c1_LIRAssembler_x86.cpp revision 1914:5ddfcf4b079e
1/*
2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_LIRAssembler.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "c1/c1_ValueStack.hpp"
31#include "ci/ciArrayKlass.hpp"
32#include "ci/ciInstance.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "memory/barrierSet.hpp"
35#include "memory/cardTableModRefBS.hpp"
36#include "nativeInst_x86.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "runtime/sharedRuntime.hpp"
39
40
41// These masks are used to provide 128-bit aligned bitmasks to the XMM
42// instructions, to allow sign-masking or sign-bit flipping.  They allow
43// fast versions of NegF/NegD and AbsF/AbsD.
44
45// Note: 'double' and 'long long' have 32-bits alignment on x86.
46static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
47  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
48  // of 128-bits operands for SSE instructions.
49  jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
50  // Store the value to a 128-bits operand.
51  operand[0] = lo;
52  operand[1] = hi;
53  return operand;
54}
55
56// Buffer for 128-bits masks used by SSE instructions.
57static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
58
59// Static initialization during VM startup.
60static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
61static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
62static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
63static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
64
65
66
67NEEDS_CLEANUP // remove this definitions ?
68const Register IC_Klass    = rax;   // where the IC klass is cached
69const Register SYNC_header = rax;   // synchronization header
70const Register SHIFT_count = rcx;   // where count for shift operations must be
71
72#define __ _masm->
73
74
75static void select_different_registers(Register preserve,
76                                       Register extra,
77                                       Register &tmp1,
78                                       Register &tmp2) {
79  if (tmp1 == preserve) {
80    assert_different_registers(tmp1, tmp2, extra);
81    tmp1 = extra;
82  } else if (tmp2 == preserve) {
83    assert_different_registers(tmp1, tmp2, extra);
84    tmp2 = extra;
85  }
86  assert_different_registers(preserve, tmp1, tmp2);
87}
88
89
90
91static void select_different_registers(Register preserve,
92                                       Register extra,
93                                       Register &tmp1,
94                                       Register &tmp2,
95                                       Register &tmp3) {
96  if (tmp1 == preserve) {
97    assert_different_registers(tmp1, tmp2, tmp3, extra);
98    tmp1 = extra;
99  } else if (tmp2 == preserve) {
100    assert_different_registers(tmp1, tmp2, tmp3, extra);
101    tmp2 = extra;
102  } else if (tmp3 == preserve) {
103    assert_different_registers(tmp1, tmp2, tmp3, extra);
104    tmp3 = extra;
105  }
106  assert_different_registers(preserve, tmp1, tmp2, tmp3);
107}
108
109
110
111bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
112  if (opr->is_constant()) {
113    LIR_Const* constant = opr->as_constant_ptr();
114    switch (constant->type()) {
115      case T_INT: {
116        return true;
117      }
118
119      default:
120        return false;
121    }
122  }
123  return false;
124}
125
126
127LIR_Opr LIR_Assembler::receiverOpr() {
128  return FrameMap::receiver_opr;
129}
130
131LIR_Opr LIR_Assembler::incomingReceiverOpr() {
132  return receiverOpr();
133}
134
135LIR_Opr LIR_Assembler::osrBufferPointer() {
136  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
137}
138
139//--------------fpu register translations-----------------------
140
141
142address LIR_Assembler::float_constant(float f) {
143  address const_addr = __ float_constant(f);
144  if (const_addr == NULL) {
145    bailout("const section overflow");
146    return __ code()->consts()->start();
147  } else {
148    return const_addr;
149  }
150}
151
152
153address LIR_Assembler::double_constant(double d) {
154  address const_addr = __ double_constant(d);
155  if (const_addr == NULL) {
156    bailout("const section overflow");
157    return __ code()->consts()->start();
158  } else {
159    return const_addr;
160  }
161}
162
163
164void LIR_Assembler::set_24bit_FPU() {
165  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
166}
167
168void LIR_Assembler::reset_FPU() {
169  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
170}
171
172void LIR_Assembler::fpop() {
173  __ fpop();
174}
175
176void LIR_Assembler::fxch(int i) {
177  __ fxch(i);
178}
179
180void LIR_Assembler::fld(int i) {
181  __ fld_s(i);
182}
183
184void LIR_Assembler::ffree(int i) {
185  __ ffree(i);
186}
187
188void LIR_Assembler::breakpoint() {
189  __ int3();
190}
191
192void LIR_Assembler::push(LIR_Opr opr) {
193  if (opr->is_single_cpu()) {
194    __ push_reg(opr->as_register());
195  } else if (opr->is_double_cpu()) {
196    NOT_LP64(__ push_reg(opr->as_register_hi()));
197    __ push_reg(opr->as_register_lo());
198  } else if (opr->is_stack()) {
199    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
200  } else if (opr->is_constant()) {
201    LIR_Const* const_opr = opr->as_constant_ptr();
202    if (const_opr->type() == T_OBJECT) {
203      __ push_oop(const_opr->as_jobject());
204    } else if (const_opr->type() == T_INT) {
205      __ push_jint(const_opr->as_jint());
206    } else {
207      ShouldNotReachHere();
208    }
209
210  } else {
211    ShouldNotReachHere();
212  }
213}
214
215void LIR_Assembler::pop(LIR_Opr opr) {
216  if (opr->is_single_cpu()) {
217    __ pop_reg(opr->as_register());
218  } else {
219    ShouldNotReachHere();
220  }
221}
222
223bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
224  return addr->base()->is_illegal() && addr->index()->is_illegal();
225}
226
227//-------------------------------------------
228
229Address LIR_Assembler::as_Address(LIR_Address* addr) {
230  return as_Address(addr, rscratch1);
231}
232
233Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
234  if (addr->base()->is_illegal()) {
235    assert(addr->index()->is_illegal(), "must be illegal too");
236    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
237    if (! __ reachable(laddr)) {
238      __ movptr(tmp, laddr.addr());
239      Address res(tmp, 0);
240      return res;
241    } else {
242      return __ as_Address(laddr);
243    }
244  }
245
246  Register base = addr->base()->as_pointer_register();
247
248  if (addr->index()->is_illegal()) {
249    return Address( base, addr->disp());
250  } else if (addr->index()->is_cpu_register()) {
251    Register index = addr->index()->as_pointer_register();
252    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
253  } else if (addr->index()->is_constant()) {
254    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
255    assert(Assembler::is_simm32(addr_offset), "must be");
256
257    return Address(base, addr_offset);
258  } else {
259    Unimplemented();
260    return Address();
261  }
262}
263
264
265Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
266  Address base = as_Address(addr);
267  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
268}
269
270
271Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
272  return as_Address(addr);
273}
274
275
276void LIR_Assembler::osr_entry() {
277  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
278  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
279  ValueStack* entry_state = osr_entry->state();
280  int number_of_locks = entry_state->locks_size();
281
282  // we jump here if osr happens with the interpreter
283  // state set up to continue at the beginning of the
284  // loop that triggered osr - in particular, we have
285  // the following registers setup:
286  //
287  // rcx: osr buffer
288  //
289
290  // build frame
291  ciMethod* m = compilation()->method();
292  __ build_frame(initial_frame_size_in_bytes());
293
294  // OSR buffer is
295  //
296  // locals[nlocals-1..0]
297  // monitors[0..number_of_locks]
298  //
299  // locals is a direct copy of the interpreter frame so in the osr buffer
300  // so first slot in the local array is the last local from the interpreter
301  // and last slot is local[0] (receiver) from the interpreter
302  //
303  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
304  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
305  // in the interpreter frame (the method lock if a sync method)
306
307  // Initialize monitors in the compiled activation.
308  //   rcx: pointer to osr buffer
309  //
310  // All other registers are dead at this point and the locals will be
311  // copied into place by code emitted in the IR.
312
313  Register OSR_buf = osrBufferPointer()->as_pointer_register();
314  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
315    int monitor_offset = BytesPerWord * method()->max_locals() +
316      (2 * BytesPerWord) * (number_of_locks - 1);
317    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
318    // the OSR buffer using 2 word entries: first the lock and then
319    // the oop.
320    for (int i = 0; i < number_of_locks; i++) {
321      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
322#ifdef ASSERT
323      // verify the interpreter's monitor has a non-null object
324      {
325        Label L;
326        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
327        __ jcc(Assembler::notZero, L);
328        __ stop("locked object is NULL");
329        __ bind(L);
330      }
331#endif
332      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
333      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
334      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
335      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
336    }
337  }
338}
339
340
341// inline cache check; done before the frame is built.
342int LIR_Assembler::check_icache() {
343  Register receiver = FrameMap::receiver_opr->as_register();
344  Register ic_klass = IC_Klass;
345  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
346  const bool do_post_padding = VerifyOops || UseCompressedOops;
347  if (!do_post_padding) {
348    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
349    while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
350      __ nop();
351    }
352  }
353  int offset = __ offset();
354  __ inline_cache_check(receiver, IC_Klass);
355  assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
356  if (do_post_padding) {
357    // force alignment after the cache check.
358    // It's been verified to be aligned if !VerifyOops
359    __ align(CodeEntryAlignment);
360  }
361  return offset;
362}
363
364
365void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
366  jobject o = NULL;
367  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
368  __ movoop(reg, o);
369  patching_epilog(patch, lir_patch_normal, reg, info);
370}
371
372
373void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
374  if (exception->is_valid()) {
375    // preserve exception
376    // note: the monitor_exit runtime call is a leaf routine
377    //       and cannot block => no GC can happen
378    // The slow case (MonitorAccessStub) uses the first two stack slots
379    // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
380    __ movptr (Address(rsp, 2*wordSize), exception);
381  }
382
383  Register obj_reg  = obj_opr->as_register();
384  Register lock_reg = lock_opr->as_register();
385
386  // setup registers (lock_reg must be rax, for lock_object)
387  assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
388  Register hdr = lock_reg;
389  assert(new_hdr == SYNC_header, "wrong register");
390  lock_reg = new_hdr;
391  // compute pointer to BasicLock
392  Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
393  __ lea(lock_reg, lock_addr);
394  // unlock object
395  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
396  // _slow_case_stubs->append(slow_case);
397  // temporary fix: must be created after exceptionhandler, therefore as call stub
398  _slow_case_stubs->append(slow_case);
399  if (UseFastLocking) {
400    // try inlined fast unlocking first, revert to slow locking if it fails
401    // note: lock_reg points to the displaced header since the displaced header offset is 0!
402    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
403    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
404  } else {
405    // always do slow unlocking
406    // note: the slow unlocking code could be inlined here, however if we use
407    //       slow unlocking, speed doesn't matter anyway and this solution is
408    //       simpler and requires less duplicated code - additionally, the
409    //       slow unlocking code is the same in either case which simplifies
410    //       debugging
411    __ jmp(*slow_case->entry());
412  }
413  // done
414  __ bind(*slow_case->continuation());
415
416  if (exception->is_valid()) {
417    // restore exception
418    __ movptr (exception, Address(rsp, 2 * wordSize));
419  }
420}
421
422// This specifies the rsp decrement needed to build the frame
423int LIR_Assembler::initial_frame_size_in_bytes() {
424  // if rounding, must let FrameMap know!
425
426  // The frame_map records size in slots (32bit word)
427
428  // subtract two words to account for return address and link
429  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
430}
431
432
433int LIR_Assembler::emit_exception_handler() {
434  // if the last instruction is a call (typically to do a throw which
435  // is coming at the end after block reordering) the return address
436  // must still point into the code area in order to avoid assertion
437  // failures when searching for the corresponding bci => add a nop
438  // (was bug 5/14/1999 - gri)
439  __ nop();
440
441  // generate code for exception handler
442  address handler_base = __ start_a_stub(exception_handler_size);
443  if (handler_base == NULL) {
444    // not enough space left for the handler
445    bailout("exception handler overflow");
446    return -1;
447  }
448
449  int offset = code_offset();
450
451  // the exception oop and pc are in rax, and rdx
452  // no other registers need to be preserved, so invalidate them
453  __ invalidate_registers(false, true, true, false, true, true);
454
455  // check that there is really an exception
456  __ verify_not_null_oop(rax);
457
458  // search an exception handler (rax: exception oop, rdx: throwing pc)
459  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
460
461  __ stop("should not reach here");
462
463  assert(code_offset() - offset <= exception_handler_size, "overflow");
464  __ end_a_stub();
465
466  return offset;
467}
468
469
470// Emit the code to remove the frame from the stack in the exception
471// unwind path.
472int LIR_Assembler::emit_unwind_handler() {
473#ifndef PRODUCT
474  if (CommentedAssembly) {
475    _masm->block_comment("Unwind handler");
476  }
477#endif
478
479  int offset = code_offset();
480
481  // Fetch the exception from TLS and clear out exception related thread state
482  __ get_thread(rsi);
483  __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
484  __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
485  __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
486
487  __ bind(_unwind_handler_entry);
488  __ verify_not_null_oop(rax);
489  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
490    __ mov(rsi, rax);  // Preserve the exception
491  }
492
493  // Preform needed unlocking
494  MonitorExitStub* stub = NULL;
495  if (method()->is_synchronized()) {
496    monitor_address(0, FrameMap::rax_opr);
497    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
498    __ unlock_object(rdi, rbx, rax, *stub->entry());
499    __ bind(*stub->continuation());
500  }
501
502  if (compilation()->env()->dtrace_method_probes()) {
503    __ get_thread(rax);
504    __ movptr(Address(rsp, 0), rax);
505    __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
506    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
507  }
508
509  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
510    __ mov(rax, rsi);  // Restore the exception
511  }
512
513  // remove the activation and dispatch to the unwind handler
514  __ remove_frame(initial_frame_size_in_bytes());
515  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
516
517  // Emit the slow path assembly
518  if (stub != NULL) {
519    stub->emit_code(this);
520  }
521
522  return offset;
523}
524
525
526int LIR_Assembler::emit_deopt_handler() {
527  // if the last instruction is a call (typically to do a throw which
528  // is coming at the end after block reordering) the return address
529  // must still point into the code area in order to avoid assertion
530  // failures when searching for the corresponding bci => add a nop
531  // (was bug 5/14/1999 - gri)
532  __ nop();
533
534  // generate code for exception handler
535  address handler_base = __ start_a_stub(deopt_handler_size);
536  if (handler_base == NULL) {
537    // not enough space left for the handler
538    bailout("deopt handler overflow");
539    return -1;
540  }
541
542  int offset = code_offset();
543  InternalAddress here(__ pc());
544
545  __ pushptr(here.addr());
546  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
547
548  assert(code_offset() - offset <= deopt_handler_size, "overflow");
549  __ end_a_stub();
550
551  return offset;
552}
553
554
555// This is the fast version of java.lang.String.compare; it has not
556// OSR-entry and therefore, we generate a slow version for OSR's
557void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
558  __ movptr (rbx, rcx); // receiver is in rcx
559  __ movptr (rax, arg1->as_register());
560
561  // Get addresses of first characters from both Strings
562  __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
563  __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
564  __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
565
566
567  // rbx, may be NULL
568  add_debug_info_for_null_check_here(info);
569  __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
570  __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
571  __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
572
573  // compute minimum length (in rax) and difference of lengths (on top of stack)
574  if (VM_Version::supports_cmov()) {
575    __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
576    __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
577    __ mov      (rcx, rbx);
578    __ subptr   (rbx, rax); // subtract lengths
579    __ push     (rbx);      // result
580    __ cmov     (Assembler::lessEqual, rax, rcx);
581  } else {
582    Label L;
583    __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
584    __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
585    __ mov      (rax, rbx);
586    __ subptr   (rbx, rcx);
587    __ push     (rbx);
588    __ jcc      (Assembler::lessEqual, L);
589    __ mov      (rax, rcx);
590    __ bind (L);
591  }
592  // is minimum length 0?
593  Label noLoop, haveResult;
594  __ testptr (rax, rax);
595  __ jcc (Assembler::zero, noLoop);
596
597  // compare first characters
598  __ load_unsigned_short(rcx, Address(rdi, 0));
599  __ load_unsigned_short(rbx, Address(rsi, 0));
600  __ subl(rcx, rbx);
601  __ jcc(Assembler::notZero, haveResult);
602  // starting loop
603  __ decrement(rax); // we already tested index: skip one
604  __ jcc(Assembler::zero, noLoop);
605
606  // set rsi.edi to the end of the arrays (arrays have same length)
607  // negate the index
608
609  __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
610  __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
611  __ negptr(rax);
612
613  // compare the strings in a loop
614
615  Label loop;
616  __ align(wordSize);
617  __ bind(loop);
618  __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
619  __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
620  __ subl(rcx, rbx);
621  __ jcc(Assembler::notZero, haveResult);
622  __ increment(rax);
623  __ jcc(Assembler::notZero, loop);
624
625  // strings are equal up to min length
626
627  __ bind(noLoop);
628  __ pop(rax);
629  return_op(LIR_OprFact::illegalOpr);
630
631  __ bind(haveResult);
632  // leave instruction is going to discard the TOS value
633  __ mov (rax, rcx); // result of call is in rax,
634}
635
636
637void LIR_Assembler::return_op(LIR_Opr result) {
638  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
639  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
640    assert(result->fpu() == 0, "result must already be on TOS");
641  }
642
643  // Pop the stack before the safepoint code
644  __ remove_frame(initial_frame_size_in_bytes());
645
646  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
647
648  // Note: we do not need to round double result; float result has the right precision
649  // the poll sets the condition code, but no data registers
650  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
651                              relocInfo::poll_return_type);
652
653  // NOTE: the requires that the polling page be reachable else the reloc
654  // goes to the movq that loads the address and not the faulting instruction
655  // which breaks the signal handler code
656
657  __ test32(rax, polling_page);
658
659  __ ret(0);
660}
661
662
663int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
664  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
665                              relocInfo::poll_type);
666
667  if (info != NULL) {
668    add_debug_info_for_branch(info);
669  } else {
670    ShouldNotReachHere();
671  }
672
673  int offset = __ offset();
674
675  // NOTE: the requires that the polling page be reachable else the reloc
676  // goes to the movq that loads the address and not the faulting instruction
677  // which breaks the signal handler code
678
679  __ test32(rax, polling_page);
680  return offset;
681}
682
683
684void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
685  if (from_reg != to_reg) __ mov(to_reg, from_reg);
686}
687
688void LIR_Assembler::swap_reg(Register a, Register b) {
689  __ xchgptr(a, b);
690}
691
692
693void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
694  assert(src->is_constant(), "should not call otherwise");
695  assert(dest->is_register(), "should not call otherwise");
696  LIR_Const* c = src->as_constant_ptr();
697
698  switch (c->type()) {
699    case T_INT: {
700      assert(patch_code == lir_patch_none, "no patching handled here");
701      __ movl(dest->as_register(), c->as_jint());
702      break;
703    }
704
705    case T_ADDRESS: {
706      assert(patch_code == lir_patch_none, "no patching handled here");
707      __ movptr(dest->as_register(), c->as_jint());
708      break;
709    }
710
711    case T_LONG: {
712      assert(patch_code == lir_patch_none, "no patching handled here");
713#ifdef _LP64
714      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
715#else
716      __ movptr(dest->as_register_lo(), c->as_jint_lo());
717      __ movptr(dest->as_register_hi(), c->as_jint_hi());
718#endif // _LP64
719      break;
720    }
721
722    case T_OBJECT: {
723      if (patch_code != lir_patch_none) {
724        jobject2reg_with_patching(dest->as_register(), info);
725      } else {
726        __ movoop(dest->as_register(), c->as_jobject());
727      }
728      break;
729    }
730
731    case T_FLOAT: {
732      if (dest->is_single_xmm()) {
733        if (c->is_zero_float()) {
734          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
735        } else {
736          __ movflt(dest->as_xmm_float_reg(),
737                   InternalAddress(float_constant(c->as_jfloat())));
738        }
739      } else {
740        assert(dest->is_single_fpu(), "must be");
741        assert(dest->fpu_regnr() == 0, "dest must be TOS");
742        if (c->is_zero_float()) {
743          __ fldz();
744        } else if (c->is_one_float()) {
745          __ fld1();
746        } else {
747          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
748        }
749      }
750      break;
751    }
752
753    case T_DOUBLE: {
754      if (dest->is_double_xmm()) {
755        if (c->is_zero_double()) {
756          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
757        } else {
758          __ movdbl(dest->as_xmm_double_reg(),
759                    InternalAddress(double_constant(c->as_jdouble())));
760        }
761      } else {
762        assert(dest->is_double_fpu(), "must be");
763        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
764        if (c->is_zero_double()) {
765          __ fldz();
766        } else if (c->is_one_double()) {
767          __ fld1();
768        } else {
769          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
770        }
771      }
772      break;
773    }
774
775    default:
776      ShouldNotReachHere();
777  }
778}
779
780void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
781  assert(src->is_constant(), "should not call otherwise");
782  assert(dest->is_stack(), "should not call otherwise");
783  LIR_Const* c = src->as_constant_ptr();
784
785  switch (c->type()) {
786    case T_INT:  // fall through
787    case T_FLOAT:
788      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
789      break;
790
791    case T_ADDRESS:
792      __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
793      break;
794
795    case T_OBJECT:
796      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
797      break;
798
799    case T_LONG:  // fall through
800    case T_DOUBLE:
801#ifdef _LP64
802      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
803                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
804#else
805      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
806                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
807      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
808                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
809#endif // _LP64
810      break;
811
812    default:
813      ShouldNotReachHere();
814  }
815}
816
817void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
818  assert(src->is_constant(), "should not call otherwise");
819  assert(dest->is_address(), "should not call otherwise");
820  LIR_Const* c = src->as_constant_ptr();
821  LIR_Address* addr = dest->as_address_ptr();
822
823  int null_check_here = code_offset();
824  switch (type) {
825    case T_INT:    // fall through
826    case T_FLOAT:
827      __ movl(as_Address(addr), c->as_jint_bits());
828      break;
829
830    case T_ADDRESS:
831      __ movptr(as_Address(addr), c->as_jint_bits());
832      break;
833
834    case T_OBJECT:  // fall through
835    case T_ARRAY:
836      if (c->as_jobject() == NULL) {
837        if (UseCompressedOops && !wide) {
838          __ movl(as_Address(addr), (int32_t)NULL_WORD);
839        } else {
840          __ movptr(as_Address(addr), NULL_WORD);
841        }
842      } else {
843        if (is_literal_address(addr)) {
844          ShouldNotReachHere();
845          __ movoop(as_Address(addr, noreg), c->as_jobject());
846        } else {
847#ifdef _LP64
848          __ movoop(rscratch1, c->as_jobject());
849          if (UseCompressedOops && !wide) {
850            __ encode_heap_oop(rscratch1);
851            null_check_here = code_offset();
852            __ movl(as_Address_lo(addr), rscratch1);
853          } else {
854            null_check_here = code_offset();
855            __ movptr(as_Address_lo(addr), rscratch1);
856          }
857#else
858          __ movoop(as_Address(addr), c->as_jobject());
859#endif
860        }
861      }
862      break;
863
864    case T_LONG:    // fall through
865    case T_DOUBLE:
866#ifdef _LP64
867      if (is_literal_address(addr)) {
868        ShouldNotReachHere();
869        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
870      } else {
871        __ movptr(r10, (intptr_t)c->as_jlong_bits());
872        null_check_here = code_offset();
873        __ movptr(as_Address_lo(addr), r10);
874      }
875#else
876      // Always reachable in 32bit so this doesn't produce useless move literal
877      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
878      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
879#endif // _LP64
880      break;
881
882    case T_BOOLEAN: // fall through
883    case T_BYTE:
884      __ movb(as_Address(addr), c->as_jint() & 0xFF);
885      break;
886
887    case T_CHAR:    // fall through
888    case T_SHORT:
889      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
890      break;
891
892    default:
893      ShouldNotReachHere();
894  };
895
896  if (info != NULL) {
897    add_debug_info_for_null_check(null_check_here, info);
898  }
899}
900
901
902void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
903  assert(src->is_register(), "should not call otherwise");
904  assert(dest->is_register(), "should not call otherwise");
905
906  // move between cpu-registers
907  if (dest->is_single_cpu()) {
908#ifdef _LP64
909    if (src->type() == T_LONG) {
910      // Can do LONG -> OBJECT
911      move_regs(src->as_register_lo(), dest->as_register());
912      return;
913    }
914#endif
915    assert(src->is_single_cpu(), "must match");
916    if (src->type() == T_OBJECT) {
917      __ verify_oop(src->as_register());
918    }
919    move_regs(src->as_register(), dest->as_register());
920
921  } else if (dest->is_double_cpu()) {
922#ifdef _LP64
923    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
924      // Surprising to me but we can see move of a long to t_object
925      __ verify_oop(src->as_register());
926      move_regs(src->as_register(), dest->as_register_lo());
927      return;
928    }
929#endif
930    assert(src->is_double_cpu(), "must match");
931    Register f_lo = src->as_register_lo();
932    Register f_hi = src->as_register_hi();
933    Register t_lo = dest->as_register_lo();
934    Register t_hi = dest->as_register_hi();
935#ifdef _LP64
936    assert(f_hi == f_lo, "must be same");
937    assert(t_hi == t_lo, "must be same");
938    move_regs(f_lo, t_lo);
939#else
940    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
941
942
943    if (f_lo == t_hi && f_hi == t_lo) {
944      swap_reg(f_lo, f_hi);
945    } else if (f_hi == t_lo) {
946      assert(f_lo != t_hi, "overwriting register");
947      move_regs(f_hi, t_hi);
948      move_regs(f_lo, t_lo);
949    } else {
950      assert(f_hi != t_lo, "overwriting register");
951      move_regs(f_lo, t_lo);
952      move_regs(f_hi, t_hi);
953    }
954#endif // LP64
955
956    // special moves from fpu-register to xmm-register
957    // necessary for method results
958  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
959    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
960    __ fld_s(Address(rsp, 0));
961  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
962    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
963    __ fld_d(Address(rsp, 0));
964  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
965    __ fstp_s(Address(rsp, 0));
966    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
967  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
968    __ fstp_d(Address(rsp, 0));
969    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
970
971    // move between xmm-registers
972  } else if (dest->is_single_xmm()) {
973    assert(src->is_single_xmm(), "must match");
974    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
975  } else if (dest->is_double_xmm()) {
976    assert(src->is_double_xmm(), "must match");
977    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
978
979    // move between fpu-registers (no instruction necessary because of fpu-stack)
980  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
981    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
982    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
983  } else {
984    ShouldNotReachHere();
985  }
986}
987
988void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
989  assert(src->is_register(), "should not call otherwise");
990  assert(dest->is_stack(), "should not call otherwise");
991
992  if (src->is_single_cpu()) {
993    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
994    if (type == T_OBJECT || type == T_ARRAY) {
995      __ verify_oop(src->as_register());
996      __ movptr (dst, src->as_register());
997    } else {
998      __ movl (dst, src->as_register());
999    }
1000
1001  } else if (src->is_double_cpu()) {
1002    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
1003    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
1004    __ movptr (dstLO, src->as_register_lo());
1005    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
1006
1007  } else if (src->is_single_xmm()) {
1008    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1009    __ movflt(dst_addr, src->as_xmm_float_reg());
1010
1011  } else if (src->is_double_xmm()) {
1012    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1013    __ movdbl(dst_addr, src->as_xmm_double_reg());
1014
1015  } else if (src->is_single_fpu()) {
1016    assert(src->fpu_regnr() == 0, "argument must be on TOS");
1017    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1018    if (pop_fpu_stack)     __ fstp_s (dst_addr);
1019    else                   __ fst_s  (dst_addr);
1020
1021  } else if (src->is_double_fpu()) {
1022    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1023    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1024    if (pop_fpu_stack)     __ fstp_d (dst_addr);
1025    else                   __ fst_d  (dst_addr);
1026
1027  } else {
1028    ShouldNotReachHere();
1029  }
1030}
1031
1032
1033void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1034  LIR_Address* to_addr = dest->as_address_ptr();
1035  PatchingStub* patch = NULL;
1036  Register compressed_src = rscratch1;
1037
1038  if (type == T_ARRAY || type == T_OBJECT) {
1039    __ verify_oop(src->as_register());
1040#ifdef _LP64
1041    if (UseCompressedOops && !wide) {
1042      __ movptr(compressed_src, src->as_register());
1043      __ encode_heap_oop(compressed_src);
1044    }
1045#endif
1046  }
1047
1048  if (patch_code != lir_patch_none) {
1049    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1050    Address toa = as_Address(to_addr);
1051    assert(toa.disp() != 0, "must have");
1052  }
1053
1054  int null_check_here = code_offset();
1055  switch (type) {
1056    case T_FLOAT: {
1057      if (src->is_single_xmm()) {
1058        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1059      } else {
1060        assert(src->is_single_fpu(), "must be");
1061        assert(src->fpu_regnr() == 0, "argument must be on TOS");
1062        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1063        else                    __ fst_s (as_Address(to_addr));
1064      }
1065      break;
1066    }
1067
1068    case T_DOUBLE: {
1069      if (src->is_double_xmm()) {
1070        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1071      } else {
1072        assert(src->is_double_fpu(), "must be");
1073        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1074        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1075        else                    __ fst_d (as_Address(to_addr));
1076      }
1077      break;
1078    }
1079
1080    case T_ARRAY:   // fall through
1081    case T_OBJECT:  // fall through
1082      if (UseCompressedOops && !wide) {
1083        __ movl(as_Address(to_addr), compressed_src);
1084      } else {
1085        __ movptr(as_Address(to_addr), src->as_register());
1086      }
1087      break;
1088    case T_ADDRESS:
1089      __ movptr(as_Address(to_addr), src->as_register());
1090      break;
1091    case T_INT:
1092      __ movl(as_Address(to_addr), src->as_register());
1093      break;
1094
1095    case T_LONG: {
1096      Register from_lo = src->as_register_lo();
1097      Register from_hi = src->as_register_hi();
1098#ifdef _LP64
1099      __ movptr(as_Address_lo(to_addr), from_lo);
1100#else
1101      Register base = to_addr->base()->as_register();
1102      Register index = noreg;
1103      if (to_addr->index()->is_register()) {
1104        index = to_addr->index()->as_register();
1105      }
1106      if (base == from_lo || index == from_lo) {
1107        assert(base != from_hi, "can't be");
1108        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1109        __ movl(as_Address_hi(to_addr), from_hi);
1110        if (patch != NULL) {
1111          patching_epilog(patch, lir_patch_high, base, info);
1112          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1113          patch_code = lir_patch_low;
1114        }
1115        __ movl(as_Address_lo(to_addr), from_lo);
1116      } else {
1117        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1118        __ movl(as_Address_lo(to_addr), from_lo);
1119        if (patch != NULL) {
1120          patching_epilog(patch, lir_patch_low, base, info);
1121          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1122          patch_code = lir_patch_high;
1123        }
1124        __ movl(as_Address_hi(to_addr), from_hi);
1125      }
1126#endif // _LP64
1127      break;
1128    }
1129
1130    case T_BYTE:    // fall through
1131    case T_BOOLEAN: {
1132      Register src_reg = src->as_register();
1133      Address dst_addr = as_Address(to_addr);
1134      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1135      __ movb(dst_addr, src_reg);
1136      break;
1137    }
1138
1139    case T_CHAR:    // fall through
1140    case T_SHORT:
1141      __ movw(as_Address(to_addr), src->as_register());
1142      break;
1143
1144    default:
1145      ShouldNotReachHere();
1146  }
1147  if (info != NULL) {
1148    add_debug_info_for_null_check(null_check_here, info);
1149  }
1150
1151  if (patch_code != lir_patch_none) {
1152    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1153  }
1154}
1155
1156
1157void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1158  assert(src->is_stack(), "should not call otherwise");
1159  assert(dest->is_register(), "should not call otherwise");
1160
1161  if (dest->is_single_cpu()) {
1162    if (type == T_ARRAY || type == T_OBJECT) {
1163      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1164      __ verify_oop(dest->as_register());
1165    } else {
1166      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1167    }
1168
1169  } else if (dest->is_double_cpu()) {
1170    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1171    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1172    __ movptr(dest->as_register_lo(), src_addr_LO);
1173    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1174
1175  } else if (dest->is_single_xmm()) {
1176    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1177    __ movflt(dest->as_xmm_float_reg(), src_addr);
1178
1179  } else if (dest->is_double_xmm()) {
1180    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1181    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1182
1183  } else if (dest->is_single_fpu()) {
1184    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1185    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1186    __ fld_s(src_addr);
1187
1188  } else if (dest->is_double_fpu()) {
1189    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1190    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1191    __ fld_d(src_addr);
1192
1193  } else {
1194    ShouldNotReachHere();
1195  }
1196}
1197
1198
1199void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1200  if (src->is_single_stack()) {
1201    if (type == T_OBJECT || type == T_ARRAY) {
1202      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1203      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1204    } else {
1205#ifndef _LP64
1206      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1207      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1208#else
1209      //no pushl on 64bits
1210      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1211      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1212#endif
1213    }
1214
1215  } else if (src->is_double_stack()) {
1216#ifdef _LP64
1217    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1218    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1219#else
1220    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1221    // push and pop the part at src + wordSize, adding wordSize for the previous push
1222    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1223    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1224    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1225#endif // _LP64
1226
1227  } else {
1228    ShouldNotReachHere();
1229  }
1230}
1231
1232
1233void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1234  assert(src->is_address(), "should not call otherwise");
1235  assert(dest->is_register(), "should not call otherwise");
1236
1237  LIR_Address* addr = src->as_address_ptr();
1238  Address from_addr = as_Address(addr);
1239
1240  switch (type) {
1241    case T_BOOLEAN: // fall through
1242    case T_BYTE:    // fall through
1243    case T_CHAR:    // fall through
1244    case T_SHORT:
1245      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1246        // on pre P6 processors we may get partial register stalls
1247        // so blow away the value of to_rinfo before loading a
1248        // partial word into it.  Do it here so that it precedes
1249        // the potential patch point below.
1250        __ xorptr(dest->as_register(), dest->as_register());
1251      }
1252      break;
1253  }
1254
1255  PatchingStub* patch = NULL;
1256  if (patch_code != lir_patch_none) {
1257    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1258    assert(from_addr.disp() != 0, "must have");
1259  }
1260  if (info != NULL) {
1261    add_debug_info_for_null_check_here(info);
1262  }
1263
1264  switch (type) {
1265    case T_FLOAT: {
1266      if (dest->is_single_xmm()) {
1267        __ movflt(dest->as_xmm_float_reg(), from_addr);
1268      } else {
1269        assert(dest->is_single_fpu(), "must be");
1270        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1271        __ fld_s(from_addr);
1272      }
1273      break;
1274    }
1275
1276    case T_DOUBLE: {
1277      if (dest->is_double_xmm()) {
1278        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1279      } else {
1280        assert(dest->is_double_fpu(), "must be");
1281        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1282        __ fld_d(from_addr);
1283      }
1284      break;
1285    }
1286
1287    case T_OBJECT:  // fall through
1288    case T_ARRAY:   // fall through
1289      if (UseCompressedOops && !wide) {
1290        __ movl(dest->as_register(), from_addr);
1291      } else {
1292        __ movptr(dest->as_register(), from_addr);
1293      }
1294      break;
1295
1296    case T_ADDRESS:
1297      __ movptr(dest->as_register(), from_addr);
1298      break;
1299    case T_INT:
1300      __ movl(dest->as_register(), from_addr);
1301      break;
1302
1303    case T_LONG: {
1304      Register to_lo = dest->as_register_lo();
1305      Register to_hi = dest->as_register_hi();
1306#ifdef _LP64
1307      __ movptr(to_lo, as_Address_lo(addr));
1308#else
1309      Register base = addr->base()->as_register();
1310      Register index = noreg;
1311      if (addr->index()->is_register()) {
1312        index = addr->index()->as_register();
1313      }
1314      if ((base == to_lo && index == to_hi) ||
1315          (base == to_hi && index == to_lo)) {
1316        // addresses with 2 registers are only formed as a result of
1317        // array access so this code will never have to deal with
1318        // patches or null checks.
1319        assert(info == NULL && patch == NULL, "must be");
1320        __ lea(to_hi, as_Address(addr));
1321        __ movl(to_lo, Address(to_hi, 0));
1322        __ movl(to_hi, Address(to_hi, BytesPerWord));
1323      } else if (base == to_lo || index == to_lo) {
1324        assert(base != to_hi, "can't be");
1325        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1326        __ movl(to_hi, as_Address_hi(addr));
1327        if (patch != NULL) {
1328          patching_epilog(patch, lir_patch_high, base, info);
1329          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1330          patch_code = lir_patch_low;
1331        }
1332        __ movl(to_lo, as_Address_lo(addr));
1333      } else {
1334        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1335        __ movl(to_lo, as_Address_lo(addr));
1336        if (patch != NULL) {
1337          patching_epilog(patch, lir_patch_low, base, info);
1338          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1339          patch_code = lir_patch_high;
1340        }
1341        __ movl(to_hi, as_Address_hi(addr));
1342      }
1343#endif // _LP64
1344      break;
1345    }
1346
1347    case T_BOOLEAN: // fall through
1348    case T_BYTE: {
1349      Register dest_reg = dest->as_register();
1350      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1351      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1352        __ movsbl(dest_reg, from_addr);
1353      } else {
1354        __ movb(dest_reg, from_addr);
1355        __ shll(dest_reg, 24);
1356        __ sarl(dest_reg, 24);
1357      }
1358      break;
1359    }
1360
1361    case T_CHAR: {
1362      Register dest_reg = dest->as_register();
1363      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1364      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1365        __ movzwl(dest_reg, from_addr);
1366      } else {
1367        __ movw(dest_reg, from_addr);
1368      }
1369      break;
1370    }
1371
1372    case T_SHORT: {
1373      Register dest_reg = dest->as_register();
1374      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1375        __ movswl(dest_reg, from_addr);
1376      } else {
1377        __ movw(dest_reg, from_addr);
1378        __ shll(dest_reg, 16);
1379        __ sarl(dest_reg, 16);
1380      }
1381      break;
1382    }
1383
1384    default:
1385      ShouldNotReachHere();
1386  }
1387
1388  if (patch != NULL) {
1389    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1390  }
1391
1392  if (type == T_ARRAY || type == T_OBJECT) {
1393#ifdef _LP64
1394    if (UseCompressedOops && !wide) {
1395      __ decode_heap_oop(dest->as_register());
1396    }
1397#endif
1398    __ verify_oop(dest->as_register());
1399  }
1400}
1401
1402
1403void LIR_Assembler::prefetchr(LIR_Opr src) {
1404  LIR_Address* addr = src->as_address_ptr();
1405  Address from_addr = as_Address(addr);
1406
1407  if (VM_Version::supports_sse()) {
1408    switch (ReadPrefetchInstr) {
1409      case 0:
1410        __ prefetchnta(from_addr); break;
1411      case 1:
1412        __ prefetcht0(from_addr); break;
1413      case 2:
1414        __ prefetcht2(from_addr); break;
1415      default:
1416        ShouldNotReachHere(); break;
1417    }
1418  } else if (VM_Version::supports_3dnow()) {
1419    __ prefetchr(from_addr);
1420  }
1421}
1422
1423
1424void LIR_Assembler::prefetchw(LIR_Opr src) {
1425  LIR_Address* addr = src->as_address_ptr();
1426  Address from_addr = as_Address(addr);
1427
1428  if (VM_Version::supports_sse()) {
1429    switch (AllocatePrefetchInstr) {
1430      case 0:
1431        __ prefetchnta(from_addr); break;
1432      case 1:
1433        __ prefetcht0(from_addr); break;
1434      case 2:
1435        __ prefetcht2(from_addr); break;
1436      case 3:
1437        __ prefetchw(from_addr); break;
1438      default:
1439        ShouldNotReachHere(); break;
1440    }
1441  } else if (VM_Version::supports_3dnow()) {
1442    __ prefetchw(from_addr);
1443  }
1444}
1445
1446
1447NEEDS_CLEANUP; // This could be static?
1448Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1449  int elem_size = type2aelembytes(type);
1450  switch (elem_size) {
1451    case 1: return Address::times_1;
1452    case 2: return Address::times_2;
1453    case 4: return Address::times_4;
1454    case 8: return Address::times_8;
1455  }
1456  ShouldNotReachHere();
1457  return Address::no_scale;
1458}
1459
1460
1461void LIR_Assembler::emit_op3(LIR_Op3* op) {
1462  switch (op->code()) {
1463    case lir_idiv:
1464    case lir_irem:
1465      arithmetic_idiv(op->code(),
1466                      op->in_opr1(),
1467                      op->in_opr2(),
1468                      op->in_opr3(),
1469                      op->result_opr(),
1470                      op->info());
1471      break;
1472    default:      ShouldNotReachHere(); break;
1473  }
1474}
1475
1476void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1477#ifdef ASSERT
1478  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1479  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1480  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1481#endif
1482
1483  if (op->cond() == lir_cond_always) {
1484    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1485    __ jmp (*(op->label()));
1486  } else {
1487    Assembler::Condition acond = Assembler::zero;
1488    if (op->code() == lir_cond_float_branch) {
1489      assert(op->ublock() != NULL, "must have unordered successor");
1490      __ jcc(Assembler::parity, *(op->ublock()->label()));
1491      switch(op->cond()) {
1492        case lir_cond_equal:        acond = Assembler::equal;      break;
1493        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1494        case lir_cond_less:         acond = Assembler::below;      break;
1495        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1496        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1497        case lir_cond_greater:      acond = Assembler::above;      break;
1498        default:                         ShouldNotReachHere();
1499      }
1500    } else {
1501      switch (op->cond()) {
1502        case lir_cond_equal:        acond = Assembler::equal;       break;
1503        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1504        case lir_cond_less:         acond = Assembler::less;        break;
1505        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1506        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1507        case lir_cond_greater:      acond = Assembler::greater;     break;
1508        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1509        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1510        default:                         ShouldNotReachHere();
1511      }
1512    }
1513    __ jcc(acond,*(op->label()));
1514  }
1515}
1516
1517void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1518  LIR_Opr src  = op->in_opr();
1519  LIR_Opr dest = op->result_opr();
1520
1521  switch (op->bytecode()) {
1522    case Bytecodes::_i2l:
1523#ifdef _LP64
1524      __ movl2ptr(dest->as_register_lo(), src->as_register());
1525#else
1526      move_regs(src->as_register(), dest->as_register_lo());
1527      move_regs(src->as_register(), dest->as_register_hi());
1528      __ sarl(dest->as_register_hi(), 31);
1529#endif // LP64
1530      break;
1531
1532    case Bytecodes::_l2i:
1533      move_regs(src->as_register_lo(), dest->as_register());
1534      break;
1535
1536    case Bytecodes::_i2b:
1537      move_regs(src->as_register(), dest->as_register());
1538      __ sign_extend_byte(dest->as_register());
1539      break;
1540
1541    case Bytecodes::_i2c:
1542      move_regs(src->as_register(), dest->as_register());
1543      __ andl(dest->as_register(), 0xFFFF);
1544      break;
1545
1546    case Bytecodes::_i2s:
1547      move_regs(src->as_register(), dest->as_register());
1548      __ sign_extend_short(dest->as_register());
1549      break;
1550
1551
1552    case Bytecodes::_f2d:
1553    case Bytecodes::_d2f:
1554      if (dest->is_single_xmm()) {
1555        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1556      } else if (dest->is_double_xmm()) {
1557        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1558      } else {
1559        assert(src->fpu() == dest->fpu(), "register must be equal");
1560        // do nothing (float result is rounded later through spilling)
1561      }
1562      break;
1563
1564    case Bytecodes::_i2f:
1565    case Bytecodes::_i2d:
1566      if (dest->is_single_xmm()) {
1567        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1568      } else if (dest->is_double_xmm()) {
1569        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1570      } else {
1571        assert(dest->fpu() == 0, "result must be on TOS");
1572        __ movl(Address(rsp, 0), src->as_register());
1573        __ fild_s(Address(rsp, 0));
1574      }
1575      break;
1576
1577    case Bytecodes::_f2i:
1578    case Bytecodes::_d2i:
1579      if (src->is_single_xmm()) {
1580        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1581      } else if (src->is_double_xmm()) {
1582        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1583      } else {
1584        assert(src->fpu() == 0, "input must be on TOS");
1585        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1586        __ fist_s(Address(rsp, 0));
1587        __ movl(dest->as_register(), Address(rsp, 0));
1588        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1589      }
1590
1591      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1592      assert(op->stub() != NULL, "stub required");
1593      __ cmpl(dest->as_register(), 0x80000000);
1594      __ jcc(Assembler::equal, *op->stub()->entry());
1595      __ bind(*op->stub()->continuation());
1596      break;
1597
1598    case Bytecodes::_l2f:
1599    case Bytecodes::_l2d:
1600      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1601      assert(dest->fpu() == 0, "result must be on TOS");
1602
1603      __ movptr(Address(rsp, 0),            src->as_register_lo());
1604      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1605      __ fild_d(Address(rsp, 0));
1606      // float result is rounded later through spilling
1607      break;
1608
1609    case Bytecodes::_f2l:
1610    case Bytecodes::_d2l:
1611      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1612      assert(src->fpu() == 0, "input must be on TOS");
1613      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1614
1615      // instruction sequence too long to inline it here
1616      {
1617        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1618      }
1619      break;
1620
1621    default: ShouldNotReachHere();
1622  }
1623}
1624
1625void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1626  if (op->init_check()) {
1627    __ cmpl(Address(op->klass()->as_register(),
1628                    instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1629            instanceKlass::fully_initialized);
1630    add_debug_info_for_null_check_here(op->stub()->info());
1631    __ jcc(Assembler::notEqual, *op->stub()->entry());
1632  }
1633  __ allocate_object(op->obj()->as_register(),
1634                     op->tmp1()->as_register(),
1635                     op->tmp2()->as_register(),
1636                     op->header_size(),
1637                     op->object_size(),
1638                     op->klass()->as_register(),
1639                     *op->stub()->entry());
1640  __ bind(*op->stub()->continuation());
1641}
1642
1643void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1644  if (UseSlowPath ||
1645      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1646      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1647    __ jmp(*op->stub()->entry());
1648  } else {
1649    Register len =  op->len()->as_register();
1650    Register tmp1 = op->tmp1()->as_register();
1651    Register tmp2 = op->tmp2()->as_register();
1652    Register tmp3 = op->tmp3()->as_register();
1653    if (len == tmp1) {
1654      tmp1 = tmp3;
1655    } else if (len == tmp2) {
1656      tmp2 = tmp3;
1657    } else if (len == tmp3) {
1658      // everything is ok
1659    } else {
1660      __ mov(tmp3, len);
1661    }
1662    __ allocate_array(op->obj()->as_register(),
1663                      len,
1664                      tmp1,
1665                      tmp2,
1666                      arrayOopDesc::header_size(op->type()),
1667                      array_element_size(op->type()),
1668                      op->klass()->as_register(),
1669                      *op->stub()->entry());
1670  }
1671  __ bind(*op->stub()->continuation());
1672}
1673
1674void LIR_Assembler::type_profile_helper(Register mdo,
1675                                        ciMethodData *md, ciProfileData *data,
1676                                        Register recv, Label* update_done) {
1677  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1678    Label next_test;
1679    // See if the receiver is receiver[n].
1680    __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1681    __ jccb(Assembler::notEqual, next_test);
1682    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1683    __ addptr(data_addr, DataLayout::counter_increment);
1684    __ jmp(*update_done);
1685    __ bind(next_test);
1686  }
1687
1688  // Didn't find receiver; find next empty slot and fill it in
1689  for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1690    Label next_test;
1691    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1692    __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1693    __ jccb(Assembler::notEqual, next_test);
1694    __ movptr(recv_addr, recv);
1695    __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1696    __ jmp(*update_done);
1697    __ bind(next_test);
1698  }
1699}
1700
1701void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1702  // we always need a stub for the failure case.
1703  CodeStub* stub = op->stub();
1704  Register obj = op->object()->as_register();
1705  Register k_RInfo = op->tmp1()->as_register();
1706  Register klass_RInfo = op->tmp2()->as_register();
1707  Register dst = op->result_opr()->as_register();
1708  ciKlass* k = op->klass();
1709  Register Rtmp1 = noreg;
1710
1711  // check if it needs to be profiled
1712  ciMethodData* md;
1713  ciProfileData* data;
1714
1715  if (op->should_profile()) {
1716    ciMethod* method = op->profiled_method();
1717    assert(method != NULL, "Should have method");
1718    int bci = op->profiled_bci();
1719    md = method->method_data_or_null();
1720    assert(md != NULL, "Sanity");
1721    data = md->bci_to_data(bci);
1722    assert(data != NULL,                "need data for type check");
1723    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1724  }
1725  Label profile_cast_success, profile_cast_failure;
1726  Label *success_target = op->should_profile() ? &profile_cast_success : success;
1727  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1728
1729  if (obj == k_RInfo) {
1730    k_RInfo = dst;
1731  } else if (obj == klass_RInfo) {
1732    klass_RInfo = dst;
1733  }
1734  if (k->is_loaded() && !UseCompressedOops) {
1735    select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1736  } else {
1737    Rtmp1 = op->tmp3()->as_register();
1738    select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1739  }
1740
1741  assert_different_registers(obj, k_RInfo, klass_RInfo);
1742  if (!k->is_loaded()) {
1743    jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1744  } else {
1745#ifdef _LP64
1746    __ movoop(k_RInfo, k->constant_encoding());
1747#endif // _LP64
1748  }
1749  assert(obj != k_RInfo, "must be different");
1750
1751  __ cmpptr(obj, (int32_t)NULL_WORD);
1752  if (op->should_profile()) {
1753    Label not_null;
1754    __ jccb(Assembler::notEqual, not_null);
1755    // Object is null; update MDO and exit
1756    Register mdo  = klass_RInfo;
1757    __ movoop(mdo, md->constant_encoding());
1758    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1759    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1760    __ orl(data_addr, header_bits);
1761    __ jmp(*obj_is_null);
1762    __ bind(not_null);
1763  } else {
1764    __ jcc(Assembler::equal, *obj_is_null);
1765  }
1766  __ verify_oop(obj);
1767
1768  if (op->fast_check()) {
1769    // get object class
1770    // not a safepoint as obj null check happens earlier
1771#ifdef _LP64
1772    if (UseCompressedOops) {
1773      __ load_klass(Rtmp1, obj);
1774      __ cmpptr(k_RInfo, Rtmp1);
1775    } else {
1776      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1777    }
1778#else
1779    if (k->is_loaded()) {
1780      __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1781    } else {
1782      __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1783    }
1784#endif
1785    __ jcc(Assembler::notEqual, *failure_target);
1786    // successful cast, fall through to profile or jump
1787  } else {
1788    // get object class
1789    // not a safepoint as obj null check happens earlier
1790    __ load_klass(klass_RInfo, obj);
1791    if (k->is_loaded()) {
1792      // See if we get an immediate positive hit
1793#ifdef _LP64
1794      __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1795#else
1796      __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1797#endif // _LP64
1798      if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1799        __ jcc(Assembler::notEqual, *failure_target);
1800        // successful cast, fall through to profile or jump
1801      } else {
1802        // See if we get an immediate positive hit
1803        __ jcc(Assembler::equal, *success_target);
1804        // check for self
1805#ifdef _LP64
1806        __ cmpptr(klass_RInfo, k_RInfo);
1807#else
1808        __ cmpoop(klass_RInfo, k->constant_encoding());
1809#endif // _LP64
1810        __ jcc(Assembler::equal, *success_target);
1811
1812        __ push(klass_RInfo);
1813#ifdef _LP64
1814        __ push(k_RInfo);
1815#else
1816        __ pushoop(k->constant_encoding());
1817#endif // _LP64
1818        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1819        __ pop(klass_RInfo);
1820        __ pop(klass_RInfo);
1821        // result is a boolean
1822        __ cmpl(klass_RInfo, 0);
1823        __ jcc(Assembler::equal, *failure_target);
1824        // successful cast, fall through to profile or jump
1825      }
1826    } else {
1827      // perform the fast part of the checking logic
1828      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1829      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1830      __ push(klass_RInfo);
1831      __ push(k_RInfo);
1832      __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1833      __ pop(klass_RInfo);
1834      __ pop(k_RInfo);
1835      // result is a boolean
1836      __ cmpl(k_RInfo, 0);
1837      __ jcc(Assembler::equal, *failure_target);
1838      // successful cast, fall through to profile or jump
1839    }
1840  }
1841  if (op->should_profile()) {
1842    Register mdo  = klass_RInfo, recv = k_RInfo;
1843    __ bind(profile_cast_success);
1844    __ movoop(mdo, md->constant_encoding());
1845    __ load_klass(recv, obj);
1846    Label update_done;
1847    type_profile_helper(mdo, md, data, recv, success);
1848    __ jmp(*success);
1849
1850    __ bind(profile_cast_failure);
1851    __ movoop(mdo, md->constant_encoding());
1852    Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1853    __ subptr(counter_addr, DataLayout::counter_increment);
1854    __ jmp(*failure);
1855  }
1856  __ jmp(*success);
1857}
1858
1859
1860void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1861  LIR_Code code = op->code();
1862  if (code == lir_store_check) {
1863    Register value = op->object()->as_register();
1864    Register array = op->array()->as_register();
1865    Register k_RInfo = op->tmp1()->as_register();
1866    Register klass_RInfo = op->tmp2()->as_register();
1867    Register Rtmp1 = op->tmp3()->as_register();
1868
1869    CodeStub* stub = op->stub();
1870
1871    // check if it needs to be profiled
1872    ciMethodData* md;
1873    ciProfileData* data;
1874
1875    if (op->should_profile()) {
1876      ciMethod* method = op->profiled_method();
1877      assert(method != NULL, "Should have method");
1878      int bci = op->profiled_bci();
1879      md = method->method_data_or_null();
1880      assert(md != NULL, "Sanity");
1881      data = md->bci_to_data(bci);
1882      assert(data != NULL,                "need data for type check");
1883      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1884    }
1885    Label profile_cast_success, profile_cast_failure, done;
1886    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1887    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1888
1889    __ cmpptr(value, (int32_t)NULL_WORD);
1890    if (op->should_profile()) {
1891      Label not_null;
1892      __ jccb(Assembler::notEqual, not_null);
1893      // Object is null; update MDO and exit
1894      Register mdo  = klass_RInfo;
1895      __ movoop(mdo, md->constant_encoding());
1896      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1897      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1898      __ orl(data_addr, header_bits);
1899      __ jmp(done);
1900      __ bind(not_null);
1901    } else {
1902      __ jcc(Assembler::equal, done);
1903    }
1904
1905    add_debug_info_for_null_check_here(op->info_for_exception());
1906    __ load_klass(k_RInfo, array);
1907    __ load_klass(klass_RInfo, value);
1908
1909    // get instance klass (it's already uncompressed)
1910    __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1911    // perform the fast part of the checking logic
1912    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1913    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1914    __ push(klass_RInfo);
1915    __ push(k_RInfo);
1916    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1917    __ pop(klass_RInfo);
1918    __ pop(k_RInfo);
1919    // result is a boolean
1920    __ cmpl(k_RInfo, 0);
1921    __ jcc(Assembler::equal, *failure_target);
1922    // fall through to the success case
1923
1924    if (op->should_profile()) {
1925      Register mdo  = klass_RInfo, recv = k_RInfo;
1926      __ bind(profile_cast_success);
1927      __ movoop(mdo, md->constant_encoding());
1928      __ load_klass(recv, value);
1929      Label update_done;
1930      type_profile_helper(mdo, md, data, recv, &done);
1931      __ jmpb(done);
1932
1933      __ bind(profile_cast_failure);
1934      __ movoop(mdo, md->constant_encoding());
1935      Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1936      __ subptr(counter_addr, DataLayout::counter_increment);
1937      __ jmp(*stub->entry());
1938    }
1939
1940    __ bind(done);
1941  } else
1942    if (code == lir_checkcast) {
1943      Register obj = op->object()->as_register();
1944      Register dst = op->result_opr()->as_register();
1945      Label success;
1946      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1947      __ bind(success);
1948      if (dst != obj) {
1949        __ mov(dst, obj);
1950      }
1951    } else
1952      if (code == lir_instanceof) {
1953        Register obj = op->object()->as_register();
1954        Register dst = op->result_opr()->as_register();
1955        Label success, failure, done;
1956        emit_typecheck_helper(op, &success, &failure, &failure);
1957        __ bind(failure);
1958        __ xorptr(dst, dst);
1959        __ jmpb(done);
1960        __ bind(success);
1961        __ movptr(dst, 1);
1962        __ bind(done);
1963      } else {
1964        ShouldNotReachHere();
1965      }
1966
1967}
1968
1969
1970void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1971  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1972    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1973    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1974    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1975    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1976    Register addr = op->addr()->as_register();
1977    if (os::is_MP()) {
1978      __ lock();
1979    }
1980    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1981
1982  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1983    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1984    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1985    Register newval = op->new_value()->as_register();
1986    Register cmpval = op->cmp_value()->as_register();
1987    assert(cmpval == rax, "wrong register");
1988    assert(newval != NULL, "new val must be register");
1989    assert(cmpval != newval, "cmp and new values must be in different registers");
1990    assert(cmpval != addr, "cmp and addr must be in different registers");
1991    assert(newval != addr, "new value and addr must be in different registers");
1992
1993    if ( op->code() == lir_cas_obj) {
1994#ifdef _LP64
1995      if (UseCompressedOops) {
1996        __ mov(rscratch1, cmpval);
1997        __ encode_heap_oop(cmpval);
1998        __ mov(rscratch2, newval);
1999        __ encode_heap_oop(rscratch2);
2000        if (os::is_MP()) {
2001          __ lock();
2002        }
2003        __ cmpxchgl(rscratch2, Address(addr, 0));
2004        __ mov(cmpval, rscratch1);
2005      } else
2006#endif
2007      {
2008        if (os::is_MP()) {
2009          __ lock();
2010        }
2011        __ cmpxchgptr(newval, Address(addr, 0));
2012      }
2013    } else {
2014      assert(op->code() == lir_cas_int, "lir_cas_int expected");
2015      if (os::is_MP()) {
2016        __ lock();
2017      }
2018      __ cmpxchgl(newval, Address(addr, 0));
2019    }
2020#ifdef _LP64
2021  } else if (op->code() == lir_cas_long) {
2022    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2023    Register newval = op->new_value()->as_register_lo();
2024    Register cmpval = op->cmp_value()->as_register_lo();
2025    assert(cmpval == rax, "wrong register");
2026    assert(newval != NULL, "new val must be register");
2027    assert(cmpval != newval, "cmp and new values must be in different registers");
2028    assert(cmpval != addr, "cmp and addr must be in different registers");
2029    assert(newval != addr, "new value and addr must be in different registers");
2030    if (os::is_MP()) {
2031      __ lock();
2032    }
2033    __ cmpxchgq(newval, Address(addr, 0));
2034#endif // _LP64
2035  } else {
2036    Unimplemented();
2037  }
2038}
2039
2040void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
2041  Assembler::Condition acond, ncond;
2042  switch (condition) {
2043    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2044    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2045    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2046    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2047    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2048    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2049    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2050    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2051    default:                    ShouldNotReachHere();
2052  }
2053
2054  if (opr1->is_cpu_register()) {
2055    reg2reg(opr1, result);
2056  } else if (opr1->is_stack()) {
2057    stack2reg(opr1, result, result->type());
2058  } else if (opr1->is_constant()) {
2059    const2reg(opr1, result, lir_patch_none, NULL);
2060  } else {
2061    ShouldNotReachHere();
2062  }
2063
2064  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2065    // optimized version that does not require a branch
2066    if (opr2->is_single_cpu()) {
2067      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2068      __ cmov(ncond, result->as_register(), opr2->as_register());
2069    } else if (opr2->is_double_cpu()) {
2070      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2071      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2072      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2073      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2074    } else if (opr2->is_single_stack()) {
2075      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2076    } else if (opr2->is_double_stack()) {
2077      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2078      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2079    } else {
2080      ShouldNotReachHere();
2081    }
2082
2083  } else {
2084    Label skip;
2085    __ jcc (acond, skip);
2086    if (opr2->is_cpu_register()) {
2087      reg2reg(opr2, result);
2088    } else if (opr2->is_stack()) {
2089      stack2reg(opr2, result, result->type());
2090    } else if (opr2->is_constant()) {
2091      const2reg(opr2, result, lir_patch_none, NULL);
2092    } else {
2093      ShouldNotReachHere();
2094    }
2095    __ bind(skip);
2096  }
2097}
2098
2099
2100void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2101  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2102
2103  if (left->is_single_cpu()) {
2104    assert(left == dest, "left and dest must be equal");
2105    Register lreg = left->as_register();
2106
2107    if (right->is_single_cpu()) {
2108      // cpu register - cpu register
2109      Register rreg = right->as_register();
2110      switch (code) {
2111        case lir_add: __ addl (lreg, rreg); break;
2112        case lir_sub: __ subl (lreg, rreg); break;
2113        case lir_mul: __ imull(lreg, rreg); break;
2114        default:      ShouldNotReachHere();
2115      }
2116
2117    } else if (right->is_stack()) {
2118      // cpu register - stack
2119      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2120      switch (code) {
2121        case lir_add: __ addl(lreg, raddr); break;
2122        case lir_sub: __ subl(lreg, raddr); break;
2123        default:      ShouldNotReachHere();
2124      }
2125
2126    } else if (right->is_constant()) {
2127      // cpu register - constant
2128      jint c = right->as_constant_ptr()->as_jint();
2129      switch (code) {
2130        case lir_add: {
2131          __ incrementl(lreg, c);
2132          break;
2133        }
2134        case lir_sub: {
2135          __ decrementl(lreg, c);
2136          break;
2137        }
2138        default: ShouldNotReachHere();
2139      }
2140
2141    } else {
2142      ShouldNotReachHere();
2143    }
2144
2145  } else if (left->is_double_cpu()) {
2146    assert(left == dest, "left and dest must be equal");
2147    Register lreg_lo = left->as_register_lo();
2148    Register lreg_hi = left->as_register_hi();
2149
2150    if (right->is_double_cpu()) {
2151      // cpu register - cpu register
2152      Register rreg_lo = right->as_register_lo();
2153      Register rreg_hi = right->as_register_hi();
2154      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2155      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2156      switch (code) {
2157        case lir_add:
2158          __ addptr(lreg_lo, rreg_lo);
2159          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2160          break;
2161        case lir_sub:
2162          __ subptr(lreg_lo, rreg_lo);
2163          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2164          break;
2165        case lir_mul:
2166#ifdef _LP64
2167          __ imulq(lreg_lo, rreg_lo);
2168#else
2169          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2170          __ imull(lreg_hi, rreg_lo);
2171          __ imull(rreg_hi, lreg_lo);
2172          __ addl (rreg_hi, lreg_hi);
2173          __ mull (rreg_lo);
2174          __ addl (lreg_hi, rreg_hi);
2175#endif // _LP64
2176          break;
2177        default:
2178          ShouldNotReachHere();
2179      }
2180
2181    } else if (right->is_constant()) {
2182      // cpu register - constant
2183#ifdef _LP64
2184      jlong c = right->as_constant_ptr()->as_jlong_bits();
2185      __ movptr(r10, (intptr_t) c);
2186      switch (code) {
2187        case lir_add:
2188          __ addptr(lreg_lo, r10);
2189          break;
2190        case lir_sub:
2191          __ subptr(lreg_lo, r10);
2192          break;
2193        default:
2194          ShouldNotReachHere();
2195      }
2196#else
2197      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2198      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2199      switch (code) {
2200        case lir_add:
2201          __ addptr(lreg_lo, c_lo);
2202          __ adcl(lreg_hi, c_hi);
2203          break;
2204        case lir_sub:
2205          __ subptr(lreg_lo, c_lo);
2206          __ sbbl(lreg_hi, c_hi);
2207          break;
2208        default:
2209          ShouldNotReachHere();
2210      }
2211#endif // _LP64
2212
2213    } else {
2214      ShouldNotReachHere();
2215    }
2216
2217  } else if (left->is_single_xmm()) {
2218    assert(left == dest, "left and dest must be equal");
2219    XMMRegister lreg = left->as_xmm_float_reg();
2220
2221    if (right->is_single_xmm()) {
2222      XMMRegister rreg = right->as_xmm_float_reg();
2223      switch (code) {
2224        case lir_add: __ addss(lreg, rreg);  break;
2225        case lir_sub: __ subss(lreg, rreg);  break;
2226        case lir_mul_strictfp: // fall through
2227        case lir_mul: __ mulss(lreg, rreg);  break;
2228        case lir_div_strictfp: // fall through
2229        case lir_div: __ divss(lreg, rreg);  break;
2230        default: ShouldNotReachHere();
2231      }
2232    } else {
2233      Address raddr;
2234      if (right->is_single_stack()) {
2235        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2236      } else if (right->is_constant()) {
2237        // hack for now
2238        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2239      } else {
2240        ShouldNotReachHere();
2241      }
2242      switch (code) {
2243        case lir_add: __ addss(lreg, raddr);  break;
2244        case lir_sub: __ subss(lreg, raddr);  break;
2245        case lir_mul_strictfp: // fall through
2246        case lir_mul: __ mulss(lreg, raddr);  break;
2247        case lir_div_strictfp: // fall through
2248        case lir_div: __ divss(lreg, raddr);  break;
2249        default: ShouldNotReachHere();
2250      }
2251    }
2252
2253  } else if (left->is_double_xmm()) {
2254    assert(left == dest, "left and dest must be equal");
2255
2256    XMMRegister lreg = left->as_xmm_double_reg();
2257    if (right->is_double_xmm()) {
2258      XMMRegister rreg = right->as_xmm_double_reg();
2259      switch (code) {
2260        case lir_add: __ addsd(lreg, rreg);  break;
2261        case lir_sub: __ subsd(lreg, rreg);  break;
2262        case lir_mul_strictfp: // fall through
2263        case lir_mul: __ mulsd(lreg, rreg);  break;
2264        case lir_div_strictfp: // fall through
2265        case lir_div: __ divsd(lreg, rreg);  break;
2266        default: ShouldNotReachHere();
2267      }
2268    } else {
2269      Address raddr;
2270      if (right->is_double_stack()) {
2271        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2272      } else if (right->is_constant()) {
2273        // hack for now
2274        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2275      } else {
2276        ShouldNotReachHere();
2277      }
2278      switch (code) {
2279        case lir_add: __ addsd(lreg, raddr);  break;
2280        case lir_sub: __ subsd(lreg, raddr);  break;
2281        case lir_mul_strictfp: // fall through
2282        case lir_mul: __ mulsd(lreg, raddr);  break;
2283        case lir_div_strictfp: // fall through
2284        case lir_div: __ divsd(lreg, raddr);  break;
2285        default: ShouldNotReachHere();
2286      }
2287    }
2288
2289  } else if (left->is_single_fpu()) {
2290    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2291
2292    if (right->is_single_fpu()) {
2293      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2294
2295    } else {
2296      assert(left->fpu_regnr() == 0, "left must be on TOS");
2297      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2298
2299      Address raddr;
2300      if (right->is_single_stack()) {
2301        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2302      } else if (right->is_constant()) {
2303        address const_addr = float_constant(right->as_jfloat());
2304        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2305        // hack for now
2306        raddr = __ as_Address(InternalAddress(const_addr));
2307      } else {
2308        ShouldNotReachHere();
2309      }
2310
2311      switch (code) {
2312        case lir_add: __ fadd_s(raddr); break;
2313        case lir_sub: __ fsub_s(raddr); break;
2314        case lir_mul_strictfp: // fall through
2315        case lir_mul: __ fmul_s(raddr); break;
2316        case lir_div_strictfp: // fall through
2317        case lir_div: __ fdiv_s(raddr); break;
2318        default:      ShouldNotReachHere();
2319      }
2320    }
2321
2322  } else if (left->is_double_fpu()) {
2323    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2324
2325    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2326      // Double values require special handling for strictfp mul/div on x86
2327      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2328      __ fmulp(left->fpu_regnrLo() + 1);
2329    }
2330
2331    if (right->is_double_fpu()) {
2332      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2333
2334    } else {
2335      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2336      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2337
2338      Address raddr;
2339      if (right->is_double_stack()) {
2340        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2341      } else if (right->is_constant()) {
2342        // hack for now
2343        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2344      } else {
2345        ShouldNotReachHere();
2346      }
2347
2348      switch (code) {
2349        case lir_add: __ fadd_d(raddr); break;
2350        case lir_sub: __ fsub_d(raddr); break;
2351        case lir_mul_strictfp: // fall through
2352        case lir_mul: __ fmul_d(raddr); break;
2353        case lir_div_strictfp: // fall through
2354        case lir_div: __ fdiv_d(raddr); break;
2355        default: ShouldNotReachHere();
2356      }
2357    }
2358
2359    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2360      // Double values require special handling for strictfp mul/div on x86
2361      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2362      __ fmulp(dest->fpu_regnrLo() + 1);
2363    }
2364
2365  } else if (left->is_single_stack() || left->is_address()) {
2366    assert(left == dest, "left and dest must be equal");
2367
2368    Address laddr;
2369    if (left->is_single_stack()) {
2370      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2371    } else if (left->is_address()) {
2372      laddr = as_Address(left->as_address_ptr());
2373    } else {
2374      ShouldNotReachHere();
2375    }
2376
2377    if (right->is_single_cpu()) {
2378      Register rreg = right->as_register();
2379      switch (code) {
2380        case lir_add: __ addl(laddr, rreg); break;
2381        case lir_sub: __ subl(laddr, rreg); break;
2382        default:      ShouldNotReachHere();
2383      }
2384    } else if (right->is_constant()) {
2385      jint c = right->as_constant_ptr()->as_jint();
2386      switch (code) {
2387        case lir_add: {
2388          __ incrementl(laddr, c);
2389          break;
2390        }
2391        case lir_sub: {
2392          __ decrementl(laddr, c);
2393          break;
2394        }
2395        default: ShouldNotReachHere();
2396      }
2397    } else {
2398      ShouldNotReachHere();
2399    }
2400
2401  } else {
2402    ShouldNotReachHere();
2403  }
2404}
2405
2406void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2407  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2408  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2409  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2410
2411  bool left_is_tos = (left_index == 0);
2412  bool dest_is_tos = (dest_index == 0);
2413  int non_tos_index = (left_is_tos ? right_index : left_index);
2414
2415  switch (code) {
2416    case lir_add:
2417      if (pop_fpu_stack)       __ faddp(non_tos_index);
2418      else if (dest_is_tos)    __ fadd (non_tos_index);
2419      else                     __ fadda(non_tos_index);
2420      break;
2421
2422    case lir_sub:
2423      if (left_is_tos) {
2424        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2425        else if (dest_is_tos)  __ fsub  (non_tos_index);
2426        else                   __ fsubra(non_tos_index);
2427      } else {
2428        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2429        else if (dest_is_tos)  __ fsubr (non_tos_index);
2430        else                   __ fsuba (non_tos_index);
2431      }
2432      break;
2433
2434    case lir_mul_strictfp: // fall through
2435    case lir_mul:
2436      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2437      else if (dest_is_tos)    __ fmul (non_tos_index);
2438      else                     __ fmula(non_tos_index);
2439      break;
2440
2441    case lir_div_strictfp: // fall through
2442    case lir_div:
2443      if (left_is_tos) {
2444        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2445        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2446        else                   __ fdivra(non_tos_index);
2447      } else {
2448        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2449        else if (dest_is_tos)  __ fdivr (non_tos_index);
2450        else                   __ fdiva (non_tos_index);
2451      }
2452      break;
2453
2454    case lir_rem:
2455      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2456      __ fremr(noreg);
2457      break;
2458
2459    default:
2460      ShouldNotReachHere();
2461  }
2462}
2463
2464
2465void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2466  if (value->is_double_xmm()) {
2467    switch(code) {
2468      case lir_abs :
2469        {
2470          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2471            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2472          }
2473          __ andpd(dest->as_xmm_double_reg(),
2474                    ExternalAddress((address)double_signmask_pool));
2475        }
2476        break;
2477
2478      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2479      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2480      default      : ShouldNotReachHere();
2481    }
2482
2483  } else if (value->is_double_fpu()) {
2484    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2485    switch(code) {
2486      case lir_log   : __ flog() ; break;
2487      case lir_log10 : __ flog10() ; break;
2488      case lir_abs   : __ fabs() ; break;
2489      case lir_sqrt  : __ fsqrt(); break;
2490      case lir_sin   :
2491        // Should consider not saving rbx, if not necessary
2492        __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2493        break;
2494      case lir_cos :
2495        // Should consider not saving rbx, if not necessary
2496        assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2497        __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2498        break;
2499      case lir_tan :
2500        // Should consider not saving rbx, if not necessary
2501        __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2502        break;
2503      default      : ShouldNotReachHere();
2504    }
2505  } else {
2506    Unimplemented();
2507  }
2508}
2509
2510void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2511  // assert(left->destroys_register(), "check");
2512  if (left->is_single_cpu()) {
2513    Register reg = left->as_register();
2514    if (right->is_constant()) {
2515      int val = right->as_constant_ptr()->as_jint();
2516      switch (code) {
2517        case lir_logic_and: __ andl (reg, val); break;
2518        case lir_logic_or:  __ orl  (reg, val); break;
2519        case lir_logic_xor: __ xorl (reg, val); break;
2520        default: ShouldNotReachHere();
2521      }
2522    } else if (right->is_stack()) {
2523      // added support for stack operands
2524      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2525      switch (code) {
2526        case lir_logic_and: __ andl (reg, raddr); break;
2527        case lir_logic_or:  __ orl  (reg, raddr); break;
2528        case lir_logic_xor: __ xorl (reg, raddr); break;
2529        default: ShouldNotReachHere();
2530      }
2531    } else {
2532      Register rright = right->as_register();
2533      switch (code) {
2534        case lir_logic_and: __ andptr (reg, rright); break;
2535        case lir_logic_or : __ orptr  (reg, rright); break;
2536        case lir_logic_xor: __ xorptr (reg, rright); break;
2537        default: ShouldNotReachHere();
2538      }
2539    }
2540    move_regs(reg, dst->as_register());
2541  } else {
2542    Register l_lo = left->as_register_lo();
2543    Register l_hi = left->as_register_hi();
2544    if (right->is_constant()) {
2545#ifdef _LP64
2546      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2547      switch (code) {
2548        case lir_logic_and:
2549          __ andq(l_lo, rscratch1);
2550          break;
2551        case lir_logic_or:
2552          __ orq(l_lo, rscratch1);
2553          break;
2554        case lir_logic_xor:
2555          __ xorq(l_lo, rscratch1);
2556          break;
2557        default: ShouldNotReachHere();
2558      }
2559#else
2560      int r_lo = right->as_constant_ptr()->as_jint_lo();
2561      int r_hi = right->as_constant_ptr()->as_jint_hi();
2562      switch (code) {
2563        case lir_logic_and:
2564          __ andl(l_lo, r_lo);
2565          __ andl(l_hi, r_hi);
2566          break;
2567        case lir_logic_or:
2568          __ orl(l_lo, r_lo);
2569          __ orl(l_hi, r_hi);
2570          break;
2571        case lir_logic_xor:
2572          __ xorl(l_lo, r_lo);
2573          __ xorl(l_hi, r_hi);
2574          break;
2575        default: ShouldNotReachHere();
2576      }
2577#endif // _LP64
2578    } else {
2579#ifdef _LP64
2580      Register r_lo;
2581      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2582        r_lo = right->as_register();
2583      } else {
2584        r_lo = right->as_register_lo();
2585      }
2586#else
2587      Register r_lo = right->as_register_lo();
2588      Register r_hi = right->as_register_hi();
2589      assert(l_lo != r_hi, "overwriting registers");
2590#endif
2591      switch (code) {
2592        case lir_logic_and:
2593          __ andptr(l_lo, r_lo);
2594          NOT_LP64(__ andptr(l_hi, r_hi);)
2595          break;
2596        case lir_logic_or:
2597          __ orptr(l_lo, r_lo);
2598          NOT_LP64(__ orptr(l_hi, r_hi);)
2599          break;
2600        case lir_logic_xor:
2601          __ xorptr(l_lo, r_lo);
2602          NOT_LP64(__ xorptr(l_hi, r_hi);)
2603          break;
2604        default: ShouldNotReachHere();
2605      }
2606    }
2607
2608    Register dst_lo = dst->as_register_lo();
2609    Register dst_hi = dst->as_register_hi();
2610
2611#ifdef _LP64
2612    move_regs(l_lo, dst_lo);
2613#else
2614    if (dst_lo == l_hi) {
2615      assert(dst_hi != l_lo, "overwriting registers");
2616      move_regs(l_hi, dst_hi);
2617      move_regs(l_lo, dst_lo);
2618    } else {
2619      assert(dst_lo != l_hi, "overwriting registers");
2620      move_regs(l_lo, dst_lo);
2621      move_regs(l_hi, dst_hi);
2622    }
2623#endif // _LP64
2624  }
2625}
2626
2627
2628// we assume that rax, and rdx can be overwritten
2629void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2630
2631  assert(left->is_single_cpu(),   "left must be register");
2632  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2633  assert(result->is_single_cpu(), "result must be register");
2634
2635  //  assert(left->destroys_register(), "check");
2636  //  assert(right->destroys_register(), "check");
2637
2638  Register lreg = left->as_register();
2639  Register dreg = result->as_register();
2640
2641  if (right->is_constant()) {
2642    int divisor = right->as_constant_ptr()->as_jint();
2643    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2644    if (code == lir_idiv) {
2645      assert(lreg == rax, "must be rax,");
2646      assert(temp->as_register() == rdx, "tmp register must be rdx");
2647      __ cdql(); // sign extend into rdx:rax
2648      if (divisor == 2) {
2649        __ subl(lreg, rdx);
2650      } else {
2651        __ andl(rdx, divisor - 1);
2652        __ addl(lreg, rdx);
2653      }
2654      __ sarl(lreg, log2_intptr(divisor));
2655      move_regs(lreg, dreg);
2656    } else if (code == lir_irem) {
2657      Label done;
2658      __ mov(dreg, lreg);
2659      __ andl(dreg, 0x80000000 | (divisor - 1));
2660      __ jcc(Assembler::positive, done);
2661      __ decrement(dreg);
2662      __ orl(dreg, ~(divisor - 1));
2663      __ increment(dreg);
2664      __ bind(done);
2665    } else {
2666      ShouldNotReachHere();
2667    }
2668  } else {
2669    Register rreg = right->as_register();
2670    assert(lreg == rax, "left register must be rax,");
2671    assert(rreg != rdx, "right register must not be rdx");
2672    assert(temp->as_register() == rdx, "tmp register must be rdx");
2673
2674    move_regs(lreg, rax);
2675
2676    int idivl_offset = __ corrected_idivl(rreg);
2677    add_debug_info_for_div0(idivl_offset, info);
2678    if (code == lir_irem) {
2679      move_regs(rdx, dreg); // result is in rdx
2680    } else {
2681      move_regs(rax, dreg);
2682    }
2683  }
2684}
2685
2686
2687void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2688  if (opr1->is_single_cpu()) {
2689    Register reg1 = opr1->as_register();
2690    if (opr2->is_single_cpu()) {
2691      // cpu register - cpu register
2692      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2693        __ cmpptr(reg1, opr2->as_register());
2694      } else {
2695        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2696        __ cmpl(reg1, opr2->as_register());
2697      }
2698    } else if (opr2->is_stack()) {
2699      // cpu register - stack
2700      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2701        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2702      } else {
2703        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2704      }
2705    } else if (opr2->is_constant()) {
2706      // cpu register - constant
2707      LIR_Const* c = opr2->as_constant_ptr();
2708      if (c->type() == T_INT) {
2709        __ cmpl(reg1, c->as_jint());
2710      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2711        // In 64bit oops are single register
2712        jobject o = c->as_jobject();
2713        if (o == NULL) {
2714          __ cmpptr(reg1, (int32_t)NULL_WORD);
2715        } else {
2716#ifdef _LP64
2717          __ movoop(rscratch1, o);
2718          __ cmpptr(reg1, rscratch1);
2719#else
2720          __ cmpoop(reg1, c->as_jobject());
2721#endif // _LP64
2722        }
2723      } else {
2724        ShouldNotReachHere();
2725      }
2726      // cpu register - address
2727    } else if (opr2->is_address()) {
2728      if (op->info() != NULL) {
2729        add_debug_info_for_null_check_here(op->info());
2730      }
2731      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2732    } else {
2733      ShouldNotReachHere();
2734    }
2735
2736  } else if(opr1->is_double_cpu()) {
2737    Register xlo = opr1->as_register_lo();
2738    Register xhi = opr1->as_register_hi();
2739    if (opr2->is_double_cpu()) {
2740#ifdef _LP64
2741      __ cmpptr(xlo, opr2->as_register_lo());
2742#else
2743      // cpu register - cpu register
2744      Register ylo = opr2->as_register_lo();
2745      Register yhi = opr2->as_register_hi();
2746      __ subl(xlo, ylo);
2747      __ sbbl(xhi, yhi);
2748      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2749        __ orl(xhi, xlo);
2750      }
2751#endif // _LP64
2752    } else if (opr2->is_constant()) {
2753      // cpu register - constant 0
2754      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2755#ifdef _LP64
2756      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2757#else
2758      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2759      __ orl(xhi, xlo);
2760#endif // _LP64
2761    } else {
2762      ShouldNotReachHere();
2763    }
2764
2765  } else if (opr1->is_single_xmm()) {
2766    XMMRegister reg1 = opr1->as_xmm_float_reg();
2767    if (opr2->is_single_xmm()) {
2768      // xmm register - xmm register
2769      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2770    } else if (opr2->is_stack()) {
2771      // xmm register - stack
2772      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2773    } else if (opr2->is_constant()) {
2774      // xmm register - constant
2775      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2776    } else if (opr2->is_address()) {
2777      // xmm register - address
2778      if (op->info() != NULL) {
2779        add_debug_info_for_null_check_here(op->info());
2780      }
2781      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2782    } else {
2783      ShouldNotReachHere();
2784    }
2785
2786  } else if (opr1->is_double_xmm()) {
2787    XMMRegister reg1 = opr1->as_xmm_double_reg();
2788    if (opr2->is_double_xmm()) {
2789      // xmm register - xmm register
2790      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2791    } else if (opr2->is_stack()) {
2792      // xmm register - stack
2793      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2794    } else if (opr2->is_constant()) {
2795      // xmm register - constant
2796      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2797    } else if (opr2->is_address()) {
2798      // xmm register - address
2799      if (op->info() != NULL) {
2800        add_debug_info_for_null_check_here(op->info());
2801      }
2802      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2803    } else {
2804      ShouldNotReachHere();
2805    }
2806
2807  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2808    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2809    assert(opr2->is_fpu_register(), "both must be registers");
2810    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2811
2812  } else if (opr1->is_address() && opr2->is_constant()) {
2813    LIR_Const* c = opr2->as_constant_ptr();
2814#ifdef _LP64
2815    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2816      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2817      __ movoop(rscratch1, c->as_jobject());
2818    }
2819#endif // LP64
2820    if (op->info() != NULL) {
2821      add_debug_info_for_null_check_here(op->info());
2822    }
2823    // special case: address - constant
2824    LIR_Address* addr = opr1->as_address_ptr();
2825    if (c->type() == T_INT) {
2826      __ cmpl(as_Address(addr), c->as_jint());
2827    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2828#ifdef _LP64
2829      // %%% Make this explode if addr isn't reachable until we figure out a
2830      // better strategy by giving noreg as the temp for as_Address
2831      __ cmpptr(rscratch1, as_Address(addr, noreg));
2832#else
2833      __ cmpoop(as_Address(addr), c->as_jobject());
2834#endif // _LP64
2835    } else {
2836      ShouldNotReachHere();
2837    }
2838
2839  } else {
2840    ShouldNotReachHere();
2841  }
2842}
2843
2844void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2845  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2846    if (left->is_single_xmm()) {
2847      assert(right->is_single_xmm(), "must match");
2848      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2849    } else if (left->is_double_xmm()) {
2850      assert(right->is_double_xmm(), "must match");
2851      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2852
2853    } else {
2854      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2855      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2856
2857      assert(left->fpu() == 0, "left must be on TOS");
2858      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2859                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2860    }
2861  } else {
2862    assert(code == lir_cmp_l2i, "check");
2863#ifdef _LP64
2864    Label done;
2865    Register dest = dst->as_register();
2866    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2867    __ movl(dest, -1);
2868    __ jccb(Assembler::less, done);
2869    __ set_byte_if_not_zero(dest);
2870    __ movzbl(dest, dest);
2871    __ bind(done);
2872#else
2873    __ lcmp2int(left->as_register_hi(),
2874                left->as_register_lo(),
2875                right->as_register_hi(),
2876                right->as_register_lo());
2877    move_regs(left->as_register_hi(), dst->as_register());
2878#endif // _LP64
2879  }
2880}
2881
2882
2883void LIR_Assembler::align_call(LIR_Code code) {
2884  if (os::is_MP()) {
2885    // make sure that the displacement word of the call ends up word aligned
2886    int offset = __ offset();
2887    switch (code) {
2888      case lir_static_call:
2889      case lir_optvirtual_call:
2890      case lir_dynamic_call:
2891        offset += NativeCall::displacement_offset;
2892        break;
2893      case lir_icvirtual_call:
2894        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2895      break;
2896      case lir_virtual_call:  // currently, sparc-specific for niagara
2897      default: ShouldNotReachHere();
2898    }
2899    while (offset++ % BytesPerWord != 0) {
2900      __ nop();
2901    }
2902  }
2903}
2904
2905
2906void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2907  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2908         "must be aligned");
2909  __ call(AddressLiteral(op->addr(), rtype));
2910  add_call_info(code_offset(), op->info());
2911}
2912
2913
2914void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2915  RelocationHolder rh = virtual_call_Relocation::spec(pc());
2916  __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2917  assert(!os::is_MP() ||
2918         (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2919         "must be aligned");
2920  __ call(AddressLiteral(op->addr(), rh));
2921  add_call_info(code_offset(), op->info());
2922}
2923
2924
2925/* Currently, vtable-dispatch is only enabled for sparc platforms */
2926void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2927  ShouldNotReachHere();
2928}
2929
2930
2931void LIR_Assembler::emit_static_call_stub() {
2932  address call_pc = __ pc();
2933  address stub = __ start_a_stub(call_stub_size);
2934  if (stub == NULL) {
2935    bailout("static call stub overflow");
2936    return;
2937  }
2938
2939  int start = __ offset();
2940  if (os::is_MP()) {
2941    // make sure that the displacement word of the call ends up word aligned
2942    int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2943    while (offset++ % BytesPerWord != 0) {
2944      __ nop();
2945    }
2946  }
2947  __ relocate(static_stub_Relocation::spec(call_pc));
2948  __ movoop(rbx, (jobject)NULL);
2949  // must be set to -1 at code generation time
2950  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2951  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2952  __ jump(RuntimeAddress(__ pc()));
2953
2954  assert(__ offset() - start <= call_stub_size, "stub too big");
2955  __ end_a_stub();
2956}
2957
2958
2959void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2960  assert(exceptionOop->as_register() == rax, "must match");
2961  assert(exceptionPC->as_register() == rdx, "must match");
2962
2963  // exception object is not added to oop map by LinearScan
2964  // (LinearScan assumes that no oops are in fixed registers)
2965  info->add_register_oop(exceptionOop);
2966  Runtime1::StubID unwind_id;
2967
2968  // get current pc information
2969  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2970  int pc_for_athrow_offset = __ offset();
2971  InternalAddress pc_for_athrow(__ pc());
2972  __ lea(exceptionPC->as_register(), pc_for_athrow);
2973  add_call_info(pc_for_athrow_offset, info); // for exception handler
2974
2975  __ verify_not_null_oop(rax);
2976  // search an exception handler (rax: exception oop, rdx: throwing pc)
2977  if (compilation()->has_fpu_code()) {
2978    unwind_id = Runtime1::handle_exception_id;
2979  } else {
2980    unwind_id = Runtime1::handle_exception_nofpu_id;
2981  }
2982  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2983
2984  // enough room for two byte trap
2985  __ nop();
2986}
2987
2988
2989void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2990  assert(exceptionOop->as_register() == rax, "must match");
2991
2992  __ jmp(_unwind_handler_entry);
2993}
2994
2995
2996void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2997
2998  // optimized version for linear scan:
2999  // * count must be already in ECX (guaranteed by LinearScan)
3000  // * left and dest must be equal
3001  // * tmp must be unused
3002  assert(count->as_register() == SHIFT_count, "count must be in ECX");
3003  assert(left == dest, "left and dest must be equal");
3004  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3005
3006  if (left->is_single_cpu()) {
3007    Register value = left->as_register();
3008    assert(value != SHIFT_count, "left cannot be ECX");
3009
3010    switch (code) {
3011      case lir_shl:  __ shll(value); break;
3012      case lir_shr:  __ sarl(value); break;
3013      case lir_ushr: __ shrl(value); break;
3014      default: ShouldNotReachHere();
3015    }
3016  } else if (left->is_double_cpu()) {
3017    Register lo = left->as_register_lo();
3018    Register hi = left->as_register_hi();
3019    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3020#ifdef _LP64
3021    switch (code) {
3022      case lir_shl:  __ shlptr(lo);        break;
3023      case lir_shr:  __ sarptr(lo);        break;
3024      case lir_ushr: __ shrptr(lo);        break;
3025      default: ShouldNotReachHere();
3026    }
3027#else
3028
3029    switch (code) {
3030      case lir_shl:  __ lshl(hi, lo);        break;
3031      case lir_shr:  __ lshr(hi, lo, true);  break;
3032      case lir_ushr: __ lshr(hi, lo, false); break;
3033      default: ShouldNotReachHere();
3034    }
3035#endif // LP64
3036  } else {
3037    ShouldNotReachHere();
3038  }
3039}
3040
3041
3042void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3043  if (dest->is_single_cpu()) {
3044    // first move left into dest so that left is not destroyed by the shift
3045    Register value = dest->as_register();
3046    count = count & 0x1F; // Java spec
3047
3048    move_regs(left->as_register(), value);
3049    switch (code) {
3050      case lir_shl:  __ shll(value, count); break;
3051      case lir_shr:  __ sarl(value, count); break;
3052      case lir_ushr: __ shrl(value, count); break;
3053      default: ShouldNotReachHere();
3054    }
3055  } else if (dest->is_double_cpu()) {
3056#ifndef _LP64
3057    Unimplemented();
3058#else
3059    // first move left into dest so that left is not destroyed by the shift
3060    Register value = dest->as_register_lo();
3061    count = count & 0x1F; // Java spec
3062
3063    move_regs(left->as_register_lo(), value);
3064    switch (code) {
3065      case lir_shl:  __ shlptr(value, count); break;
3066      case lir_shr:  __ sarptr(value, count); break;
3067      case lir_ushr: __ shrptr(value, count); break;
3068      default: ShouldNotReachHere();
3069    }
3070#endif // _LP64
3071  } else {
3072    ShouldNotReachHere();
3073  }
3074}
3075
3076
3077void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3078  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3079  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3080  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3081  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3082}
3083
3084
3085void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3086  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3087  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3088  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3089  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3090}
3091
3092
3093void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3094  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3095  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3096  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3097  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3098}
3099
3100
3101// This code replaces a call to arraycopy; no exception may
3102// be thrown in this code, they must be thrown in the System.arraycopy
3103// activation frame; we could save some checks if this would not be the case
3104void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3105  ciArrayKlass* default_type = op->expected_type();
3106  Register src = op->src()->as_register();
3107  Register dst = op->dst()->as_register();
3108  Register src_pos = op->src_pos()->as_register();
3109  Register dst_pos = op->dst_pos()->as_register();
3110  Register length  = op->length()->as_register();
3111  Register tmp = op->tmp()->as_register();
3112
3113  CodeStub* stub = op->stub();
3114  int flags = op->flags();
3115  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3116  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3117
3118  // if we don't know anything or it's an object array, just go through the generic arraycopy
3119  if (default_type == NULL) {
3120    Label done;
3121    // save outgoing arguments on stack in case call to System.arraycopy is needed
3122    // HACK ALERT. This code used to push the parameters in a hardwired fashion
3123    // for interpreter calling conventions. Now we have to do it in new style conventions.
3124    // For the moment until C1 gets the new register allocator I just force all the
3125    // args to the right place (except the register args) and then on the back side
3126    // reload the register args properly if we go slow path. Yuck
3127
3128    // These are proper for the calling convention
3129
3130    store_parameter(length, 2);
3131    store_parameter(dst_pos, 1);
3132    store_parameter(dst, 0);
3133
3134    // these are just temporary placements until we need to reload
3135    store_parameter(src_pos, 3);
3136    store_parameter(src, 4);
3137    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3138
3139    address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3140
3141    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3142#ifdef _LP64
3143    // The arguments are in java calling convention so we can trivially shift them to C
3144    // convention
3145    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3146    __ mov(c_rarg0, j_rarg0);
3147    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3148    __ mov(c_rarg1, j_rarg1);
3149    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3150    __ mov(c_rarg2, j_rarg2);
3151    assert_different_registers(c_rarg3, j_rarg4);
3152    __ mov(c_rarg3, j_rarg3);
3153#ifdef _WIN64
3154    // Allocate abi space for args but be sure to keep stack aligned
3155    __ subptr(rsp, 6*wordSize);
3156    store_parameter(j_rarg4, 4);
3157    __ call(RuntimeAddress(entry));
3158    __ addptr(rsp, 6*wordSize);
3159#else
3160    __ mov(c_rarg4, j_rarg4);
3161    __ call(RuntimeAddress(entry));
3162#endif // _WIN64
3163#else
3164    __ push(length);
3165    __ push(dst_pos);
3166    __ push(dst);
3167    __ push(src_pos);
3168    __ push(src);
3169    __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3170
3171#endif // _LP64
3172
3173    __ cmpl(rax, 0);
3174    __ jcc(Assembler::equal, *stub->continuation());
3175
3176    // Reload values from the stack so they are where the stub
3177    // expects them.
3178    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3179    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3180    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3181    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3182    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3183    __ jmp(*stub->entry());
3184
3185    __ bind(*stub->continuation());
3186    return;
3187  }
3188
3189  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3190
3191  int elem_size = type2aelembytes(basic_type);
3192  int shift_amount;
3193  Address::ScaleFactor scale;
3194
3195  switch (elem_size) {
3196    case 1 :
3197      shift_amount = 0;
3198      scale = Address::times_1;
3199      break;
3200    case 2 :
3201      shift_amount = 1;
3202      scale = Address::times_2;
3203      break;
3204    case 4 :
3205      shift_amount = 2;
3206      scale = Address::times_4;
3207      break;
3208    case 8 :
3209      shift_amount = 3;
3210      scale = Address::times_8;
3211      break;
3212    default:
3213      ShouldNotReachHere();
3214  }
3215
3216  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3217  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3218  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3219  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3220
3221  // length and pos's are all sign extended at this point on 64bit
3222
3223  // test for NULL
3224  if (flags & LIR_OpArrayCopy::src_null_check) {
3225    __ testptr(src, src);
3226    __ jcc(Assembler::zero, *stub->entry());
3227  }
3228  if (flags & LIR_OpArrayCopy::dst_null_check) {
3229    __ testptr(dst, dst);
3230    __ jcc(Assembler::zero, *stub->entry());
3231  }
3232
3233  // check if negative
3234  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3235    __ testl(src_pos, src_pos);
3236    __ jcc(Assembler::less, *stub->entry());
3237  }
3238  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3239    __ testl(dst_pos, dst_pos);
3240    __ jcc(Assembler::less, *stub->entry());
3241  }
3242  if (flags & LIR_OpArrayCopy::length_positive_check) {
3243    __ testl(length, length);
3244    __ jcc(Assembler::less, *stub->entry());
3245  }
3246
3247  if (flags & LIR_OpArrayCopy::src_range_check) {
3248    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3249    __ cmpl(tmp, src_length_addr);
3250    __ jcc(Assembler::above, *stub->entry());
3251  }
3252  if (flags & LIR_OpArrayCopy::dst_range_check) {
3253    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3254    __ cmpl(tmp, dst_length_addr);
3255    __ jcc(Assembler::above, *stub->entry());
3256  }
3257
3258  if (flags & LIR_OpArrayCopy::type_check) {
3259    if (UseCompressedOops) {
3260      __ movl(tmp, src_klass_addr);
3261      __ cmpl(tmp, dst_klass_addr);
3262    } else {
3263      __ movptr(tmp, src_klass_addr);
3264      __ cmpptr(tmp, dst_klass_addr);
3265    }
3266    __ jcc(Assembler::notEqual, *stub->entry());
3267  }
3268
3269#ifdef ASSERT
3270  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3271    // Sanity check the known type with the incoming class.  For the
3272    // primitive case the types must match exactly with src.klass and
3273    // dst.klass each exactly matching the default type.  For the
3274    // object array case, if no type check is needed then either the
3275    // dst type is exactly the expected type and the src type is a
3276    // subtype which we can't check or src is the same array as dst
3277    // but not necessarily exactly of type default_type.
3278    Label known_ok, halt;
3279    __ movoop(tmp, default_type->constant_encoding());
3280#ifdef _LP64
3281    if (UseCompressedOops) {
3282      __ encode_heap_oop(tmp);
3283    }
3284#endif
3285
3286    if (basic_type != T_OBJECT) {
3287
3288      if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3289      else                   __ cmpptr(tmp, dst_klass_addr);
3290      __ jcc(Assembler::notEqual, halt);
3291      if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3292      else                   __ cmpptr(tmp, src_klass_addr);
3293      __ jcc(Assembler::equal, known_ok);
3294    } else {
3295      if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3296      else                   __ cmpptr(tmp, dst_klass_addr);
3297      __ jcc(Assembler::equal, known_ok);
3298      __ cmpptr(src, dst);
3299      __ jcc(Assembler::equal, known_ok);
3300    }
3301    __ bind(halt);
3302    __ stop("incorrect type information in arraycopy");
3303    __ bind(known_ok);
3304  }
3305#endif
3306
3307  if (shift_amount > 0 && basic_type != T_OBJECT) {
3308    __ shlptr(length, shift_amount);
3309  }
3310
3311#ifdef _LP64
3312  assert_different_registers(c_rarg0, dst, dst_pos, length);
3313  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3314  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3315  assert_different_registers(c_rarg1, length);
3316  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3317  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3318  __ mov(c_rarg2, length);
3319
3320#else
3321  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3322  store_parameter(tmp, 0);
3323  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3324  store_parameter(tmp, 1);
3325  store_parameter(length, 2);
3326#endif // _LP64
3327  if (basic_type == T_OBJECT) {
3328    __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3329  } else {
3330    __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3331  }
3332
3333  __ bind(*stub->continuation());
3334}
3335
3336
3337void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3338  Register obj = op->obj_opr()->as_register();  // may not be an oop
3339  Register hdr = op->hdr_opr()->as_register();
3340  Register lock = op->lock_opr()->as_register();
3341  if (!UseFastLocking) {
3342    __ jmp(*op->stub()->entry());
3343  } else if (op->code() == lir_lock) {
3344    Register scratch = noreg;
3345    if (UseBiasedLocking) {
3346      scratch = op->scratch_opr()->as_register();
3347    }
3348    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3349    // add debug info for NullPointerException only if one is possible
3350    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3351    if (op->info() != NULL) {
3352      add_debug_info_for_null_check(null_check_offset, op->info());
3353    }
3354    // done
3355  } else if (op->code() == lir_unlock) {
3356    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3357    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3358  } else {
3359    Unimplemented();
3360  }
3361  __ bind(*op->stub()->continuation());
3362}
3363
3364
3365void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3366  ciMethod* method = op->profiled_method();
3367  int bci          = op->profiled_bci();
3368
3369  // Update counter for all call types
3370  ciMethodData* md = method->method_data_or_null();
3371  assert(md != NULL, "Sanity");
3372  ciProfileData* data = md->bci_to_data(bci);
3373  assert(data->is_CounterData(), "need CounterData for calls");
3374  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3375  Register mdo  = op->mdo()->as_register();
3376  __ movoop(mdo, md->constant_encoding());
3377  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3378  Bytecodes::Code bc = method->java_code_at_bci(bci);
3379  // Perform additional virtual call profiling for invokevirtual and
3380  // invokeinterface bytecodes
3381  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3382      C1ProfileVirtualCalls) {
3383    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3384    Register recv = op->recv()->as_register();
3385    assert_different_registers(mdo, recv);
3386    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3387    ciKlass* known_klass = op->known_holder();
3388    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3389      // We know the type that will be seen at this call site; we can
3390      // statically update the methodDataOop rather than needing to do
3391      // dynamic tests on the receiver type
3392
3393      // NOTE: we should probably put a lock around this search to
3394      // avoid collisions by concurrent compilations
3395      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3396      uint i;
3397      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3398        ciKlass* receiver = vc_data->receiver(i);
3399        if (known_klass->equals(receiver)) {
3400          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3401          __ addptr(data_addr, DataLayout::counter_increment);
3402          return;
3403        }
3404      }
3405
3406      // Receiver type not found in profile data; select an empty slot
3407
3408      // Note that this is less efficient than it should be because it
3409      // always does a write to the receiver part of the
3410      // VirtualCallData rather than just the first time
3411      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3412        ciKlass* receiver = vc_data->receiver(i);
3413        if (receiver == NULL) {
3414          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3415          __ movoop(recv_addr, known_klass->constant_encoding());
3416          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3417          __ addptr(data_addr, DataLayout::counter_increment);
3418          return;
3419        }
3420      }
3421    } else {
3422      __ load_klass(recv, recv);
3423      Label update_done;
3424      type_profile_helper(mdo, md, data, recv, &update_done);
3425      // Receiver did not match any saved receiver and there is no empty row for it.
3426      // Increment total counter to indicate polymorphic case.
3427      __ addptr(counter_addr, DataLayout::counter_increment);
3428
3429      __ bind(update_done);
3430    }
3431  } else {
3432    // Static call
3433    __ addptr(counter_addr, DataLayout::counter_increment);
3434  }
3435}
3436
3437void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3438  Unimplemented();
3439}
3440
3441
3442void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3443  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3444}
3445
3446
3447void LIR_Assembler::align_backward_branch_target() {
3448  __ align(BytesPerWord);
3449}
3450
3451
3452void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3453  if (left->is_single_cpu()) {
3454    __ negl(left->as_register());
3455    move_regs(left->as_register(), dest->as_register());
3456
3457  } else if (left->is_double_cpu()) {
3458    Register lo = left->as_register_lo();
3459#ifdef _LP64
3460    Register dst = dest->as_register_lo();
3461    __ movptr(dst, lo);
3462    __ negptr(dst);
3463#else
3464    Register hi = left->as_register_hi();
3465    __ lneg(hi, lo);
3466    if (dest->as_register_lo() == hi) {
3467      assert(dest->as_register_hi() != lo, "destroying register");
3468      move_regs(hi, dest->as_register_hi());
3469      move_regs(lo, dest->as_register_lo());
3470    } else {
3471      move_regs(lo, dest->as_register_lo());
3472      move_regs(hi, dest->as_register_hi());
3473    }
3474#endif // _LP64
3475
3476  } else if (dest->is_single_xmm()) {
3477    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3478      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3479    }
3480    __ xorps(dest->as_xmm_float_reg(),
3481             ExternalAddress((address)float_signflip_pool));
3482
3483  } else if (dest->is_double_xmm()) {
3484    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3485      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3486    }
3487    __ xorpd(dest->as_xmm_double_reg(),
3488             ExternalAddress((address)double_signflip_pool));
3489
3490  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3491    assert(left->fpu() == 0, "arg must be on TOS");
3492    assert(dest->fpu() == 0, "dest must be TOS");
3493    __ fchs();
3494
3495  } else {
3496    ShouldNotReachHere();
3497  }
3498}
3499
3500
3501void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3502  assert(addr->is_address() && dest->is_register(), "check");
3503  Register reg;
3504  reg = dest->as_pointer_register();
3505  __ lea(reg, as_Address(addr->as_address_ptr()));
3506}
3507
3508
3509
3510void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3511  assert(!tmp->is_valid(), "don't need temporary");
3512  __ call(RuntimeAddress(dest));
3513  if (info != NULL) {
3514    add_call_info_here(info);
3515  }
3516}
3517
3518
3519void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3520  assert(type == T_LONG, "only for volatile long fields");
3521
3522  if (info != NULL) {
3523    add_debug_info_for_null_check_here(info);
3524  }
3525
3526  if (src->is_double_xmm()) {
3527    if (dest->is_double_cpu()) {
3528#ifdef _LP64
3529      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3530#else
3531      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3532      __ psrlq(src->as_xmm_double_reg(), 32);
3533      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3534#endif // _LP64
3535    } else if (dest->is_double_stack()) {
3536      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3537    } else if (dest->is_address()) {
3538      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3539    } else {
3540      ShouldNotReachHere();
3541    }
3542
3543  } else if (dest->is_double_xmm()) {
3544    if (src->is_double_stack()) {
3545      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3546    } else if (src->is_address()) {
3547      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3548    } else {
3549      ShouldNotReachHere();
3550    }
3551
3552  } else if (src->is_double_fpu()) {
3553    assert(src->fpu_regnrLo() == 0, "must be TOS");
3554    if (dest->is_double_stack()) {
3555      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3556    } else if (dest->is_address()) {
3557      __ fistp_d(as_Address(dest->as_address_ptr()));
3558    } else {
3559      ShouldNotReachHere();
3560    }
3561
3562  } else if (dest->is_double_fpu()) {
3563    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3564    if (src->is_double_stack()) {
3565      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3566    } else if (src->is_address()) {
3567      __ fild_d(as_Address(src->as_address_ptr()));
3568    } else {
3569      ShouldNotReachHere();
3570    }
3571  } else {
3572    ShouldNotReachHere();
3573  }
3574}
3575
3576
3577void LIR_Assembler::membar() {
3578  // QQQ sparc TSO uses this,
3579  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3580}
3581
3582void LIR_Assembler::membar_acquire() {
3583  // No x86 machines currently require load fences
3584  // __ load_fence();
3585}
3586
3587void LIR_Assembler::membar_release() {
3588  // No x86 machines currently require store fences
3589  // __ store_fence();
3590}
3591
3592void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3593  assert(result_reg->is_register(), "check");
3594#ifdef _LP64
3595  // __ get_thread(result_reg->as_register_lo());
3596  __ mov(result_reg->as_register(), r15_thread);
3597#else
3598  __ get_thread(result_reg->as_register());
3599#endif // _LP64
3600}
3601
3602
3603void LIR_Assembler::peephole(LIR_List*) {
3604  // do nothing for now
3605}
3606
3607
3608#undef __
3609