1/*
2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "c1/c1_Compilation.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_MacroAssembler.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "gc/shared/collectedHeap.hpp"
38#include "nativeInst_x86.hpp"
39#include "oops/objArrayKlass.hpp"
40#include "runtime/sharedRuntime.hpp"
41#include "vmreg_x86.inline.hpp"
42
43
44// These masks are used to provide 128-bit aligned bitmasks to the XMM
45// instructions, to allow sign-masking or sign-bit flipping.  They allow
46// fast versions of NegF/NegD and AbsF/AbsD.
47
48// Note: 'double' and 'long long' have 32-bits alignment on x86.
49static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
50  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
51  // of 128-bits operands for SSE instructions.
52  jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
53  // Store the value to a 128-bits operand.
54  operand[0] = lo;
55  operand[1] = hi;
56  return operand;
57}
58
59// Buffer for 128-bits masks used by SSE instructions.
60static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
61
62// Static initialization during VM startup.
63static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
64static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
65static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
66static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
67
68
69
70NEEDS_CLEANUP // remove this definitions ?
71const Register IC_Klass    = rax;   // where the IC klass is cached
72const Register SYNC_header = rax;   // synchronization header
73const Register SHIFT_count = rcx;   // where count for shift operations must be
74
75#define __ _masm->
76
77
78static void select_different_registers(Register preserve,
79                                       Register extra,
80                                       Register &tmp1,
81                                       Register &tmp2) {
82  if (tmp1 == preserve) {
83    assert_different_registers(tmp1, tmp2, extra);
84    tmp1 = extra;
85  } else if (tmp2 == preserve) {
86    assert_different_registers(tmp1, tmp2, extra);
87    tmp2 = extra;
88  }
89  assert_different_registers(preserve, tmp1, tmp2);
90}
91
92
93
94static void select_different_registers(Register preserve,
95                                       Register extra,
96                                       Register &tmp1,
97                                       Register &tmp2,
98                                       Register &tmp3) {
99  if (tmp1 == preserve) {
100    assert_different_registers(tmp1, tmp2, tmp3, extra);
101    tmp1 = extra;
102  } else if (tmp2 == preserve) {
103    assert_different_registers(tmp1, tmp2, tmp3, extra);
104    tmp2 = extra;
105  } else if (tmp3 == preserve) {
106    assert_different_registers(tmp1, tmp2, tmp3, extra);
107    tmp3 = extra;
108  }
109  assert_different_registers(preserve, tmp1, tmp2, tmp3);
110}
111
112
113
114bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
115  if (opr->is_constant()) {
116    LIR_Const* constant = opr->as_constant_ptr();
117    switch (constant->type()) {
118      case T_INT: {
119        return true;
120      }
121
122      default:
123        return false;
124    }
125  }
126  return false;
127}
128
129
130LIR_Opr LIR_Assembler::receiverOpr() {
131  return FrameMap::receiver_opr;
132}
133
134LIR_Opr LIR_Assembler::osrBufferPointer() {
135  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
136}
137
138//--------------fpu register translations-----------------------
139
140
141address LIR_Assembler::float_constant(float f) {
142  address const_addr = __ float_constant(f);
143  if (const_addr == NULL) {
144    bailout("const section overflow");
145    return __ code()->consts()->start();
146  } else {
147    return const_addr;
148  }
149}
150
151
152address LIR_Assembler::double_constant(double d) {
153  address const_addr = __ double_constant(d);
154  if (const_addr == NULL) {
155    bailout("const section overflow");
156    return __ code()->consts()->start();
157  } else {
158    return const_addr;
159  }
160}
161
162
163void LIR_Assembler::set_24bit_FPU() {
164  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
165}
166
167void LIR_Assembler::reset_FPU() {
168  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
169}
170
171void LIR_Assembler::fpop() {
172  __ fpop();
173}
174
175void LIR_Assembler::fxch(int i) {
176  __ fxch(i);
177}
178
179void LIR_Assembler::fld(int i) {
180  __ fld_s(i);
181}
182
183void LIR_Assembler::ffree(int i) {
184  __ ffree(i);
185}
186
187void LIR_Assembler::breakpoint() {
188  __ int3();
189}
190
191void LIR_Assembler::push(LIR_Opr opr) {
192  if (opr->is_single_cpu()) {
193    __ push_reg(opr->as_register());
194  } else if (opr->is_double_cpu()) {
195    NOT_LP64(__ push_reg(opr->as_register_hi()));
196    __ push_reg(opr->as_register_lo());
197  } else if (opr->is_stack()) {
198    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
199  } else if (opr->is_constant()) {
200    LIR_Const* const_opr = opr->as_constant_ptr();
201    if (const_opr->type() == T_OBJECT) {
202      __ push_oop(const_opr->as_jobject());
203    } else if (const_opr->type() == T_INT) {
204      __ push_jint(const_opr->as_jint());
205    } else {
206      ShouldNotReachHere();
207    }
208
209  } else {
210    ShouldNotReachHere();
211  }
212}
213
214void LIR_Assembler::pop(LIR_Opr opr) {
215  if (opr->is_single_cpu()) {
216    __ pop_reg(opr->as_register());
217  } else {
218    ShouldNotReachHere();
219  }
220}
221
222bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
223  return addr->base()->is_illegal() && addr->index()->is_illegal();
224}
225
226//-------------------------------------------
227
228Address LIR_Assembler::as_Address(LIR_Address* addr) {
229  return as_Address(addr, rscratch1);
230}
231
232Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
233  if (addr->base()->is_illegal()) {
234    assert(addr->index()->is_illegal(), "must be illegal too");
235    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
236    if (! __ reachable(laddr)) {
237      __ movptr(tmp, laddr.addr());
238      Address res(tmp, 0);
239      return res;
240    } else {
241      return __ as_Address(laddr);
242    }
243  }
244
245  Register base = addr->base()->as_pointer_register();
246
247  if (addr->index()->is_illegal()) {
248    return Address( base, addr->disp());
249  } else if (addr->index()->is_cpu_register()) {
250    Register index = addr->index()->as_pointer_register();
251    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
252  } else if (addr->index()->is_constant()) {
253    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
254    assert(Assembler::is_simm32(addr_offset), "must be");
255
256    return Address(base, addr_offset);
257  } else {
258    Unimplemented();
259    return Address();
260  }
261}
262
263
264Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
265  Address base = as_Address(addr);
266  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
267}
268
269
270Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
271  return as_Address(addr);
272}
273
274
275void LIR_Assembler::osr_entry() {
276  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
277  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
278  ValueStack* entry_state = osr_entry->state();
279  int number_of_locks = entry_state->locks_size();
280
281  // we jump here if osr happens with the interpreter
282  // state set up to continue at the beginning of the
283  // loop that triggered osr - in particular, we have
284  // the following registers setup:
285  //
286  // rcx: osr buffer
287  //
288
289  // build frame
290  ciMethod* m = compilation()->method();
291  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
292
293  // OSR buffer is
294  //
295  // locals[nlocals-1..0]
296  // monitors[0..number_of_locks]
297  //
298  // locals is a direct copy of the interpreter frame so in the osr buffer
299  // so first slot in the local array is the last local from the interpreter
300  // and last slot is local[0] (receiver) from the interpreter
301  //
302  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
303  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
304  // in the interpreter frame (the method lock if a sync method)
305
306  // Initialize monitors in the compiled activation.
307  //   rcx: pointer to osr buffer
308  //
309  // All other registers are dead at this point and the locals will be
310  // copied into place by code emitted in the IR.
311
312  Register OSR_buf = osrBufferPointer()->as_pointer_register();
313  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
314    int monitor_offset = BytesPerWord * method()->max_locals() +
315      (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
316    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
317    // the OSR buffer using 2 word entries: first the lock and then
318    // the oop.
319    for (int i = 0; i < number_of_locks; i++) {
320      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
321#ifdef ASSERT
322      // verify the interpreter's monitor has a non-null object
323      {
324        Label L;
325        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
326        __ jcc(Assembler::notZero, L);
327        __ stop("locked object is NULL");
328        __ bind(L);
329      }
330#endif
331      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
332      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
333      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
334      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
335    }
336  }
337}
338
339
340// inline cache check; done before the frame is built.
341int LIR_Assembler::check_icache() {
342  Register receiver = FrameMap::receiver_opr->as_register();
343  Register ic_klass = IC_Klass;
344  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
345  const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
346  if (!do_post_padding) {
347    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
348    __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
349  }
350  int offset = __ offset();
351  __ inline_cache_check(receiver, IC_Klass);
352  assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
353  if (do_post_padding) {
354    // force alignment after the cache check.
355    // It's been verified to be aligned if !VerifyOops
356    __ align(CodeEntryAlignment);
357  }
358  return offset;
359}
360
361
362void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
363  jobject o = NULL;
364  PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
365  __ movoop(reg, o);
366  patching_epilog(patch, lir_patch_normal, reg, info);
367}
368
369void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
370  Metadata* o = NULL;
371  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
372  __ mov_metadata(reg, o);
373  patching_epilog(patch, lir_patch_normal, reg, info);
374}
375
376// This specifies the rsp decrement needed to build the frame
377int LIR_Assembler::initial_frame_size_in_bytes() const {
378  // if rounding, must let FrameMap know!
379
380  // The frame_map records size in slots (32bit word)
381
382  // subtract two words to account for return address and link
383  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
384}
385
386
387int LIR_Assembler::emit_exception_handler() {
388  // if the last instruction is a call (typically to do a throw which
389  // is coming at the end after block reordering) the return address
390  // must still point into the code area in order to avoid assertion
391  // failures when searching for the corresponding bci => add a nop
392  // (was bug 5/14/1999 - gri)
393  __ nop();
394
395  // generate code for exception handler
396  address handler_base = __ start_a_stub(exception_handler_size());
397  if (handler_base == NULL) {
398    // not enough space left for the handler
399    bailout("exception handler overflow");
400    return -1;
401  }
402
403  int offset = code_offset();
404
405  // the exception oop and pc are in rax, and rdx
406  // no other registers need to be preserved, so invalidate them
407  __ invalidate_registers(false, true, true, false, true, true);
408
409  // check that there is really an exception
410  __ verify_not_null_oop(rax);
411
412  // search an exception handler (rax: exception oop, rdx: throwing pc)
413  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
414  __ should_not_reach_here();
415  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
416  __ end_a_stub();
417
418  return offset;
419}
420
421
422// Emit the code to remove the frame from the stack in the exception
423// unwind path.
424int LIR_Assembler::emit_unwind_handler() {
425#ifndef PRODUCT
426  if (CommentedAssembly) {
427    _masm->block_comment("Unwind handler");
428  }
429#endif
430
431  int offset = code_offset();
432
433  // Fetch the exception from TLS and clear out exception related thread state
434  Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
435  NOT_LP64(__ get_thread(rsi));
436  __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
437  __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
438  __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
439
440  __ bind(_unwind_handler_entry);
441  __ verify_not_null_oop(rax);
442  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
443    __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
444  }
445
446  // Preform needed unlocking
447  MonitorExitStub* stub = NULL;
448  if (method()->is_synchronized()) {
449    monitor_address(0, FrameMap::rax_opr);
450    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
451    __ unlock_object(rdi, rsi, rax, *stub->entry());
452    __ bind(*stub->continuation());
453  }
454
455  if (compilation()->env()->dtrace_method_probes()) {
456#ifdef _LP64
457    __ mov(rdi, r15_thread);
458    __ mov_metadata(rsi, method()->constant_encoding());
459#else
460    __ get_thread(rax);
461    __ movptr(Address(rsp, 0), rax);
462    __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
463#endif
464    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
465  }
466
467  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
468    __ mov(rax, rbx);  // Restore the exception
469  }
470
471  // remove the activation and dispatch to the unwind handler
472  __ remove_frame(initial_frame_size_in_bytes());
473  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
474
475  // Emit the slow path assembly
476  if (stub != NULL) {
477    stub->emit_code(this);
478  }
479
480  return offset;
481}
482
483
484int LIR_Assembler::emit_deopt_handler() {
485  // if the last instruction is a call (typically to do a throw which
486  // is coming at the end after block reordering) the return address
487  // must still point into the code area in order to avoid assertion
488  // failures when searching for the corresponding bci => add a nop
489  // (was bug 5/14/1999 - gri)
490  __ nop();
491
492  // generate code for exception handler
493  address handler_base = __ start_a_stub(deopt_handler_size());
494  if (handler_base == NULL) {
495    // not enough space left for the handler
496    bailout("deopt handler overflow");
497    return -1;
498  }
499
500  int offset = code_offset();
501  InternalAddress here(__ pc());
502
503  __ pushptr(here.addr());
504  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
505  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
506  __ end_a_stub();
507
508  return offset;
509}
510
511
512void LIR_Assembler::return_op(LIR_Opr result) {
513  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
514  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
515    assert(result->fpu() == 0, "result must already be on TOS");
516  }
517
518  // Pop the stack before the safepoint code
519  __ remove_frame(initial_frame_size_in_bytes());
520
521  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
522    __ reserved_stack_check();
523  }
524
525  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
526
527  // Note: we do not need to round double result; float result has the right precision
528  // the poll sets the condition code, but no data registers
529  AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
530
531  if (Assembler::is_polling_page_far()) {
532    __ lea(rscratch1, polling_page);
533    __ relocate(relocInfo::poll_return_type);
534    __ testl(rax, Address(rscratch1, 0));
535  } else {
536    __ testl(rax, polling_page);
537  }
538  __ ret(0);
539}
540
541
542int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
543  AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
544  guarantee(info != NULL, "Shouldn't be NULL");
545  int offset = __ offset();
546  if (Assembler::is_polling_page_far()) {
547    __ lea(rscratch1, polling_page);
548    offset = __ offset();
549    add_debug_info_for_branch(info);
550    __ relocate(relocInfo::poll_type);
551    __ testl(rax, Address(rscratch1, 0));
552  } else {
553    add_debug_info_for_branch(info);
554    __ testl(rax, polling_page);
555  }
556  return offset;
557}
558
559
560void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
561  if (from_reg != to_reg) __ mov(to_reg, from_reg);
562}
563
564void LIR_Assembler::swap_reg(Register a, Register b) {
565  __ xchgptr(a, b);
566}
567
568
569void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
570  assert(src->is_constant(), "should not call otherwise");
571  assert(dest->is_register(), "should not call otherwise");
572  LIR_Const* c = src->as_constant_ptr();
573
574  switch (c->type()) {
575    case T_INT: {
576      assert(patch_code == lir_patch_none, "no patching handled here");
577      __ movl(dest->as_register(), c->as_jint());
578      break;
579    }
580
581    case T_ADDRESS: {
582      assert(patch_code == lir_patch_none, "no patching handled here");
583      __ movptr(dest->as_register(), c->as_jint());
584      break;
585    }
586
587    case T_LONG: {
588      assert(patch_code == lir_patch_none, "no patching handled here");
589#ifdef _LP64
590      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
591#else
592      __ movptr(dest->as_register_lo(), c->as_jint_lo());
593      __ movptr(dest->as_register_hi(), c->as_jint_hi());
594#endif // _LP64
595      break;
596    }
597
598    case T_OBJECT: {
599      if (patch_code != lir_patch_none) {
600        jobject2reg_with_patching(dest->as_register(), info);
601      } else {
602        __ movoop(dest->as_register(), c->as_jobject());
603      }
604      break;
605    }
606
607    case T_METADATA: {
608      if (patch_code != lir_patch_none) {
609        klass2reg_with_patching(dest->as_register(), info);
610      } else {
611        __ mov_metadata(dest->as_register(), c->as_metadata());
612      }
613      break;
614    }
615
616    case T_FLOAT: {
617      if (dest->is_single_xmm()) {
618        if (c->is_zero_float()) {
619          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
620        } else {
621          __ movflt(dest->as_xmm_float_reg(),
622                   InternalAddress(float_constant(c->as_jfloat())));
623        }
624      } else {
625        assert(dest->is_single_fpu(), "must be");
626        assert(dest->fpu_regnr() == 0, "dest must be TOS");
627        if (c->is_zero_float()) {
628          __ fldz();
629        } else if (c->is_one_float()) {
630          __ fld1();
631        } else {
632          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
633        }
634      }
635      break;
636    }
637
638    case T_DOUBLE: {
639      if (dest->is_double_xmm()) {
640        if (c->is_zero_double()) {
641          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
642        } else {
643          __ movdbl(dest->as_xmm_double_reg(),
644                    InternalAddress(double_constant(c->as_jdouble())));
645        }
646      } else {
647        assert(dest->is_double_fpu(), "must be");
648        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
649        if (c->is_zero_double()) {
650          __ fldz();
651        } else if (c->is_one_double()) {
652          __ fld1();
653        } else {
654          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
655        }
656      }
657      break;
658    }
659
660    default:
661      ShouldNotReachHere();
662  }
663}
664
665void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
666  assert(src->is_constant(), "should not call otherwise");
667  assert(dest->is_stack(), "should not call otherwise");
668  LIR_Const* c = src->as_constant_ptr();
669
670  switch (c->type()) {
671    case T_INT:  // fall through
672    case T_FLOAT:
673      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
674      break;
675
676    case T_ADDRESS:
677      __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
678      break;
679
680    case T_OBJECT:
681      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
682      break;
683
684    case T_LONG:  // fall through
685    case T_DOUBLE:
686#ifdef _LP64
687      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
688                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
689#else
690      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
691                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
692      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
693                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
694#endif // _LP64
695      break;
696
697    default:
698      ShouldNotReachHere();
699  }
700}
701
702void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
703  assert(src->is_constant(), "should not call otherwise");
704  assert(dest->is_address(), "should not call otherwise");
705  LIR_Const* c = src->as_constant_ptr();
706  LIR_Address* addr = dest->as_address_ptr();
707
708  int null_check_here = code_offset();
709  switch (type) {
710    case T_INT:    // fall through
711    case T_FLOAT:
712      __ movl(as_Address(addr), c->as_jint_bits());
713      break;
714
715    case T_ADDRESS:
716      __ movptr(as_Address(addr), c->as_jint_bits());
717      break;
718
719    case T_OBJECT:  // fall through
720    case T_ARRAY:
721      if (c->as_jobject() == NULL) {
722        if (UseCompressedOops && !wide) {
723          __ movl(as_Address(addr), (int32_t)NULL_WORD);
724        } else {
725#ifdef _LP64
726          __ xorptr(rscratch1, rscratch1);
727          null_check_here = code_offset();
728          __ movptr(as_Address(addr), rscratch1);
729#else
730          __ movptr(as_Address(addr), NULL_WORD);
731#endif
732        }
733      } else {
734        if (is_literal_address(addr)) {
735          ShouldNotReachHere();
736          __ movoop(as_Address(addr, noreg), c->as_jobject());
737        } else {
738#ifdef _LP64
739          __ movoop(rscratch1, c->as_jobject());
740          if (UseCompressedOops && !wide) {
741            __ encode_heap_oop(rscratch1);
742            null_check_here = code_offset();
743            __ movl(as_Address_lo(addr), rscratch1);
744          } else {
745            null_check_here = code_offset();
746            __ movptr(as_Address_lo(addr), rscratch1);
747          }
748#else
749          __ movoop(as_Address(addr), c->as_jobject());
750#endif
751        }
752      }
753      break;
754
755    case T_LONG:    // fall through
756    case T_DOUBLE:
757#ifdef _LP64
758      if (is_literal_address(addr)) {
759        ShouldNotReachHere();
760        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
761      } else {
762        __ movptr(r10, (intptr_t)c->as_jlong_bits());
763        null_check_here = code_offset();
764        __ movptr(as_Address_lo(addr), r10);
765      }
766#else
767      // Always reachable in 32bit so this doesn't produce useless move literal
768      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
769      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
770#endif // _LP64
771      break;
772
773    case T_BOOLEAN: // fall through
774    case T_BYTE:
775      __ movb(as_Address(addr), c->as_jint() & 0xFF);
776      break;
777
778    case T_CHAR:    // fall through
779    case T_SHORT:
780      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
781      break;
782
783    default:
784      ShouldNotReachHere();
785  };
786
787  if (info != NULL) {
788    add_debug_info_for_null_check(null_check_here, info);
789  }
790}
791
792
793void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
794  assert(src->is_register(), "should not call otherwise");
795  assert(dest->is_register(), "should not call otherwise");
796
797  // move between cpu-registers
798  if (dest->is_single_cpu()) {
799#ifdef _LP64
800    if (src->type() == T_LONG) {
801      // Can do LONG -> OBJECT
802      move_regs(src->as_register_lo(), dest->as_register());
803      return;
804    }
805#endif
806    assert(src->is_single_cpu(), "must match");
807    if (src->type() == T_OBJECT) {
808      __ verify_oop(src->as_register());
809    }
810    move_regs(src->as_register(), dest->as_register());
811
812  } else if (dest->is_double_cpu()) {
813#ifdef _LP64
814    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
815      // Surprising to me but we can see move of a long to t_object
816      __ verify_oop(src->as_register());
817      move_regs(src->as_register(), dest->as_register_lo());
818      return;
819    }
820#endif
821    assert(src->is_double_cpu(), "must match");
822    Register f_lo = src->as_register_lo();
823    Register f_hi = src->as_register_hi();
824    Register t_lo = dest->as_register_lo();
825    Register t_hi = dest->as_register_hi();
826#ifdef _LP64
827    assert(f_hi == f_lo, "must be same");
828    assert(t_hi == t_lo, "must be same");
829    move_regs(f_lo, t_lo);
830#else
831    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
832
833
834    if (f_lo == t_hi && f_hi == t_lo) {
835      swap_reg(f_lo, f_hi);
836    } else if (f_hi == t_lo) {
837      assert(f_lo != t_hi, "overwriting register");
838      move_regs(f_hi, t_hi);
839      move_regs(f_lo, t_lo);
840    } else {
841      assert(f_hi != t_lo, "overwriting register");
842      move_regs(f_lo, t_lo);
843      move_regs(f_hi, t_hi);
844    }
845#endif // LP64
846
847    // special moves from fpu-register to xmm-register
848    // necessary for method results
849  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
850    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
851    __ fld_s(Address(rsp, 0));
852  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
853    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
854    __ fld_d(Address(rsp, 0));
855  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
856    __ fstp_s(Address(rsp, 0));
857    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
858  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
859    __ fstp_d(Address(rsp, 0));
860    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
861
862    // move between xmm-registers
863  } else if (dest->is_single_xmm()) {
864    assert(src->is_single_xmm(), "must match");
865    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
866  } else if (dest->is_double_xmm()) {
867    assert(src->is_double_xmm(), "must match");
868    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
869
870    // move between fpu-registers (no instruction necessary because of fpu-stack)
871  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
872    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
873    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
874  } else {
875    ShouldNotReachHere();
876  }
877}
878
879void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
880  assert(src->is_register(), "should not call otherwise");
881  assert(dest->is_stack(), "should not call otherwise");
882
883  if (src->is_single_cpu()) {
884    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
885    if (type == T_OBJECT || type == T_ARRAY) {
886      __ verify_oop(src->as_register());
887      __ movptr (dst, src->as_register());
888    } else if (type == T_METADATA) {
889      __ movptr (dst, src->as_register());
890    } else {
891      __ movl (dst, src->as_register());
892    }
893
894  } else if (src->is_double_cpu()) {
895    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
896    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
897    __ movptr (dstLO, src->as_register_lo());
898    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
899
900  } else if (src->is_single_xmm()) {
901    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
902    __ movflt(dst_addr, src->as_xmm_float_reg());
903
904  } else if (src->is_double_xmm()) {
905    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
906    __ movdbl(dst_addr, src->as_xmm_double_reg());
907
908  } else if (src->is_single_fpu()) {
909    assert(src->fpu_regnr() == 0, "argument must be on TOS");
910    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
911    if (pop_fpu_stack)     __ fstp_s (dst_addr);
912    else                   __ fst_s  (dst_addr);
913
914  } else if (src->is_double_fpu()) {
915    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
916    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
917    if (pop_fpu_stack)     __ fstp_d (dst_addr);
918    else                   __ fst_d  (dst_addr);
919
920  } else {
921    ShouldNotReachHere();
922  }
923}
924
925
926void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
927  LIR_Address* to_addr = dest->as_address_ptr();
928  PatchingStub* patch = NULL;
929  Register compressed_src = rscratch1;
930
931  if (type == T_ARRAY || type == T_OBJECT) {
932    __ verify_oop(src->as_register());
933#ifdef _LP64
934    if (UseCompressedOops && !wide) {
935      __ movptr(compressed_src, src->as_register());
936      __ encode_heap_oop(compressed_src);
937      if (patch_code != lir_patch_none) {
938        info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
939      }
940    }
941#endif
942  }
943
944  if (patch_code != lir_patch_none) {
945    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
946    Address toa = as_Address(to_addr);
947    assert(toa.disp() != 0, "must have");
948  }
949
950  int null_check_here = code_offset();
951  switch (type) {
952    case T_FLOAT: {
953      if (src->is_single_xmm()) {
954        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
955      } else {
956        assert(src->is_single_fpu(), "must be");
957        assert(src->fpu_regnr() == 0, "argument must be on TOS");
958        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
959        else                    __ fst_s (as_Address(to_addr));
960      }
961      break;
962    }
963
964    case T_DOUBLE: {
965      if (src->is_double_xmm()) {
966        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
967      } else {
968        assert(src->is_double_fpu(), "must be");
969        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
970        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
971        else                    __ fst_d (as_Address(to_addr));
972      }
973      break;
974    }
975
976    case T_ARRAY:   // fall through
977    case T_OBJECT:  // fall through
978      if (UseCompressedOops && !wide) {
979        __ movl(as_Address(to_addr), compressed_src);
980      } else {
981        __ movptr(as_Address(to_addr), src->as_register());
982      }
983      break;
984    case T_METADATA:
985      // We get here to store a method pointer to the stack to pass to
986      // a dtrace runtime call. This can't work on 64 bit with
987      // compressed klass ptrs: T_METADATA can be a compressed klass
988      // ptr or a 64 bit method pointer.
989      LP64_ONLY(ShouldNotReachHere());
990      __ movptr(as_Address(to_addr), src->as_register());
991      break;
992    case T_ADDRESS:
993      __ movptr(as_Address(to_addr), src->as_register());
994      break;
995    case T_INT:
996      __ movl(as_Address(to_addr), src->as_register());
997      break;
998
999    case T_LONG: {
1000      Register from_lo = src->as_register_lo();
1001      Register from_hi = src->as_register_hi();
1002#ifdef _LP64
1003      __ movptr(as_Address_lo(to_addr), from_lo);
1004#else
1005      Register base = to_addr->base()->as_register();
1006      Register index = noreg;
1007      if (to_addr->index()->is_register()) {
1008        index = to_addr->index()->as_register();
1009      }
1010      if (base == from_lo || index == from_lo) {
1011        assert(base != from_hi, "can't be");
1012        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1013        __ movl(as_Address_hi(to_addr), from_hi);
1014        if (patch != NULL) {
1015          patching_epilog(patch, lir_patch_high, base, info);
1016          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1017          patch_code = lir_patch_low;
1018        }
1019        __ movl(as_Address_lo(to_addr), from_lo);
1020      } else {
1021        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1022        __ movl(as_Address_lo(to_addr), from_lo);
1023        if (patch != NULL) {
1024          patching_epilog(patch, lir_patch_low, base, info);
1025          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1026          patch_code = lir_patch_high;
1027        }
1028        __ movl(as_Address_hi(to_addr), from_hi);
1029      }
1030#endif // _LP64
1031      break;
1032    }
1033
1034    case T_BYTE:    // fall through
1035    case T_BOOLEAN: {
1036      Register src_reg = src->as_register();
1037      Address dst_addr = as_Address(to_addr);
1038      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1039      __ movb(dst_addr, src_reg);
1040      break;
1041    }
1042
1043    case T_CHAR:    // fall through
1044    case T_SHORT:
1045      __ movw(as_Address(to_addr), src->as_register());
1046      break;
1047
1048    default:
1049      ShouldNotReachHere();
1050  }
1051  if (info != NULL) {
1052    add_debug_info_for_null_check(null_check_here, info);
1053  }
1054
1055  if (patch_code != lir_patch_none) {
1056    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1057  }
1058}
1059
1060
1061void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1062  assert(src->is_stack(), "should not call otherwise");
1063  assert(dest->is_register(), "should not call otherwise");
1064
1065  if (dest->is_single_cpu()) {
1066    if (type == T_ARRAY || type == T_OBJECT) {
1067      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1068      __ verify_oop(dest->as_register());
1069    } else if (type == T_METADATA) {
1070      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1071    } else {
1072      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1073    }
1074
1075  } else if (dest->is_double_cpu()) {
1076    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1077    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1078    __ movptr(dest->as_register_lo(), src_addr_LO);
1079    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1080
1081  } else if (dest->is_single_xmm()) {
1082    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1083    __ movflt(dest->as_xmm_float_reg(), src_addr);
1084
1085  } else if (dest->is_double_xmm()) {
1086    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1087    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1088
1089  } else if (dest->is_single_fpu()) {
1090    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1091    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1092    __ fld_s(src_addr);
1093
1094  } else if (dest->is_double_fpu()) {
1095    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1096    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1097    __ fld_d(src_addr);
1098
1099  } else {
1100    ShouldNotReachHere();
1101  }
1102}
1103
1104
1105void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1106  if (src->is_single_stack()) {
1107    if (type == T_OBJECT || type == T_ARRAY) {
1108      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1109      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1110    } else {
1111#ifndef _LP64
1112      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1113      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1114#else
1115      //no pushl on 64bits
1116      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1117      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1118#endif
1119    }
1120
1121  } else if (src->is_double_stack()) {
1122#ifdef _LP64
1123    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1124    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1125#else
1126    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1127    // push and pop the part at src + wordSize, adding wordSize for the previous push
1128    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1129    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1130    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1131#endif // _LP64
1132
1133  } else {
1134    ShouldNotReachHere();
1135  }
1136}
1137
1138
1139void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1140  assert(src->is_address(), "should not call otherwise");
1141  assert(dest->is_register(), "should not call otherwise");
1142
1143  LIR_Address* addr = src->as_address_ptr();
1144  Address from_addr = as_Address(addr);
1145
1146  if (addr->base()->type() == T_OBJECT) {
1147    __ verify_oop(addr->base()->as_pointer_register());
1148  }
1149
1150  switch (type) {
1151    case T_BOOLEAN: // fall through
1152    case T_BYTE:    // fall through
1153    case T_CHAR:    // fall through
1154    case T_SHORT:
1155      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1156        // on pre P6 processors we may get partial register stalls
1157        // so blow away the value of to_rinfo before loading a
1158        // partial word into it.  Do it here so that it precedes
1159        // the potential patch point below.
1160        __ xorptr(dest->as_register(), dest->as_register());
1161      }
1162      break;
1163  }
1164
1165  PatchingStub* patch = NULL;
1166  if (patch_code != lir_patch_none) {
1167    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1168    assert(from_addr.disp() != 0, "must have");
1169  }
1170  if (info != NULL) {
1171    add_debug_info_for_null_check_here(info);
1172  }
1173
1174  switch (type) {
1175    case T_FLOAT: {
1176      if (dest->is_single_xmm()) {
1177        __ movflt(dest->as_xmm_float_reg(), from_addr);
1178      } else {
1179        assert(dest->is_single_fpu(), "must be");
1180        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1181        __ fld_s(from_addr);
1182      }
1183      break;
1184    }
1185
1186    case T_DOUBLE: {
1187      if (dest->is_double_xmm()) {
1188        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1189      } else {
1190        assert(dest->is_double_fpu(), "must be");
1191        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1192        __ fld_d(from_addr);
1193      }
1194      break;
1195    }
1196
1197    case T_OBJECT:  // fall through
1198    case T_ARRAY:   // fall through
1199      if (UseCompressedOops && !wide) {
1200        __ movl(dest->as_register(), from_addr);
1201      } else {
1202        __ movptr(dest->as_register(), from_addr);
1203      }
1204      break;
1205
1206    case T_ADDRESS:
1207      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1208        __ movl(dest->as_register(), from_addr);
1209      } else {
1210        __ movptr(dest->as_register(), from_addr);
1211      }
1212      break;
1213    case T_INT:
1214      __ movl(dest->as_register(), from_addr);
1215      break;
1216
1217    case T_LONG: {
1218      Register to_lo = dest->as_register_lo();
1219      Register to_hi = dest->as_register_hi();
1220#ifdef _LP64
1221      __ movptr(to_lo, as_Address_lo(addr));
1222#else
1223      Register base = addr->base()->as_register();
1224      Register index = noreg;
1225      if (addr->index()->is_register()) {
1226        index = addr->index()->as_register();
1227      }
1228      if ((base == to_lo && index == to_hi) ||
1229          (base == to_hi && index == to_lo)) {
1230        // addresses with 2 registers are only formed as a result of
1231        // array access so this code will never have to deal with
1232        // patches or null checks.
1233        assert(info == NULL && patch == NULL, "must be");
1234        __ lea(to_hi, as_Address(addr));
1235        __ movl(to_lo, Address(to_hi, 0));
1236        __ movl(to_hi, Address(to_hi, BytesPerWord));
1237      } else if (base == to_lo || index == to_lo) {
1238        assert(base != to_hi, "can't be");
1239        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1240        __ movl(to_hi, as_Address_hi(addr));
1241        if (patch != NULL) {
1242          patching_epilog(patch, lir_patch_high, base, info);
1243          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1244          patch_code = lir_patch_low;
1245        }
1246        __ movl(to_lo, as_Address_lo(addr));
1247      } else {
1248        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1249        __ movl(to_lo, as_Address_lo(addr));
1250        if (patch != NULL) {
1251          patching_epilog(patch, lir_patch_low, base, info);
1252          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1253          patch_code = lir_patch_high;
1254        }
1255        __ movl(to_hi, as_Address_hi(addr));
1256      }
1257#endif // _LP64
1258      break;
1259    }
1260
1261    case T_BOOLEAN: // fall through
1262    case T_BYTE: {
1263      Register dest_reg = dest->as_register();
1264      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1265      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1266        __ movsbl(dest_reg, from_addr);
1267      } else {
1268        __ movb(dest_reg, from_addr);
1269        __ shll(dest_reg, 24);
1270        __ sarl(dest_reg, 24);
1271      }
1272      break;
1273    }
1274
1275    case T_CHAR: {
1276      Register dest_reg = dest->as_register();
1277      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1278      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1279        __ movzwl(dest_reg, from_addr);
1280      } else {
1281        __ movw(dest_reg, from_addr);
1282      }
1283      break;
1284    }
1285
1286    case T_SHORT: {
1287      Register dest_reg = dest->as_register();
1288      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1289        __ movswl(dest_reg, from_addr);
1290      } else {
1291        __ movw(dest_reg, from_addr);
1292        __ shll(dest_reg, 16);
1293        __ sarl(dest_reg, 16);
1294      }
1295      break;
1296    }
1297
1298    default:
1299      ShouldNotReachHere();
1300  }
1301
1302  if (patch != NULL) {
1303    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1304  }
1305
1306  if (type == T_ARRAY || type == T_OBJECT) {
1307#ifdef _LP64
1308    if (UseCompressedOops && !wide) {
1309      __ decode_heap_oop(dest->as_register());
1310    }
1311#endif
1312    __ verify_oop(dest->as_register());
1313  } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1314#ifdef _LP64
1315    if (UseCompressedClassPointers) {
1316      __ decode_klass_not_null(dest->as_register());
1317    }
1318#endif
1319  }
1320}
1321
1322
1323NEEDS_CLEANUP; // This could be static?
1324Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1325  int elem_size = type2aelembytes(type);
1326  switch (elem_size) {
1327    case 1: return Address::times_1;
1328    case 2: return Address::times_2;
1329    case 4: return Address::times_4;
1330    case 8: return Address::times_8;
1331  }
1332  ShouldNotReachHere();
1333  return Address::no_scale;
1334}
1335
1336
1337void LIR_Assembler::emit_op3(LIR_Op3* op) {
1338  switch (op->code()) {
1339    case lir_idiv:
1340    case lir_irem:
1341      arithmetic_idiv(op->code(),
1342                      op->in_opr1(),
1343                      op->in_opr2(),
1344                      op->in_opr3(),
1345                      op->result_opr(),
1346                      op->info());
1347      break;
1348    case lir_fmad:
1349      __ fmad(op->result_opr()->as_xmm_double_reg(),
1350              op->in_opr1()->as_xmm_double_reg(),
1351              op->in_opr2()->as_xmm_double_reg(),
1352              op->in_opr3()->as_xmm_double_reg());
1353      break;
1354    case lir_fmaf:
1355      __ fmaf(op->result_opr()->as_xmm_float_reg(),
1356              op->in_opr1()->as_xmm_float_reg(),
1357              op->in_opr2()->as_xmm_float_reg(),
1358              op->in_opr3()->as_xmm_float_reg());
1359      break;
1360    default:      ShouldNotReachHere(); break;
1361  }
1362}
1363
1364void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1365#ifdef ASSERT
1366  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1367  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1368  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1369#endif
1370
1371  if (op->cond() == lir_cond_always) {
1372    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1373    __ jmp (*(op->label()));
1374  } else {
1375    Assembler::Condition acond = Assembler::zero;
1376    if (op->code() == lir_cond_float_branch) {
1377      assert(op->ublock() != NULL, "must have unordered successor");
1378      __ jcc(Assembler::parity, *(op->ublock()->label()));
1379      switch(op->cond()) {
1380        case lir_cond_equal:        acond = Assembler::equal;      break;
1381        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1382        case lir_cond_less:         acond = Assembler::below;      break;
1383        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1384        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1385        case lir_cond_greater:      acond = Assembler::above;      break;
1386        default:                         ShouldNotReachHere();
1387      }
1388    } else {
1389      switch (op->cond()) {
1390        case lir_cond_equal:        acond = Assembler::equal;       break;
1391        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1392        case lir_cond_less:         acond = Assembler::less;        break;
1393        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1394        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1395        case lir_cond_greater:      acond = Assembler::greater;     break;
1396        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1397        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1398        default:                         ShouldNotReachHere();
1399      }
1400    }
1401    __ jcc(acond,*(op->label()));
1402  }
1403}
1404
1405void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1406  LIR_Opr src  = op->in_opr();
1407  LIR_Opr dest = op->result_opr();
1408
1409  switch (op->bytecode()) {
1410    case Bytecodes::_i2l:
1411#ifdef _LP64
1412      __ movl2ptr(dest->as_register_lo(), src->as_register());
1413#else
1414      move_regs(src->as_register(), dest->as_register_lo());
1415      move_regs(src->as_register(), dest->as_register_hi());
1416      __ sarl(dest->as_register_hi(), 31);
1417#endif // LP64
1418      break;
1419
1420    case Bytecodes::_l2i:
1421#ifdef _LP64
1422      __ movl(dest->as_register(), src->as_register_lo());
1423#else
1424      move_regs(src->as_register_lo(), dest->as_register());
1425#endif
1426      break;
1427
1428    case Bytecodes::_i2b:
1429      move_regs(src->as_register(), dest->as_register());
1430      __ sign_extend_byte(dest->as_register());
1431      break;
1432
1433    case Bytecodes::_i2c:
1434      move_regs(src->as_register(), dest->as_register());
1435      __ andl(dest->as_register(), 0xFFFF);
1436      break;
1437
1438    case Bytecodes::_i2s:
1439      move_regs(src->as_register(), dest->as_register());
1440      __ sign_extend_short(dest->as_register());
1441      break;
1442
1443
1444    case Bytecodes::_f2d:
1445    case Bytecodes::_d2f:
1446      if (dest->is_single_xmm()) {
1447        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1448      } else if (dest->is_double_xmm()) {
1449        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1450      } else {
1451        assert(src->fpu() == dest->fpu(), "register must be equal");
1452        // do nothing (float result is rounded later through spilling)
1453      }
1454      break;
1455
1456    case Bytecodes::_i2f:
1457    case Bytecodes::_i2d:
1458      if (dest->is_single_xmm()) {
1459        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1460      } else if (dest->is_double_xmm()) {
1461        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1462      } else {
1463        assert(dest->fpu() == 0, "result must be on TOS");
1464        __ movl(Address(rsp, 0), src->as_register());
1465        __ fild_s(Address(rsp, 0));
1466      }
1467      break;
1468
1469    case Bytecodes::_f2i:
1470    case Bytecodes::_d2i:
1471      if (src->is_single_xmm()) {
1472        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1473      } else if (src->is_double_xmm()) {
1474        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1475      } else {
1476        assert(src->fpu() == 0, "input must be on TOS");
1477        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1478        __ fist_s(Address(rsp, 0));
1479        __ movl(dest->as_register(), Address(rsp, 0));
1480        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1481      }
1482
1483      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1484      assert(op->stub() != NULL, "stub required");
1485      __ cmpl(dest->as_register(), 0x80000000);
1486      __ jcc(Assembler::equal, *op->stub()->entry());
1487      __ bind(*op->stub()->continuation());
1488      break;
1489
1490    case Bytecodes::_l2f:
1491    case Bytecodes::_l2d:
1492      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1493      assert(dest->fpu() == 0, "result must be on TOS");
1494
1495      __ movptr(Address(rsp, 0),            src->as_register_lo());
1496      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1497      __ fild_d(Address(rsp, 0));
1498      // float result is rounded later through spilling
1499      break;
1500
1501    case Bytecodes::_f2l:
1502    case Bytecodes::_d2l:
1503      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1504      assert(src->fpu() == 0, "input must be on TOS");
1505      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1506
1507      // instruction sequence too long to inline it here
1508      {
1509        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1510      }
1511      break;
1512
1513    default: ShouldNotReachHere();
1514  }
1515}
1516
1517void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1518  if (op->init_check()) {
1519    __ cmpb(Address(op->klass()->as_register(),
1520                    InstanceKlass::init_state_offset()),
1521                    InstanceKlass::fully_initialized);
1522    add_debug_info_for_null_check_here(op->stub()->info());
1523    __ jcc(Assembler::notEqual, *op->stub()->entry());
1524  }
1525  __ allocate_object(op->obj()->as_register(),
1526                     op->tmp1()->as_register(),
1527                     op->tmp2()->as_register(),
1528                     op->header_size(),
1529                     op->object_size(),
1530                     op->klass()->as_register(),
1531                     *op->stub()->entry());
1532  __ bind(*op->stub()->continuation());
1533}
1534
1535void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1536  Register len =  op->len()->as_register();
1537  LP64_ONLY( __ movslq(len, len); )
1538
1539  if (UseSlowPath ||
1540      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1541      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1542    __ jmp(*op->stub()->entry());
1543  } else {
1544    Register tmp1 = op->tmp1()->as_register();
1545    Register tmp2 = op->tmp2()->as_register();
1546    Register tmp3 = op->tmp3()->as_register();
1547    if (len == tmp1) {
1548      tmp1 = tmp3;
1549    } else if (len == tmp2) {
1550      tmp2 = tmp3;
1551    } else if (len == tmp3) {
1552      // everything is ok
1553    } else {
1554      __ mov(tmp3, len);
1555    }
1556    __ allocate_array(op->obj()->as_register(),
1557                      len,
1558                      tmp1,
1559                      tmp2,
1560                      arrayOopDesc::header_size(op->type()),
1561                      array_element_size(op->type()),
1562                      op->klass()->as_register(),
1563                      *op->stub()->entry());
1564  }
1565  __ bind(*op->stub()->continuation());
1566}
1567
1568void LIR_Assembler::type_profile_helper(Register mdo,
1569                                        ciMethodData *md, ciProfileData *data,
1570                                        Register recv, Label* update_done) {
1571  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1572    Label next_test;
1573    // See if the receiver is receiver[n].
1574    __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1575    __ jccb(Assembler::notEqual, next_test);
1576    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1577    __ addptr(data_addr, DataLayout::counter_increment);
1578    __ jmp(*update_done);
1579    __ bind(next_test);
1580  }
1581
1582  // Didn't find receiver; find next empty slot and fill it in
1583  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1584    Label next_test;
1585    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1586    __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1587    __ jccb(Assembler::notEqual, next_test);
1588    __ movptr(recv_addr, recv);
1589    __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1590    __ jmp(*update_done);
1591    __ bind(next_test);
1592  }
1593}
1594
1595void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1596  // we always need a stub for the failure case.
1597  CodeStub* stub = op->stub();
1598  Register obj = op->object()->as_register();
1599  Register k_RInfo = op->tmp1()->as_register();
1600  Register klass_RInfo = op->tmp2()->as_register();
1601  Register dst = op->result_opr()->as_register();
1602  ciKlass* k = op->klass();
1603  Register Rtmp1 = noreg;
1604
1605  // check if it needs to be profiled
1606  ciMethodData* md = NULL;
1607  ciProfileData* data = NULL;
1608
1609  if (op->should_profile()) {
1610    ciMethod* method = op->profiled_method();
1611    assert(method != NULL, "Should have method");
1612    int bci = op->profiled_bci();
1613    md = method->method_data_or_null();
1614    assert(md != NULL, "Sanity");
1615    data = md->bci_to_data(bci);
1616    assert(data != NULL,                "need data for type check");
1617    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1618  }
1619  Label profile_cast_success, profile_cast_failure;
1620  Label *success_target = op->should_profile() ? &profile_cast_success : success;
1621  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1622
1623  if (obj == k_RInfo) {
1624    k_RInfo = dst;
1625  } else if (obj == klass_RInfo) {
1626    klass_RInfo = dst;
1627  }
1628  if (k->is_loaded() && !UseCompressedClassPointers) {
1629    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1630  } else {
1631    Rtmp1 = op->tmp3()->as_register();
1632    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1633  }
1634
1635  assert_different_registers(obj, k_RInfo, klass_RInfo);
1636
1637  __ cmpptr(obj, (int32_t)NULL_WORD);
1638  if (op->should_profile()) {
1639    Label not_null;
1640    __ jccb(Assembler::notEqual, not_null);
1641    // Object is null; update MDO and exit
1642    Register mdo  = klass_RInfo;
1643    __ mov_metadata(mdo, md->constant_encoding());
1644    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1645    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1646    __ orl(data_addr, header_bits);
1647    __ jmp(*obj_is_null);
1648    __ bind(not_null);
1649  } else {
1650    __ jcc(Assembler::equal, *obj_is_null);
1651  }
1652
1653  if (!k->is_loaded()) {
1654    klass2reg_with_patching(k_RInfo, op->info_for_patch());
1655  } else {
1656#ifdef _LP64
1657    __ mov_metadata(k_RInfo, k->constant_encoding());
1658#endif // _LP64
1659  }
1660  __ verify_oop(obj);
1661
1662  if (op->fast_check()) {
1663    // get object class
1664    // not a safepoint as obj null check happens earlier
1665#ifdef _LP64
1666    if (UseCompressedClassPointers) {
1667      __ load_klass(Rtmp1, obj);
1668      __ cmpptr(k_RInfo, Rtmp1);
1669    } else {
1670      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1671    }
1672#else
1673    if (k->is_loaded()) {
1674      __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1675    } else {
1676      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1677    }
1678#endif
1679    __ jcc(Assembler::notEqual, *failure_target);
1680    // successful cast, fall through to profile or jump
1681  } else {
1682    // get object class
1683    // not a safepoint as obj null check happens earlier
1684    __ load_klass(klass_RInfo, obj);
1685    if (k->is_loaded()) {
1686      // See if we get an immediate positive hit
1687#ifdef _LP64
1688      __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1689#else
1690      __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1691#endif // _LP64
1692      if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1693        __ jcc(Assembler::notEqual, *failure_target);
1694        // successful cast, fall through to profile or jump
1695      } else {
1696        // See if we get an immediate positive hit
1697        __ jcc(Assembler::equal, *success_target);
1698        // check for self
1699#ifdef _LP64
1700        __ cmpptr(klass_RInfo, k_RInfo);
1701#else
1702        __ cmpklass(klass_RInfo, k->constant_encoding());
1703#endif // _LP64
1704        __ jcc(Assembler::equal, *success_target);
1705
1706        __ push(klass_RInfo);
1707#ifdef _LP64
1708        __ push(k_RInfo);
1709#else
1710        __ pushklass(k->constant_encoding());
1711#endif // _LP64
1712        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1713        __ pop(klass_RInfo);
1714        __ pop(klass_RInfo);
1715        // result is a boolean
1716        __ cmpl(klass_RInfo, 0);
1717        __ jcc(Assembler::equal, *failure_target);
1718        // successful cast, fall through to profile or jump
1719      }
1720    } else {
1721      // perform the fast part of the checking logic
1722      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1723      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1724      __ push(klass_RInfo);
1725      __ push(k_RInfo);
1726      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1727      __ pop(klass_RInfo);
1728      __ pop(k_RInfo);
1729      // result is a boolean
1730      __ cmpl(k_RInfo, 0);
1731      __ jcc(Assembler::equal, *failure_target);
1732      // successful cast, fall through to profile or jump
1733    }
1734  }
1735  if (op->should_profile()) {
1736    Register mdo  = klass_RInfo, recv = k_RInfo;
1737    __ bind(profile_cast_success);
1738    __ mov_metadata(mdo, md->constant_encoding());
1739    __ load_klass(recv, obj);
1740    Label update_done;
1741    type_profile_helper(mdo, md, data, recv, success);
1742    __ jmp(*success);
1743
1744    __ bind(profile_cast_failure);
1745    __ mov_metadata(mdo, md->constant_encoding());
1746    Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1747    __ subptr(counter_addr, DataLayout::counter_increment);
1748    __ jmp(*failure);
1749  }
1750  __ jmp(*success);
1751}
1752
1753
1754void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1755  LIR_Code code = op->code();
1756  if (code == lir_store_check) {
1757    Register value = op->object()->as_register();
1758    Register array = op->array()->as_register();
1759    Register k_RInfo = op->tmp1()->as_register();
1760    Register klass_RInfo = op->tmp2()->as_register();
1761    Register Rtmp1 = op->tmp3()->as_register();
1762
1763    CodeStub* stub = op->stub();
1764
1765    // check if it needs to be profiled
1766    ciMethodData* md = NULL;
1767    ciProfileData* data = NULL;
1768
1769    if (op->should_profile()) {
1770      ciMethod* method = op->profiled_method();
1771      assert(method != NULL, "Should have method");
1772      int bci = op->profiled_bci();
1773      md = method->method_data_or_null();
1774      assert(md != NULL, "Sanity");
1775      data = md->bci_to_data(bci);
1776      assert(data != NULL,                "need data for type check");
1777      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1778    }
1779    Label profile_cast_success, profile_cast_failure, done;
1780    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1781    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1782
1783    __ cmpptr(value, (int32_t)NULL_WORD);
1784    if (op->should_profile()) {
1785      Label not_null;
1786      __ jccb(Assembler::notEqual, not_null);
1787      // Object is null; update MDO and exit
1788      Register mdo  = klass_RInfo;
1789      __ mov_metadata(mdo, md->constant_encoding());
1790      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1791      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1792      __ orl(data_addr, header_bits);
1793      __ jmp(done);
1794      __ bind(not_null);
1795    } else {
1796      __ jcc(Assembler::equal, done);
1797    }
1798
1799    add_debug_info_for_null_check_here(op->info_for_exception());
1800    __ load_klass(k_RInfo, array);
1801    __ load_klass(klass_RInfo, value);
1802
1803    // get instance klass (it's already uncompressed)
1804    __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1805    // perform the fast part of the checking logic
1806    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1807    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1808    __ push(klass_RInfo);
1809    __ push(k_RInfo);
1810    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1811    __ pop(klass_RInfo);
1812    __ pop(k_RInfo);
1813    // result is a boolean
1814    __ cmpl(k_RInfo, 0);
1815    __ jcc(Assembler::equal, *failure_target);
1816    // fall through to the success case
1817
1818    if (op->should_profile()) {
1819      Register mdo  = klass_RInfo, recv = k_RInfo;
1820      __ bind(profile_cast_success);
1821      __ mov_metadata(mdo, md->constant_encoding());
1822      __ load_klass(recv, value);
1823      Label update_done;
1824      type_profile_helper(mdo, md, data, recv, &done);
1825      __ jmpb(done);
1826
1827      __ bind(profile_cast_failure);
1828      __ mov_metadata(mdo, md->constant_encoding());
1829      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1830      __ subptr(counter_addr, DataLayout::counter_increment);
1831      __ jmp(*stub->entry());
1832    }
1833
1834    __ bind(done);
1835  } else
1836    if (code == lir_checkcast) {
1837      Register obj = op->object()->as_register();
1838      Register dst = op->result_opr()->as_register();
1839      Label success;
1840      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1841      __ bind(success);
1842      if (dst != obj) {
1843        __ mov(dst, obj);
1844      }
1845    } else
1846      if (code == lir_instanceof) {
1847        Register obj = op->object()->as_register();
1848        Register dst = op->result_opr()->as_register();
1849        Label success, failure, done;
1850        emit_typecheck_helper(op, &success, &failure, &failure);
1851        __ bind(failure);
1852        __ xorptr(dst, dst);
1853        __ jmpb(done);
1854        __ bind(success);
1855        __ movptr(dst, 1);
1856        __ bind(done);
1857      } else {
1858        ShouldNotReachHere();
1859      }
1860
1861}
1862
1863
1864void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1865  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1866    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1867    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1868    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1869    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1870    Register addr = op->addr()->as_register();
1871    if (os::is_MP()) {
1872      __ lock();
1873    }
1874    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1875
1876  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1877    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1878    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1879    Register newval = op->new_value()->as_register();
1880    Register cmpval = op->cmp_value()->as_register();
1881    assert(cmpval == rax, "wrong register");
1882    assert(newval != NULL, "new val must be register");
1883    assert(cmpval != newval, "cmp and new values must be in different registers");
1884    assert(cmpval != addr, "cmp and addr must be in different registers");
1885    assert(newval != addr, "new value and addr must be in different registers");
1886
1887    if ( op->code() == lir_cas_obj) {
1888#ifdef _LP64
1889      if (UseCompressedOops) {
1890        __ encode_heap_oop(cmpval);
1891        __ mov(rscratch1, newval);
1892        __ encode_heap_oop(rscratch1);
1893        if (os::is_MP()) {
1894          __ lock();
1895        }
1896        // cmpval (rax) is implicitly used by this instruction
1897        __ cmpxchgl(rscratch1, Address(addr, 0));
1898      } else
1899#endif
1900      {
1901        if (os::is_MP()) {
1902          __ lock();
1903        }
1904        __ cmpxchgptr(newval, Address(addr, 0));
1905      }
1906    } else {
1907      assert(op->code() == lir_cas_int, "lir_cas_int expected");
1908      if (os::is_MP()) {
1909        __ lock();
1910      }
1911      __ cmpxchgl(newval, Address(addr, 0));
1912    }
1913#ifdef _LP64
1914  } else if (op->code() == lir_cas_long) {
1915    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1916    Register newval = op->new_value()->as_register_lo();
1917    Register cmpval = op->cmp_value()->as_register_lo();
1918    assert(cmpval == rax, "wrong register");
1919    assert(newval != NULL, "new val must be register");
1920    assert(cmpval != newval, "cmp and new values must be in different registers");
1921    assert(cmpval != addr, "cmp and addr must be in different registers");
1922    assert(newval != addr, "new value and addr must be in different registers");
1923    if (os::is_MP()) {
1924      __ lock();
1925    }
1926    __ cmpxchgq(newval, Address(addr, 0));
1927#endif // _LP64
1928  } else {
1929    Unimplemented();
1930  }
1931}
1932
1933void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1934  Assembler::Condition acond, ncond;
1935  switch (condition) {
1936    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1937    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1938    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1939    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1940    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1941    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1942    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1943    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1944    default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1945                                ShouldNotReachHere();
1946  }
1947
1948  if (opr1->is_cpu_register()) {
1949    reg2reg(opr1, result);
1950  } else if (opr1->is_stack()) {
1951    stack2reg(opr1, result, result->type());
1952  } else if (opr1->is_constant()) {
1953    const2reg(opr1, result, lir_patch_none, NULL);
1954  } else {
1955    ShouldNotReachHere();
1956  }
1957
1958  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1959    // optimized version that does not require a branch
1960    if (opr2->is_single_cpu()) {
1961      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1962      __ cmov(ncond, result->as_register(), opr2->as_register());
1963    } else if (opr2->is_double_cpu()) {
1964      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1965      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1966      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1967      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1968    } else if (opr2->is_single_stack()) {
1969      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1970    } else if (opr2->is_double_stack()) {
1971      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1972      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1973    } else {
1974      ShouldNotReachHere();
1975    }
1976
1977  } else {
1978    Label skip;
1979    __ jcc (acond, skip);
1980    if (opr2->is_cpu_register()) {
1981      reg2reg(opr2, result);
1982    } else if (opr2->is_stack()) {
1983      stack2reg(opr2, result, result->type());
1984    } else if (opr2->is_constant()) {
1985      const2reg(opr2, result, lir_patch_none, NULL);
1986    } else {
1987      ShouldNotReachHere();
1988    }
1989    __ bind(skip);
1990  }
1991}
1992
1993
1994void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1995  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1996
1997  if (left->is_single_cpu()) {
1998    assert(left == dest, "left and dest must be equal");
1999    Register lreg = left->as_register();
2000
2001    if (right->is_single_cpu()) {
2002      // cpu register - cpu register
2003      Register rreg = right->as_register();
2004      switch (code) {
2005        case lir_add: __ addl (lreg, rreg); break;
2006        case lir_sub: __ subl (lreg, rreg); break;
2007        case lir_mul: __ imull(lreg, rreg); break;
2008        default:      ShouldNotReachHere();
2009      }
2010
2011    } else if (right->is_stack()) {
2012      // cpu register - stack
2013      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2014      switch (code) {
2015        case lir_add: __ addl(lreg, raddr); break;
2016        case lir_sub: __ subl(lreg, raddr); break;
2017        default:      ShouldNotReachHere();
2018      }
2019
2020    } else if (right->is_constant()) {
2021      // cpu register - constant
2022      jint c = right->as_constant_ptr()->as_jint();
2023      switch (code) {
2024        case lir_add: {
2025          __ incrementl(lreg, c);
2026          break;
2027        }
2028        case lir_sub: {
2029          __ decrementl(lreg, c);
2030          break;
2031        }
2032        default: ShouldNotReachHere();
2033      }
2034
2035    } else {
2036      ShouldNotReachHere();
2037    }
2038
2039  } else if (left->is_double_cpu()) {
2040    assert(left == dest, "left and dest must be equal");
2041    Register lreg_lo = left->as_register_lo();
2042    Register lreg_hi = left->as_register_hi();
2043
2044    if (right->is_double_cpu()) {
2045      // cpu register - cpu register
2046      Register rreg_lo = right->as_register_lo();
2047      Register rreg_hi = right->as_register_hi();
2048      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2049      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2050      switch (code) {
2051        case lir_add:
2052          __ addptr(lreg_lo, rreg_lo);
2053          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2054          break;
2055        case lir_sub:
2056          __ subptr(lreg_lo, rreg_lo);
2057          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2058          break;
2059        case lir_mul:
2060#ifdef _LP64
2061          __ imulq(lreg_lo, rreg_lo);
2062#else
2063          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2064          __ imull(lreg_hi, rreg_lo);
2065          __ imull(rreg_hi, lreg_lo);
2066          __ addl (rreg_hi, lreg_hi);
2067          __ mull (rreg_lo);
2068          __ addl (lreg_hi, rreg_hi);
2069#endif // _LP64
2070          break;
2071        default:
2072          ShouldNotReachHere();
2073      }
2074
2075    } else if (right->is_constant()) {
2076      // cpu register - constant
2077#ifdef _LP64
2078      jlong c = right->as_constant_ptr()->as_jlong_bits();
2079      __ movptr(r10, (intptr_t) c);
2080      switch (code) {
2081        case lir_add:
2082          __ addptr(lreg_lo, r10);
2083          break;
2084        case lir_sub:
2085          __ subptr(lreg_lo, r10);
2086          break;
2087        default:
2088          ShouldNotReachHere();
2089      }
2090#else
2091      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2092      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2093      switch (code) {
2094        case lir_add:
2095          __ addptr(lreg_lo, c_lo);
2096          __ adcl(lreg_hi, c_hi);
2097          break;
2098        case lir_sub:
2099          __ subptr(lreg_lo, c_lo);
2100          __ sbbl(lreg_hi, c_hi);
2101          break;
2102        default:
2103          ShouldNotReachHere();
2104      }
2105#endif // _LP64
2106
2107    } else {
2108      ShouldNotReachHere();
2109    }
2110
2111  } else if (left->is_single_xmm()) {
2112    assert(left == dest, "left and dest must be equal");
2113    XMMRegister lreg = left->as_xmm_float_reg();
2114
2115    if (right->is_single_xmm()) {
2116      XMMRegister rreg = right->as_xmm_float_reg();
2117      switch (code) {
2118        case lir_add: __ addss(lreg, rreg);  break;
2119        case lir_sub: __ subss(lreg, rreg);  break;
2120        case lir_mul_strictfp: // fall through
2121        case lir_mul: __ mulss(lreg, rreg);  break;
2122        case lir_div_strictfp: // fall through
2123        case lir_div: __ divss(lreg, rreg);  break;
2124        default: ShouldNotReachHere();
2125      }
2126    } else {
2127      Address raddr;
2128      if (right->is_single_stack()) {
2129        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2130      } else if (right->is_constant()) {
2131        // hack for now
2132        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2133      } else {
2134        ShouldNotReachHere();
2135      }
2136      switch (code) {
2137        case lir_add: __ addss(lreg, raddr);  break;
2138        case lir_sub: __ subss(lreg, raddr);  break;
2139        case lir_mul_strictfp: // fall through
2140        case lir_mul: __ mulss(lreg, raddr);  break;
2141        case lir_div_strictfp: // fall through
2142        case lir_div: __ divss(lreg, raddr);  break;
2143        default: ShouldNotReachHere();
2144      }
2145    }
2146
2147  } else if (left->is_double_xmm()) {
2148    assert(left == dest, "left and dest must be equal");
2149
2150    XMMRegister lreg = left->as_xmm_double_reg();
2151    if (right->is_double_xmm()) {
2152      XMMRegister rreg = right->as_xmm_double_reg();
2153      switch (code) {
2154        case lir_add: __ addsd(lreg, rreg);  break;
2155        case lir_sub: __ subsd(lreg, rreg);  break;
2156        case lir_mul_strictfp: // fall through
2157        case lir_mul: __ mulsd(lreg, rreg);  break;
2158        case lir_div_strictfp: // fall through
2159        case lir_div: __ divsd(lreg, rreg);  break;
2160        default: ShouldNotReachHere();
2161      }
2162    } else {
2163      Address raddr;
2164      if (right->is_double_stack()) {
2165        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2166      } else if (right->is_constant()) {
2167        // hack for now
2168        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2169      } else {
2170        ShouldNotReachHere();
2171      }
2172      switch (code) {
2173        case lir_add: __ addsd(lreg, raddr);  break;
2174        case lir_sub: __ subsd(lreg, raddr);  break;
2175        case lir_mul_strictfp: // fall through
2176        case lir_mul: __ mulsd(lreg, raddr);  break;
2177        case lir_div_strictfp: // fall through
2178        case lir_div: __ divsd(lreg, raddr);  break;
2179        default: ShouldNotReachHere();
2180      }
2181    }
2182
2183  } else if (left->is_single_fpu()) {
2184    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2185
2186    if (right->is_single_fpu()) {
2187      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2188
2189    } else {
2190      assert(left->fpu_regnr() == 0, "left must be on TOS");
2191      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2192
2193      Address raddr;
2194      if (right->is_single_stack()) {
2195        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2196      } else if (right->is_constant()) {
2197        address const_addr = float_constant(right->as_jfloat());
2198        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2199        // hack for now
2200        raddr = __ as_Address(InternalAddress(const_addr));
2201      } else {
2202        ShouldNotReachHere();
2203      }
2204
2205      switch (code) {
2206        case lir_add: __ fadd_s(raddr); break;
2207        case lir_sub: __ fsub_s(raddr); break;
2208        case lir_mul_strictfp: // fall through
2209        case lir_mul: __ fmul_s(raddr); break;
2210        case lir_div_strictfp: // fall through
2211        case lir_div: __ fdiv_s(raddr); break;
2212        default:      ShouldNotReachHere();
2213      }
2214    }
2215
2216  } else if (left->is_double_fpu()) {
2217    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2218
2219    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2220      // Double values require special handling for strictfp mul/div on x86
2221      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2222      __ fmulp(left->fpu_regnrLo() + 1);
2223    }
2224
2225    if (right->is_double_fpu()) {
2226      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2227
2228    } else {
2229      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2230      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2231
2232      Address raddr;
2233      if (right->is_double_stack()) {
2234        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2235      } else if (right->is_constant()) {
2236        // hack for now
2237        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2238      } else {
2239        ShouldNotReachHere();
2240      }
2241
2242      switch (code) {
2243        case lir_add: __ fadd_d(raddr); break;
2244        case lir_sub: __ fsub_d(raddr); break;
2245        case lir_mul_strictfp: // fall through
2246        case lir_mul: __ fmul_d(raddr); break;
2247        case lir_div_strictfp: // fall through
2248        case lir_div: __ fdiv_d(raddr); break;
2249        default: ShouldNotReachHere();
2250      }
2251    }
2252
2253    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2254      // Double values require special handling for strictfp mul/div on x86
2255      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2256      __ fmulp(dest->fpu_regnrLo() + 1);
2257    }
2258
2259  } else if (left->is_single_stack() || left->is_address()) {
2260    assert(left == dest, "left and dest must be equal");
2261
2262    Address laddr;
2263    if (left->is_single_stack()) {
2264      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2265    } else if (left->is_address()) {
2266      laddr = as_Address(left->as_address_ptr());
2267    } else {
2268      ShouldNotReachHere();
2269    }
2270
2271    if (right->is_single_cpu()) {
2272      Register rreg = right->as_register();
2273      switch (code) {
2274        case lir_add: __ addl(laddr, rreg); break;
2275        case lir_sub: __ subl(laddr, rreg); break;
2276        default:      ShouldNotReachHere();
2277      }
2278    } else if (right->is_constant()) {
2279      jint c = right->as_constant_ptr()->as_jint();
2280      switch (code) {
2281        case lir_add: {
2282          __ incrementl(laddr, c);
2283          break;
2284        }
2285        case lir_sub: {
2286          __ decrementl(laddr, c);
2287          break;
2288        }
2289        default: ShouldNotReachHere();
2290      }
2291    } else {
2292      ShouldNotReachHere();
2293    }
2294
2295  } else {
2296    ShouldNotReachHere();
2297  }
2298}
2299
2300void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2301  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2302  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2303  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2304
2305  bool left_is_tos = (left_index == 0);
2306  bool dest_is_tos = (dest_index == 0);
2307  int non_tos_index = (left_is_tos ? right_index : left_index);
2308
2309  switch (code) {
2310    case lir_add:
2311      if (pop_fpu_stack)       __ faddp(non_tos_index);
2312      else if (dest_is_tos)    __ fadd (non_tos_index);
2313      else                     __ fadda(non_tos_index);
2314      break;
2315
2316    case lir_sub:
2317      if (left_is_tos) {
2318        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2319        else if (dest_is_tos)  __ fsub  (non_tos_index);
2320        else                   __ fsubra(non_tos_index);
2321      } else {
2322        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2323        else if (dest_is_tos)  __ fsubr (non_tos_index);
2324        else                   __ fsuba (non_tos_index);
2325      }
2326      break;
2327
2328    case lir_mul_strictfp: // fall through
2329    case lir_mul:
2330      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2331      else if (dest_is_tos)    __ fmul (non_tos_index);
2332      else                     __ fmula(non_tos_index);
2333      break;
2334
2335    case lir_div_strictfp: // fall through
2336    case lir_div:
2337      if (left_is_tos) {
2338        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2339        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2340        else                   __ fdivra(non_tos_index);
2341      } else {
2342        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2343        else if (dest_is_tos)  __ fdivr (non_tos_index);
2344        else                   __ fdiva (non_tos_index);
2345      }
2346      break;
2347
2348    case lir_rem:
2349      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2350      __ fremr(noreg);
2351      break;
2352
2353    default:
2354      ShouldNotReachHere();
2355  }
2356}
2357
2358
2359void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2360  if (value->is_double_xmm()) {
2361    switch(code) {
2362      case lir_abs :
2363        {
2364          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2365            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2366          }
2367          __ andpd(dest->as_xmm_double_reg(),
2368                    ExternalAddress((address)double_signmask_pool));
2369        }
2370        break;
2371
2372      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2373      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2374      default      : ShouldNotReachHere();
2375    }
2376
2377  } else if (value->is_double_fpu()) {
2378    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2379    switch(code) {
2380      case lir_abs   : __ fabs() ; break;
2381      case lir_sqrt  : __ fsqrt(); break;
2382      default      : ShouldNotReachHere();
2383    }
2384  } else {
2385    Unimplemented();
2386  }
2387}
2388
2389void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2390  // assert(left->destroys_register(), "check");
2391  if (left->is_single_cpu()) {
2392    Register reg = left->as_register();
2393    if (right->is_constant()) {
2394      int val = right->as_constant_ptr()->as_jint();
2395      switch (code) {
2396        case lir_logic_and: __ andl (reg, val); break;
2397        case lir_logic_or:  __ orl  (reg, val); break;
2398        case lir_logic_xor: __ xorl (reg, val); break;
2399        default: ShouldNotReachHere();
2400      }
2401    } else if (right->is_stack()) {
2402      // added support for stack operands
2403      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2404      switch (code) {
2405        case lir_logic_and: __ andl (reg, raddr); break;
2406        case lir_logic_or:  __ orl  (reg, raddr); break;
2407        case lir_logic_xor: __ xorl (reg, raddr); break;
2408        default: ShouldNotReachHere();
2409      }
2410    } else {
2411      Register rright = right->as_register();
2412      switch (code) {
2413        case lir_logic_and: __ andptr (reg, rright); break;
2414        case lir_logic_or : __ orptr  (reg, rright); break;
2415        case lir_logic_xor: __ xorptr (reg, rright); break;
2416        default: ShouldNotReachHere();
2417      }
2418    }
2419    move_regs(reg, dst->as_register());
2420  } else {
2421    Register l_lo = left->as_register_lo();
2422    Register l_hi = left->as_register_hi();
2423    if (right->is_constant()) {
2424#ifdef _LP64
2425      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2426      switch (code) {
2427        case lir_logic_and:
2428          __ andq(l_lo, rscratch1);
2429          break;
2430        case lir_logic_or:
2431          __ orq(l_lo, rscratch1);
2432          break;
2433        case lir_logic_xor:
2434          __ xorq(l_lo, rscratch1);
2435          break;
2436        default: ShouldNotReachHere();
2437      }
2438#else
2439      int r_lo = right->as_constant_ptr()->as_jint_lo();
2440      int r_hi = right->as_constant_ptr()->as_jint_hi();
2441      switch (code) {
2442        case lir_logic_and:
2443          __ andl(l_lo, r_lo);
2444          __ andl(l_hi, r_hi);
2445          break;
2446        case lir_logic_or:
2447          __ orl(l_lo, r_lo);
2448          __ orl(l_hi, r_hi);
2449          break;
2450        case lir_logic_xor:
2451          __ xorl(l_lo, r_lo);
2452          __ xorl(l_hi, r_hi);
2453          break;
2454        default: ShouldNotReachHere();
2455      }
2456#endif // _LP64
2457    } else {
2458#ifdef _LP64
2459      Register r_lo;
2460      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2461        r_lo = right->as_register();
2462      } else {
2463        r_lo = right->as_register_lo();
2464      }
2465#else
2466      Register r_lo = right->as_register_lo();
2467      Register r_hi = right->as_register_hi();
2468      assert(l_lo != r_hi, "overwriting registers");
2469#endif
2470      switch (code) {
2471        case lir_logic_and:
2472          __ andptr(l_lo, r_lo);
2473          NOT_LP64(__ andptr(l_hi, r_hi);)
2474          break;
2475        case lir_logic_or:
2476          __ orptr(l_lo, r_lo);
2477          NOT_LP64(__ orptr(l_hi, r_hi);)
2478          break;
2479        case lir_logic_xor:
2480          __ xorptr(l_lo, r_lo);
2481          NOT_LP64(__ xorptr(l_hi, r_hi);)
2482          break;
2483        default: ShouldNotReachHere();
2484      }
2485    }
2486
2487    Register dst_lo = dst->as_register_lo();
2488    Register dst_hi = dst->as_register_hi();
2489
2490#ifdef _LP64
2491    move_regs(l_lo, dst_lo);
2492#else
2493    if (dst_lo == l_hi) {
2494      assert(dst_hi != l_lo, "overwriting registers");
2495      move_regs(l_hi, dst_hi);
2496      move_regs(l_lo, dst_lo);
2497    } else {
2498      assert(dst_lo != l_hi, "overwriting registers");
2499      move_regs(l_lo, dst_lo);
2500      move_regs(l_hi, dst_hi);
2501    }
2502#endif // _LP64
2503  }
2504}
2505
2506
2507// we assume that rax, and rdx can be overwritten
2508void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2509
2510  assert(left->is_single_cpu(),   "left must be register");
2511  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2512  assert(result->is_single_cpu(), "result must be register");
2513
2514  //  assert(left->destroys_register(), "check");
2515  //  assert(right->destroys_register(), "check");
2516
2517  Register lreg = left->as_register();
2518  Register dreg = result->as_register();
2519
2520  if (right->is_constant()) {
2521    int divisor = right->as_constant_ptr()->as_jint();
2522    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2523    if (code == lir_idiv) {
2524      assert(lreg == rax, "must be rax,");
2525      assert(temp->as_register() == rdx, "tmp register must be rdx");
2526      __ cdql(); // sign extend into rdx:rax
2527      if (divisor == 2) {
2528        __ subl(lreg, rdx);
2529      } else {
2530        __ andl(rdx, divisor - 1);
2531        __ addl(lreg, rdx);
2532      }
2533      __ sarl(lreg, log2_intptr(divisor));
2534      move_regs(lreg, dreg);
2535    } else if (code == lir_irem) {
2536      Label done;
2537      __ mov(dreg, lreg);
2538      __ andl(dreg, 0x80000000 | (divisor - 1));
2539      __ jcc(Assembler::positive, done);
2540      __ decrement(dreg);
2541      __ orl(dreg, ~(divisor - 1));
2542      __ increment(dreg);
2543      __ bind(done);
2544    } else {
2545      ShouldNotReachHere();
2546    }
2547  } else {
2548    Register rreg = right->as_register();
2549    assert(lreg == rax, "left register must be rax,");
2550    assert(rreg != rdx, "right register must not be rdx");
2551    assert(temp->as_register() == rdx, "tmp register must be rdx");
2552
2553    move_regs(lreg, rax);
2554
2555    int idivl_offset = __ corrected_idivl(rreg);
2556    add_debug_info_for_div0(idivl_offset, info);
2557    if (code == lir_irem) {
2558      move_regs(rdx, dreg); // result is in rdx
2559    } else {
2560      move_regs(rax, dreg);
2561    }
2562  }
2563}
2564
2565
2566void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2567  if (opr1->is_single_cpu()) {
2568    Register reg1 = opr1->as_register();
2569    if (opr2->is_single_cpu()) {
2570      // cpu register - cpu register
2571      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2572        __ cmpptr(reg1, opr2->as_register());
2573      } else {
2574        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2575        __ cmpl(reg1, opr2->as_register());
2576      }
2577    } else if (opr2->is_stack()) {
2578      // cpu register - stack
2579      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2580        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2581      } else {
2582        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2583      }
2584    } else if (opr2->is_constant()) {
2585      // cpu register - constant
2586      LIR_Const* c = opr2->as_constant_ptr();
2587      if (c->type() == T_INT) {
2588        __ cmpl(reg1, c->as_jint());
2589      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2590        // In 64bit oops are single register
2591        jobject o = c->as_jobject();
2592        if (o == NULL) {
2593          __ cmpptr(reg1, (int32_t)NULL_WORD);
2594        } else {
2595#ifdef _LP64
2596          __ movoop(rscratch1, o);
2597          __ cmpptr(reg1, rscratch1);
2598#else
2599          __ cmpoop(reg1, c->as_jobject());
2600#endif // _LP64
2601        }
2602      } else {
2603        fatal("unexpected type: %s", basictype_to_str(c->type()));
2604      }
2605      // cpu register - address
2606    } else if (opr2->is_address()) {
2607      if (op->info() != NULL) {
2608        add_debug_info_for_null_check_here(op->info());
2609      }
2610      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2611    } else {
2612      ShouldNotReachHere();
2613    }
2614
2615  } else if(opr1->is_double_cpu()) {
2616    Register xlo = opr1->as_register_lo();
2617    Register xhi = opr1->as_register_hi();
2618    if (opr2->is_double_cpu()) {
2619#ifdef _LP64
2620      __ cmpptr(xlo, opr2->as_register_lo());
2621#else
2622      // cpu register - cpu register
2623      Register ylo = opr2->as_register_lo();
2624      Register yhi = opr2->as_register_hi();
2625      __ subl(xlo, ylo);
2626      __ sbbl(xhi, yhi);
2627      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2628        __ orl(xhi, xlo);
2629      }
2630#endif // _LP64
2631    } else if (opr2->is_constant()) {
2632      // cpu register - constant 0
2633      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2634#ifdef _LP64
2635      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2636#else
2637      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2638      __ orl(xhi, xlo);
2639#endif // _LP64
2640    } else {
2641      ShouldNotReachHere();
2642    }
2643
2644  } else if (opr1->is_single_xmm()) {
2645    XMMRegister reg1 = opr1->as_xmm_float_reg();
2646    if (opr2->is_single_xmm()) {
2647      // xmm register - xmm register
2648      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2649    } else if (opr2->is_stack()) {
2650      // xmm register - stack
2651      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2652    } else if (opr2->is_constant()) {
2653      // xmm register - constant
2654      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2655    } else if (opr2->is_address()) {
2656      // xmm register - address
2657      if (op->info() != NULL) {
2658        add_debug_info_for_null_check_here(op->info());
2659      }
2660      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2661    } else {
2662      ShouldNotReachHere();
2663    }
2664
2665  } else if (opr1->is_double_xmm()) {
2666    XMMRegister reg1 = opr1->as_xmm_double_reg();
2667    if (opr2->is_double_xmm()) {
2668      // xmm register - xmm register
2669      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2670    } else if (opr2->is_stack()) {
2671      // xmm register - stack
2672      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2673    } else if (opr2->is_constant()) {
2674      // xmm register - constant
2675      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2676    } else if (opr2->is_address()) {
2677      // xmm register - address
2678      if (op->info() != NULL) {
2679        add_debug_info_for_null_check_here(op->info());
2680      }
2681      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2682    } else {
2683      ShouldNotReachHere();
2684    }
2685
2686  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2687    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2688    assert(opr2->is_fpu_register(), "both must be registers");
2689    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2690
2691  } else if (opr1->is_address() && opr2->is_constant()) {
2692    LIR_Const* c = opr2->as_constant_ptr();
2693#ifdef _LP64
2694    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2695      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2696      __ movoop(rscratch1, c->as_jobject());
2697    }
2698#endif // LP64
2699    if (op->info() != NULL) {
2700      add_debug_info_for_null_check_here(op->info());
2701    }
2702    // special case: address - constant
2703    LIR_Address* addr = opr1->as_address_ptr();
2704    if (c->type() == T_INT) {
2705      __ cmpl(as_Address(addr), c->as_jint());
2706    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2707#ifdef _LP64
2708      // %%% Make this explode if addr isn't reachable until we figure out a
2709      // better strategy by giving noreg as the temp for as_Address
2710      __ cmpptr(rscratch1, as_Address(addr, noreg));
2711#else
2712      __ cmpoop(as_Address(addr), c->as_jobject());
2713#endif // _LP64
2714    } else {
2715      ShouldNotReachHere();
2716    }
2717
2718  } else {
2719    ShouldNotReachHere();
2720  }
2721}
2722
2723void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2724  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2725    if (left->is_single_xmm()) {
2726      assert(right->is_single_xmm(), "must match");
2727      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2728    } else if (left->is_double_xmm()) {
2729      assert(right->is_double_xmm(), "must match");
2730      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2731
2732    } else {
2733      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2734      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2735
2736      assert(left->fpu() == 0, "left must be on TOS");
2737      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2738                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2739    }
2740  } else {
2741    assert(code == lir_cmp_l2i, "check");
2742#ifdef _LP64
2743    Label done;
2744    Register dest = dst->as_register();
2745    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2746    __ movl(dest, -1);
2747    __ jccb(Assembler::less, done);
2748    __ set_byte_if_not_zero(dest);
2749    __ movzbl(dest, dest);
2750    __ bind(done);
2751#else
2752    __ lcmp2int(left->as_register_hi(),
2753                left->as_register_lo(),
2754                right->as_register_hi(),
2755                right->as_register_lo());
2756    move_regs(left->as_register_hi(), dst->as_register());
2757#endif // _LP64
2758  }
2759}
2760
2761
2762void LIR_Assembler::align_call(LIR_Code code) {
2763  if (os::is_MP()) {
2764    // make sure that the displacement word of the call ends up word aligned
2765    int offset = __ offset();
2766    switch (code) {
2767      case lir_static_call:
2768      case lir_optvirtual_call:
2769      case lir_dynamic_call:
2770        offset += NativeCall::displacement_offset;
2771        break;
2772      case lir_icvirtual_call:
2773        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2774      break;
2775      case lir_virtual_call:  // currently, sparc-specific for niagara
2776      default: ShouldNotReachHere();
2777    }
2778    __ align(BytesPerWord, offset);
2779  }
2780}
2781
2782
2783void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2784  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2785         "must be aligned");
2786  __ call(AddressLiteral(op->addr(), rtype));
2787  add_call_info(code_offset(), op->info());
2788}
2789
2790
2791void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2792  __ ic_call(op->addr());
2793  add_call_info(code_offset(), op->info());
2794  assert(!os::is_MP() ||
2795         (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2796         "must be aligned");
2797}
2798
2799
2800/* Currently, vtable-dispatch is only enabled for sparc platforms */
2801void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2802  ShouldNotReachHere();
2803}
2804
2805
2806void LIR_Assembler::emit_static_call_stub() {
2807  address call_pc = __ pc();
2808  address stub = __ start_a_stub(call_stub_size());
2809  if (stub == NULL) {
2810    bailout("static call stub overflow");
2811    return;
2812  }
2813
2814  int start = __ offset();
2815  if (os::is_MP()) {
2816    // make sure that the displacement word of the call ends up word aligned
2817    __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2818  }
2819  __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2820  __ mov_metadata(rbx, (Metadata*)NULL);
2821  // must be set to -1 at code generation time
2822  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2823  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2824  __ jump(RuntimeAddress(__ pc()));
2825
2826  if (UseAOT) {
2827    // Trampoline to aot code
2828    __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2829#ifdef _LP64
2830    __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2831#else
2832    __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2833#endif
2834    __ jmp(rax);
2835  }
2836  assert(__ offset() - start <= call_stub_size(), "stub too big");
2837  __ end_a_stub();
2838}
2839
2840
2841void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2842  assert(exceptionOop->as_register() == rax, "must match");
2843  assert(exceptionPC->as_register() == rdx, "must match");
2844
2845  // exception object is not added to oop map by LinearScan
2846  // (LinearScan assumes that no oops are in fixed registers)
2847  info->add_register_oop(exceptionOop);
2848  Runtime1::StubID unwind_id;
2849
2850  // get current pc information
2851  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2852  int pc_for_athrow_offset = __ offset();
2853  InternalAddress pc_for_athrow(__ pc());
2854  __ lea(exceptionPC->as_register(), pc_for_athrow);
2855  add_call_info(pc_for_athrow_offset, info); // for exception handler
2856
2857  __ verify_not_null_oop(rax);
2858  // search an exception handler (rax: exception oop, rdx: throwing pc)
2859  if (compilation()->has_fpu_code()) {
2860    unwind_id = Runtime1::handle_exception_id;
2861  } else {
2862    unwind_id = Runtime1::handle_exception_nofpu_id;
2863  }
2864  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2865
2866  // enough room for two byte trap
2867  __ nop();
2868}
2869
2870
2871void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2872  assert(exceptionOop->as_register() == rax, "must match");
2873
2874  __ jmp(_unwind_handler_entry);
2875}
2876
2877
2878void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2879
2880  // optimized version for linear scan:
2881  // * count must be already in ECX (guaranteed by LinearScan)
2882  // * left and dest must be equal
2883  // * tmp must be unused
2884  assert(count->as_register() == SHIFT_count, "count must be in ECX");
2885  assert(left == dest, "left and dest must be equal");
2886  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2887
2888  if (left->is_single_cpu()) {
2889    Register value = left->as_register();
2890    assert(value != SHIFT_count, "left cannot be ECX");
2891
2892    switch (code) {
2893      case lir_shl:  __ shll(value); break;
2894      case lir_shr:  __ sarl(value); break;
2895      case lir_ushr: __ shrl(value); break;
2896      default: ShouldNotReachHere();
2897    }
2898  } else if (left->is_double_cpu()) {
2899    Register lo = left->as_register_lo();
2900    Register hi = left->as_register_hi();
2901    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2902#ifdef _LP64
2903    switch (code) {
2904      case lir_shl:  __ shlptr(lo);        break;
2905      case lir_shr:  __ sarptr(lo);        break;
2906      case lir_ushr: __ shrptr(lo);        break;
2907      default: ShouldNotReachHere();
2908    }
2909#else
2910
2911    switch (code) {
2912      case lir_shl:  __ lshl(hi, lo);        break;
2913      case lir_shr:  __ lshr(hi, lo, true);  break;
2914      case lir_ushr: __ lshr(hi, lo, false); break;
2915      default: ShouldNotReachHere();
2916    }
2917#endif // LP64
2918  } else {
2919    ShouldNotReachHere();
2920  }
2921}
2922
2923
2924void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2925  if (dest->is_single_cpu()) {
2926    // first move left into dest so that left is not destroyed by the shift
2927    Register value = dest->as_register();
2928    count = count & 0x1F; // Java spec
2929
2930    move_regs(left->as_register(), value);
2931    switch (code) {
2932      case lir_shl:  __ shll(value, count); break;
2933      case lir_shr:  __ sarl(value, count); break;
2934      case lir_ushr: __ shrl(value, count); break;
2935      default: ShouldNotReachHere();
2936    }
2937  } else if (dest->is_double_cpu()) {
2938#ifndef _LP64
2939    Unimplemented();
2940#else
2941    // first move left into dest so that left is not destroyed by the shift
2942    Register value = dest->as_register_lo();
2943    count = count & 0x1F; // Java spec
2944
2945    move_regs(left->as_register_lo(), value);
2946    switch (code) {
2947      case lir_shl:  __ shlptr(value, count); break;
2948      case lir_shr:  __ sarptr(value, count); break;
2949      case lir_ushr: __ shrptr(value, count); break;
2950      default: ShouldNotReachHere();
2951    }
2952#endif // _LP64
2953  } else {
2954    ShouldNotReachHere();
2955  }
2956}
2957
2958
2959void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2960  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2961  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2962  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2963  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2964}
2965
2966
2967void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2968  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2969  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2970  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2971  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2972}
2973
2974
2975void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2976  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2977  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2978  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2979  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2980}
2981
2982
2983void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
2984  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2985  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2986  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2987  __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
2988}
2989
2990
2991// This code replaces a call to arraycopy; no exception may
2992// be thrown in this code, they must be thrown in the System.arraycopy
2993// activation frame; we could save some checks if this would not be the case
2994void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2995  ciArrayKlass* default_type = op->expected_type();
2996  Register src = op->src()->as_register();
2997  Register dst = op->dst()->as_register();
2998  Register src_pos = op->src_pos()->as_register();
2999  Register dst_pos = op->dst_pos()->as_register();
3000  Register length  = op->length()->as_register();
3001  Register tmp = op->tmp()->as_register();
3002
3003  CodeStub* stub = op->stub();
3004  int flags = op->flags();
3005  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3006  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3007
3008  // if we don't know anything, just go through the generic arraycopy
3009  if (default_type == NULL) {
3010    Label done;
3011    // save outgoing arguments on stack in case call to System.arraycopy is needed
3012    // HACK ALERT. This code used to push the parameters in a hardwired fashion
3013    // for interpreter calling conventions. Now we have to do it in new style conventions.
3014    // For the moment until C1 gets the new register allocator I just force all the
3015    // args to the right place (except the register args) and then on the back side
3016    // reload the register args properly if we go slow path. Yuck
3017
3018    // These are proper for the calling convention
3019    store_parameter(length, 2);
3020    store_parameter(dst_pos, 1);
3021    store_parameter(dst, 0);
3022
3023    // these are just temporary placements until we need to reload
3024    store_parameter(src_pos, 3);
3025    store_parameter(src, 4);
3026    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3027
3028    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3029
3030    address copyfunc_addr = StubRoutines::generic_arraycopy();
3031
3032    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3033#ifdef _LP64
3034    // The arguments are in java calling convention so we can trivially shift them to C
3035    // convention
3036    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3037    __ mov(c_rarg0, j_rarg0);
3038    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3039    __ mov(c_rarg1, j_rarg1);
3040    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3041    __ mov(c_rarg2, j_rarg2);
3042    assert_different_registers(c_rarg3, j_rarg4);
3043    __ mov(c_rarg3, j_rarg3);
3044#ifdef _WIN64
3045    // Allocate abi space for args but be sure to keep stack aligned
3046    __ subptr(rsp, 6*wordSize);
3047    store_parameter(j_rarg4, 4);
3048    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3049      __ call(RuntimeAddress(C_entry));
3050    } else {
3051#ifndef PRODUCT
3052      if (PrintC1Statistics) {
3053        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3054      }
3055#endif
3056      __ call(RuntimeAddress(copyfunc_addr));
3057    }
3058    __ addptr(rsp, 6*wordSize);
3059#else
3060    __ mov(c_rarg4, j_rarg4);
3061    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3062      __ call(RuntimeAddress(C_entry));
3063    } else {
3064#ifndef PRODUCT
3065      if (PrintC1Statistics) {
3066        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3067      }
3068#endif
3069      __ call(RuntimeAddress(copyfunc_addr));
3070    }
3071#endif // _WIN64
3072#else
3073    __ push(length);
3074    __ push(dst_pos);
3075    __ push(dst);
3076    __ push(src_pos);
3077    __ push(src);
3078
3079    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3080      __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3081    } else {
3082#ifndef PRODUCT
3083      if (PrintC1Statistics) {
3084        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3085      }
3086#endif
3087      __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3088    }
3089
3090#endif // _LP64
3091
3092    __ cmpl(rax, 0);
3093    __ jcc(Assembler::equal, *stub->continuation());
3094
3095    if (copyfunc_addr != NULL) {
3096      __ mov(tmp, rax);
3097      __ xorl(tmp, -1);
3098    }
3099
3100    // Reload values from the stack so they are where the stub
3101    // expects them.
3102    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3103    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3104    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3105    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3106    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3107
3108    if (copyfunc_addr != NULL) {
3109      __ subl(length, tmp);
3110      __ addl(src_pos, tmp);
3111      __ addl(dst_pos, tmp);
3112    }
3113    __ jmp(*stub->entry());
3114
3115    __ bind(*stub->continuation());
3116    return;
3117  }
3118
3119  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3120
3121  int elem_size = type2aelembytes(basic_type);
3122  Address::ScaleFactor scale;
3123
3124  switch (elem_size) {
3125    case 1 :
3126      scale = Address::times_1;
3127      break;
3128    case 2 :
3129      scale = Address::times_2;
3130      break;
3131    case 4 :
3132      scale = Address::times_4;
3133      break;
3134    case 8 :
3135      scale = Address::times_8;
3136      break;
3137    default:
3138      scale = Address::no_scale;
3139      ShouldNotReachHere();
3140  }
3141
3142  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3143  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3144  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3145  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3146
3147  // length and pos's are all sign extended at this point on 64bit
3148
3149  // test for NULL
3150  if (flags & LIR_OpArrayCopy::src_null_check) {
3151    __ testptr(src, src);
3152    __ jcc(Assembler::zero, *stub->entry());
3153  }
3154  if (flags & LIR_OpArrayCopy::dst_null_check) {
3155    __ testptr(dst, dst);
3156    __ jcc(Assembler::zero, *stub->entry());
3157  }
3158
3159  // If the compiler was not able to prove that exact type of the source or the destination
3160  // of the arraycopy is an array type, check at runtime if the source or the destination is
3161  // an instance type.
3162  if (flags & LIR_OpArrayCopy::type_check) {
3163    if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3164      __ load_klass(tmp, dst);
3165      __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3166      __ jcc(Assembler::greaterEqual, *stub->entry());
3167    }
3168
3169    if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3170      __ load_klass(tmp, src);
3171      __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3172      __ jcc(Assembler::greaterEqual, *stub->entry());
3173    }
3174  }
3175
3176  // check if negative
3177  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3178    __ testl(src_pos, src_pos);
3179    __ jcc(Assembler::less, *stub->entry());
3180  }
3181  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3182    __ testl(dst_pos, dst_pos);
3183    __ jcc(Assembler::less, *stub->entry());
3184  }
3185
3186  if (flags & LIR_OpArrayCopy::src_range_check) {
3187    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3188    __ cmpl(tmp, src_length_addr);
3189    __ jcc(Assembler::above, *stub->entry());
3190  }
3191  if (flags & LIR_OpArrayCopy::dst_range_check) {
3192    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3193    __ cmpl(tmp, dst_length_addr);
3194    __ jcc(Assembler::above, *stub->entry());
3195  }
3196
3197  if (flags & LIR_OpArrayCopy::length_positive_check) {
3198    __ testl(length, length);
3199    __ jcc(Assembler::less, *stub->entry());
3200  }
3201
3202#ifdef _LP64
3203  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3204  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3205#endif
3206
3207  if (flags & LIR_OpArrayCopy::type_check) {
3208    // We don't know the array types are compatible
3209    if (basic_type != T_OBJECT) {
3210      // Simple test for basic type arrays
3211      if (UseCompressedClassPointers) {
3212        __ movl(tmp, src_klass_addr);
3213        __ cmpl(tmp, dst_klass_addr);
3214      } else {
3215        __ movptr(tmp, src_klass_addr);
3216        __ cmpptr(tmp, dst_klass_addr);
3217      }
3218      __ jcc(Assembler::notEqual, *stub->entry());
3219    } else {
3220      // For object arrays, if src is a sub class of dst then we can
3221      // safely do the copy.
3222      Label cont, slow;
3223
3224      __ push(src);
3225      __ push(dst);
3226
3227      __ load_klass(src, src);
3228      __ load_klass(dst, dst);
3229
3230      __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3231
3232      __ push(src);
3233      __ push(dst);
3234      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3235      __ pop(dst);
3236      __ pop(src);
3237
3238      __ cmpl(src, 0);
3239      __ jcc(Assembler::notEqual, cont);
3240
3241      __ bind(slow);
3242      __ pop(dst);
3243      __ pop(src);
3244
3245      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3246      if (copyfunc_addr != NULL) { // use stub if available
3247        // src is not a sub class of dst so we have to do a
3248        // per-element check.
3249
3250        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3251        if ((flags & mask) != mask) {
3252          // Check that at least both of them object arrays.
3253          assert(flags & mask, "one of the two should be known to be an object array");
3254
3255          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3256            __ load_klass(tmp, src);
3257          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3258            __ load_klass(tmp, dst);
3259          }
3260          int lh_offset = in_bytes(Klass::layout_helper_offset());
3261          Address klass_lh_addr(tmp, lh_offset);
3262          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3263          __ cmpl(klass_lh_addr, objArray_lh);
3264          __ jcc(Assembler::notEqual, *stub->entry());
3265        }
3266
3267       // Spill because stubs can use any register they like and it's
3268       // easier to restore just those that we care about.
3269       store_parameter(dst, 0);
3270       store_parameter(dst_pos, 1);
3271       store_parameter(length, 2);
3272       store_parameter(src_pos, 3);
3273       store_parameter(src, 4);
3274
3275#ifndef _LP64
3276        __ movptr(tmp, dst_klass_addr);
3277        __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3278        __ push(tmp);
3279        __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3280        __ push(tmp);
3281        __ push(length);
3282        __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3283        __ push(tmp);
3284        __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3285        __ push(tmp);
3286
3287        __ call_VM_leaf(copyfunc_addr, 5);
3288#else
3289        __ movl2ptr(length, length); //higher 32bits must be null
3290
3291        __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3292        assert_different_registers(c_rarg0, dst, dst_pos, length);
3293        __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3294        assert_different_registers(c_rarg1, dst, length);
3295
3296        __ mov(c_rarg2, length);
3297        assert_different_registers(c_rarg2, dst);
3298
3299#ifdef _WIN64
3300        // Allocate abi space for args but be sure to keep stack aligned
3301        __ subptr(rsp, 6*wordSize);
3302        __ load_klass(c_rarg3, dst);
3303        __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3304        store_parameter(c_rarg3, 4);
3305        __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3306        __ call(RuntimeAddress(copyfunc_addr));
3307        __ addptr(rsp, 6*wordSize);
3308#else
3309        __ load_klass(c_rarg4, dst);
3310        __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3311        __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3312        __ call(RuntimeAddress(copyfunc_addr));
3313#endif
3314
3315#endif
3316
3317#ifndef PRODUCT
3318        if (PrintC1Statistics) {
3319          Label failed;
3320          __ testl(rax, rax);
3321          __ jcc(Assembler::notZero, failed);
3322          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3323          __ bind(failed);
3324        }
3325#endif
3326
3327        __ testl(rax, rax);
3328        __ jcc(Assembler::zero, *stub->continuation());
3329
3330#ifndef PRODUCT
3331        if (PrintC1Statistics) {
3332          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3333        }
3334#endif
3335
3336        __ mov(tmp, rax);
3337
3338        __ xorl(tmp, -1);
3339
3340        // Restore previously spilled arguments
3341        __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3342        __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3343        __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3344        __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3345        __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3346
3347
3348        __ subl(length, tmp);
3349        __ addl(src_pos, tmp);
3350        __ addl(dst_pos, tmp);
3351      }
3352
3353      __ jmp(*stub->entry());
3354
3355      __ bind(cont);
3356      __ pop(dst);
3357      __ pop(src);
3358    }
3359  }
3360
3361#ifdef ASSERT
3362  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3363    // Sanity check the known type with the incoming class.  For the
3364    // primitive case the types must match exactly with src.klass and
3365    // dst.klass each exactly matching the default type.  For the
3366    // object array case, if no type check is needed then either the
3367    // dst type is exactly the expected type and the src type is a
3368    // subtype which we can't check or src is the same array as dst
3369    // but not necessarily exactly of type default_type.
3370    Label known_ok, halt;
3371    __ mov_metadata(tmp, default_type->constant_encoding());
3372#ifdef _LP64
3373    if (UseCompressedClassPointers) {
3374      __ encode_klass_not_null(tmp);
3375    }
3376#endif
3377
3378    if (basic_type != T_OBJECT) {
3379
3380      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3381      else                   __ cmpptr(tmp, dst_klass_addr);
3382      __ jcc(Assembler::notEqual, halt);
3383      if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3384      else                   __ cmpptr(tmp, src_klass_addr);
3385      __ jcc(Assembler::equal, known_ok);
3386    } else {
3387      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3388      else                   __ cmpptr(tmp, dst_klass_addr);
3389      __ jcc(Assembler::equal, known_ok);
3390      __ cmpptr(src, dst);
3391      __ jcc(Assembler::equal, known_ok);
3392    }
3393    __ bind(halt);
3394    __ stop("incorrect type information in arraycopy");
3395    __ bind(known_ok);
3396  }
3397#endif
3398
3399#ifndef PRODUCT
3400  if (PrintC1Statistics) {
3401    __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3402  }
3403#endif
3404
3405#ifdef _LP64
3406  assert_different_registers(c_rarg0, dst, dst_pos, length);
3407  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3408  assert_different_registers(c_rarg1, length);
3409  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3410  __ mov(c_rarg2, length);
3411
3412#else
3413  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3414  store_parameter(tmp, 0);
3415  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3416  store_parameter(tmp, 1);
3417  store_parameter(length, 2);
3418#endif // _LP64
3419
3420  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3421  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3422  const char *name;
3423  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3424  __ call_VM_leaf(entry, 0);
3425
3426  __ bind(*stub->continuation());
3427}
3428
3429void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3430  assert(op->crc()->is_single_cpu(),  "crc must be register");
3431  assert(op->val()->is_single_cpu(),  "byte value must be register");
3432  assert(op->result_opr()->is_single_cpu(), "result must be register");
3433  Register crc = op->crc()->as_register();
3434  Register val = op->val()->as_register();
3435  Register res = op->result_opr()->as_register();
3436
3437  assert_different_registers(val, crc, res);
3438
3439  __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3440  __ notl(crc); // ~crc
3441  __ update_byte_crc32(crc, val, res);
3442  __ notl(crc); // ~crc
3443  __ mov(res, crc);
3444}
3445
3446void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3447  Register obj = op->obj_opr()->as_register();  // may not be an oop
3448  Register hdr = op->hdr_opr()->as_register();
3449  Register lock = op->lock_opr()->as_register();
3450  if (!UseFastLocking) {
3451    __ jmp(*op->stub()->entry());
3452  } else if (op->code() == lir_lock) {
3453    Register scratch = noreg;
3454    if (UseBiasedLocking) {
3455      scratch = op->scratch_opr()->as_register();
3456    }
3457    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3458    // add debug info for NullPointerException only if one is possible
3459    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3460    if (op->info() != NULL) {
3461      add_debug_info_for_null_check(null_check_offset, op->info());
3462    }
3463    // done
3464  } else if (op->code() == lir_unlock) {
3465    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3466    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3467  } else {
3468    Unimplemented();
3469  }
3470  __ bind(*op->stub()->continuation());
3471}
3472
3473
3474void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3475  ciMethod* method = op->profiled_method();
3476  int bci          = op->profiled_bci();
3477  ciMethod* callee = op->profiled_callee();
3478
3479  // Update counter for all call types
3480  ciMethodData* md = method->method_data_or_null();
3481  assert(md != NULL, "Sanity");
3482  ciProfileData* data = md->bci_to_data(bci);
3483  assert(data->is_CounterData(), "need CounterData for calls");
3484  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3485  Register mdo  = op->mdo()->as_register();
3486  __ mov_metadata(mdo, md->constant_encoding());
3487  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3488  Bytecodes::Code bc = method->java_code_at_bci(bci);
3489  const bool callee_is_static = callee->is_loaded() && callee->is_static();
3490  // Perform additional virtual call profiling for invokevirtual and
3491  // invokeinterface bytecodes
3492  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3493      !callee_is_static &&  // required for optimized MH invokes
3494      C1ProfileVirtualCalls) {
3495    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3496    Register recv = op->recv()->as_register();
3497    assert_different_registers(mdo, recv);
3498    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3499    ciKlass* known_klass = op->known_holder();
3500    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3501      // We know the type that will be seen at this call site; we can
3502      // statically update the MethodData* rather than needing to do
3503      // dynamic tests on the receiver type
3504
3505      // NOTE: we should probably put a lock around this search to
3506      // avoid collisions by concurrent compilations
3507      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3508      uint i;
3509      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3510        ciKlass* receiver = vc_data->receiver(i);
3511        if (known_klass->equals(receiver)) {
3512          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3513          __ addptr(data_addr, DataLayout::counter_increment);
3514          return;
3515        }
3516      }
3517
3518      // Receiver type not found in profile data; select an empty slot
3519
3520      // Note that this is less efficient than it should be because it
3521      // always does a write to the receiver part of the
3522      // VirtualCallData rather than just the first time
3523      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3524        ciKlass* receiver = vc_data->receiver(i);
3525        if (receiver == NULL) {
3526          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3527          __ mov_metadata(recv_addr, known_klass->constant_encoding());
3528          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3529          __ addptr(data_addr, DataLayout::counter_increment);
3530          return;
3531        }
3532      }
3533    } else {
3534      __ load_klass(recv, recv);
3535      Label update_done;
3536      type_profile_helper(mdo, md, data, recv, &update_done);
3537      // Receiver did not match any saved receiver and there is no empty row for it.
3538      // Increment total counter to indicate polymorphic case.
3539      __ addptr(counter_addr, DataLayout::counter_increment);
3540
3541      __ bind(update_done);
3542    }
3543  } else {
3544    // Static call
3545    __ addptr(counter_addr, DataLayout::counter_increment);
3546  }
3547}
3548
3549void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3550  Register obj = op->obj()->as_register();
3551  Register tmp = op->tmp()->as_pointer_register();
3552  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3553  ciKlass* exact_klass = op->exact_klass();
3554  intptr_t current_klass = op->current_klass();
3555  bool not_null = op->not_null();
3556  bool no_conflict = op->no_conflict();
3557
3558  Label update, next, none;
3559
3560  bool do_null = !not_null;
3561  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3562  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3563
3564  assert(do_null || do_update, "why are we here?");
3565  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3566
3567  __ verify_oop(obj);
3568
3569  if (tmp != obj) {
3570    __ mov(tmp, obj);
3571  }
3572  if (do_null) {
3573    __ testptr(tmp, tmp);
3574    __ jccb(Assembler::notZero, update);
3575    if (!TypeEntries::was_null_seen(current_klass)) {
3576      __ orptr(mdo_addr, TypeEntries::null_seen);
3577    }
3578    if (do_update) {
3579#ifndef ASSERT
3580      __ jmpb(next);
3581    }
3582#else
3583      __ jmp(next);
3584    }
3585  } else {
3586    __ testptr(tmp, tmp);
3587    __ jccb(Assembler::notZero, update);
3588    __ stop("unexpect null obj");
3589#endif
3590  }
3591
3592  __ bind(update);
3593
3594  if (do_update) {
3595#ifdef ASSERT
3596    if (exact_klass != NULL) {
3597      Label ok;
3598      __ load_klass(tmp, tmp);
3599      __ push(tmp);
3600      __ mov_metadata(tmp, exact_klass->constant_encoding());
3601      __ cmpptr(tmp, Address(rsp, 0));
3602      __ jccb(Assembler::equal, ok);
3603      __ stop("exact klass and actual klass differ");
3604      __ bind(ok);
3605      __ pop(tmp);
3606    }
3607#endif
3608    if (!no_conflict) {
3609      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3610        if (exact_klass != NULL) {
3611          __ mov_metadata(tmp, exact_klass->constant_encoding());
3612        } else {
3613          __ load_klass(tmp, tmp);
3614        }
3615
3616        __ xorptr(tmp, mdo_addr);
3617        __ testptr(tmp, TypeEntries::type_klass_mask);
3618        // klass seen before, nothing to do. The unknown bit may have been
3619        // set already but no need to check.
3620        __ jccb(Assembler::zero, next);
3621
3622        __ testptr(tmp, TypeEntries::type_unknown);
3623        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3624
3625        if (TypeEntries::is_type_none(current_klass)) {
3626          __ cmpptr(mdo_addr, 0);
3627          __ jccb(Assembler::equal, none);
3628          __ cmpptr(mdo_addr, TypeEntries::null_seen);
3629          __ jccb(Assembler::equal, none);
3630          // There is a chance that the checks above (re-reading profiling
3631          // data from memory) fail if another thread has just set the
3632          // profiling to this obj's klass
3633          __ xorptr(tmp, mdo_addr);
3634          __ testptr(tmp, TypeEntries::type_klass_mask);
3635          __ jccb(Assembler::zero, next);
3636        }
3637      } else {
3638        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3639               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3640
3641        __ movptr(tmp, mdo_addr);
3642        __ testptr(tmp, TypeEntries::type_unknown);
3643        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3644      }
3645
3646      // different than before. Cannot keep accurate profile.
3647      __ orptr(mdo_addr, TypeEntries::type_unknown);
3648
3649      if (TypeEntries::is_type_none(current_klass)) {
3650        __ jmpb(next);
3651
3652        __ bind(none);
3653        // first time here. Set profile type.
3654        __ movptr(mdo_addr, tmp);
3655      }
3656    } else {
3657      // There's a single possible klass at this profile point
3658      assert(exact_klass != NULL, "should be");
3659      if (TypeEntries::is_type_none(current_klass)) {
3660        __ mov_metadata(tmp, exact_klass->constant_encoding());
3661        __ xorptr(tmp, mdo_addr);
3662        __ testptr(tmp, TypeEntries::type_klass_mask);
3663#ifdef ASSERT
3664        __ jcc(Assembler::zero, next);
3665
3666        {
3667          Label ok;
3668          __ push(tmp);
3669          __ cmpptr(mdo_addr, 0);
3670          __ jcc(Assembler::equal, ok);
3671          __ cmpptr(mdo_addr, TypeEntries::null_seen);
3672          __ jcc(Assembler::equal, ok);
3673          // may have been set by another thread
3674          __ mov_metadata(tmp, exact_klass->constant_encoding());
3675          __ xorptr(tmp, mdo_addr);
3676          __ testptr(tmp, TypeEntries::type_mask);
3677          __ jcc(Assembler::zero, ok);
3678
3679          __ stop("unexpected profiling mismatch");
3680          __ bind(ok);
3681          __ pop(tmp);
3682        }
3683#else
3684        __ jccb(Assembler::zero, next);
3685#endif
3686        // first time here. Set profile type.
3687        __ movptr(mdo_addr, tmp);
3688      } else {
3689        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3690               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3691
3692        __ movptr(tmp, mdo_addr);
3693        __ testptr(tmp, TypeEntries::type_unknown);
3694        __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3695
3696        __ orptr(mdo_addr, TypeEntries::type_unknown);
3697      }
3698    }
3699
3700    __ bind(next);
3701  }
3702}
3703
3704void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3705  Unimplemented();
3706}
3707
3708
3709void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3710  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3711}
3712
3713
3714void LIR_Assembler::align_backward_branch_target() {
3715  __ align(BytesPerWord);
3716}
3717
3718
3719void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3720  if (left->is_single_cpu()) {
3721    __ negl(left->as_register());
3722    move_regs(left->as_register(), dest->as_register());
3723
3724  } else if (left->is_double_cpu()) {
3725    Register lo = left->as_register_lo();
3726#ifdef _LP64
3727    Register dst = dest->as_register_lo();
3728    __ movptr(dst, lo);
3729    __ negptr(dst);
3730#else
3731    Register hi = left->as_register_hi();
3732    __ lneg(hi, lo);
3733    if (dest->as_register_lo() == hi) {
3734      assert(dest->as_register_hi() != lo, "destroying register");
3735      move_regs(hi, dest->as_register_hi());
3736      move_regs(lo, dest->as_register_lo());
3737    } else {
3738      move_regs(lo, dest->as_register_lo());
3739      move_regs(hi, dest->as_register_hi());
3740    }
3741#endif // _LP64
3742
3743  } else if (dest->is_single_xmm()) {
3744    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3745      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3746    }
3747    if (UseAVX > 0) {
3748      __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3749                   ExternalAddress((address)float_signflip_pool));
3750    } else {
3751      __ xorps(dest->as_xmm_float_reg(),
3752               ExternalAddress((address)float_signflip_pool));
3753    }
3754  } else if (dest->is_double_xmm()) {
3755    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3756      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3757    }
3758    if (UseAVX > 0) {
3759      __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3760                   ExternalAddress((address)double_signflip_pool));
3761    } else {
3762      __ xorpd(dest->as_xmm_double_reg(),
3763               ExternalAddress((address)double_signflip_pool));
3764    }
3765  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3766    assert(left->fpu() == 0, "arg must be on TOS");
3767    assert(dest->fpu() == 0, "dest must be TOS");
3768    __ fchs();
3769
3770  } else {
3771    ShouldNotReachHere();
3772  }
3773}
3774
3775
3776void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3777  assert(addr->is_address() && dest->is_register(), "check");
3778  Register reg;
3779  reg = dest->as_pointer_register();
3780  __ lea(reg, as_Address(addr->as_address_ptr()));
3781}
3782
3783
3784
3785void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3786  assert(!tmp->is_valid(), "don't need temporary");
3787  __ call(RuntimeAddress(dest));
3788  if (info != NULL) {
3789    add_call_info_here(info);
3790  }
3791}
3792
3793
3794void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3795  assert(type == T_LONG, "only for volatile long fields");
3796
3797  if (info != NULL) {
3798    add_debug_info_for_null_check_here(info);
3799  }
3800
3801  if (src->is_double_xmm()) {
3802    if (dest->is_double_cpu()) {
3803#ifdef _LP64
3804      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3805#else
3806      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3807      __ psrlq(src->as_xmm_double_reg(), 32);
3808      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3809#endif // _LP64
3810    } else if (dest->is_double_stack()) {
3811      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3812    } else if (dest->is_address()) {
3813      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3814    } else {
3815      ShouldNotReachHere();
3816    }
3817
3818  } else if (dest->is_double_xmm()) {
3819    if (src->is_double_stack()) {
3820      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3821    } else if (src->is_address()) {
3822      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3823    } else {
3824      ShouldNotReachHere();
3825    }
3826
3827  } else if (src->is_double_fpu()) {
3828    assert(src->fpu_regnrLo() == 0, "must be TOS");
3829    if (dest->is_double_stack()) {
3830      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3831    } else if (dest->is_address()) {
3832      __ fistp_d(as_Address(dest->as_address_ptr()));
3833    } else {
3834      ShouldNotReachHere();
3835    }
3836
3837  } else if (dest->is_double_fpu()) {
3838    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3839    if (src->is_double_stack()) {
3840      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3841    } else if (src->is_address()) {
3842      __ fild_d(as_Address(src->as_address_ptr()));
3843    } else {
3844      ShouldNotReachHere();
3845    }
3846  } else {
3847    ShouldNotReachHere();
3848  }
3849}
3850
3851#ifdef ASSERT
3852// emit run-time assertion
3853void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3854  assert(op->code() == lir_assert, "must be");
3855
3856  if (op->in_opr1()->is_valid()) {
3857    assert(op->in_opr2()->is_valid(), "both operands must be valid");
3858    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3859  } else {
3860    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3861    assert(op->condition() == lir_cond_always, "no other conditions allowed");
3862  }
3863
3864  Label ok;
3865  if (op->condition() != lir_cond_always) {
3866    Assembler::Condition acond = Assembler::zero;
3867    switch (op->condition()) {
3868      case lir_cond_equal:        acond = Assembler::equal;       break;
3869      case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3870      case lir_cond_less:         acond = Assembler::less;        break;
3871      case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3872      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3873      case lir_cond_greater:      acond = Assembler::greater;     break;
3874      case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3875      case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3876      default:                    ShouldNotReachHere();
3877    }
3878    __ jcc(acond, ok);
3879  }
3880  if (op->halt()) {
3881    const char* str = __ code_string(op->msg());
3882    __ stop(str);
3883  } else {
3884    breakpoint();
3885  }
3886  __ bind(ok);
3887}
3888#endif
3889
3890void LIR_Assembler::membar() {
3891  // QQQ sparc TSO uses this,
3892  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3893}
3894
3895void LIR_Assembler::membar_acquire() {
3896  // No x86 machines currently require load fences
3897}
3898
3899void LIR_Assembler::membar_release() {
3900  // No x86 machines currently require store fences
3901}
3902
3903void LIR_Assembler::membar_loadload() {
3904  // no-op
3905  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3906}
3907
3908void LIR_Assembler::membar_storestore() {
3909  // no-op
3910  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3911}
3912
3913void LIR_Assembler::membar_loadstore() {
3914  // no-op
3915  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3916}
3917
3918void LIR_Assembler::membar_storeload() {
3919  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3920}
3921
3922void LIR_Assembler::on_spin_wait() {
3923  __ pause ();
3924}
3925
3926void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3927  assert(result_reg->is_register(), "check");
3928#ifdef _LP64
3929  // __ get_thread(result_reg->as_register_lo());
3930  __ mov(result_reg->as_register(), r15_thread);
3931#else
3932  __ get_thread(result_reg->as_register());
3933#endif // _LP64
3934}
3935
3936
3937void LIR_Assembler::peephole(LIR_List*) {
3938  // do nothing for now
3939}
3940
3941void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3942  assert(data == dest, "xchg/xadd uses only 2 operands");
3943
3944  if (data->type() == T_INT) {
3945    if (code == lir_xadd) {
3946      if (os::is_MP()) {
3947        __ lock();
3948      }
3949      __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3950    } else {
3951      __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3952    }
3953  } else if (data->is_oop()) {
3954    assert (code == lir_xchg, "xadd for oops");
3955    Register obj = data->as_register();
3956#ifdef _LP64
3957    if (UseCompressedOops) {
3958      __ encode_heap_oop(obj);
3959      __ xchgl(obj, as_Address(src->as_address_ptr()));
3960      __ decode_heap_oop(obj);
3961    } else {
3962      __ xchgptr(obj, as_Address(src->as_address_ptr()));
3963    }
3964#else
3965    __ xchgl(obj, as_Address(src->as_address_ptr()));
3966#endif
3967  } else if (data->type() == T_LONG) {
3968#ifdef _LP64
3969    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3970    if (code == lir_xadd) {
3971      if (os::is_MP()) {
3972        __ lock();
3973      }
3974      __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3975    } else {
3976      __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3977    }
3978#else
3979    ShouldNotReachHere();
3980#endif
3981  } else {
3982    ShouldNotReachHere();
3983  }
3984}
3985
3986#undef __
3987