c1_LIRAssembler_x86.cpp revision 5302:da051ce490eb
1201360Srdivacky/*
2201360Srdivacky * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3201360Srdivacky * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4201360Srdivacky *
5201360Srdivacky * This code is free software; you can redistribute it and/or modify it
6201360Srdivacky * under the terms of the GNU General Public License version 2 only, as
7201360Srdivacky * published by the Free Software Foundation.
8201360Srdivacky *
9201360Srdivacky * This code is distributed in the hope that it will be useful, but WITHOUT
10201360Srdivacky * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11201360Srdivacky * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12201360Srdivacky * version 2 for more details (a copy is included in the LICENSE file that
13201360Srdivacky * accompanied this code).
14201360Srdivacky *
15201360Srdivacky * You should have received a copy of the GNU General Public License version
16201360Srdivacky * 2 along with this work; if not, write to the Free Software Foundation,
17201360Srdivacky * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18201360Srdivacky *
19201360Srdivacky * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20201360Srdivacky * or visit www.oracle.com if you need additional information or have any
21201360Srdivacky * questions.
22201360Srdivacky *
23201360Srdivacky */
24201360Srdivacky
25201360Srdivacky#include "precompiled.hpp"
26201360Srdivacky#include "asm/macroAssembler.hpp"
27203954Srdivacky#include "asm/macroAssembler.inline.hpp"
28203954Srdivacky#include "c1/c1_Compilation.hpp"
29203954Srdivacky#include "c1/c1_LIRAssembler.hpp"
30203954Srdivacky#include "c1/c1_MacroAssembler.hpp"
31203954Srdivacky#include "c1/c1_Runtime1.hpp"
32203954Srdivacky#include "c1/c1_ValueStack.hpp"
33203954Srdivacky#include "ci/ciArrayKlass.hpp"
34203954Srdivacky#include "ci/ciInstance.hpp"
35203954Srdivacky#include "gc_interface/collectedHeap.hpp"
36203954Srdivacky#include "memory/barrierSet.hpp"
37203954Srdivacky#include "memory/cardTableModRefBS.hpp"
38203954Srdivacky#include "nativeInst_x86.hpp"
39201360Srdivacky#include "oops/objArrayKlass.hpp"
40201360Srdivacky#include "runtime/sharedRuntime.hpp"
41201360Srdivacky
42201360Srdivacky
43201360Srdivacky// These masks are used to provide 128-bit aligned bitmasks to the XMM
44201360Srdivacky// instructions, to allow sign-masking or sign-bit flipping.  They allow
45201360Srdivacky// fast versions of NegF/NegD and AbsF/AbsD.
46201360Srdivacky
47201360Srdivacky// Note: 'double' and 'long long' have 32-bits alignment on x86.
48201360Srdivackystatic jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
49201360Srdivacky  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
50201360Srdivacky  // of 128-bits operands for SSE instructions.
51201360Srdivacky  jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
52201360Srdivacky  // Store the value to a 128-bits operand.
53203954Srdivacky  operand[0] = lo;
54203954Srdivacky  operand[1] = hi;
55203954Srdivacky  return operand;
56203954Srdivacky}
57203954Srdivacky
58203954Srdivacky// Buffer for 128-bits masks used by SSE instructions.
59201360Srdivackystatic jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
60201360Srdivacky
61201360Srdivacky// Static initialization during VM startup.
62201360Srdivackystatic jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
63201360Srdivackystatic jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
64201360Srdivackystatic jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
65201360Srdivackystatic jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
66201360Srdivacky
67203954Srdivacky
68203954Srdivacky
69201360SrdivackyNEEDS_CLEANUP // remove this definitions ?
70201360Srdivackyconst Register IC_Klass    = rax;   // where the IC klass is cached
71203954Srdivackyconst Register SYNC_header = rax;   // synchronization header
72203954Srdivackyconst Register SHIFT_count = rcx;   // where count for shift operations must be
73203954Srdivacky
74203954Srdivacky#define __ _masm->
75203954Srdivacky
76203954Srdivacky
77203954Srdivackystatic void select_different_registers(Register preserve,
78203954Srdivacky                                       Register extra,
79203954Srdivacky                                       Register &tmp1,
80203954Srdivacky                                       Register &tmp2) {
81203954Srdivacky  if (tmp1 == preserve) {
82203954Srdivacky    assert_different_registers(tmp1, tmp2, extra);
83203954Srdivacky    tmp1 = extra;
84203954Srdivacky  } else if (tmp2 == preserve) {
85203954Srdivacky    assert_different_registers(tmp1, tmp2, extra);
86203954Srdivacky    tmp2 = extra;
87203954Srdivacky  }
88203954Srdivacky  assert_different_registers(preserve, tmp1, tmp2);
89201360Srdivacky}
90201360Srdivacky
91201360Srdivacky
92201360Srdivacky
93201360Srdivackystatic void select_different_registers(Register preserve,
94201360Srdivacky                                       Register extra,
95201360Srdivacky                                       Register &tmp1,
96201360Srdivacky                                       Register &tmp2,
97201360Srdivacky                                       Register &tmp3) {
98201360Srdivacky  if (tmp1 == preserve) {
99201360Srdivacky    assert_different_registers(tmp1, tmp2, tmp3, extra);
100201360Srdivacky    tmp1 = extra;
101201360Srdivacky  } else if (tmp2 == preserve) {
102201360Srdivacky    assert_different_registers(tmp1, tmp2, tmp3, extra);
103201360Srdivacky    tmp2 = extra;
104201360Srdivacky  } else if (tmp3 == preserve) {
105201360Srdivacky    assert_different_registers(tmp1, tmp2, tmp3, extra);
106201360Srdivacky    tmp3 = extra;
107201360Srdivacky  }
108201360Srdivacky  assert_different_registers(preserve, tmp1, tmp2, tmp3);
109201360Srdivacky}
110201360Srdivacky
111201360Srdivacky
112201360Srdivacky
113201360Srdivackybool LIR_Assembler::is_small_constant(LIR_Opr opr) {
114201360Srdivacky  if (opr->is_constant()) {
115201360Srdivacky    LIR_Const* constant = opr->as_constant_ptr();
116201360Srdivacky    switch (constant->type()) {
117201360Srdivacky      case T_INT: {
118201360Srdivacky        return true;
119201360Srdivacky      }
120201360Srdivacky
121201360Srdivacky      default:
122201360Srdivacky        return false;
123201360Srdivacky    }
124201360Srdivacky  }
125201360Srdivacky  return false;
126201360Srdivacky}
127201360Srdivacky
128201360Srdivacky
129201360SrdivackyLIR_Opr LIR_Assembler::receiverOpr() {
130201360Srdivacky  return FrameMap::receiver_opr;
131201360Srdivacky}
132201360Srdivacky
133201360SrdivackyLIR_Opr LIR_Assembler::osrBufferPointer() {
134201360Srdivacky  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
135201360Srdivacky}
136201360Srdivacky
137201360Srdivacky//--------------fpu register translations-----------------------
138201360Srdivacky
139201360Srdivacky
140201360Srdivackyaddress LIR_Assembler::float_constant(float f) {
141201360Srdivacky  address const_addr = __ float_constant(f);
142201360Srdivacky  if (const_addr == NULL) {
143201360Srdivacky    bailout("const section overflow");
144201360Srdivacky    return __ code()->consts()->start();
145201360Srdivacky  } else {
146201360Srdivacky    return const_addr;
147201360Srdivacky  }
148201360Srdivacky}
149201360Srdivacky
150201360Srdivacky
151201360Srdivackyaddress LIR_Assembler::double_constant(double d) {
152201360Srdivacky  address const_addr = __ double_constant(d);
153201360Srdivacky  if (const_addr == NULL) {
154201360Srdivacky    bailout("const section overflow");
155201360Srdivacky    return __ code()->consts()->start();
156201360Srdivacky  } else {
157201360Srdivacky    return const_addr;
158201360Srdivacky  }
159201360Srdivacky}
160201360Srdivacky
161201360Srdivacky
162201360Srdivackyvoid LIR_Assembler::set_24bit_FPU() {
163201360Srdivacky  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
164201360Srdivacky}
165201360Srdivacky
166201360Srdivackyvoid LIR_Assembler::reset_FPU() {
167201360Srdivacky  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
168201360Srdivacky}
169201360Srdivacky
170201360Srdivackyvoid LIR_Assembler::fpop() {
171201360Srdivacky  __ fpop();
172201360Srdivacky}
173201360Srdivacky
174201360Srdivackyvoid LIR_Assembler::fxch(int i) {
175201360Srdivacky  __ fxch(i);
176201360Srdivacky}
177201360Srdivacky
178201360Srdivackyvoid LIR_Assembler::fld(int i) {
179201360Srdivacky  __ fld_s(i);
180201360Srdivacky}
181201360Srdivacky
182201360Srdivackyvoid LIR_Assembler::ffree(int i) {
183201360Srdivacky  __ ffree(i);
184201360Srdivacky}
185201360Srdivacky
186201360Srdivackyvoid LIR_Assembler::breakpoint() {
187201360Srdivacky  __ int3();
188201360Srdivacky}
189201360Srdivacky
190201360Srdivackyvoid LIR_Assembler::push(LIR_Opr opr) {
191201360Srdivacky  if (opr->is_single_cpu()) {
192201360Srdivacky    __ push_reg(opr->as_register());
193201360Srdivacky  } else if (opr->is_double_cpu()) {
194201360Srdivacky    NOT_LP64(__ push_reg(opr->as_register_hi()));
195201360Srdivacky    __ push_reg(opr->as_register_lo());
196201360Srdivacky  } else if (opr->is_stack()) {
197201360Srdivacky    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
198201360Srdivacky  } else if (opr->is_constant()) {
199201360Srdivacky    LIR_Const* const_opr = opr->as_constant_ptr();
200201360Srdivacky    if (const_opr->type() == T_OBJECT) {
201201360Srdivacky      __ push_oop(const_opr->as_jobject());
202201360Srdivacky    } else if (const_opr->type() == T_INT) {
203201360Srdivacky      __ push_jint(const_opr->as_jint());
204201360Srdivacky    } else {
205201360Srdivacky      ShouldNotReachHere();
206201360Srdivacky    }
207201360Srdivacky
208201360Srdivacky  } else {
209201360Srdivacky    ShouldNotReachHere();
210201360Srdivacky  }
211201360Srdivacky}
212201360Srdivacky
213201360Srdivackyvoid LIR_Assembler::pop(LIR_Opr opr) {
214201360Srdivacky  if (opr->is_single_cpu()) {
215201360Srdivacky    __ pop_reg(opr->as_register());
216201360Srdivacky  } else {
217201360Srdivacky    ShouldNotReachHere();
218201360Srdivacky  }
219201360Srdivacky}
220201360Srdivacky
221201360Srdivackybool LIR_Assembler::is_literal_address(LIR_Address* addr) {
222201360Srdivacky  return addr->base()->is_illegal() && addr->index()->is_illegal();
223201360Srdivacky}
224201360Srdivacky
225201360Srdivacky//-------------------------------------------
226201360Srdivacky
227201360SrdivackyAddress LIR_Assembler::as_Address(LIR_Address* addr) {
228201360Srdivacky  return as_Address(addr, rscratch1);
229201360Srdivacky}
230201360Srdivacky
231201360SrdivackyAddress LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
232201360Srdivacky  if (addr->base()->is_illegal()) {
233208599Srdivacky    assert(addr->index()->is_illegal(), "must be illegal too");
234208599Srdivacky    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
235208599Srdivacky    if (! __ reachable(laddr)) {
236208599Srdivacky      __ movptr(tmp, laddr.addr());
237201360Srdivacky      Address res(tmp, 0);
238201360Srdivacky      return res;
239201360Srdivacky    } else {
240201360Srdivacky      return __ as_Address(laddr);
241201360Srdivacky    }
242201360Srdivacky  }
243201360Srdivacky
244201360Srdivacky  Register base = addr->base()->as_pointer_register();
245201360Srdivacky
246201360Srdivacky  if (addr->index()->is_illegal()) {
247201360Srdivacky    return Address( base, addr->disp());
248201360Srdivacky  } else if (addr->index()->is_cpu_register()) {
249201360Srdivacky    Register index = addr->index()->as_pointer_register();
250201360Srdivacky    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
251201360Srdivacky  } else if (addr->index()->is_constant()) {
252201360Srdivacky    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
253201360Srdivacky    assert(Assembler::is_simm32(addr_offset), "must be");
254201360Srdivacky
255201360Srdivacky    return Address(base, addr_offset);
256201360Srdivacky  } else {
257201360Srdivacky    Unimplemented();
258201360Srdivacky    return Address();
259201360Srdivacky  }
260201360Srdivacky}
261201360Srdivacky
262201360Srdivacky
263201360SrdivackyAddress LIR_Assembler::as_Address_hi(LIR_Address* addr) {
264201360Srdivacky  Address base = as_Address(addr);
265201360Srdivacky  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
266201360Srdivacky}
267201360Srdivacky
268201360Srdivacky
269201360SrdivackyAddress LIR_Assembler::as_Address_lo(LIR_Address* addr) {
270201360Srdivacky  return as_Address(addr);
271201360Srdivacky}
272201360Srdivacky
273201360Srdivacky
274201360Srdivackyvoid LIR_Assembler::osr_entry() {
275201360Srdivacky  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
276201360Srdivacky  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
277201360Srdivacky  ValueStack* entry_state = osr_entry->state();
278201360Srdivacky  int number_of_locks = entry_state->locks_size();
279201360Srdivacky
280201360Srdivacky  // we jump here if osr happens with the interpreter
281201360Srdivacky  // state set up to continue at the beginning of the
282201360Srdivacky  // loop that triggered osr - in particular, we have
283201360Srdivacky  // the following registers setup:
284201360Srdivacky  //
285201360Srdivacky  // rcx: osr buffer
286201360Srdivacky  //
287201360Srdivacky
288201360Srdivacky  // build frame
289204642Srdivacky  ciMethod* m = compilation()->method();
290204642Srdivacky  __ build_frame(initial_frame_size_in_bytes());
291204642Srdivacky
292204642Srdivacky  // OSR buffer is
293201360Srdivacky  //
294201360Srdivacky  // locals[nlocals-1..0]
295201360Srdivacky  // monitors[0..number_of_locks]
296201360Srdivacky  //
297201360Srdivacky  // locals is a direct copy of the interpreter frame so in the osr buffer
298201360Srdivacky  // so first slot in the local array is the last local from the interpreter
299201360Srdivacky  // and last slot is local[0] (receiver) from the interpreter
300201360Srdivacky  //
301201360Srdivacky  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
302201360Srdivacky  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
303201360Srdivacky  // in the interpreter frame (the method lock if a sync method)
304201360Srdivacky
305205218Srdivacky  // Initialize monitors in the compiled activation.
306201360Srdivacky  //   rcx: pointer to osr buffer
307201360Srdivacky  //
308201360Srdivacky  // All other registers are dead at this point and the locals will be
309201360Srdivacky  // copied into place by code emitted in the IR.
310201360Srdivacky
311201360Srdivacky  Register OSR_buf = osrBufferPointer()->as_pointer_register();
312201360Srdivacky  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
313201360Srdivacky    int monitor_offset = BytesPerWord * method()->max_locals() +
314201360Srdivacky      (2 * BytesPerWord) * (number_of_locks - 1);
315201360Srdivacky    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
316201360Srdivacky    // the OSR buffer using 2 word entries: first the lock and then
317201360Srdivacky    // the oop.
318201360Srdivacky    for (int i = 0; i < number_of_locks; i++) {
319201360Srdivacky      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
320201360Srdivacky#ifdef ASSERT
321201360Srdivacky      // verify the interpreter's monitor has a non-null object
322201360Srdivacky      {
323201360Srdivacky        Label L;
324201360Srdivacky        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
325201360Srdivacky        __ jcc(Assembler::notZero, L);
326201360Srdivacky        __ stop("locked object is NULL");
327201360Srdivacky        __ bind(L);
328201360Srdivacky      }
329201360Srdivacky#endif
330201360Srdivacky      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
331201360Srdivacky      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
332201360Srdivacky      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
333201360Srdivacky      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
334201360Srdivacky    }
335201360Srdivacky  }
336201360Srdivacky}
337201360Srdivacky
338201360Srdivacky
339201360Srdivacky// inline cache check; done before the frame is built.
340201360Srdivackyint LIR_Assembler::check_icache() {
341201360Srdivacky  Register receiver = FrameMap::receiver_opr->as_register();
342201360Srdivacky  Register ic_klass = IC_Klass;
343201360Srdivacky  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
344201360Srdivacky  const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
345201360Srdivacky  if (!do_post_padding) {
346201360Srdivacky    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
347201360Srdivacky    while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
348201360Srdivacky      __ nop();
349201360Srdivacky    }
350201360Srdivacky  }
351201360Srdivacky  int offset = __ offset();
352201360Srdivacky  __ inline_cache_check(receiver, IC_Klass);
353201360Srdivacky  assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
354201360Srdivacky  if (do_post_padding) {
355201360Srdivacky    // force alignment after the cache check.
356201360Srdivacky    // It's been verified to be aligned if !VerifyOops
357201360Srdivacky    __ align(CodeEntryAlignment);
358201360Srdivacky  }
359201360Srdivacky  return offset;
360201360Srdivacky}
361201360Srdivacky
362201360Srdivacky
363201360Srdivackyvoid LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
364201360Srdivacky  jobject o = NULL;
365201360Srdivacky  PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
366201360Srdivacky  __ movoop(reg, o);
367201360Srdivacky  patching_epilog(patch, lir_patch_normal, reg, info);
368201360Srdivacky}
369201360Srdivacky
370201360Srdivackyvoid LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
371201360Srdivacky  Metadata* o = NULL;
372201360Srdivacky  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
373201360Srdivacky  __ mov_metadata(reg, o);
374201360Srdivacky  patching_epilog(patch, lir_patch_normal, reg, info);
375201360Srdivacky}
376201360Srdivacky
377201360Srdivacky// This specifies the rsp decrement needed to build the frame
378201360Srdivackyint LIR_Assembler::initial_frame_size_in_bytes() {
379201360Srdivacky  // if rounding, must let FrameMap know!
380201360Srdivacky
381201360Srdivacky  // The frame_map records size in slots (32bit word)
382201360Srdivacky
383201360Srdivacky  // subtract two words to account for return address and link
384201360Srdivacky  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
385201360Srdivacky}
386201360Srdivacky
387201360Srdivacky
388201360Srdivackyint LIR_Assembler::emit_exception_handler() {
389201360Srdivacky  // if the last instruction is a call (typically to do a throw which
390201360Srdivacky  // is coming at the end after block reordering) the return address
391201360Srdivacky  // must still point into the code area in order to avoid assertion
392201360Srdivacky  // failures when searching for the corresponding bci => add a nop
393201360Srdivacky  // (was bug 5/14/1999 - gri)
394201360Srdivacky  __ nop();
395201360Srdivacky
396201360Srdivacky  // generate code for exception handler
397201360Srdivacky  address handler_base = __ start_a_stub(exception_handler_size);
398201360Srdivacky  if (handler_base == NULL) {
399201360Srdivacky    // not enough space left for the handler
400201360Srdivacky    bailout("exception handler overflow");
401201360Srdivacky    return -1;
402201360Srdivacky  }
403201360Srdivacky
404201360Srdivacky  int offset = code_offset();
405201360Srdivacky
406201360Srdivacky  // the exception oop and pc are in rax, and rdx
407201360Srdivacky  // no other registers need to be preserved, so invalidate them
408201360Srdivacky  __ invalidate_registers(false, true, true, false, true, true);
409201360Srdivacky
410201360Srdivacky  // check that there is really an exception
411201360Srdivacky  __ verify_not_null_oop(rax);
412201360Srdivacky
413201360Srdivacky  // search an exception handler (rax: exception oop, rdx: throwing pc)
414201360Srdivacky  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
415201360Srdivacky  __ should_not_reach_here();
416201360Srdivacky  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
417201360Srdivacky  __ end_a_stub();
418201360Srdivacky
419201360Srdivacky  return offset;
420201360Srdivacky}
421201360Srdivacky
422201360Srdivacky
423201360Srdivacky// Emit the code to remove the frame from the stack in the exception
424201360Srdivacky// unwind path.
425201360Srdivackyint LIR_Assembler::emit_unwind_handler() {
426201360Srdivacky#ifndef PRODUCT
427201360Srdivacky  if (CommentedAssembly) {
428201360Srdivacky    _masm->block_comment("Unwind handler");
429201360Srdivacky  }
430201360Srdivacky#endif
431201360Srdivacky
432201360Srdivacky  int offset = code_offset();
433201360Srdivacky
434201360Srdivacky  // Fetch the exception from TLS and clear out exception related thread state
435201360Srdivacky  __ get_thread(rsi);
436201360Srdivacky  __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
437201360Srdivacky  __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
438201360Srdivacky  __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
439201360Srdivacky
440201360Srdivacky  __ bind(_unwind_handler_entry);
441201360Srdivacky  __ verify_not_null_oop(rax);
442203954Srdivacky  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
443203954Srdivacky    __ mov(rsi, rax);  // Preserve the exception
444203954Srdivacky  }
445203954Srdivacky
446201360Srdivacky  // Preform needed unlocking
447201360Srdivacky  MonitorExitStub* stub = NULL;
448201360Srdivacky  if (method()->is_synchronized()) {
449201360Srdivacky    monitor_address(0, FrameMap::rax_opr);
450201360Srdivacky    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
451201360Srdivacky    __ unlock_object(rdi, rbx, rax, *stub->entry());
452201360Srdivacky    __ bind(*stub->continuation());
453201360Srdivacky  }
454201360Srdivacky
455201360Srdivacky  if (compilation()->env()->dtrace_method_probes()) {
456201360Srdivacky    __ get_thread(rax);
457201360Srdivacky    __ movptr(Address(rsp, 0), rax);
458201360Srdivacky    __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
459201360Srdivacky    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
460201360Srdivacky  }
461201360Srdivacky
462201360Srdivacky  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
463201360Srdivacky    __ mov(rax, rsi);  // Restore the exception
464201360Srdivacky  }
465201360Srdivacky
466201360Srdivacky  // remove the activation and dispatch to the unwind handler
467201360Srdivacky  __ remove_frame(initial_frame_size_in_bytes());
468201360Srdivacky  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
469201360Srdivacky
470201360Srdivacky  // Emit the slow path assembly
471201360Srdivacky  if (stub != NULL) {
472201360Srdivacky    stub->emit_code(this);
473201360Srdivacky  }
474201360Srdivacky
475201360Srdivacky  return offset;
476201360Srdivacky}
477201360Srdivacky
478201360Srdivacky
479201360Srdivackyint LIR_Assembler::emit_deopt_handler() {
480201360Srdivacky  // if the last instruction is a call (typically to do a throw which
481201360Srdivacky  // is coming at the end after block reordering) the return address
482201360Srdivacky  // must still point into the code area in order to avoid assertion
483201360Srdivacky  // failures when searching for the corresponding bci => add a nop
484201360Srdivacky  // (was bug 5/14/1999 - gri)
485201360Srdivacky  __ nop();
486201360Srdivacky
487201360Srdivacky  // generate code for exception handler
488201360Srdivacky  address handler_base = __ start_a_stub(deopt_handler_size);
489201360Srdivacky  if (handler_base == NULL) {
490201360Srdivacky    // not enough space left for the handler
491201360Srdivacky    bailout("deopt handler overflow");
492201360Srdivacky    return -1;
493201360Srdivacky  }
494201360Srdivacky
495201360Srdivacky  int offset = code_offset();
496201360Srdivacky  InternalAddress here(__ pc());
497201360Srdivacky
498201360Srdivacky  __ pushptr(here.addr());
499201360Srdivacky  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
500201360Srdivacky  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
501201360Srdivacky  __ end_a_stub();
502201360Srdivacky
503201360Srdivacky  return offset;
504201360Srdivacky}
505201360Srdivacky
506201360Srdivacky
507201360Srdivacky// This is the fast version of java.lang.String.compare; it has not
508201360Srdivacky// OSR-entry and therefore, we generate a slow version for OSR's
509201360Srdivackyvoid LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
510201360Srdivacky  __ movptr (rbx, rcx); // receiver is in rcx
511201360Srdivacky  __ movptr (rax, arg1->as_register());
512201360Srdivacky
513201360Srdivacky  // Get addresses of first characters from both Strings
514201360Srdivacky  __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
515201360Srdivacky  if (java_lang_String::has_offset_field()) {
516201360Srdivacky    __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
517201360Srdivacky    __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
518201360Srdivacky    __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
519201360Srdivacky  } else {
520201360Srdivacky    __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
521201360Srdivacky    __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
522201360Srdivacky  }
523201360Srdivacky
524201360Srdivacky  // rbx, may be NULL
525201360Srdivacky  add_debug_info_for_null_check_here(info);
526201360Srdivacky  __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
527201360Srdivacky  if (java_lang_String::has_offset_field()) {
528201360Srdivacky    __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
529201360Srdivacky    __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
530201360Srdivacky    __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
531201360Srdivacky  } else {
532201360Srdivacky    __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
533201360Srdivacky    __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
534201360Srdivacky  }
535201360Srdivacky
536201360Srdivacky  // compute minimum length (in rax) and difference of lengths (on top of stack)
537201360Srdivacky  __ mov   (rcx, rbx);
538201360Srdivacky  __ subptr(rbx, rax); // subtract lengths
539201360Srdivacky  __ push  (rbx);      // result
540201360Srdivacky  __ cmov  (Assembler::lessEqual, rax, rcx);
541201360Srdivacky
542201360Srdivacky  // is minimum length 0?
543201360Srdivacky  Label noLoop, haveResult;
544201360Srdivacky  __ testptr (rax, rax);
545201360Srdivacky  __ jcc (Assembler::zero, noLoop);
546201360Srdivacky
547201360Srdivacky  // compare first characters
548201360Srdivacky  __ load_unsigned_short(rcx, Address(rdi, 0));
549201360Srdivacky  __ load_unsigned_short(rbx, Address(rsi, 0));
550201360Srdivacky  __ subl(rcx, rbx);
551201360Srdivacky  __ jcc(Assembler::notZero, haveResult);
552201360Srdivacky  // starting loop
553201360Srdivacky  __ decrement(rax); // we already tested index: skip one
554201360Srdivacky  __ jcc(Assembler::zero, noLoop);
555201360Srdivacky
556201360Srdivacky  // set rsi.edi to the end of the arrays (arrays have same length)
557201360Srdivacky  // negate the index
558201360Srdivacky
559201360Srdivacky  __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
560201360Srdivacky  __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
561201360Srdivacky  __ negptr(rax);
562201360Srdivacky
563201360Srdivacky  // compare the strings in a loop
564201360Srdivacky
565201360Srdivacky  Label loop;
566201360Srdivacky  __ align(wordSize);
567201360Srdivacky  __ bind(loop);
568201360Srdivacky  __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
569201360Srdivacky  __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
570201360Srdivacky  __ subl(rcx, rbx);
571201360Srdivacky  __ jcc(Assembler::notZero, haveResult);
572201360Srdivacky  __ increment(rax);
573201360Srdivacky  __ jcc(Assembler::notZero, loop);
574201360Srdivacky
575201360Srdivacky  // strings are equal up to min length
576201360Srdivacky
577201360Srdivacky  __ bind(noLoop);
578201360Srdivacky  __ pop(rax);
579201360Srdivacky  return_op(LIR_OprFact::illegalOpr);
580201360Srdivacky
581201360Srdivacky  __ bind(haveResult);
582201360Srdivacky  // leave instruction is going to discard the TOS value
583201360Srdivacky  __ mov (rax, rcx); // result of call is in rax,
584201360Srdivacky}
585201360Srdivacky
586201360Srdivacky
587201360Srdivackyvoid LIR_Assembler::return_op(LIR_Opr result) {
588201360Srdivacky  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
589203954Srdivacky  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
590203954Srdivacky    assert(result->fpu() == 0, "result must already be on TOS");
591203954Srdivacky  }
592203954Srdivacky
593201360Srdivacky  // Pop the stack before the safepoint code
594201360Srdivacky  __ remove_frame(initial_frame_size_in_bytes());
595201360Srdivacky
596201360Srdivacky  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
597201360Srdivacky
598201360Srdivacky  // Note: we do not need to round double result; float result has the right precision
599201360Srdivacky  // the poll sets the condition code, but no data registers
600201360Srdivacky  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
601201360Srdivacky                              relocInfo::poll_return_type);
602201360Srdivacky
603201360Srdivacky  if (Assembler::is_polling_page_far()) {
604201360Srdivacky    __ lea(rscratch1, polling_page);
605201360Srdivacky    __ relocate(relocInfo::poll_return_type);
606201360Srdivacky    __ testl(rax, Address(rscratch1, 0));
607203954Srdivacky  } else {
608203954Srdivacky    __ testl(rax, polling_page);
609203954Srdivacky  }
610203954Srdivacky  __ ret(0);
611203954Srdivacky}
612203954Srdivacky
613201360Srdivacky
614201360Srdivackyint LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
615201360Srdivacky  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
616201360Srdivacky                              relocInfo::poll_type);
617201360Srdivacky  guarantee(info != NULL, "Shouldn't be NULL");
618201360Srdivacky  int offset = __ offset();
619201360Srdivacky  if (Assembler::is_polling_page_far()) {
620201360Srdivacky    __ lea(rscratch1, polling_page);
621201360Srdivacky    offset = __ offset();
622201360Srdivacky    add_debug_info_for_branch(info);
623201360Srdivacky    __ testl(rax, Address(rscratch1, 0));
624201360Srdivacky  } else {
625201360Srdivacky    add_debug_info_for_branch(info);
626201360Srdivacky    __ testl(rax, polling_page);
627201360Srdivacky  }
628201360Srdivacky  return offset;
629201360Srdivacky}
630201360Srdivacky
631201360Srdivacky
632201360Srdivackyvoid LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
633201360Srdivacky  if (from_reg != to_reg) __ mov(to_reg, from_reg);
634201360Srdivacky}
635201360Srdivacky
636201360Srdivackyvoid LIR_Assembler::swap_reg(Register a, Register b) {
637201360Srdivacky  __ xchgptr(a, b);
638201360Srdivacky}
639203954Srdivacky
640201360Srdivacky
641201360Srdivackyvoid LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
642203954Srdivacky  assert(src->is_constant(), "should not call otherwise");
643201360Srdivacky  assert(dest->is_register(), "should not call otherwise");
644201360Srdivacky  LIR_Const* c = src->as_constant_ptr();
645201360Srdivacky
646201360Srdivacky  switch (c->type()) {
647201360Srdivacky    case T_INT: {
648201360Srdivacky      assert(patch_code == lir_patch_none, "no patching handled here");
649201360Srdivacky      __ movl(dest->as_register(), c->as_jint());
650201360Srdivacky      break;
651201360Srdivacky    }
652201360Srdivacky
653203954Srdivacky    case T_ADDRESS: {
654201360Srdivacky      assert(patch_code == lir_patch_none, "no patching handled here");
655201360Srdivacky      __ movptr(dest->as_register(), c->as_jint());
656201360Srdivacky      break;
657201360Srdivacky    }
658201360Srdivacky
659201360Srdivacky    case T_LONG: {
660201360Srdivacky      assert(patch_code == lir_patch_none, "no patching handled here");
661201360Srdivacky#ifdef _LP64
662201360Srdivacky      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
663201360Srdivacky#else
664201360Srdivacky      __ movptr(dest->as_register_lo(), c->as_jint_lo());
665201360Srdivacky      __ movptr(dest->as_register_hi(), c->as_jint_hi());
666201360Srdivacky#endif // _LP64
667201360Srdivacky      break;
668201360Srdivacky    }
669201360Srdivacky
670201360Srdivacky    case T_OBJECT: {
671201360Srdivacky      if (patch_code != lir_patch_none) {
672201360Srdivacky        jobject2reg_with_patching(dest->as_register(), info);
673201360Srdivacky      } else {
674201360Srdivacky        __ movoop(dest->as_register(), c->as_jobject());
675201360Srdivacky      }
676201360Srdivacky      break;
677201360Srdivacky    }
678201360Srdivacky
679201360Srdivacky    case T_METADATA: {
680201360Srdivacky      if (patch_code != lir_patch_none) {
681201360Srdivacky        klass2reg_with_patching(dest->as_register(), info);
682201360Srdivacky      } else {
683201360Srdivacky        __ mov_metadata(dest->as_register(), c->as_metadata());
684201360Srdivacky      }
685201360Srdivacky      break;
686201360Srdivacky    }
687201360Srdivacky
688201360Srdivacky    case T_FLOAT: {
689201360Srdivacky      if (dest->is_single_xmm()) {
690201360Srdivacky        if (c->is_zero_float()) {
691201360Srdivacky          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
692201360Srdivacky        } else {
693201360Srdivacky          __ movflt(dest->as_xmm_float_reg(),
694201360Srdivacky                   InternalAddress(float_constant(c->as_jfloat())));
695201360Srdivacky        }
696201360Srdivacky      } else {
697201360Srdivacky        assert(dest->is_single_fpu(), "must be");
698201360Srdivacky        assert(dest->fpu_regnr() == 0, "dest must be TOS");
699201360Srdivacky        if (c->is_zero_float()) {
700201360Srdivacky          __ fldz();
701201360Srdivacky        } else if (c->is_one_float()) {
702201360Srdivacky          __ fld1();
703201360Srdivacky        } else {
704201360Srdivacky          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
705201360Srdivacky        }
706201360Srdivacky      }
707201360Srdivacky      break;
708201360Srdivacky    }
709201360Srdivacky
710203954Srdivacky    case T_DOUBLE: {
711201360Srdivacky      if (dest->is_double_xmm()) {
712201360Srdivacky        if (c->is_zero_double()) {
713201360Srdivacky          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
714201360Srdivacky        } else {
715201360Srdivacky          __ movdbl(dest->as_xmm_double_reg(),
716201360Srdivacky                    InternalAddress(double_constant(c->as_jdouble())));
717201360Srdivacky        }
718201360Srdivacky      } else {
719201360Srdivacky        assert(dest->is_double_fpu(), "must be");
720201360Srdivacky        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
721201360Srdivacky        if (c->is_zero_double()) {
722201360Srdivacky          __ fldz();
723201360Srdivacky        } else if (c->is_one_double()) {
724201360Srdivacky          __ fld1();
725201360Srdivacky        } else {
726201360Srdivacky          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
727201360Srdivacky        }
728201360Srdivacky      }
729201360Srdivacky      break;
730201360Srdivacky    }
731201360Srdivacky
732201360Srdivacky    default:
733201360Srdivacky      ShouldNotReachHere();
734201360Srdivacky  }
735201360Srdivacky}
736201360Srdivacky
737201360Srdivackyvoid LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
738201360Srdivacky  assert(src->is_constant(), "should not call otherwise");
739201360Srdivacky  assert(dest->is_stack(), "should not call otherwise");
740201360Srdivacky  LIR_Const* c = src->as_constant_ptr();
741201360Srdivacky
742201360Srdivacky  switch (c->type()) {
743201360Srdivacky    case T_INT:  // fall through
744201360Srdivacky    case T_FLOAT:
745201360Srdivacky      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
746201360Srdivacky      break;
747201360Srdivacky
748201360Srdivacky    case T_ADDRESS:
749201360Srdivacky      __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
750201360Srdivacky      break;
751201360Srdivacky
752201360Srdivacky    case T_OBJECT:
753201360Srdivacky      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
754201360Srdivacky      break;
755201360Srdivacky
756201360Srdivacky    case T_LONG:  // fall through
757201360Srdivacky    case T_DOUBLE:
758201360Srdivacky#ifdef _LP64
759201360Srdivacky      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
760201360Srdivacky                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
761201360Srdivacky#else
762201360Srdivacky      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
763201360Srdivacky                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
764201360Srdivacky      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
765201360Srdivacky                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
766201360Srdivacky#endif // _LP64
767201360Srdivacky      break;
768201360Srdivacky
769201360Srdivacky    default:
770201360Srdivacky      ShouldNotReachHere();
771201360Srdivacky  }
772201360Srdivacky}
773201360Srdivacky
774201360Srdivackyvoid LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
775203954Srdivacky  assert(src->is_constant(), "should not call otherwise");
776203954Srdivacky  assert(dest->is_address(), "should not call otherwise");
777201360Srdivacky  LIR_Const* c = src->as_constant_ptr();
778201360Srdivacky  LIR_Address* addr = dest->as_address_ptr();
779201360Srdivacky
780201360Srdivacky  int null_check_here = code_offset();
781201360Srdivacky  switch (type) {
782201360Srdivacky    case T_INT:    // fall through
783201360Srdivacky    case T_FLOAT:
784201360Srdivacky      __ movl(as_Address(addr), c->as_jint_bits());
785201360Srdivacky      break;
786201360Srdivacky
787201360Srdivacky    case T_ADDRESS:
788201360Srdivacky      __ movptr(as_Address(addr), c->as_jint_bits());
789201360Srdivacky      break;
790201360Srdivacky
791201360Srdivacky    case T_OBJECT:  // fall through
792201360Srdivacky    case T_ARRAY:
793201360Srdivacky      if (c->as_jobject() == NULL) {
794201360Srdivacky        if (UseCompressedOops && !wide) {
795201360Srdivacky          __ movl(as_Address(addr), (int32_t)NULL_WORD);
796201360Srdivacky        } else {
797201360Srdivacky          __ movptr(as_Address(addr), NULL_WORD);
798201360Srdivacky        }
799201360Srdivacky      } else {
800201360Srdivacky        if (is_literal_address(addr)) {
801201360Srdivacky          ShouldNotReachHere();
802201360Srdivacky          __ movoop(as_Address(addr, noreg), c->as_jobject());
803201360Srdivacky        } else {
804201360Srdivacky#ifdef _LP64
805201360Srdivacky          __ movoop(rscratch1, c->as_jobject());
806201360Srdivacky          if (UseCompressedOops && !wide) {
807201360Srdivacky            __ encode_heap_oop(rscratch1);
808201360Srdivacky            null_check_here = code_offset();
809201360Srdivacky            __ movl(as_Address_lo(addr), rscratch1);
810201360Srdivacky          } else {
811201360Srdivacky            null_check_here = code_offset();
812201360Srdivacky            __ movptr(as_Address_lo(addr), rscratch1);
813201360Srdivacky          }
814201360Srdivacky#else
815201360Srdivacky          __ movoop(as_Address(addr), c->as_jobject());
816201360Srdivacky#endif
817201360Srdivacky        }
818201360Srdivacky      }
819201360Srdivacky      break;
820201360Srdivacky
821201360Srdivacky    case T_LONG:    // fall through
822201360Srdivacky    case T_DOUBLE:
823201360Srdivacky#ifdef _LP64
824201360Srdivacky      if (is_literal_address(addr)) {
825201360Srdivacky        ShouldNotReachHere();
826201360Srdivacky        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
827207618Srdivacky      } else {
828201360Srdivacky        __ movptr(r10, (intptr_t)c->as_jlong_bits());
829201360Srdivacky        null_check_here = code_offset();
830201360Srdivacky        __ movptr(as_Address_lo(addr), r10);
831201360Srdivacky      }
832201360Srdivacky#else
833201360Srdivacky      // Always reachable in 32bit so this doesn't produce useless move literal
834201360Srdivacky      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
835201360Srdivacky      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
836201360Srdivacky#endif // _LP64
837201360Srdivacky      break;
838201360Srdivacky
839201360Srdivacky    case T_BOOLEAN: // fall through
840201360Srdivacky    case T_BYTE:
841201360Srdivacky      __ movb(as_Address(addr), c->as_jint() & 0xFF);
842208599Srdivacky      break;
843201360Srdivacky
844201360Srdivacky    case T_CHAR:    // fall through
845201360Srdivacky    case T_SHORT:
846201360Srdivacky      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
847201360Srdivacky      break;
848201360Srdivacky
849201360Srdivacky    default:
850201360Srdivacky      ShouldNotReachHere();
851201360Srdivacky  };
852201360Srdivacky
853201360Srdivacky  if (info != NULL) {
854201360Srdivacky    add_debug_info_for_null_check(null_check_here, info);
855201360Srdivacky  }
856201360Srdivacky}
857201360Srdivacky
858201360Srdivacky
859201360Srdivackyvoid LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
860201360Srdivacky  assert(src->is_register(), "should not call otherwise");
861201360Srdivacky  assert(dest->is_register(), "should not call otherwise");
862201360Srdivacky
863201360Srdivacky  // move between cpu-registers
864201360Srdivacky  if (dest->is_single_cpu()) {
865201360Srdivacky#ifdef _LP64
866201360Srdivacky    if (src->type() == T_LONG) {
867201360Srdivacky      // Can do LONG -> OBJECT
868201360Srdivacky      move_regs(src->as_register_lo(), dest->as_register());
869201360Srdivacky      return;
870201360Srdivacky    }
871201360Srdivacky#endif
872201360Srdivacky    assert(src->is_single_cpu(), "must match");
873201360Srdivacky    if (src->type() == T_OBJECT) {
874201360Srdivacky      __ verify_oop(src->as_register());
875201360Srdivacky    }
876201360Srdivacky    move_regs(src->as_register(), dest->as_register());
877201360Srdivacky
878201360Srdivacky  } else if (dest->is_double_cpu()) {
879201360Srdivacky#ifdef _LP64
880201360Srdivacky    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
881201360Srdivacky      // Surprising to me but we can see move of a long to t_object
882201360Srdivacky      __ verify_oop(src->as_register());
883201360Srdivacky      move_regs(src->as_register(), dest->as_register_lo());
884201360Srdivacky      return;
885201360Srdivacky    }
886201360Srdivacky#endif
887201360Srdivacky    assert(src->is_double_cpu(), "must match");
888201360Srdivacky    Register f_lo = src->as_register_lo();
889201360Srdivacky    Register f_hi = src->as_register_hi();
890201360Srdivacky    Register t_lo = dest->as_register_lo();
891201360Srdivacky    Register t_hi = dest->as_register_hi();
892201360Srdivacky#ifdef _LP64
893201360Srdivacky    assert(f_hi == f_lo, "must be same");
894201360Srdivacky    assert(t_hi == t_lo, "must be same");
895201360Srdivacky    move_regs(f_lo, t_lo);
896201360Srdivacky#else
897201360Srdivacky    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
898201360Srdivacky
899201360Srdivacky
900201360Srdivacky    if (f_lo == t_hi && f_hi == t_lo) {
901208599Srdivacky      swap_reg(f_lo, f_hi);
902201360Srdivacky    } else if (f_hi == t_lo) {
903201360Srdivacky      assert(f_lo != t_hi, "overwriting register");
904201360Srdivacky      move_regs(f_hi, t_hi);
905201360Srdivacky      move_regs(f_lo, t_lo);
906201360Srdivacky    } else {
907201360Srdivacky      assert(f_hi != t_lo, "overwriting register");
908201360Srdivacky      move_regs(f_lo, t_lo);
909201360Srdivacky      move_regs(f_hi, t_hi);
910201360Srdivacky    }
911201360Srdivacky#endif // LP64
912201360Srdivacky
913201360Srdivacky    // special moves from fpu-register to xmm-register
914201360Srdivacky    // necessary for method results
915201360Srdivacky  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
916201360Srdivacky    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
917201360Srdivacky    __ fld_s(Address(rsp, 0));
918201360Srdivacky  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
919201360Srdivacky    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
920201360Srdivacky    __ fld_d(Address(rsp, 0));
921201360Srdivacky  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
922201360Srdivacky    __ fstp_s(Address(rsp, 0));
923201360Srdivacky    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
924201360Srdivacky  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
925201360Srdivacky    __ fstp_d(Address(rsp, 0));
926201360Srdivacky    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
927201360Srdivacky
928201360Srdivacky    // move between xmm-registers
929201360Srdivacky  } else if (dest->is_single_xmm()) {
930201360Srdivacky    assert(src->is_single_xmm(), "must match");
931201360Srdivacky    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
932201360Srdivacky  } else if (dest->is_double_xmm()) {
933201360Srdivacky    assert(src->is_double_xmm(), "must match");
934201360Srdivacky    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
935201360Srdivacky
936201360Srdivacky    // move between fpu-registers (no instruction necessary because of fpu-stack)
937201360Srdivacky  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
938201360Srdivacky    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
939201360Srdivacky    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
940201360Srdivacky  } else {
941201360Srdivacky    ShouldNotReachHere();
942201360Srdivacky  }
943201360Srdivacky}
944201360Srdivacky
945201360Srdivackyvoid LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
946201360Srdivacky  assert(src->is_register(), "should not call otherwise");
947201360Srdivacky  assert(dest->is_stack(), "should not call otherwise");
948201360Srdivacky
949201360Srdivacky  if (src->is_single_cpu()) {
950201360Srdivacky    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
951201360Srdivacky    if (type == T_OBJECT || type == T_ARRAY) {
952201360Srdivacky      __ verify_oop(src->as_register());
953201360Srdivacky      __ movptr (dst, src->as_register());
954201360Srdivacky    } else if (type == T_METADATA) {
955201360Srdivacky      __ movptr (dst, src->as_register());
956201360Srdivacky    } else {
957201360Srdivacky      __ movl (dst, src->as_register());
958201360Srdivacky    }
959201360Srdivacky
960201360Srdivacky  } else if (src->is_double_cpu()) {
961201360Srdivacky    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
962201360Srdivacky    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
963201360Srdivacky    __ movptr (dstLO, src->as_register_lo());
964201360Srdivacky    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
965201360Srdivacky
966201360Srdivacky  } else if (src->is_single_xmm()) {
967201360Srdivacky    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
968201360Srdivacky    __ movflt(dst_addr, src->as_xmm_float_reg());
969
970  } else if (src->is_double_xmm()) {
971    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
972    __ movdbl(dst_addr, src->as_xmm_double_reg());
973
974  } else if (src->is_single_fpu()) {
975    assert(src->fpu_regnr() == 0, "argument must be on TOS");
976    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
977    if (pop_fpu_stack)     __ fstp_s (dst_addr);
978    else                   __ fst_s  (dst_addr);
979
980  } else if (src->is_double_fpu()) {
981    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
982    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
983    if (pop_fpu_stack)     __ fstp_d (dst_addr);
984    else                   __ fst_d  (dst_addr);
985
986  } else {
987    ShouldNotReachHere();
988  }
989}
990
991
992void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
993  LIR_Address* to_addr = dest->as_address_ptr();
994  PatchingStub* patch = NULL;
995  Register compressed_src = rscratch1;
996
997  if (type == T_ARRAY || type == T_OBJECT) {
998    __ verify_oop(src->as_register());
999#ifdef _LP64
1000    if (UseCompressedOops && !wide) {
1001      __ movptr(compressed_src, src->as_register());
1002      __ encode_heap_oop(compressed_src);
1003    }
1004#endif
1005  }
1006
1007  if (patch_code != lir_patch_none) {
1008    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1009    Address toa = as_Address(to_addr);
1010    assert(toa.disp() != 0, "must have");
1011  }
1012
1013  int null_check_here = code_offset();
1014  switch (type) {
1015    case T_FLOAT: {
1016      if (src->is_single_xmm()) {
1017        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018      } else {
1019        assert(src->is_single_fpu(), "must be");
1020        assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022        else                    __ fst_s (as_Address(to_addr));
1023      }
1024      break;
1025    }
1026
1027    case T_DOUBLE: {
1028      if (src->is_double_xmm()) {
1029        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1030      } else {
1031        assert(src->is_double_fpu(), "must be");
1032        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1033        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1034        else                    __ fst_d (as_Address(to_addr));
1035      }
1036      break;
1037    }
1038
1039    case T_ARRAY:   // fall through
1040    case T_OBJECT:  // fall through
1041      if (UseCompressedOops && !wide) {
1042        __ movl(as_Address(to_addr), compressed_src);
1043      } else {
1044        __ movptr(as_Address(to_addr), src->as_register());
1045      }
1046      break;
1047    case T_METADATA:
1048      // We get here to store a method pointer to the stack to pass to
1049      // a dtrace runtime call. This can't work on 64 bit with
1050      // compressed klass ptrs: T_METADATA can be a compressed klass
1051      // ptr or a 64 bit method pointer.
1052      LP64_ONLY(ShouldNotReachHere());
1053      __ movptr(as_Address(to_addr), src->as_register());
1054      break;
1055    case T_ADDRESS:
1056      __ movptr(as_Address(to_addr), src->as_register());
1057      break;
1058    case T_INT:
1059      __ movl(as_Address(to_addr), src->as_register());
1060      break;
1061
1062    case T_LONG: {
1063      Register from_lo = src->as_register_lo();
1064      Register from_hi = src->as_register_hi();
1065#ifdef _LP64
1066      __ movptr(as_Address_lo(to_addr), from_lo);
1067#else
1068      Register base = to_addr->base()->as_register();
1069      Register index = noreg;
1070      if (to_addr->index()->is_register()) {
1071        index = to_addr->index()->as_register();
1072      }
1073      if (base == from_lo || index == from_lo) {
1074        assert(base != from_hi, "can't be");
1075        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1076        __ movl(as_Address_hi(to_addr), from_hi);
1077        if (patch != NULL) {
1078          patching_epilog(patch, lir_patch_high, base, info);
1079          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1080          patch_code = lir_patch_low;
1081        }
1082        __ movl(as_Address_lo(to_addr), from_lo);
1083      } else {
1084        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1085        __ movl(as_Address_lo(to_addr), from_lo);
1086        if (patch != NULL) {
1087          patching_epilog(patch, lir_patch_low, base, info);
1088          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1089          patch_code = lir_patch_high;
1090        }
1091        __ movl(as_Address_hi(to_addr), from_hi);
1092      }
1093#endif // _LP64
1094      break;
1095    }
1096
1097    case T_BYTE:    // fall through
1098    case T_BOOLEAN: {
1099      Register src_reg = src->as_register();
1100      Address dst_addr = as_Address(to_addr);
1101      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1102      __ movb(dst_addr, src_reg);
1103      break;
1104    }
1105
1106    case T_CHAR:    // fall through
1107    case T_SHORT:
1108      __ movw(as_Address(to_addr), src->as_register());
1109      break;
1110
1111    default:
1112      ShouldNotReachHere();
1113  }
1114  if (info != NULL) {
1115    add_debug_info_for_null_check(null_check_here, info);
1116  }
1117
1118  if (patch_code != lir_patch_none) {
1119    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1120  }
1121}
1122
1123
1124void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1125  assert(src->is_stack(), "should not call otherwise");
1126  assert(dest->is_register(), "should not call otherwise");
1127
1128  if (dest->is_single_cpu()) {
1129    if (type == T_ARRAY || type == T_OBJECT) {
1130      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1131      __ verify_oop(dest->as_register());
1132    } else if (type == T_METADATA) {
1133      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1134    } else {
1135      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1136    }
1137
1138  } else if (dest->is_double_cpu()) {
1139    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1140    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1141    __ movptr(dest->as_register_lo(), src_addr_LO);
1142    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1143
1144  } else if (dest->is_single_xmm()) {
1145    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1146    __ movflt(dest->as_xmm_float_reg(), src_addr);
1147
1148  } else if (dest->is_double_xmm()) {
1149    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1150    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1151
1152  } else if (dest->is_single_fpu()) {
1153    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1154    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1155    __ fld_s(src_addr);
1156
1157  } else if (dest->is_double_fpu()) {
1158    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1159    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1160    __ fld_d(src_addr);
1161
1162  } else {
1163    ShouldNotReachHere();
1164  }
1165}
1166
1167
1168void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1169  if (src->is_single_stack()) {
1170    if (type == T_OBJECT || type == T_ARRAY) {
1171      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1172      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1173    } else {
1174#ifndef _LP64
1175      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1176      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1177#else
1178      //no pushl on 64bits
1179      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1180      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1181#endif
1182    }
1183
1184  } else if (src->is_double_stack()) {
1185#ifdef _LP64
1186    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1187    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1188#else
1189    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1190    // push and pop the part at src + wordSize, adding wordSize for the previous push
1191    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1192    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1193    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1194#endif // _LP64
1195
1196  } else {
1197    ShouldNotReachHere();
1198  }
1199}
1200
1201
1202void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1203  assert(src->is_address(), "should not call otherwise");
1204  assert(dest->is_register(), "should not call otherwise");
1205
1206  LIR_Address* addr = src->as_address_ptr();
1207  Address from_addr = as_Address(addr);
1208
1209  switch (type) {
1210    case T_BOOLEAN: // fall through
1211    case T_BYTE:    // fall through
1212    case T_CHAR:    // fall through
1213    case T_SHORT:
1214      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1215        // on pre P6 processors we may get partial register stalls
1216        // so blow away the value of to_rinfo before loading a
1217        // partial word into it.  Do it here so that it precedes
1218        // the potential patch point below.
1219        __ xorptr(dest->as_register(), dest->as_register());
1220      }
1221      break;
1222  }
1223
1224  PatchingStub* patch = NULL;
1225  if (patch_code != lir_patch_none) {
1226    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1227    assert(from_addr.disp() != 0, "must have");
1228  }
1229  if (info != NULL) {
1230    add_debug_info_for_null_check_here(info);
1231  }
1232
1233  switch (type) {
1234    case T_FLOAT: {
1235      if (dest->is_single_xmm()) {
1236        __ movflt(dest->as_xmm_float_reg(), from_addr);
1237      } else {
1238        assert(dest->is_single_fpu(), "must be");
1239        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1240        __ fld_s(from_addr);
1241      }
1242      break;
1243    }
1244
1245    case T_DOUBLE: {
1246      if (dest->is_double_xmm()) {
1247        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1248      } else {
1249        assert(dest->is_double_fpu(), "must be");
1250        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1251        __ fld_d(from_addr);
1252      }
1253      break;
1254    }
1255
1256    case T_OBJECT:  // fall through
1257    case T_ARRAY:   // fall through
1258      if (UseCompressedOops && !wide) {
1259        __ movl(dest->as_register(), from_addr);
1260      } else {
1261        __ movptr(dest->as_register(), from_addr);
1262      }
1263      break;
1264
1265    case T_ADDRESS:
1266      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1267        __ movl(dest->as_register(), from_addr);
1268      } else {
1269        __ movptr(dest->as_register(), from_addr);
1270      }
1271      break;
1272    case T_INT:
1273      __ movl(dest->as_register(), from_addr);
1274      break;
1275
1276    case T_LONG: {
1277      Register to_lo = dest->as_register_lo();
1278      Register to_hi = dest->as_register_hi();
1279#ifdef _LP64
1280      __ movptr(to_lo, as_Address_lo(addr));
1281#else
1282      Register base = addr->base()->as_register();
1283      Register index = noreg;
1284      if (addr->index()->is_register()) {
1285        index = addr->index()->as_register();
1286      }
1287      if ((base == to_lo && index == to_hi) ||
1288          (base == to_hi && index == to_lo)) {
1289        // addresses with 2 registers are only formed as a result of
1290        // array access so this code will never have to deal with
1291        // patches or null checks.
1292        assert(info == NULL && patch == NULL, "must be");
1293        __ lea(to_hi, as_Address(addr));
1294        __ movl(to_lo, Address(to_hi, 0));
1295        __ movl(to_hi, Address(to_hi, BytesPerWord));
1296      } else if (base == to_lo || index == to_lo) {
1297        assert(base != to_hi, "can't be");
1298        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1299        __ movl(to_hi, as_Address_hi(addr));
1300        if (patch != NULL) {
1301          patching_epilog(patch, lir_patch_high, base, info);
1302          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1303          patch_code = lir_patch_low;
1304        }
1305        __ movl(to_lo, as_Address_lo(addr));
1306      } else {
1307        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1308        __ movl(to_lo, as_Address_lo(addr));
1309        if (patch != NULL) {
1310          patching_epilog(patch, lir_patch_low, base, info);
1311          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1312          patch_code = lir_patch_high;
1313        }
1314        __ movl(to_hi, as_Address_hi(addr));
1315      }
1316#endif // _LP64
1317      break;
1318    }
1319
1320    case T_BOOLEAN: // fall through
1321    case T_BYTE: {
1322      Register dest_reg = dest->as_register();
1323      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1324      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1325        __ movsbl(dest_reg, from_addr);
1326      } else {
1327        __ movb(dest_reg, from_addr);
1328        __ shll(dest_reg, 24);
1329        __ sarl(dest_reg, 24);
1330      }
1331      break;
1332    }
1333
1334    case T_CHAR: {
1335      Register dest_reg = dest->as_register();
1336      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1337      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1338        __ movzwl(dest_reg, from_addr);
1339      } else {
1340        __ movw(dest_reg, from_addr);
1341      }
1342      break;
1343    }
1344
1345    case T_SHORT: {
1346      Register dest_reg = dest->as_register();
1347      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1348        __ movswl(dest_reg, from_addr);
1349      } else {
1350        __ movw(dest_reg, from_addr);
1351        __ shll(dest_reg, 16);
1352        __ sarl(dest_reg, 16);
1353      }
1354      break;
1355    }
1356
1357    default:
1358      ShouldNotReachHere();
1359  }
1360
1361  if (patch != NULL) {
1362    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1363  }
1364
1365  if (type == T_ARRAY || type == T_OBJECT) {
1366#ifdef _LP64
1367    if (UseCompressedOops && !wide) {
1368      __ decode_heap_oop(dest->as_register());
1369    }
1370#endif
1371    __ verify_oop(dest->as_register());
1372  } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1373#ifdef _LP64
1374    if (UseCompressedClassPointers) {
1375      __ decode_klass_not_null(dest->as_register());
1376    }
1377#endif
1378  }
1379}
1380
1381
1382void LIR_Assembler::prefetchr(LIR_Opr src) {
1383  LIR_Address* addr = src->as_address_ptr();
1384  Address from_addr = as_Address(addr);
1385
1386  if (VM_Version::supports_sse()) {
1387    switch (ReadPrefetchInstr) {
1388      case 0:
1389        __ prefetchnta(from_addr); break;
1390      case 1:
1391        __ prefetcht0(from_addr); break;
1392      case 2:
1393        __ prefetcht2(from_addr); break;
1394      default:
1395        ShouldNotReachHere(); break;
1396    }
1397  } else if (VM_Version::supports_3dnow_prefetch()) {
1398    __ prefetchr(from_addr);
1399  }
1400}
1401
1402
1403void LIR_Assembler::prefetchw(LIR_Opr src) {
1404  LIR_Address* addr = src->as_address_ptr();
1405  Address from_addr = as_Address(addr);
1406
1407  if (VM_Version::supports_sse()) {
1408    switch (AllocatePrefetchInstr) {
1409      case 0:
1410        __ prefetchnta(from_addr); break;
1411      case 1:
1412        __ prefetcht0(from_addr); break;
1413      case 2:
1414        __ prefetcht2(from_addr); break;
1415      case 3:
1416        __ prefetchw(from_addr); break;
1417      default:
1418        ShouldNotReachHere(); break;
1419    }
1420  } else if (VM_Version::supports_3dnow_prefetch()) {
1421    __ prefetchw(from_addr);
1422  }
1423}
1424
1425
1426NEEDS_CLEANUP; // This could be static?
1427Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1428  int elem_size = type2aelembytes(type);
1429  switch (elem_size) {
1430    case 1: return Address::times_1;
1431    case 2: return Address::times_2;
1432    case 4: return Address::times_4;
1433    case 8: return Address::times_8;
1434  }
1435  ShouldNotReachHere();
1436  return Address::no_scale;
1437}
1438
1439
1440void LIR_Assembler::emit_op3(LIR_Op3* op) {
1441  switch (op->code()) {
1442    case lir_idiv:
1443    case lir_irem:
1444      arithmetic_idiv(op->code(),
1445                      op->in_opr1(),
1446                      op->in_opr2(),
1447                      op->in_opr3(),
1448                      op->result_opr(),
1449                      op->info());
1450      break;
1451    default:      ShouldNotReachHere(); break;
1452  }
1453}
1454
1455void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1456#ifdef ASSERT
1457  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1458  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1459  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1460#endif
1461
1462  if (op->cond() == lir_cond_always) {
1463    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1464    __ jmp (*(op->label()));
1465  } else {
1466    Assembler::Condition acond = Assembler::zero;
1467    if (op->code() == lir_cond_float_branch) {
1468      assert(op->ublock() != NULL, "must have unordered successor");
1469      __ jcc(Assembler::parity, *(op->ublock()->label()));
1470      switch(op->cond()) {
1471        case lir_cond_equal:        acond = Assembler::equal;      break;
1472        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1473        case lir_cond_less:         acond = Assembler::below;      break;
1474        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1475        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1476        case lir_cond_greater:      acond = Assembler::above;      break;
1477        default:                         ShouldNotReachHere();
1478      }
1479    } else {
1480      switch (op->cond()) {
1481        case lir_cond_equal:        acond = Assembler::equal;       break;
1482        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1483        case lir_cond_less:         acond = Assembler::less;        break;
1484        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1485        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1486        case lir_cond_greater:      acond = Assembler::greater;     break;
1487        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1488        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1489        default:                         ShouldNotReachHere();
1490      }
1491    }
1492    __ jcc(acond,*(op->label()));
1493  }
1494}
1495
1496void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1497  LIR_Opr src  = op->in_opr();
1498  LIR_Opr dest = op->result_opr();
1499
1500  switch (op->bytecode()) {
1501    case Bytecodes::_i2l:
1502#ifdef _LP64
1503      __ movl2ptr(dest->as_register_lo(), src->as_register());
1504#else
1505      move_regs(src->as_register(), dest->as_register_lo());
1506      move_regs(src->as_register(), dest->as_register_hi());
1507      __ sarl(dest->as_register_hi(), 31);
1508#endif // LP64
1509      break;
1510
1511    case Bytecodes::_l2i:
1512#ifdef _LP64
1513      __ movl(dest->as_register(), src->as_register_lo());
1514#else
1515      move_regs(src->as_register_lo(), dest->as_register());
1516#endif
1517      break;
1518
1519    case Bytecodes::_i2b:
1520      move_regs(src->as_register(), dest->as_register());
1521      __ sign_extend_byte(dest->as_register());
1522      break;
1523
1524    case Bytecodes::_i2c:
1525      move_regs(src->as_register(), dest->as_register());
1526      __ andl(dest->as_register(), 0xFFFF);
1527      break;
1528
1529    case Bytecodes::_i2s:
1530      move_regs(src->as_register(), dest->as_register());
1531      __ sign_extend_short(dest->as_register());
1532      break;
1533
1534
1535    case Bytecodes::_f2d:
1536    case Bytecodes::_d2f:
1537      if (dest->is_single_xmm()) {
1538        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1539      } else if (dest->is_double_xmm()) {
1540        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1541      } else {
1542        assert(src->fpu() == dest->fpu(), "register must be equal");
1543        // do nothing (float result is rounded later through spilling)
1544      }
1545      break;
1546
1547    case Bytecodes::_i2f:
1548    case Bytecodes::_i2d:
1549      if (dest->is_single_xmm()) {
1550        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1551      } else if (dest->is_double_xmm()) {
1552        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1553      } else {
1554        assert(dest->fpu() == 0, "result must be on TOS");
1555        __ movl(Address(rsp, 0), src->as_register());
1556        __ fild_s(Address(rsp, 0));
1557      }
1558      break;
1559
1560    case Bytecodes::_f2i:
1561    case Bytecodes::_d2i:
1562      if (src->is_single_xmm()) {
1563        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1564      } else if (src->is_double_xmm()) {
1565        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1566      } else {
1567        assert(src->fpu() == 0, "input must be on TOS");
1568        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1569        __ fist_s(Address(rsp, 0));
1570        __ movl(dest->as_register(), Address(rsp, 0));
1571        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1572      }
1573
1574      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1575      assert(op->stub() != NULL, "stub required");
1576      __ cmpl(dest->as_register(), 0x80000000);
1577      __ jcc(Assembler::equal, *op->stub()->entry());
1578      __ bind(*op->stub()->continuation());
1579      break;
1580
1581    case Bytecodes::_l2f:
1582    case Bytecodes::_l2d:
1583      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1584      assert(dest->fpu() == 0, "result must be on TOS");
1585
1586      __ movptr(Address(rsp, 0),            src->as_register_lo());
1587      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1588      __ fild_d(Address(rsp, 0));
1589      // float result is rounded later through spilling
1590      break;
1591
1592    case Bytecodes::_f2l:
1593    case Bytecodes::_d2l:
1594      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1595      assert(src->fpu() == 0, "input must be on TOS");
1596      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1597
1598      // instruction sequence too long to inline it here
1599      {
1600        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1601      }
1602      break;
1603
1604    default: ShouldNotReachHere();
1605  }
1606}
1607
1608void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1609  if (op->init_check()) {
1610    __ cmpb(Address(op->klass()->as_register(),
1611                    InstanceKlass::init_state_offset()),
1612                    InstanceKlass::fully_initialized);
1613    add_debug_info_for_null_check_here(op->stub()->info());
1614    __ jcc(Assembler::notEqual, *op->stub()->entry());
1615  }
1616  __ allocate_object(op->obj()->as_register(),
1617                     op->tmp1()->as_register(),
1618                     op->tmp2()->as_register(),
1619                     op->header_size(),
1620                     op->object_size(),
1621                     op->klass()->as_register(),
1622                     *op->stub()->entry());
1623  __ bind(*op->stub()->continuation());
1624}
1625
1626void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1627  Register len =  op->len()->as_register();
1628  LP64_ONLY( __ movslq(len, len); )
1629
1630  if (UseSlowPath ||
1631      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1632      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1633    __ jmp(*op->stub()->entry());
1634  } else {
1635    Register tmp1 = op->tmp1()->as_register();
1636    Register tmp2 = op->tmp2()->as_register();
1637    Register tmp3 = op->tmp3()->as_register();
1638    if (len == tmp1) {
1639      tmp1 = tmp3;
1640    } else if (len == tmp2) {
1641      tmp2 = tmp3;
1642    } else if (len == tmp3) {
1643      // everything is ok
1644    } else {
1645      __ mov(tmp3, len);
1646    }
1647    __ allocate_array(op->obj()->as_register(),
1648                      len,
1649                      tmp1,
1650                      tmp2,
1651                      arrayOopDesc::header_size(op->type()),
1652                      array_element_size(op->type()),
1653                      op->klass()->as_register(),
1654                      *op->stub()->entry());
1655  }
1656  __ bind(*op->stub()->continuation());
1657}
1658
1659void LIR_Assembler::type_profile_helper(Register mdo,
1660                                        ciMethodData *md, ciProfileData *data,
1661                                        Register recv, Label* update_done) {
1662  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1663    Label next_test;
1664    // See if the receiver is receiver[n].
1665    __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1666    __ jccb(Assembler::notEqual, next_test);
1667    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1668    __ addptr(data_addr, DataLayout::counter_increment);
1669    __ jmp(*update_done);
1670    __ bind(next_test);
1671  }
1672
1673  // Didn't find receiver; find next empty slot and fill it in
1674  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1675    Label next_test;
1676    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1677    __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1678    __ jccb(Assembler::notEqual, next_test);
1679    __ movptr(recv_addr, recv);
1680    __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1681    __ jmp(*update_done);
1682    __ bind(next_test);
1683  }
1684}
1685
1686void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1687  // we always need a stub for the failure case.
1688  CodeStub* stub = op->stub();
1689  Register obj = op->object()->as_register();
1690  Register k_RInfo = op->tmp1()->as_register();
1691  Register klass_RInfo = op->tmp2()->as_register();
1692  Register dst = op->result_opr()->as_register();
1693  ciKlass* k = op->klass();
1694  Register Rtmp1 = noreg;
1695
1696  // check if it needs to be profiled
1697  ciMethodData* md;
1698  ciProfileData* data;
1699
1700  if (op->should_profile()) {
1701    ciMethod* method = op->profiled_method();
1702    assert(method != NULL, "Should have method");
1703    int bci = op->profiled_bci();
1704    md = method->method_data_or_null();
1705    assert(md != NULL, "Sanity");
1706    data = md->bci_to_data(bci);
1707    assert(data != NULL,                "need data for type check");
1708    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1709  }
1710  Label profile_cast_success, profile_cast_failure;
1711  Label *success_target = op->should_profile() ? &profile_cast_success : success;
1712  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1713
1714  if (obj == k_RInfo) {
1715    k_RInfo = dst;
1716  } else if (obj == klass_RInfo) {
1717    klass_RInfo = dst;
1718  }
1719  if (k->is_loaded() && !UseCompressedClassPointers) {
1720    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1721  } else {
1722    Rtmp1 = op->tmp3()->as_register();
1723    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1724  }
1725
1726  assert_different_registers(obj, k_RInfo, klass_RInfo);
1727
1728  __ cmpptr(obj, (int32_t)NULL_WORD);
1729  if (op->should_profile()) {
1730    Label not_null;
1731    __ jccb(Assembler::notEqual, not_null);
1732    // Object is null; update MDO and exit
1733    Register mdo  = klass_RInfo;
1734    __ mov_metadata(mdo, md->constant_encoding());
1735    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1736    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1737    __ orl(data_addr, header_bits);
1738    __ jmp(*obj_is_null);
1739    __ bind(not_null);
1740  } else {
1741    __ jcc(Assembler::equal, *obj_is_null);
1742  }
1743
1744  if (!k->is_loaded()) {
1745    klass2reg_with_patching(k_RInfo, op->info_for_patch());
1746  } else {
1747#ifdef _LP64
1748    __ mov_metadata(k_RInfo, k->constant_encoding());
1749#endif // _LP64
1750  }
1751  __ verify_oop(obj);
1752
1753  if (op->fast_check()) {
1754    // get object class
1755    // not a safepoint as obj null check happens earlier
1756#ifdef _LP64
1757    if (UseCompressedClassPointers) {
1758      __ load_klass(Rtmp1, obj);
1759      __ cmpptr(k_RInfo, Rtmp1);
1760    } else {
1761      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1762    }
1763#else
1764    if (k->is_loaded()) {
1765      __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1766    } else {
1767      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1768    }
1769#endif
1770    __ jcc(Assembler::notEqual, *failure_target);
1771    // successful cast, fall through to profile or jump
1772  } else {
1773    // get object class
1774    // not a safepoint as obj null check happens earlier
1775    __ load_klass(klass_RInfo, obj);
1776    if (k->is_loaded()) {
1777      // See if we get an immediate positive hit
1778#ifdef _LP64
1779      __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1780#else
1781      __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1782#endif // _LP64
1783      if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1784        __ jcc(Assembler::notEqual, *failure_target);
1785        // successful cast, fall through to profile or jump
1786      } else {
1787        // See if we get an immediate positive hit
1788        __ jcc(Assembler::equal, *success_target);
1789        // check for self
1790#ifdef _LP64
1791        __ cmpptr(klass_RInfo, k_RInfo);
1792#else
1793        __ cmpklass(klass_RInfo, k->constant_encoding());
1794#endif // _LP64
1795        __ jcc(Assembler::equal, *success_target);
1796
1797        __ push(klass_RInfo);
1798#ifdef _LP64
1799        __ push(k_RInfo);
1800#else
1801        __ pushklass(k->constant_encoding());
1802#endif // _LP64
1803        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1804        __ pop(klass_RInfo);
1805        __ pop(klass_RInfo);
1806        // result is a boolean
1807        __ cmpl(klass_RInfo, 0);
1808        __ jcc(Assembler::equal, *failure_target);
1809        // successful cast, fall through to profile or jump
1810      }
1811    } else {
1812      // perform the fast part of the checking logic
1813      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1814      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1815      __ push(klass_RInfo);
1816      __ push(k_RInfo);
1817      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1818      __ pop(klass_RInfo);
1819      __ pop(k_RInfo);
1820      // result is a boolean
1821      __ cmpl(k_RInfo, 0);
1822      __ jcc(Assembler::equal, *failure_target);
1823      // successful cast, fall through to profile or jump
1824    }
1825  }
1826  if (op->should_profile()) {
1827    Register mdo  = klass_RInfo, recv = k_RInfo;
1828    __ bind(profile_cast_success);
1829    __ mov_metadata(mdo, md->constant_encoding());
1830    __ load_klass(recv, obj);
1831    Label update_done;
1832    type_profile_helper(mdo, md, data, recv, success);
1833    __ jmp(*success);
1834
1835    __ bind(profile_cast_failure);
1836    __ mov_metadata(mdo, md->constant_encoding());
1837    Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1838    __ subptr(counter_addr, DataLayout::counter_increment);
1839    __ jmp(*failure);
1840  }
1841  __ jmp(*success);
1842}
1843
1844
1845void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1846  LIR_Code code = op->code();
1847  if (code == lir_store_check) {
1848    Register value = op->object()->as_register();
1849    Register array = op->array()->as_register();
1850    Register k_RInfo = op->tmp1()->as_register();
1851    Register klass_RInfo = op->tmp2()->as_register();
1852    Register Rtmp1 = op->tmp3()->as_register();
1853
1854    CodeStub* stub = op->stub();
1855
1856    // check if it needs to be profiled
1857    ciMethodData* md;
1858    ciProfileData* data;
1859
1860    if (op->should_profile()) {
1861      ciMethod* method = op->profiled_method();
1862      assert(method != NULL, "Should have method");
1863      int bci = op->profiled_bci();
1864      md = method->method_data_or_null();
1865      assert(md != NULL, "Sanity");
1866      data = md->bci_to_data(bci);
1867      assert(data != NULL,                "need data for type check");
1868      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1869    }
1870    Label profile_cast_success, profile_cast_failure, done;
1871    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1872    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1873
1874    __ cmpptr(value, (int32_t)NULL_WORD);
1875    if (op->should_profile()) {
1876      Label not_null;
1877      __ jccb(Assembler::notEqual, not_null);
1878      // Object is null; update MDO and exit
1879      Register mdo  = klass_RInfo;
1880      __ mov_metadata(mdo, md->constant_encoding());
1881      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1882      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1883      __ orl(data_addr, header_bits);
1884      __ jmp(done);
1885      __ bind(not_null);
1886    } else {
1887      __ jcc(Assembler::equal, done);
1888    }
1889
1890    add_debug_info_for_null_check_here(op->info_for_exception());
1891    __ load_klass(k_RInfo, array);
1892    __ load_klass(klass_RInfo, value);
1893
1894    // get instance klass (it's already uncompressed)
1895    __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1896    // perform the fast part of the checking logic
1897    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1898    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1899    __ push(klass_RInfo);
1900    __ push(k_RInfo);
1901    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1902    __ pop(klass_RInfo);
1903    __ pop(k_RInfo);
1904    // result is a boolean
1905    __ cmpl(k_RInfo, 0);
1906    __ jcc(Assembler::equal, *failure_target);
1907    // fall through to the success case
1908
1909    if (op->should_profile()) {
1910      Register mdo  = klass_RInfo, recv = k_RInfo;
1911      __ bind(profile_cast_success);
1912      __ mov_metadata(mdo, md->constant_encoding());
1913      __ load_klass(recv, value);
1914      Label update_done;
1915      type_profile_helper(mdo, md, data, recv, &done);
1916      __ jmpb(done);
1917
1918      __ bind(profile_cast_failure);
1919      __ mov_metadata(mdo, md->constant_encoding());
1920      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1921      __ subptr(counter_addr, DataLayout::counter_increment);
1922      __ jmp(*stub->entry());
1923    }
1924
1925    __ bind(done);
1926  } else
1927    if (code == lir_checkcast) {
1928      Register obj = op->object()->as_register();
1929      Register dst = op->result_opr()->as_register();
1930      Label success;
1931      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1932      __ bind(success);
1933      if (dst != obj) {
1934        __ mov(dst, obj);
1935      }
1936    } else
1937      if (code == lir_instanceof) {
1938        Register obj = op->object()->as_register();
1939        Register dst = op->result_opr()->as_register();
1940        Label success, failure, done;
1941        emit_typecheck_helper(op, &success, &failure, &failure);
1942        __ bind(failure);
1943        __ xorptr(dst, dst);
1944        __ jmpb(done);
1945        __ bind(success);
1946        __ movptr(dst, 1);
1947        __ bind(done);
1948      } else {
1949        ShouldNotReachHere();
1950      }
1951
1952}
1953
1954
1955void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1956  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1957    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1958    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1959    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1960    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1961    Register addr = op->addr()->as_register();
1962    if (os::is_MP()) {
1963      __ lock();
1964    }
1965    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1966
1967  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1968    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1969    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1970    Register newval = op->new_value()->as_register();
1971    Register cmpval = op->cmp_value()->as_register();
1972    assert(cmpval == rax, "wrong register");
1973    assert(newval != NULL, "new val must be register");
1974    assert(cmpval != newval, "cmp and new values must be in different registers");
1975    assert(cmpval != addr, "cmp and addr must be in different registers");
1976    assert(newval != addr, "new value and addr must be in different registers");
1977
1978    if ( op->code() == lir_cas_obj) {
1979#ifdef _LP64
1980      if (UseCompressedOops) {
1981        __ encode_heap_oop(cmpval);
1982        __ mov(rscratch1, newval);
1983        __ encode_heap_oop(rscratch1);
1984        if (os::is_MP()) {
1985          __ lock();
1986        }
1987        // cmpval (rax) is implicitly used by this instruction
1988        __ cmpxchgl(rscratch1, Address(addr, 0));
1989      } else
1990#endif
1991      {
1992        if (os::is_MP()) {
1993          __ lock();
1994        }
1995        __ cmpxchgptr(newval, Address(addr, 0));
1996      }
1997    } else {
1998      assert(op->code() == lir_cas_int, "lir_cas_int expected");
1999      if (os::is_MP()) {
2000        __ lock();
2001      }
2002      __ cmpxchgl(newval, Address(addr, 0));
2003    }
2004#ifdef _LP64
2005  } else if (op->code() == lir_cas_long) {
2006    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2007    Register newval = op->new_value()->as_register_lo();
2008    Register cmpval = op->cmp_value()->as_register_lo();
2009    assert(cmpval == rax, "wrong register");
2010    assert(newval != NULL, "new val must be register");
2011    assert(cmpval != newval, "cmp and new values must be in different registers");
2012    assert(cmpval != addr, "cmp and addr must be in different registers");
2013    assert(newval != addr, "new value and addr must be in different registers");
2014    if (os::is_MP()) {
2015      __ lock();
2016    }
2017    __ cmpxchgq(newval, Address(addr, 0));
2018#endif // _LP64
2019  } else {
2020    Unimplemented();
2021  }
2022}
2023
2024void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2025  Assembler::Condition acond, ncond;
2026  switch (condition) {
2027    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2028    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2029    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2030    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2031    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2032    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2033    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2034    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2035    default:                    ShouldNotReachHere();
2036  }
2037
2038  if (opr1->is_cpu_register()) {
2039    reg2reg(opr1, result);
2040  } else if (opr1->is_stack()) {
2041    stack2reg(opr1, result, result->type());
2042  } else if (opr1->is_constant()) {
2043    const2reg(opr1, result, lir_patch_none, NULL);
2044  } else {
2045    ShouldNotReachHere();
2046  }
2047
2048  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2049    // optimized version that does not require a branch
2050    if (opr2->is_single_cpu()) {
2051      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2052      __ cmov(ncond, result->as_register(), opr2->as_register());
2053    } else if (opr2->is_double_cpu()) {
2054      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2055      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2056      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2057      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2058    } else if (opr2->is_single_stack()) {
2059      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2060    } else if (opr2->is_double_stack()) {
2061      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2062      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2063    } else {
2064      ShouldNotReachHere();
2065    }
2066
2067  } else {
2068    Label skip;
2069    __ jcc (acond, skip);
2070    if (opr2->is_cpu_register()) {
2071      reg2reg(opr2, result);
2072    } else if (opr2->is_stack()) {
2073      stack2reg(opr2, result, result->type());
2074    } else if (opr2->is_constant()) {
2075      const2reg(opr2, result, lir_patch_none, NULL);
2076    } else {
2077      ShouldNotReachHere();
2078    }
2079    __ bind(skip);
2080  }
2081}
2082
2083
2084void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2085  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2086
2087  if (left->is_single_cpu()) {
2088    assert(left == dest, "left and dest must be equal");
2089    Register lreg = left->as_register();
2090
2091    if (right->is_single_cpu()) {
2092      // cpu register - cpu register
2093      Register rreg = right->as_register();
2094      switch (code) {
2095        case lir_add: __ addl (lreg, rreg); break;
2096        case lir_sub: __ subl (lreg, rreg); break;
2097        case lir_mul: __ imull(lreg, rreg); break;
2098        default:      ShouldNotReachHere();
2099      }
2100
2101    } else if (right->is_stack()) {
2102      // cpu register - stack
2103      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2104      switch (code) {
2105        case lir_add: __ addl(lreg, raddr); break;
2106        case lir_sub: __ subl(lreg, raddr); break;
2107        default:      ShouldNotReachHere();
2108      }
2109
2110    } else if (right->is_constant()) {
2111      // cpu register - constant
2112      jint c = right->as_constant_ptr()->as_jint();
2113      switch (code) {
2114        case lir_add: {
2115          __ incrementl(lreg, c);
2116          break;
2117        }
2118        case lir_sub: {
2119          __ decrementl(lreg, c);
2120          break;
2121        }
2122        default: ShouldNotReachHere();
2123      }
2124
2125    } else {
2126      ShouldNotReachHere();
2127    }
2128
2129  } else if (left->is_double_cpu()) {
2130    assert(left == dest, "left and dest must be equal");
2131    Register lreg_lo = left->as_register_lo();
2132    Register lreg_hi = left->as_register_hi();
2133
2134    if (right->is_double_cpu()) {
2135      // cpu register - cpu register
2136      Register rreg_lo = right->as_register_lo();
2137      Register rreg_hi = right->as_register_hi();
2138      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2139      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2140      switch (code) {
2141        case lir_add:
2142          __ addptr(lreg_lo, rreg_lo);
2143          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2144          break;
2145        case lir_sub:
2146          __ subptr(lreg_lo, rreg_lo);
2147          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2148          break;
2149        case lir_mul:
2150#ifdef _LP64
2151          __ imulq(lreg_lo, rreg_lo);
2152#else
2153          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2154          __ imull(lreg_hi, rreg_lo);
2155          __ imull(rreg_hi, lreg_lo);
2156          __ addl (rreg_hi, lreg_hi);
2157          __ mull (rreg_lo);
2158          __ addl (lreg_hi, rreg_hi);
2159#endif // _LP64
2160          break;
2161        default:
2162          ShouldNotReachHere();
2163      }
2164
2165    } else if (right->is_constant()) {
2166      // cpu register - constant
2167#ifdef _LP64
2168      jlong c = right->as_constant_ptr()->as_jlong_bits();
2169      __ movptr(r10, (intptr_t) c);
2170      switch (code) {
2171        case lir_add:
2172          __ addptr(lreg_lo, r10);
2173          break;
2174        case lir_sub:
2175          __ subptr(lreg_lo, r10);
2176          break;
2177        default:
2178          ShouldNotReachHere();
2179      }
2180#else
2181      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2182      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2183      switch (code) {
2184        case lir_add:
2185          __ addptr(lreg_lo, c_lo);
2186          __ adcl(lreg_hi, c_hi);
2187          break;
2188        case lir_sub:
2189          __ subptr(lreg_lo, c_lo);
2190          __ sbbl(lreg_hi, c_hi);
2191          break;
2192        default:
2193          ShouldNotReachHere();
2194      }
2195#endif // _LP64
2196
2197    } else {
2198      ShouldNotReachHere();
2199    }
2200
2201  } else if (left->is_single_xmm()) {
2202    assert(left == dest, "left and dest must be equal");
2203    XMMRegister lreg = left->as_xmm_float_reg();
2204
2205    if (right->is_single_xmm()) {
2206      XMMRegister rreg = right->as_xmm_float_reg();
2207      switch (code) {
2208        case lir_add: __ addss(lreg, rreg);  break;
2209        case lir_sub: __ subss(lreg, rreg);  break;
2210        case lir_mul_strictfp: // fall through
2211        case lir_mul: __ mulss(lreg, rreg);  break;
2212        case lir_div_strictfp: // fall through
2213        case lir_div: __ divss(lreg, rreg);  break;
2214        default: ShouldNotReachHere();
2215      }
2216    } else {
2217      Address raddr;
2218      if (right->is_single_stack()) {
2219        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2220      } else if (right->is_constant()) {
2221        // hack for now
2222        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2223      } else {
2224        ShouldNotReachHere();
2225      }
2226      switch (code) {
2227        case lir_add: __ addss(lreg, raddr);  break;
2228        case lir_sub: __ subss(lreg, raddr);  break;
2229        case lir_mul_strictfp: // fall through
2230        case lir_mul: __ mulss(lreg, raddr);  break;
2231        case lir_div_strictfp: // fall through
2232        case lir_div: __ divss(lreg, raddr);  break;
2233        default: ShouldNotReachHere();
2234      }
2235    }
2236
2237  } else if (left->is_double_xmm()) {
2238    assert(left == dest, "left and dest must be equal");
2239
2240    XMMRegister lreg = left->as_xmm_double_reg();
2241    if (right->is_double_xmm()) {
2242      XMMRegister rreg = right->as_xmm_double_reg();
2243      switch (code) {
2244        case lir_add: __ addsd(lreg, rreg);  break;
2245        case lir_sub: __ subsd(lreg, rreg);  break;
2246        case lir_mul_strictfp: // fall through
2247        case lir_mul: __ mulsd(lreg, rreg);  break;
2248        case lir_div_strictfp: // fall through
2249        case lir_div: __ divsd(lreg, rreg);  break;
2250        default: ShouldNotReachHere();
2251      }
2252    } else {
2253      Address raddr;
2254      if (right->is_double_stack()) {
2255        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2256      } else if (right->is_constant()) {
2257        // hack for now
2258        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2259      } else {
2260        ShouldNotReachHere();
2261      }
2262      switch (code) {
2263        case lir_add: __ addsd(lreg, raddr);  break;
2264        case lir_sub: __ subsd(lreg, raddr);  break;
2265        case lir_mul_strictfp: // fall through
2266        case lir_mul: __ mulsd(lreg, raddr);  break;
2267        case lir_div_strictfp: // fall through
2268        case lir_div: __ divsd(lreg, raddr);  break;
2269        default: ShouldNotReachHere();
2270      }
2271    }
2272
2273  } else if (left->is_single_fpu()) {
2274    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2275
2276    if (right->is_single_fpu()) {
2277      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2278
2279    } else {
2280      assert(left->fpu_regnr() == 0, "left must be on TOS");
2281      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2282
2283      Address raddr;
2284      if (right->is_single_stack()) {
2285        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2286      } else if (right->is_constant()) {
2287        address const_addr = float_constant(right->as_jfloat());
2288        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2289        // hack for now
2290        raddr = __ as_Address(InternalAddress(const_addr));
2291      } else {
2292        ShouldNotReachHere();
2293      }
2294
2295      switch (code) {
2296        case lir_add: __ fadd_s(raddr); break;
2297        case lir_sub: __ fsub_s(raddr); break;
2298        case lir_mul_strictfp: // fall through
2299        case lir_mul: __ fmul_s(raddr); break;
2300        case lir_div_strictfp: // fall through
2301        case lir_div: __ fdiv_s(raddr); break;
2302        default:      ShouldNotReachHere();
2303      }
2304    }
2305
2306  } else if (left->is_double_fpu()) {
2307    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2308
2309    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2310      // Double values require special handling for strictfp mul/div on x86
2311      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2312      __ fmulp(left->fpu_regnrLo() + 1);
2313    }
2314
2315    if (right->is_double_fpu()) {
2316      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2317
2318    } else {
2319      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2320      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2321
2322      Address raddr;
2323      if (right->is_double_stack()) {
2324        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2325      } else if (right->is_constant()) {
2326        // hack for now
2327        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2328      } else {
2329        ShouldNotReachHere();
2330      }
2331
2332      switch (code) {
2333        case lir_add: __ fadd_d(raddr); break;
2334        case lir_sub: __ fsub_d(raddr); break;
2335        case lir_mul_strictfp: // fall through
2336        case lir_mul: __ fmul_d(raddr); break;
2337        case lir_div_strictfp: // fall through
2338        case lir_div: __ fdiv_d(raddr); break;
2339        default: ShouldNotReachHere();
2340      }
2341    }
2342
2343    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2344      // Double values require special handling for strictfp mul/div on x86
2345      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2346      __ fmulp(dest->fpu_regnrLo() + 1);
2347    }
2348
2349  } else if (left->is_single_stack() || left->is_address()) {
2350    assert(left == dest, "left and dest must be equal");
2351
2352    Address laddr;
2353    if (left->is_single_stack()) {
2354      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2355    } else if (left->is_address()) {
2356      laddr = as_Address(left->as_address_ptr());
2357    } else {
2358      ShouldNotReachHere();
2359    }
2360
2361    if (right->is_single_cpu()) {
2362      Register rreg = right->as_register();
2363      switch (code) {
2364        case lir_add: __ addl(laddr, rreg); break;
2365        case lir_sub: __ subl(laddr, rreg); break;
2366        default:      ShouldNotReachHere();
2367      }
2368    } else if (right->is_constant()) {
2369      jint c = right->as_constant_ptr()->as_jint();
2370      switch (code) {
2371        case lir_add: {
2372          __ incrementl(laddr, c);
2373          break;
2374        }
2375        case lir_sub: {
2376          __ decrementl(laddr, c);
2377          break;
2378        }
2379        default: ShouldNotReachHere();
2380      }
2381    } else {
2382      ShouldNotReachHere();
2383    }
2384
2385  } else {
2386    ShouldNotReachHere();
2387  }
2388}
2389
2390void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2391  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2392  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2393  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2394
2395  bool left_is_tos = (left_index == 0);
2396  bool dest_is_tos = (dest_index == 0);
2397  int non_tos_index = (left_is_tos ? right_index : left_index);
2398
2399  switch (code) {
2400    case lir_add:
2401      if (pop_fpu_stack)       __ faddp(non_tos_index);
2402      else if (dest_is_tos)    __ fadd (non_tos_index);
2403      else                     __ fadda(non_tos_index);
2404      break;
2405
2406    case lir_sub:
2407      if (left_is_tos) {
2408        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2409        else if (dest_is_tos)  __ fsub  (non_tos_index);
2410        else                   __ fsubra(non_tos_index);
2411      } else {
2412        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2413        else if (dest_is_tos)  __ fsubr (non_tos_index);
2414        else                   __ fsuba (non_tos_index);
2415      }
2416      break;
2417
2418    case lir_mul_strictfp: // fall through
2419    case lir_mul:
2420      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2421      else if (dest_is_tos)    __ fmul (non_tos_index);
2422      else                     __ fmula(non_tos_index);
2423      break;
2424
2425    case lir_div_strictfp: // fall through
2426    case lir_div:
2427      if (left_is_tos) {
2428        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2429        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2430        else                   __ fdivra(non_tos_index);
2431      } else {
2432        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2433        else if (dest_is_tos)  __ fdivr (non_tos_index);
2434        else                   __ fdiva (non_tos_index);
2435      }
2436      break;
2437
2438    case lir_rem:
2439      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2440      __ fremr(noreg);
2441      break;
2442
2443    default:
2444      ShouldNotReachHere();
2445  }
2446}
2447
2448
2449void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2450  if (value->is_double_xmm()) {
2451    switch(code) {
2452      case lir_abs :
2453        {
2454          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2455            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2456          }
2457          __ andpd(dest->as_xmm_double_reg(),
2458                    ExternalAddress((address)double_signmask_pool));
2459        }
2460        break;
2461
2462      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2463      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2464      default      : ShouldNotReachHere();
2465    }
2466
2467  } else if (value->is_double_fpu()) {
2468    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2469    switch(code) {
2470      case lir_log   : __ flog() ; break;
2471      case lir_log10 : __ flog10() ; break;
2472      case lir_abs   : __ fabs() ; break;
2473      case lir_sqrt  : __ fsqrt(); break;
2474      case lir_sin   :
2475        // Should consider not saving rbx, if not necessary
2476        __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2477        break;
2478      case lir_cos :
2479        // Should consider not saving rbx, if not necessary
2480        assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2481        __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2482        break;
2483      case lir_tan :
2484        // Should consider not saving rbx, if not necessary
2485        __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2486        break;
2487      case lir_exp :
2488        __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2489        break;
2490      case lir_pow :
2491        __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2492        break;
2493      default      : ShouldNotReachHere();
2494    }
2495  } else {
2496    Unimplemented();
2497  }
2498}
2499
2500void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2501  // assert(left->destroys_register(), "check");
2502  if (left->is_single_cpu()) {
2503    Register reg = left->as_register();
2504    if (right->is_constant()) {
2505      int val = right->as_constant_ptr()->as_jint();
2506      switch (code) {
2507        case lir_logic_and: __ andl (reg, val); break;
2508        case lir_logic_or:  __ orl  (reg, val); break;
2509        case lir_logic_xor: __ xorl (reg, val); break;
2510        default: ShouldNotReachHere();
2511      }
2512    } else if (right->is_stack()) {
2513      // added support for stack operands
2514      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2515      switch (code) {
2516        case lir_logic_and: __ andl (reg, raddr); break;
2517        case lir_logic_or:  __ orl  (reg, raddr); break;
2518        case lir_logic_xor: __ xorl (reg, raddr); break;
2519        default: ShouldNotReachHere();
2520      }
2521    } else {
2522      Register rright = right->as_register();
2523      switch (code) {
2524        case lir_logic_and: __ andptr (reg, rright); break;
2525        case lir_logic_or : __ orptr  (reg, rright); break;
2526        case lir_logic_xor: __ xorptr (reg, rright); break;
2527        default: ShouldNotReachHere();
2528      }
2529    }
2530    move_regs(reg, dst->as_register());
2531  } else {
2532    Register l_lo = left->as_register_lo();
2533    Register l_hi = left->as_register_hi();
2534    if (right->is_constant()) {
2535#ifdef _LP64
2536      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2537      switch (code) {
2538        case lir_logic_and:
2539          __ andq(l_lo, rscratch1);
2540          break;
2541        case lir_logic_or:
2542          __ orq(l_lo, rscratch1);
2543          break;
2544        case lir_logic_xor:
2545          __ xorq(l_lo, rscratch1);
2546          break;
2547        default: ShouldNotReachHere();
2548      }
2549#else
2550      int r_lo = right->as_constant_ptr()->as_jint_lo();
2551      int r_hi = right->as_constant_ptr()->as_jint_hi();
2552      switch (code) {
2553        case lir_logic_and:
2554          __ andl(l_lo, r_lo);
2555          __ andl(l_hi, r_hi);
2556          break;
2557        case lir_logic_or:
2558          __ orl(l_lo, r_lo);
2559          __ orl(l_hi, r_hi);
2560          break;
2561        case lir_logic_xor:
2562          __ xorl(l_lo, r_lo);
2563          __ xorl(l_hi, r_hi);
2564          break;
2565        default: ShouldNotReachHere();
2566      }
2567#endif // _LP64
2568    } else {
2569#ifdef _LP64
2570      Register r_lo;
2571      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2572        r_lo = right->as_register();
2573      } else {
2574        r_lo = right->as_register_lo();
2575      }
2576#else
2577      Register r_lo = right->as_register_lo();
2578      Register r_hi = right->as_register_hi();
2579      assert(l_lo != r_hi, "overwriting registers");
2580#endif
2581      switch (code) {
2582        case lir_logic_and:
2583          __ andptr(l_lo, r_lo);
2584          NOT_LP64(__ andptr(l_hi, r_hi);)
2585          break;
2586        case lir_logic_or:
2587          __ orptr(l_lo, r_lo);
2588          NOT_LP64(__ orptr(l_hi, r_hi);)
2589          break;
2590        case lir_logic_xor:
2591          __ xorptr(l_lo, r_lo);
2592          NOT_LP64(__ xorptr(l_hi, r_hi);)
2593          break;
2594        default: ShouldNotReachHere();
2595      }
2596    }
2597
2598    Register dst_lo = dst->as_register_lo();
2599    Register dst_hi = dst->as_register_hi();
2600
2601#ifdef _LP64
2602    move_regs(l_lo, dst_lo);
2603#else
2604    if (dst_lo == l_hi) {
2605      assert(dst_hi != l_lo, "overwriting registers");
2606      move_regs(l_hi, dst_hi);
2607      move_regs(l_lo, dst_lo);
2608    } else {
2609      assert(dst_lo != l_hi, "overwriting registers");
2610      move_regs(l_lo, dst_lo);
2611      move_regs(l_hi, dst_hi);
2612    }
2613#endif // _LP64
2614  }
2615}
2616
2617
2618// we assume that rax, and rdx can be overwritten
2619void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2620
2621  assert(left->is_single_cpu(),   "left must be register");
2622  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2623  assert(result->is_single_cpu(), "result must be register");
2624
2625  //  assert(left->destroys_register(), "check");
2626  //  assert(right->destroys_register(), "check");
2627
2628  Register lreg = left->as_register();
2629  Register dreg = result->as_register();
2630
2631  if (right->is_constant()) {
2632    int divisor = right->as_constant_ptr()->as_jint();
2633    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2634    if (code == lir_idiv) {
2635      assert(lreg == rax, "must be rax,");
2636      assert(temp->as_register() == rdx, "tmp register must be rdx");
2637      __ cdql(); // sign extend into rdx:rax
2638      if (divisor == 2) {
2639        __ subl(lreg, rdx);
2640      } else {
2641        __ andl(rdx, divisor - 1);
2642        __ addl(lreg, rdx);
2643      }
2644      __ sarl(lreg, log2_intptr(divisor));
2645      move_regs(lreg, dreg);
2646    } else if (code == lir_irem) {
2647      Label done;
2648      __ mov(dreg, lreg);
2649      __ andl(dreg, 0x80000000 | (divisor - 1));
2650      __ jcc(Assembler::positive, done);
2651      __ decrement(dreg);
2652      __ orl(dreg, ~(divisor - 1));
2653      __ increment(dreg);
2654      __ bind(done);
2655    } else {
2656      ShouldNotReachHere();
2657    }
2658  } else {
2659    Register rreg = right->as_register();
2660    assert(lreg == rax, "left register must be rax,");
2661    assert(rreg != rdx, "right register must not be rdx");
2662    assert(temp->as_register() == rdx, "tmp register must be rdx");
2663
2664    move_regs(lreg, rax);
2665
2666    int idivl_offset = __ corrected_idivl(rreg);
2667    add_debug_info_for_div0(idivl_offset, info);
2668    if (code == lir_irem) {
2669      move_regs(rdx, dreg); // result is in rdx
2670    } else {
2671      move_regs(rax, dreg);
2672    }
2673  }
2674}
2675
2676
2677void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2678  if (opr1->is_single_cpu()) {
2679    Register reg1 = opr1->as_register();
2680    if (opr2->is_single_cpu()) {
2681      // cpu register - cpu register
2682      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2683        __ cmpptr(reg1, opr2->as_register());
2684      } else {
2685        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2686        __ cmpl(reg1, opr2->as_register());
2687      }
2688    } else if (opr2->is_stack()) {
2689      // cpu register - stack
2690      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2691        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2692      } else {
2693        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2694      }
2695    } else if (opr2->is_constant()) {
2696      // cpu register - constant
2697      LIR_Const* c = opr2->as_constant_ptr();
2698      if (c->type() == T_INT) {
2699        __ cmpl(reg1, c->as_jint());
2700      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2701        // In 64bit oops are single register
2702        jobject o = c->as_jobject();
2703        if (o == NULL) {
2704          __ cmpptr(reg1, (int32_t)NULL_WORD);
2705        } else {
2706#ifdef _LP64
2707          __ movoop(rscratch1, o);
2708          __ cmpptr(reg1, rscratch1);
2709#else
2710          __ cmpoop(reg1, c->as_jobject());
2711#endif // _LP64
2712        }
2713      } else {
2714        fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2715      }
2716      // cpu register - address
2717    } else if (opr2->is_address()) {
2718      if (op->info() != NULL) {
2719        add_debug_info_for_null_check_here(op->info());
2720      }
2721      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2722    } else {
2723      ShouldNotReachHere();
2724    }
2725
2726  } else if(opr1->is_double_cpu()) {
2727    Register xlo = opr1->as_register_lo();
2728    Register xhi = opr1->as_register_hi();
2729    if (opr2->is_double_cpu()) {
2730#ifdef _LP64
2731      __ cmpptr(xlo, opr2->as_register_lo());
2732#else
2733      // cpu register - cpu register
2734      Register ylo = opr2->as_register_lo();
2735      Register yhi = opr2->as_register_hi();
2736      __ subl(xlo, ylo);
2737      __ sbbl(xhi, yhi);
2738      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2739        __ orl(xhi, xlo);
2740      }
2741#endif // _LP64
2742    } else if (opr2->is_constant()) {
2743      // cpu register - constant 0
2744      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2745#ifdef _LP64
2746      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2747#else
2748      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2749      __ orl(xhi, xlo);
2750#endif // _LP64
2751    } else {
2752      ShouldNotReachHere();
2753    }
2754
2755  } else if (opr1->is_single_xmm()) {
2756    XMMRegister reg1 = opr1->as_xmm_float_reg();
2757    if (opr2->is_single_xmm()) {
2758      // xmm register - xmm register
2759      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2760    } else if (opr2->is_stack()) {
2761      // xmm register - stack
2762      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2763    } else if (opr2->is_constant()) {
2764      // xmm register - constant
2765      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2766    } else if (opr2->is_address()) {
2767      // xmm register - address
2768      if (op->info() != NULL) {
2769        add_debug_info_for_null_check_here(op->info());
2770      }
2771      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2772    } else {
2773      ShouldNotReachHere();
2774    }
2775
2776  } else if (opr1->is_double_xmm()) {
2777    XMMRegister reg1 = opr1->as_xmm_double_reg();
2778    if (opr2->is_double_xmm()) {
2779      // xmm register - xmm register
2780      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2781    } else if (opr2->is_stack()) {
2782      // xmm register - stack
2783      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2784    } else if (opr2->is_constant()) {
2785      // xmm register - constant
2786      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2787    } else if (opr2->is_address()) {
2788      // xmm register - address
2789      if (op->info() != NULL) {
2790        add_debug_info_for_null_check_here(op->info());
2791      }
2792      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2793    } else {
2794      ShouldNotReachHere();
2795    }
2796
2797  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2798    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2799    assert(opr2->is_fpu_register(), "both must be registers");
2800    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2801
2802  } else if (opr1->is_address() && opr2->is_constant()) {
2803    LIR_Const* c = opr2->as_constant_ptr();
2804#ifdef _LP64
2805    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2806      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2807      __ movoop(rscratch1, c->as_jobject());
2808    }
2809#endif // LP64
2810    if (op->info() != NULL) {
2811      add_debug_info_for_null_check_here(op->info());
2812    }
2813    // special case: address - constant
2814    LIR_Address* addr = opr1->as_address_ptr();
2815    if (c->type() == T_INT) {
2816      __ cmpl(as_Address(addr), c->as_jint());
2817    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2818#ifdef _LP64
2819      // %%% Make this explode if addr isn't reachable until we figure out a
2820      // better strategy by giving noreg as the temp for as_Address
2821      __ cmpptr(rscratch1, as_Address(addr, noreg));
2822#else
2823      __ cmpoop(as_Address(addr), c->as_jobject());
2824#endif // _LP64
2825    } else {
2826      ShouldNotReachHere();
2827    }
2828
2829  } else {
2830    ShouldNotReachHere();
2831  }
2832}
2833
2834void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2835  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2836    if (left->is_single_xmm()) {
2837      assert(right->is_single_xmm(), "must match");
2838      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2839    } else if (left->is_double_xmm()) {
2840      assert(right->is_double_xmm(), "must match");
2841      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2842
2843    } else {
2844      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2845      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2846
2847      assert(left->fpu() == 0, "left must be on TOS");
2848      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2849                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2850    }
2851  } else {
2852    assert(code == lir_cmp_l2i, "check");
2853#ifdef _LP64
2854    Label done;
2855    Register dest = dst->as_register();
2856    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2857    __ movl(dest, -1);
2858    __ jccb(Assembler::less, done);
2859    __ set_byte_if_not_zero(dest);
2860    __ movzbl(dest, dest);
2861    __ bind(done);
2862#else
2863    __ lcmp2int(left->as_register_hi(),
2864                left->as_register_lo(),
2865                right->as_register_hi(),
2866                right->as_register_lo());
2867    move_regs(left->as_register_hi(), dst->as_register());
2868#endif // _LP64
2869  }
2870}
2871
2872
2873void LIR_Assembler::align_call(LIR_Code code) {
2874  if (os::is_MP()) {
2875    // make sure that the displacement word of the call ends up word aligned
2876    int offset = __ offset();
2877    switch (code) {
2878      case lir_static_call:
2879      case lir_optvirtual_call:
2880      case lir_dynamic_call:
2881        offset += NativeCall::displacement_offset;
2882        break;
2883      case lir_icvirtual_call:
2884        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2885      break;
2886      case lir_virtual_call:  // currently, sparc-specific for niagara
2887      default: ShouldNotReachHere();
2888    }
2889    while (offset++ % BytesPerWord != 0) {
2890      __ nop();
2891    }
2892  }
2893}
2894
2895
2896void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2897  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2898         "must be aligned");
2899  __ call(AddressLiteral(op->addr(), rtype));
2900  add_call_info(code_offset(), op->info());
2901}
2902
2903
2904void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2905  __ ic_call(op->addr());
2906  add_call_info(code_offset(), op->info());
2907  assert(!os::is_MP() ||
2908         (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2909         "must be aligned");
2910}
2911
2912
2913/* Currently, vtable-dispatch is only enabled for sparc platforms */
2914void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2915  ShouldNotReachHere();
2916}
2917
2918
2919void LIR_Assembler::emit_static_call_stub() {
2920  address call_pc = __ pc();
2921  address stub = __ start_a_stub(call_stub_size);
2922  if (stub == NULL) {
2923    bailout("static call stub overflow");
2924    return;
2925  }
2926
2927  int start = __ offset();
2928  if (os::is_MP()) {
2929    // make sure that the displacement word of the call ends up word aligned
2930    int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2931    while (offset++ % BytesPerWord != 0) {
2932      __ nop();
2933    }
2934  }
2935  __ relocate(static_stub_Relocation::spec(call_pc));
2936  __ mov_metadata(rbx, (Metadata*)NULL);
2937  // must be set to -1 at code generation time
2938  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2939  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2940  __ jump(RuntimeAddress(__ pc()));
2941
2942  assert(__ offset() - start <= call_stub_size, "stub too big");
2943  __ end_a_stub();
2944}
2945
2946
2947void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2948  assert(exceptionOop->as_register() == rax, "must match");
2949  assert(exceptionPC->as_register() == rdx, "must match");
2950
2951  // exception object is not added to oop map by LinearScan
2952  // (LinearScan assumes that no oops are in fixed registers)
2953  info->add_register_oop(exceptionOop);
2954  Runtime1::StubID unwind_id;
2955
2956  // get current pc information
2957  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2958  int pc_for_athrow_offset = __ offset();
2959  InternalAddress pc_for_athrow(__ pc());
2960  __ lea(exceptionPC->as_register(), pc_for_athrow);
2961  add_call_info(pc_for_athrow_offset, info); // for exception handler
2962
2963  __ verify_not_null_oop(rax);
2964  // search an exception handler (rax: exception oop, rdx: throwing pc)
2965  if (compilation()->has_fpu_code()) {
2966    unwind_id = Runtime1::handle_exception_id;
2967  } else {
2968    unwind_id = Runtime1::handle_exception_nofpu_id;
2969  }
2970  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2971
2972  // enough room for two byte trap
2973  __ nop();
2974}
2975
2976
2977void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2978  assert(exceptionOop->as_register() == rax, "must match");
2979
2980  __ jmp(_unwind_handler_entry);
2981}
2982
2983
2984void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2985
2986  // optimized version for linear scan:
2987  // * count must be already in ECX (guaranteed by LinearScan)
2988  // * left and dest must be equal
2989  // * tmp must be unused
2990  assert(count->as_register() == SHIFT_count, "count must be in ECX");
2991  assert(left == dest, "left and dest must be equal");
2992  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2993
2994  if (left->is_single_cpu()) {
2995    Register value = left->as_register();
2996    assert(value != SHIFT_count, "left cannot be ECX");
2997
2998    switch (code) {
2999      case lir_shl:  __ shll(value); break;
3000      case lir_shr:  __ sarl(value); break;
3001      case lir_ushr: __ shrl(value); break;
3002      default: ShouldNotReachHere();
3003    }
3004  } else if (left->is_double_cpu()) {
3005    Register lo = left->as_register_lo();
3006    Register hi = left->as_register_hi();
3007    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3008#ifdef _LP64
3009    switch (code) {
3010      case lir_shl:  __ shlptr(lo);        break;
3011      case lir_shr:  __ sarptr(lo);        break;
3012      case lir_ushr: __ shrptr(lo);        break;
3013      default: ShouldNotReachHere();
3014    }
3015#else
3016
3017    switch (code) {
3018      case lir_shl:  __ lshl(hi, lo);        break;
3019      case lir_shr:  __ lshr(hi, lo, true);  break;
3020      case lir_ushr: __ lshr(hi, lo, false); break;
3021      default: ShouldNotReachHere();
3022    }
3023#endif // LP64
3024  } else {
3025    ShouldNotReachHere();
3026  }
3027}
3028
3029
3030void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3031  if (dest->is_single_cpu()) {
3032    // first move left into dest so that left is not destroyed by the shift
3033    Register value = dest->as_register();
3034    count = count & 0x1F; // Java spec
3035
3036    move_regs(left->as_register(), value);
3037    switch (code) {
3038      case lir_shl:  __ shll(value, count); break;
3039      case lir_shr:  __ sarl(value, count); break;
3040      case lir_ushr: __ shrl(value, count); break;
3041      default: ShouldNotReachHere();
3042    }
3043  } else if (dest->is_double_cpu()) {
3044#ifndef _LP64
3045    Unimplemented();
3046#else
3047    // first move left into dest so that left is not destroyed by the shift
3048    Register value = dest->as_register_lo();
3049    count = count & 0x1F; // Java spec
3050
3051    move_regs(left->as_register_lo(), value);
3052    switch (code) {
3053      case lir_shl:  __ shlptr(value, count); break;
3054      case lir_shr:  __ sarptr(value, count); break;
3055      case lir_ushr: __ shrptr(value, count); break;
3056      default: ShouldNotReachHere();
3057    }
3058#endif // _LP64
3059  } else {
3060    ShouldNotReachHere();
3061  }
3062}
3063
3064
3065void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3066  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3067  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3068  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3069  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3070}
3071
3072
3073void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3074  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3075  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3076  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3077  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3078}
3079
3080
3081void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3082  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3083  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3084  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3085  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3086}
3087
3088
3089// This code replaces a call to arraycopy; no exception may
3090// be thrown in this code, they must be thrown in the System.arraycopy
3091// activation frame; we could save some checks if this would not be the case
3092void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3093  ciArrayKlass* default_type = op->expected_type();
3094  Register src = op->src()->as_register();
3095  Register dst = op->dst()->as_register();
3096  Register src_pos = op->src_pos()->as_register();
3097  Register dst_pos = op->dst_pos()->as_register();
3098  Register length  = op->length()->as_register();
3099  Register tmp = op->tmp()->as_register();
3100
3101  CodeStub* stub = op->stub();
3102  int flags = op->flags();
3103  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3104  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3105
3106  // if we don't know anything, just go through the generic arraycopy
3107  if (default_type == NULL) {
3108    Label done;
3109    // save outgoing arguments on stack in case call to System.arraycopy is needed
3110    // HACK ALERT. This code used to push the parameters in a hardwired fashion
3111    // for interpreter calling conventions. Now we have to do it in new style conventions.
3112    // For the moment until C1 gets the new register allocator I just force all the
3113    // args to the right place (except the register args) and then on the back side
3114    // reload the register args properly if we go slow path. Yuck
3115
3116    // These are proper for the calling convention
3117    store_parameter(length, 2);
3118    store_parameter(dst_pos, 1);
3119    store_parameter(dst, 0);
3120
3121    // these are just temporary placements until we need to reload
3122    store_parameter(src_pos, 3);
3123    store_parameter(src, 4);
3124    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3125
3126    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3127
3128    address copyfunc_addr = StubRoutines::generic_arraycopy();
3129
3130    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3131#ifdef _LP64
3132    // The arguments are in java calling convention so we can trivially shift them to C
3133    // convention
3134    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3135    __ mov(c_rarg0, j_rarg0);
3136    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3137    __ mov(c_rarg1, j_rarg1);
3138    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3139    __ mov(c_rarg2, j_rarg2);
3140    assert_different_registers(c_rarg3, j_rarg4);
3141    __ mov(c_rarg3, j_rarg3);
3142#ifdef _WIN64
3143    // Allocate abi space for args but be sure to keep stack aligned
3144    __ subptr(rsp, 6*wordSize);
3145    store_parameter(j_rarg4, 4);
3146    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3147      __ call(RuntimeAddress(C_entry));
3148    } else {
3149#ifndef PRODUCT
3150      if (PrintC1Statistics) {
3151        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3152      }
3153#endif
3154      __ call(RuntimeAddress(copyfunc_addr));
3155    }
3156    __ addptr(rsp, 6*wordSize);
3157#else
3158    __ mov(c_rarg4, j_rarg4);
3159    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3160      __ call(RuntimeAddress(C_entry));
3161    } else {
3162#ifndef PRODUCT
3163      if (PrintC1Statistics) {
3164        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3165      }
3166#endif
3167      __ call(RuntimeAddress(copyfunc_addr));
3168    }
3169#endif // _WIN64
3170#else
3171    __ push(length);
3172    __ push(dst_pos);
3173    __ push(dst);
3174    __ push(src_pos);
3175    __ push(src);
3176
3177    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3178      __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3179    } else {
3180#ifndef PRODUCT
3181      if (PrintC1Statistics) {
3182        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3183      }
3184#endif
3185      __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3186    }
3187
3188#endif // _LP64
3189
3190    __ cmpl(rax, 0);
3191    __ jcc(Assembler::equal, *stub->continuation());
3192
3193    if (copyfunc_addr != NULL) {
3194      __ mov(tmp, rax);
3195      __ xorl(tmp, -1);
3196    }
3197
3198    // Reload values from the stack so they are where the stub
3199    // expects them.
3200    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3201    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3202    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3203    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3204    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3205
3206    if (copyfunc_addr != NULL) {
3207      __ subl(length, tmp);
3208      __ addl(src_pos, tmp);
3209      __ addl(dst_pos, tmp);
3210    }
3211    __ jmp(*stub->entry());
3212
3213    __ bind(*stub->continuation());
3214    return;
3215  }
3216
3217  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3218
3219  int elem_size = type2aelembytes(basic_type);
3220  int shift_amount;
3221  Address::ScaleFactor scale;
3222
3223  switch (elem_size) {
3224    case 1 :
3225      shift_amount = 0;
3226      scale = Address::times_1;
3227      break;
3228    case 2 :
3229      shift_amount = 1;
3230      scale = Address::times_2;
3231      break;
3232    case 4 :
3233      shift_amount = 2;
3234      scale = Address::times_4;
3235      break;
3236    case 8 :
3237      shift_amount = 3;
3238      scale = Address::times_8;
3239      break;
3240    default:
3241      ShouldNotReachHere();
3242  }
3243
3244  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3245  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3246  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3247  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3248
3249  // length and pos's are all sign extended at this point on 64bit
3250
3251  // test for NULL
3252  if (flags & LIR_OpArrayCopy::src_null_check) {
3253    __ testptr(src, src);
3254    __ jcc(Assembler::zero, *stub->entry());
3255  }
3256  if (flags & LIR_OpArrayCopy::dst_null_check) {
3257    __ testptr(dst, dst);
3258    __ jcc(Assembler::zero, *stub->entry());
3259  }
3260
3261  // check if negative
3262  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3263    __ testl(src_pos, src_pos);
3264    __ jcc(Assembler::less, *stub->entry());
3265  }
3266  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3267    __ testl(dst_pos, dst_pos);
3268    __ jcc(Assembler::less, *stub->entry());
3269  }
3270
3271  if (flags & LIR_OpArrayCopy::src_range_check) {
3272    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3273    __ cmpl(tmp, src_length_addr);
3274    __ jcc(Assembler::above, *stub->entry());
3275  }
3276  if (flags & LIR_OpArrayCopy::dst_range_check) {
3277    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3278    __ cmpl(tmp, dst_length_addr);
3279    __ jcc(Assembler::above, *stub->entry());
3280  }
3281
3282  if (flags & LIR_OpArrayCopy::length_positive_check) {
3283    __ testl(length, length);
3284    __ jcc(Assembler::less, *stub->entry());
3285    __ jcc(Assembler::zero, *stub->continuation());
3286  }
3287
3288#ifdef _LP64
3289  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3290  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3291#endif
3292
3293  if (flags & LIR_OpArrayCopy::type_check) {
3294    // We don't know the array types are compatible
3295    if (basic_type != T_OBJECT) {
3296      // Simple test for basic type arrays
3297      if (UseCompressedClassPointers) {
3298        __ movl(tmp, src_klass_addr);
3299        __ cmpl(tmp, dst_klass_addr);
3300      } else {
3301        __ movptr(tmp, src_klass_addr);
3302        __ cmpptr(tmp, dst_klass_addr);
3303      }
3304      __ jcc(Assembler::notEqual, *stub->entry());
3305    } else {
3306      // For object arrays, if src is a sub class of dst then we can
3307      // safely do the copy.
3308      Label cont, slow;
3309
3310      __ push(src);
3311      __ push(dst);
3312
3313      __ load_klass(src, src);
3314      __ load_klass(dst, dst);
3315
3316      __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3317
3318      __ push(src);
3319      __ push(dst);
3320      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3321      __ pop(dst);
3322      __ pop(src);
3323
3324      __ cmpl(src, 0);
3325      __ jcc(Assembler::notEqual, cont);
3326
3327      __ bind(slow);
3328      __ pop(dst);
3329      __ pop(src);
3330
3331      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3332      if (copyfunc_addr != NULL) { // use stub if available
3333        // src is not a sub class of dst so we have to do a
3334        // per-element check.
3335
3336        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3337        if ((flags & mask) != mask) {
3338          // Check that at least both of them object arrays.
3339          assert(flags & mask, "one of the two should be known to be an object array");
3340
3341          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3342            __ load_klass(tmp, src);
3343          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3344            __ load_klass(tmp, dst);
3345          }
3346          int lh_offset = in_bytes(Klass::layout_helper_offset());
3347          Address klass_lh_addr(tmp, lh_offset);
3348          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3349          __ cmpl(klass_lh_addr, objArray_lh);
3350          __ jcc(Assembler::notEqual, *stub->entry());
3351        }
3352
3353       // Spill because stubs can use any register they like and it's
3354       // easier to restore just those that we care about.
3355       store_parameter(dst, 0);
3356       store_parameter(dst_pos, 1);
3357       store_parameter(length, 2);
3358       store_parameter(src_pos, 3);
3359       store_parameter(src, 4);
3360
3361#ifndef _LP64
3362        __ movptr(tmp, dst_klass_addr);
3363        __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3364        __ push(tmp);
3365        __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3366        __ push(tmp);
3367        __ push(length);
3368        __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3369        __ push(tmp);
3370        __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3371        __ push(tmp);
3372
3373        __ call_VM_leaf(copyfunc_addr, 5);
3374#else
3375        __ movl2ptr(length, length); //higher 32bits must be null
3376
3377        __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3378        assert_different_registers(c_rarg0, dst, dst_pos, length);
3379        __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3380        assert_different_registers(c_rarg1, dst, length);
3381
3382        __ mov(c_rarg2, length);
3383        assert_different_registers(c_rarg2, dst);
3384
3385#ifdef _WIN64
3386        // Allocate abi space for args but be sure to keep stack aligned
3387        __ subptr(rsp, 6*wordSize);
3388        __ load_klass(c_rarg3, dst);
3389        __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3390        store_parameter(c_rarg3, 4);
3391        __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3392        __ call(RuntimeAddress(copyfunc_addr));
3393        __ addptr(rsp, 6*wordSize);
3394#else
3395        __ load_klass(c_rarg4, dst);
3396        __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3397        __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3398        __ call(RuntimeAddress(copyfunc_addr));
3399#endif
3400
3401#endif
3402
3403#ifndef PRODUCT
3404        if (PrintC1Statistics) {
3405          Label failed;
3406          __ testl(rax, rax);
3407          __ jcc(Assembler::notZero, failed);
3408          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3409          __ bind(failed);
3410        }
3411#endif
3412
3413        __ testl(rax, rax);
3414        __ jcc(Assembler::zero, *stub->continuation());
3415
3416#ifndef PRODUCT
3417        if (PrintC1Statistics) {
3418          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3419        }
3420#endif
3421
3422        __ mov(tmp, rax);
3423
3424        __ xorl(tmp, -1);
3425
3426        // Restore previously spilled arguments
3427        __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3428        __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3429        __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3430        __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3431        __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3432
3433
3434        __ subl(length, tmp);
3435        __ addl(src_pos, tmp);
3436        __ addl(dst_pos, tmp);
3437      }
3438
3439      __ jmp(*stub->entry());
3440
3441      __ bind(cont);
3442      __ pop(dst);
3443      __ pop(src);
3444    }
3445  }
3446
3447#ifdef ASSERT
3448  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3449    // Sanity check the known type with the incoming class.  For the
3450    // primitive case the types must match exactly with src.klass and
3451    // dst.klass each exactly matching the default type.  For the
3452    // object array case, if no type check is needed then either the
3453    // dst type is exactly the expected type and the src type is a
3454    // subtype which we can't check or src is the same array as dst
3455    // but not necessarily exactly of type default_type.
3456    Label known_ok, halt;
3457    __ mov_metadata(tmp, default_type->constant_encoding());
3458#ifdef _LP64
3459    if (UseCompressedClassPointers) {
3460      __ encode_klass_not_null(tmp);
3461    }
3462#endif
3463
3464    if (basic_type != T_OBJECT) {
3465
3466      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3467      else                   __ cmpptr(tmp, dst_klass_addr);
3468      __ jcc(Assembler::notEqual, halt);
3469      if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3470      else                   __ cmpptr(tmp, src_klass_addr);
3471      __ jcc(Assembler::equal, known_ok);
3472    } else {
3473      if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3474      else                   __ cmpptr(tmp, dst_klass_addr);
3475      __ jcc(Assembler::equal, known_ok);
3476      __ cmpptr(src, dst);
3477      __ jcc(Assembler::equal, known_ok);
3478    }
3479    __ bind(halt);
3480    __ stop("incorrect type information in arraycopy");
3481    __ bind(known_ok);
3482  }
3483#endif
3484
3485#ifndef PRODUCT
3486  if (PrintC1Statistics) {
3487    __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3488  }
3489#endif
3490
3491#ifdef _LP64
3492  assert_different_registers(c_rarg0, dst, dst_pos, length);
3493  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3494  assert_different_registers(c_rarg1, length);
3495  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3496  __ mov(c_rarg2, length);
3497
3498#else
3499  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3500  store_parameter(tmp, 0);
3501  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3502  store_parameter(tmp, 1);
3503  store_parameter(length, 2);
3504#endif // _LP64
3505
3506  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3507  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3508  const char *name;
3509  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3510  __ call_VM_leaf(entry, 0);
3511
3512  __ bind(*stub->continuation());
3513}
3514
3515void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3516  assert(op->crc()->is_single_cpu(),  "crc must be register");
3517  assert(op->val()->is_single_cpu(),  "byte value must be register");
3518  assert(op->result_opr()->is_single_cpu(), "result must be register");
3519  Register crc = op->crc()->as_register();
3520  Register val = op->val()->as_register();
3521  Register res = op->result_opr()->as_register();
3522
3523  assert_different_registers(val, crc, res);
3524
3525  __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3526  __ notl(crc); // ~crc
3527  __ update_byte_crc32(crc, val, res);
3528  __ notl(crc); // ~crc
3529  __ mov(res, crc);
3530}
3531
3532void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3533  Register obj = op->obj_opr()->as_register();  // may not be an oop
3534  Register hdr = op->hdr_opr()->as_register();
3535  Register lock = op->lock_opr()->as_register();
3536  if (!UseFastLocking) {
3537    __ jmp(*op->stub()->entry());
3538  } else if (op->code() == lir_lock) {
3539    Register scratch = noreg;
3540    if (UseBiasedLocking) {
3541      scratch = op->scratch_opr()->as_register();
3542    }
3543    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3544    // add debug info for NullPointerException only if one is possible
3545    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3546    if (op->info() != NULL) {
3547      add_debug_info_for_null_check(null_check_offset, op->info());
3548    }
3549    // done
3550  } else if (op->code() == lir_unlock) {
3551    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3552    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3553  } else {
3554    Unimplemented();
3555  }
3556  __ bind(*op->stub()->continuation());
3557}
3558
3559
3560void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3561  ciMethod* method = op->profiled_method();
3562  int bci          = op->profiled_bci();
3563  ciMethod* callee = op->profiled_callee();
3564
3565  // Update counter for all call types
3566  ciMethodData* md = method->method_data_or_null();
3567  assert(md != NULL, "Sanity");
3568  ciProfileData* data = md->bci_to_data(bci);
3569  assert(data->is_CounterData(), "need CounterData for calls");
3570  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3571  Register mdo  = op->mdo()->as_register();
3572  __ mov_metadata(mdo, md->constant_encoding());
3573  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3574  Bytecodes::Code bc = method->java_code_at_bci(bci);
3575  const bool callee_is_static = callee->is_loaded() && callee->is_static();
3576  // Perform additional virtual call profiling for invokevirtual and
3577  // invokeinterface bytecodes
3578  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3579      !callee_is_static &&  // required for optimized MH invokes
3580      C1ProfileVirtualCalls) {
3581    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3582    Register recv = op->recv()->as_register();
3583    assert_different_registers(mdo, recv);
3584    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3585    ciKlass* known_klass = op->known_holder();
3586    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3587      // We know the type that will be seen at this call site; we can
3588      // statically update the MethodData* rather than needing to do
3589      // dynamic tests on the receiver type
3590
3591      // NOTE: we should probably put a lock around this search to
3592      // avoid collisions by concurrent compilations
3593      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3594      uint i;
3595      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3596        ciKlass* receiver = vc_data->receiver(i);
3597        if (known_klass->equals(receiver)) {
3598          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3599          __ addptr(data_addr, DataLayout::counter_increment);
3600          return;
3601        }
3602      }
3603
3604      // Receiver type not found in profile data; select an empty slot
3605
3606      // Note that this is less efficient than it should be because it
3607      // always does a write to the receiver part of the
3608      // VirtualCallData rather than just the first time
3609      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3610        ciKlass* receiver = vc_data->receiver(i);
3611        if (receiver == NULL) {
3612          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3613          __ mov_metadata(recv_addr, known_klass->constant_encoding());
3614          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3615          __ addptr(data_addr, DataLayout::counter_increment);
3616          return;
3617        }
3618      }
3619    } else {
3620      __ load_klass(recv, recv);
3621      Label update_done;
3622      type_profile_helper(mdo, md, data, recv, &update_done);
3623      // Receiver did not match any saved receiver and there is no empty row for it.
3624      // Increment total counter to indicate polymorphic case.
3625      __ addptr(counter_addr, DataLayout::counter_increment);
3626
3627      __ bind(update_done);
3628    }
3629  } else {
3630    // Static call
3631    __ addptr(counter_addr, DataLayout::counter_increment);
3632  }
3633}
3634
3635void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3636  Unimplemented();
3637}
3638
3639
3640void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3641  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3642}
3643
3644
3645void LIR_Assembler::align_backward_branch_target() {
3646  __ align(BytesPerWord);
3647}
3648
3649
3650void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3651  if (left->is_single_cpu()) {
3652    __ negl(left->as_register());
3653    move_regs(left->as_register(), dest->as_register());
3654
3655  } else if (left->is_double_cpu()) {
3656    Register lo = left->as_register_lo();
3657#ifdef _LP64
3658    Register dst = dest->as_register_lo();
3659    __ movptr(dst, lo);
3660    __ negptr(dst);
3661#else
3662    Register hi = left->as_register_hi();
3663    __ lneg(hi, lo);
3664    if (dest->as_register_lo() == hi) {
3665      assert(dest->as_register_hi() != lo, "destroying register");
3666      move_regs(hi, dest->as_register_hi());
3667      move_regs(lo, dest->as_register_lo());
3668    } else {
3669      move_regs(lo, dest->as_register_lo());
3670      move_regs(hi, dest->as_register_hi());
3671    }
3672#endif // _LP64
3673
3674  } else if (dest->is_single_xmm()) {
3675    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3676      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3677    }
3678    __ xorps(dest->as_xmm_float_reg(),
3679             ExternalAddress((address)float_signflip_pool));
3680
3681  } else if (dest->is_double_xmm()) {
3682    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3683      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3684    }
3685    __ xorpd(dest->as_xmm_double_reg(),
3686             ExternalAddress((address)double_signflip_pool));
3687
3688  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3689    assert(left->fpu() == 0, "arg must be on TOS");
3690    assert(dest->fpu() == 0, "dest must be TOS");
3691    __ fchs();
3692
3693  } else {
3694    ShouldNotReachHere();
3695  }
3696}
3697
3698
3699void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3700  assert(addr->is_address() && dest->is_register(), "check");
3701  Register reg;
3702  reg = dest->as_pointer_register();
3703  __ lea(reg, as_Address(addr->as_address_ptr()));
3704}
3705
3706
3707
3708void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3709  assert(!tmp->is_valid(), "don't need temporary");
3710  __ call(RuntimeAddress(dest));
3711  if (info != NULL) {
3712    add_call_info_here(info);
3713  }
3714}
3715
3716
3717void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3718  assert(type == T_LONG, "only for volatile long fields");
3719
3720  if (info != NULL) {
3721    add_debug_info_for_null_check_here(info);
3722  }
3723
3724  if (src->is_double_xmm()) {
3725    if (dest->is_double_cpu()) {
3726#ifdef _LP64
3727      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3728#else
3729      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3730      __ psrlq(src->as_xmm_double_reg(), 32);
3731      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3732#endif // _LP64
3733    } else if (dest->is_double_stack()) {
3734      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3735    } else if (dest->is_address()) {
3736      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3737    } else {
3738      ShouldNotReachHere();
3739    }
3740
3741  } else if (dest->is_double_xmm()) {
3742    if (src->is_double_stack()) {
3743      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3744    } else if (src->is_address()) {
3745      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3746    } else {
3747      ShouldNotReachHere();
3748    }
3749
3750  } else if (src->is_double_fpu()) {
3751    assert(src->fpu_regnrLo() == 0, "must be TOS");
3752    if (dest->is_double_stack()) {
3753      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3754    } else if (dest->is_address()) {
3755      __ fistp_d(as_Address(dest->as_address_ptr()));
3756    } else {
3757      ShouldNotReachHere();
3758    }
3759
3760  } else if (dest->is_double_fpu()) {
3761    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3762    if (src->is_double_stack()) {
3763      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3764    } else if (src->is_address()) {
3765      __ fild_d(as_Address(src->as_address_ptr()));
3766    } else {
3767      ShouldNotReachHere();
3768    }
3769  } else {
3770    ShouldNotReachHere();
3771  }
3772}
3773
3774#ifdef ASSERT
3775// emit run-time assertion
3776void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3777  assert(op->code() == lir_assert, "must be");
3778
3779  if (op->in_opr1()->is_valid()) {
3780    assert(op->in_opr2()->is_valid(), "both operands must be valid");
3781    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3782  } else {
3783    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3784    assert(op->condition() == lir_cond_always, "no other conditions allowed");
3785  }
3786
3787  Label ok;
3788  if (op->condition() != lir_cond_always) {
3789    Assembler::Condition acond = Assembler::zero;
3790    switch (op->condition()) {
3791      case lir_cond_equal:        acond = Assembler::equal;       break;
3792      case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3793      case lir_cond_less:         acond = Assembler::less;        break;
3794      case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3795      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3796      case lir_cond_greater:      acond = Assembler::greater;     break;
3797      case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3798      case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3799      default:                    ShouldNotReachHere();
3800    }
3801    __ jcc(acond, ok);
3802  }
3803  if (op->halt()) {
3804    const char* str = __ code_string(op->msg());
3805    __ stop(str);
3806  } else {
3807    breakpoint();
3808  }
3809  __ bind(ok);
3810}
3811#endif
3812
3813void LIR_Assembler::membar() {
3814  // QQQ sparc TSO uses this,
3815  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3816}
3817
3818void LIR_Assembler::membar_acquire() {
3819  // No x86 machines currently require load fences
3820  // __ load_fence();
3821}
3822
3823void LIR_Assembler::membar_release() {
3824  // No x86 machines currently require store fences
3825  // __ store_fence();
3826}
3827
3828void LIR_Assembler::membar_loadload() {
3829  // no-op
3830  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3831}
3832
3833void LIR_Assembler::membar_storestore() {
3834  // no-op
3835  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3836}
3837
3838void LIR_Assembler::membar_loadstore() {
3839  // no-op
3840  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3841}
3842
3843void LIR_Assembler::membar_storeload() {
3844  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3845}
3846
3847void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3848  assert(result_reg->is_register(), "check");
3849#ifdef _LP64
3850  // __ get_thread(result_reg->as_register_lo());
3851  __ mov(result_reg->as_register(), r15_thread);
3852#else
3853  __ get_thread(result_reg->as_register());
3854#endif // _LP64
3855}
3856
3857
3858void LIR_Assembler::peephole(LIR_List*) {
3859  // do nothing for now
3860}
3861
3862void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3863  assert(data == dest, "xchg/xadd uses only 2 operands");
3864
3865  if (data->type() == T_INT) {
3866    if (code == lir_xadd) {
3867      if (os::is_MP()) {
3868        __ lock();
3869      }
3870      __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3871    } else {
3872      __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3873    }
3874  } else if (data->is_oop()) {
3875    assert (code == lir_xchg, "xadd for oops");
3876    Register obj = data->as_register();
3877#ifdef _LP64
3878    if (UseCompressedOops) {
3879      __ encode_heap_oop(obj);
3880      __ xchgl(obj, as_Address(src->as_address_ptr()));
3881      __ decode_heap_oop(obj);
3882    } else {
3883      __ xchgptr(obj, as_Address(src->as_address_ptr()));
3884    }
3885#else
3886    __ xchgl(obj, as_Address(src->as_address_ptr()));
3887#endif
3888  } else if (data->type() == T_LONG) {
3889#ifdef _LP64
3890    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3891    if (code == lir_xadd) {
3892      if (os::is_MP()) {
3893        __ lock();
3894      }
3895      __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3896    } else {
3897      __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3898    }
3899#else
3900    ShouldNotReachHere();
3901#endif
3902  } else {
3903    ShouldNotReachHere();
3904  }
3905}
3906
3907#undef __
3908