c1_LIRAssembler_x86.cpp revision 9995:13b04370e8e9
1/*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "c1/c1_Compilation.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_MacroAssembler.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "gc/shared/collectedHeap.hpp"
38#include "nativeInst_x86.hpp"
39#include "oops/objArrayKlass.hpp"
40#include "runtime/sharedRuntime.hpp"
41#include "vmreg_x86.inline.hpp"
42
43
44// These masks are used to provide 128-bit aligned bitmasks to the XMM
45// instructions, to allow sign-masking or sign-bit flipping.  They allow
46// fast versions of NegF/NegD and AbsF/AbsD.
47
48// Note: 'double' and 'long long' have 32-bits alignment on x86.
49static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
50  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
51  // of 128-bits operands for SSE instructions.
52  jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
53  // Store the value to a 128-bits operand.
54  operand[0] = lo;
55  operand[1] = hi;
56  return operand;
57}
58
59// Buffer for 128-bits masks used by SSE instructions.
60static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
61
62// Static initialization during VM startup.
63static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
64static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
65static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
66static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
67
68
69
70NEEDS_CLEANUP // remove this definitions ?
71const Register IC_Klass    = rax;   // where the IC klass is cached
72const Register SYNC_header = rax;   // synchronization header
73const Register SHIFT_count = rcx;   // where count for shift operations must be
74
75#define __ _masm->
76
77
78static void select_different_registers(Register preserve,
79                                       Register extra,
80                                       Register &tmp1,
81                                       Register &tmp2) {
82  if (tmp1 == preserve) {
83    assert_different_registers(tmp1, tmp2, extra);
84    tmp1 = extra;
85  } else if (tmp2 == preserve) {
86    assert_different_registers(tmp1, tmp2, extra);
87    tmp2 = extra;
88  }
89  assert_different_registers(preserve, tmp1, tmp2);
90}
91
92
93
94static void select_different_registers(Register preserve,
95                                       Register extra,
96                                       Register &tmp1,
97                                       Register &tmp2,
98                                       Register &tmp3) {
99  if (tmp1 == preserve) {
100    assert_different_registers(tmp1, tmp2, tmp3, extra);
101    tmp1 = extra;
102  } else if (tmp2 == preserve) {
103    assert_different_registers(tmp1, tmp2, tmp3, extra);
104    tmp2 = extra;
105  } else if (tmp3 == preserve) {
106    assert_different_registers(tmp1, tmp2, tmp3, extra);
107    tmp3 = extra;
108  }
109  assert_different_registers(preserve, tmp1, tmp2, tmp3);
110}
111
112
113
114bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
115  if (opr->is_constant()) {
116    LIR_Const* constant = opr->as_constant_ptr();
117    switch (constant->type()) {
118      case T_INT: {
119        return true;
120      }
121
122      default:
123        return false;
124    }
125  }
126  return false;
127}
128
129
130LIR_Opr LIR_Assembler::receiverOpr() {
131  return FrameMap::receiver_opr;
132}
133
134LIR_Opr LIR_Assembler::osrBufferPointer() {
135  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
136}
137
138//--------------fpu register translations-----------------------
139
140
141address LIR_Assembler::float_constant(float f) {
142  address const_addr = __ float_constant(f);
143  if (const_addr == NULL) {
144    bailout("const section overflow");
145    return __ code()->consts()->start();
146  } else {
147    return const_addr;
148  }
149}
150
151
152address LIR_Assembler::double_constant(double d) {
153  address const_addr = __ double_constant(d);
154  if (const_addr == NULL) {
155    bailout("const section overflow");
156    return __ code()->consts()->start();
157  } else {
158    return const_addr;
159  }
160}
161
162
163void LIR_Assembler::set_24bit_FPU() {
164  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
165}
166
167void LIR_Assembler::reset_FPU() {
168  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
169}
170
171void LIR_Assembler::fpop() {
172  __ fpop();
173}
174
175void LIR_Assembler::fxch(int i) {
176  __ fxch(i);
177}
178
179void LIR_Assembler::fld(int i) {
180  __ fld_s(i);
181}
182
183void LIR_Assembler::ffree(int i) {
184  __ ffree(i);
185}
186
187void LIR_Assembler::breakpoint() {
188  __ int3();
189}
190
191void LIR_Assembler::push(LIR_Opr opr) {
192  if (opr->is_single_cpu()) {
193    __ push_reg(opr->as_register());
194  } else if (opr->is_double_cpu()) {
195    NOT_LP64(__ push_reg(opr->as_register_hi()));
196    __ push_reg(opr->as_register_lo());
197  } else if (opr->is_stack()) {
198    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
199  } else if (opr->is_constant()) {
200    LIR_Const* const_opr = opr->as_constant_ptr();
201    if (const_opr->type() == T_OBJECT) {
202      __ push_oop(const_opr->as_jobject());
203    } else if (const_opr->type() == T_INT) {
204      __ push_jint(const_opr->as_jint());
205    } else {
206      ShouldNotReachHere();
207    }
208
209  } else {
210    ShouldNotReachHere();
211  }
212}
213
214void LIR_Assembler::pop(LIR_Opr opr) {
215  if (opr->is_single_cpu()) {
216    __ pop_reg(opr->as_register());
217  } else {
218    ShouldNotReachHere();
219  }
220}
221
222bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
223  return addr->base()->is_illegal() && addr->index()->is_illegal();
224}
225
226//-------------------------------------------
227
228Address LIR_Assembler::as_Address(LIR_Address* addr) {
229  return as_Address(addr, rscratch1);
230}
231
232Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
233  if (addr->base()->is_illegal()) {
234    assert(addr->index()->is_illegal(), "must be illegal too");
235    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
236    if (! __ reachable(laddr)) {
237      __ movptr(tmp, laddr.addr());
238      Address res(tmp, 0);
239      return res;
240    } else {
241      return __ as_Address(laddr);
242    }
243  }
244
245  Register base = addr->base()->as_pointer_register();
246
247  if (addr->index()->is_illegal()) {
248    return Address( base, addr->disp());
249  } else if (addr->index()->is_cpu_register()) {
250    Register index = addr->index()->as_pointer_register();
251    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
252  } else if (addr->index()->is_constant()) {
253    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
254    assert(Assembler::is_simm32(addr_offset), "must be");
255
256    return Address(base, addr_offset);
257  } else {
258    Unimplemented();
259    return Address();
260  }
261}
262
263
264Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
265  Address base = as_Address(addr);
266  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
267}
268
269
270Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
271  return as_Address(addr);
272}
273
274
275void LIR_Assembler::osr_entry() {
276  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
277  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
278  ValueStack* entry_state = osr_entry->state();
279  int number_of_locks = entry_state->locks_size();
280
281  // we jump here if osr happens with the interpreter
282  // state set up to continue at the beginning of the
283  // loop that triggered osr - in particular, we have
284  // the following registers setup:
285  //
286  // rcx: osr buffer
287  //
288
289  // build frame
290  ciMethod* m = compilation()->method();
291  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
292
293  // OSR buffer is
294  //
295  // locals[nlocals-1..0]
296  // monitors[0..number_of_locks]
297  //
298  // locals is a direct copy of the interpreter frame so in the osr buffer
299  // so first slot in the local array is the last local from the interpreter
300  // and last slot is local[0] (receiver) from the interpreter
301  //
302  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
303  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
304  // in the interpreter frame (the method lock if a sync method)
305
306  // Initialize monitors in the compiled activation.
307  //   rcx: pointer to osr buffer
308  //
309  // All other registers are dead at this point and the locals will be
310  // copied into place by code emitted in the IR.
311
312  Register OSR_buf = osrBufferPointer()->as_pointer_register();
313  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
314    int monitor_offset = BytesPerWord * method()->max_locals() +
315      (2 * BytesPerWord) * (number_of_locks - 1);
316    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
317    // the OSR buffer using 2 word entries: first the lock and then
318    // the oop.
319    for (int i = 0; i < number_of_locks; i++) {
320      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
321#ifdef ASSERT
322      // verify the interpreter's monitor has a non-null object
323      {
324        Label L;
325        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
326        __ jcc(Assembler::notZero, L);
327        __ stop("locked object is NULL");
328        __ bind(L);
329      }
330#endif
331      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
332      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
333      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
334      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
335    }
336  }
337}
338
339
340// inline cache check; done before the frame is built.
341int LIR_Assembler::check_icache() {
342  Register receiver = FrameMap::receiver_opr->as_register();
343  Register ic_klass = IC_Klass;
344  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
345  const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
346  if (!do_post_padding) {
347    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
348    __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
349  }
350  int offset = __ offset();
351  __ inline_cache_check(receiver, IC_Klass);
352  assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
353  if (do_post_padding) {
354    // force alignment after the cache check.
355    // It's been verified to be aligned if !VerifyOops
356    __ align(CodeEntryAlignment);
357  }
358  return offset;
359}
360
361
362void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
363  jobject o = NULL;
364  PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
365  __ movoop(reg, o);
366  patching_epilog(patch, lir_patch_normal, reg, info);
367}
368
369void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
370  Metadata* o = NULL;
371  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
372  __ mov_metadata(reg, o);
373  patching_epilog(patch, lir_patch_normal, reg, info);
374}
375
376// This specifies the rsp decrement needed to build the frame
377int LIR_Assembler::initial_frame_size_in_bytes() const {
378  // if rounding, must let FrameMap know!
379
380  // The frame_map records size in slots (32bit word)
381
382  // subtract two words to account for return address and link
383  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
384}
385
386
387int LIR_Assembler::emit_exception_handler() {
388  // if the last instruction is a call (typically to do a throw which
389  // is coming at the end after block reordering) the return address
390  // must still point into the code area in order to avoid assertion
391  // failures when searching for the corresponding bci => add a nop
392  // (was bug 5/14/1999 - gri)
393  __ nop();
394
395  // generate code for exception handler
396  address handler_base = __ start_a_stub(exception_handler_size);
397  if (handler_base == NULL) {
398    // not enough space left for the handler
399    bailout("exception handler overflow");
400    return -1;
401  }
402
403  int offset = code_offset();
404
405  // the exception oop and pc are in rax, and rdx
406  // no other registers need to be preserved, so invalidate them
407  __ invalidate_registers(false, true, true, false, true, true);
408
409  // check that there is really an exception
410  __ verify_not_null_oop(rax);
411
412  // search an exception handler (rax: exception oop, rdx: throwing pc)
413  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
414  __ should_not_reach_here();
415  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
416  __ end_a_stub();
417
418  return offset;
419}
420
421
422// Emit the code to remove the frame from the stack in the exception
423// unwind path.
424int LIR_Assembler::emit_unwind_handler() {
425#ifndef PRODUCT
426  if (CommentedAssembly) {
427    _masm->block_comment("Unwind handler");
428  }
429#endif
430
431  int offset = code_offset();
432
433  // Fetch the exception from TLS and clear out exception related thread state
434  Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
435  NOT_LP64(__ get_thread(rsi));
436  __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
437  __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
438  __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
439
440  __ bind(_unwind_handler_entry);
441  __ verify_not_null_oop(rax);
442  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
443    __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
444  }
445
446  // Preform needed unlocking
447  MonitorExitStub* stub = NULL;
448  if (method()->is_synchronized()) {
449    monitor_address(0, FrameMap::rax_opr);
450    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
451    __ unlock_object(rdi, rsi, rax, *stub->entry());
452    __ bind(*stub->continuation());
453  }
454
455  if (compilation()->env()->dtrace_method_probes()) {
456#ifdef _LP64
457    __ mov(rdi, r15_thread);
458    __ mov_metadata(rsi, method()->constant_encoding());
459#else
460    __ get_thread(rax);
461    __ movptr(Address(rsp, 0), rax);
462    __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
463#endif
464    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
465  }
466
467  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
468    __ mov(rax, rbx);  // Restore the exception
469  }
470
471  // remove the activation and dispatch to the unwind handler
472  __ remove_frame(initial_frame_size_in_bytes());
473  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
474
475  // Emit the slow path assembly
476  if (stub != NULL) {
477    stub->emit_code(this);
478  }
479
480  return offset;
481}
482
483
484int LIR_Assembler::emit_deopt_handler() {
485  // if the last instruction is a call (typically to do a throw which
486  // is coming at the end after block reordering) the return address
487  // must still point into the code area in order to avoid assertion
488  // failures when searching for the corresponding bci => add a nop
489  // (was bug 5/14/1999 - gri)
490  __ nop();
491
492  // generate code for exception handler
493  address handler_base = __ start_a_stub(deopt_handler_size);
494  if (handler_base == NULL) {
495    // not enough space left for the handler
496    bailout("deopt handler overflow");
497    return -1;
498  }
499
500  int offset = code_offset();
501  InternalAddress here(__ pc());
502
503  __ pushptr(here.addr());
504  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
505  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
506  __ end_a_stub();
507
508  return offset;
509}
510
511
512void LIR_Assembler::return_op(LIR_Opr result) {
513  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
514  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
515    assert(result->fpu() == 0, "result must already be on TOS");
516  }
517
518  // Pop the stack before the safepoint code
519  __ remove_frame(initial_frame_size_in_bytes());
520
521  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
522    __ reserved_stack_check();
523  }
524
525  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
526
527  // Note: we do not need to round double result; float result has the right precision
528  // the poll sets the condition code, but no data registers
529  AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
530
531  if (Assembler::is_polling_page_far()) {
532    __ lea(rscratch1, polling_page);
533    __ relocate(relocInfo::poll_return_type);
534    __ testl(rax, Address(rscratch1, 0));
535  } else {
536    __ testl(rax, polling_page);
537  }
538  __ ret(0);
539}
540
541
542int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
543  AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
544  guarantee(info != NULL, "Shouldn't be NULL");
545  int offset = __ offset();
546  if (Assembler::is_polling_page_far()) {
547    __ lea(rscratch1, polling_page);
548    offset = __ offset();
549    add_debug_info_for_branch(info);
550    __ relocate(relocInfo::poll_type);
551    __ testl(rax, Address(rscratch1, 0));
552  } else {
553    add_debug_info_for_branch(info);
554    __ testl(rax, polling_page);
555  }
556  return offset;
557}
558
559
560void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
561  if (from_reg != to_reg) __ mov(to_reg, from_reg);
562}
563
564void LIR_Assembler::swap_reg(Register a, Register b) {
565  __ xchgptr(a, b);
566}
567
568
569void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
570  assert(src->is_constant(), "should not call otherwise");
571  assert(dest->is_register(), "should not call otherwise");
572  LIR_Const* c = src->as_constant_ptr();
573
574  switch (c->type()) {
575    case T_INT: {
576      assert(patch_code == lir_patch_none, "no patching handled here");
577      __ movl(dest->as_register(), c->as_jint());
578      break;
579    }
580
581    case T_ADDRESS: {
582      assert(patch_code == lir_patch_none, "no patching handled here");
583      __ movptr(dest->as_register(), c->as_jint());
584      break;
585    }
586
587    case T_LONG: {
588      assert(patch_code == lir_patch_none, "no patching handled here");
589#ifdef _LP64
590      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
591#else
592      __ movptr(dest->as_register_lo(), c->as_jint_lo());
593      __ movptr(dest->as_register_hi(), c->as_jint_hi());
594#endif // _LP64
595      break;
596    }
597
598    case T_OBJECT: {
599      if (patch_code != lir_patch_none) {
600        jobject2reg_with_patching(dest->as_register(), info);
601      } else {
602        __ movoop(dest->as_register(), c->as_jobject());
603      }
604      break;
605    }
606
607    case T_METADATA: {
608      if (patch_code != lir_patch_none) {
609        klass2reg_with_patching(dest->as_register(), info);
610      } else {
611        __ mov_metadata(dest->as_register(), c->as_metadata());
612      }
613      break;
614    }
615
616    case T_FLOAT: {
617      if (dest->is_single_xmm()) {
618        if (c->is_zero_float()) {
619          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
620        } else {
621          __ movflt(dest->as_xmm_float_reg(),
622                   InternalAddress(float_constant(c->as_jfloat())));
623        }
624      } else {
625        assert(dest->is_single_fpu(), "must be");
626        assert(dest->fpu_regnr() == 0, "dest must be TOS");
627        if (c->is_zero_float()) {
628          __ fldz();
629        } else if (c->is_one_float()) {
630          __ fld1();
631        } else {
632          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
633        }
634      }
635      break;
636    }
637
638    case T_DOUBLE: {
639      if (dest->is_double_xmm()) {
640        if (c->is_zero_double()) {
641          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
642        } else {
643          __ movdbl(dest->as_xmm_double_reg(),
644                    InternalAddress(double_constant(c->as_jdouble())));
645        }
646      } else {
647        assert(dest->is_double_fpu(), "must be");
648        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
649        if (c->is_zero_double()) {
650          __ fldz();
651        } else if (c->is_one_double()) {
652          __ fld1();
653        } else {
654          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
655        }
656      }
657      break;
658    }
659
660    default:
661      ShouldNotReachHere();
662  }
663}
664
665void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
666  assert(src->is_constant(), "should not call otherwise");
667  assert(dest->is_stack(), "should not call otherwise");
668  LIR_Const* c = src->as_constant_ptr();
669
670  switch (c->type()) {
671    case T_INT:  // fall through
672    case T_FLOAT:
673      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
674      break;
675
676    case T_ADDRESS:
677      __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
678      break;
679
680    case T_OBJECT:
681      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
682      break;
683
684    case T_LONG:  // fall through
685    case T_DOUBLE:
686#ifdef _LP64
687      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
688                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
689#else
690      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
691                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
692      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
693                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
694#endif // _LP64
695      break;
696
697    default:
698      ShouldNotReachHere();
699  }
700}
701
702void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
703  assert(src->is_constant(), "should not call otherwise");
704  assert(dest->is_address(), "should not call otherwise");
705  LIR_Const* c = src->as_constant_ptr();
706  LIR_Address* addr = dest->as_address_ptr();
707
708  int null_check_here = code_offset();
709  switch (type) {
710    case T_INT:    // fall through
711    case T_FLOAT:
712      __ movl(as_Address(addr), c->as_jint_bits());
713      break;
714
715    case T_ADDRESS:
716      __ movptr(as_Address(addr), c->as_jint_bits());
717      break;
718
719    case T_OBJECT:  // fall through
720    case T_ARRAY:
721      if (c->as_jobject() == NULL) {
722        if (UseCompressedOops && !wide) {
723          __ movl(as_Address(addr), (int32_t)NULL_WORD);
724        } else {
725#ifdef _LP64
726          __ xorptr(rscratch1, rscratch1);
727          null_check_here = code_offset();
728          __ movptr(as_Address(addr), rscratch1);
729#else
730          __ movptr(as_Address(addr), NULL_WORD);
731#endif
732        }
733      } else {
734        if (is_literal_address(addr)) {
735          ShouldNotReachHere();
736          __ movoop(as_Address(addr, noreg), c->as_jobject());
737        } else {
738#ifdef _LP64
739          __ movoop(rscratch1, c->as_jobject());
740          if (UseCompressedOops && !wide) {
741            __ encode_heap_oop(rscratch1);
742            null_check_here = code_offset();
743            __ movl(as_Address_lo(addr), rscratch1);
744          } else {
745            null_check_here = code_offset();
746            __ movptr(as_Address_lo(addr), rscratch1);
747          }
748#else
749          __ movoop(as_Address(addr), c->as_jobject());
750#endif
751        }
752      }
753      break;
754
755    case T_LONG:    // fall through
756    case T_DOUBLE:
757#ifdef _LP64
758      if (is_literal_address(addr)) {
759        ShouldNotReachHere();
760        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
761      } else {
762        __ movptr(r10, (intptr_t)c->as_jlong_bits());
763        null_check_here = code_offset();
764        __ movptr(as_Address_lo(addr), r10);
765      }
766#else
767      // Always reachable in 32bit so this doesn't produce useless move literal
768      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
769      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
770#endif // _LP64
771      break;
772
773    case T_BOOLEAN: // fall through
774    case T_BYTE:
775      __ movb(as_Address(addr), c->as_jint() & 0xFF);
776      break;
777
778    case T_CHAR:    // fall through
779    case T_SHORT:
780      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
781      break;
782
783    default:
784      ShouldNotReachHere();
785  };
786
787  if (info != NULL) {
788    add_debug_info_for_null_check(null_check_here, info);
789  }
790}
791
792
793void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
794  assert(src->is_register(), "should not call otherwise");
795  assert(dest->is_register(), "should not call otherwise");
796
797  // move between cpu-registers
798  if (dest->is_single_cpu()) {
799#ifdef _LP64
800    if (src->type() == T_LONG) {
801      // Can do LONG -> OBJECT
802      move_regs(src->as_register_lo(), dest->as_register());
803      return;
804    }
805#endif
806    assert(src->is_single_cpu(), "must match");
807    if (src->type() == T_OBJECT) {
808      __ verify_oop(src->as_register());
809    }
810    move_regs(src->as_register(), dest->as_register());
811
812  } else if (dest->is_double_cpu()) {
813#ifdef _LP64
814    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
815      // Surprising to me but we can see move of a long to t_object
816      __ verify_oop(src->as_register());
817      move_regs(src->as_register(), dest->as_register_lo());
818      return;
819    }
820#endif
821    assert(src->is_double_cpu(), "must match");
822    Register f_lo = src->as_register_lo();
823    Register f_hi = src->as_register_hi();
824    Register t_lo = dest->as_register_lo();
825    Register t_hi = dest->as_register_hi();
826#ifdef _LP64
827    assert(f_hi == f_lo, "must be same");
828    assert(t_hi == t_lo, "must be same");
829    move_regs(f_lo, t_lo);
830#else
831    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
832
833
834    if (f_lo == t_hi && f_hi == t_lo) {
835      swap_reg(f_lo, f_hi);
836    } else if (f_hi == t_lo) {
837      assert(f_lo != t_hi, "overwriting register");
838      move_regs(f_hi, t_hi);
839      move_regs(f_lo, t_lo);
840    } else {
841      assert(f_hi != t_lo, "overwriting register");
842      move_regs(f_lo, t_lo);
843      move_regs(f_hi, t_hi);
844    }
845#endif // LP64
846
847    // special moves from fpu-register to xmm-register
848    // necessary for method results
849  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
850    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
851    __ fld_s(Address(rsp, 0));
852  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
853    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
854    __ fld_d(Address(rsp, 0));
855  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
856    __ fstp_s(Address(rsp, 0));
857    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
858  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
859    __ fstp_d(Address(rsp, 0));
860    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
861
862    // move between xmm-registers
863  } else if (dest->is_single_xmm()) {
864    assert(src->is_single_xmm(), "must match");
865    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
866  } else if (dest->is_double_xmm()) {
867    assert(src->is_double_xmm(), "must match");
868    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
869
870    // move between fpu-registers (no instruction necessary because of fpu-stack)
871  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
872    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
873    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
874  } else {
875    ShouldNotReachHere();
876  }
877}
878
879void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
880  assert(src->is_register(), "should not call otherwise");
881  assert(dest->is_stack(), "should not call otherwise");
882
883  if (src->is_single_cpu()) {
884    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
885    if (type == T_OBJECT || type == T_ARRAY) {
886      __ verify_oop(src->as_register());
887      __ movptr (dst, src->as_register());
888    } else if (type == T_METADATA) {
889      __ movptr (dst, src->as_register());
890    } else {
891      __ movl (dst, src->as_register());
892    }
893
894  } else if (src->is_double_cpu()) {
895    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
896    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
897    __ movptr (dstLO, src->as_register_lo());
898    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
899
900  } else if (src->is_single_xmm()) {
901    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
902    __ movflt(dst_addr, src->as_xmm_float_reg());
903
904  } else if (src->is_double_xmm()) {
905    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
906    __ movdbl(dst_addr, src->as_xmm_double_reg());
907
908  } else if (src->is_single_fpu()) {
909    assert(src->fpu_regnr() == 0, "argument must be on TOS");
910    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
911    if (pop_fpu_stack)     __ fstp_s (dst_addr);
912    else                   __ fst_s  (dst_addr);
913
914  } else if (src->is_double_fpu()) {
915    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
916    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
917    if (pop_fpu_stack)     __ fstp_d (dst_addr);
918    else                   __ fst_d  (dst_addr);
919
920  } else {
921    ShouldNotReachHere();
922  }
923}
924
925
926void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
927  LIR_Address* to_addr = dest->as_address_ptr();
928  PatchingStub* patch = NULL;
929  Register compressed_src = rscratch1;
930
931  if (type == T_ARRAY || type == T_OBJECT) {
932    __ verify_oop(src->as_register());
933#ifdef _LP64
934    if (UseCompressedOops && !wide) {
935      __ movptr(compressed_src, src->as_register());
936      __ encode_heap_oop(compressed_src);
937      if (patch_code != lir_patch_none) {
938        info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
939      }
940    }
941#endif
942  }
943
944  if (patch_code != lir_patch_none) {
945    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
946    Address toa = as_Address(to_addr);
947    assert(toa.disp() != 0, "must have");
948  }
949
950  int null_check_here = code_offset();
951  switch (type) {
952    case T_FLOAT: {
953      if (src->is_single_xmm()) {
954        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
955      } else {
956        assert(src->is_single_fpu(), "must be");
957        assert(src->fpu_regnr() == 0, "argument must be on TOS");
958        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
959        else                    __ fst_s (as_Address(to_addr));
960      }
961      break;
962    }
963
964    case T_DOUBLE: {
965      if (src->is_double_xmm()) {
966        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
967      } else {
968        assert(src->is_double_fpu(), "must be");
969        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
970        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
971        else                    __ fst_d (as_Address(to_addr));
972      }
973      break;
974    }
975
976    case T_ARRAY:   // fall through
977    case T_OBJECT:  // fall through
978      if (UseCompressedOops && !wide) {
979        __ movl(as_Address(to_addr), compressed_src);
980      } else {
981        __ movptr(as_Address(to_addr), src->as_register());
982      }
983      break;
984    case T_METADATA:
985      // We get here to store a method pointer to the stack to pass to
986      // a dtrace runtime call. This can't work on 64 bit with
987      // compressed klass ptrs: T_METADATA can be a compressed klass
988      // ptr or a 64 bit method pointer.
989      LP64_ONLY(ShouldNotReachHere());
990      __ movptr(as_Address(to_addr), src->as_register());
991      break;
992    case T_ADDRESS:
993      __ movptr(as_Address(to_addr), src->as_register());
994      break;
995    case T_INT:
996      __ movl(as_Address(to_addr), src->as_register());
997      break;
998
999    case T_LONG: {
1000      Register from_lo = src->as_register_lo();
1001      Register from_hi = src->as_register_hi();
1002#ifdef _LP64
1003      __ movptr(as_Address_lo(to_addr), from_lo);
1004#else
1005      Register base = to_addr->base()->as_register();
1006      Register index = noreg;
1007      if (to_addr->index()->is_register()) {
1008        index = to_addr->index()->as_register();
1009      }
1010      if (base == from_lo || index == from_lo) {
1011        assert(base != from_hi, "can't be");
1012        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1013        __ movl(as_Address_hi(to_addr), from_hi);
1014        if (patch != NULL) {
1015          patching_epilog(patch, lir_patch_high, base, info);
1016          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1017          patch_code = lir_patch_low;
1018        }
1019        __ movl(as_Address_lo(to_addr), from_lo);
1020      } else {
1021        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1022        __ movl(as_Address_lo(to_addr), from_lo);
1023        if (patch != NULL) {
1024          patching_epilog(patch, lir_patch_low, base, info);
1025          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1026          patch_code = lir_patch_high;
1027        }
1028        __ movl(as_Address_hi(to_addr), from_hi);
1029      }
1030#endif // _LP64
1031      break;
1032    }
1033
1034    case T_BYTE:    // fall through
1035    case T_BOOLEAN: {
1036      Register src_reg = src->as_register();
1037      Address dst_addr = as_Address(to_addr);
1038      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1039      __ movb(dst_addr, src_reg);
1040      break;
1041    }
1042
1043    case T_CHAR:    // fall through
1044    case T_SHORT:
1045      __ movw(as_Address(to_addr), src->as_register());
1046      break;
1047
1048    default:
1049      ShouldNotReachHere();
1050  }
1051  if (info != NULL) {
1052    add_debug_info_for_null_check(null_check_here, info);
1053  }
1054
1055  if (patch_code != lir_patch_none) {
1056    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1057  }
1058}
1059
1060
1061void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1062  assert(src->is_stack(), "should not call otherwise");
1063  assert(dest->is_register(), "should not call otherwise");
1064
1065  if (dest->is_single_cpu()) {
1066    if (type == T_ARRAY || type == T_OBJECT) {
1067      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1068      __ verify_oop(dest->as_register());
1069    } else if (type == T_METADATA) {
1070      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1071    } else {
1072      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1073    }
1074
1075  } else if (dest->is_double_cpu()) {
1076    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1077    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1078    __ movptr(dest->as_register_lo(), src_addr_LO);
1079    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1080
1081  } else if (dest->is_single_xmm()) {
1082    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1083    __ movflt(dest->as_xmm_float_reg(), src_addr);
1084
1085  } else if (dest->is_double_xmm()) {
1086    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1087    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1088
1089  } else if (dest->is_single_fpu()) {
1090    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1091    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1092    __ fld_s(src_addr);
1093
1094  } else if (dest->is_double_fpu()) {
1095    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1096    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1097    __ fld_d(src_addr);
1098
1099  } else {
1100    ShouldNotReachHere();
1101  }
1102}
1103
1104
1105void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1106  if (src->is_single_stack()) {
1107    if (type == T_OBJECT || type == T_ARRAY) {
1108      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1109      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1110    } else {
1111#ifndef _LP64
1112      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1113      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1114#else
1115      //no pushl on 64bits
1116      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1117      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1118#endif
1119    }
1120
1121  } else if (src->is_double_stack()) {
1122#ifdef _LP64
1123    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1124    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1125#else
1126    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1127    // push and pop the part at src + wordSize, adding wordSize for the previous push
1128    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1129    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1130    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1131#endif // _LP64
1132
1133  } else {
1134    ShouldNotReachHere();
1135  }
1136}
1137
1138
1139void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1140  assert(src->is_address(), "should not call otherwise");
1141  assert(dest->is_register(), "should not call otherwise");
1142
1143  LIR_Address* addr = src->as_address_ptr();
1144  Address from_addr = as_Address(addr);
1145
1146  if (addr->base()->type() == T_OBJECT) {
1147    __ verify_oop(addr->base()->as_pointer_register());
1148  }
1149
1150  switch (type) {
1151    case T_BOOLEAN: // fall through
1152    case T_BYTE:    // fall through
1153    case T_CHAR:    // fall through
1154    case T_SHORT:
1155      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1156        // on pre P6 processors we may get partial register stalls
1157        // so blow away the value of to_rinfo before loading a
1158        // partial word into it.  Do it here so that it precedes
1159        // the potential patch point below.
1160        __ xorptr(dest->as_register(), dest->as_register());
1161      }
1162      break;
1163  }
1164
1165  PatchingStub* patch = NULL;
1166  if (patch_code != lir_patch_none) {
1167    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1168    assert(from_addr.disp() != 0, "must have");
1169  }
1170  if (info != NULL) {
1171    add_debug_info_for_null_check_here(info);
1172  }
1173
1174  switch (type) {
1175    case T_FLOAT: {
1176      if (dest->is_single_xmm()) {
1177        __ movflt(dest->as_xmm_float_reg(), from_addr);
1178      } else {
1179        assert(dest->is_single_fpu(), "must be");
1180        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1181        __ fld_s(from_addr);
1182      }
1183      break;
1184    }
1185
1186    case T_DOUBLE: {
1187      if (dest->is_double_xmm()) {
1188        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1189      } else {
1190        assert(dest->is_double_fpu(), "must be");
1191        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1192        __ fld_d(from_addr);
1193      }
1194      break;
1195    }
1196
1197    case T_OBJECT:  // fall through
1198    case T_ARRAY:   // fall through
1199      if (UseCompressedOops && !wide) {
1200        __ movl(dest->as_register(), from_addr);
1201      } else {
1202        __ movptr(dest->as_register(), from_addr);
1203      }
1204      break;
1205
1206    case T_ADDRESS:
1207      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1208        __ movl(dest->as_register(), from_addr);
1209      } else {
1210        __ movptr(dest->as_register(), from_addr);
1211      }
1212      break;
1213    case T_INT:
1214      __ movl(dest->as_register(), from_addr);
1215      break;
1216
1217    case T_LONG: {
1218      Register to_lo = dest->as_register_lo();
1219      Register to_hi = dest->as_register_hi();
1220#ifdef _LP64
1221      __ movptr(to_lo, as_Address_lo(addr));
1222#else
1223      Register base = addr->base()->as_register();
1224      Register index = noreg;
1225      if (addr->index()->is_register()) {
1226        index = addr->index()->as_register();
1227      }
1228      if ((base == to_lo && index == to_hi) ||
1229          (base == to_hi && index == to_lo)) {
1230        // addresses with 2 registers are only formed as a result of
1231        // array access so this code will never have to deal with
1232        // patches or null checks.
1233        assert(info == NULL && patch == NULL, "must be");
1234        __ lea(to_hi, as_Address(addr));
1235        __ movl(to_lo, Address(to_hi, 0));
1236        __ movl(to_hi, Address(to_hi, BytesPerWord));
1237      } else if (base == to_lo || index == to_lo) {
1238        assert(base != to_hi, "can't be");
1239        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1240        __ movl(to_hi, as_Address_hi(addr));
1241        if (patch != NULL) {
1242          patching_epilog(patch, lir_patch_high, base, info);
1243          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1244          patch_code = lir_patch_low;
1245        }
1246        __ movl(to_lo, as_Address_lo(addr));
1247      } else {
1248        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1249        __ movl(to_lo, as_Address_lo(addr));
1250        if (patch != NULL) {
1251          patching_epilog(patch, lir_patch_low, base, info);
1252          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1253          patch_code = lir_patch_high;
1254        }
1255        __ movl(to_hi, as_Address_hi(addr));
1256      }
1257#endif // _LP64
1258      break;
1259    }
1260
1261    case T_BOOLEAN: // fall through
1262    case T_BYTE: {
1263      Register dest_reg = dest->as_register();
1264      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1265      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1266        __ movsbl(dest_reg, from_addr);
1267      } else {
1268        __ movb(dest_reg, from_addr);
1269        __ shll(dest_reg, 24);
1270        __ sarl(dest_reg, 24);
1271      }
1272      break;
1273    }
1274
1275    case T_CHAR: {
1276      Register dest_reg = dest->as_register();
1277      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1278      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1279        __ movzwl(dest_reg, from_addr);
1280      } else {
1281        __ movw(dest_reg, from_addr);
1282      }
1283      break;
1284    }
1285
1286    case T_SHORT: {
1287      Register dest_reg = dest->as_register();
1288      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1289        __ movswl(dest_reg, from_addr);
1290      } else {
1291        __ movw(dest_reg, from_addr);
1292        __ shll(dest_reg, 16);
1293        __ sarl(dest_reg, 16);
1294      }
1295      break;
1296    }
1297
1298    default:
1299      ShouldNotReachHere();
1300  }
1301
1302  if (patch != NULL) {
1303    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1304  }
1305
1306  if (type == T_ARRAY || type == T_OBJECT) {
1307#ifdef _LP64
1308    if (UseCompressedOops && !wide) {
1309      __ decode_heap_oop(dest->as_register());
1310    }
1311#endif
1312    __ verify_oop(dest->as_register());
1313  } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1314#ifdef _LP64
1315    if (UseCompressedClassPointers) {
1316      __ decode_klass_not_null(dest->as_register());
1317    }
1318#endif
1319  }
1320}
1321
1322
1323NEEDS_CLEANUP; // This could be static?
1324Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1325  int elem_size = type2aelembytes(type);
1326  switch (elem_size) {
1327    case 1: return Address::times_1;
1328    case 2: return Address::times_2;
1329    case 4: return Address::times_4;
1330    case 8: return Address::times_8;
1331  }
1332  ShouldNotReachHere();
1333  return Address::no_scale;
1334}
1335
1336
1337void LIR_Assembler::emit_op3(LIR_Op3* op) {
1338  switch (op->code()) {
1339    case lir_idiv:
1340    case lir_irem:
1341      arithmetic_idiv(op->code(),
1342                      op->in_opr1(),
1343                      op->in_opr2(),
1344                      op->in_opr3(),
1345                      op->result_opr(),
1346                      op->info());
1347      break;
1348    default:      ShouldNotReachHere(); break;
1349  }
1350}
1351
1352void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1353#ifdef ASSERT
1354  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1355  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1356  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1357#endif
1358
1359  if (op->cond() == lir_cond_always) {
1360    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1361    __ jmp (*(op->label()));
1362  } else {
1363    Assembler::Condition acond = Assembler::zero;
1364    if (op->code() == lir_cond_float_branch) {
1365      assert(op->ublock() != NULL, "must have unordered successor");
1366      __ jcc(Assembler::parity, *(op->ublock()->label()));
1367      switch(op->cond()) {
1368        case lir_cond_equal:        acond = Assembler::equal;      break;
1369        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1370        case lir_cond_less:         acond = Assembler::below;      break;
1371        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1372        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1373        case lir_cond_greater:      acond = Assembler::above;      break;
1374        default:                         ShouldNotReachHere();
1375      }
1376    } else {
1377      switch (op->cond()) {
1378        case lir_cond_equal:        acond = Assembler::equal;       break;
1379        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1380        case lir_cond_less:         acond = Assembler::less;        break;
1381        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1382        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1383        case lir_cond_greater:      acond = Assembler::greater;     break;
1384        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1385        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1386        default:                         ShouldNotReachHere();
1387      }
1388    }
1389    __ jcc(acond,*(op->label()));
1390  }
1391}
1392
1393void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1394  LIR_Opr src  = op->in_opr();
1395  LIR_Opr dest = op->result_opr();
1396
1397  switch (op->bytecode()) {
1398    case Bytecodes::_i2l:
1399#ifdef _LP64
1400      __ movl2ptr(dest->as_register_lo(), src->as_register());
1401#else
1402      move_regs(src->as_register(), dest->as_register_lo());
1403      move_regs(src->as_register(), dest->as_register_hi());
1404      __ sarl(dest->as_register_hi(), 31);
1405#endif // LP64
1406      break;
1407
1408    case Bytecodes::_l2i:
1409#ifdef _LP64
1410      __ movl(dest->as_register(), src->as_register_lo());
1411#else
1412      move_regs(src->as_register_lo(), dest->as_register());
1413#endif
1414      break;
1415
1416    case Bytecodes::_i2b:
1417      move_regs(src->as_register(), dest->as_register());
1418      __ sign_extend_byte(dest->as_register());
1419      break;
1420
1421    case Bytecodes::_i2c:
1422      move_regs(src->as_register(), dest->as_register());
1423      __ andl(dest->as_register(), 0xFFFF);
1424      break;
1425
1426    case Bytecodes::_i2s:
1427      move_regs(src->as_register(), dest->as_register());
1428      __ sign_extend_short(dest->as_register());
1429      break;
1430
1431
1432    case Bytecodes::_f2d:
1433    case Bytecodes::_d2f:
1434      if (dest->is_single_xmm()) {
1435        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1436      } else if (dest->is_double_xmm()) {
1437        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1438      } else {
1439        assert(src->fpu() == dest->fpu(), "register must be equal");
1440        // do nothing (float result is rounded later through spilling)
1441      }
1442      break;
1443
1444    case Bytecodes::_i2f:
1445    case Bytecodes::_i2d:
1446      if (dest->is_single_xmm()) {
1447        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1448      } else if (dest->is_double_xmm()) {
1449        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1450      } else {
1451        assert(dest->fpu() == 0, "result must be on TOS");
1452        __ movl(Address(rsp, 0), src->as_register());
1453        __ fild_s(Address(rsp, 0));
1454      }
1455      break;
1456
1457    case Bytecodes::_f2i:
1458    case Bytecodes::_d2i:
1459      if (src->is_single_xmm()) {
1460        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1461      } else if (src->is_double_xmm()) {
1462        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1463      } else {
1464        assert(src->fpu() == 0, "input must be on TOS");
1465        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1466        __ fist_s(Address(rsp, 0));
1467        __ movl(dest->as_register(), Address(rsp, 0));
1468        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1469      }
1470
1471      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1472      assert(op->stub() != NULL, "stub required");
1473      __ cmpl(dest->as_register(), 0x80000000);
1474      __ jcc(Assembler::equal, *op->stub()->entry());
1475      __ bind(*op->stub()->continuation());
1476      break;
1477
1478    case Bytecodes::_l2f:
1479    case Bytecodes::_l2d:
1480      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1481      assert(dest->fpu() == 0, "result must be on TOS");
1482
1483      __ movptr(Address(rsp, 0),            src->as_register_lo());
1484      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1485      __ fild_d(Address(rsp, 0));
1486      // float result is rounded later through spilling
1487      break;
1488
1489    case Bytecodes::_f2l:
1490    case Bytecodes::_d2l:
1491      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1492      assert(src->fpu() == 0, "input must be on TOS");
1493      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1494
1495      // instruction sequence too long to inline it here
1496      {
1497        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1498      }
1499      break;
1500
1501    default: ShouldNotReachHere();
1502  }
1503}
1504
1505void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1506  if (op->init_check()) {
1507    __ cmpb(Address(op->klass()->as_register(),
1508                    InstanceKlass::init_state_offset()),
1509                    InstanceKlass::fully_initialized);
1510    add_debug_info_for_null_check_here(op->stub()->info());
1511    __ jcc(Assembler::notEqual, *op->stub()->entry());
1512  }
1513  __ allocate_object(op->obj()->as_register(),
1514                     op->tmp1()->as_register(),
1515                     op->tmp2()->as_register(),
1516                     op->header_size(),
1517                     op->object_size(),
1518                     op->klass()->as_register(),
1519                     *op->stub()->entry());
1520  __ bind(*op->stub()->continuation());
1521}
1522
1523void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1524  Register len =  op->len()->as_register();
1525  LP64_ONLY( __ movslq(len, len); )
1526
1527  if (UseSlowPath ||
1528      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1529      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1530    __ jmp(*op->stub()->entry());
1531  } else {
1532    Register tmp1 = op->tmp1()->as_register();
1533    Register tmp2 = op->tmp2()->as_register();
1534    Register tmp3 = op->tmp3()->as_register();
1535    if (len == tmp1) {
1536      tmp1 = tmp3;
1537    } else if (len == tmp2) {
1538      tmp2 = tmp3;
1539    } else if (len == tmp3) {
1540      // everything is ok
1541    } else {
1542      __ mov(tmp3, len);
1543    }
1544    __ allocate_array(op->obj()->as_register(),
1545                      len,
1546                      tmp1,
1547                      tmp2,
1548                      arrayOopDesc::header_size(op->type()),
1549                      array_element_size(op->type()),
1550                      op->klass()->as_register(),
1551                      *op->stub()->entry());
1552  }
1553  __ bind(*op->stub()->continuation());
1554}
1555
1556void LIR_Assembler::type_profile_helper(Register mdo,
1557                                        ciMethodData *md, ciProfileData *data,
1558                                        Register recv, Label* update_done) {
1559  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1560    Label next_test;
1561    // See if the receiver is receiver[n].
1562    __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1563    __ jccb(Assembler::notEqual, next_test);
1564    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1565    __ addptr(data_addr, DataLayout::counter_increment);
1566    __ jmp(*update_done);
1567    __ bind(next_test);
1568  }
1569
1570  // Didn't find receiver; find next empty slot and fill it in
1571  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1572    Label next_test;
1573    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1574    __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1575    __ jccb(Assembler::notEqual, next_test);
1576    __ movptr(recv_addr, recv);
1577    __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1578    __ jmp(*update_done);
1579    __ bind(next_test);
1580  }
1581}
1582
1583void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1584  // we always need a stub for the failure case.
1585  CodeStub* stub = op->stub();
1586  Register obj = op->object()->as_register();
1587  Register k_RInfo = op->tmp1()->as_register();
1588  Register klass_RInfo = op->tmp2()->as_register();
1589  Register dst = op->result_opr()->as_register();
1590  ciKlass* k = op->klass();
1591  Register Rtmp1 = noreg;
1592
1593  // check if it needs to be profiled
1594  ciMethodData* md = NULL;
1595  ciProfileData* data = NULL;
1596
1597  if (op->should_profile()) {
1598    ciMethod* method = op->profiled_method();
1599    assert(method != NULL, "Should have method");
1600    int bci = op->profiled_bci();
1601    md = method->method_data_or_null();
1602    assert(md != NULL, "Sanity");
1603    data = md->bci_to_data(bci);
1604    assert(data != NULL,                "need data for type check");
1605    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1606  }
1607  Label profile_cast_success, profile_cast_failure;
1608  Label *success_target = op->should_profile() ? &profile_cast_success : success;
1609  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1610
1611  if (obj == k_RInfo) {
1612    k_RInfo = dst;
1613  } else if (obj == klass_RInfo) {
1614    klass_RInfo = dst;
1615  }
1616  if (k->is_loaded() && !UseCompressedClassPointers) {
1617    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1618  } else {
1619    Rtmp1 = op->tmp3()->as_register();
1620    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1621  }
1622
1623  assert_different_registers(obj, k_RInfo, klass_RInfo);
1624
1625  __ cmpptr(obj, (int32_t)NULL_WORD);
1626  if (op->should_profile()) {
1627    Label not_null;
1628    __ jccb(Assembler::notEqual, not_null);
1629    // Object is null; update MDO and exit
1630    Register mdo  = klass_RInfo;
1631    __ mov_metadata(mdo, md->constant_encoding());
1632    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1633    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1634    __ orl(data_addr, header_bits);
1635    __ jmp(*obj_is_null);
1636    __ bind(not_null);
1637  } else {
1638    __ jcc(Assembler::equal, *obj_is_null);
1639  }
1640
1641  if (!k->is_loaded()) {
1642    klass2reg_with_patching(k_RInfo, op->info_for_patch());
1643  } else {
1644#ifdef _LP64
1645    __ mov_metadata(k_RInfo, k->constant_encoding());
1646#endif // _LP64
1647  }
1648  __ verify_oop(obj);
1649
1650  if (op->fast_check()) {
1651    // get object class
1652    // not a safepoint as obj null check happens earlier
1653#ifdef _LP64
1654    if (UseCompressedClassPointers) {
1655      __ load_klass(Rtmp1, obj);
1656      __ cmpptr(k_RInfo, Rtmp1);
1657    } else {
1658      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1659    }
1660#else
1661    if (k->is_loaded()) {
1662      __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1663    } else {
1664      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1665    }
1666#endif
1667    __ jcc(Assembler::notEqual, *failure_target);
1668    // successful cast, fall through to profile or jump
1669  } else {
1670    // get object class
1671    // not a safepoint as obj null check happens earlier
1672    __ load_klass(klass_RInfo, obj);
1673    if (k->is_loaded()) {
1674      // See if we get an immediate positive hit
1675#ifdef _LP64
1676      __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1677#else
1678      __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1679#endif // _LP64
1680      if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1681        __ jcc(Assembler::notEqual, *failure_target);
1682        // successful cast, fall through to profile or jump
1683      } else {
1684        // See if we get an immediate positive hit
1685        __ jcc(Assembler::equal, *success_target);
1686        // check for self
1687#ifdef _LP64
1688        __ cmpptr(klass_RInfo, k_RInfo);
1689#else
1690        __ cmpklass(klass_RInfo, k->constant_encoding());
1691#endif // _LP64
1692        __ jcc(Assembler::equal, *success_target);
1693
1694        __ push(klass_RInfo);
1695#ifdef _LP64
1696        __ push(k_RInfo);
1697#else
1698        __ pushklass(k->constant_encoding());
1699#endif // _LP64
1700        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1701        __ pop(klass_RInfo);
1702        __ pop(klass_RInfo);
1703        // result is a boolean
1704        __ cmpl(klass_RInfo, 0);
1705        __ jcc(Assembler::equal, *failure_target);
1706        // successful cast, fall through to profile or jump
1707      }
1708    } else {
1709      // perform the fast part of the checking logic
1710      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1711      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1712      __ push(klass_RInfo);
1713      __ push(k_RInfo);
1714      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1715      __ pop(klass_RInfo);
1716      __ pop(k_RInfo);
1717      // result is a boolean
1718      __ cmpl(k_RInfo, 0);
1719      __ jcc(Assembler::equal, *failure_target);
1720      // successful cast, fall through to profile or jump
1721    }
1722  }
1723  if (op->should_profile()) {
1724    Register mdo  = klass_RInfo, recv = k_RInfo;
1725    __ bind(profile_cast_success);
1726    __ mov_metadata(mdo, md->constant_encoding());
1727    __ load_klass(recv, obj);
1728    Label update_done;
1729    type_profile_helper(mdo, md, data, recv, success);
1730    __ jmp(*success);
1731
1732    __ bind(profile_cast_failure);
1733    __ mov_metadata(mdo, md->constant_encoding());
1734    Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1735    __ subptr(counter_addr, DataLayout::counter_increment);
1736    __ jmp(*failure);
1737  }
1738  __ jmp(*success);
1739}
1740
1741
1742void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1743  LIR_Code code = op->code();
1744  if (code == lir_store_check) {
1745    Register value = op->object()->as_register();
1746    Register array = op->array()->as_register();
1747    Register k_RInfo = op->tmp1()->as_register();
1748    Register klass_RInfo = op->tmp2()->as_register();
1749    Register Rtmp1 = op->tmp3()->as_register();
1750
1751    CodeStub* stub = op->stub();
1752
1753    // check if it needs to be profiled
1754    ciMethodData* md = NULL;
1755    ciProfileData* data = NULL;
1756
1757    if (op->should_profile()) {
1758      ciMethod* method = op->profiled_method();
1759      assert(method != NULL, "Should have method");
1760      int bci = op->profiled_bci();
1761      md = method->method_data_or_null();
1762      assert(md != NULL, "Sanity");
1763      data = md->bci_to_data(bci);
1764      assert(data != NULL,                "need data for type check");
1765      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1766    }
1767    Label profile_cast_success, profile_cast_failure, done;
1768    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1769    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1770
1771    __ cmpptr(value, (int32_t)NULL_WORD);
1772    if (op->should_profile()) {
1773      Label not_null;
1774      __ jccb(Assembler::notEqual, not_null);
1775      // Object is null; update MDO and exit
1776      Register mdo  = klass_RInfo;
1777      __ mov_metadata(mdo, md->constant_encoding());
1778      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1779      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1780      __ orl(data_addr, header_bits);
1781      __ jmp(done);
1782      __ bind(not_null);
1783    } else {
1784      __ jcc(Assembler::equal, done);
1785    }
1786
1787    add_debug_info_for_null_check_here(op->info_for_exception());
1788    __ load_klass(k_RInfo, array);
1789    __ load_klass(klass_RInfo, value);
1790
1791    // get instance klass (it's already uncompressed)
1792    __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1793    // perform the fast part of the checking logic
1794    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1795    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1796    __ push(klass_RInfo);
1797    __ push(k_RInfo);
1798    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1799    __ pop(klass_RInfo);
1800    __ pop(k_RInfo);
1801    // result is a boolean
1802    __ cmpl(k_RInfo, 0);
1803    __ jcc(Assembler::equal, *failure_target);
1804    // fall through to the success case
1805
1806    if (op->should_profile()) {
1807      Register mdo  = klass_RInfo, recv = k_RInfo;
1808      __ bind(profile_cast_success);
1809      __ mov_metadata(mdo, md->constant_encoding());
1810      __ load_klass(recv, value);
1811      Label update_done;
1812      type_profile_helper(mdo, md, data, recv, &done);
1813      __ jmpb(done);
1814
1815      __ bind(profile_cast_failure);
1816      __ mov_metadata(mdo, md->constant_encoding());
1817      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1818      __ subptr(counter_addr, DataLayout::counter_increment);
1819      __ jmp(*stub->entry());
1820    }
1821
1822    __ bind(done);
1823  } else
1824    if (code == lir_checkcast) {
1825      Register obj = op->object()->as_register();
1826      Register dst = op->result_opr()->as_register();
1827      Label success;
1828      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1829      __ bind(success);
1830      if (dst != obj) {
1831        __ mov(dst, obj);
1832      }
1833    } else
1834      if (code == lir_instanceof) {
1835        Register obj = op->object()->as_register();
1836        Register dst = op->result_opr()->as_register();
1837        Label success, failure, done;
1838        emit_typecheck_helper(op, &success, &failure, &failure);
1839        __ bind(failure);
1840        __ xorptr(dst, dst);
1841        __ jmpb(done);
1842        __ bind(success);
1843        __ movptr(dst, 1);
1844        __ bind(done);
1845      } else {
1846        ShouldNotReachHere();
1847      }
1848
1849}
1850
1851
1852void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1853  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1854    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1855    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1856    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1857    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1858    Register addr = op->addr()->as_register();
1859    if (os::is_MP()) {
1860      __ lock();
1861    }
1862    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1863
1864  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1865    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1866    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1867    Register newval = op->new_value()->as_register();
1868    Register cmpval = op->cmp_value()->as_register();
1869    assert(cmpval == rax, "wrong register");
1870    assert(newval != NULL, "new val must be register");
1871    assert(cmpval != newval, "cmp and new values must be in different registers");
1872    assert(cmpval != addr, "cmp and addr must be in different registers");
1873    assert(newval != addr, "new value and addr must be in different registers");
1874
1875    if ( op->code() == lir_cas_obj) {
1876#ifdef _LP64
1877      if (UseCompressedOops) {
1878        __ encode_heap_oop(cmpval);
1879        __ mov(rscratch1, newval);
1880        __ encode_heap_oop(rscratch1);
1881        if (os::is_MP()) {
1882          __ lock();
1883        }
1884        // cmpval (rax) is implicitly used by this instruction
1885        __ cmpxchgl(rscratch1, Address(addr, 0));
1886      } else
1887#endif
1888      {
1889        if (os::is_MP()) {
1890          __ lock();
1891        }
1892        __ cmpxchgptr(newval, Address(addr, 0));
1893      }
1894    } else {
1895      assert(op->code() == lir_cas_int, "lir_cas_int expected");
1896      if (os::is_MP()) {
1897        __ lock();
1898      }
1899      __ cmpxchgl(newval, Address(addr, 0));
1900    }
1901#ifdef _LP64
1902  } else if (op->code() == lir_cas_long) {
1903    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1904    Register newval = op->new_value()->as_register_lo();
1905    Register cmpval = op->cmp_value()->as_register_lo();
1906    assert(cmpval == rax, "wrong register");
1907    assert(newval != NULL, "new val must be register");
1908    assert(cmpval != newval, "cmp and new values must be in different registers");
1909    assert(cmpval != addr, "cmp and addr must be in different registers");
1910    assert(newval != addr, "new value and addr must be in different registers");
1911    if (os::is_MP()) {
1912      __ lock();
1913    }
1914    __ cmpxchgq(newval, Address(addr, 0));
1915#endif // _LP64
1916  } else {
1917    Unimplemented();
1918  }
1919}
1920
1921void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1922  Assembler::Condition acond, ncond;
1923  switch (condition) {
1924    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1925    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1926    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1927    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1928    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1929    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1930    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1931    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1932    default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1933                                ShouldNotReachHere();
1934  }
1935
1936  if (opr1->is_cpu_register()) {
1937    reg2reg(opr1, result);
1938  } else if (opr1->is_stack()) {
1939    stack2reg(opr1, result, result->type());
1940  } else if (opr1->is_constant()) {
1941    const2reg(opr1, result, lir_patch_none, NULL);
1942  } else {
1943    ShouldNotReachHere();
1944  }
1945
1946  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1947    // optimized version that does not require a branch
1948    if (opr2->is_single_cpu()) {
1949      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1950      __ cmov(ncond, result->as_register(), opr2->as_register());
1951    } else if (opr2->is_double_cpu()) {
1952      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1953      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1954      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1955      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1956    } else if (opr2->is_single_stack()) {
1957      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1958    } else if (opr2->is_double_stack()) {
1959      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1960      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1961    } else {
1962      ShouldNotReachHere();
1963    }
1964
1965  } else {
1966    Label skip;
1967    __ jcc (acond, skip);
1968    if (opr2->is_cpu_register()) {
1969      reg2reg(opr2, result);
1970    } else if (opr2->is_stack()) {
1971      stack2reg(opr2, result, result->type());
1972    } else if (opr2->is_constant()) {
1973      const2reg(opr2, result, lir_patch_none, NULL);
1974    } else {
1975      ShouldNotReachHere();
1976    }
1977    __ bind(skip);
1978  }
1979}
1980
1981
1982void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1983  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1984
1985  if (left->is_single_cpu()) {
1986    assert(left == dest, "left and dest must be equal");
1987    Register lreg = left->as_register();
1988
1989    if (right->is_single_cpu()) {
1990      // cpu register - cpu register
1991      Register rreg = right->as_register();
1992      switch (code) {
1993        case lir_add: __ addl (lreg, rreg); break;
1994        case lir_sub: __ subl (lreg, rreg); break;
1995        case lir_mul: __ imull(lreg, rreg); break;
1996        default:      ShouldNotReachHere();
1997      }
1998
1999    } else if (right->is_stack()) {
2000      // cpu register - stack
2001      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2002      switch (code) {
2003        case lir_add: __ addl(lreg, raddr); break;
2004        case lir_sub: __ subl(lreg, raddr); break;
2005        default:      ShouldNotReachHere();
2006      }
2007
2008    } else if (right->is_constant()) {
2009      // cpu register - constant
2010      jint c = right->as_constant_ptr()->as_jint();
2011      switch (code) {
2012        case lir_add: {
2013          __ incrementl(lreg, c);
2014          break;
2015        }
2016        case lir_sub: {
2017          __ decrementl(lreg, c);
2018          break;
2019        }
2020        default: ShouldNotReachHere();
2021      }
2022
2023    } else {
2024      ShouldNotReachHere();
2025    }
2026
2027  } else if (left->is_double_cpu()) {
2028    assert(left == dest, "left and dest must be equal");
2029    Register lreg_lo = left->as_register_lo();
2030    Register lreg_hi = left->as_register_hi();
2031
2032    if (right->is_double_cpu()) {
2033      // cpu register - cpu register
2034      Register rreg_lo = right->as_register_lo();
2035      Register rreg_hi = right->as_register_hi();
2036      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2037      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2038      switch (code) {
2039        case lir_add:
2040          __ addptr(lreg_lo, rreg_lo);
2041          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2042          break;
2043        case lir_sub:
2044          __ subptr(lreg_lo, rreg_lo);
2045          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2046          break;
2047        case lir_mul:
2048#ifdef _LP64
2049          __ imulq(lreg_lo, rreg_lo);
2050#else
2051          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2052          __ imull(lreg_hi, rreg_lo);
2053          __ imull(rreg_hi, lreg_lo);
2054          __ addl (rreg_hi, lreg_hi);
2055          __ mull (rreg_lo);
2056          __ addl (lreg_hi, rreg_hi);
2057#endif // _LP64
2058          break;
2059        default:
2060          ShouldNotReachHere();
2061      }
2062
2063    } else if (right->is_constant()) {
2064      // cpu register - constant
2065#ifdef _LP64
2066      jlong c = right->as_constant_ptr()->as_jlong_bits();
2067      __ movptr(r10, (intptr_t) c);
2068      switch (code) {
2069        case lir_add:
2070          __ addptr(lreg_lo, r10);
2071          break;
2072        case lir_sub:
2073          __ subptr(lreg_lo, r10);
2074          break;
2075        default:
2076          ShouldNotReachHere();
2077      }
2078#else
2079      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2080      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2081      switch (code) {
2082        case lir_add:
2083          __ addptr(lreg_lo, c_lo);
2084          __ adcl(lreg_hi, c_hi);
2085          break;
2086        case lir_sub:
2087          __ subptr(lreg_lo, c_lo);
2088          __ sbbl(lreg_hi, c_hi);
2089          break;
2090        default:
2091          ShouldNotReachHere();
2092      }
2093#endif // _LP64
2094
2095    } else {
2096      ShouldNotReachHere();
2097    }
2098
2099  } else if (left->is_single_xmm()) {
2100    assert(left == dest, "left and dest must be equal");
2101    XMMRegister lreg = left->as_xmm_float_reg();
2102
2103    if (right->is_single_xmm()) {
2104      XMMRegister rreg = right->as_xmm_float_reg();
2105      switch (code) {
2106        case lir_add: __ addss(lreg, rreg);  break;
2107        case lir_sub: __ subss(lreg, rreg);  break;
2108        case lir_mul_strictfp: // fall through
2109        case lir_mul: __ mulss(lreg, rreg);  break;
2110        case lir_div_strictfp: // fall through
2111        case lir_div: __ divss(lreg, rreg);  break;
2112        default: ShouldNotReachHere();
2113      }
2114    } else {
2115      Address raddr;
2116      if (right->is_single_stack()) {
2117        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2118      } else if (right->is_constant()) {
2119        // hack for now
2120        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2121      } else {
2122        ShouldNotReachHere();
2123      }
2124      switch (code) {
2125        case lir_add: __ addss(lreg, raddr);  break;
2126        case lir_sub: __ subss(lreg, raddr);  break;
2127        case lir_mul_strictfp: // fall through
2128        case lir_mul: __ mulss(lreg, raddr);  break;
2129        case lir_div_strictfp: // fall through
2130        case lir_div: __ divss(lreg, raddr);  break;
2131        default: ShouldNotReachHere();
2132      }
2133    }
2134
2135  } else if (left->is_double_xmm()) {
2136    assert(left == dest, "left and dest must be equal");
2137
2138    XMMRegister lreg = left->as_xmm_double_reg();
2139    if (right->is_double_xmm()) {
2140      XMMRegister rreg = right->as_xmm_double_reg();
2141      switch (code) {
2142        case lir_add: __ addsd(lreg, rreg);  break;
2143        case lir_sub: __ subsd(lreg, rreg);  break;
2144        case lir_mul_strictfp: // fall through
2145        case lir_mul: __ mulsd(lreg, rreg);  break;
2146        case lir_div_strictfp: // fall through
2147        case lir_div: __ divsd(lreg, rreg);  break;
2148        default: ShouldNotReachHere();
2149      }
2150    } else {
2151      Address raddr;
2152      if (right->is_double_stack()) {
2153        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2154      } else if (right->is_constant()) {
2155        // hack for now
2156        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2157      } else {
2158        ShouldNotReachHere();
2159      }
2160      switch (code) {
2161        case lir_add: __ addsd(lreg, raddr);  break;
2162        case lir_sub: __ subsd(lreg, raddr);  break;
2163        case lir_mul_strictfp: // fall through
2164        case lir_mul: __ mulsd(lreg, raddr);  break;
2165        case lir_div_strictfp: // fall through
2166        case lir_div: __ divsd(lreg, raddr);  break;
2167        default: ShouldNotReachHere();
2168      }
2169    }
2170
2171  } else if (left->is_single_fpu()) {
2172    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2173
2174    if (right->is_single_fpu()) {
2175      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2176
2177    } else {
2178      assert(left->fpu_regnr() == 0, "left must be on TOS");
2179      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2180
2181      Address raddr;
2182      if (right->is_single_stack()) {
2183        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2184      } else if (right->is_constant()) {
2185        address const_addr = float_constant(right->as_jfloat());
2186        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2187        // hack for now
2188        raddr = __ as_Address(InternalAddress(const_addr));
2189      } else {
2190        ShouldNotReachHere();
2191      }
2192
2193      switch (code) {
2194        case lir_add: __ fadd_s(raddr); break;
2195        case lir_sub: __ fsub_s(raddr); break;
2196        case lir_mul_strictfp: // fall through
2197        case lir_mul: __ fmul_s(raddr); break;
2198        case lir_div_strictfp: // fall through
2199        case lir_div: __ fdiv_s(raddr); break;
2200        default:      ShouldNotReachHere();
2201      }
2202    }
2203
2204  } else if (left->is_double_fpu()) {
2205    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2206
2207    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2208      // Double values require special handling for strictfp mul/div on x86
2209      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2210      __ fmulp(left->fpu_regnrLo() + 1);
2211    }
2212
2213    if (right->is_double_fpu()) {
2214      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2215
2216    } else {
2217      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2218      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2219
2220      Address raddr;
2221      if (right->is_double_stack()) {
2222        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2223      } else if (right->is_constant()) {
2224        // hack for now
2225        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2226      } else {
2227        ShouldNotReachHere();
2228      }
2229
2230      switch (code) {
2231        case lir_add: __ fadd_d(raddr); break;
2232        case lir_sub: __ fsub_d(raddr); break;
2233        case lir_mul_strictfp: // fall through
2234        case lir_mul: __ fmul_d(raddr); break;
2235        case lir_div_strictfp: // fall through
2236        case lir_div: __ fdiv_d(raddr); break;
2237        default: ShouldNotReachHere();
2238      }
2239    }
2240
2241    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2242      // Double values require special handling for strictfp mul/div on x86
2243      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2244      __ fmulp(dest->fpu_regnrLo() + 1);
2245    }
2246
2247  } else if (left->is_single_stack() || left->is_address()) {
2248    assert(left == dest, "left and dest must be equal");
2249
2250    Address laddr;
2251    if (left->is_single_stack()) {
2252      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2253    } else if (left->is_address()) {
2254      laddr = as_Address(left->as_address_ptr());
2255    } else {
2256      ShouldNotReachHere();
2257    }
2258
2259    if (right->is_single_cpu()) {
2260      Register rreg = right->as_register();
2261      switch (code) {
2262        case lir_add: __ addl(laddr, rreg); break;
2263        case lir_sub: __ subl(laddr, rreg); break;
2264        default:      ShouldNotReachHere();
2265      }
2266    } else if (right->is_constant()) {
2267      jint c = right->as_constant_ptr()->as_jint();
2268      switch (code) {
2269        case lir_add: {
2270          __ incrementl(laddr, c);
2271          break;
2272        }
2273        case lir_sub: {
2274          __ decrementl(laddr, c);
2275          break;
2276        }
2277        default: ShouldNotReachHere();
2278      }
2279    } else {
2280      ShouldNotReachHere();
2281    }
2282
2283  } else {
2284    ShouldNotReachHere();
2285  }
2286}
2287
2288void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2289  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2290  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2291  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2292
2293  bool left_is_tos = (left_index == 0);
2294  bool dest_is_tos = (dest_index == 0);
2295  int non_tos_index = (left_is_tos ? right_index : left_index);
2296
2297  switch (code) {
2298    case lir_add:
2299      if (pop_fpu_stack)       __ faddp(non_tos_index);
2300      else if (dest_is_tos)    __ fadd (non_tos_index);
2301      else                     __ fadda(non_tos_index);
2302      break;
2303
2304    case lir_sub:
2305      if (left_is_tos) {
2306        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2307        else if (dest_is_tos)  __ fsub  (non_tos_index);
2308        else                   __ fsubra(non_tos_index);
2309      } else {
2310        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2311        else if (dest_is_tos)  __ fsubr (non_tos_index);
2312        else                   __ fsuba (non_tos_index);
2313      }
2314      break;
2315
2316    case lir_mul_strictfp: // fall through
2317    case lir_mul:
2318      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2319      else if (dest_is_tos)    __ fmul (non_tos_index);
2320      else                     __ fmula(non_tos_index);
2321      break;
2322
2323    case lir_div_strictfp: // fall through
2324    case lir_div:
2325      if (left_is_tos) {
2326        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2327        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2328        else                   __ fdivra(non_tos_index);
2329      } else {
2330        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2331        else if (dest_is_tos)  __ fdivr (non_tos_index);
2332        else                   __ fdiva (non_tos_index);
2333      }
2334      break;
2335
2336    case lir_rem:
2337      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2338      __ fremr(noreg);
2339      break;
2340
2341    default:
2342      ShouldNotReachHere();
2343  }
2344}
2345
2346
2347void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2348  if (value->is_double_xmm()) {
2349    switch(code) {
2350      case lir_abs :
2351        {
2352          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2353            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2354          }
2355          __ andpd(dest->as_xmm_double_reg(),
2356                    ExternalAddress((address)double_signmask_pool));
2357        }
2358        break;
2359
2360      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2361      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2362      default      : ShouldNotReachHere();
2363    }
2364
2365  } else if (value->is_double_fpu()) {
2366    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2367    switch(code) {
2368      case lir_log10 : __ flog10() ; break;
2369      case lir_abs   : __ fabs() ; break;
2370      case lir_sqrt  : __ fsqrt(); break;
2371      case lir_tan :
2372        // Should consider not saving rbx, if not necessary
2373        __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2374        break;
2375      default      : ShouldNotReachHere();
2376    }
2377  } else {
2378    Unimplemented();
2379  }
2380}
2381
2382void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2383  // assert(left->destroys_register(), "check");
2384  if (left->is_single_cpu()) {
2385    Register reg = left->as_register();
2386    if (right->is_constant()) {
2387      int val = right->as_constant_ptr()->as_jint();
2388      switch (code) {
2389        case lir_logic_and: __ andl (reg, val); break;
2390        case lir_logic_or:  __ orl  (reg, val); break;
2391        case lir_logic_xor: __ xorl (reg, val); break;
2392        default: ShouldNotReachHere();
2393      }
2394    } else if (right->is_stack()) {
2395      // added support for stack operands
2396      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2397      switch (code) {
2398        case lir_logic_and: __ andl (reg, raddr); break;
2399        case lir_logic_or:  __ orl  (reg, raddr); break;
2400        case lir_logic_xor: __ xorl (reg, raddr); break;
2401        default: ShouldNotReachHere();
2402      }
2403    } else {
2404      Register rright = right->as_register();
2405      switch (code) {
2406        case lir_logic_and: __ andptr (reg, rright); break;
2407        case lir_logic_or : __ orptr  (reg, rright); break;
2408        case lir_logic_xor: __ xorptr (reg, rright); break;
2409        default: ShouldNotReachHere();
2410      }
2411    }
2412    move_regs(reg, dst->as_register());
2413  } else {
2414    Register l_lo = left->as_register_lo();
2415    Register l_hi = left->as_register_hi();
2416    if (right->is_constant()) {
2417#ifdef _LP64
2418      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2419      switch (code) {
2420        case lir_logic_and:
2421          __ andq(l_lo, rscratch1);
2422          break;
2423        case lir_logic_or:
2424          __ orq(l_lo, rscratch1);
2425          break;
2426        case lir_logic_xor:
2427          __ xorq(l_lo, rscratch1);
2428          break;
2429        default: ShouldNotReachHere();
2430      }
2431#else
2432      int r_lo = right->as_constant_ptr()->as_jint_lo();
2433      int r_hi = right->as_constant_ptr()->as_jint_hi();
2434      switch (code) {
2435        case lir_logic_and:
2436          __ andl(l_lo, r_lo);
2437          __ andl(l_hi, r_hi);
2438          break;
2439        case lir_logic_or:
2440          __ orl(l_lo, r_lo);
2441          __ orl(l_hi, r_hi);
2442          break;
2443        case lir_logic_xor:
2444          __ xorl(l_lo, r_lo);
2445          __ xorl(l_hi, r_hi);
2446          break;
2447        default: ShouldNotReachHere();
2448      }
2449#endif // _LP64
2450    } else {
2451#ifdef _LP64
2452      Register r_lo;
2453      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2454        r_lo = right->as_register();
2455      } else {
2456        r_lo = right->as_register_lo();
2457      }
2458#else
2459      Register r_lo = right->as_register_lo();
2460      Register r_hi = right->as_register_hi();
2461      assert(l_lo != r_hi, "overwriting registers");
2462#endif
2463      switch (code) {
2464        case lir_logic_and:
2465          __ andptr(l_lo, r_lo);
2466          NOT_LP64(__ andptr(l_hi, r_hi);)
2467          break;
2468        case lir_logic_or:
2469          __ orptr(l_lo, r_lo);
2470          NOT_LP64(__ orptr(l_hi, r_hi);)
2471          break;
2472        case lir_logic_xor:
2473          __ xorptr(l_lo, r_lo);
2474          NOT_LP64(__ xorptr(l_hi, r_hi);)
2475          break;
2476        default: ShouldNotReachHere();
2477      }
2478    }
2479
2480    Register dst_lo = dst->as_register_lo();
2481    Register dst_hi = dst->as_register_hi();
2482
2483#ifdef _LP64
2484    move_regs(l_lo, dst_lo);
2485#else
2486    if (dst_lo == l_hi) {
2487      assert(dst_hi != l_lo, "overwriting registers");
2488      move_regs(l_hi, dst_hi);
2489      move_regs(l_lo, dst_lo);
2490    } else {
2491      assert(dst_lo != l_hi, "overwriting registers");
2492      move_regs(l_lo, dst_lo);
2493      move_regs(l_hi, dst_hi);
2494    }
2495#endif // _LP64
2496  }
2497}
2498
2499
2500// we assume that rax, and rdx can be overwritten
2501void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2502
2503  assert(left->is_single_cpu(),   "left must be register");
2504  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2505  assert(result->is_single_cpu(), "result must be register");
2506
2507  //  assert(left->destroys_register(), "check");
2508  //  assert(right->destroys_register(), "check");
2509
2510  Register lreg = left->as_register();
2511  Register dreg = result->as_register();
2512
2513  if (right->is_constant()) {
2514    int divisor = right->as_constant_ptr()->as_jint();
2515    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2516    if (code == lir_idiv) {
2517      assert(lreg == rax, "must be rax,");
2518      assert(temp->as_register() == rdx, "tmp register must be rdx");
2519      __ cdql(); // sign extend into rdx:rax
2520      if (divisor == 2) {
2521        __ subl(lreg, rdx);
2522      } else {
2523        __ andl(rdx, divisor - 1);
2524        __ addl(lreg, rdx);
2525      }
2526      __ sarl(lreg, log2_intptr(divisor));
2527      move_regs(lreg, dreg);
2528    } else if (code == lir_irem) {
2529      Label done;
2530      __ mov(dreg, lreg);
2531      __ andl(dreg, 0x80000000 | (divisor - 1));
2532      __ jcc(Assembler::positive, done);
2533      __ decrement(dreg);
2534      __ orl(dreg, ~(divisor - 1));
2535      __ increment(dreg);
2536      __ bind(done);
2537    } else {
2538      ShouldNotReachHere();
2539    }
2540  } else {
2541    Register rreg = right->as_register();
2542    assert(lreg == rax, "left register must be rax,");
2543    assert(rreg != rdx, "right register must not be rdx");
2544    assert(temp->as_register() == rdx, "tmp register must be rdx");
2545
2546    move_regs(lreg, rax);
2547
2548    int idivl_offset = __ corrected_idivl(rreg);
2549    add_debug_info_for_div0(idivl_offset, info);
2550    if (code == lir_irem) {
2551      move_regs(rdx, dreg); // result is in rdx
2552    } else {
2553      move_regs(rax, dreg);
2554    }
2555  }
2556}
2557
2558
2559void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2560  if (opr1->is_single_cpu()) {
2561    Register reg1 = opr1->as_register();
2562    if (opr2->is_single_cpu()) {
2563      // cpu register - cpu register
2564      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2565        __ cmpptr(reg1, opr2->as_register());
2566      } else {
2567        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2568        __ cmpl(reg1, opr2->as_register());
2569      }
2570    } else if (opr2->is_stack()) {
2571      // cpu register - stack
2572      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2573        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2574      } else {
2575        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2576      }
2577    } else if (opr2->is_constant()) {
2578      // cpu register - constant
2579      LIR_Const* c = opr2->as_constant_ptr();
2580      if (c->type() == T_INT) {
2581        __ cmpl(reg1, c->as_jint());
2582      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2583        // In 64bit oops are single register
2584        jobject o = c->as_jobject();
2585        if (o == NULL) {
2586          __ cmpptr(reg1, (int32_t)NULL_WORD);
2587        } else {
2588#ifdef _LP64
2589          __ movoop(rscratch1, o);
2590          __ cmpptr(reg1, rscratch1);
2591#else
2592          __ cmpoop(reg1, c->as_jobject());
2593#endif // _LP64
2594        }
2595      } else {
2596        fatal("unexpected type: %s", basictype_to_str(c->type()));
2597      }
2598      // cpu register - address
2599    } else if (opr2->is_address()) {
2600      if (op->info() != NULL) {
2601        add_debug_info_for_null_check_here(op->info());
2602      }
2603      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2604    } else {
2605      ShouldNotReachHere();
2606    }
2607
2608  } else if(opr1->is_double_cpu()) {
2609    Register xlo = opr1->as_register_lo();
2610    Register xhi = opr1->as_register_hi();
2611    if (opr2->is_double_cpu()) {
2612#ifdef _LP64
2613      __ cmpptr(xlo, opr2->as_register_lo());
2614#else
2615      // cpu register - cpu register
2616      Register ylo = opr2->as_register_lo();
2617      Register yhi = opr2->as_register_hi();
2618      __ subl(xlo, ylo);
2619      __ sbbl(xhi, yhi);
2620      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2621        __ orl(xhi, xlo);
2622      }
2623#endif // _LP64
2624    } else if (opr2->is_constant()) {
2625      // cpu register - constant 0
2626      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2627#ifdef _LP64
2628      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2629#else
2630      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2631      __ orl(xhi, xlo);
2632#endif // _LP64
2633    } else {
2634      ShouldNotReachHere();
2635    }
2636
2637  } else if (opr1->is_single_xmm()) {
2638    XMMRegister reg1 = opr1->as_xmm_float_reg();
2639    if (opr2->is_single_xmm()) {
2640      // xmm register - xmm register
2641      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2642    } else if (opr2->is_stack()) {
2643      // xmm register - stack
2644      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2645    } else if (opr2->is_constant()) {
2646      // xmm register - constant
2647      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2648    } else if (opr2->is_address()) {
2649      // xmm register - address
2650      if (op->info() != NULL) {
2651        add_debug_info_for_null_check_here(op->info());
2652      }
2653      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2654    } else {
2655      ShouldNotReachHere();
2656    }
2657
2658  } else if (opr1->is_double_xmm()) {
2659    XMMRegister reg1 = opr1->as_xmm_double_reg();
2660    if (opr2->is_double_xmm()) {
2661      // xmm register - xmm register
2662      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2663    } else if (opr2->is_stack()) {
2664      // xmm register - stack
2665      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2666    } else if (opr2->is_constant()) {
2667      // xmm register - constant
2668      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2669    } else if (opr2->is_address()) {
2670      // xmm register - address
2671      if (op->info() != NULL) {
2672        add_debug_info_for_null_check_here(op->info());
2673      }
2674      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2675    } else {
2676      ShouldNotReachHere();
2677    }
2678
2679  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2680    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2681    assert(opr2->is_fpu_register(), "both must be registers");
2682    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2683
2684  } else if (opr1->is_address() && opr2->is_constant()) {
2685    LIR_Const* c = opr2->as_constant_ptr();
2686#ifdef _LP64
2687    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2688      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2689      __ movoop(rscratch1, c->as_jobject());
2690    }
2691#endif // LP64
2692    if (op->info() != NULL) {
2693      add_debug_info_for_null_check_here(op->info());
2694    }
2695    // special case: address - constant
2696    LIR_Address* addr = opr1->as_address_ptr();
2697    if (c->type() == T_INT) {
2698      __ cmpl(as_Address(addr), c->as_jint());
2699    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2700#ifdef _LP64
2701      // %%% Make this explode if addr isn't reachable until we figure out a
2702      // better strategy by giving noreg as the temp for as_Address
2703      __ cmpptr(rscratch1, as_Address(addr, noreg));
2704#else
2705      __ cmpoop(as_Address(addr), c->as_jobject());
2706#endif // _LP64
2707    } else {
2708      ShouldNotReachHere();
2709    }
2710
2711  } else {
2712    ShouldNotReachHere();
2713  }
2714}
2715
2716void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2717  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2718    if (left->is_single_xmm()) {
2719      assert(right->is_single_xmm(), "must match");
2720      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2721    } else if (left->is_double_xmm()) {
2722      assert(right->is_double_xmm(), "must match");
2723      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2724
2725    } else {
2726      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2727      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2728
2729      assert(left->fpu() == 0, "left must be on TOS");
2730      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2731                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2732    }
2733  } else {
2734    assert(code == lir_cmp_l2i, "check");
2735#ifdef _LP64
2736    Label done;
2737    Register dest = dst->as_register();
2738    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2739    __ movl(dest, -1);
2740    __ jccb(Assembler::less, done);
2741    __ set_byte_if_not_zero(dest);
2742    __ movzbl(dest, dest);
2743    __ bind(done);
2744#else
2745    __ lcmp2int(left->as_register_hi(),
2746                left->as_register_lo(),
2747                right->as_register_hi(),
2748                right->as_register_lo());
2749    move_regs(left->as_register_hi(), dst->as_register());
2750#endif // _LP64
2751  }
2752}
2753
2754
2755void LIR_Assembler::align_call(LIR_Code code) {
2756  if (os::is_MP()) {
2757    // make sure that the displacement word of the call ends up word aligned
2758    int offset = __ offset();
2759    switch (code) {
2760      case lir_static_call:
2761      case lir_optvirtual_call:
2762      case lir_dynamic_call:
2763        offset += NativeCall::displacement_offset;
2764        break;
2765      case lir_icvirtual_call:
2766        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2767      break;
2768      case lir_virtual_call:  // currently, sparc-specific for niagara
2769      default: ShouldNotReachHere();
2770    }
2771    __ align(BytesPerWord, offset);
2772  }
2773}
2774
2775
2776void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2777  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2778         "must be aligned");
2779  __ call(AddressLiteral(op->addr(), rtype));
2780  add_call_info(code_offset(), op->info());
2781}
2782
2783
2784void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2785  __ ic_call(op->addr());
2786  add_call_info(code_offset(), op->info());
2787  assert(!os::is_MP() ||
2788         (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2789         "must be aligned");
2790}
2791
2792
2793/* Currently, vtable-dispatch is only enabled for sparc platforms */
2794void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2795  ShouldNotReachHere();
2796}
2797
2798
2799void LIR_Assembler::emit_static_call_stub() {
2800  address call_pc = __ pc();
2801  address stub = __ start_a_stub(call_stub_size);
2802  if (stub == NULL) {
2803    bailout("static call stub overflow");
2804    return;
2805  }
2806
2807  int start = __ offset();
2808  if (os::is_MP()) {
2809    // make sure that the displacement word of the call ends up word aligned
2810    __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2811  }
2812  __ relocate(static_stub_Relocation::spec(call_pc));
2813  __ mov_metadata(rbx, (Metadata*)NULL);
2814  // must be set to -1 at code generation time
2815  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2816  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2817  __ jump(RuntimeAddress(__ pc()));
2818
2819  assert(__ offset() - start <= call_stub_size, "stub too big");
2820  __ end_a_stub();
2821}
2822
2823
2824void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2825  assert(exceptionOop->as_register() == rax, "must match");
2826  assert(exceptionPC->as_register() == rdx, "must match");
2827
2828  // exception object is not added to oop map by LinearScan
2829  // (LinearScan assumes that no oops are in fixed registers)
2830  info->add_register_oop(exceptionOop);
2831  Runtime1::StubID unwind_id;
2832
2833  // get current pc information
2834  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2835  int pc_for_athrow_offset = __ offset();
2836  InternalAddress pc_for_athrow(__ pc());
2837  __ lea(exceptionPC->as_register(), pc_for_athrow);
2838  add_call_info(pc_for_athrow_offset, info); // for exception handler
2839
2840  __ verify_not_null_oop(rax);
2841  // search an exception handler (rax: exception oop, rdx: throwing pc)
2842  if (compilation()->has_fpu_code()) {
2843    unwind_id = Runtime1::handle_exception_id;
2844  } else {
2845    unwind_id = Runtime1::handle_exception_nofpu_id;
2846  }
2847  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2848
2849  // enough room for two byte trap
2850  __ nop();
2851}
2852
2853
2854void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2855  assert(exceptionOop->as_register() == rax, "must match");
2856
2857  __ jmp(_unwind_handler_entry);
2858}
2859
2860
2861void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2862
2863  // optimized version for linear scan:
2864  // * count must be already in ECX (guaranteed by LinearScan)
2865  // * left and dest must be equal
2866  // * tmp must be unused
2867  assert(count->as_register() == SHIFT_count, "count must be in ECX");
2868  assert(left == dest, "left and dest must be equal");
2869  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2870
2871  if (left->is_single_cpu()) {
2872    Register value = left->as_register();
2873    assert(value != SHIFT_count, "left cannot be ECX");
2874
2875    switch (code) {
2876      case lir_shl:  __ shll(value); break;
2877      case lir_shr:  __ sarl(value); break;
2878      case lir_ushr: __ shrl(value); break;
2879      default: ShouldNotReachHere();
2880    }
2881  } else if (left->is_double_cpu()) {
2882    Register lo = left->as_register_lo();
2883    Register hi = left->as_register_hi();
2884    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2885#ifdef _LP64
2886    switch (code) {
2887      case lir_shl:  __ shlptr(lo);        break;
2888      case lir_shr:  __ sarptr(lo);        break;
2889      case lir_ushr: __ shrptr(lo);        break;
2890      default: ShouldNotReachHere();
2891    }
2892#else
2893
2894    switch (code) {
2895      case lir_shl:  __ lshl(hi, lo);        break;
2896      case lir_shr:  __ lshr(hi, lo, true);  break;
2897      case lir_ushr: __ lshr(hi, lo, false); break;
2898      default: ShouldNotReachHere();
2899    }
2900#endif // LP64
2901  } else {
2902    ShouldNotReachHere();
2903  }
2904}
2905
2906
2907void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2908  if (dest->is_single_cpu()) {
2909    // first move left into dest so that left is not destroyed by the shift
2910    Register value = dest->as_register();
2911    count = count & 0x1F; // Java spec
2912
2913    move_regs(left->as_register(), value);
2914    switch (code) {
2915      case lir_shl:  __ shll(value, count); break;
2916      case lir_shr:  __ sarl(value, count); break;
2917      case lir_ushr: __ shrl(value, count); break;
2918      default: ShouldNotReachHere();
2919    }
2920  } else if (dest->is_double_cpu()) {
2921#ifndef _LP64
2922    Unimplemented();
2923#else
2924    // first move left into dest so that left is not destroyed by the shift
2925    Register value = dest->as_register_lo();
2926    count = count & 0x1F; // Java spec
2927
2928    move_regs(left->as_register_lo(), value);
2929    switch (code) {
2930      case lir_shl:  __ shlptr(value, count); break;
2931      case lir_shr:  __ sarptr(value, count); break;
2932      case lir_ushr: __ shrptr(value, count); break;
2933      default: ShouldNotReachHere();
2934    }
2935#endif // _LP64
2936  } else {
2937    ShouldNotReachHere();
2938  }
2939}
2940
2941
2942void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2943  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2944  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2945  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2946  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2947}
2948
2949
2950void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2951  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2952  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2953  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2954  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2955}
2956
2957
2958void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2959  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2960  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2961  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2962  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2963}
2964
2965
2966void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
2967  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2968  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2969  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2970  __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
2971}
2972
2973
2974// This code replaces a call to arraycopy; no exception may
2975// be thrown in this code, they must be thrown in the System.arraycopy
2976// activation frame; we could save some checks if this would not be the case
2977void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2978  ciArrayKlass* default_type = op->expected_type();
2979  Register src = op->src()->as_register();
2980  Register dst = op->dst()->as_register();
2981  Register src_pos = op->src_pos()->as_register();
2982  Register dst_pos = op->dst_pos()->as_register();
2983  Register length  = op->length()->as_register();
2984  Register tmp = op->tmp()->as_register();
2985
2986  CodeStub* stub = op->stub();
2987  int flags = op->flags();
2988  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2989  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2990
2991  // if we don't know anything, just go through the generic arraycopy
2992  if (default_type == NULL) {
2993    Label done;
2994    // save outgoing arguments on stack in case call to System.arraycopy is needed
2995    // HACK ALERT. This code used to push the parameters in a hardwired fashion
2996    // for interpreter calling conventions. Now we have to do it in new style conventions.
2997    // For the moment until C1 gets the new register allocator I just force all the
2998    // args to the right place (except the register args) and then on the back side
2999    // reload the register args properly if we go slow path. Yuck
3000
3001    // These are proper for the calling convention
3002    store_parameter(length, 2);
3003    store_parameter(dst_pos, 1);
3004    store_parameter(dst, 0);
3005
3006    // these are just temporary placements until we need to reload
3007    store_parameter(src_pos, 3);
3008    store_parameter(src, 4);
3009    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3010
3011    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3012
3013    address copyfunc_addr = StubRoutines::generic_arraycopy();
3014
3015    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3016#ifdef _LP64
3017    // The arguments are in java calling convention so we can trivially shift them to C
3018    // convention
3019    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3020    __ mov(c_rarg0, j_rarg0);
3021    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3022    __ mov(c_rarg1, j_rarg1);
3023    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3024    __ mov(c_rarg2, j_rarg2);
3025    assert_different_registers(c_rarg3, j_rarg4);
3026    __ mov(c_rarg3, j_rarg3);
3027#ifdef _WIN64
3028    // Allocate abi space for args but be sure to keep stack aligned
3029    __ subptr(rsp, 6*wordSize);
3030    store_parameter(j_rarg4, 4);
3031    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3032      __ call(RuntimeAddress(C_entry));
3033    } else {
3034#ifndef PRODUCT
3035      if (PrintC1Statistics) {
3036        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3037      }
3038#endif
3039      __ call(RuntimeAddress(copyfunc_addr));
3040    }
3041    __ addptr(rsp, 6*wordSize);
3042#else
3043    __ mov(c_rarg4, j_rarg4);
3044    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3045      __ call(RuntimeAddress(C_entry));
3046    } else {
3047#ifndef PRODUCT
3048      if (PrintC1Statistics) {
3049        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3050      }
3051#endif
3052      __ call(RuntimeAddress(copyfunc_addr));
3053    }
3054#endif // _WIN64
3055#else
3056    __ push(length);
3057    __ push(dst_pos);
3058    __ push(dst);
3059    __ push(src_pos);
3060    __ push(src);
3061
3062    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3063      __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3064    } else {
3065#ifndef PRODUCT
3066      if (PrintC1Statistics) {
3067        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3068      }
3069#endif
3070      __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3071    }
3072
3073#endif // _LP64
3074
3075    __ cmpl(rax, 0);
3076    __ jcc(Assembler::equal, *stub->continuation());
3077
3078    if (copyfunc_addr != NULL) {
3079      __ mov(tmp, rax);
3080      __ xorl(tmp, -1);
3081    }
3082
3083    // Reload values from the stack so they are where the stub
3084    // expects them.
3085    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3086    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3087    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3088    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3089    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3090
3091    if (copyfunc_addr != NULL) {
3092      __ subl(length, tmp);
3093      __ addl(src_pos, tmp);
3094      __ addl(dst_pos, tmp);
3095    }
3096    __ jmp(*stub->entry());
3097
3098    __ bind(*stub->continuation());
3099    return;
3100  }
3101
3102  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3103
3104  int elem_size = type2aelembytes(basic_type);
3105  Address::ScaleFactor scale;
3106
3107  switch (elem_size) {
3108    case 1 :
3109      scale = Address::times_1;
3110      break;
3111    case 2 :
3112      scale = Address::times_2;
3113      break;
3114    case 4 :
3115      scale = Address::times_4;
3116      break;
3117    case 8 :
3118      scale = Address::times_8;
3119      break;
3120    default:
3121      scale = Address::no_scale;
3122      ShouldNotReachHere();
3123  }
3124
3125  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3126  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3127  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3128  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3129
3130  // length and pos's are all sign extended at this point on 64bit
3131
3132  // test for NULL
3133  if (flags & LIR_OpArrayCopy::src_null_check) {
3134    __ testptr(src, src);
3135    __ jcc(Assembler::zero, *stub->entry());
3136  }
3137  if (flags & LIR_OpArrayCopy::dst_null_check) {
3138    __ testptr(dst, dst);
3139    __ jcc(Assembler::zero, *stub->entry());
3140  }
3141
3142  // check if negative
3143  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3144    __ testl(src_pos, src_pos);
3145    __ jcc(Assembler::less, *stub->entry());
3146  }
3147  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3148    __ testl(dst_pos, dst_pos);
3149    __ jcc(Assembler::less, *stub->entry());
3150  }
3151
3152  if (flags & LIR_OpArrayCopy::src_range_check) {
3153    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3154    __ cmpl(tmp, src_length_addr);
3155    __ jcc(Assembler::above, *stub->entry());
3156  }
3157  if (flags & LIR_OpArrayCopy::dst_range_check) {
3158    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3159    __ cmpl(tmp, dst_length_addr);
3160    __ jcc(Assembler::above, *stub->entry());
3161  }
3162
3163  if (flags & LIR_OpArrayCopy::length_positive_check) {
3164    __ testl(length, length);
3165    __ jcc(Assembler::less, *stub->entry());
3166    __ jcc(Assembler::zero, *stub->continuation());
3167  }
3168
3169#ifdef _LP64
3170  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3171  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3172#endif
3173
3174  if (flags & LIR_OpArrayCopy::type_check) {
3175    // We don't know the array types are compatible
3176    if (basic_type != T_OBJECT) {
3177      // Simple test for basic type arrays
3178      if (UseCompressedClassPointers) {
3179        __ movl(tmp, src_klass_addr);
3180        __ cmpl(tmp, dst_klass_addr);
3181      } else {
3182        __ movptr(tmp, src_klass_addr);
3183        __ cmpptr(tmp, dst_klass_addr);
3184      }
3185      __ jcc(Assembler::notEqual, *stub->entry());
3186    } else {
3187      // For object arrays, if src is a sub class of dst then we can
3188      // safely do the copy.
3189      Label cont, slow;
3190
3191      __ push(src);
3192      __ push(dst);
3193
3194      __ load_klass(src, src);
3195      __ load_klass(dst, dst);
3196
3197      __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3198
3199      __ push(src);
3200      __ push(dst);
3201      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3202      __ pop(dst);
3203      __ pop(src);
3204
3205      __ cmpl(src, 0);
3206      __ jcc(Assembler::notEqual, cont);
3207
3208      __ bind(slow);
3209      __ pop(dst);
3210      __ pop(src);
3211
3212      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3213      if (copyfunc_addr != NULL) { // use stub if available
3214        // src is not a sub class of dst so we have to do a
3215        // per-element check.
3216
3217        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3218        if ((flags & mask) != mask) {
3219          // Check that at least both of them object arrays.
3220          assert(flags & mask, "one of the two should be known to be an object array");
3221
3222          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3223            __ load_klass(tmp, src);
3224          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3225            __ load_klass(tmp, dst);
3226          }
3227          int lh_offset = in_bytes(Klass::layout_helper_offset());
3228          Address klass_lh_addr(tmp, lh_offset);
3229          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3230          __ cmpl(klass_lh_addr, objArray_lh);
3231          __ jcc(Assembler::notEqual, *stub->entry());
3232        }
3233
3234       // Spill because stubs can use any register they like and it's
3235       // easier to restore just those that we care about.
3236       store_parameter(dst, 0);
3237       store_parameter(dst_pos, 1);
3238       store_parameter(length, 2);
3239       store_parameter(src_pos, 3);
3240       store_parameter(src, 4);
3241
3242#ifndef _LP64
3243        __ movptr(tmp, dst_klass_addr);
3244        __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3245        __ push(tmp);
3246        __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3247        __ push(tmp);
3248        __ push(length);
3249        __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3250        __ push(tmp);
3251        __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3252        __ push(tmp);
3253
3254        __ call_VM_leaf(copyfunc_addr, 5);
3255#else
3256        __ movl2ptr(length, length); //higher 32bits must be null
3257
3258        __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3259        assert_different_registers(c_rarg0, dst, dst_pos, length);
3260        __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3261        assert_different_registers(c_rarg1, dst, length);
3262
3263        __ mov(c_rarg2, length);
3264        assert_different_registers(c_rarg2, dst);
3265
3266#ifdef _WIN64
3267        // Allocate abi space for args but be sure to keep stack aligned
3268        __ subptr(rsp, 6*wordSize);
3269        __ load_klass(c_rarg3, dst);
3270        __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3271        store_parameter(c_rarg3, 4);
3272        __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3273        __ call(RuntimeAddress(copyfunc_addr));
3274        __ addptr(rsp, 6*wordSize);
3275#else
3276        __ load_klass(c_rarg4, dst);
3277        __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3278        __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3279        __ call(RuntimeAddress(copyfunc_addr));
3280#endif
3281
3282#endif
3283
3284#ifndef PRODUCT
3285        if (PrintC1Statistics) {
3286          Label failed;
3287          __ testl(rax, rax);
3288          __ jcc(Assembler::notZero, failed);
3289          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3290          __ bind(failed);
3291        }
3292#endif
3293
3294        __ testl(rax, rax);
3295        __ jcc(Assembler::zero, *stub->continuation());
3296
3297#ifndef PRODUCT
3298        if (PrintC1Statistics) {
3299          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3300        }
3301#endif
3302
3303        __ mov(tmp, rax);
3304
3305        __ xorl(tmp, -1);
3306
3307        // Restore previously spilled arguments
3308        __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3309        __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3310        __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3311        __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3312        __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3313
3314
3315        __ subl(length, tmp);
3316        __ addl(src_pos, tmp);
3317        __ addl(dst_pos, tmp);
3318      }
3319
3320      __ jmp(*stub->entry());
3321
3322      __ bind(cont);
3323      __ pop(dst);
3324      __ pop(src);
3325    }
3326  }
3327
3328#ifdef ASSERT
3329  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3330    // Sanity check the known type with the incoming class.  For the
3331    // primitive case the types must match exactly with src.klass and
3332    // dst.klass each exactly matching the default type.  For the
3333    // object array case, if no type check is needed then either the
3334    // dst type is exactly the expected type and the src type is a
3335    // subtype which we can't check or src is the same array as dst
3336    // but not necessarily exactly of type default_type.
3337    Label known_ok, halt;
3338    __ mov_metadata(tmp, default_type->constant_encoding());
3339#ifdef _LP64
3340    if (UseCompressedClassPointers) {
3341      __ encode_klass_not_null(tmp);
3342    }
3343#endif
3344
3345    if (basic_type != T_OBJECT) {
3346
3347      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3348      else                   __ cmpptr(tmp, dst_klass_addr);
3349      __ jcc(Assembler::notEqual, halt);
3350      if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3351      else                   __ cmpptr(tmp, src_klass_addr);
3352      __ jcc(Assembler::equal, known_ok);
3353    } else {
3354      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3355      else                   __ cmpptr(tmp, dst_klass_addr);
3356      __ jcc(Assembler::equal, known_ok);
3357      __ cmpptr(src, dst);
3358      __ jcc(Assembler::equal, known_ok);
3359    }
3360    __ bind(halt);
3361    __ stop("incorrect type information in arraycopy");
3362    __ bind(known_ok);
3363  }
3364#endif
3365
3366#ifndef PRODUCT
3367  if (PrintC1Statistics) {
3368    __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3369  }
3370#endif
3371
3372#ifdef _LP64
3373  assert_different_registers(c_rarg0, dst, dst_pos, length);
3374  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3375  assert_different_registers(c_rarg1, length);
3376  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3377  __ mov(c_rarg2, length);
3378
3379#else
3380  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3381  store_parameter(tmp, 0);
3382  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3383  store_parameter(tmp, 1);
3384  store_parameter(length, 2);
3385#endif // _LP64
3386
3387  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3388  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3389  const char *name;
3390  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3391  __ call_VM_leaf(entry, 0);
3392
3393  __ bind(*stub->continuation());
3394}
3395
3396void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3397  assert(op->crc()->is_single_cpu(),  "crc must be register");
3398  assert(op->val()->is_single_cpu(),  "byte value must be register");
3399  assert(op->result_opr()->is_single_cpu(), "result must be register");
3400  Register crc = op->crc()->as_register();
3401  Register val = op->val()->as_register();
3402  Register res = op->result_opr()->as_register();
3403
3404  assert_different_registers(val, crc, res);
3405
3406  __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3407  __ notl(crc); // ~crc
3408  __ update_byte_crc32(crc, val, res);
3409  __ notl(crc); // ~crc
3410  __ mov(res, crc);
3411}
3412
3413void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3414  Register obj = op->obj_opr()->as_register();  // may not be an oop
3415  Register hdr = op->hdr_opr()->as_register();
3416  Register lock = op->lock_opr()->as_register();
3417  if (!UseFastLocking) {
3418    __ jmp(*op->stub()->entry());
3419  } else if (op->code() == lir_lock) {
3420    Register scratch = noreg;
3421    if (UseBiasedLocking) {
3422      scratch = op->scratch_opr()->as_register();
3423    }
3424    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3425    // add debug info for NullPointerException only if one is possible
3426    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3427    if (op->info() != NULL) {
3428      add_debug_info_for_null_check(null_check_offset, op->info());
3429    }
3430    // done
3431  } else if (op->code() == lir_unlock) {
3432    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3433    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3434  } else {
3435    Unimplemented();
3436  }
3437  __ bind(*op->stub()->continuation());
3438}
3439
3440
3441void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3442  ciMethod* method = op->profiled_method();
3443  int bci          = op->profiled_bci();
3444  ciMethod* callee = op->profiled_callee();
3445
3446  // Update counter for all call types
3447  ciMethodData* md = method->method_data_or_null();
3448  assert(md != NULL, "Sanity");
3449  ciProfileData* data = md->bci_to_data(bci);
3450  assert(data->is_CounterData(), "need CounterData for calls");
3451  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3452  Register mdo  = op->mdo()->as_register();
3453  __ mov_metadata(mdo, md->constant_encoding());
3454  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3455  Bytecodes::Code bc = method->java_code_at_bci(bci);
3456  const bool callee_is_static = callee->is_loaded() && callee->is_static();
3457  // Perform additional virtual call profiling for invokevirtual and
3458  // invokeinterface bytecodes
3459  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3460      !callee_is_static &&  // required for optimized MH invokes
3461      C1ProfileVirtualCalls) {
3462    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3463    Register recv = op->recv()->as_register();
3464    assert_different_registers(mdo, recv);
3465    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3466    ciKlass* known_klass = op->known_holder();
3467    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3468      // We know the type that will be seen at this call site; we can
3469      // statically update the MethodData* rather than needing to do
3470      // dynamic tests on the receiver type
3471
3472      // NOTE: we should probably put a lock around this search to
3473      // avoid collisions by concurrent compilations
3474      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3475      uint i;
3476      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3477        ciKlass* receiver = vc_data->receiver(i);
3478        if (known_klass->equals(receiver)) {
3479          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3480          __ addptr(data_addr, DataLayout::counter_increment);
3481          return;
3482        }
3483      }
3484
3485      // Receiver type not found in profile data; select an empty slot
3486
3487      // Note that this is less efficient than it should be because it
3488      // always does a write to the receiver part of the
3489      // VirtualCallData rather than just the first time
3490      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3491        ciKlass* receiver = vc_data->receiver(i);
3492        if (receiver == NULL) {
3493          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3494          __ mov_metadata(recv_addr, known_klass->constant_encoding());
3495          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3496          __ addptr(data_addr, DataLayout::counter_increment);
3497          return;
3498        }
3499      }
3500    } else {
3501      __ load_klass(recv, recv);
3502      Label update_done;
3503      type_profile_helper(mdo, md, data, recv, &update_done);
3504      // Receiver did not match any saved receiver and there is no empty row for it.
3505      // Increment total counter to indicate polymorphic case.
3506      __ addptr(counter_addr, DataLayout::counter_increment);
3507
3508      __ bind(update_done);
3509    }
3510  } else {
3511    // Static call
3512    __ addptr(counter_addr, DataLayout::counter_increment);
3513  }
3514}
3515
3516void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3517  Register obj = op->obj()->as_register();
3518  Register tmp = op->tmp()->as_pointer_register();
3519  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3520  ciKlass* exact_klass = op->exact_klass();
3521  intptr_t current_klass = op->current_klass();
3522  bool not_null = op->not_null();
3523  bool no_conflict = op->no_conflict();
3524
3525  Label update, next, none;
3526
3527  bool do_null = !not_null;
3528  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3529  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3530
3531  assert(do_null || do_update, "why are we here?");
3532  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3533
3534  __ verify_oop(obj);
3535
3536  if (tmp != obj) {
3537    __ mov(tmp, obj);
3538  }
3539  if (do_null) {
3540    __ testptr(tmp, tmp);
3541    __ jccb(Assembler::notZero, update);
3542    if (!TypeEntries::was_null_seen(current_klass)) {
3543      __ orptr(mdo_addr, TypeEntries::null_seen);
3544    }
3545    if (do_update) {
3546#ifndef ASSERT
3547      __ jmpb(next);
3548    }
3549#else
3550      __ jmp(next);
3551    }
3552  } else {
3553    __ testptr(tmp, tmp);
3554    __ jccb(Assembler::notZero, update);
3555    __ stop("unexpect null obj");
3556#endif
3557  }
3558
3559  __ bind(update);
3560
3561  if (do_update) {
3562#ifdef ASSERT
3563    if (exact_klass != NULL) {
3564      Label ok;
3565      __ load_klass(tmp, tmp);
3566      __ push(tmp);
3567      __ mov_metadata(tmp, exact_klass->constant_encoding());
3568      __ cmpptr(tmp, Address(rsp, 0));
3569      __ jccb(Assembler::equal, ok);
3570      __ stop("exact klass and actual klass differ");
3571      __ bind(ok);
3572      __ pop(tmp);
3573    }
3574#endif
3575    if (!no_conflict) {
3576      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3577        if (exact_klass != NULL) {
3578          __ mov_metadata(tmp, exact_klass->constant_encoding());
3579        } else {
3580          __ load_klass(tmp, tmp);
3581        }
3582
3583        __ xorptr(tmp, mdo_addr);
3584        __ testptr(tmp, TypeEntries::type_klass_mask);
3585        // klass seen before, nothing to do. The unknown bit may have been
3586        // set already but no need to check.
3587        __ jccb(Assembler::zero, next);
3588
3589        __ testptr(tmp, TypeEntries::type_unknown);
3590        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3591
3592        if (TypeEntries::is_type_none(current_klass)) {
3593          __ cmpptr(mdo_addr, 0);
3594          __ jccb(Assembler::equal, none);
3595          __ cmpptr(mdo_addr, TypeEntries::null_seen);
3596          __ jccb(Assembler::equal, none);
3597          // There is a chance that the checks above (re-reading profiling
3598          // data from memory) fail if another thread has just set the
3599          // profiling to this obj's klass
3600          __ xorptr(tmp, mdo_addr);
3601          __ testptr(tmp, TypeEntries::type_klass_mask);
3602          __ jccb(Assembler::zero, next);
3603        }
3604      } else {
3605        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3606               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3607
3608        __ movptr(tmp, mdo_addr);
3609        __ testptr(tmp, TypeEntries::type_unknown);
3610        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3611      }
3612
3613      // different than before. Cannot keep accurate profile.
3614      __ orptr(mdo_addr, TypeEntries::type_unknown);
3615
3616      if (TypeEntries::is_type_none(current_klass)) {
3617        __ jmpb(next);
3618
3619        __ bind(none);
3620        // first time here. Set profile type.
3621        __ movptr(mdo_addr, tmp);
3622      }
3623    } else {
3624      // There's a single possible klass at this profile point
3625      assert(exact_klass != NULL, "should be");
3626      if (TypeEntries::is_type_none(current_klass)) {
3627        __ mov_metadata(tmp, exact_klass->constant_encoding());
3628        __ xorptr(tmp, mdo_addr);
3629        __ testptr(tmp, TypeEntries::type_klass_mask);
3630#ifdef ASSERT
3631        __ jcc(Assembler::zero, next);
3632
3633        {
3634          Label ok;
3635          __ push(tmp);
3636          __ cmpptr(mdo_addr, 0);
3637          __ jcc(Assembler::equal, ok);
3638          __ cmpptr(mdo_addr, TypeEntries::null_seen);
3639          __ jcc(Assembler::equal, ok);
3640          // may have been set by another thread
3641          __ mov_metadata(tmp, exact_klass->constant_encoding());
3642          __ xorptr(tmp, mdo_addr);
3643          __ testptr(tmp, TypeEntries::type_mask);
3644          __ jcc(Assembler::zero, ok);
3645
3646          __ stop("unexpected profiling mismatch");
3647          __ bind(ok);
3648          __ pop(tmp);
3649        }
3650#else
3651        __ jccb(Assembler::zero, next);
3652#endif
3653        // first time here. Set profile type.
3654        __ movptr(mdo_addr, tmp);
3655      } else {
3656        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3657               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3658
3659        __ movptr(tmp, mdo_addr);
3660        __ testptr(tmp, TypeEntries::type_unknown);
3661        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3662
3663        __ orptr(mdo_addr, TypeEntries::type_unknown);
3664      }
3665    }
3666
3667    __ bind(next);
3668  }
3669}
3670
3671void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3672  Unimplemented();
3673}
3674
3675
3676void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3677  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3678}
3679
3680
3681void LIR_Assembler::align_backward_branch_target() {
3682  __ align(BytesPerWord);
3683}
3684
3685
3686void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3687  if (left->is_single_cpu()) {
3688    __ negl(left->as_register());
3689    move_regs(left->as_register(), dest->as_register());
3690
3691  } else if (left->is_double_cpu()) {
3692    Register lo = left->as_register_lo();
3693#ifdef _LP64
3694    Register dst = dest->as_register_lo();
3695    __ movptr(dst, lo);
3696    __ negptr(dst);
3697#else
3698    Register hi = left->as_register_hi();
3699    __ lneg(hi, lo);
3700    if (dest->as_register_lo() == hi) {
3701      assert(dest->as_register_hi() != lo, "destroying register");
3702      move_regs(hi, dest->as_register_hi());
3703      move_regs(lo, dest->as_register_lo());
3704    } else {
3705      move_regs(lo, dest->as_register_lo());
3706      move_regs(hi, dest->as_register_hi());
3707    }
3708#endif // _LP64
3709
3710  } else if (dest->is_single_xmm()) {
3711    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3712      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3713    }
3714    if (UseAVX > 0) {
3715      __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3716                   ExternalAddress((address)float_signflip_pool));
3717    } else {
3718      __ xorps(dest->as_xmm_float_reg(),
3719               ExternalAddress((address)float_signflip_pool));
3720    }
3721  } else if (dest->is_double_xmm()) {
3722    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3723      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3724    }
3725    if (UseAVX > 0) {
3726      __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3727                   ExternalAddress((address)double_signflip_pool));
3728    } else {
3729      __ xorpd(dest->as_xmm_double_reg(),
3730               ExternalAddress((address)double_signflip_pool));
3731    }
3732  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3733    assert(left->fpu() == 0, "arg must be on TOS");
3734    assert(dest->fpu() == 0, "dest must be TOS");
3735    __ fchs();
3736
3737  } else {
3738    ShouldNotReachHere();
3739  }
3740}
3741
3742
3743void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3744  assert(addr->is_address() && dest->is_register(), "check");
3745  Register reg;
3746  reg = dest->as_pointer_register();
3747  __ lea(reg, as_Address(addr->as_address_ptr()));
3748}
3749
3750
3751
3752void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3753  assert(!tmp->is_valid(), "don't need temporary");
3754  __ call(RuntimeAddress(dest));
3755  if (info != NULL) {
3756    add_call_info_here(info);
3757  }
3758}
3759
3760
3761void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3762  assert(type == T_LONG, "only for volatile long fields");
3763
3764  if (info != NULL) {
3765    add_debug_info_for_null_check_here(info);
3766  }
3767
3768  if (src->is_double_xmm()) {
3769    if (dest->is_double_cpu()) {
3770#ifdef _LP64
3771      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3772#else
3773      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3774      __ psrlq(src->as_xmm_double_reg(), 32);
3775      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3776#endif // _LP64
3777    } else if (dest->is_double_stack()) {
3778      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3779    } else if (dest->is_address()) {
3780      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3781    } else {
3782      ShouldNotReachHere();
3783    }
3784
3785  } else if (dest->is_double_xmm()) {
3786    if (src->is_double_stack()) {
3787      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3788    } else if (src->is_address()) {
3789      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3790    } else {
3791      ShouldNotReachHere();
3792    }
3793
3794  } else if (src->is_double_fpu()) {
3795    assert(src->fpu_regnrLo() == 0, "must be TOS");
3796    if (dest->is_double_stack()) {
3797      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3798    } else if (dest->is_address()) {
3799      __ fistp_d(as_Address(dest->as_address_ptr()));
3800    } else {
3801      ShouldNotReachHere();
3802    }
3803
3804  } else if (dest->is_double_fpu()) {
3805    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3806    if (src->is_double_stack()) {
3807      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3808    } else if (src->is_address()) {
3809      __ fild_d(as_Address(src->as_address_ptr()));
3810    } else {
3811      ShouldNotReachHere();
3812    }
3813  } else {
3814    ShouldNotReachHere();
3815  }
3816}
3817
3818#ifdef ASSERT
3819// emit run-time assertion
3820void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3821  assert(op->code() == lir_assert, "must be");
3822
3823  if (op->in_opr1()->is_valid()) {
3824    assert(op->in_opr2()->is_valid(), "both operands must be valid");
3825    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3826  } else {
3827    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3828    assert(op->condition() == lir_cond_always, "no other conditions allowed");
3829  }
3830
3831  Label ok;
3832  if (op->condition() != lir_cond_always) {
3833    Assembler::Condition acond = Assembler::zero;
3834    switch (op->condition()) {
3835      case lir_cond_equal:        acond = Assembler::equal;       break;
3836      case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3837      case lir_cond_less:         acond = Assembler::less;        break;
3838      case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3839      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3840      case lir_cond_greater:      acond = Assembler::greater;     break;
3841      case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3842      case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3843      default:                    ShouldNotReachHere();
3844    }
3845    __ jcc(acond, ok);
3846  }
3847  if (op->halt()) {
3848    const char* str = __ code_string(op->msg());
3849    __ stop(str);
3850  } else {
3851    breakpoint();
3852  }
3853  __ bind(ok);
3854}
3855#endif
3856
3857void LIR_Assembler::membar() {
3858  // QQQ sparc TSO uses this,
3859  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3860}
3861
3862void LIR_Assembler::membar_acquire() {
3863  // No x86 machines currently require load fences
3864}
3865
3866void LIR_Assembler::membar_release() {
3867  // No x86 machines currently require store fences
3868}
3869
3870void LIR_Assembler::membar_loadload() {
3871  // no-op
3872  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3873}
3874
3875void LIR_Assembler::membar_storestore() {
3876  // no-op
3877  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3878}
3879
3880void LIR_Assembler::membar_loadstore() {
3881  // no-op
3882  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3883}
3884
3885void LIR_Assembler::membar_storeload() {
3886  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3887}
3888
3889void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3890  assert(result_reg->is_register(), "check");
3891#ifdef _LP64
3892  // __ get_thread(result_reg->as_register_lo());
3893  __ mov(result_reg->as_register(), r15_thread);
3894#else
3895  __ get_thread(result_reg->as_register());
3896#endif // _LP64
3897}
3898
3899
3900void LIR_Assembler::peephole(LIR_List*) {
3901  // do nothing for now
3902}
3903
3904void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3905  assert(data == dest, "xchg/xadd uses only 2 operands");
3906
3907  if (data->type() == T_INT) {
3908    if (code == lir_xadd) {
3909      if (os::is_MP()) {
3910        __ lock();
3911      }
3912      __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3913    } else {
3914      __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3915    }
3916  } else if (data->is_oop()) {
3917    assert (code == lir_xchg, "xadd for oops");
3918    Register obj = data->as_register();
3919#ifdef _LP64
3920    if (UseCompressedOops) {
3921      __ encode_heap_oop(obj);
3922      __ xchgl(obj, as_Address(src->as_address_ptr()));
3923      __ decode_heap_oop(obj);
3924    } else {
3925      __ xchgptr(obj, as_Address(src->as_address_ptr()));
3926    }
3927#else
3928    __ xchgl(obj, as_Address(src->as_address_ptr()));
3929#endif
3930  } else if (data->type() == T_LONG) {
3931#ifdef _LP64
3932    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3933    if (code == lir_xadd) {
3934      if (os::is_MP()) {
3935        __ lock();
3936      }
3937      __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3938    } else {
3939      __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3940    }
3941#else
3942    ShouldNotReachHere();
3943#endif
3944  } else {
3945    ShouldNotReachHere();
3946  }
3947}
3948
3949#undef __
3950