSE < 2) {
352      int fpu_off = float_regs_as_doubles_off;
353      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
354        VMReg fpu_name_0 = FrameMap::fpu_regname(n);
355        map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
356        // %%% This is really a waste but we'll keep things as they were for now
357        if (true) {
358          map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
359        }
360        fpu_off += 2;
361      }
362      assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
363    }
364
365    if (UseSSE >= 2) {
366      int xmm_off = xmm_regs_as_doubles_off;
367      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
368        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
369        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
370        // %%% This is really a waste but we'll keep things as they were for now
371        if (true) {
372          map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
373        }
374        xmm_off += 2;
375      }
376      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
377
378    } else if (UseSSE == 1) {
379      int xmm_off = xmm_regs_as_doubles_off;
380      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
381        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
382        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
383        xmm_off += 2;
384      }
385      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
386    }
387  }
388
389  return map;
390}
391
392static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
393                                   bool save_fpu_registers = true) {
394  __ block_comment("save_live_registers");
395
396  // 64bit passes the args in regs to the c++ runtime
397  int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread
398  // frame_size = round_to(frame_size, 4);
399  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
400
401  __ pusha();         // integer registers
402
403  // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
404  // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
405
406  __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
407
408#ifdef ASSERT
409  __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
410#endif
411
412  if (save_fpu_registers) {
413    if (UseSSE < 2) {
414      // save FPU stack
415      __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
416      __ fwait();
417
418#ifdef ASSERT
419      Label ok;
420      __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
421      __ jccb(Assembler::equal, ok);
422      __ stop("corrupted control word detected");
423      __ bind(ok);
424#endif
425
426      // Reset the control word to guard against exceptions being unmasked
427      // since fstp_d can cause FPU stack underflow exceptions.  Write it
428      // into the on stack copy and then reload that to make sure that the
429      // current and future values are correct.
430      __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
431      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
432
433      // Save the FPU registers in de-opt-able form
434      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
435      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
436      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
437      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
438      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
439      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
440      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
441      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
442    }
443
444    if (UseSSE >= 2) {
445      // save XMM registers
446      // XMM registers can contain float or double values, but this is not known here,
447      // so always save them as doubles.
448      // note that float values are _not_ converted automatically, so for float values
449      // the second word contains only garbage data.
450      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
451      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
452      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
453      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
454      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
455      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
456      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
457      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
458#ifdef _LP64
459      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
460      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
461      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
462      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
463      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
464      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
465      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
466      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
467#endif // _LP64
468    } else if (UseSSE == 1) {
469      // save XMM registers as float because double not supported without SSE2
470      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
471      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
472      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
473      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
474      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
475      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
476      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
477      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
478    }
479  }
480
481  // FPU stack must be empty now
482  __ verify_FPU(0, "save_live_registers");
483
484  return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
485}
486
487
488static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
489  if (restore_fpu_registers) {
490    if (UseSSE >= 2) {
491      // restore XMM registers
492      __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
493      __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
494      __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
495      __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
496      __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
497      __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
498      __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
499      __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
500#ifdef _LP64
501      __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
502      __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
503      __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
504      __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
505      __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
506      __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
507      __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
508      __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
509#endif // _LP64
510    } else if (UseSSE == 1) {
511      // restore XMM registers
512      __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
513      __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
514      __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
515      __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
516      __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
517      __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
518      __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
519      __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
520    }
521
522    if (UseSSE < 2) {
523      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
524    } else {
525      // check that FPU stack is really empty
526      __ verify_FPU(0, "restore_live_registers");
527    }
528
529  } else {
530    // check that FPU stack is really empty
531    __ verify_FPU(0, "restore_live_registers");
532  }
533
534#ifdef ASSERT
535  {
536    Label ok;
537    __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
538    __ jcc(Assembler::equal, ok);
539    __ stop("bad offsets in frame");
540    __ bind(ok);
541  }
542#endif // ASSERT
543
544  __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
545}
546
547
548static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
549  __ block_comment("restore_live_registers");
550
551  restore_fpu(sasm, restore_fpu_registers);
552  __ popa();
553}
554
555
556static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
557  __ block_comment("restore_live_registers_except_rax");
558
559  restore_fpu(sasm, restore_fpu_registers);
560
561#ifdef _LP64
562  __ movptr(r15, Address(rsp, 0));
563  __ movptr(r14, Address(rsp, wordSize));
564  __ movptr(r13, Address(rsp, 2 * wordSize));
565  __ movptr(r12, Address(rsp, 3 * wordSize));
566  __ movptr(r11, Address(rsp, 4 * wordSize));
567  __ movptr(r10, Address(rsp, 5 * wordSize));
568  __ movptr(r9,  Address(rsp, 6 * wordSize));
569  __ movptr(r8,  Address(rsp, 7 * wordSize));
570  __ movptr(rdi, Address(rsp, 8 * wordSize));
571  __ movptr(rsi, Address(rsp, 9 * wordSize));
572  __ movptr(rbp, Address(rsp, 10 * wordSize));
573  // skip rsp
574  __ movptr(rbx, Address(rsp, 12 * wordSize));
575  __ movptr(rdx, Address(rsp, 13 * wordSize));
576  __ movptr(rcx, Address(rsp, 14 * wordSize));
577
578  __ addptr(rsp, 16 * wordSize);
579#else
580
581  __ pop(rdi);
582  __ pop(rsi);
583  __ pop(rbp);
584  __ pop(rbx); // skip this value
585  __ pop(rbx);
586  __ pop(rdx);
587  __ pop(rcx);
588  __ addptr(rsp, BytesPerWord);
589#endif // _LP64
590}
591
592
593void Runtime1::initialize_pd() {
594  // nothing to do
595}
596
597
598// target: the entry point of the method that creates and posts the exception oop
599// has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
600
601OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
602  // preserve all registers
603  int num_rt_args = has_argument ? 2 : 1;
604  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
605
606  // now all registers are saved and can be used freely
607  // verify that no old value is used accidentally
608  __ invalidate_registers(true, true, true, true, true, true);
609
610  // registers used by this stub
611  const Register temp_reg = rbx;
612
613  // load argument for exception that is passed as an argument into the stub
614  if (has_argument) {
615#ifdef _LP64
616    __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
617#else
618    __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
619    __ push(temp_reg);
620#endif // _LP64
621  }
622  int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
623
624  OopMapSet* oop_maps = new OopMapSet();
625  oop_maps->add_gc_map(call_offset, oop_map);
626
627  __ stop("should not reach here");
628
629  return oop_maps;
630}
631
632
633void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) {
634  // incoming parameters
635  const Register exception_oop = rax;
636  const Register exception_pc = rdx;
637  // other registers used in this stub
638  const Register real_return_addr = rbx;
639  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
640
641  __ block_comment("generate_handle_exception");
642
643#ifdef TIERED
644  // C2 can leave the fpu stack dirty
645  if (UseSSE < 2 ) {
646    __ empty_FPU_stack();
647  }
648#endif // TIERED
649
650  // verify that only rax, and rdx is valid at this time
651  __ invalidate_registers(false, true, true, false, true, true);
652  // verify that rax, contains a valid exception
653  __ verify_not_null_oop(exception_oop);
654
655  // load address of JavaThread object for thread-local data
656  NOT_LP64(__ get_thread(thread);)
657
658#ifdef ASSERT
659  // check that fields in JavaThread for exception oop and issuing pc are
660  // empty before writing to them
661  Label oop_empty;
662  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
663  __ jcc(Assembler::equal, oop_empty);
664  __ stop("exception oop already set");
665  __ bind(oop_empty);
666
667  Label pc_empty;
668  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
669  __ jcc(Assembler::equal, pc_empty);
670  __ stop("exception pc already set");
671  __ bind(pc_empty);
672#endif
673
674  // save exception oop and issuing pc into JavaThread
675  // (exception handler will load it from here)
676  __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
677  __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
678
679  // save real return address (pc that called this stub)
680  __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord));
681  __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr);
682
683  // patch throwing pc into return address (has bci & oop map)
684  __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
685
686  // compute the exception handler.
687  // the exception oop and the throwing pc are read from the fields in JavaThread
688  int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
689  oop_maps->add_gc_map(call_offset, oop_map);
690
691  // rax,: handler address
692  //      will be the deopt blob if nmethod was deoptimized while we looked up
693  //      handler regardless of whether handler existed in the nmethod.
694
695  // only rax, is valid at this time, all other registers have been destroyed by the runtime call
696  __ invalidate_registers(false, true, true, true, true, true);
697
698#ifdef ASSERT
699  // Do we have an exception handler in the nmethod?
700  Label done;
701  __ testptr(rax, rax);
702  __ jcc(Assembler::notZero, done);
703  __ stop("no handler found");
704  __ bind(done);
705#endif
706
707  // exception handler found
708  // patch the return address -> the stub will directly return to the exception handler
709  __ movptr(Address(rbp, 1*BytesPerWord), rax);
710
711  // restore registers
712  restore_live_registers(sasm, save_fpu_registers);
713
714  // return to exception handler
715  __ leave();
716  __ ret(0);
717
718}
719
720
721void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
722  // incoming parameters
723  const Register exception_oop = rax;
724  // callee-saved copy of exception_oop during runtime call
725  const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
726  // other registers used in this stub
727  const Register exception_pc = rdx;
728  const Register handler_addr = rbx;
729  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
730
731  // verify that only rax, is valid at this time
732  __ invalidate_registers(false, true, true, true, true, true);
733
734#ifdef ASSERT
735  // check that fields in JavaThread for exception oop and issuing pc are empty
736  NOT_LP64(__ get_thread(thread);)
737  Label oop_empty;
738  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
739  __ jcc(Assembler::equal, oop_empty);
740  __ stop("exception oop must be empty");
741  __ bind(oop_empty);
742
743  Label pc_empty;
744  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
745  __ jcc(Assembler::equal, pc_empty);
746  __ stop("exception pc must be empty");
747  __ bind(pc_empty);
748#endif
749
750  // clear the FPU stack in case any FPU results are left behind
751  __ empty_FPU_stack();
752
753  // save exception_oop in callee-saved register to preserve it during runtime calls
754  __ verify_not_null_oop(exception_oop);
755  __ movptr(exception_oop_callee_saved, exception_oop);
756
757  NOT_LP64(__ get_thread(thread);)
758  // Get return address (is on top of stack after leave).
759  __ movptr(exception_pc, Address(rsp, 0));
760
761  // search the exception handler address of the caller (using the return address)
762  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
763  // rax: exception handler address of the caller
764
765  // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
766  __ invalidate_registers(false, true, true, true, false, true);
767
768  // move result of call into correct register
769  __ movptr(handler_addr, rax);
770
771  // Restore exception oop to RAX (required convention of exception handler).
772  __ movptr(exception_oop, exception_oop_callee_saved);
773
774  // verify that there is really a valid exception in rax
775  __ verify_not_null_oop(exception_oop);
776
777  // get throwing pc (= return address).
778  // rdx has been destroyed by the call, so it must be set again
779  // the pop is also necessary to simulate the effect of a ret(0)
780  __ pop(exception_pc);
781
782  // Restore SP from BP if the exception PC is a MethodHandle call site.
783  NOT_LP64(__ get_thread(thread);)
784  __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
785  __ cmovptr(Assembler::notEqual, rsp, rbp);
786
787  // continue at exception handler (return address removed)
788  // note: do *not* remove arguments when unwinding the
789  //       activation since the caller assumes having
790  //       all arguments on the stack when entering the
791  //       runtime to determine the exception handler
792  //       (GC happens at call site with arguments!)
793  // rax: exception oop
794  // rdx: throwing pc
795  // rbx: exception handler
796  __ jmp(handler_addr);
797}
798
799
800OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
801  // use the maximum number of runtime-arguments here because it is difficult to
802  // distinguish each RT-Call.
803  // Note: This number affects also the RT-Call in generate_handle_exception because
804  //       the oop-map is shared for all calls.
805  const int num_rt_args = 2;  // thread + dummy
806
807  DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
808  assert(deopt_blob != NULL, "deoptimization blob must have been created");
809
810  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
811
812#ifdef _LP64
813  const Register thread = r15_thread;
814  // No need to worry about dummy
815  __ mov(c_rarg0, thread);
816#else
817  __ push(rax); // push dummy
818
819  const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
820  // push java thread (becomes first argument of C function)
821  __ get_thread(thread);
822  __ push(thread);
823#endif // _LP64
824  __ set_last_Java_frame(thread, noreg, rbp, NULL);
825  // do the call
826  __ call(RuntimeAddress(target));
827  OopMapSet* oop_maps = new OopMapSet();
828  oop_maps->add_gc_map(__ offset(), oop_map);
829  // verify callee-saved register
830#ifdef ASSERT
831  guarantee(thread != rax, "change this code");
832  __ push(rax);
833  { Label L;
834    __ get_thread(rax);
835    __ cmpptr(thread, rax);
836    __ jcc(Assembler::equal, L);
837    __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
838    __ bind(L);
839  }
840  __ pop(rax);
841#endif
842  __ reset_last_Java_frame(thread, true, false);
843#ifndef _LP64
844  __ pop(rcx); // discard thread arg
845  __ pop(rcx); // discard dummy
846#endif // _LP64
847
848  // check for pending exceptions
849  { Label L;
850    __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
851    __ jcc(Assembler::equal, L);
852    // exception pending => remove activation and forward to exception handler
853
854    __ testptr(rax, rax);                                   // have we deoptimized?
855    __ jump_cc(Assembler::equal,
856               RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
857
858    // the deopt blob expects exceptions in the special fields of
859    // JavaThread, so copy and clear pending exception.
860
861    // load and clear pending exception
862    __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
863    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
864
865    // check that there is really a valid exception
866    __ verify_not_null_oop(rax);
867
868    // load throwing pc: this is the return address of the stub
869    __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
870
871#ifdef ASSERT
872    // check that fields in JavaThread for exception oop and issuing pc are empty
873    Label oop_empty;
874    __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
875    __ jcc(Assembler::equal, oop_empty);
876    __ stop("exception oop must be empty");
877    __ bind(oop_empty);
878
879    Label pc_empty;
880    __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
881    __ jcc(Assembler::equal, pc_empty);
882    __ stop("exception pc must be empty");
883    __ bind(pc_empty);
884#endif
885
886    // store exception oop and throwing pc to JavaThread
887    __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
888    __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
889
890    restore_live_registers(sasm);
891
892    __ leave();
893    __ addptr(rsp, BytesPerWord);  // remove return address from stack
894
895    // Forward the exception directly to deopt blob. We can blow no
896    // registers and must leave throwing pc on the stack.  A patch may
897    // have values live in registers so the entry point with the
898    // exception in tls.
899    __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
900
901    __ bind(L);
902  }
903
904
905  // Runtime will return true if the nmethod has been deoptimized during
906  // the patching process. In that case we must do a deopt reexecute instead.
907
908  Label reexecuteEntry, cont;
909
910  __ testptr(rax, rax);                                 // have we deoptimized?
911  __ jcc(Assembler::equal, cont);                       // no
912
913  // Will reexecute. Proper return address is already on the stack we just restore
914  // registers, pop all of our frame but the return address and jump to the deopt blob
915  restore_live_registers(sasm);
916  __ leave();
917  __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
918
919  __ bind(cont);
920  restore_live_registers(sasm);
921  __ leave();
922  __ ret(0);
923
924  return oop_maps;
925
926}
927
928
929OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
930
931  // for better readability
932  const bool must_gc_arguments = true;
933  const bool dont_gc_arguments = false;
934
935  // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
936  bool save_fpu_registers = true;
937
938  // stub code & info for the different stubs
939  OopMapSet* oop_maps = NULL;
940  switch (id) {
941    case forward_exception_id:
942      {
943        // we're handling an exception in the context of a compiled
944        // frame.  The registers have been saved in the standard
945        // places.  Perform an exception lookup in the caller and
946        // dispatch to the handler if found.  Otherwise unwind and
947        // dispatch to the callers exception handler.
948
949        const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
950        const Register exception_oop = rax;
951        const Register exception_pc = rdx;
952
953        // load pending exception oop into rax,
954        __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
955        // clear pending exception
956        __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
957
958        // load issuing PC (the return address for this stub) into rdx
959        __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
960
961        // make sure that the vm_results are cleared (may be unnecessary)
962        __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
963        __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
964
965        // verify that that there is really a valid exception in rax,
966        __ verify_not_null_oop(exception_oop);
967
968
969        oop_maps = new OopMapSet();
970        OopMap* oop_map = generate_oop_map(sasm, 1);
971        generate_handle_exception(sasm, oop_maps, oop_map);
972        __ stop("should not reach here");
973      }
974      break;
975
976    case new_instance_id:
977    case fast_new_instance_id:
978    case fast_new_instance_init_check_id:
979      {
980        Register klass = rdx; // Incoming
981        Register obj   = rax; // Result
982
983        if (id == new_instance_id) {
984          __ set_info("new_instance", dont_gc_arguments);
985        } else if (id == fast_new_instance_id) {
986          __ set_info("fast new_instance", dont_gc_arguments);
987        } else {
988          assert(id == fast_new_instance_init_check_id, "bad StubID");
989          __ set_info("fast new_instance init check", dont_gc_arguments);
990        }
991
992        if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
993            UseTLAB && FastTLABRefill) {
994          Label slow_path;
995          Register obj_size = rcx;
996          Register t1       = rbx;
997          Register t2       = rsi;
998          assert_different_registers(klass, obj, obj_size, t1, t2);
999
1000          __ push(rdi);
1001          __ push(rbx);
1002
1003          if (id == fast_new_instance_init_check_id) {
1004            // make sure the klass is initialized
1005            __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
1006            __ jcc(Assembler::notEqual, slow_path);
1007          }
1008
1009#ifdef ASSERT
1010          // assert object can be fast path allocated
1011          {
1012            Label ok, not_ok;
1013            __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
1014            __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1015            __ jcc(Assembler::lessEqual, not_ok);
1016            __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1017            __ jcc(Assembler::zero, ok);
1018            __ bind(not_ok);
1019            __ stop("assert(can be fast path allocated)");
1020            __ should_not_reach_here();
1021            __ bind(ok);
1022          }
1023#endif // ASSERT
1024
1025          // if we got here then the TLAB allocation failed, so try
1026          // refilling the TLAB or allocating directly from eden.
1027          Label retry_tlab, try_eden;
1028          __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass)
1029
1030          __ bind(retry_tlab);
1031
1032          // get the instance size (size is postive so movl is fine for 64bit)
1033          __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1034          __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1035          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1036          __ verify_oop(obj);
1037          __ pop(rbx);
1038          __ pop(rdi);
1039          __ ret(0);
1040
1041          __ bind(try_eden);
1042          // get the instance size (size is postive so movl is fine for 64bit)
1043          __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1044          __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1045          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1046          __ verify_oop(obj);
1047          __ pop(rbx);
1048          __ pop(rdi);
1049          __ ret(0);
1050
1051          __ bind(slow_path);
1052          __ pop(rbx);
1053          __ pop(rdi);
1054        }
1055
1056        __ enter();
1057        OopMap* map = save_live_registers(sasm, 2);
1058        int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1059        oop_maps = new OopMapSet();
1060        oop_maps->add_gc_map(call_offset, map);
1061        restore_live_registers_except_rax(sasm);
1062        __ verify_oop(obj);
1063        __ leave();
1064        __ ret(0);
1065
1066        // rax,: new instance
1067      }
1068
1069      break;
1070
1071#ifdef TIERED
1072    case counter_overflow_id:
1073      {
1074        Register bci = rax;
1075        __ enter();
1076        OopMap* map = save_live_registers(sasm, 2);
1077        // Retrieve bci
1078        __ movl(bci, Address(rbp, 2*BytesPerWord));
1079        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci);
1080        oop_maps = new OopMapSet();
1081        oop_maps->add_gc_map(call_offset, map);
1082        restore_live_registers(sasm);
1083        __ leave();
1084        __ ret(0);
1085      }
1086      break;
1087#endif // TIERED
1088
1089    case new_type_array_id:
1090    case new_object_array_id:
1091      {
1092        Register length   = rbx; // Incoming
1093        Register klass    = rdx; // Incoming
1094        Register obj      = rax; // Result
1095
1096        if (id == new_type_array_id) {
1097          __ set_info("new_type_array", dont_gc_arguments);
1098        } else {
1099          __ set_info("new_object_array", dont_gc_arguments);
1100        }
1101
1102#ifdef ASSERT
1103        // assert object type is really an array of the proper kind
1104        {
1105          Label ok;
1106          Register t0 = obj;
1107          __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
1108          __ sarl(t0, Klass::_lh_array_tag_shift);
1109          int tag = ((id == new_type_array_id)
1110                     ? Klass::_lh_array_tag_type_value
1111                     : Klass::_lh_array_tag_obj_value);
1112          __ cmpl(t0, tag);
1113          __ jcc(Assembler::equal, ok);
1114          __ stop("assert(is an array klass)");
1115          __ should_not_reach_here();
1116          __ bind(ok);
1117        }
1118#endif // ASSERT
1119
1120        if (UseTLAB && FastTLABRefill) {
1121          Register arr_size = rsi;
1122          Register t1       = rcx;  // must be rcx for use as shift count
1123          Register t2       = rdi;
1124          Label slow_path;
1125          assert_different_registers(length, klass, obj, arr_size, t1, t2);
1126
1127          // check that array length is small enough for fast path.
1128          __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1129          __ jcc(Assembler::above, slow_path);
1130
1131          // if we got here then the TLAB allocation failed, so try
1132          // refilling the TLAB or allocating directly from eden.
1133          Label retry_tlab, try_eden;
1134          __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx, & rdx
1135
1136          __ bind(retry_tlab);
1137
1138          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1139          // since size is postive movl does right thing on 64bit
1140          __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1141          // since size is postive movl does right thing on 64bit
1142          __ movl(arr_size, length);
1143          assert(t1 == rcx, "fixed register usage");
1144          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1145          __ shrptr(t1, Klass::_lh_header_size_shift);
1146          __ andptr(t1, Klass::_lh_header_size_mask);
1147          __ addptr(arr_size, t1);
1148          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1149          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1150
1151          __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1152
1153          __ initialize_header(obj, klass, length, t1, t2);
1154          __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
1155          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1156          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1157          __ andptr(t1, Klass::_lh_header_size_mask);
1158          __ subptr(arr_size, t1);  // body length
1159          __ addptr(t1, obj);       // body start
1160          __ initialize_body(t1, arr_size, 0, t2);
1161          __ verify_oop(obj);
1162          __ ret(0);
1163
1164          __ bind(try_eden);
1165          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1166          // since size is postive movl does right thing on 64bit
1167          __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
1168          // since size is postive movl does right thing on 64bit
1169          __ movl(arr_size, length);
1170          assert(t1 == rcx, "fixed register usage");
1171          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1172          __ shrptr(t1, Klass::_lh_header_size_shift);
1173          __ andptr(t1, Klass::_lh_header_size_mask);
1174          __ addptr(arr_size, t1);
1175          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1176          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1177
1178          __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1179
1180          __ initialize_header(obj, klass, length, t1, t2);
1181          __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
1182          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1183          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1184          __ andptr(t1, Klass::_lh_header_size_mask);
1185          __ subptr(arr_size, t1);  // body length
1186          __ addptr(t1, obj);       // body start
1187          __ initialize_body(t1, arr_size, 0, t2);
1188          __ verify_oop(obj);
1189          __ ret(0);
1190
1191          __ bind(slow_path);
1192        }
1193
1194        __ enter();
1195        OopMap* map = save_live_registers(sasm, 3);
1196        int call_offset;
1197        if (id == new_type_array_id) {
1198          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1199        } else {
1200          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1201        }
1202
1203        oop_maps = new OopMapSet();
1204        oop_maps->add_gc_map(call_offset, map);
1205        restore_live_registers_except_rax(sasm);
1206
1207        __ verify_oop(obj);
1208        __ leave();
1209        __ ret(0);
1210
1211        // rax,: new array
1212      }
1213      break;
1214
1215    case new_multi_array_id:
1216      { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1217        // rax,: klass
1218        // rbx,: rank
1219        // rcx: address of 1st dimension
1220        OopMap* map = save_live_registers(sasm, 4);
1221        int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1222
1223        oop_maps = new OopMapSet();
1224        oop_maps->add_gc_map(call_offset, map);
1225        restore_live_registers_except_rax(sasm);
1226
1227        // rax,: new multi array
1228        __ verify_oop(rax);
1229      }
1230      break;
1231
1232    case register_finalizer_id:
1233      {
1234        __ set_info("register_finalizer", dont_gc_arguments);
1235
1236        // This is called via call_runtime so the arguments
1237        // will be place in C abi locations
1238
1239#ifdef _LP64
1240        __ verify_oop(c_rarg0);
1241        __ mov(rax, c_rarg0);
1242#else
1243        // The object is passed on the stack and we haven't pushed a
1244        // frame yet so it's one work away from top of stack.
1245        __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1246        __ verify_oop(rax);
1247#endif // _LP64
1248
1249        // load the klass and check the has finalizer flag
1250        Label register_finalizer;
1251        Register t = rsi;
1252        __ movptr(t, Address(rax, oopDesc::klass_offset_in_bytes()));
1253        __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
1254        __ testl(t, JVM_ACC_HAS_FINALIZER);
1255        __ jcc(Assembler::notZero, register_finalizer);
1256        __ ret(0);
1257
1258        __ bind(register_finalizer);
1259        __ enter();
1260        OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1261        int call_offset = __ call_RT(noreg, noreg,
1262                                     CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1263        oop_maps = new OopMapSet();
1264        oop_maps->add_gc_map(call_offset, oop_map);
1265
1266        // Now restore all the live registers
1267        restore_live_registers(sasm);
1268
1269        __ leave();
1270        __ ret(0);
1271      }
1272      break;
1273
1274    case throw_range_check_failed_id:
1275      { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1276        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1277      }
1278      break;
1279
1280    case throw_index_exception_id:
1281      { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1282        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1283      }
1284      break;
1285
1286    case throw_div0_exception_id:
1287      { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1288        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1289      }
1290      break;
1291
1292    case throw_null_pointer_exception_id:
1293      { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1294        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1295      }
1296      break;
1297
1298    case handle_exception_nofpu_id:
1299      save_fpu_registers = false;
1300      // fall through
1301    case handle_exception_id:
1302      { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1303        oop_maps = new OopMapSet();
1304        OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers);
1305        generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers);
1306      }
1307      break;
1308
1309    case unwind_exception_id:
1310      { __ set_info("unwind_exception", dont_gc_arguments);
1311        // note: no stubframe since we are about to leave the current
1312        //       activation and we are calling a leaf VM function only.
1313        generate_unwind_exception(sasm);
1314      }
1315      break;
1316
1317    case throw_array_store_exception_id:
1318      { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1319        // tos + 0: link
1320        //     + 1: return address
1321        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false);
1322      }
1323      break;
1324
1325    case throw_class_cast_exception_id:
1326      { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1327        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1328      }
1329      break;
1330
1331    case throw_incompatible_class_change_error_id:
1332      { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1333        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1334      }
1335      break;
1336
1337    case slow_subtype_check_id:
1338      {
1339        // Typical calling sequence:
1340        // __ push(klass_RInfo);  // object klass or other subclass
1341        // __ push(sup_k_RInfo);  // array element klass or other superclass
1342        // __ call(slow_subtype_check);
1343        // Note that the subclass is pushed first, and is therefore deepest.
1344        // Previous versions of this code reversed the names 'sub' and 'super'.
1345        // This was operationally harmless but made the code unreadable.
1346        enum layout {
1347          rax_off, SLOT2(raxH_off)
1348          rcx_off, SLOT2(rcxH_off)
1349          rsi_off, SLOT2(rsiH_off)
1350          rdi_off, SLOT2(rdiH_off)
1351          // saved_rbp_off, SLOT2(saved_rbpH_off)
1352          return_off, SLOT2(returnH_off)
1353          sup_k_off, SLOT2(sup_kH_off)
1354          klass_off, SLOT2(superH_off)
1355          framesize,
1356          result_off = klass_off  // deepest argument is also the return value
1357        };
1358
1359        __ set_info("slow_subtype_check", dont_gc_arguments);
1360        __ push(rdi);
1361        __ push(rsi);
1362        __ push(rcx);
1363        __ push(rax);
1364
1365        // This is called by pushing args and not with C abi
1366        __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1367        __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1368
1369        Label miss;
1370        __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1371
1372        // fallthrough on success:
1373        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1374        __ pop(rax);
1375        __ pop(rcx);
1376        __ pop(rsi);
1377        __ pop(rdi);
1378        __ ret(0);
1379
1380        __ bind(miss);
1381        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1382        __ pop(rax);
1383        __ pop(rcx);
1384        __ pop(rsi);
1385        __ pop(rdi);
1386        __ ret(0);
1387      }
1388      break;
1389
1390    case monitorenter_nofpu_id:
1391      save_fpu_registers = false;
1392      // fall through
1393    case monitorenter_id:
1394      {
1395        StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1396        OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1397
1398        // Called with store_parameter and not C abi
1399
1400        f.load_argument(1, rax); // rax,: object
1401        f.load_argument(0, rbx); // rbx,: lock address
1402
1403        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1404
1405        oop_maps = new OopMapSet();
1406        oop_maps->add_gc_map(call_offset, map);
1407        restore_live_registers(sasm, save_fpu_registers);
1408      }
1409      break;
1410
1411    case monitorexit_nofpu_id:
1412      save_fpu_registers = false;
1413      // fall through
1414    case monitorexit_id:
1415      {
1416        StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1417        OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1418
1419        // Called with store_parameter and not C abi
1420
1421        f.load_argument(0, rax); // rax,: lock address
1422
1423        // note: really a leaf routine but must setup last java sp
1424        //       => use call_RT for now (speed can be improved by
1425        //       doing last java sp setup manually)
1426        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1427
1428        oop_maps = new OopMapSet();
1429        oop_maps->add_gc_map(call_offset, map);
1430        restore_live_registers(sasm, save_fpu_registers);
1431
1432      }
1433      break;
1434
1435    case access_field_patching_id:
1436      { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1437        // we should set up register map
1438        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1439      }
1440      break;
1441
1442    case load_klass_patching_id:
1443      { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1444        // we should set up register map
1445        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1446      }
1447      break;
1448
1449    case jvmti_exception_throw_id:
1450      { // rax,: exception oop
1451        StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
1452        // Preserve all registers across this potentially blocking call
1453        const int num_rt_args = 2;  // thread, exception oop
1454        OopMap* map = save_live_registers(sasm, num_rt_args);
1455        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
1456        oop_maps = new OopMapSet();
1457        oop_maps->add_gc_map(call_offset, map);
1458        restore_live_registers(sasm);
1459      }
1460      break;
1461
1462    case dtrace_object_alloc_id:
1463      { // rax,: object
1464        StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1465        // we can't gc here so skip the oopmap but make sure that all
1466        // the live registers get saved.
1467        save_live_registers(sasm, 1);
1468
1469        __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1470        __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1471        NOT_LP64(__ pop(rax));
1472
1473        restore_live_registers(sasm);
1474      }
1475      break;
1476
1477    case fpu2long_stub_id:
1478      {
1479        // rax, and rdx are destroyed, but should be free since the result is returned there
1480        // preserve rsi,ecx
1481        __ push(rsi);
1482        __ push(rcx);
1483        LP64_ONLY(__ push(rdx);)
1484
1485        // check for NaN
1486        Label return0, do_return, return_min_jlong, do_convert;
1487
1488        Address value_high_word(rsp, wordSize + 4);
1489        Address value_low_word(rsp, wordSize);
1490        Address result_high_word(rsp, 3*wordSize + 4);
1491        Address result_low_word(rsp, 3*wordSize);
1492
1493        __ subptr(rsp, 32);                    // more than enough on 32bit
1494        __ fst_d(value_low_word);
1495        __ movl(rax, value_high_word);
1496        __ andl(rax, 0x7ff00000);
1497        __ cmpl(rax, 0x7ff00000);
1498        __ jcc(Assembler::notEqual, do_convert);
1499        __ movl(rax, value_high_word);
1500        __ andl(rax, 0xfffff);
1501        __ orl(rax, value_low_word);
1502        __ jcc(Assembler::notZero, return0);
1503
1504        __ bind(do_convert);
1505        __ fnstcw(Address(rsp, 0));
1506        __ movzwl(rax, Address(rsp, 0));
1507        __ orl(rax, 0xc00);
1508        __ movw(Address(rsp, 2), rax);
1509        __ fldcw(Address(rsp, 2));
1510        __ fwait();
1511        __ fistp_d(result_low_word);
1512        __ fldcw(Address(rsp, 0));
1513        __ fwait();
1514        // This gets the entire long in rax on 64bit
1515        __ movptr(rax, result_low_word);
1516        // testing of high bits
1517        __ movl(rdx, result_high_word);
1518        __ mov(rcx, rax);
1519        // What the heck is the point of the next instruction???
1520        __ xorl(rcx, 0x0);
1521        __ movl(rsi, 0x80000000);
1522        __ xorl(rsi, rdx);
1523        __ orl(rcx, rsi);
1524        __ jcc(Assembler::notEqual, do_return);
1525        __ fldz();
1526        __ fcomp_d(value_low_word);
1527        __ fnstsw_ax();
1528#ifdef _LP64
1529        __ testl(rax, 0x4100);  // ZF & CF == 0
1530        __ jcc(Assembler::equal, return_min_jlong);
1531#else
1532        __ sahf();
1533        __ jcc(Assembler::above, return_min_jlong);
1534#endif // _LP64
1535        // return max_jlong
1536#ifndef _LP64
1537        __ movl(rdx, 0x7fffffff);
1538        __ movl(rax, 0xffffffff);
1539#else
1540        __ mov64(rax, CONST64(0x7fffffffffffffff));
1541#endif // _LP64
1542        __ jmp(do_return);
1543
1544        __ bind(return_min_jlong);
1545#ifndef _LP64
1546        __ movl(rdx, 0x80000000);
1547        __ xorl(rax, rax);
1548#else
1549        __ mov64(rax, CONST64(0x8000000000000000));
1550#endif // _LP64
1551        __ jmp(do_return);
1552
1553        __ bind(return0);
1554        __ fpop();
1555#ifndef _LP64
1556        __ xorptr(rdx,rdx);
1557        __ xorptr(rax,rax);
1558#else
1559        __ xorptr(rax, rax);
1560#endif // _LP64
1561
1562        __ bind(do_return);
1563        __ addptr(rsp, 32);
1564        LP64_ONLY(__ pop(rdx);)
1565        __ pop(rcx);
1566        __ pop(rsi);
1567        __ ret(0);
1568      }
1569      break;
1570
1571#ifndef SERIALGC
1572    case g1_pre_barrier_slow_id:
1573      {
1574        StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1575        // arg0 : previous value of memory
1576
1577        BarrierSet* bs = Universe::heap()->barrier_set();
1578        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1579          __ movptr(rax, (int)id);
1580          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1581          __ should_not_reach_here();
1582          break;
1583        }
1584
1585        __ push(rax);
1586        __ push(rdx);
1587
1588        const Register pre_val = rax;
1589        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1590        const Register tmp = rdx;
1591
1592        NOT_LP64(__ get_thread(thread);)
1593
1594        Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1595                                             PtrQueue::byte_offset_of_active()));
1596
1597        Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1598                                             PtrQueue::byte_offset_of_index()));
1599        Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1600                                        PtrQueue::byte_offset_of_buf()));
1601
1602
1603        Label done;
1604        Label runtime;
1605
1606        // Can we store original value in the thread's buffer?
1607
1608        LP64_ONLY(__ movslq(tmp, queue_index);)
1609#ifdef _LP64
1610        __ cmpq(tmp, 0);
1611#else
1612        __ cmpl(queue_index, 0);
1613#endif
1614        __ jcc(Assembler::equal, runtime);
1615#ifdef _LP64
1616        __ subq(tmp, wordSize);
1617        __ movl(queue_index, tmp);
1618        __ addq(tmp, buffer);
1619#else
1620        __ subl(queue_index, wordSize);
1621        __ movl(tmp, buffer);
1622        __ addl(tmp, queue_index);
1623#endif
1624
1625        // prev_val (rax)
1626        f.load_argument(0, pre_val);
1627        __ movptr(Address(tmp, 0), pre_val);
1628        __ jmp(done);
1629
1630        __ bind(runtime);
1631        // load the pre-value
1632        __ push(rcx);
1633        f.load_argument(0, rcx);
1634        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1635        __ pop(rcx);
1636
1637        __ bind(done);
1638        __ pop(rdx);
1639        __ pop(rax);
1640      }
1641      break;
1642
1643    case g1_post_barrier_slow_id:
1644      {
1645        StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1646
1647
1648        // arg0: store_address
1649        Address store_addr(rbp, 2*BytesPerWord);
1650
1651        BarrierSet* bs = Universe::heap()->barrier_set();
1652        CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1653        Label done;
1654        Label runtime;
1655
1656        // At this point we know new_value is non-NULL and the new_value crosses regsion.
1657        // Must check to see if card is already dirty
1658
1659        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1660
1661        Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1662                                             PtrQueue::byte_offset_of_index()));
1663        Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1664                                        PtrQueue::byte_offset_of_buf()));
1665
1666        __ push(rax);
1667        __ push(rdx);
1668
1669        NOT_LP64(__ get_thread(thread);)
1670        ExternalAddress cardtable((address)ct->byte_map_base);
1671        assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1672
1673        const Register card_addr = rdx;
1674#ifdef _LP64
1675        const Register tmp = rscratch1;
1676        f.load_argument(0, card_addr);
1677        __ shrq(card_addr, CardTableModRefBS::card_shift);
1678        __ lea(tmp, cardtable);
1679        // get the address of the card
1680        __ addq(card_addr, tmp);
1681#else
1682        const Register card_index = rdx;
1683        f.load_argument(0, card_index);
1684        __ shrl(card_index, CardTableModRefBS::card_shift);
1685
1686        Address index(noreg, card_index, Address::times_1);
1687        __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
1688#endif
1689
1690        __ cmpb(Address(card_addr, 0), 0);
1691        __ jcc(Assembler::equal, done);
1692
1693        // storing region crossing non-NULL, card is clean.
1694        // dirty card and log.
1695
1696        __ movb(Address(card_addr, 0), 0);
1697
1698        __ cmpl(queue_index, 0);
1699        __ jcc(Assembler::equal, runtime);
1700        __ subl(queue_index, wordSize);
1701
1702        const Register buffer_addr = rbx;
1703        __ push(rbx);
1704
1705        __ movptr(buffer_addr, buffer);
1706
1707#ifdef _LP64
1708        __ movslq(rscratch1, queue_index);
1709        __ addptr(buffer_addr, rscratch1);
1710#else
1711        __ addptr(buffer_addr, queue_index);
1712#endif
1713        __ movptr(Address(buffer_addr, 0), card_addr);
1714
1715        __ pop(rbx);
1716        __ jmp(done);
1717
1718        __ bind(runtime);
1719        NOT_LP64(__ push(rcx);)
1720        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1721        NOT_LP64(__ pop(rcx);)
1722
1723        __ bind(done);
1724        __ pop(rdx);
1725        __ pop(rax);
1726
1727      }
1728      break;
1729#endif // !SERIALGC
1730
1731    default:
1732      { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1733        __ movptr(rax, (int)id);
1734        __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1735        __ should_not_reach_here();
1736      }
1737      break;
1738  }
1739  return oop_maps;
1740}
1741
1742#undef __
1743