c1_LIRAssembler_x86.cpp revision 3157:701a83c86f28
1/*
2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_LIRAssembler.hpp"
29#include "c1/c1_MacroAssembler.hpp"
30#include "c1/c1_Runtime1.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciInstance.hpp"
34#include "gc_interface/collectedHeap.hpp"
35#include "memory/barrierSet.hpp"
36#include "memory/cardTableModRefBS.hpp"
37#include "nativeInst_x86.hpp"
38#include "oops/objArrayKlass.hpp"
39#include "runtime/sharedRuntime.hpp"
40
41
42// These masks are used to provide 128-bit aligned bitmasks to the XMM
43// instructions, to allow sign-masking or sign-bit flipping.  They allow
44// fast versions of NegF/NegD and AbsF/AbsD.
45
46// Note: 'double' and 'long long' have 32-bits alignment on x86.
47static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
48  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
49  // of 128-bits operands for SSE instructions.
50  jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
51  // Store the value to a 128-bits operand.
52  operand[0] = lo;
53  operand[1] = hi;
54  return operand;
55}
56
57// Buffer for 128-bits masks used by SSE instructions.
58static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
59
60// Static initialization during VM startup.
61static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
62static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
63static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
64static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
65
66
67
68NEEDS_CLEANUP // remove this definitions ?
69const Register IC_Klass    = rax;   // where the IC klass is cached
70const Register SYNC_header = rax;   // synchronization header
71const Register SHIFT_count = rcx;   // where count for shift operations must be
72
73#define __ _masm->
74
75
76static void select_different_registers(Register preserve,
77                                       Register extra,
78                                       Register &tmp1,
79                                       Register &tmp2) {
80  if (tmp1 == preserve) {
81    assert_different_registers(tmp1, tmp2, extra);
82    tmp1 = extra;
83  } else if (tmp2 == preserve) {
84    assert_different_registers(tmp1, tmp2, extra);
85    tmp2 = extra;
86  }
87  assert_different_registers(preserve, tmp1, tmp2);
88}
89
90
91
92static void select_different_registers(Register preserve,
93                                       Register extra,
94                                       Register &tmp1,
95                                       Register &tmp2,
96                                       Register &tmp3) {
97  if (tmp1 == preserve) {
98    assert_different_registers(tmp1, tmp2, tmp3, extra);
99    tmp1 = extra;
100  } else if (tmp2 == preserve) {
101    assert_different_registers(tmp1, tmp2, tmp3, extra);
102    tmp2 = extra;
103  } else if (tmp3 == preserve) {
104    assert_different_registers(tmp1, tmp2, tmp3, extra);
105    tmp3 = extra;
106  }
107  assert_different_registers(preserve, tmp1, tmp2, tmp3);
108}
109
110
111
112bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
113  if (opr->is_constant()) {
114    LIR_Const* constant = opr->as_constant_ptr();
115    switch (constant->type()) {
116      case T_INT: {
117        return true;
118      }
119
120      default:
121        return false;
122    }
123  }
124  return false;
125}
126
127
128LIR_Opr LIR_Assembler::receiverOpr() {
129  return FrameMap::receiver_opr;
130}
131
132LIR_Opr LIR_Assembler::osrBufferPointer() {
133  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
134}
135
136//--------------fpu register translations-----------------------
137
138
139address LIR_Assembler::float_constant(float f) {
140  address const_addr = __ float_constant(f);
141  if (const_addr == NULL) {
142    bailout("const section overflow");
143    return __ code()->consts()->start();
144  } else {
145    return const_addr;
146  }
147}
148
149
150address LIR_Assembler::double_constant(double d) {
151  address const_addr = __ double_constant(d);
152  if (const_addr == NULL) {
153    bailout("const section overflow");
154    return __ code()->consts()->start();
155  } else {
156    return const_addr;
157  }
158}
159
160
161void LIR_Assembler::set_24bit_FPU() {
162  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
163}
164
165void LIR_Assembler::reset_FPU() {
166  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
167}
168
169void LIR_Assembler::fpop() {
170  __ fpop();
171}
172
173void LIR_Assembler::fxch(int i) {
174  __ fxch(i);
175}
176
177void LIR_Assembler::fld(int i) {
178  __ fld_s(i);
179}
180
181void LIR_Assembler::ffree(int i) {
182  __ ffree(i);
183}
184
185void LIR_Assembler::breakpoint() {
186  __ int3();
187}
188
189void LIR_Assembler::push(LIR_Opr opr) {
190  if (opr->is_single_cpu()) {
191    __ push_reg(opr->as_register());
192  } else if (opr->is_double_cpu()) {
193    NOT_LP64(__ push_reg(opr->as_register_hi()));
194    __ push_reg(opr->as_register_lo());
195  } else if (opr->is_stack()) {
196    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
197  } else if (opr->is_constant()) {
198    LIR_Const* const_opr = opr->as_constant_ptr();
199    if (const_opr->type() == T_OBJECT) {
200      __ push_oop(const_opr->as_jobject());
201    } else if (const_opr->type() == T_INT) {
202      __ push_jint(const_opr->as_jint());
203    } else {
204      ShouldNotReachHere();
205    }
206
207  } else {
208    ShouldNotReachHere();
209  }
210}
211
212void LIR_Assembler::pop(LIR_Opr opr) {
213  if (opr->is_single_cpu()) {
214    __ pop_reg(opr->as_register());
215  } else {
216    ShouldNotReachHere();
217  }
218}
219
220bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
221  return addr->base()->is_illegal() && addr->index()->is_illegal();
222}
223
224//-------------------------------------------
225
226Address LIR_Assembler::as_Address(LIR_Address* addr) {
227  return as_Address(addr, rscratch1);
228}
229
230Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
231  if (addr->base()->is_illegal()) {
232    assert(addr->index()->is_illegal(), "must be illegal too");
233    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
234    if (! __ reachable(laddr)) {
235      __ movptr(tmp, laddr.addr());
236      Address res(tmp, 0);
237      return res;
238    } else {
239      return __ as_Address(laddr);
240    }
241  }
242
243  Register base = addr->base()->as_pointer_register();
244
245  if (addr->index()->is_illegal()) {
246    return Address( base, addr->disp());
247  } else if (addr->index()->is_cpu_register()) {
248    Register index = addr->index()->as_pointer_register();
249    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
250  } else if (addr->index()->is_constant()) {
251    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
252    assert(Assembler::is_simm32(addr_offset), "must be");
253
254    return Address(base, addr_offset);
255  } else {
256    Unimplemented();
257    return Address();
258  }
259}
260
261
262Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
263  Address base = as_Address(addr);
264  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
265}
266
267
268Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
269  return as_Address(addr);
270}
271
272
273void LIR_Assembler::osr_entry() {
274  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
275  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
276  ValueStack* entry_state = osr_entry->state();
277  int number_of_locks = entry_state->locks_size();
278
279  // we jump here if osr happens with the interpreter
280  // state set up to continue at the beginning of the
281  // loop that triggered osr - in particular, we have
282  // the following registers setup:
283  //
284  // rcx: osr buffer
285  //
286
287  // build frame
288  ciMethod* m = compilation()->method();
289  __ build_frame(initial_frame_size_in_bytes());
290
291  // OSR buffer is
292  //
293  // locals[nlocals-1..0]
294  // monitors[0..number_of_locks]
295  //
296  // locals is a direct copy of the interpreter frame so in the osr buffer
297  // so first slot in the local array is the last local from the interpreter
298  // and last slot is local[0] (receiver) from the interpreter
299  //
300  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
301  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
302  // in the interpreter frame (the method lock if a sync method)
303
304  // Initialize monitors in the compiled activation.
305  //   rcx: pointer to osr buffer
306  //
307  // All other registers are dead at this point and the locals will be
308  // copied into place by code emitted in the IR.
309
310  Register OSR_buf = osrBufferPointer()->as_pointer_register();
311  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
312    int monitor_offset = BytesPerWord * method()->max_locals() +
313      (2 * BytesPerWord) * (number_of_locks - 1);
314    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
315    // the OSR buffer using 2 word entries: first the lock and then
316    // the oop.
317    for (int i = 0; i < number_of_locks; i++) {
318      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
319#ifdef ASSERT
320      // verify the interpreter's monitor has a non-null object
321      {
322        Label L;
323        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
324        __ jcc(Assembler::notZero, L);
325        __ stop("locked object is NULL");
326        __ bind(L);
327      }
328#endif
329      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
330      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
331      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
332      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
333    }
334  }
335}
336
337
338// inline cache check; done before the frame is built.
339int LIR_Assembler::check_icache() {
340  Register receiver = FrameMap::receiver_opr->as_register();
341  Register ic_klass = IC_Klass;
342  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
343  const bool do_post_padding = VerifyOops || UseCompressedOops;
344  if (!do_post_padding) {
345    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
346    while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
347      __ nop();
348    }
349  }
350  int offset = __ offset();
351  __ inline_cache_check(receiver, IC_Klass);
352  assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
353  if (do_post_padding) {
354    // force alignment after the cache check.
355    // It's been verified to be aligned if !VerifyOops
356    __ align(CodeEntryAlignment);
357  }
358  return offset;
359}
360
361
362void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
363  jobject o = NULL;
364  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
365  __ movoop(reg, o);
366  patching_epilog(patch, lir_patch_normal, reg, info);
367}
368
369
370// This specifies the rsp decrement needed to build the frame
371int LIR_Assembler::initial_frame_size_in_bytes() {
372  // if rounding, must let FrameMap know!
373
374  // The frame_map records size in slots (32bit word)
375
376  // subtract two words to account for return address and link
377  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
378}
379
380
381int LIR_Assembler::emit_exception_handler() {
382  // if the last instruction is a call (typically to do a throw which
383  // is coming at the end after block reordering) the return address
384  // must still point into the code area in order to avoid assertion
385  // failures when searching for the corresponding bci => add a nop
386  // (was bug 5/14/1999 - gri)
387  __ nop();
388
389  // generate code for exception handler
390  address handler_base = __ start_a_stub(exception_handler_size);
391  if (handler_base == NULL) {
392    // not enough space left for the handler
393    bailout("exception handler overflow");
394    return -1;
395  }
396
397  int offset = code_offset();
398
399  // the exception oop and pc are in rax, and rdx
400  // no other registers need to be preserved, so invalidate them
401  __ invalidate_registers(false, true, true, false, true, true);
402
403  // check that there is really an exception
404  __ verify_not_null_oop(rax);
405
406  // search an exception handler (rax: exception oop, rdx: throwing pc)
407  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
408  __ should_not_reach_here();
409  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
410  __ end_a_stub();
411
412  return offset;
413}
414
415
416// Emit the code to remove the frame from the stack in the exception
417// unwind path.
418int LIR_Assembler::emit_unwind_handler() {
419#ifndef PRODUCT
420  if (CommentedAssembly) {
421    _masm->block_comment("Unwind handler");
422  }
423#endif
424
425  int offset = code_offset();
426
427  // Fetch the exception from TLS and clear out exception related thread state
428  __ get_thread(rsi);
429  __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
430  __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
431  __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
432
433  __ bind(_unwind_handler_entry);
434  __ verify_not_null_oop(rax);
435  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
436    __ mov(rsi, rax);  // Preserve the exception
437  }
438
439  // Preform needed unlocking
440  MonitorExitStub* stub = NULL;
441  if (method()->is_synchronized()) {
442    monitor_address(0, FrameMap::rax_opr);
443    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
444    __ unlock_object(rdi, rbx, rax, *stub->entry());
445    __ bind(*stub->continuation());
446  }
447
448  if (compilation()->env()->dtrace_method_probes()) {
449    __ get_thread(rax);
450    __ movptr(Address(rsp, 0), rax);
451    __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
452    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
453  }
454
455  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
456    __ mov(rax, rsi);  // Restore the exception
457  }
458
459  // remove the activation and dispatch to the unwind handler
460  __ remove_frame(initial_frame_size_in_bytes());
461  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
462
463  // Emit the slow path assembly
464  if (stub != NULL) {
465    stub->emit_code(this);
466  }
467
468  return offset;
469}
470
471
472int LIR_Assembler::emit_deopt_handler() {
473  // if the last instruction is a call (typically to do a throw which
474  // is coming at the end after block reordering) the return address
475  // must still point into the code area in order to avoid assertion
476  // failures when searching for the corresponding bci => add a nop
477  // (was bug 5/14/1999 - gri)
478  __ nop();
479
480  // generate code for exception handler
481  address handler_base = __ start_a_stub(deopt_handler_size);
482  if (handler_base == NULL) {
483    // not enough space left for the handler
484    bailout("deopt handler overflow");
485    return -1;
486  }
487
488  int offset = code_offset();
489  InternalAddress here(__ pc());
490
491  __ pushptr(here.addr());
492  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
493  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
494  __ end_a_stub();
495
496  return offset;
497}
498
499
500// This is the fast version of java.lang.String.compare; it has not
501// OSR-entry and therefore, we generate a slow version for OSR's
502void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
503  __ movptr (rbx, rcx); // receiver is in rcx
504  __ movptr (rax, arg1->as_register());
505
506  // Get addresses of first characters from both Strings
507  __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
508  __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
509  __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
510
511
512  // rbx, may be NULL
513  add_debug_info_for_null_check_here(info);
514  __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
515  __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
516  __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
517
518  // compute minimum length (in rax) and difference of lengths (on top of stack)
519  __ movl  (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
520  __ movl  (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
521  __ mov   (rcx, rbx);
522  __ subptr(rbx, rax); // subtract lengths
523  __ push  (rbx);      // result
524  __ cmov  (Assembler::lessEqual, rax, rcx);
525
526  // is minimum length 0?
527  Label noLoop, haveResult;
528  __ testptr (rax, rax);
529  __ jcc (Assembler::zero, noLoop);
530
531  // compare first characters
532  __ load_unsigned_short(rcx, Address(rdi, 0));
533  __ load_unsigned_short(rbx, Address(rsi, 0));
534  __ subl(rcx, rbx);
535  __ jcc(Assembler::notZero, haveResult);
536  // starting loop
537  __ decrement(rax); // we already tested index: skip one
538  __ jcc(Assembler::zero, noLoop);
539
540  // set rsi.edi to the end of the arrays (arrays have same length)
541  // negate the index
542
543  __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
544  __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
545  __ negptr(rax);
546
547  // compare the strings in a loop
548
549  Label loop;
550  __ align(wordSize);
551  __ bind(loop);
552  __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
553  __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
554  __ subl(rcx, rbx);
555  __ jcc(Assembler::notZero, haveResult);
556  __ increment(rax);
557  __ jcc(Assembler::notZero, loop);
558
559  // strings are equal up to min length
560
561  __ bind(noLoop);
562  __ pop(rax);
563  return_op(LIR_OprFact::illegalOpr);
564
565  __ bind(haveResult);
566  // leave instruction is going to discard the TOS value
567  __ mov (rax, rcx); // result of call is in rax,
568}
569
570
571void LIR_Assembler::return_op(LIR_Opr result) {
572  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
573  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
574    assert(result->fpu() == 0, "result must already be on TOS");
575  }
576
577  // Pop the stack before the safepoint code
578  __ remove_frame(initial_frame_size_in_bytes());
579
580  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
581
582  // Note: we do not need to round double result; float result has the right precision
583  // the poll sets the condition code, but no data registers
584  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
585                              relocInfo::poll_return_type);
586
587  if (Assembler::is_polling_page_far()) {
588    __ lea(rscratch1, polling_page);
589    __ relocate(relocInfo::poll_return_type);
590    __ testl(rax, Address(rscratch1, 0));
591  } else {
592    __ testl(rax, polling_page);
593  }
594  __ ret(0);
595}
596
597
598int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
599  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
600                              relocInfo::poll_type);
601  guarantee(info != NULL, "Shouldn't be NULL");
602  int offset = __ offset();
603  if (Assembler::is_polling_page_far()) {
604    __ lea(rscratch1, polling_page);
605    offset = __ offset();
606    add_debug_info_for_branch(info);
607    __ testl(rax, Address(rscratch1, 0));
608  } else {
609    add_debug_info_for_branch(info);
610    __ testl(rax, polling_page);
611  }
612  return offset;
613}
614
615
616void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
617  if (from_reg != to_reg) __ mov(to_reg, from_reg);
618}
619
620void LIR_Assembler::swap_reg(Register a, Register b) {
621  __ xchgptr(a, b);
622}
623
624
625void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
626  assert(src->is_constant(), "should not call otherwise");
627  assert(dest->is_register(), "should not call otherwise");
628  LIR_Const* c = src->as_constant_ptr();
629
630  switch (c->type()) {
631    case T_INT: {
632      assert(patch_code == lir_patch_none, "no patching handled here");
633      __ movl(dest->as_register(), c->as_jint());
634      break;
635    }
636
637    case T_ADDRESS: {
638      assert(patch_code == lir_patch_none, "no patching handled here");
639      __ movptr(dest->as_register(), c->as_jint());
640      break;
641    }
642
643    case T_LONG: {
644      assert(patch_code == lir_patch_none, "no patching handled here");
645#ifdef _LP64
646      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
647#else
648      __ movptr(dest->as_register_lo(), c->as_jint_lo());
649      __ movptr(dest->as_register_hi(), c->as_jint_hi());
650#endif // _LP64
651      break;
652    }
653
654    case T_OBJECT: {
655      if (patch_code != lir_patch_none) {
656        jobject2reg_with_patching(dest->as_register(), info);
657      } else {
658        __ movoop(dest->as_register(), c->as_jobject());
659      }
660      break;
661    }
662
663    case T_FLOAT: {
664      if (dest->is_single_xmm()) {
665        if (c->is_zero_float()) {
666          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
667        } else {
668          __ movflt(dest->as_xmm_float_reg(),
669                   InternalAddress(float_constant(c->as_jfloat())));
670        }
671      } else {
672        assert(dest->is_single_fpu(), "must be");
673        assert(dest->fpu_regnr() == 0, "dest must be TOS");
674        if (c->is_zero_float()) {
675          __ fldz();
676        } else if (c->is_one_float()) {
677          __ fld1();
678        } else {
679          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
680        }
681      }
682      break;
683    }
684
685    case T_DOUBLE: {
686      if (dest->is_double_xmm()) {
687        if (c->is_zero_double()) {
688          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
689        } else {
690          __ movdbl(dest->as_xmm_double_reg(),
691                    InternalAddress(double_constant(c->as_jdouble())));
692        }
693      } else {
694        assert(dest->is_double_fpu(), "must be");
695        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
696        if (c->is_zero_double()) {
697          __ fldz();
698        } else if (c->is_one_double()) {
699          __ fld1();
700        } else {
701          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
702        }
703      }
704      break;
705    }
706
707    default:
708      ShouldNotReachHere();
709  }
710}
711
712void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
713  assert(src->is_constant(), "should not call otherwise");
714  assert(dest->is_stack(), "should not call otherwise");
715  LIR_Const* c = src->as_constant_ptr();
716
717  switch (c->type()) {
718    case T_INT:  // fall through
719    case T_FLOAT:
720      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
721      break;
722
723    case T_ADDRESS:
724      __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
725      break;
726
727    case T_OBJECT:
728      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
729      break;
730
731    case T_LONG:  // fall through
732    case T_DOUBLE:
733#ifdef _LP64
734      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
735                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
736#else
737      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
738                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
739      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
740                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
741#endif // _LP64
742      break;
743
744    default:
745      ShouldNotReachHere();
746  }
747}
748
749void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
750  assert(src->is_constant(), "should not call otherwise");
751  assert(dest->is_address(), "should not call otherwise");
752  LIR_Const* c = src->as_constant_ptr();
753  LIR_Address* addr = dest->as_address_ptr();
754
755  int null_check_here = code_offset();
756  switch (type) {
757    case T_INT:    // fall through
758    case T_FLOAT:
759      __ movl(as_Address(addr), c->as_jint_bits());
760      break;
761
762    case T_ADDRESS:
763      __ movptr(as_Address(addr), c->as_jint_bits());
764      break;
765
766    case T_OBJECT:  // fall through
767    case T_ARRAY:
768      if (c->as_jobject() == NULL) {
769        if (UseCompressedOops && !wide) {
770          __ movl(as_Address(addr), (int32_t)NULL_WORD);
771        } else {
772          __ movptr(as_Address(addr), NULL_WORD);
773        }
774      } else {
775        if (is_literal_address(addr)) {
776          ShouldNotReachHere();
777          __ movoop(as_Address(addr, noreg), c->as_jobject());
778        } else {
779#ifdef _LP64
780          __ movoop(rscratch1, c->as_jobject());
781          if (UseCompressedOops && !wide) {
782            __ encode_heap_oop(rscratch1);
783            null_check_here = code_offset();
784            __ movl(as_Address_lo(addr), rscratch1);
785          } else {
786            null_check_here = code_offset();
787            __ movptr(as_Address_lo(addr), rscratch1);
788          }
789#else
790          __ movoop(as_Address(addr), c->as_jobject());
791#endif
792        }
793      }
794      break;
795
796    case T_LONG:    // fall through
797    case T_DOUBLE:
798#ifdef _LP64
799      if (is_literal_address(addr)) {
800        ShouldNotReachHere();
801        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
802      } else {
803        __ movptr(r10, (intptr_t)c->as_jlong_bits());
804        null_check_here = code_offset();
805        __ movptr(as_Address_lo(addr), r10);
806      }
807#else
808      // Always reachable in 32bit so this doesn't produce useless move literal
809      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
810      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
811#endif // _LP64
812      break;
813
814    case T_BOOLEAN: // fall through
815    case T_BYTE:
816      __ movb(as_Address(addr), c->as_jint() & 0xFF);
817      break;
818
819    case T_CHAR:    // fall through
820    case T_SHORT:
821      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
822      break;
823
824    default:
825      ShouldNotReachHere();
826  };
827
828  if (info != NULL) {
829    add_debug_info_for_null_check(null_check_here, info);
830  }
831}
832
833
834void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
835  assert(src->is_register(), "should not call otherwise");
836  assert(dest->is_register(), "should not call otherwise");
837
838  // move between cpu-registers
839  if (dest->is_single_cpu()) {
840#ifdef _LP64
841    if (src->type() == T_LONG) {
842      // Can do LONG -> OBJECT
843      move_regs(src->as_register_lo(), dest->as_register());
844      return;
845    }
846#endif
847    assert(src->is_single_cpu(), "must match");
848    if (src->type() == T_OBJECT) {
849      __ verify_oop(src->as_register());
850    }
851    move_regs(src->as_register(), dest->as_register());
852
853  } else if (dest->is_double_cpu()) {
854#ifdef _LP64
855    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
856      // Surprising to me but we can see move of a long to t_object
857      __ verify_oop(src->as_register());
858      move_regs(src->as_register(), dest->as_register_lo());
859      return;
860    }
861#endif
862    assert(src->is_double_cpu(), "must match");
863    Register f_lo = src->as_register_lo();
864    Register f_hi = src->as_register_hi();
865    Register t_lo = dest->as_register_lo();
866    Register t_hi = dest->as_register_hi();
867#ifdef _LP64
868    assert(f_hi == f_lo, "must be same");
869    assert(t_hi == t_lo, "must be same");
870    move_regs(f_lo, t_lo);
871#else
872    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
873
874
875    if (f_lo == t_hi && f_hi == t_lo) {
876      swap_reg(f_lo, f_hi);
877    } else if (f_hi == t_lo) {
878      assert(f_lo != t_hi, "overwriting register");
879      move_regs(f_hi, t_hi);
880      move_regs(f_lo, t_lo);
881    } else {
882      assert(f_hi != t_lo, "overwriting register");
883      move_regs(f_lo, t_lo);
884      move_regs(f_hi, t_hi);
885    }
886#endif // LP64
887
888    // special moves from fpu-register to xmm-register
889    // necessary for method results
890  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
891    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
892    __ fld_s(Address(rsp, 0));
893  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
894    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
895    __ fld_d(Address(rsp, 0));
896  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
897    __ fstp_s(Address(rsp, 0));
898    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
899  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
900    __ fstp_d(Address(rsp, 0));
901    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
902
903    // move between xmm-registers
904  } else if (dest->is_single_xmm()) {
905    assert(src->is_single_xmm(), "must match");
906    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
907  } else if (dest->is_double_xmm()) {
908    assert(src->is_double_xmm(), "must match");
909    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
910
911    // move between fpu-registers (no instruction necessary because of fpu-stack)
912  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
913    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
914    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
915  } else {
916    ShouldNotReachHere();
917  }
918}
919
920void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
921  assert(src->is_register(), "should not call otherwise");
922  assert(dest->is_stack(), "should not call otherwise");
923
924  if (src->is_single_cpu()) {
925    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
926    if (type == T_OBJECT || type == T_ARRAY) {
927      __ verify_oop(src->as_register());
928      __ movptr (dst, src->as_register());
929    } else {
930      __ movl (dst, src->as_register());
931    }
932
933  } else if (src->is_double_cpu()) {
934    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
935    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
936    __ movptr (dstLO, src->as_register_lo());
937    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
938
939  } else if (src->is_single_xmm()) {
940    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
941    __ movflt(dst_addr, src->as_xmm_float_reg());
942
943  } else if (src->is_double_xmm()) {
944    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
945    __ movdbl(dst_addr, src->as_xmm_double_reg());
946
947  } else if (src->is_single_fpu()) {
948    assert(src->fpu_regnr() == 0, "argument must be on TOS");
949    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
950    if (pop_fpu_stack)     __ fstp_s (dst_addr);
951    else                   __ fst_s  (dst_addr);
952
953  } else if (src->is_double_fpu()) {
954    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
955    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
956    if (pop_fpu_stack)     __ fstp_d (dst_addr);
957    else                   __ fst_d  (dst_addr);
958
959  } else {
960    ShouldNotReachHere();
961  }
962}
963
964
965void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
966  LIR_Address* to_addr = dest->as_address_ptr();
967  PatchingStub* patch = NULL;
968  Register compressed_src = rscratch1;
969
970  if (type == T_ARRAY || type == T_OBJECT) {
971    __ verify_oop(src->as_register());
972#ifdef _LP64
973    if (UseCompressedOops && !wide) {
974      __ movptr(compressed_src, src->as_register());
975      __ encode_heap_oop(compressed_src);
976    }
977#endif
978  }
979
980  if (patch_code != lir_patch_none) {
981    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
982    Address toa = as_Address(to_addr);
983    assert(toa.disp() != 0, "must have");
984  }
985
986  int null_check_here = code_offset();
987  switch (type) {
988    case T_FLOAT: {
989      if (src->is_single_xmm()) {
990        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
991      } else {
992        assert(src->is_single_fpu(), "must be");
993        assert(src->fpu_regnr() == 0, "argument must be on TOS");
994        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
995        else                    __ fst_s (as_Address(to_addr));
996      }
997      break;
998    }
999
1000    case T_DOUBLE: {
1001      if (src->is_double_xmm()) {
1002        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1003      } else {
1004        assert(src->is_double_fpu(), "must be");
1005        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1006        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1007        else                    __ fst_d (as_Address(to_addr));
1008      }
1009      break;
1010    }
1011
1012    case T_ARRAY:   // fall through
1013    case T_OBJECT:  // fall through
1014      if (UseCompressedOops && !wide) {
1015        __ movl(as_Address(to_addr), compressed_src);
1016      } else {
1017        __ movptr(as_Address(to_addr), src->as_register());
1018      }
1019      break;
1020    case T_ADDRESS:
1021      __ movptr(as_Address(to_addr), src->as_register());
1022      break;
1023    case T_INT:
1024      __ movl(as_Address(to_addr), src->as_register());
1025      break;
1026
1027    case T_LONG: {
1028      Register from_lo = src->as_register_lo();
1029      Register from_hi = src->as_register_hi();
1030#ifdef _LP64
1031      __ movptr(as_Address_lo(to_addr), from_lo);
1032#else
1033      Register base = to_addr->base()->as_register();
1034      Register index = noreg;
1035      if (to_addr->index()->is_register()) {
1036        index = to_addr->index()->as_register();
1037      }
1038      if (base == from_lo || index == from_lo) {
1039        assert(base != from_hi, "can't be");
1040        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1041        __ movl(as_Address_hi(to_addr), from_hi);
1042        if (patch != NULL) {
1043          patching_epilog(patch, lir_patch_high, base, info);
1044          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1045          patch_code = lir_patch_low;
1046        }
1047        __ movl(as_Address_lo(to_addr), from_lo);
1048      } else {
1049        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1050        __ movl(as_Address_lo(to_addr), from_lo);
1051        if (patch != NULL) {
1052          patching_epilog(patch, lir_patch_low, base, info);
1053          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1054          patch_code = lir_patch_high;
1055        }
1056        __ movl(as_Address_hi(to_addr), from_hi);
1057      }
1058#endif // _LP64
1059      break;
1060    }
1061
1062    case T_BYTE:    // fall through
1063    case T_BOOLEAN: {
1064      Register src_reg = src->as_register();
1065      Address dst_addr = as_Address(to_addr);
1066      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1067      __ movb(dst_addr, src_reg);
1068      break;
1069    }
1070
1071    case T_CHAR:    // fall through
1072    case T_SHORT:
1073      __ movw(as_Address(to_addr), src->as_register());
1074      break;
1075
1076    default:
1077      ShouldNotReachHere();
1078  }
1079  if (info != NULL) {
1080    add_debug_info_for_null_check(null_check_here, info);
1081  }
1082
1083  if (patch_code != lir_patch_none) {
1084    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1085  }
1086}
1087
1088
1089void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1090  assert(src->is_stack(), "should not call otherwise");
1091  assert(dest->is_register(), "should not call otherwise");
1092
1093  if (dest->is_single_cpu()) {
1094    if (type == T_ARRAY || type == T_OBJECT) {
1095      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1096      __ verify_oop(dest->as_register());
1097    } else {
1098      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1099    }
1100
1101  } else if (dest->is_double_cpu()) {
1102    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1103    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1104    __ movptr(dest->as_register_lo(), src_addr_LO);
1105    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1106
1107  } else if (dest->is_single_xmm()) {
1108    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1109    __ movflt(dest->as_xmm_float_reg(), src_addr);
1110
1111  } else if (dest->is_double_xmm()) {
1112    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1113    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1114
1115  } else if (dest->is_single_fpu()) {
1116    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1117    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118    __ fld_s(src_addr);
1119
1120  } else if (dest->is_double_fpu()) {
1121    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1122    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1123    __ fld_d(src_addr);
1124
1125  } else {
1126    ShouldNotReachHere();
1127  }
1128}
1129
1130
1131void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1132  if (src->is_single_stack()) {
1133    if (type == T_OBJECT || type == T_ARRAY) {
1134      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1135      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1136    } else {
1137#ifndef _LP64
1138      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1139      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1140#else
1141      //no pushl on 64bits
1142      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1143      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1144#endif
1145    }
1146
1147  } else if (src->is_double_stack()) {
1148#ifdef _LP64
1149    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1150    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1151#else
1152    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1153    // push and pop the part at src + wordSize, adding wordSize for the previous push
1154    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1155    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1156    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1157#endif // _LP64
1158
1159  } else {
1160    ShouldNotReachHere();
1161  }
1162}
1163
1164
1165void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1166  assert(src->is_address(), "should not call otherwise");
1167  assert(dest->is_register(), "should not call otherwise");
1168
1169  LIR_Address* addr = src->as_address_ptr();
1170  Address from_addr = as_Address(addr);
1171
1172  switch (type) {
1173    case T_BOOLEAN: // fall through
1174    case T_BYTE:    // fall through
1175    case T_CHAR:    // fall through
1176    case T_SHORT:
1177      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1178        // on pre P6 processors we may get partial register stalls
1179        // so blow away the value of to_rinfo before loading a
1180        // partial word into it.  Do it here so that it precedes
1181        // the potential patch point below.
1182        __ xorptr(dest->as_register(), dest->as_register());
1183      }
1184      break;
1185  }
1186
1187  PatchingStub* patch = NULL;
1188  if (patch_code != lir_patch_none) {
1189    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1190    assert(from_addr.disp() != 0, "must have");
1191  }
1192  if (info != NULL) {
1193    add_debug_info_for_null_check_here(info);
1194  }
1195
1196  switch (type) {
1197    case T_FLOAT: {
1198      if (dest->is_single_xmm()) {
1199        __ movflt(dest->as_xmm_float_reg(), from_addr);
1200      } else {
1201        assert(dest->is_single_fpu(), "must be");
1202        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1203        __ fld_s(from_addr);
1204      }
1205      break;
1206    }
1207
1208    case T_DOUBLE: {
1209      if (dest->is_double_xmm()) {
1210        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1211      } else {
1212        assert(dest->is_double_fpu(), "must be");
1213        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1214        __ fld_d(from_addr);
1215      }
1216      break;
1217    }
1218
1219    case T_OBJECT:  // fall through
1220    case T_ARRAY:   // fall through
1221      if (UseCompressedOops && !wide) {
1222        __ movl(dest->as_register(), from_addr);
1223      } else {
1224        __ movptr(dest->as_register(), from_addr);
1225      }
1226      break;
1227
1228    case T_ADDRESS:
1229      __ movptr(dest->as_register(), from_addr);
1230      break;
1231    case T_INT:
1232      __ movl(dest->as_register(), from_addr);
1233      break;
1234
1235    case T_LONG: {
1236      Register to_lo = dest->as_register_lo();
1237      Register to_hi = dest->as_register_hi();
1238#ifdef _LP64
1239      __ movptr(to_lo, as_Address_lo(addr));
1240#else
1241      Register base = addr->base()->as_register();
1242      Register index = noreg;
1243      if (addr->index()->is_register()) {
1244        index = addr->index()->as_register();
1245      }
1246      if ((base == to_lo && index == to_hi) ||
1247          (base == to_hi && index == to_lo)) {
1248        // addresses with 2 registers are only formed as a result of
1249        // array access so this code will never have to deal with
1250        // patches or null checks.
1251        assert(info == NULL && patch == NULL, "must be");
1252        __ lea(to_hi, as_Address(addr));
1253        __ movl(to_lo, Address(to_hi, 0));
1254        __ movl(to_hi, Address(to_hi, BytesPerWord));
1255      } else if (base == to_lo || index == to_lo) {
1256        assert(base != to_hi, "can't be");
1257        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1258        __ movl(to_hi, as_Address_hi(addr));
1259        if (patch != NULL) {
1260          patching_epilog(patch, lir_patch_high, base, info);
1261          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1262          patch_code = lir_patch_low;
1263        }
1264        __ movl(to_lo, as_Address_lo(addr));
1265      } else {
1266        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1267        __ movl(to_lo, as_Address_lo(addr));
1268        if (patch != NULL) {
1269          patching_epilog(patch, lir_patch_low, base, info);
1270          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1271          patch_code = lir_patch_high;
1272        }
1273        __ movl(to_hi, as_Address_hi(addr));
1274      }
1275#endif // _LP64
1276      break;
1277    }
1278
1279    case T_BOOLEAN: // fall through
1280    case T_BYTE: {
1281      Register dest_reg = dest->as_register();
1282      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1283      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1284        __ movsbl(dest_reg, from_addr);
1285      } else {
1286        __ movb(dest_reg, from_addr);
1287        __ shll(dest_reg, 24);
1288        __ sarl(dest_reg, 24);
1289      }
1290      break;
1291    }
1292
1293    case T_CHAR: {
1294      Register dest_reg = dest->as_register();
1295      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1296      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1297        __ movzwl(dest_reg, from_addr);
1298      } else {
1299        __ movw(dest_reg, from_addr);
1300      }
1301      break;
1302    }
1303
1304    case T_SHORT: {
1305      Register dest_reg = dest->as_register();
1306      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1307        __ movswl(dest_reg, from_addr);
1308      } else {
1309        __ movw(dest_reg, from_addr);
1310        __ shll(dest_reg, 16);
1311        __ sarl(dest_reg, 16);
1312      }
1313      break;
1314    }
1315
1316    default:
1317      ShouldNotReachHere();
1318  }
1319
1320  if (patch != NULL) {
1321    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1322  }
1323
1324  if (type == T_ARRAY || type == T_OBJECT) {
1325#ifdef _LP64
1326    if (UseCompressedOops && !wide) {
1327      __ decode_heap_oop(dest->as_register());
1328    }
1329#endif
1330    __ verify_oop(dest->as_register());
1331  }
1332}
1333
1334
1335void LIR_Assembler::prefetchr(LIR_Opr src) {
1336  LIR_Address* addr = src->as_address_ptr();
1337  Address from_addr = as_Address(addr);
1338
1339  if (VM_Version::supports_sse()) {
1340    switch (ReadPrefetchInstr) {
1341      case 0:
1342        __ prefetchnta(from_addr); break;
1343      case 1:
1344        __ prefetcht0(from_addr); break;
1345      case 2:
1346        __ prefetcht2(from_addr); break;
1347      default:
1348        ShouldNotReachHere(); break;
1349    }
1350  } else if (VM_Version::supports_3dnow_prefetch()) {
1351    __ prefetchr(from_addr);
1352  }
1353}
1354
1355
1356void LIR_Assembler::prefetchw(LIR_Opr src) {
1357  LIR_Address* addr = src->as_address_ptr();
1358  Address from_addr = as_Address(addr);
1359
1360  if (VM_Version::supports_sse()) {
1361    switch (AllocatePrefetchInstr) {
1362      case 0:
1363        __ prefetchnta(from_addr); break;
1364      case 1:
1365        __ prefetcht0(from_addr); break;
1366      case 2:
1367        __ prefetcht2(from_addr); break;
1368      case 3:
1369        __ prefetchw(from_addr); break;
1370      default:
1371        ShouldNotReachHere(); break;
1372    }
1373  } else if (VM_Version::supports_3dnow_prefetch()) {
1374    __ prefetchw(from_addr);
1375  }
1376}
1377
1378
1379NEEDS_CLEANUP; // This could be static?
1380Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1381  int elem_size = type2aelembytes(type);
1382  switch (elem_size) {
1383    case 1: return Address::times_1;
1384    case 2: return Address::times_2;
1385    case 4: return Address::times_4;
1386    case 8: return Address::times_8;
1387  }
1388  ShouldNotReachHere();
1389  return Address::no_scale;
1390}
1391
1392
1393void LIR_Assembler::emit_op3(LIR_Op3* op) {
1394  switch (op->code()) {
1395    case lir_idiv:
1396    case lir_irem:
1397      arithmetic_idiv(op->code(),
1398                      op->in_opr1(),
1399                      op->in_opr2(),
1400                      op->in_opr3(),
1401                      op->result_opr(),
1402                      op->info());
1403      break;
1404    default:      ShouldNotReachHere(); break;
1405  }
1406}
1407
1408void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1409#ifdef ASSERT
1410  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1411  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1412  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1413#endif
1414
1415  if (op->cond() == lir_cond_always) {
1416    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1417    __ jmp (*(op->label()));
1418  } else {
1419    Assembler::Condition acond = Assembler::zero;
1420    if (op->code() == lir_cond_float_branch) {
1421      assert(op->ublock() != NULL, "must have unordered successor");
1422      __ jcc(Assembler::parity, *(op->ublock()->label()));
1423      switch(op->cond()) {
1424        case lir_cond_equal:        acond = Assembler::equal;      break;
1425        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1426        case lir_cond_less:         acond = Assembler::below;      break;
1427        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1428        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1429        case lir_cond_greater:      acond = Assembler::above;      break;
1430        default:                         ShouldNotReachHere();
1431      }
1432    } else {
1433      switch (op->cond()) {
1434        case lir_cond_equal:        acond = Assembler::equal;       break;
1435        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1436        case lir_cond_less:         acond = Assembler::less;        break;
1437        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1438        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1439        case lir_cond_greater:      acond = Assembler::greater;     break;
1440        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1441        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1442        default:                         ShouldNotReachHere();
1443      }
1444    }
1445    __ jcc(acond,*(op->label()));
1446  }
1447}
1448
1449void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1450  LIR_Opr src  = op->in_opr();
1451  LIR_Opr dest = op->result_opr();
1452
1453  switch (op->bytecode()) {
1454    case Bytecodes::_i2l:
1455#ifdef _LP64
1456      __ movl2ptr(dest->as_register_lo(), src->as_register());
1457#else
1458      move_regs(src->as_register(), dest->as_register_lo());
1459      move_regs(src->as_register(), dest->as_register_hi());
1460      __ sarl(dest->as_register_hi(), 31);
1461#endif // LP64
1462      break;
1463
1464    case Bytecodes::_l2i:
1465      move_regs(src->as_register_lo(), dest->as_register());
1466      break;
1467
1468    case Bytecodes::_i2b:
1469      move_regs(src->as_register(), dest->as_register());
1470      __ sign_extend_byte(dest->as_register());
1471      break;
1472
1473    case Bytecodes::_i2c:
1474      move_regs(src->as_register(), dest->as_register());
1475      __ andl(dest->as_register(), 0xFFFF);
1476      break;
1477
1478    case Bytecodes::_i2s:
1479      move_regs(src->as_register(), dest->as_register());
1480      __ sign_extend_short(dest->as_register());
1481      break;
1482
1483
1484    case Bytecodes::_f2d:
1485    case Bytecodes::_d2f:
1486      if (dest->is_single_xmm()) {
1487        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1488      } else if (dest->is_double_xmm()) {
1489        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1490      } else {
1491        assert(src->fpu() == dest->fpu(), "register must be equal");
1492        // do nothing (float result is rounded later through spilling)
1493      }
1494      break;
1495
1496    case Bytecodes::_i2f:
1497    case Bytecodes::_i2d:
1498      if (dest->is_single_xmm()) {
1499        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1500      } else if (dest->is_double_xmm()) {
1501        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1502      } else {
1503        assert(dest->fpu() == 0, "result must be on TOS");
1504        __ movl(Address(rsp, 0), src->as_register());
1505        __ fild_s(Address(rsp, 0));
1506      }
1507      break;
1508
1509    case Bytecodes::_f2i:
1510    case Bytecodes::_d2i:
1511      if (src->is_single_xmm()) {
1512        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1513      } else if (src->is_double_xmm()) {
1514        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1515      } else {
1516        assert(src->fpu() == 0, "input must be on TOS");
1517        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1518        __ fist_s(Address(rsp, 0));
1519        __ movl(dest->as_register(), Address(rsp, 0));
1520        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1521      }
1522
1523      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1524      assert(op->stub() != NULL, "stub required");
1525      __ cmpl(dest->as_register(), 0x80000000);
1526      __ jcc(Assembler::equal, *op->stub()->entry());
1527      __ bind(*op->stub()->continuation());
1528      break;
1529
1530    case Bytecodes::_l2f:
1531    case Bytecodes::_l2d:
1532      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1533      assert(dest->fpu() == 0, "result must be on TOS");
1534
1535      __ movptr(Address(rsp, 0),            src->as_register_lo());
1536      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1537      __ fild_d(Address(rsp, 0));
1538      // float result is rounded later through spilling
1539      break;
1540
1541    case Bytecodes::_f2l:
1542    case Bytecodes::_d2l:
1543      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1544      assert(src->fpu() == 0, "input must be on TOS");
1545      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1546
1547      // instruction sequence too long to inline it here
1548      {
1549        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1550      }
1551      break;
1552
1553    default: ShouldNotReachHere();
1554  }
1555}
1556
1557void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1558  if (op->init_check()) {
1559    __ cmpb(Address(op->klass()->as_register(),
1560                    instanceKlass::init_state_offset()),
1561            instanceKlass::fully_initialized);
1562    add_debug_info_for_null_check_here(op->stub()->info());
1563    __ jcc(Assembler::notEqual, *op->stub()->entry());
1564  }
1565  __ allocate_object(op->obj()->as_register(),
1566                     op->tmp1()->as_register(),
1567                     op->tmp2()->as_register(),
1568                     op->header_size(),
1569                     op->object_size(),
1570                     op->klass()->as_register(),
1571                     *op->stub()->entry());
1572  __ bind(*op->stub()->continuation());
1573}
1574
1575void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1576  Register len =  op->len()->as_register();
1577  LP64_ONLY( __ movslq(len, len); )
1578
1579  if (UseSlowPath ||
1580      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1581      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1582    __ jmp(*op->stub()->entry());
1583  } else {
1584    Register tmp1 = op->tmp1()->as_register();
1585    Register tmp2 = op->tmp2()->as_register();
1586    Register tmp3 = op->tmp3()->as_register();
1587    if (len == tmp1) {
1588      tmp1 = tmp3;
1589    } else if (len == tmp2) {
1590      tmp2 = tmp3;
1591    } else if (len == tmp3) {
1592      // everything is ok
1593    } else {
1594      __ mov(tmp3, len);
1595    }
1596    __ allocate_array(op->obj()->as_register(),
1597                      len,
1598                      tmp1,
1599                      tmp2,
1600                      arrayOopDesc::header_size(op->type()),
1601                      array_element_size(op->type()),
1602                      op->klass()->as_register(),
1603                      *op->stub()->entry());
1604  }
1605  __ bind(*op->stub()->continuation());
1606}
1607
1608void LIR_Assembler::type_profile_helper(Register mdo,
1609                                        ciMethodData *md, ciProfileData *data,
1610                                        Register recv, Label* update_done) {
1611  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1612    Label next_test;
1613    // See if the receiver is receiver[n].
1614    __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1615    __ jccb(Assembler::notEqual, next_test);
1616    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1617    __ addptr(data_addr, DataLayout::counter_increment);
1618    __ jmp(*update_done);
1619    __ bind(next_test);
1620  }
1621
1622  // Didn't find receiver; find next empty slot and fill it in
1623  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1624    Label next_test;
1625    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1626    __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1627    __ jccb(Assembler::notEqual, next_test);
1628    __ movptr(recv_addr, recv);
1629    __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1630    __ jmp(*update_done);
1631    __ bind(next_test);
1632  }
1633}
1634
1635void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1636  // we always need a stub for the failure case.
1637  CodeStub* stub = op->stub();
1638  Register obj = op->object()->as_register();
1639  Register k_RInfo = op->tmp1()->as_register();
1640  Register klass_RInfo = op->tmp2()->as_register();
1641  Register dst = op->result_opr()->as_register();
1642  ciKlass* k = op->klass();
1643  Register Rtmp1 = noreg;
1644
1645  // check if it needs to be profiled
1646  ciMethodData* md;
1647  ciProfileData* data;
1648
1649  if (op->should_profile()) {
1650    ciMethod* method = op->profiled_method();
1651    assert(method != NULL, "Should have method");
1652    int bci = op->profiled_bci();
1653    md = method->method_data_or_null();
1654    assert(md != NULL, "Sanity");
1655    data = md->bci_to_data(bci);
1656    assert(data != NULL,                "need data for type check");
1657    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1658  }
1659  Label profile_cast_success, profile_cast_failure;
1660  Label *success_target = op->should_profile() ? &profile_cast_success : success;
1661  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1662
1663  if (obj == k_RInfo) {
1664    k_RInfo = dst;
1665  } else if (obj == klass_RInfo) {
1666    klass_RInfo = dst;
1667  }
1668  if (k->is_loaded() && !UseCompressedOops) {
1669    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1670  } else {
1671    Rtmp1 = op->tmp3()->as_register();
1672    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1673  }
1674
1675  assert_different_registers(obj, k_RInfo, klass_RInfo);
1676  if (!k->is_loaded()) {
1677    jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1678  } else {
1679#ifdef _LP64
1680    __ movoop(k_RInfo, k->constant_encoding());
1681#endif // _LP64
1682  }
1683  assert(obj != k_RInfo, "must be different");
1684
1685  __ cmpptr(obj, (int32_t)NULL_WORD);
1686  if (op->should_profile()) {
1687    Label not_null;
1688    __ jccb(Assembler::notEqual, not_null);
1689    // Object is null; update MDO and exit
1690    Register mdo  = klass_RInfo;
1691    __ movoop(mdo, md->constant_encoding());
1692    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1693    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1694    __ orl(data_addr, header_bits);
1695    __ jmp(*obj_is_null);
1696    __ bind(not_null);
1697  } else {
1698    __ jcc(Assembler::equal, *obj_is_null);
1699  }
1700  __ verify_oop(obj);
1701
1702  if (op->fast_check()) {
1703    // get object class
1704    // not a safepoint as obj null check happens earlier
1705#ifdef _LP64
1706    if (UseCompressedOops) {
1707      __ load_klass(Rtmp1, obj);
1708      __ cmpptr(k_RInfo, Rtmp1);
1709    } else {
1710      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1711    }
1712#else
1713    if (k->is_loaded()) {
1714      __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1715    } else {
1716      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1717    }
1718#endif
1719    __ jcc(Assembler::notEqual, *failure_target);
1720    // successful cast, fall through to profile or jump
1721  } else {
1722    // get object class
1723    // not a safepoint as obj null check happens earlier
1724    __ load_klass(klass_RInfo, obj);
1725    if (k->is_loaded()) {
1726      // See if we get an immediate positive hit
1727#ifdef _LP64
1728      __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1729#else
1730      __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1731#endif // _LP64
1732      if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1733        __ jcc(Assembler::notEqual, *failure_target);
1734        // successful cast, fall through to profile or jump
1735      } else {
1736        // See if we get an immediate positive hit
1737        __ jcc(Assembler::equal, *success_target);
1738        // check for self
1739#ifdef _LP64
1740        __ cmpptr(klass_RInfo, k_RInfo);
1741#else
1742        __ cmpoop(klass_RInfo, k->constant_encoding());
1743#endif // _LP64
1744        __ jcc(Assembler::equal, *success_target);
1745
1746        __ push(klass_RInfo);
1747#ifdef _LP64
1748        __ push(k_RInfo);
1749#else
1750        __ pushoop(k->constant_encoding());
1751#endif // _LP64
1752        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1753        __ pop(klass_RInfo);
1754        __ pop(klass_RInfo);
1755        // result is a boolean
1756        __ cmpl(klass_RInfo, 0);
1757        __ jcc(Assembler::equal, *failure_target);
1758        // successful cast, fall through to profile or jump
1759      }
1760    } else {
1761      // perform the fast part of the checking logic
1762      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1763      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1764      __ push(klass_RInfo);
1765      __ push(k_RInfo);
1766      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1767      __ pop(klass_RInfo);
1768      __ pop(k_RInfo);
1769      // result is a boolean
1770      __ cmpl(k_RInfo, 0);
1771      __ jcc(Assembler::equal, *failure_target);
1772      // successful cast, fall through to profile or jump
1773    }
1774  }
1775  if (op->should_profile()) {
1776    Register mdo  = klass_RInfo, recv = k_RInfo;
1777    __ bind(profile_cast_success);
1778    __ movoop(mdo, md->constant_encoding());
1779    __ load_klass(recv, obj);
1780    Label update_done;
1781    type_profile_helper(mdo, md, data, recv, success);
1782    __ jmp(*success);
1783
1784    __ bind(profile_cast_failure);
1785    __ movoop(mdo, md->constant_encoding());
1786    Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1787    __ subptr(counter_addr, DataLayout::counter_increment);
1788    __ jmp(*failure);
1789  }
1790  __ jmp(*success);
1791}
1792
1793
1794void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1795  LIR_Code code = op->code();
1796  if (code == lir_store_check) {
1797    Register value = op->object()->as_register();
1798    Register array = op->array()->as_register();
1799    Register k_RInfo = op->tmp1()->as_register();
1800    Register klass_RInfo = op->tmp2()->as_register();
1801    Register Rtmp1 = op->tmp3()->as_register();
1802
1803    CodeStub* stub = op->stub();
1804
1805    // check if it needs to be profiled
1806    ciMethodData* md;
1807    ciProfileData* data;
1808
1809    if (op->should_profile()) {
1810      ciMethod* method = op->profiled_method();
1811      assert(method != NULL, "Should have method");
1812      int bci = op->profiled_bci();
1813      md = method->method_data_or_null();
1814      assert(md != NULL, "Sanity");
1815      data = md->bci_to_data(bci);
1816      assert(data != NULL,                "need data for type check");
1817      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1818    }
1819    Label profile_cast_success, profile_cast_failure, done;
1820    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1821    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1822
1823    __ cmpptr(value, (int32_t)NULL_WORD);
1824    if (op->should_profile()) {
1825      Label not_null;
1826      __ jccb(Assembler::notEqual, not_null);
1827      // Object is null; update MDO and exit
1828      Register mdo  = klass_RInfo;
1829      __ movoop(mdo, md->constant_encoding());
1830      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1831      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1832      __ orl(data_addr, header_bits);
1833      __ jmp(done);
1834      __ bind(not_null);
1835    } else {
1836      __ jcc(Assembler::equal, done);
1837    }
1838
1839    add_debug_info_for_null_check_here(op->info_for_exception());
1840    __ load_klass(k_RInfo, array);
1841    __ load_klass(klass_RInfo, value);
1842
1843    // get instance klass (it's already uncompressed)
1844    __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
1845    // perform the fast part of the checking logic
1846    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1847    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1848    __ push(klass_RInfo);
1849    __ push(k_RInfo);
1850    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1851    __ pop(klass_RInfo);
1852    __ pop(k_RInfo);
1853    // result is a boolean
1854    __ cmpl(k_RInfo, 0);
1855    __ jcc(Assembler::equal, *failure_target);
1856    // fall through to the success case
1857
1858    if (op->should_profile()) {
1859      Register mdo  = klass_RInfo, recv = k_RInfo;
1860      __ bind(profile_cast_success);
1861      __ movoop(mdo, md->constant_encoding());
1862      __ load_klass(recv, value);
1863      Label update_done;
1864      type_profile_helper(mdo, md, data, recv, &done);
1865      __ jmpb(done);
1866
1867      __ bind(profile_cast_failure);
1868      __ movoop(mdo, md->constant_encoding());
1869      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1870      __ subptr(counter_addr, DataLayout::counter_increment);
1871      __ jmp(*stub->entry());
1872    }
1873
1874    __ bind(done);
1875  } else
1876    if (code == lir_checkcast) {
1877      Register obj = op->object()->as_register();
1878      Register dst = op->result_opr()->as_register();
1879      Label success;
1880      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1881      __ bind(success);
1882      if (dst != obj) {
1883        __ mov(dst, obj);
1884      }
1885    } else
1886      if (code == lir_instanceof) {
1887        Register obj = op->object()->as_register();
1888        Register dst = op->result_opr()->as_register();
1889        Label success, failure, done;
1890        emit_typecheck_helper(op, &success, &failure, &failure);
1891        __ bind(failure);
1892        __ xorptr(dst, dst);
1893        __ jmpb(done);
1894        __ bind(success);
1895        __ movptr(dst, 1);
1896        __ bind(done);
1897      } else {
1898        ShouldNotReachHere();
1899      }
1900
1901}
1902
1903
1904void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1905  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1906    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1907    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1908    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1909    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1910    Register addr = op->addr()->as_register();
1911    if (os::is_MP()) {
1912      __ lock();
1913    }
1914    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1915
1916  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1917    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1918    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1919    Register newval = op->new_value()->as_register();
1920    Register cmpval = op->cmp_value()->as_register();
1921    assert(cmpval == rax, "wrong register");
1922    assert(newval != NULL, "new val must be register");
1923    assert(cmpval != newval, "cmp and new values must be in different registers");
1924    assert(cmpval != addr, "cmp and addr must be in different registers");
1925    assert(newval != addr, "new value and addr must be in different registers");
1926
1927    if ( op->code() == lir_cas_obj) {
1928#ifdef _LP64
1929      if (UseCompressedOops) {
1930        __ encode_heap_oop(cmpval);
1931        __ mov(rscratch1, newval);
1932        __ encode_heap_oop(rscratch1);
1933        if (os::is_MP()) {
1934          __ lock();
1935        }
1936        // cmpval (rax) is implicitly used by this instruction
1937        __ cmpxchgl(rscratch1, Address(addr, 0));
1938      } else
1939#endif
1940      {
1941        if (os::is_MP()) {
1942          __ lock();
1943        }
1944        __ cmpxchgptr(newval, Address(addr, 0));
1945      }
1946    } else {
1947      assert(op->code() == lir_cas_int, "lir_cas_int expected");
1948      if (os::is_MP()) {
1949        __ lock();
1950      }
1951      __ cmpxchgl(newval, Address(addr, 0));
1952    }
1953#ifdef _LP64
1954  } else if (op->code() == lir_cas_long) {
1955    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1956    Register newval = op->new_value()->as_register_lo();
1957    Register cmpval = op->cmp_value()->as_register_lo();
1958    assert(cmpval == rax, "wrong register");
1959    assert(newval != NULL, "new val must be register");
1960    assert(cmpval != newval, "cmp and new values must be in different registers");
1961    assert(cmpval != addr, "cmp and addr must be in different registers");
1962    assert(newval != addr, "new value and addr must be in different registers");
1963    if (os::is_MP()) {
1964      __ lock();
1965    }
1966    __ cmpxchgq(newval, Address(addr, 0));
1967#endif // _LP64
1968  } else {
1969    Unimplemented();
1970  }
1971}
1972
1973void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1974  Assembler::Condition acond, ncond;
1975  switch (condition) {
1976    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1977    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1978    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1979    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1980    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1981    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1982    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1983    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1984    default:                    ShouldNotReachHere();
1985  }
1986
1987  if (opr1->is_cpu_register()) {
1988    reg2reg(opr1, result);
1989  } else if (opr1->is_stack()) {
1990    stack2reg(opr1, result, result->type());
1991  } else if (opr1->is_constant()) {
1992    const2reg(opr1, result, lir_patch_none, NULL);
1993  } else {
1994    ShouldNotReachHere();
1995  }
1996
1997  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1998    // optimized version that does not require a branch
1999    if (opr2->is_single_cpu()) {
2000      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2001      __ cmov(ncond, result->as_register(), opr2->as_register());
2002    } else if (opr2->is_double_cpu()) {
2003      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2004      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2005      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2006      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2007    } else if (opr2->is_single_stack()) {
2008      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2009    } else if (opr2->is_double_stack()) {
2010      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2011      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2012    } else {
2013      ShouldNotReachHere();
2014    }
2015
2016  } else {
2017    Label skip;
2018    __ jcc (acond, skip);
2019    if (opr2->is_cpu_register()) {
2020      reg2reg(opr2, result);
2021    } else if (opr2->is_stack()) {
2022      stack2reg(opr2, result, result->type());
2023    } else if (opr2->is_constant()) {
2024      const2reg(opr2, result, lir_patch_none, NULL);
2025    } else {
2026      ShouldNotReachHere();
2027    }
2028    __ bind(skip);
2029  }
2030}
2031
2032
2033void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2034  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2035
2036  if (left->is_single_cpu()) {
2037    assert(left == dest, "left and dest must be equal");
2038    Register lreg = left->as_register();
2039
2040    if (right->is_single_cpu()) {
2041      // cpu register - cpu register
2042      Register rreg = right->as_register();
2043      switch (code) {
2044        case lir_add: __ addl (lreg, rreg); break;
2045        case lir_sub: __ subl (lreg, rreg); break;
2046        case lir_mul: __ imull(lreg, rreg); break;
2047        default:      ShouldNotReachHere();
2048      }
2049
2050    } else if (right->is_stack()) {
2051      // cpu register - stack
2052      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2053      switch (code) {
2054        case lir_add: __ addl(lreg, raddr); break;
2055        case lir_sub: __ subl(lreg, raddr); break;
2056        default:      ShouldNotReachHere();
2057      }
2058
2059    } else if (right->is_constant()) {
2060      // cpu register - constant
2061      jint c = right->as_constant_ptr()->as_jint();
2062      switch (code) {
2063        case lir_add: {
2064          __ incrementl(lreg, c);
2065          break;
2066        }
2067        case lir_sub: {
2068          __ decrementl(lreg, c);
2069          break;
2070        }
2071        default: ShouldNotReachHere();
2072      }
2073
2074    } else {
2075      ShouldNotReachHere();
2076    }
2077
2078  } else if (left->is_double_cpu()) {
2079    assert(left == dest, "left and dest must be equal");
2080    Register lreg_lo = left->as_register_lo();
2081    Register lreg_hi = left->as_register_hi();
2082
2083    if (right->is_double_cpu()) {
2084      // cpu register - cpu register
2085      Register rreg_lo = right->as_register_lo();
2086      Register rreg_hi = right->as_register_hi();
2087      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2088      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2089      switch (code) {
2090        case lir_add:
2091          __ addptr(lreg_lo, rreg_lo);
2092          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2093          break;
2094        case lir_sub:
2095          __ subptr(lreg_lo, rreg_lo);
2096          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2097          break;
2098        case lir_mul:
2099#ifdef _LP64
2100          __ imulq(lreg_lo, rreg_lo);
2101#else
2102          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2103          __ imull(lreg_hi, rreg_lo);
2104          __ imull(rreg_hi, lreg_lo);
2105          __ addl (rreg_hi, lreg_hi);
2106          __ mull (rreg_lo);
2107          __ addl (lreg_hi, rreg_hi);
2108#endif // _LP64
2109          break;
2110        default:
2111          ShouldNotReachHere();
2112      }
2113
2114    } else if (right->is_constant()) {
2115      // cpu register - constant
2116#ifdef _LP64
2117      jlong c = right->as_constant_ptr()->as_jlong_bits();
2118      __ movptr(r10, (intptr_t) c);
2119      switch (code) {
2120        case lir_add:
2121          __ addptr(lreg_lo, r10);
2122          break;
2123        case lir_sub:
2124          __ subptr(lreg_lo, r10);
2125          break;
2126        default:
2127          ShouldNotReachHere();
2128      }
2129#else
2130      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2131      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2132      switch (code) {
2133        case lir_add:
2134          __ addptr(lreg_lo, c_lo);
2135          __ adcl(lreg_hi, c_hi);
2136          break;
2137        case lir_sub:
2138          __ subptr(lreg_lo, c_lo);
2139          __ sbbl(lreg_hi, c_hi);
2140          break;
2141        default:
2142          ShouldNotReachHere();
2143      }
2144#endif // _LP64
2145
2146    } else {
2147      ShouldNotReachHere();
2148    }
2149
2150  } else if (left->is_single_xmm()) {
2151    assert(left == dest, "left and dest must be equal");
2152    XMMRegister lreg = left->as_xmm_float_reg();
2153
2154    if (right->is_single_xmm()) {
2155      XMMRegister rreg = right->as_xmm_float_reg();
2156      switch (code) {
2157        case lir_add: __ addss(lreg, rreg);  break;
2158        case lir_sub: __ subss(lreg, rreg);  break;
2159        case lir_mul_strictfp: // fall through
2160        case lir_mul: __ mulss(lreg, rreg);  break;
2161        case lir_div_strictfp: // fall through
2162        case lir_div: __ divss(lreg, rreg);  break;
2163        default: ShouldNotReachHere();
2164      }
2165    } else {
2166      Address raddr;
2167      if (right->is_single_stack()) {
2168        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2169      } else if (right->is_constant()) {
2170        // hack for now
2171        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2172      } else {
2173        ShouldNotReachHere();
2174      }
2175      switch (code) {
2176        case lir_add: __ addss(lreg, raddr);  break;
2177        case lir_sub: __ subss(lreg, raddr);  break;
2178        case lir_mul_strictfp: // fall through
2179        case lir_mul: __ mulss(lreg, raddr);  break;
2180        case lir_div_strictfp: // fall through
2181        case lir_div: __ divss(lreg, raddr);  break;
2182        default: ShouldNotReachHere();
2183      }
2184    }
2185
2186  } else if (left->is_double_xmm()) {
2187    assert(left == dest, "left and dest must be equal");
2188
2189    XMMRegister lreg = left->as_xmm_double_reg();
2190    if (right->is_double_xmm()) {
2191      XMMRegister rreg = right->as_xmm_double_reg();
2192      switch (code) {
2193        case lir_add: __ addsd(lreg, rreg);  break;
2194        case lir_sub: __ subsd(lreg, rreg);  break;
2195        case lir_mul_strictfp: // fall through
2196        case lir_mul: __ mulsd(lreg, rreg);  break;
2197        case lir_div_strictfp: // fall through
2198        case lir_div: __ divsd(lreg, rreg);  break;
2199        default: ShouldNotReachHere();
2200      }
2201    } else {
2202      Address raddr;
2203      if (right->is_double_stack()) {
2204        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2205      } else if (right->is_constant()) {
2206        // hack for now
2207        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2208      } else {
2209        ShouldNotReachHere();
2210      }
2211      switch (code) {
2212        case lir_add: __ addsd(lreg, raddr);  break;
2213        case lir_sub: __ subsd(lreg, raddr);  break;
2214        case lir_mul_strictfp: // fall through
2215        case lir_mul: __ mulsd(lreg, raddr);  break;
2216        case lir_div_strictfp: // fall through
2217        case lir_div: __ divsd(lreg, raddr);  break;
2218        default: ShouldNotReachHere();
2219      }
2220    }
2221
2222  } else if (left->is_single_fpu()) {
2223    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2224
2225    if (right->is_single_fpu()) {
2226      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2227
2228    } else {
2229      assert(left->fpu_regnr() == 0, "left must be on TOS");
2230      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2231
2232      Address raddr;
2233      if (right->is_single_stack()) {
2234        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2235      } else if (right->is_constant()) {
2236        address const_addr = float_constant(right->as_jfloat());
2237        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2238        // hack for now
2239        raddr = __ as_Address(InternalAddress(const_addr));
2240      } else {
2241        ShouldNotReachHere();
2242      }
2243
2244      switch (code) {
2245        case lir_add: __ fadd_s(raddr); break;
2246        case lir_sub: __ fsub_s(raddr); break;
2247        case lir_mul_strictfp: // fall through
2248        case lir_mul: __ fmul_s(raddr); break;
2249        case lir_div_strictfp: // fall through
2250        case lir_div: __ fdiv_s(raddr); break;
2251        default:      ShouldNotReachHere();
2252      }
2253    }
2254
2255  } else if (left->is_double_fpu()) {
2256    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2257
2258    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2259      // Double values require special handling for strictfp mul/div on x86
2260      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2261      __ fmulp(left->fpu_regnrLo() + 1);
2262    }
2263
2264    if (right->is_double_fpu()) {
2265      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2266
2267    } else {
2268      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2269      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2270
2271      Address raddr;
2272      if (right->is_double_stack()) {
2273        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2274      } else if (right->is_constant()) {
2275        // hack for now
2276        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2277      } else {
2278        ShouldNotReachHere();
2279      }
2280
2281      switch (code) {
2282        case lir_add: __ fadd_d(raddr); break;
2283        case lir_sub: __ fsub_d(raddr); break;
2284        case lir_mul_strictfp: // fall through
2285        case lir_mul: __ fmul_d(raddr); break;
2286        case lir_div_strictfp: // fall through
2287        case lir_div: __ fdiv_d(raddr); break;
2288        default: ShouldNotReachHere();
2289      }
2290    }
2291
2292    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2293      // Double values require special handling for strictfp mul/div on x86
2294      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2295      __ fmulp(dest->fpu_regnrLo() + 1);
2296    }
2297
2298  } else if (left->is_single_stack() || left->is_address()) {
2299    assert(left == dest, "left and dest must be equal");
2300
2301    Address laddr;
2302    if (left->is_single_stack()) {
2303      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2304    } else if (left->is_address()) {
2305      laddr = as_Address(left->as_address_ptr());
2306    } else {
2307      ShouldNotReachHere();
2308    }
2309
2310    if (right->is_single_cpu()) {
2311      Register rreg = right->as_register();
2312      switch (code) {
2313        case lir_add: __ addl(laddr, rreg); break;
2314        case lir_sub: __ subl(laddr, rreg); break;
2315        default:      ShouldNotReachHere();
2316      }
2317    } else if (right->is_constant()) {
2318      jint c = right->as_constant_ptr()->as_jint();
2319      switch (code) {
2320        case lir_add: {
2321          __ incrementl(laddr, c);
2322          break;
2323        }
2324        case lir_sub: {
2325          __ decrementl(laddr, c);
2326          break;
2327        }
2328        default: ShouldNotReachHere();
2329      }
2330    } else {
2331      ShouldNotReachHere();
2332    }
2333
2334  } else {
2335    ShouldNotReachHere();
2336  }
2337}
2338
2339void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2340  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2341  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2342  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2343
2344  bool left_is_tos = (left_index == 0);
2345  bool dest_is_tos = (dest_index == 0);
2346  int non_tos_index = (left_is_tos ? right_index : left_index);
2347
2348  switch (code) {
2349    case lir_add:
2350      if (pop_fpu_stack)       __ faddp(non_tos_index);
2351      else if (dest_is_tos)    __ fadd (non_tos_index);
2352      else                     __ fadda(non_tos_index);
2353      break;
2354
2355    case lir_sub:
2356      if (left_is_tos) {
2357        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2358        else if (dest_is_tos)  __ fsub  (non_tos_index);
2359        else                   __ fsubra(non_tos_index);
2360      } else {
2361        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2362        else if (dest_is_tos)  __ fsubr (non_tos_index);
2363        else                   __ fsuba (non_tos_index);
2364      }
2365      break;
2366
2367    case lir_mul_strictfp: // fall through
2368    case lir_mul:
2369      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2370      else if (dest_is_tos)    __ fmul (non_tos_index);
2371      else                     __ fmula(non_tos_index);
2372      break;
2373
2374    case lir_div_strictfp: // fall through
2375    case lir_div:
2376      if (left_is_tos) {
2377        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2378        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2379        else                   __ fdivra(non_tos_index);
2380      } else {
2381        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2382        else if (dest_is_tos)  __ fdivr (non_tos_index);
2383        else                   __ fdiva (non_tos_index);
2384      }
2385      break;
2386
2387    case lir_rem:
2388      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2389      __ fremr(noreg);
2390      break;
2391
2392    default:
2393      ShouldNotReachHere();
2394  }
2395}
2396
2397
2398void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2399  if (value->is_double_xmm()) {
2400    switch(code) {
2401      case lir_abs :
2402        {
2403          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2404            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2405          }
2406          __ andpd(dest->as_xmm_double_reg(),
2407                    ExternalAddress((address)double_signmask_pool));
2408        }
2409        break;
2410
2411      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2412      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2413      default      : ShouldNotReachHere();
2414    }
2415
2416  } else if (value->is_double_fpu()) {
2417    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2418    switch(code) {
2419      case lir_log   : __ flog() ; break;
2420      case lir_log10 : __ flog10() ; break;
2421      case lir_abs   : __ fabs() ; break;
2422      case lir_sqrt  : __ fsqrt(); break;
2423      case lir_sin   :
2424        // Should consider not saving rbx, if not necessary
2425        __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2426        break;
2427      case lir_cos :
2428        // Should consider not saving rbx, if not necessary
2429        assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2430        __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2431        break;
2432      case lir_tan :
2433        // Should consider not saving rbx, if not necessary
2434        __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2435        break;
2436      default      : ShouldNotReachHere();
2437    }
2438  } else {
2439    Unimplemented();
2440  }
2441}
2442
2443void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2444  // assert(left->destroys_register(), "check");
2445  if (left->is_single_cpu()) {
2446    Register reg = left->as_register();
2447    if (right->is_constant()) {
2448      int val = right->as_constant_ptr()->as_jint();
2449      switch (code) {
2450        case lir_logic_and: __ andl (reg, val); break;
2451        case lir_logic_or:  __ orl  (reg, val); break;
2452        case lir_logic_xor: __ xorl (reg, val); break;
2453        default: ShouldNotReachHere();
2454      }
2455    } else if (right->is_stack()) {
2456      // added support for stack operands
2457      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2458      switch (code) {
2459        case lir_logic_and: __ andl (reg, raddr); break;
2460        case lir_logic_or:  __ orl  (reg, raddr); break;
2461        case lir_logic_xor: __ xorl (reg, raddr); break;
2462        default: ShouldNotReachHere();
2463      }
2464    } else {
2465      Register rright = right->as_register();
2466      switch (code) {
2467        case lir_logic_and: __ andptr (reg, rright); break;
2468        case lir_logic_or : __ orptr  (reg, rright); break;
2469        case lir_logic_xor: __ xorptr (reg, rright); break;
2470        default: ShouldNotReachHere();
2471      }
2472    }
2473    move_regs(reg, dst->as_register());
2474  } else {
2475    Register l_lo = left->as_register_lo();
2476    Register l_hi = left->as_register_hi();
2477    if (right->is_constant()) {
2478#ifdef _LP64
2479      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2480      switch (code) {
2481        case lir_logic_and:
2482          __ andq(l_lo, rscratch1);
2483          break;
2484        case lir_logic_or:
2485          __ orq(l_lo, rscratch1);
2486          break;
2487        case lir_logic_xor:
2488          __ xorq(l_lo, rscratch1);
2489          break;
2490        default: ShouldNotReachHere();
2491      }
2492#else
2493      int r_lo = right->as_constant_ptr()->as_jint_lo();
2494      int r_hi = right->as_constant_ptr()->as_jint_hi();
2495      switch (code) {
2496        case lir_logic_and:
2497          __ andl(l_lo, r_lo);
2498          __ andl(l_hi, r_hi);
2499          break;
2500        case lir_logic_or:
2501          __ orl(l_lo, r_lo);
2502          __ orl(l_hi, r_hi);
2503          break;
2504        case lir_logic_xor:
2505          __ xorl(l_lo, r_lo);
2506          __ xorl(l_hi, r_hi);
2507          break;
2508        default: ShouldNotReachHere();
2509      }
2510#endif // _LP64
2511    } else {
2512#ifdef _LP64
2513      Register r_lo;
2514      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2515        r_lo = right->as_register();
2516      } else {
2517        r_lo = right->as_register_lo();
2518      }
2519#else
2520      Register r_lo = right->as_register_lo();
2521      Register r_hi = right->as_register_hi();
2522      assert(l_lo != r_hi, "overwriting registers");
2523#endif
2524      switch (code) {
2525        case lir_logic_and:
2526          __ andptr(l_lo, r_lo);
2527          NOT_LP64(__ andptr(l_hi, r_hi);)
2528          break;
2529        case lir_logic_or:
2530          __ orptr(l_lo, r_lo);
2531          NOT_LP64(__ orptr(l_hi, r_hi);)
2532          break;
2533        case lir_logic_xor:
2534          __ xorptr(l_lo, r_lo);
2535          NOT_LP64(__ xorptr(l_hi, r_hi);)
2536          break;
2537        default: ShouldNotReachHere();
2538      }
2539    }
2540
2541    Register dst_lo = dst->as_register_lo();
2542    Register dst_hi = dst->as_register_hi();
2543
2544#ifdef _LP64
2545    move_regs(l_lo, dst_lo);
2546#else
2547    if (dst_lo == l_hi) {
2548      assert(dst_hi != l_lo, "overwriting registers");
2549      move_regs(l_hi, dst_hi);
2550      move_regs(l_lo, dst_lo);
2551    } else {
2552      assert(dst_lo != l_hi, "overwriting registers");
2553      move_regs(l_lo, dst_lo);
2554      move_regs(l_hi, dst_hi);
2555    }
2556#endif // _LP64
2557  }
2558}
2559
2560
2561// we assume that rax, and rdx can be overwritten
2562void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2563
2564  assert(left->is_single_cpu(),   "left must be register");
2565  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2566  assert(result->is_single_cpu(), "result must be register");
2567
2568  //  assert(left->destroys_register(), "check");
2569  //  assert(right->destroys_register(), "check");
2570
2571  Register lreg = left->as_register();
2572  Register dreg = result->as_register();
2573
2574  if (right->is_constant()) {
2575    int divisor = right->as_constant_ptr()->as_jint();
2576    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2577    if (code == lir_idiv) {
2578      assert(lreg == rax, "must be rax,");
2579      assert(temp->as_register() == rdx, "tmp register must be rdx");
2580      __ cdql(); // sign extend into rdx:rax
2581      if (divisor == 2) {
2582        __ subl(lreg, rdx);
2583      } else {
2584        __ andl(rdx, divisor - 1);
2585        __ addl(lreg, rdx);
2586      }
2587      __ sarl(lreg, log2_intptr(divisor));
2588      move_regs(lreg, dreg);
2589    } else if (code == lir_irem) {
2590      Label done;
2591      __ mov(dreg, lreg);
2592      __ andl(dreg, 0x80000000 | (divisor - 1));
2593      __ jcc(Assembler::positive, done);
2594      __ decrement(dreg);
2595      __ orl(dreg, ~(divisor - 1));
2596      __ increment(dreg);
2597      __ bind(done);
2598    } else {
2599      ShouldNotReachHere();
2600    }
2601  } else {
2602    Register rreg = right->as_register();
2603    assert(lreg == rax, "left register must be rax,");
2604    assert(rreg != rdx, "right register must not be rdx");
2605    assert(temp->as_register() == rdx, "tmp register must be rdx");
2606
2607    move_regs(lreg, rax);
2608
2609    int idivl_offset = __ corrected_idivl(rreg);
2610    add_debug_info_for_div0(idivl_offset, info);
2611    if (code == lir_irem) {
2612      move_regs(rdx, dreg); // result is in rdx
2613    } else {
2614      move_regs(rax, dreg);
2615    }
2616  }
2617}
2618
2619
2620void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2621  if (opr1->is_single_cpu()) {
2622    Register reg1 = opr1->as_register();
2623    if (opr2->is_single_cpu()) {
2624      // cpu register - cpu register
2625      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2626        __ cmpptr(reg1, opr2->as_register());
2627      } else {
2628        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2629        __ cmpl(reg1, opr2->as_register());
2630      }
2631    } else if (opr2->is_stack()) {
2632      // cpu register - stack
2633      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2634        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2635      } else {
2636        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2637      }
2638    } else if (opr2->is_constant()) {
2639      // cpu register - constant
2640      LIR_Const* c = opr2->as_constant_ptr();
2641      if (c->type() == T_INT) {
2642        __ cmpl(reg1, c->as_jint());
2643      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2644        // In 64bit oops are single register
2645        jobject o = c->as_jobject();
2646        if (o == NULL) {
2647          __ cmpptr(reg1, (int32_t)NULL_WORD);
2648        } else {
2649#ifdef _LP64
2650          __ movoop(rscratch1, o);
2651          __ cmpptr(reg1, rscratch1);
2652#else
2653          __ cmpoop(reg1, c->as_jobject());
2654#endif // _LP64
2655        }
2656      } else {
2657        ShouldNotReachHere();
2658      }
2659      // cpu register - address
2660    } else if (opr2->is_address()) {
2661      if (op->info() != NULL) {
2662        add_debug_info_for_null_check_here(op->info());
2663      }
2664      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2665    } else {
2666      ShouldNotReachHere();
2667    }
2668
2669  } else if(opr1->is_double_cpu()) {
2670    Register xlo = opr1->as_register_lo();
2671    Register xhi = opr1->as_register_hi();
2672    if (opr2->is_double_cpu()) {
2673#ifdef _LP64
2674      __ cmpptr(xlo, opr2->as_register_lo());
2675#else
2676      // cpu register - cpu register
2677      Register ylo = opr2->as_register_lo();
2678      Register yhi = opr2->as_register_hi();
2679      __ subl(xlo, ylo);
2680      __ sbbl(xhi, yhi);
2681      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2682        __ orl(xhi, xlo);
2683      }
2684#endif // _LP64
2685    } else if (opr2->is_constant()) {
2686      // cpu register - constant 0
2687      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2688#ifdef _LP64
2689      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2690#else
2691      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2692      __ orl(xhi, xlo);
2693#endif // _LP64
2694    } else {
2695      ShouldNotReachHere();
2696    }
2697
2698  } else if (opr1->is_single_xmm()) {
2699    XMMRegister reg1 = opr1->as_xmm_float_reg();
2700    if (opr2->is_single_xmm()) {
2701      // xmm register - xmm register
2702      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2703    } else if (opr2->is_stack()) {
2704      // xmm register - stack
2705      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2706    } else if (opr2->is_constant()) {
2707      // xmm register - constant
2708      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2709    } else if (opr2->is_address()) {
2710      // xmm register - address
2711      if (op->info() != NULL) {
2712        add_debug_info_for_null_check_here(op->info());
2713      }
2714      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2715    } else {
2716      ShouldNotReachHere();
2717    }
2718
2719  } else if (opr1->is_double_xmm()) {
2720    XMMRegister reg1 = opr1->as_xmm_double_reg();
2721    if (opr2->is_double_xmm()) {
2722      // xmm register - xmm register
2723      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2724    } else if (opr2->is_stack()) {
2725      // xmm register - stack
2726      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2727    } else if (opr2->is_constant()) {
2728      // xmm register - constant
2729      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2730    } else if (opr2->is_address()) {
2731      // xmm register - address
2732      if (op->info() != NULL) {
2733        add_debug_info_for_null_check_here(op->info());
2734      }
2735      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2736    } else {
2737      ShouldNotReachHere();
2738    }
2739
2740  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2741    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2742    assert(opr2->is_fpu_register(), "both must be registers");
2743    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2744
2745  } else if (opr1->is_address() && opr2->is_constant()) {
2746    LIR_Const* c = opr2->as_constant_ptr();
2747#ifdef _LP64
2748    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2749      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2750      __ movoop(rscratch1, c->as_jobject());
2751    }
2752#endif // LP64
2753    if (op->info() != NULL) {
2754      add_debug_info_for_null_check_here(op->info());
2755    }
2756    // special case: address - constant
2757    LIR_Address* addr = opr1->as_address_ptr();
2758    if (c->type() == T_INT) {
2759      __ cmpl(as_Address(addr), c->as_jint());
2760    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2761#ifdef _LP64
2762      // %%% Make this explode if addr isn't reachable until we figure out a
2763      // better strategy by giving noreg as the temp for as_Address
2764      __ cmpptr(rscratch1, as_Address(addr, noreg));
2765#else
2766      __ cmpoop(as_Address(addr), c->as_jobject());
2767#endif // _LP64
2768    } else {
2769      ShouldNotReachHere();
2770    }
2771
2772  } else {
2773    ShouldNotReachHere();
2774  }
2775}
2776
2777void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2778  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2779    if (left->is_single_xmm()) {
2780      assert(right->is_single_xmm(), "must match");
2781      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2782    } else if (left->is_double_xmm()) {
2783      assert(right->is_double_xmm(), "must match");
2784      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2785
2786    } else {
2787      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2788      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2789
2790      assert(left->fpu() == 0, "left must be on TOS");
2791      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2792                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2793    }
2794  } else {
2795    assert(code == lir_cmp_l2i, "check");
2796#ifdef _LP64
2797    Label done;
2798    Register dest = dst->as_register();
2799    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2800    __ movl(dest, -1);
2801    __ jccb(Assembler::less, done);
2802    __ set_byte_if_not_zero(dest);
2803    __ movzbl(dest, dest);
2804    __ bind(done);
2805#else
2806    __ lcmp2int(left->as_register_hi(),
2807                left->as_register_lo(),
2808                right->as_register_hi(),
2809                right->as_register_lo());
2810    move_regs(left->as_register_hi(), dst->as_register());
2811#endif // _LP64
2812  }
2813}
2814
2815
2816void LIR_Assembler::align_call(LIR_Code code) {
2817  if (os::is_MP()) {
2818    // make sure that the displacement word of the call ends up word aligned
2819    int offset = __ offset();
2820    switch (code) {
2821      case lir_static_call:
2822      case lir_optvirtual_call:
2823      case lir_dynamic_call:
2824        offset += NativeCall::displacement_offset;
2825        break;
2826      case lir_icvirtual_call:
2827        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2828      break;
2829      case lir_virtual_call:  // currently, sparc-specific for niagara
2830      default: ShouldNotReachHere();
2831    }
2832    while (offset++ % BytesPerWord != 0) {
2833      __ nop();
2834    }
2835  }
2836}
2837
2838
2839void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2840  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2841         "must be aligned");
2842  __ call(AddressLiteral(op->addr(), rtype));
2843  add_call_info(code_offset(), op->info());
2844}
2845
2846
2847void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2848  RelocationHolder rh = virtual_call_Relocation::spec(pc());
2849  __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2850  assert(!os::is_MP() ||
2851         (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2852         "must be aligned");
2853  __ call(AddressLiteral(op->addr(), rh));
2854  add_call_info(code_offset(), op->info());
2855}
2856
2857
2858/* Currently, vtable-dispatch is only enabled for sparc platforms */
2859void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2860  ShouldNotReachHere();
2861}
2862
2863
2864void LIR_Assembler::emit_static_call_stub() {
2865  address call_pc = __ pc();
2866  address stub = __ start_a_stub(call_stub_size);
2867  if (stub == NULL) {
2868    bailout("static call stub overflow");
2869    return;
2870  }
2871
2872  int start = __ offset();
2873  if (os::is_MP()) {
2874    // make sure that the displacement word of the call ends up word aligned
2875    int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2876    while (offset++ % BytesPerWord != 0) {
2877      __ nop();
2878    }
2879  }
2880  __ relocate(static_stub_Relocation::spec(call_pc));
2881  __ movoop(rbx, (jobject)NULL);
2882  // must be set to -1 at code generation time
2883  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2884  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2885  __ jump(RuntimeAddress(__ pc()));
2886
2887  assert(__ offset() - start <= call_stub_size, "stub too big");
2888  __ end_a_stub();
2889}
2890
2891
2892void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2893  assert(exceptionOop->as_register() == rax, "must match");
2894  assert(exceptionPC->as_register() == rdx, "must match");
2895
2896  // exception object is not added to oop map by LinearScan
2897  // (LinearScan assumes that no oops are in fixed registers)
2898  info->add_register_oop(exceptionOop);
2899  Runtime1::StubID unwind_id;
2900
2901  // get current pc information
2902  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2903  int pc_for_athrow_offset = __ offset();
2904  InternalAddress pc_for_athrow(__ pc());
2905  __ lea(exceptionPC->as_register(), pc_for_athrow);
2906  add_call_info(pc_for_athrow_offset, info); // for exception handler
2907
2908  __ verify_not_null_oop(rax);
2909  // search an exception handler (rax: exception oop, rdx: throwing pc)
2910  if (compilation()->has_fpu_code()) {
2911    unwind_id = Runtime1::handle_exception_id;
2912  } else {
2913    unwind_id = Runtime1::handle_exception_nofpu_id;
2914  }
2915  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2916
2917  // enough room for two byte trap
2918  __ nop();
2919}
2920
2921
2922void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2923  assert(exceptionOop->as_register() == rax, "must match");
2924
2925  __ jmp(_unwind_handler_entry);
2926}
2927
2928
2929void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2930
2931  // optimized version for linear scan:
2932  // * count must be already in ECX (guaranteed by LinearScan)
2933  // * left and dest must be equal
2934  // * tmp must be unused
2935  assert(count->as_register() == SHIFT_count, "count must be in ECX");
2936  assert(left == dest, "left and dest must be equal");
2937  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2938
2939  if (left->is_single_cpu()) {
2940    Register value = left->as_register();
2941    assert(value != SHIFT_count, "left cannot be ECX");
2942
2943    switch (code) {
2944      case lir_shl:  __ shll(value); break;
2945      case lir_shr:  __ sarl(value); break;
2946      case lir_ushr: __ shrl(value); break;
2947      default: ShouldNotReachHere();
2948    }
2949  } else if (left->is_double_cpu()) {
2950    Register lo = left->as_register_lo();
2951    Register hi = left->as_register_hi();
2952    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2953#ifdef _LP64
2954    switch (code) {
2955      case lir_shl:  __ shlptr(lo);        break;
2956      case lir_shr:  __ sarptr(lo);        break;
2957      case lir_ushr: __ shrptr(lo);        break;
2958      default: ShouldNotReachHere();
2959    }
2960#else
2961
2962    switch (code) {
2963      case lir_shl:  __ lshl(hi, lo);        break;
2964      case lir_shr:  __ lshr(hi, lo, true);  break;
2965      case lir_ushr: __ lshr(hi, lo, false); break;
2966      default: ShouldNotReachHere();
2967    }
2968#endif // LP64
2969  } else {
2970    ShouldNotReachHere();
2971  }
2972}
2973
2974
2975void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2976  if (dest->is_single_cpu()) {
2977    // first move left into dest so that left is not destroyed by the shift
2978    Register value = dest->as_register();
2979    count = count & 0x1F; // Java spec
2980
2981    move_regs(left->as_register(), value);
2982    switch (code) {
2983      case lir_shl:  __ shll(value, count); break;
2984      case lir_shr:  __ sarl(value, count); break;
2985      case lir_ushr: __ shrl(value, count); break;
2986      default: ShouldNotReachHere();
2987    }
2988  } else if (dest->is_double_cpu()) {
2989#ifndef _LP64
2990    Unimplemented();
2991#else
2992    // first move left into dest so that left is not destroyed by the shift
2993    Register value = dest->as_register_lo();
2994    count = count & 0x1F; // Java spec
2995
2996    move_regs(left->as_register_lo(), value);
2997    switch (code) {
2998      case lir_shl:  __ shlptr(value, count); break;
2999      case lir_shr:  __ sarptr(value, count); break;
3000      case lir_ushr: __ shrptr(value, count); break;
3001      default: ShouldNotReachHere();
3002    }
3003#endif // _LP64
3004  } else {
3005    ShouldNotReachHere();
3006  }
3007}
3008
3009
3010void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3011  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3012  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3013  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3014  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3015}
3016
3017
3018void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3019  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3020  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3021  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3022  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3023}
3024
3025
3026void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3027  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3028  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3029  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3030  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3031}
3032
3033
3034// This code replaces a call to arraycopy; no exception may
3035// be thrown in this code, they must be thrown in the System.arraycopy
3036// activation frame; we could save some checks if this would not be the case
3037void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3038  ciArrayKlass* default_type = op->expected_type();
3039  Register src = op->src()->as_register();
3040  Register dst = op->dst()->as_register();
3041  Register src_pos = op->src_pos()->as_register();
3042  Register dst_pos = op->dst_pos()->as_register();
3043  Register length  = op->length()->as_register();
3044  Register tmp = op->tmp()->as_register();
3045
3046  CodeStub* stub = op->stub();
3047  int flags = op->flags();
3048  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3049  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3050
3051  // if we don't know anything, just go through the generic arraycopy
3052  if (default_type == NULL) {
3053    Label done;
3054    // save outgoing arguments on stack in case call to System.arraycopy is needed
3055    // HACK ALERT. This code used to push the parameters in a hardwired fashion
3056    // for interpreter calling conventions. Now we have to do it in new style conventions.
3057    // For the moment until C1 gets the new register allocator I just force all the
3058    // args to the right place (except the register args) and then on the back side
3059    // reload the register args properly if we go slow path. Yuck
3060
3061    // These are proper for the calling convention
3062    store_parameter(length, 2);
3063    store_parameter(dst_pos, 1);
3064    store_parameter(dst, 0);
3065
3066    // these are just temporary placements until we need to reload
3067    store_parameter(src_pos, 3);
3068    store_parameter(src, 4);
3069    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3070
3071    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3072
3073    address copyfunc_addr = StubRoutines::generic_arraycopy();
3074
3075    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3076#ifdef _LP64
3077    // The arguments are in java calling convention so we can trivially shift them to C
3078    // convention
3079    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3080    __ mov(c_rarg0, j_rarg0);
3081    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3082    __ mov(c_rarg1, j_rarg1);
3083    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3084    __ mov(c_rarg2, j_rarg2);
3085    assert_different_registers(c_rarg3, j_rarg4);
3086    __ mov(c_rarg3, j_rarg3);
3087#ifdef _WIN64
3088    // Allocate abi space for args but be sure to keep stack aligned
3089    __ subptr(rsp, 6*wordSize);
3090    store_parameter(j_rarg4, 4);
3091    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3092      __ call(RuntimeAddress(C_entry));
3093    } else {
3094#ifndef PRODUCT
3095      if (PrintC1Statistics) {
3096        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3097      }
3098#endif
3099      __ call(RuntimeAddress(copyfunc_addr));
3100    }
3101    __ addptr(rsp, 6*wordSize);
3102#else
3103    __ mov(c_rarg4, j_rarg4);
3104    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3105      __ call(RuntimeAddress(C_entry));
3106    } else {
3107#ifndef PRODUCT
3108      if (PrintC1Statistics) {
3109        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3110      }
3111#endif
3112      __ call(RuntimeAddress(copyfunc_addr));
3113    }
3114#endif // _WIN64
3115#else
3116    __ push(length);
3117    __ push(dst_pos);
3118    __ push(dst);
3119    __ push(src_pos);
3120    __ push(src);
3121
3122    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3123      __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3124    } else {
3125#ifndef PRODUCT
3126      if (PrintC1Statistics) {
3127        __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3128      }
3129#endif
3130      __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3131    }
3132
3133#endif // _LP64
3134
3135    __ cmpl(rax, 0);
3136    __ jcc(Assembler::equal, *stub->continuation());
3137
3138    if (copyfunc_addr != NULL) {
3139      __ mov(tmp, rax);
3140      __ xorl(tmp, -1);
3141    }
3142
3143    // Reload values from the stack so they are where the stub
3144    // expects them.
3145    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3146    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3147    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3148    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3149    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3150
3151    if (copyfunc_addr != NULL) {
3152      __ subl(length, tmp);
3153      __ addl(src_pos, tmp);
3154      __ addl(dst_pos, tmp);
3155    }
3156    __ jmp(*stub->entry());
3157
3158    __ bind(*stub->continuation());
3159    return;
3160  }
3161
3162  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3163
3164  int elem_size = type2aelembytes(basic_type);
3165  int shift_amount;
3166  Address::ScaleFactor scale;
3167
3168  switch (elem_size) {
3169    case 1 :
3170      shift_amount = 0;
3171      scale = Address::times_1;
3172      break;
3173    case 2 :
3174      shift_amount = 1;
3175      scale = Address::times_2;
3176      break;
3177    case 4 :
3178      shift_amount = 2;
3179      scale = Address::times_4;
3180      break;
3181    case 8 :
3182      shift_amount = 3;
3183      scale = Address::times_8;
3184      break;
3185    default:
3186      ShouldNotReachHere();
3187  }
3188
3189  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3190  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3191  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3192  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3193
3194  // length and pos's are all sign extended at this point on 64bit
3195
3196  // test for NULL
3197  if (flags & LIR_OpArrayCopy::src_null_check) {
3198    __ testptr(src, src);
3199    __ jcc(Assembler::zero, *stub->entry());
3200  }
3201  if (flags & LIR_OpArrayCopy::dst_null_check) {
3202    __ testptr(dst, dst);
3203    __ jcc(Assembler::zero, *stub->entry());
3204  }
3205
3206  // check if negative
3207  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3208    __ testl(src_pos, src_pos);
3209    __ jcc(Assembler::less, *stub->entry());
3210  }
3211  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3212    __ testl(dst_pos, dst_pos);
3213    __ jcc(Assembler::less, *stub->entry());
3214  }
3215
3216  if (flags & LIR_OpArrayCopy::src_range_check) {
3217    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3218    __ cmpl(tmp, src_length_addr);
3219    __ jcc(Assembler::above, *stub->entry());
3220  }
3221  if (flags & LIR_OpArrayCopy::dst_range_check) {
3222    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3223    __ cmpl(tmp, dst_length_addr);
3224    __ jcc(Assembler::above, *stub->entry());
3225  }
3226
3227  if (flags & LIR_OpArrayCopy::length_positive_check) {
3228    __ testl(length, length);
3229    __ jcc(Assembler::less, *stub->entry());
3230    __ jcc(Assembler::zero, *stub->continuation());
3231  }
3232
3233#ifdef _LP64
3234  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3235  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3236#endif
3237
3238  if (flags & LIR_OpArrayCopy::type_check) {
3239    // We don't know the array types are compatible
3240    if (basic_type != T_OBJECT) {
3241      // Simple test for basic type arrays
3242      if (UseCompressedOops) {
3243        __ movl(tmp, src_klass_addr);
3244        __ cmpl(tmp, dst_klass_addr);
3245      } else {
3246        __ movptr(tmp, src_klass_addr);
3247        __ cmpptr(tmp, dst_klass_addr);
3248      }
3249      __ jcc(Assembler::notEqual, *stub->entry());
3250    } else {
3251      // For object arrays, if src is a sub class of dst then we can
3252      // safely do the copy.
3253      Label cont, slow;
3254
3255      __ push(src);
3256      __ push(dst);
3257
3258      __ load_klass(src, src);
3259      __ load_klass(dst, dst);
3260
3261      __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3262
3263      __ push(src);
3264      __ push(dst);
3265      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3266      __ pop(dst);
3267      __ pop(src);
3268
3269      __ cmpl(src, 0);
3270      __ jcc(Assembler::notEqual, cont);
3271
3272      __ bind(slow);
3273      __ pop(dst);
3274      __ pop(src);
3275
3276      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3277      if (copyfunc_addr != NULL) { // use stub if available
3278        // src is not a sub class of dst so we have to do a
3279        // per-element check.
3280
3281        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3282        if ((flags & mask) != mask) {
3283          // Check that at least both of them object arrays.
3284          assert(flags & mask, "one of the two should be known to be an object array");
3285
3286          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3287            __ load_klass(tmp, src);
3288          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3289            __ load_klass(tmp, dst);
3290          }
3291          int lh_offset = in_bytes(Klass::layout_helper_offset());
3292          Address klass_lh_addr(tmp, lh_offset);
3293          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3294          __ cmpl(klass_lh_addr, objArray_lh);
3295          __ jcc(Assembler::notEqual, *stub->entry());
3296        }
3297
3298       // Spill because stubs can use any register they like and it's
3299       // easier to restore just those that we care about.
3300       store_parameter(dst, 0);
3301       store_parameter(dst_pos, 1);
3302       store_parameter(length, 2);
3303       store_parameter(src_pos, 3);
3304       store_parameter(src, 4);
3305
3306#ifndef _LP64
3307        __ movptr(tmp, dst_klass_addr);
3308        __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
3309        __ push(tmp);
3310        __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3311        __ push(tmp);
3312        __ push(length);
3313        __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3314        __ push(tmp);
3315        __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3316        __ push(tmp);
3317
3318        __ call_VM_leaf(copyfunc_addr, 5);
3319#else
3320        __ movl2ptr(length, length); //higher 32bits must be null
3321
3322        __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3323        assert_different_registers(c_rarg0, dst, dst_pos, length);
3324        __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3325        assert_different_registers(c_rarg1, dst, length);
3326
3327        __ mov(c_rarg2, length);
3328        assert_different_registers(c_rarg2, dst);
3329
3330#ifdef _WIN64
3331        // Allocate abi space for args but be sure to keep stack aligned
3332        __ subptr(rsp, 6*wordSize);
3333        __ load_klass(c_rarg3, dst);
3334        __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
3335        store_parameter(c_rarg3, 4);
3336        __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3337        __ call(RuntimeAddress(copyfunc_addr));
3338        __ addptr(rsp, 6*wordSize);
3339#else
3340        __ load_klass(c_rarg4, dst);
3341        __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
3342        __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3343        __ call(RuntimeAddress(copyfunc_addr));
3344#endif
3345
3346#endif
3347
3348#ifndef PRODUCT
3349        if (PrintC1Statistics) {
3350          Label failed;
3351          __ testl(rax, rax);
3352          __ jcc(Assembler::notZero, failed);
3353          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3354          __ bind(failed);
3355        }
3356#endif
3357
3358        __ testl(rax, rax);
3359        __ jcc(Assembler::zero, *stub->continuation());
3360
3361#ifndef PRODUCT
3362        if (PrintC1Statistics) {
3363          __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3364        }
3365#endif
3366
3367        __ mov(tmp, rax);
3368
3369        __ xorl(tmp, -1);
3370
3371        // Restore previously spilled arguments
3372        __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3373        __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3374        __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3375        __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3376        __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3377
3378
3379        __ subl(length, tmp);
3380        __ addl(src_pos, tmp);
3381        __ addl(dst_pos, tmp);
3382      }
3383
3384      __ jmp(*stub->entry());
3385
3386      __ bind(cont);
3387      __ pop(dst);
3388      __ pop(src);
3389    }
3390  }
3391
3392#ifdef ASSERT
3393  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3394    // Sanity check the known type with the incoming class.  For the
3395    // primitive case the types must match exactly with src.klass and
3396    // dst.klass each exactly matching the default type.  For the
3397    // object array case, if no type check is needed then either the
3398    // dst type is exactly the expected type and the src type is a
3399    // subtype which we can't check or src is the same array as dst
3400    // but not necessarily exactly of type default_type.
3401    Label known_ok, halt;
3402    __ movoop(tmp, default_type->constant_encoding());
3403#ifdef _LP64
3404    if (UseCompressedOops) {
3405      __ encode_heap_oop(tmp);
3406    }
3407#endif
3408
3409    if (basic_type != T_OBJECT) {
3410
3411      if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3412      else                   __ cmpptr(tmp, dst_klass_addr);
3413      __ jcc(Assembler::notEqual, halt);
3414      if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3415      else                   __ cmpptr(tmp, src_klass_addr);
3416      __ jcc(Assembler::equal, known_ok);
3417    } else {
3418      if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3419      else                   __ cmpptr(tmp, dst_klass_addr);
3420      __ jcc(Assembler::equal, known_ok);
3421      __ cmpptr(src, dst);
3422      __ jcc(Assembler::equal, known_ok);
3423    }
3424    __ bind(halt);
3425    __ stop("incorrect type information in arraycopy");
3426    __ bind(known_ok);
3427  }
3428#endif
3429
3430#ifndef PRODUCT
3431  if (PrintC1Statistics) {
3432    __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3433  }
3434#endif
3435
3436#ifdef _LP64
3437  assert_different_registers(c_rarg0, dst, dst_pos, length);
3438  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3439  assert_different_registers(c_rarg1, length);
3440  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3441  __ mov(c_rarg2, length);
3442
3443#else
3444  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3445  store_parameter(tmp, 0);
3446  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3447  store_parameter(tmp, 1);
3448  store_parameter(length, 2);
3449#endif // _LP64
3450
3451  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3452  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3453  const char *name;
3454  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3455  __ call_VM_leaf(entry, 0);
3456
3457  __ bind(*stub->continuation());
3458}
3459
3460
3461void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3462  Register obj = op->obj_opr()->as_register();  // may not be an oop
3463  Register hdr = op->hdr_opr()->as_register();
3464  Register lock = op->lock_opr()->as_register();
3465  if (!UseFastLocking) {
3466    __ jmp(*op->stub()->entry());
3467  } else if (op->code() == lir_lock) {
3468    Register scratch = noreg;
3469    if (UseBiasedLocking) {
3470      scratch = op->scratch_opr()->as_register();
3471    }
3472    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3473    // add debug info for NullPointerException only if one is possible
3474    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3475    if (op->info() != NULL) {
3476      add_debug_info_for_null_check(null_check_offset, op->info());
3477    }
3478    // done
3479  } else if (op->code() == lir_unlock) {
3480    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3481    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3482  } else {
3483    Unimplemented();
3484  }
3485  __ bind(*op->stub()->continuation());
3486}
3487
3488
3489void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3490  ciMethod* method = op->profiled_method();
3491  int bci          = op->profiled_bci();
3492
3493  // Update counter for all call types
3494  ciMethodData* md = method->method_data_or_null();
3495  assert(md != NULL, "Sanity");
3496  ciProfileData* data = md->bci_to_data(bci);
3497  assert(data->is_CounterData(), "need CounterData for calls");
3498  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3499  Register mdo  = op->mdo()->as_register();
3500  __ movoop(mdo, md->constant_encoding());
3501  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3502  Bytecodes::Code bc = method->java_code_at_bci(bci);
3503  // Perform additional virtual call profiling for invokevirtual and
3504  // invokeinterface bytecodes
3505  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3506      C1ProfileVirtualCalls) {
3507    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3508    Register recv = op->recv()->as_register();
3509    assert_different_registers(mdo, recv);
3510    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3511    ciKlass* known_klass = op->known_holder();
3512    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3513      // We know the type that will be seen at this call site; we can
3514      // statically update the methodDataOop rather than needing to do
3515      // dynamic tests on the receiver type
3516
3517      // NOTE: we should probably put a lock around this search to
3518      // avoid collisions by concurrent compilations
3519      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3520      uint i;
3521      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3522        ciKlass* receiver = vc_data->receiver(i);
3523        if (known_klass->equals(receiver)) {
3524          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3525          __ addptr(data_addr, DataLayout::counter_increment);
3526          return;
3527        }
3528      }
3529
3530      // Receiver type not found in profile data; select an empty slot
3531
3532      // Note that this is less efficient than it should be because it
3533      // always does a write to the receiver part of the
3534      // VirtualCallData rather than just the first time
3535      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3536        ciKlass* receiver = vc_data->receiver(i);
3537        if (receiver == NULL) {
3538          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3539          __ movoop(recv_addr, known_klass->constant_encoding());
3540          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3541          __ addptr(data_addr, DataLayout::counter_increment);
3542          return;
3543        }
3544      }
3545    } else {
3546      __ load_klass(recv, recv);
3547      Label update_done;
3548      type_profile_helper(mdo, md, data, recv, &update_done);
3549      // Receiver did not match any saved receiver and there is no empty row for it.
3550      // Increment total counter to indicate polymorphic case.
3551      __ addptr(counter_addr, DataLayout::counter_increment);
3552
3553      __ bind(update_done);
3554    }
3555  } else {
3556    // Static call
3557    __ addptr(counter_addr, DataLayout::counter_increment);
3558  }
3559}
3560
3561void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3562  Unimplemented();
3563}
3564
3565
3566void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3567  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3568}
3569
3570
3571void LIR_Assembler::align_backward_branch_target() {
3572  __ align(BytesPerWord);
3573}
3574
3575
3576void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3577  if (left->is_single_cpu()) {
3578    __ negl(left->as_register());
3579    move_regs(left->as_register(), dest->as_register());
3580
3581  } else if (left->is_double_cpu()) {
3582    Register lo = left->as_register_lo();
3583#ifdef _LP64
3584    Register dst = dest->as_register_lo();
3585    __ movptr(dst, lo);
3586    __ negptr(dst);
3587#else
3588    Register hi = left->as_register_hi();
3589    __ lneg(hi, lo);
3590    if (dest->as_register_lo() == hi) {
3591      assert(dest->as_register_hi() != lo, "destroying register");
3592      move_regs(hi, dest->as_register_hi());
3593      move_regs(lo, dest->as_register_lo());
3594    } else {
3595      move_regs(lo, dest->as_register_lo());
3596      move_regs(hi, dest->as_register_hi());
3597    }
3598#endif // _LP64
3599
3600  } else if (dest->is_single_xmm()) {
3601    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3602      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3603    }
3604    __ xorps(dest->as_xmm_float_reg(),
3605             ExternalAddress((address)float_signflip_pool));
3606
3607  } else if (dest->is_double_xmm()) {
3608    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3609      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3610    }
3611    __ xorpd(dest->as_xmm_double_reg(),
3612             ExternalAddress((address)double_signflip_pool));
3613
3614  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3615    assert(left->fpu() == 0, "arg must be on TOS");
3616    assert(dest->fpu() == 0, "dest must be TOS");
3617    __ fchs();
3618
3619  } else {
3620    ShouldNotReachHere();
3621  }
3622}
3623
3624
3625void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3626  assert(addr->is_address() && dest->is_register(), "check");
3627  Register reg;
3628  reg = dest->as_pointer_register();
3629  __ lea(reg, as_Address(addr->as_address_ptr()));
3630}
3631
3632
3633
3634void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3635  assert(!tmp->is_valid(), "don't need temporary");
3636  __ call(RuntimeAddress(dest));
3637  if (info != NULL) {
3638    add_call_info_here(info);
3639  }
3640}
3641
3642
3643void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3644  assert(type == T_LONG, "only for volatile long fields");
3645
3646  if (info != NULL) {
3647    add_debug_info_for_null_check_here(info);
3648  }
3649
3650  if (src->is_double_xmm()) {
3651    if (dest->is_double_cpu()) {
3652#ifdef _LP64
3653      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3654#else
3655      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3656      __ psrlq(src->as_xmm_double_reg(), 32);
3657      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3658#endif // _LP64
3659    } else if (dest->is_double_stack()) {
3660      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3661    } else if (dest->is_address()) {
3662      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3663    } else {
3664      ShouldNotReachHere();
3665    }
3666
3667  } else if (dest->is_double_xmm()) {
3668    if (src->is_double_stack()) {
3669      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3670    } else if (src->is_address()) {
3671      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3672    } else {
3673      ShouldNotReachHere();
3674    }
3675
3676  } else if (src->is_double_fpu()) {
3677    assert(src->fpu_regnrLo() == 0, "must be TOS");
3678    if (dest->is_double_stack()) {
3679      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3680    } else if (dest->is_address()) {
3681      __ fistp_d(as_Address(dest->as_address_ptr()));
3682    } else {
3683      ShouldNotReachHere();
3684    }
3685
3686  } else if (dest->is_double_fpu()) {
3687    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3688    if (src->is_double_stack()) {
3689      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3690    } else if (src->is_address()) {
3691      __ fild_d(as_Address(src->as_address_ptr()));
3692    } else {
3693      ShouldNotReachHere();
3694    }
3695  } else {
3696    ShouldNotReachHere();
3697  }
3698}
3699
3700
3701void LIR_Assembler::membar() {
3702  // QQQ sparc TSO uses this,
3703  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3704}
3705
3706void LIR_Assembler::membar_acquire() {
3707  // No x86 machines currently require load fences
3708  // __ load_fence();
3709}
3710
3711void LIR_Assembler::membar_release() {
3712  // No x86 machines currently require store fences
3713  // __ store_fence();
3714}
3715
3716void LIR_Assembler::membar_loadload() {
3717  // no-op
3718  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3719}
3720
3721void LIR_Assembler::membar_storestore() {
3722  // no-op
3723  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3724}
3725
3726void LIR_Assembler::membar_loadstore() {
3727  // no-op
3728  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3729}
3730
3731void LIR_Assembler::membar_storeload() {
3732  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3733}
3734
3735void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3736  assert(result_reg->is_register(), "check");
3737#ifdef _LP64
3738  // __ get_thread(result_reg->as_register_lo());
3739  __ mov(result_reg->as_register(), r15_thread);
3740#else
3741  __ get_thread(result_reg->as_register());
3742#endif // _LP64
3743}
3744
3745
3746void LIR_Assembler::peephole(LIR_List*) {
3747  // do nothing for now
3748}
3749
3750
3751#undef __
3752