c1_LIRAssembler_x86.cpp revision 1398:314e17ca2c23
1/*
2 * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRAssembler_x86.cpp.incl"
27
28
29// These masks are used to provide 128-bit aligned bitmasks to the XMM
30// instructions, to allow sign-masking or sign-bit flipping.  They allow
31// fast versions of NegF/NegD and AbsF/AbsD.
32
33// Note: 'double' and 'long long' have 32-bits alignment on x86.
34static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
35  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
36  // of 128-bits operands for SSE instructions.
37  jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
38  // Store the value to a 128-bits operand.
39  operand[0] = lo;
40  operand[1] = hi;
41  return operand;
42}
43
44// Buffer for 128-bits masks used by SSE instructions.
45static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
46
47// Static initialization during VM startup.
48static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
49static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
50static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
51static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
52
53
54
55NEEDS_CLEANUP // remove this definitions ?
56const Register IC_Klass    = rax;   // where the IC klass is cached
57const Register SYNC_header = rax;   // synchronization header
58const Register SHIFT_count = rcx;   // where count for shift operations must be
59
60#define __ _masm->
61
62
63static void select_different_registers(Register preserve,
64                                       Register extra,
65                                       Register &tmp1,
66                                       Register &tmp2) {
67  if (tmp1 == preserve) {
68    assert_different_registers(tmp1, tmp2, extra);
69    tmp1 = extra;
70  } else if (tmp2 == preserve) {
71    assert_different_registers(tmp1, tmp2, extra);
72    tmp2 = extra;
73  }
74  assert_different_registers(preserve, tmp1, tmp2);
75}
76
77
78
79static void select_different_registers(Register preserve,
80                                       Register extra,
81                                       Register &tmp1,
82                                       Register &tmp2,
83                                       Register &tmp3) {
84  if (tmp1 == preserve) {
85    assert_different_registers(tmp1, tmp2, tmp3, extra);
86    tmp1 = extra;
87  } else if (tmp2 == preserve) {
88    assert_different_registers(tmp1, tmp2, tmp3, extra);
89    tmp2 = extra;
90  } else if (tmp3 == preserve) {
91    assert_different_registers(tmp1, tmp2, tmp3, extra);
92    tmp3 = extra;
93  }
94  assert_different_registers(preserve, tmp1, tmp2, tmp3);
95}
96
97
98
99bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
100  if (opr->is_constant()) {
101    LIR_Const* constant = opr->as_constant_ptr();
102    switch (constant->type()) {
103      case T_INT: {
104        return true;
105      }
106
107      default:
108        return false;
109    }
110  }
111  return false;
112}
113
114
115LIR_Opr LIR_Assembler::receiverOpr() {
116  return FrameMap::receiver_opr;
117}
118
119LIR_Opr LIR_Assembler::incomingReceiverOpr() {
120  return receiverOpr();
121}
122
123LIR_Opr LIR_Assembler::osrBufferPointer() {
124  return FrameMap::as_pointer_opr(receiverOpr()->as_register());
125}
126
127//--------------fpu register translations-----------------------
128
129
130address LIR_Assembler::float_constant(float f) {
131  address const_addr = __ float_constant(f);
132  if (const_addr == NULL) {
133    bailout("const section overflow");
134    return __ code()->consts()->start();
135  } else {
136    return const_addr;
137  }
138}
139
140
141address LIR_Assembler::double_constant(double d) {
142  address const_addr = __ double_constant(d);
143  if (const_addr == NULL) {
144    bailout("const section overflow");
145    return __ code()->consts()->start();
146  } else {
147    return const_addr;
148  }
149}
150
151
152void LIR_Assembler::set_24bit_FPU() {
153  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
154}
155
156void LIR_Assembler::reset_FPU() {
157  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
158}
159
160void LIR_Assembler::fpop() {
161  __ fpop();
162}
163
164void LIR_Assembler::fxch(int i) {
165  __ fxch(i);
166}
167
168void LIR_Assembler::fld(int i) {
169  __ fld_s(i);
170}
171
172void LIR_Assembler::ffree(int i) {
173  __ ffree(i);
174}
175
176void LIR_Assembler::breakpoint() {
177  __ int3();
178}
179
180void LIR_Assembler::push(LIR_Opr opr) {
181  if (opr->is_single_cpu()) {
182    __ push_reg(opr->as_register());
183  } else if (opr->is_double_cpu()) {
184    NOT_LP64(__ push_reg(opr->as_register_hi()));
185    __ push_reg(opr->as_register_lo());
186  } else if (opr->is_stack()) {
187    __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
188  } else if (opr->is_constant()) {
189    LIR_Const* const_opr = opr->as_constant_ptr();
190    if (const_opr->type() == T_OBJECT) {
191      __ push_oop(const_opr->as_jobject());
192    } else if (const_opr->type() == T_INT) {
193      __ push_jint(const_opr->as_jint());
194    } else {
195      ShouldNotReachHere();
196    }
197
198  } else {
199    ShouldNotReachHere();
200  }
201}
202
203void LIR_Assembler::pop(LIR_Opr opr) {
204  if (opr->is_single_cpu()) {
205    __ pop_reg(opr->as_register());
206  } else {
207    ShouldNotReachHere();
208  }
209}
210
211bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
212  return addr->base()->is_illegal() && addr->index()->is_illegal();
213}
214
215//-------------------------------------------
216
217Address LIR_Assembler::as_Address(LIR_Address* addr) {
218  return as_Address(addr, rscratch1);
219}
220
221Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
222  if (addr->base()->is_illegal()) {
223    assert(addr->index()->is_illegal(), "must be illegal too");
224    AddressLiteral laddr((address)addr->disp(), relocInfo::none);
225    if (! __ reachable(laddr)) {
226      __ movptr(tmp, laddr.addr());
227      Address res(tmp, 0);
228      return res;
229    } else {
230      return __ as_Address(laddr);
231    }
232  }
233
234  Register base = addr->base()->as_pointer_register();
235
236  if (addr->index()->is_illegal()) {
237    return Address( base, addr->disp());
238  } else if (addr->index()->is_cpu_register()) {
239    Register index = addr->index()->as_pointer_register();
240    return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
241  } else if (addr->index()->is_constant()) {
242    intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
243    assert(Assembler::is_simm32(addr_offset), "must be");
244
245    return Address(base, addr_offset);
246  } else {
247    Unimplemented();
248    return Address();
249  }
250}
251
252
253Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
254  Address base = as_Address(addr);
255  return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
256}
257
258
259Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
260  return as_Address(addr);
261}
262
263
264void LIR_Assembler::osr_entry() {
265  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
266  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
267  ValueStack* entry_state = osr_entry->state();
268  int number_of_locks = entry_state->locks_size();
269
270  // we jump here if osr happens with the interpreter
271  // state set up to continue at the beginning of the
272  // loop that triggered osr - in particular, we have
273  // the following registers setup:
274  //
275  // rcx: osr buffer
276  //
277
278  // build frame
279  ciMethod* m = compilation()->method();
280  __ build_frame(initial_frame_size_in_bytes());
281
282  // OSR buffer is
283  //
284  // locals[nlocals-1..0]
285  // monitors[0..number_of_locks]
286  //
287  // locals is a direct copy of the interpreter frame so in the osr buffer
288  // so first slot in the local array is the last local from the interpreter
289  // and last slot is local[0] (receiver) from the interpreter
290  //
291  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
292  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
293  // in the interpreter frame (the method lock if a sync method)
294
295  // Initialize monitors in the compiled activation.
296  //   rcx: pointer to osr buffer
297  //
298  // All other registers are dead at this point and the locals will be
299  // copied into place by code emitted in the IR.
300
301  Register OSR_buf = osrBufferPointer()->as_pointer_register();
302  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
303    int monitor_offset = BytesPerWord * method()->max_locals() +
304      (2 * BytesPerWord) * (number_of_locks - 1);
305    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
306    // the OSR buffer using 2 word entries: first the lock and then
307    // the oop.
308    for (int i = 0; i < number_of_locks; i++) {
309      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
310#ifdef ASSERT
311      // verify the interpreter's monitor has a non-null object
312      {
313        Label L;
314        __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
315        __ jcc(Assembler::notZero, L);
316        __ stop("locked object is NULL");
317        __ bind(L);
318      }
319#endif
320      __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
321      __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
322      __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
323      __ movptr(frame_map()->address_for_monitor_object(i), rbx);
324    }
325  }
326}
327
328
329// inline cache check; done before the frame is built.
330int LIR_Assembler::check_icache() {
331  Register receiver = FrameMap::receiver_opr->as_register();
332  Register ic_klass = IC_Klass;
333  const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
334
335  if (!VerifyOops) {
336    // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
337    while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
338      __ nop();
339    }
340  }
341  int offset = __ offset();
342  __ inline_cache_check(receiver, IC_Klass);
343  assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
344  if (VerifyOops) {
345    // force alignment after the cache check.
346    // It's been verified to be aligned if !VerifyOops
347    __ align(CodeEntryAlignment);
348  }
349  return offset;
350}
351
352
353void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
354  jobject o = NULL;
355  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
356  __ movoop(reg, o);
357  patching_epilog(patch, lir_patch_normal, reg, info);
358}
359
360
361void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
362  if (exception->is_valid()) {
363    // preserve exception
364    // note: the monitor_exit runtime call is a leaf routine
365    //       and cannot block => no GC can happen
366    // The slow case (MonitorAccessStub) uses the first two stack slots
367    // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
368    __ movptr (Address(rsp, 2*wordSize), exception);
369  }
370
371  Register obj_reg  = obj_opr->as_register();
372  Register lock_reg = lock_opr->as_register();
373
374  // setup registers (lock_reg must be rax, for lock_object)
375  assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
376  Register hdr = lock_reg;
377  assert(new_hdr == SYNC_header, "wrong register");
378  lock_reg = new_hdr;
379  // compute pointer to BasicLock
380  Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
381  __ lea(lock_reg, lock_addr);
382  // unlock object
383  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
384  // _slow_case_stubs->append(slow_case);
385  // temporary fix: must be created after exceptionhandler, therefore as call stub
386  _slow_case_stubs->append(slow_case);
387  if (UseFastLocking) {
388    // try inlined fast unlocking first, revert to slow locking if it fails
389    // note: lock_reg points to the displaced header since the displaced header offset is 0!
390    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
391    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
392  } else {
393    // always do slow unlocking
394    // note: the slow unlocking code could be inlined here, however if we use
395    //       slow unlocking, speed doesn't matter anyway and this solution is
396    //       simpler and requires less duplicated code - additionally, the
397    //       slow unlocking code is the same in either case which simplifies
398    //       debugging
399    __ jmp(*slow_case->entry());
400  }
401  // done
402  __ bind(*slow_case->continuation());
403
404  if (exception->is_valid()) {
405    // restore exception
406    __ movptr (exception, Address(rsp, 2 * wordSize));
407  }
408}
409
410// This specifies the rsp decrement needed to build the frame
411int LIR_Assembler::initial_frame_size_in_bytes() {
412  // if rounding, must let FrameMap know!
413
414  // The frame_map records size in slots (32bit word)
415
416  // subtract two words to account for return address and link
417  return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
418}
419
420
421int LIR_Assembler::emit_exception_handler() {
422  // if the last instruction is a call (typically to do a throw which
423  // is coming at the end after block reordering) the return address
424  // must still point into the code area in order to avoid assertion
425  // failures when searching for the corresponding bci => add a nop
426  // (was bug 5/14/1999 - gri)
427  __ nop();
428
429  // generate code for exception handler
430  address handler_base = __ start_a_stub(exception_handler_size);
431  if (handler_base == NULL) {
432    // not enough space left for the handler
433    bailout("exception handler overflow");
434    return -1;
435  }
436
437  int offset = code_offset();
438
439  // the exception oop and pc are in rax, and rdx
440  // no other registers need to be preserved, so invalidate them
441  __ invalidate_registers(false, true, true, false, true, true);
442
443  // check that there is really an exception
444  __ verify_not_null_oop(rax);
445
446  // search an exception handler (rax: exception oop, rdx: throwing pc)
447  __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
448
449  __ stop("should not reach here");
450
451  assert(code_offset() - offset <= exception_handler_size, "overflow");
452  __ end_a_stub();
453
454  return offset;
455}
456
457
458// Emit the code to remove the frame from the stack in the exception
459// unwind path.
460int LIR_Assembler::emit_unwind_handler() {
461#ifndef PRODUCT
462  if (CommentedAssembly) {
463    _masm->block_comment("Unwind handler");
464  }
465#endif
466
467  int offset = code_offset();
468
469  // Fetch the exception from TLS and clear out exception related thread state
470  __ get_thread(rsi);
471  __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
472  __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
473  __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
474
475  __ bind(_unwind_handler_entry);
476  __ verify_not_null_oop(rax);
477  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
478    __ mov(rsi, rax);  // Preserve the exception
479  }
480
481  // Preform needed unlocking
482  MonitorExitStub* stub = NULL;
483  if (method()->is_synchronized()) {
484    monitor_address(0, FrameMap::rax_opr);
485    stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
486    __ unlock_object(rdi, rbx, rax, *stub->entry());
487    __ bind(*stub->continuation());
488  }
489
490  if (compilation()->env()->dtrace_method_probes()) {
491    __ movoop(Address(rsp, 0), method()->constant_encoding());
492    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
493  }
494
495  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
496    __ mov(rax, rsi);  // Restore the exception
497  }
498
499  // remove the activation and dispatch to the unwind handler
500  __ remove_frame(initial_frame_size_in_bytes());
501  __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
502
503  // Emit the slow path assembly
504  if (stub != NULL) {
505    stub->emit_code(this);
506  }
507
508  return offset;
509}
510
511
512int LIR_Assembler::emit_deopt_handler() {
513  // if the last instruction is a call (typically to do a throw which
514  // is coming at the end after block reordering) the return address
515  // must still point into the code area in order to avoid assertion
516  // failures when searching for the corresponding bci => add a nop
517  // (was bug 5/14/1999 - gri)
518  __ nop();
519
520  // generate code for exception handler
521  address handler_base = __ start_a_stub(deopt_handler_size);
522  if (handler_base == NULL) {
523    // not enough space left for the handler
524    bailout("deopt handler overflow");
525    return -1;
526  }
527
528  int offset = code_offset();
529  InternalAddress here(__ pc());
530
531  __ pushptr(here.addr());
532  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
533
534  assert(code_offset() - offset <= deopt_handler_size, "overflow");
535  __ end_a_stub();
536
537  return offset;
538}
539
540
541// This is the fast version of java.lang.String.compare; it has not
542// OSR-entry and therefore, we generate a slow version for OSR's
543void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
544  __ movptr (rbx, rcx); // receiver is in rcx
545  __ movptr (rax, arg1->as_register());
546
547  // Get addresses of first characters from both Strings
548  __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
549  __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
550  __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
551
552
553  // rbx, may be NULL
554  add_debug_info_for_null_check_here(info);
555  __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
556  __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
557  __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
558
559  // compute minimum length (in rax) and difference of lengths (on top of stack)
560  if (VM_Version::supports_cmov()) {
561    __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
562    __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
563    __ mov      (rcx, rbx);
564    __ subptr   (rbx, rax); // subtract lengths
565    __ push     (rbx);      // result
566    __ cmov     (Assembler::lessEqual, rax, rcx);
567  } else {
568    Label L;
569    __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
570    __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
571    __ mov      (rax, rbx);
572    __ subptr   (rbx, rcx);
573    __ push     (rbx);
574    __ jcc      (Assembler::lessEqual, L);
575    __ mov      (rax, rcx);
576    __ bind (L);
577  }
578  // is minimum length 0?
579  Label noLoop, haveResult;
580  __ testptr (rax, rax);
581  __ jcc (Assembler::zero, noLoop);
582
583  // compare first characters
584  __ load_unsigned_short(rcx, Address(rdi, 0));
585  __ load_unsigned_short(rbx, Address(rsi, 0));
586  __ subl(rcx, rbx);
587  __ jcc(Assembler::notZero, haveResult);
588  // starting loop
589  __ decrement(rax); // we already tested index: skip one
590  __ jcc(Assembler::zero, noLoop);
591
592  // set rsi.edi to the end of the arrays (arrays have same length)
593  // negate the index
594
595  __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
596  __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
597  __ negptr(rax);
598
599  // compare the strings in a loop
600
601  Label loop;
602  __ align(wordSize);
603  __ bind(loop);
604  __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
605  __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
606  __ subl(rcx, rbx);
607  __ jcc(Assembler::notZero, haveResult);
608  __ increment(rax);
609  __ jcc(Assembler::notZero, loop);
610
611  // strings are equal up to min length
612
613  __ bind(noLoop);
614  __ pop(rax);
615  return_op(LIR_OprFact::illegalOpr);
616
617  __ bind(haveResult);
618  // leave instruction is going to discard the TOS value
619  __ mov (rax, rcx); // result of call is in rax,
620}
621
622
623void LIR_Assembler::return_op(LIR_Opr result) {
624  assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
625  if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
626    assert(result->fpu() == 0, "result must already be on TOS");
627  }
628
629  // Pop the stack before the safepoint code
630  __ remove_frame(initial_frame_size_in_bytes());
631
632  bool result_is_oop = result->is_valid() ? result->is_oop() : false;
633
634  // Note: we do not need to round double result; float result has the right precision
635  // the poll sets the condition code, but no data registers
636  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
637                              relocInfo::poll_return_type);
638
639  // NOTE: the requires that the polling page be reachable else the reloc
640  // goes to the movq that loads the address and not the faulting instruction
641  // which breaks the signal handler code
642
643  __ test32(rax, polling_page);
644
645  __ ret(0);
646}
647
648
649int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
650  AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
651                              relocInfo::poll_type);
652
653  if (info != NULL) {
654    add_debug_info_for_branch(info);
655  } else {
656    ShouldNotReachHere();
657  }
658
659  int offset = __ offset();
660
661  // NOTE: the requires that the polling page be reachable else the reloc
662  // goes to the movq that loads the address and not the faulting instruction
663  // which breaks the signal handler code
664
665  __ test32(rax, polling_page);
666  return offset;
667}
668
669
670void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
671  if (from_reg != to_reg) __ mov(to_reg, from_reg);
672}
673
674void LIR_Assembler::swap_reg(Register a, Register b) {
675  __ xchgptr(a, b);
676}
677
678
679void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
680  assert(src->is_constant(), "should not call otherwise");
681  assert(dest->is_register(), "should not call otherwise");
682  LIR_Const* c = src->as_constant_ptr();
683
684  switch (c->type()) {
685    case T_INT:
686    case T_ADDRESS: {
687      assert(patch_code == lir_patch_none, "no patching handled here");
688      __ movl(dest->as_register(), c->as_jint());
689      break;
690    }
691
692    case T_LONG: {
693      assert(patch_code == lir_patch_none, "no patching handled here");
694#ifdef _LP64
695      __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
696#else
697      __ movptr(dest->as_register_lo(), c->as_jint_lo());
698      __ movptr(dest->as_register_hi(), c->as_jint_hi());
699#endif // _LP64
700      break;
701    }
702
703    case T_OBJECT: {
704      if (patch_code != lir_patch_none) {
705        jobject2reg_with_patching(dest->as_register(), info);
706      } else {
707        __ movoop(dest->as_register(), c->as_jobject());
708      }
709      break;
710    }
711
712    case T_FLOAT: {
713      if (dest->is_single_xmm()) {
714        if (c->is_zero_float()) {
715          __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
716        } else {
717          __ movflt(dest->as_xmm_float_reg(),
718                   InternalAddress(float_constant(c->as_jfloat())));
719        }
720      } else {
721        assert(dest->is_single_fpu(), "must be");
722        assert(dest->fpu_regnr() == 0, "dest must be TOS");
723        if (c->is_zero_float()) {
724          __ fldz();
725        } else if (c->is_one_float()) {
726          __ fld1();
727        } else {
728          __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
729        }
730      }
731      break;
732    }
733
734    case T_DOUBLE: {
735      if (dest->is_double_xmm()) {
736        if (c->is_zero_double()) {
737          __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
738        } else {
739          __ movdbl(dest->as_xmm_double_reg(),
740                    InternalAddress(double_constant(c->as_jdouble())));
741        }
742      } else {
743        assert(dest->is_double_fpu(), "must be");
744        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
745        if (c->is_zero_double()) {
746          __ fldz();
747        } else if (c->is_one_double()) {
748          __ fld1();
749        } else {
750          __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
751        }
752      }
753      break;
754    }
755
756    default:
757      ShouldNotReachHere();
758  }
759}
760
761void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
762  assert(src->is_constant(), "should not call otherwise");
763  assert(dest->is_stack(), "should not call otherwise");
764  LIR_Const* c = src->as_constant_ptr();
765
766  switch (c->type()) {
767    case T_INT:  // fall through
768    case T_FLOAT:
769    case T_ADDRESS:
770      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
771      break;
772
773    case T_OBJECT:
774      __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
775      break;
776
777    case T_LONG:  // fall through
778    case T_DOUBLE:
779#ifdef _LP64
780      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
781                                            lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
782#else
783      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
784                                              lo_word_offset_in_bytes), c->as_jint_lo_bits());
785      __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
786                                              hi_word_offset_in_bytes), c->as_jint_hi_bits());
787#endif // _LP64
788      break;
789
790    default:
791      ShouldNotReachHere();
792  }
793}
794
795void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
796  assert(src->is_constant(), "should not call otherwise");
797  assert(dest->is_address(), "should not call otherwise");
798  LIR_Const* c = src->as_constant_ptr();
799  LIR_Address* addr = dest->as_address_ptr();
800
801  int null_check_here = code_offset();
802  switch (type) {
803    case T_INT:    // fall through
804    case T_FLOAT:
805    case T_ADDRESS:
806      __ movl(as_Address(addr), c->as_jint_bits());
807      break;
808
809    case T_OBJECT:  // fall through
810    case T_ARRAY:
811      if (c->as_jobject() == NULL) {
812        __ movptr(as_Address(addr), NULL_WORD);
813      } else {
814        if (is_literal_address(addr)) {
815          ShouldNotReachHere();
816          __ movoop(as_Address(addr, noreg), c->as_jobject());
817        } else {
818#ifdef _LP64
819          __ movoop(rscratch1, c->as_jobject());
820          null_check_here = code_offset();
821          __ movptr(as_Address_lo(addr), rscratch1);
822#else
823          __ movoop(as_Address(addr), c->as_jobject());
824#endif
825        }
826      }
827      break;
828
829    case T_LONG:    // fall through
830    case T_DOUBLE:
831#ifdef _LP64
832      if (is_literal_address(addr)) {
833        ShouldNotReachHere();
834        __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
835      } else {
836        __ movptr(r10, (intptr_t)c->as_jlong_bits());
837        null_check_here = code_offset();
838        __ movptr(as_Address_lo(addr), r10);
839      }
840#else
841      // Always reachable in 32bit so this doesn't produce useless move literal
842      __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
843      __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
844#endif // _LP64
845      break;
846
847    case T_BOOLEAN: // fall through
848    case T_BYTE:
849      __ movb(as_Address(addr), c->as_jint() & 0xFF);
850      break;
851
852    case T_CHAR:    // fall through
853    case T_SHORT:
854      __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
855      break;
856
857    default:
858      ShouldNotReachHere();
859  };
860
861  if (info != NULL) {
862    add_debug_info_for_null_check(null_check_here, info);
863  }
864}
865
866
867void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
868  assert(src->is_register(), "should not call otherwise");
869  assert(dest->is_register(), "should not call otherwise");
870
871  // move between cpu-registers
872  if (dest->is_single_cpu()) {
873#ifdef _LP64
874    if (src->type() == T_LONG) {
875      // Can do LONG -> OBJECT
876      move_regs(src->as_register_lo(), dest->as_register());
877      return;
878    }
879#endif
880    assert(src->is_single_cpu(), "must match");
881    if (src->type() == T_OBJECT) {
882      __ verify_oop(src->as_register());
883    }
884    move_regs(src->as_register(), dest->as_register());
885
886  } else if (dest->is_double_cpu()) {
887#ifdef _LP64
888    if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
889      // Surprising to me but we can see move of a long to t_object
890      __ verify_oop(src->as_register());
891      move_regs(src->as_register(), dest->as_register_lo());
892      return;
893    }
894#endif
895    assert(src->is_double_cpu(), "must match");
896    Register f_lo = src->as_register_lo();
897    Register f_hi = src->as_register_hi();
898    Register t_lo = dest->as_register_lo();
899    Register t_hi = dest->as_register_hi();
900#ifdef _LP64
901    assert(f_hi == f_lo, "must be same");
902    assert(t_hi == t_lo, "must be same");
903    move_regs(f_lo, t_lo);
904#else
905    assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
906
907
908    if (f_lo == t_hi && f_hi == t_lo) {
909      swap_reg(f_lo, f_hi);
910    } else if (f_hi == t_lo) {
911      assert(f_lo != t_hi, "overwriting register");
912      move_regs(f_hi, t_hi);
913      move_regs(f_lo, t_lo);
914    } else {
915      assert(f_hi != t_lo, "overwriting register");
916      move_regs(f_lo, t_lo);
917      move_regs(f_hi, t_hi);
918    }
919#endif // LP64
920
921    // special moves from fpu-register to xmm-register
922    // necessary for method results
923  } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
924    __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
925    __ fld_s(Address(rsp, 0));
926  } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
927    __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
928    __ fld_d(Address(rsp, 0));
929  } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
930    __ fstp_s(Address(rsp, 0));
931    __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
932  } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
933    __ fstp_d(Address(rsp, 0));
934    __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
935
936    // move between xmm-registers
937  } else if (dest->is_single_xmm()) {
938    assert(src->is_single_xmm(), "must match");
939    __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
940  } else if (dest->is_double_xmm()) {
941    assert(src->is_double_xmm(), "must match");
942    __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
943
944    // move between fpu-registers (no instruction necessary because of fpu-stack)
945  } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
946    assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
947    assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
948  } else {
949    ShouldNotReachHere();
950  }
951}
952
953void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
954  assert(src->is_register(), "should not call otherwise");
955  assert(dest->is_stack(), "should not call otherwise");
956
957  if (src->is_single_cpu()) {
958    Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
959    if (type == T_OBJECT || type == T_ARRAY) {
960      __ verify_oop(src->as_register());
961      __ movptr (dst, src->as_register());
962    } else {
963      __ movl (dst, src->as_register());
964    }
965
966  } else if (src->is_double_cpu()) {
967    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
968    Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
969    __ movptr (dstLO, src->as_register_lo());
970    NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
971
972  } else if (src->is_single_xmm()) {
973    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
974    __ movflt(dst_addr, src->as_xmm_float_reg());
975
976  } else if (src->is_double_xmm()) {
977    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
978    __ movdbl(dst_addr, src->as_xmm_double_reg());
979
980  } else if (src->is_single_fpu()) {
981    assert(src->fpu_regnr() == 0, "argument must be on TOS");
982    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
983    if (pop_fpu_stack)     __ fstp_s (dst_addr);
984    else                   __ fst_s  (dst_addr);
985
986  } else if (src->is_double_fpu()) {
987    assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
988    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
989    if (pop_fpu_stack)     __ fstp_d (dst_addr);
990    else                   __ fst_d  (dst_addr);
991
992  } else {
993    ShouldNotReachHere();
994  }
995}
996
997
998void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
999  LIR_Address* to_addr = dest->as_address_ptr();
1000  PatchingStub* patch = NULL;
1001
1002  if (type == T_ARRAY || type == T_OBJECT) {
1003    __ verify_oop(src->as_register());
1004  }
1005  if (patch_code != lir_patch_none) {
1006    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1007    Address toa = as_Address(to_addr);
1008    assert(toa.disp() != 0, "must have");
1009  }
1010  if (info != NULL) {
1011    add_debug_info_for_null_check_here(info);
1012  }
1013
1014  switch (type) {
1015    case T_FLOAT: {
1016      if (src->is_single_xmm()) {
1017        __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018      } else {
1019        assert(src->is_single_fpu(), "must be");
1020        assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021        if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022        else                    __ fst_s (as_Address(to_addr));
1023      }
1024      break;
1025    }
1026
1027    case T_DOUBLE: {
1028      if (src->is_double_xmm()) {
1029        __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1030      } else {
1031        assert(src->is_double_fpu(), "must be");
1032        assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1033        if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1034        else                    __ fst_d (as_Address(to_addr));
1035      }
1036      break;
1037    }
1038
1039    case T_ADDRESS: // fall through
1040    case T_ARRAY:   // fall through
1041    case T_OBJECT:  // fall through
1042#ifdef _LP64
1043      __ movptr(as_Address(to_addr), src->as_register());
1044      break;
1045#endif // _LP64
1046    case T_INT:
1047      __ movl(as_Address(to_addr), src->as_register());
1048      break;
1049
1050    case T_LONG: {
1051      Register from_lo = src->as_register_lo();
1052      Register from_hi = src->as_register_hi();
1053#ifdef _LP64
1054      __ movptr(as_Address_lo(to_addr), from_lo);
1055#else
1056      Register base = to_addr->base()->as_register();
1057      Register index = noreg;
1058      if (to_addr->index()->is_register()) {
1059        index = to_addr->index()->as_register();
1060      }
1061      if (base == from_lo || index == from_lo) {
1062        assert(base != from_hi, "can't be");
1063        assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1064        __ movl(as_Address_hi(to_addr), from_hi);
1065        if (patch != NULL) {
1066          patching_epilog(patch, lir_patch_high, base, info);
1067          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1068          patch_code = lir_patch_low;
1069        }
1070        __ movl(as_Address_lo(to_addr), from_lo);
1071      } else {
1072        assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1073        __ movl(as_Address_lo(to_addr), from_lo);
1074        if (patch != NULL) {
1075          patching_epilog(patch, lir_patch_low, base, info);
1076          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1077          patch_code = lir_patch_high;
1078        }
1079        __ movl(as_Address_hi(to_addr), from_hi);
1080      }
1081#endif // _LP64
1082      break;
1083    }
1084
1085    case T_BYTE:    // fall through
1086    case T_BOOLEAN: {
1087      Register src_reg = src->as_register();
1088      Address dst_addr = as_Address(to_addr);
1089      assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1090      __ movb(dst_addr, src_reg);
1091      break;
1092    }
1093
1094    case T_CHAR:    // fall through
1095    case T_SHORT:
1096      __ movw(as_Address(to_addr), src->as_register());
1097      break;
1098
1099    default:
1100      ShouldNotReachHere();
1101  }
1102
1103  if (patch_code != lir_patch_none) {
1104    patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1105  }
1106}
1107
1108
1109void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1110  assert(src->is_stack(), "should not call otherwise");
1111  assert(dest->is_register(), "should not call otherwise");
1112
1113  if (dest->is_single_cpu()) {
1114    if (type == T_ARRAY || type == T_OBJECT) {
1115      __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1116      __ verify_oop(dest->as_register());
1117    } else {
1118      __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1119    }
1120
1121  } else if (dest->is_double_cpu()) {
1122    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1123    Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1124    __ movptr(dest->as_register_lo(), src_addr_LO);
1125    NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1126
1127  } else if (dest->is_single_xmm()) {
1128    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1129    __ movflt(dest->as_xmm_float_reg(), src_addr);
1130
1131  } else if (dest->is_double_xmm()) {
1132    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1133    __ movdbl(dest->as_xmm_double_reg(), src_addr);
1134
1135  } else if (dest->is_single_fpu()) {
1136    assert(dest->fpu_regnr() == 0, "dest must be TOS");
1137    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1138    __ fld_s(src_addr);
1139
1140  } else if (dest->is_double_fpu()) {
1141    assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1142    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1143    __ fld_d(src_addr);
1144
1145  } else {
1146    ShouldNotReachHere();
1147  }
1148}
1149
1150
1151void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1152  if (src->is_single_stack()) {
1153    if (type == T_OBJECT || type == T_ARRAY) {
1154      __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1155      __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1156    } else {
1157#ifndef _LP64
1158      __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1159      __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1160#else
1161      //no pushl on 64bits
1162      __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1163      __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1164#endif
1165    }
1166
1167  } else if (src->is_double_stack()) {
1168#ifdef _LP64
1169    __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1170    __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1171#else
1172    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1173    // push and pop the part at src + wordSize, adding wordSize for the previous push
1174    __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1175    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1176    __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1177#endif // _LP64
1178
1179  } else {
1180    ShouldNotReachHere();
1181  }
1182}
1183
1184
1185void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1186  assert(src->is_address(), "should not call otherwise");
1187  assert(dest->is_register(), "should not call otherwise");
1188
1189  LIR_Address* addr = src->as_address_ptr();
1190  Address from_addr = as_Address(addr);
1191
1192  switch (type) {
1193    case T_BOOLEAN: // fall through
1194    case T_BYTE:    // fall through
1195    case T_CHAR:    // fall through
1196    case T_SHORT:
1197      if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1198        // on pre P6 processors we may get partial register stalls
1199        // so blow away the value of to_rinfo before loading a
1200        // partial word into it.  Do it here so that it precedes
1201        // the potential patch point below.
1202        __ xorptr(dest->as_register(), dest->as_register());
1203      }
1204      break;
1205  }
1206
1207  PatchingStub* patch = NULL;
1208  if (patch_code != lir_patch_none) {
1209    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1210    assert(from_addr.disp() != 0, "must have");
1211  }
1212  if (info != NULL) {
1213    add_debug_info_for_null_check_here(info);
1214  }
1215
1216  switch (type) {
1217    case T_FLOAT: {
1218      if (dest->is_single_xmm()) {
1219        __ movflt(dest->as_xmm_float_reg(), from_addr);
1220      } else {
1221        assert(dest->is_single_fpu(), "must be");
1222        assert(dest->fpu_regnr() == 0, "dest must be TOS");
1223        __ fld_s(from_addr);
1224      }
1225      break;
1226    }
1227
1228    case T_DOUBLE: {
1229      if (dest->is_double_xmm()) {
1230        __ movdbl(dest->as_xmm_double_reg(), from_addr);
1231      } else {
1232        assert(dest->is_double_fpu(), "must be");
1233        assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1234        __ fld_d(from_addr);
1235      }
1236      break;
1237    }
1238
1239    case T_ADDRESS: // fall through
1240    case T_OBJECT:  // fall through
1241    case T_ARRAY:   // fall through
1242#ifdef _LP64
1243      __ movptr(dest->as_register(), from_addr);
1244      break;
1245#endif // _L64
1246    case T_INT:
1247      __ movl(dest->as_register(), from_addr);
1248      break;
1249
1250    case T_LONG: {
1251      Register to_lo = dest->as_register_lo();
1252      Register to_hi = dest->as_register_hi();
1253#ifdef _LP64
1254      __ movptr(to_lo, as_Address_lo(addr));
1255#else
1256      Register base = addr->base()->as_register();
1257      Register index = noreg;
1258      if (addr->index()->is_register()) {
1259        index = addr->index()->as_register();
1260      }
1261      if ((base == to_lo && index == to_hi) ||
1262          (base == to_hi && index == to_lo)) {
1263        // addresses with 2 registers are only formed as a result of
1264        // array access so this code will never have to deal with
1265        // patches or null checks.
1266        assert(info == NULL && patch == NULL, "must be");
1267        __ lea(to_hi, as_Address(addr));
1268        __ movl(to_lo, Address(to_hi, 0));
1269        __ movl(to_hi, Address(to_hi, BytesPerWord));
1270      } else if (base == to_lo || index == to_lo) {
1271        assert(base != to_hi, "can't be");
1272        assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1273        __ movl(to_hi, as_Address_hi(addr));
1274        if (patch != NULL) {
1275          patching_epilog(patch, lir_patch_high, base, info);
1276          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1277          patch_code = lir_patch_low;
1278        }
1279        __ movl(to_lo, as_Address_lo(addr));
1280      } else {
1281        assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1282        __ movl(to_lo, as_Address_lo(addr));
1283        if (patch != NULL) {
1284          patching_epilog(patch, lir_patch_low, base, info);
1285          patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1286          patch_code = lir_patch_high;
1287        }
1288        __ movl(to_hi, as_Address_hi(addr));
1289      }
1290#endif // _LP64
1291      break;
1292    }
1293
1294    case T_BOOLEAN: // fall through
1295    case T_BYTE: {
1296      Register dest_reg = dest->as_register();
1297      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1298      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1299        __ movsbl(dest_reg, from_addr);
1300      } else {
1301        __ movb(dest_reg, from_addr);
1302        __ shll(dest_reg, 24);
1303        __ sarl(dest_reg, 24);
1304      }
1305      break;
1306    }
1307
1308    case T_CHAR: {
1309      Register dest_reg = dest->as_register();
1310      assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1311      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1312        __ movzwl(dest_reg, from_addr);
1313      } else {
1314        __ movw(dest_reg, from_addr);
1315      }
1316      break;
1317    }
1318
1319    case T_SHORT: {
1320      Register dest_reg = dest->as_register();
1321      if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1322        __ movswl(dest_reg, from_addr);
1323      } else {
1324        __ movw(dest_reg, from_addr);
1325        __ shll(dest_reg, 16);
1326        __ sarl(dest_reg, 16);
1327      }
1328      break;
1329    }
1330
1331    default:
1332      ShouldNotReachHere();
1333  }
1334
1335  if (patch != NULL) {
1336    patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1337  }
1338
1339  if (type == T_ARRAY || type == T_OBJECT) {
1340    __ verify_oop(dest->as_register());
1341  }
1342}
1343
1344
1345void LIR_Assembler::prefetchr(LIR_Opr src) {
1346  LIR_Address* addr = src->as_address_ptr();
1347  Address from_addr = as_Address(addr);
1348
1349  if (VM_Version::supports_sse()) {
1350    switch (ReadPrefetchInstr) {
1351      case 0:
1352        __ prefetchnta(from_addr); break;
1353      case 1:
1354        __ prefetcht0(from_addr); break;
1355      case 2:
1356        __ prefetcht2(from_addr); break;
1357      default:
1358        ShouldNotReachHere(); break;
1359    }
1360  } else if (VM_Version::supports_3dnow()) {
1361    __ prefetchr(from_addr);
1362  }
1363}
1364
1365
1366void LIR_Assembler::prefetchw(LIR_Opr src) {
1367  LIR_Address* addr = src->as_address_ptr();
1368  Address from_addr = as_Address(addr);
1369
1370  if (VM_Version::supports_sse()) {
1371    switch (AllocatePrefetchInstr) {
1372      case 0:
1373        __ prefetchnta(from_addr); break;
1374      case 1:
1375        __ prefetcht0(from_addr); break;
1376      case 2:
1377        __ prefetcht2(from_addr); break;
1378      case 3:
1379        __ prefetchw(from_addr); break;
1380      default:
1381        ShouldNotReachHere(); break;
1382    }
1383  } else if (VM_Version::supports_3dnow()) {
1384    __ prefetchw(from_addr);
1385  }
1386}
1387
1388
1389NEEDS_CLEANUP; // This could be static?
1390Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1391  int elem_size = type2aelembytes(type);
1392  switch (elem_size) {
1393    case 1: return Address::times_1;
1394    case 2: return Address::times_2;
1395    case 4: return Address::times_4;
1396    case 8: return Address::times_8;
1397  }
1398  ShouldNotReachHere();
1399  return Address::no_scale;
1400}
1401
1402
1403void LIR_Assembler::emit_op3(LIR_Op3* op) {
1404  switch (op->code()) {
1405    case lir_idiv:
1406    case lir_irem:
1407      arithmetic_idiv(op->code(),
1408                      op->in_opr1(),
1409                      op->in_opr2(),
1410                      op->in_opr3(),
1411                      op->result_opr(),
1412                      op->info());
1413      break;
1414    default:      ShouldNotReachHere(); break;
1415  }
1416}
1417
1418void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1419#ifdef ASSERT
1420  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1421  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1422  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1423#endif
1424
1425  if (op->cond() == lir_cond_always) {
1426    if (op->info() != NULL) add_debug_info_for_branch(op->info());
1427    __ jmp (*(op->label()));
1428  } else {
1429    Assembler::Condition acond = Assembler::zero;
1430    if (op->code() == lir_cond_float_branch) {
1431      assert(op->ublock() != NULL, "must have unordered successor");
1432      __ jcc(Assembler::parity, *(op->ublock()->label()));
1433      switch(op->cond()) {
1434        case lir_cond_equal:        acond = Assembler::equal;      break;
1435        case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1436        case lir_cond_less:         acond = Assembler::below;      break;
1437        case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1438        case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1439        case lir_cond_greater:      acond = Assembler::above;      break;
1440        default:                         ShouldNotReachHere();
1441      }
1442    } else {
1443      switch (op->cond()) {
1444        case lir_cond_equal:        acond = Assembler::equal;       break;
1445        case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1446        case lir_cond_less:         acond = Assembler::less;        break;
1447        case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1448        case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1449        case lir_cond_greater:      acond = Assembler::greater;     break;
1450        case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1451        case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1452        default:                         ShouldNotReachHere();
1453      }
1454    }
1455    __ jcc(acond,*(op->label()));
1456  }
1457}
1458
1459void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1460  LIR_Opr src  = op->in_opr();
1461  LIR_Opr dest = op->result_opr();
1462
1463  switch (op->bytecode()) {
1464    case Bytecodes::_i2l:
1465#ifdef _LP64
1466      __ movl2ptr(dest->as_register_lo(), src->as_register());
1467#else
1468      move_regs(src->as_register(), dest->as_register_lo());
1469      move_regs(src->as_register(), dest->as_register_hi());
1470      __ sarl(dest->as_register_hi(), 31);
1471#endif // LP64
1472      break;
1473
1474    case Bytecodes::_l2i:
1475      move_regs(src->as_register_lo(), dest->as_register());
1476      break;
1477
1478    case Bytecodes::_i2b:
1479      move_regs(src->as_register(), dest->as_register());
1480      __ sign_extend_byte(dest->as_register());
1481      break;
1482
1483    case Bytecodes::_i2c:
1484      move_regs(src->as_register(), dest->as_register());
1485      __ andl(dest->as_register(), 0xFFFF);
1486      break;
1487
1488    case Bytecodes::_i2s:
1489      move_regs(src->as_register(), dest->as_register());
1490      __ sign_extend_short(dest->as_register());
1491      break;
1492
1493
1494    case Bytecodes::_f2d:
1495    case Bytecodes::_d2f:
1496      if (dest->is_single_xmm()) {
1497        __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1498      } else if (dest->is_double_xmm()) {
1499        __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1500      } else {
1501        assert(src->fpu() == dest->fpu(), "register must be equal");
1502        // do nothing (float result is rounded later through spilling)
1503      }
1504      break;
1505
1506    case Bytecodes::_i2f:
1507    case Bytecodes::_i2d:
1508      if (dest->is_single_xmm()) {
1509        __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1510      } else if (dest->is_double_xmm()) {
1511        __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1512      } else {
1513        assert(dest->fpu() == 0, "result must be on TOS");
1514        __ movl(Address(rsp, 0), src->as_register());
1515        __ fild_s(Address(rsp, 0));
1516      }
1517      break;
1518
1519    case Bytecodes::_f2i:
1520    case Bytecodes::_d2i:
1521      if (src->is_single_xmm()) {
1522        __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1523      } else if (src->is_double_xmm()) {
1524        __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1525      } else {
1526        assert(src->fpu() == 0, "input must be on TOS");
1527        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1528        __ fist_s(Address(rsp, 0));
1529        __ movl(dest->as_register(), Address(rsp, 0));
1530        __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1531      }
1532
1533      // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1534      assert(op->stub() != NULL, "stub required");
1535      __ cmpl(dest->as_register(), 0x80000000);
1536      __ jcc(Assembler::equal, *op->stub()->entry());
1537      __ bind(*op->stub()->continuation());
1538      break;
1539
1540    case Bytecodes::_l2f:
1541    case Bytecodes::_l2d:
1542      assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1543      assert(dest->fpu() == 0, "result must be on TOS");
1544
1545      __ movptr(Address(rsp, 0),            src->as_register_lo());
1546      NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1547      __ fild_d(Address(rsp, 0));
1548      // float result is rounded later through spilling
1549      break;
1550
1551    case Bytecodes::_f2l:
1552    case Bytecodes::_d2l:
1553      assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1554      assert(src->fpu() == 0, "input must be on TOS");
1555      assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1556
1557      // instruction sequence too long to inline it here
1558      {
1559        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1560      }
1561      break;
1562
1563    default: ShouldNotReachHere();
1564  }
1565}
1566
1567void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1568  if (op->init_check()) {
1569    __ cmpl(Address(op->klass()->as_register(),
1570                    instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1571            instanceKlass::fully_initialized);
1572    add_debug_info_for_null_check_here(op->stub()->info());
1573    __ jcc(Assembler::notEqual, *op->stub()->entry());
1574  }
1575  __ allocate_object(op->obj()->as_register(),
1576                     op->tmp1()->as_register(),
1577                     op->tmp2()->as_register(),
1578                     op->header_size(),
1579                     op->object_size(),
1580                     op->klass()->as_register(),
1581                     *op->stub()->entry());
1582  __ bind(*op->stub()->continuation());
1583}
1584
1585void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1586  if (UseSlowPath ||
1587      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1588      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1589    __ jmp(*op->stub()->entry());
1590  } else {
1591    Register len =  op->len()->as_register();
1592    Register tmp1 = op->tmp1()->as_register();
1593    Register tmp2 = op->tmp2()->as_register();
1594    Register tmp3 = op->tmp3()->as_register();
1595    if (len == tmp1) {
1596      tmp1 = tmp3;
1597    } else if (len == tmp2) {
1598      tmp2 = tmp3;
1599    } else if (len == tmp3) {
1600      // everything is ok
1601    } else {
1602      __ mov(tmp3, len);
1603    }
1604    __ allocate_array(op->obj()->as_register(),
1605                      len,
1606                      tmp1,
1607                      tmp2,
1608                      arrayOopDesc::header_size(op->type()),
1609                      array_element_size(op->type()),
1610                      op->klass()->as_register(),
1611                      *op->stub()->entry());
1612  }
1613  __ bind(*op->stub()->continuation());
1614}
1615
1616
1617
1618void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1619  LIR_Code code = op->code();
1620  if (code == lir_store_check) {
1621    Register value = op->object()->as_register();
1622    Register array = op->array()->as_register();
1623    Register k_RInfo = op->tmp1()->as_register();
1624    Register klass_RInfo = op->tmp2()->as_register();
1625    Register Rtmp1 = op->tmp3()->as_register();
1626
1627    CodeStub* stub = op->stub();
1628    Label done;
1629    __ cmpptr(value, (int32_t)NULL_WORD);
1630    __ jcc(Assembler::equal, done);
1631    add_debug_info_for_null_check_here(op->info_for_exception());
1632    __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1633    __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1634
1635    // get instance klass
1636    __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1637    // perform the fast part of the checking logic
1638    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1639    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1640    __ push(klass_RInfo);
1641    __ push(k_RInfo);
1642    __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1643    __ pop(klass_RInfo);
1644    __ pop(k_RInfo);
1645    // result is a boolean
1646    __ cmpl(k_RInfo, 0);
1647    __ jcc(Assembler::equal, *stub->entry());
1648    __ bind(done);
1649  } else if (op->code() == lir_checkcast) {
1650    // we always need a stub for the failure case.
1651    CodeStub* stub = op->stub();
1652    Register obj = op->object()->as_register();
1653    Register k_RInfo = op->tmp1()->as_register();
1654    Register klass_RInfo = op->tmp2()->as_register();
1655    Register dst = op->result_opr()->as_register();
1656    ciKlass* k = op->klass();
1657    Register Rtmp1 = noreg;
1658
1659    Label done;
1660    if (obj == k_RInfo) {
1661      k_RInfo = dst;
1662    } else if (obj == klass_RInfo) {
1663      klass_RInfo = dst;
1664    }
1665    if (k->is_loaded()) {
1666      select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1667    } else {
1668      Rtmp1 = op->tmp3()->as_register();
1669      select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1670    }
1671
1672    assert_different_registers(obj, k_RInfo, klass_RInfo);
1673    if (!k->is_loaded()) {
1674      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1675    } else {
1676#ifdef _LP64
1677      __ movoop(k_RInfo, k->constant_encoding());
1678#else
1679      k_RInfo = noreg;
1680#endif // _LP64
1681    }
1682    assert(obj != k_RInfo, "must be different");
1683    __ cmpptr(obj, (int32_t)NULL_WORD);
1684    if (op->profiled_method() != NULL) {
1685      ciMethod* method = op->profiled_method();
1686      int bci          = op->profiled_bci();
1687
1688      Label profile_done;
1689      __ jcc(Assembler::notEqual, profile_done);
1690      // Object is null; update methodDataOop
1691      ciMethodData* md = method->method_data();
1692      if (md == NULL) {
1693        bailout("out of memory building methodDataOop");
1694        return;
1695      }
1696      ciProfileData* data = md->bci_to_data(bci);
1697      assert(data != NULL,       "need data for checkcast");
1698      assert(data->is_BitData(), "need BitData for checkcast");
1699      Register mdo  = klass_RInfo;
1700      __ movoop(mdo, md->constant_encoding());
1701      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1702      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1703      __ orl(data_addr, header_bits);
1704      __ jmp(done);
1705      __ bind(profile_done);
1706    } else {
1707      __ jcc(Assembler::equal, done);
1708    }
1709    __ verify_oop(obj);
1710
1711    if (op->fast_check()) {
1712      // get object classo
1713      // not a safepoint as obj null check happens earlier
1714      if (k->is_loaded()) {
1715#ifdef _LP64
1716        __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1717#else
1718        __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1719#endif // _LP64
1720      } else {
1721        __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1722
1723      }
1724      __ jcc(Assembler::notEqual, *stub->entry());
1725      __ bind(done);
1726    } else {
1727      // get object class
1728      // not a safepoint as obj null check happens earlier
1729      __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1730      if (k->is_loaded()) {
1731        // See if we get an immediate positive hit
1732#ifdef _LP64
1733        __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1734#else
1735        __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1736#endif // _LP64
1737        if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1738          __ jcc(Assembler::notEqual, *stub->entry());
1739        } else {
1740          // See if we get an immediate positive hit
1741          __ jcc(Assembler::equal, done);
1742          // check for self
1743#ifdef _LP64
1744          __ cmpptr(klass_RInfo, k_RInfo);
1745#else
1746          __ cmpoop(klass_RInfo, k->constant_encoding());
1747#endif // _LP64
1748          __ jcc(Assembler::equal, done);
1749
1750          __ push(klass_RInfo);
1751#ifdef _LP64
1752          __ push(k_RInfo);
1753#else
1754          __ pushoop(k->constant_encoding());
1755#endif // _LP64
1756          __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1757          __ pop(klass_RInfo);
1758          __ pop(klass_RInfo);
1759          // result is a boolean
1760          __ cmpl(klass_RInfo, 0);
1761          __ jcc(Assembler::equal, *stub->entry());
1762        }
1763        __ bind(done);
1764      } else {
1765        // perform the fast part of the checking logic
1766        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1767        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1768        __ push(klass_RInfo);
1769        __ push(k_RInfo);
1770        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1771        __ pop(klass_RInfo);
1772        __ pop(k_RInfo);
1773        // result is a boolean
1774        __ cmpl(k_RInfo, 0);
1775        __ jcc(Assembler::equal, *stub->entry());
1776        __ bind(done);
1777      }
1778
1779    }
1780    if (dst != obj) {
1781      __ mov(dst, obj);
1782    }
1783  } else if (code == lir_instanceof) {
1784    Register obj = op->object()->as_register();
1785    Register k_RInfo = op->tmp1()->as_register();
1786    Register klass_RInfo = op->tmp2()->as_register();
1787    Register dst = op->result_opr()->as_register();
1788    ciKlass* k = op->klass();
1789
1790    Label done;
1791    Label zero;
1792    Label one;
1793    if (obj == k_RInfo) {
1794      k_RInfo = klass_RInfo;
1795      klass_RInfo = obj;
1796    }
1797    // patching may screw with our temporaries on sparc,
1798    // so let's do it before loading the class
1799    if (!k->is_loaded()) {
1800      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1801    } else {
1802      LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
1803    }
1804    assert(obj != k_RInfo, "must be different");
1805
1806    __ verify_oop(obj);
1807    if (op->fast_check()) {
1808      __ cmpptr(obj, (int32_t)NULL_WORD);
1809      __ jcc(Assembler::equal, zero);
1810      // get object class
1811      // not a safepoint as obj null check happens earlier
1812      if (LP64_ONLY(false &&) k->is_loaded()) {
1813        NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
1814        k_RInfo = noreg;
1815      } else {
1816        __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1817
1818      }
1819      __ jcc(Assembler::equal, one);
1820    } else {
1821      // get object class
1822      // not a safepoint as obj null check happens earlier
1823      __ cmpptr(obj, (int32_t)NULL_WORD);
1824      __ jcc(Assembler::equal, zero);
1825      __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1826
1827#ifndef _LP64
1828      if (k->is_loaded()) {
1829        // See if we get an immediate positive hit
1830        __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1831        __ jcc(Assembler::equal, one);
1832        if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
1833          // check for self
1834          __ cmpoop(klass_RInfo, k->constant_encoding());
1835          __ jcc(Assembler::equal, one);
1836          __ push(klass_RInfo);
1837          __ pushoop(k->constant_encoding());
1838          __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1839          __ pop(klass_RInfo);
1840          __ pop(dst);
1841          __ jmp(done);
1842        }
1843      }
1844        else // next block is unconditional if LP64:
1845#endif // LP64
1846      {
1847        assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
1848
1849        // perform the fast part of the checking logic
1850        __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
1851        // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1852        __ push(klass_RInfo);
1853        __ push(k_RInfo);
1854        __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1855        __ pop(klass_RInfo);
1856        __ pop(dst);
1857        __ jmp(done);
1858      }
1859    }
1860    __ bind(zero);
1861    __ xorptr(dst, dst);
1862    __ jmp(done);
1863    __ bind(one);
1864    __ movptr(dst, 1);
1865    __ bind(done);
1866  } else {
1867    ShouldNotReachHere();
1868  }
1869
1870}
1871
1872
1873void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1874  if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1875    assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1876    assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1877    assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1878    assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1879    Register addr = op->addr()->as_register();
1880    if (os::is_MP()) {
1881      __ lock();
1882    }
1883    NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1884
1885  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1886    NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1887    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1888    Register newval = op->new_value()->as_register();
1889    Register cmpval = op->cmp_value()->as_register();
1890    assert(cmpval == rax, "wrong register");
1891    assert(newval != NULL, "new val must be register");
1892    assert(cmpval != newval, "cmp and new values must be in different registers");
1893    assert(cmpval != addr, "cmp and addr must be in different registers");
1894    assert(newval != addr, "new value and addr must be in different registers");
1895    if (os::is_MP()) {
1896      __ lock();
1897    }
1898    if ( op->code() == lir_cas_obj) {
1899      __ cmpxchgptr(newval, Address(addr, 0));
1900    } else if (op->code() == lir_cas_int) {
1901      __ cmpxchgl(newval, Address(addr, 0));
1902    } else {
1903      LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
1904    }
1905#ifdef _LP64
1906  } else if (op->code() == lir_cas_long) {
1907    Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1908    Register newval = op->new_value()->as_register_lo();
1909    Register cmpval = op->cmp_value()->as_register_lo();
1910    assert(cmpval == rax, "wrong register");
1911    assert(newval != NULL, "new val must be register");
1912    assert(cmpval != newval, "cmp and new values must be in different registers");
1913    assert(cmpval != addr, "cmp and addr must be in different registers");
1914    assert(newval != addr, "new value and addr must be in different registers");
1915    if (os::is_MP()) {
1916      __ lock();
1917    }
1918    __ cmpxchgq(newval, Address(addr, 0));
1919#endif // _LP64
1920  } else {
1921    Unimplemented();
1922  }
1923}
1924
1925
1926void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1927  Assembler::Condition acond, ncond;
1928  switch (condition) {
1929    case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1930    case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1931    case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1932    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1933    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1934    case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1935    case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1936    case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1937    default:                    ShouldNotReachHere();
1938  }
1939
1940  if (opr1->is_cpu_register()) {
1941    reg2reg(opr1, result);
1942  } else if (opr1->is_stack()) {
1943    stack2reg(opr1, result, result->type());
1944  } else if (opr1->is_constant()) {
1945    const2reg(opr1, result, lir_patch_none, NULL);
1946  } else {
1947    ShouldNotReachHere();
1948  }
1949
1950  if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1951    // optimized version that does not require a branch
1952    if (opr2->is_single_cpu()) {
1953      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1954      __ cmov(ncond, result->as_register(), opr2->as_register());
1955    } else if (opr2->is_double_cpu()) {
1956      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1957      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1958      __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1959      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1960    } else if (opr2->is_single_stack()) {
1961      __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1962    } else if (opr2->is_double_stack()) {
1963      __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1964      NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1965    } else {
1966      ShouldNotReachHere();
1967    }
1968
1969  } else {
1970    Label skip;
1971    __ jcc (acond, skip);
1972    if (opr2->is_cpu_register()) {
1973      reg2reg(opr2, result);
1974    } else if (opr2->is_stack()) {
1975      stack2reg(opr2, result, result->type());
1976    } else if (opr2->is_constant()) {
1977      const2reg(opr2, result, lir_patch_none, NULL);
1978    } else {
1979      ShouldNotReachHere();
1980    }
1981    __ bind(skip);
1982  }
1983}
1984
1985
1986void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1987  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1988
1989  if (left->is_single_cpu()) {
1990    assert(left == dest, "left and dest must be equal");
1991    Register lreg = left->as_register();
1992
1993    if (right->is_single_cpu()) {
1994      // cpu register - cpu register
1995      Register rreg = right->as_register();
1996      switch (code) {
1997        case lir_add: __ addl (lreg, rreg); break;
1998        case lir_sub: __ subl (lreg, rreg); break;
1999        case lir_mul: __ imull(lreg, rreg); break;
2000        default:      ShouldNotReachHere();
2001      }
2002
2003    } else if (right->is_stack()) {
2004      // cpu register - stack
2005      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2006      switch (code) {
2007        case lir_add: __ addl(lreg, raddr); break;
2008        case lir_sub: __ subl(lreg, raddr); break;
2009        default:      ShouldNotReachHere();
2010      }
2011
2012    } else if (right->is_constant()) {
2013      // cpu register - constant
2014      jint c = right->as_constant_ptr()->as_jint();
2015      switch (code) {
2016        case lir_add: {
2017          __ increment(lreg, c);
2018          break;
2019        }
2020        case lir_sub: {
2021          __ decrement(lreg, c);
2022          break;
2023        }
2024        default: ShouldNotReachHere();
2025      }
2026
2027    } else {
2028      ShouldNotReachHere();
2029    }
2030
2031  } else if (left->is_double_cpu()) {
2032    assert(left == dest, "left and dest must be equal");
2033    Register lreg_lo = left->as_register_lo();
2034    Register lreg_hi = left->as_register_hi();
2035
2036    if (right->is_double_cpu()) {
2037      // cpu register - cpu register
2038      Register rreg_lo = right->as_register_lo();
2039      Register rreg_hi = right->as_register_hi();
2040      NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2041      LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2042      switch (code) {
2043        case lir_add:
2044          __ addptr(lreg_lo, rreg_lo);
2045          NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2046          break;
2047        case lir_sub:
2048          __ subptr(lreg_lo, rreg_lo);
2049          NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2050          break;
2051        case lir_mul:
2052#ifdef _LP64
2053          __ imulq(lreg_lo, rreg_lo);
2054#else
2055          assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2056          __ imull(lreg_hi, rreg_lo);
2057          __ imull(rreg_hi, lreg_lo);
2058          __ addl (rreg_hi, lreg_hi);
2059          __ mull (rreg_lo);
2060          __ addl (lreg_hi, rreg_hi);
2061#endif // _LP64
2062          break;
2063        default:
2064          ShouldNotReachHere();
2065      }
2066
2067    } else if (right->is_constant()) {
2068      // cpu register - constant
2069#ifdef _LP64
2070      jlong c = right->as_constant_ptr()->as_jlong_bits();
2071      __ movptr(r10, (intptr_t) c);
2072      switch (code) {
2073        case lir_add:
2074          __ addptr(lreg_lo, r10);
2075          break;
2076        case lir_sub:
2077          __ subptr(lreg_lo, r10);
2078          break;
2079        default:
2080          ShouldNotReachHere();
2081      }
2082#else
2083      jint c_lo = right->as_constant_ptr()->as_jint_lo();
2084      jint c_hi = right->as_constant_ptr()->as_jint_hi();
2085      switch (code) {
2086        case lir_add:
2087          __ addptr(lreg_lo, c_lo);
2088          __ adcl(lreg_hi, c_hi);
2089          break;
2090        case lir_sub:
2091          __ subptr(lreg_lo, c_lo);
2092          __ sbbl(lreg_hi, c_hi);
2093          break;
2094        default:
2095          ShouldNotReachHere();
2096      }
2097#endif // _LP64
2098
2099    } else {
2100      ShouldNotReachHere();
2101    }
2102
2103  } else if (left->is_single_xmm()) {
2104    assert(left == dest, "left and dest must be equal");
2105    XMMRegister lreg = left->as_xmm_float_reg();
2106
2107    if (right->is_single_xmm()) {
2108      XMMRegister rreg = right->as_xmm_float_reg();
2109      switch (code) {
2110        case lir_add: __ addss(lreg, rreg);  break;
2111        case lir_sub: __ subss(lreg, rreg);  break;
2112        case lir_mul_strictfp: // fall through
2113        case lir_mul: __ mulss(lreg, rreg);  break;
2114        case lir_div_strictfp: // fall through
2115        case lir_div: __ divss(lreg, rreg);  break;
2116        default: ShouldNotReachHere();
2117      }
2118    } else {
2119      Address raddr;
2120      if (right->is_single_stack()) {
2121        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2122      } else if (right->is_constant()) {
2123        // hack for now
2124        raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2125      } else {
2126        ShouldNotReachHere();
2127      }
2128      switch (code) {
2129        case lir_add: __ addss(lreg, raddr);  break;
2130        case lir_sub: __ subss(lreg, raddr);  break;
2131        case lir_mul_strictfp: // fall through
2132        case lir_mul: __ mulss(lreg, raddr);  break;
2133        case lir_div_strictfp: // fall through
2134        case lir_div: __ divss(lreg, raddr);  break;
2135        default: ShouldNotReachHere();
2136      }
2137    }
2138
2139  } else if (left->is_double_xmm()) {
2140    assert(left == dest, "left and dest must be equal");
2141
2142    XMMRegister lreg = left->as_xmm_double_reg();
2143    if (right->is_double_xmm()) {
2144      XMMRegister rreg = right->as_xmm_double_reg();
2145      switch (code) {
2146        case lir_add: __ addsd(lreg, rreg);  break;
2147        case lir_sub: __ subsd(lreg, rreg);  break;
2148        case lir_mul_strictfp: // fall through
2149        case lir_mul: __ mulsd(lreg, rreg);  break;
2150        case lir_div_strictfp: // fall through
2151        case lir_div: __ divsd(lreg, rreg);  break;
2152        default: ShouldNotReachHere();
2153      }
2154    } else {
2155      Address raddr;
2156      if (right->is_double_stack()) {
2157        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2158      } else if (right->is_constant()) {
2159        // hack for now
2160        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2161      } else {
2162        ShouldNotReachHere();
2163      }
2164      switch (code) {
2165        case lir_add: __ addsd(lreg, raddr);  break;
2166        case lir_sub: __ subsd(lreg, raddr);  break;
2167        case lir_mul_strictfp: // fall through
2168        case lir_mul: __ mulsd(lreg, raddr);  break;
2169        case lir_div_strictfp: // fall through
2170        case lir_div: __ divsd(lreg, raddr);  break;
2171        default: ShouldNotReachHere();
2172      }
2173    }
2174
2175  } else if (left->is_single_fpu()) {
2176    assert(dest->is_single_fpu(),  "fpu stack allocation required");
2177
2178    if (right->is_single_fpu()) {
2179      arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2180
2181    } else {
2182      assert(left->fpu_regnr() == 0, "left must be on TOS");
2183      assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2184
2185      Address raddr;
2186      if (right->is_single_stack()) {
2187        raddr = frame_map()->address_for_slot(right->single_stack_ix());
2188      } else if (right->is_constant()) {
2189        address const_addr = float_constant(right->as_jfloat());
2190        assert(const_addr != NULL, "incorrect float/double constant maintainance");
2191        // hack for now
2192        raddr = __ as_Address(InternalAddress(const_addr));
2193      } else {
2194        ShouldNotReachHere();
2195      }
2196
2197      switch (code) {
2198        case lir_add: __ fadd_s(raddr); break;
2199        case lir_sub: __ fsub_s(raddr); break;
2200        case lir_mul_strictfp: // fall through
2201        case lir_mul: __ fmul_s(raddr); break;
2202        case lir_div_strictfp: // fall through
2203        case lir_div: __ fdiv_s(raddr); break;
2204        default:      ShouldNotReachHere();
2205      }
2206    }
2207
2208  } else if (left->is_double_fpu()) {
2209    assert(dest->is_double_fpu(),  "fpu stack allocation required");
2210
2211    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2212      // Double values require special handling for strictfp mul/div on x86
2213      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2214      __ fmulp(left->fpu_regnrLo() + 1);
2215    }
2216
2217    if (right->is_double_fpu()) {
2218      arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2219
2220    } else {
2221      assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2222      assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2223
2224      Address raddr;
2225      if (right->is_double_stack()) {
2226        raddr = frame_map()->address_for_slot(right->double_stack_ix());
2227      } else if (right->is_constant()) {
2228        // hack for now
2229        raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2230      } else {
2231        ShouldNotReachHere();
2232      }
2233
2234      switch (code) {
2235        case lir_add: __ fadd_d(raddr); break;
2236        case lir_sub: __ fsub_d(raddr); break;
2237        case lir_mul_strictfp: // fall through
2238        case lir_mul: __ fmul_d(raddr); break;
2239        case lir_div_strictfp: // fall through
2240        case lir_div: __ fdiv_d(raddr); break;
2241        default: ShouldNotReachHere();
2242      }
2243    }
2244
2245    if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2246      // Double values require special handling for strictfp mul/div on x86
2247      __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2248      __ fmulp(dest->fpu_regnrLo() + 1);
2249    }
2250
2251  } else if (left->is_single_stack() || left->is_address()) {
2252    assert(left == dest, "left and dest must be equal");
2253
2254    Address laddr;
2255    if (left->is_single_stack()) {
2256      laddr = frame_map()->address_for_slot(left->single_stack_ix());
2257    } else if (left->is_address()) {
2258      laddr = as_Address(left->as_address_ptr());
2259    } else {
2260      ShouldNotReachHere();
2261    }
2262
2263    if (right->is_single_cpu()) {
2264      Register rreg = right->as_register();
2265      switch (code) {
2266        case lir_add: __ addl(laddr, rreg); break;
2267        case lir_sub: __ subl(laddr, rreg); break;
2268        default:      ShouldNotReachHere();
2269      }
2270    } else if (right->is_constant()) {
2271      jint c = right->as_constant_ptr()->as_jint();
2272      switch (code) {
2273        case lir_add: {
2274          __ incrementl(laddr, c);
2275          break;
2276        }
2277        case lir_sub: {
2278          __ decrementl(laddr, c);
2279          break;
2280        }
2281        default: ShouldNotReachHere();
2282      }
2283    } else {
2284      ShouldNotReachHere();
2285    }
2286
2287  } else {
2288    ShouldNotReachHere();
2289  }
2290}
2291
2292void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2293  assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2294  assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2295  assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2296
2297  bool left_is_tos = (left_index == 0);
2298  bool dest_is_tos = (dest_index == 0);
2299  int non_tos_index = (left_is_tos ? right_index : left_index);
2300
2301  switch (code) {
2302    case lir_add:
2303      if (pop_fpu_stack)       __ faddp(non_tos_index);
2304      else if (dest_is_tos)    __ fadd (non_tos_index);
2305      else                     __ fadda(non_tos_index);
2306      break;
2307
2308    case lir_sub:
2309      if (left_is_tos) {
2310        if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2311        else if (dest_is_tos)  __ fsub  (non_tos_index);
2312        else                   __ fsubra(non_tos_index);
2313      } else {
2314        if (pop_fpu_stack)     __ fsubp (non_tos_index);
2315        else if (dest_is_tos)  __ fsubr (non_tos_index);
2316        else                   __ fsuba (non_tos_index);
2317      }
2318      break;
2319
2320    case lir_mul_strictfp: // fall through
2321    case lir_mul:
2322      if (pop_fpu_stack)       __ fmulp(non_tos_index);
2323      else if (dest_is_tos)    __ fmul (non_tos_index);
2324      else                     __ fmula(non_tos_index);
2325      break;
2326
2327    case lir_div_strictfp: // fall through
2328    case lir_div:
2329      if (left_is_tos) {
2330        if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2331        else if (dest_is_tos)  __ fdiv  (non_tos_index);
2332        else                   __ fdivra(non_tos_index);
2333      } else {
2334        if (pop_fpu_stack)     __ fdivp (non_tos_index);
2335        else if (dest_is_tos)  __ fdivr (non_tos_index);
2336        else                   __ fdiva (non_tos_index);
2337      }
2338      break;
2339
2340    case lir_rem:
2341      assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2342      __ fremr(noreg);
2343      break;
2344
2345    default:
2346      ShouldNotReachHere();
2347  }
2348}
2349
2350
2351void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2352  if (value->is_double_xmm()) {
2353    switch(code) {
2354      case lir_abs :
2355        {
2356          if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2357            __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2358          }
2359          __ andpd(dest->as_xmm_double_reg(),
2360                    ExternalAddress((address)double_signmask_pool));
2361        }
2362        break;
2363
2364      case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2365      // all other intrinsics are not available in the SSE instruction set, so FPU is used
2366      default      : ShouldNotReachHere();
2367    }
2368
2369  } else if (value->is_double_fpu()) {
2370    assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2371    switch(code) {
2372      case lir_log   : __ flog() ; break;
2373      case lir_log10 : __ flog10() ; break;
2374      case lir_abs   : __ fabs() ; break;
2375      case lir_sqrt  : __ fsqrt(); break;
2376      case lir_sin   :
2377        // Should consider not saving rbx, if not necessary
2378        __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2379        break;
2380      case lir_cos :
2381        // Should consider not saving rbx, if not necessary
2382        assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2383        __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2384        break;
2385      case lir_tan :
2386        // Should consider not saving rbx, if not necessary
2387        __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2388        break;
2389      default      : ShouldNotReachHere();
2390    }
2391  } else {
2392    Unimplemented();
2393  }
2394}
2395
2396void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2397  // assert(left->destroys_register(), "check");
2398  if (left->is_single_cpu()) {
2399    Register reg = left->as_register();
2400    if (right->is_constant()) {
2401      int val = right->as_constant_ptr()->as_jint();
2402      switch (code) {
2403        case lir_logic_and: __ andl (reg, val); break;
2404        case lir_logic_or:  __ orl  (reg, val); break;
2405        case lir_logic_xor: __ xorl (reg, val); break;
2406        default: ShouldNotReachHere();
2407      }
2408    } else if (right->is_stack()) {
2409      // added support for stack operands
2410      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2411      switch (code) {
2412        case lir_logic_and: __ andl (reg, raddr); break;
2413        case lir_logic_or:  __ orl  (reg, raddr); break;
2414        case lir_logic_xor: __ xorl (reg, raddr); break;
2415        default: ShouldNotReachHere();
2416      }
2417    } else {
2418      Register rright = right->as_register();
2419      switch (code) {
2420        case lir_logic_and: __ andptr (reg, rright); break;
2421        case lir_logic_or : __ orptr  (reg, rright); break;
2422        case lir_logic_xor: __ xorptr (reg, rright); break;
2423        default: ShouldNotReachHere();
2424      }
2425    }
2426    move_regs(reg, dst->as_register());
2427  } else {
2428    Register l_lo = left->as_register_lo();
2429    Register l_hi = left->as_register_hi();
2430    if (right->is_constant()) {
2431#ifdef _LP64
2432      __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2433      switch (code) {
2434        case lir_logic_and:
2435          __ andq(l_lo, rscratch1);
2436          break;
2437        case lir_logic_or:
2438          __ orq(l_lo, rscratch1);
2439          break;
2440        case lir_logic_xor:
2441          __ xorq(l_lo, rscratch1);
2442          break;
2443        default: ShouldNotReachHere();
2444      }
2445#else
2446      int r_lo = right->as_constant_ptr()->as_jint_lo();
2447      int r_hi = right->as_constant_ptr()->as_jint_hi();
2448      switch (code) {
2449        case lir_logic_and:
2450          __ andl(l_lo, r_lo);
2451          __ andl(l_hi, r_hi);
2452          break;
2453        case lir_logic_or:
2454          __ orl(l_lo, r_lo);
2455          __ orl(l_hi, r_hi);
2456          break;
2457        case lir_logic_xor:
2458          __ xorl(l_lo, r_lo);
2459          __ xorl(l_hi, r_hi);
2460          break;
2461        default: ShouldNotReachHere();
2462      }
2463#endif // _LP64
2464    } else {
2465      Register r_lo = right->as_register_lo();
2466      Register r_hi = right->as_register_hi();
2467      assert(l_lo != r_hi, "overwriting registers");
2468      switch (code) {
2469        case lir_logic_and:
2470          __ andptr(l_lo, r_lo);
2471          NOT_LP64(__ andptr(l_hi, r_hi);)
2472          break;
2473        case lir_logic_or:
2474          __ orptr(l_lo, r_lo);
2475          NOT_LP64(__ orptr(l_hi, r_hi);)
2476          break;
2477        case lir_logic_xor:
2478          __ xorptr(l_lo, r_lo);
2479          NOT_LP64(__ xorptr(l_hi, r_hi);)
2480          break;
2481        default: ShouldNotReachHere();
2482      }
2483    }
2484
2485    Register dst_lo = dst->as_register_lo();
2486    Register dst_hi = dst->as_register_hi();
2487
2488#ifdef _LP64
2489    move_regs(l_lo, dst_lo);
2490#else
2491    if (dst_lo == l_hi) {
2492      assert(dst_hi != l_lo, "overwriting registers");
2493      move_regs(l_hi, dst_hi);
2494      move_regs(l_lo, dst_lo);
2495    } else {
2496      assert(dst_lo != l_hi, "overwriting registers");
2497      move_regs(l_lo, dst_lo);
2498      move_regs(l_hi, dst_hi);
2499    }
2500#endif // _LP64
2501  }
2502}
2503
2504
2505// we assume that rax, and rdx can be overwritten
2506void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2507
2508  assert(left->is_single_cpu(),   "left must be register");
2509  assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2510  assert(result->is_single_cpu(), "result must be register");
2511
2512  //  assert(left->destroys_register(), "check");
2513  //  assert(right->destroys_register(), "check");
2514
2515  Register lreg = left->as_register();
2516  Register dreg = result->as_register();
2517
2518  if (right->is_constant()) {
2519    int divisor = right->as_constant_ptr()->as_jint();
2520    assert(divisor > 0 && is_power_of_2(divisor), "must be");
2521    if (code == lir_idiv) {
2522      assert(lreg == rax, "must be rax,");
2523      assert(temp->as_register() == rdx, "tmp register must be rdx");
2524      __ cdql(); // sign extend into rdx:rax
2525      if (divisor == 2) {
2526        __ subl(lreg, rdx);
2527      } else {
2528        __ andl(rdx, divisor - 1);
2529        __ addl(lreg, rdx);
2530      }
2531      __ sarl(lreg, log2_intptr(divisor));
2532      move_regs(lreg, dreg);
2533    } else if (code == lir_irem) {
2534      Label done;
2535      __ mov(dreg, lreg);
2536      __ andl(dreg, 0x80000000 | (divisor - 1));
2537      __ jcc(Assembler::positive, done);
2538      __ decrement(dreg);
2539      __ orl(dreg, ~(divisor - 1));
2540      __ increment(dreg);
2541      __ bind(done);
2542    } else {
2543      ShouldNotReachHere();
2544    }
2545  } else {
2546    Register rreg = right->as_register();
2547    assert(lreg == rax, "left register must be rax,");
2548    assert(rreg != rdx, "right register must not be rdx");
2549    assert(temp->as_register() == rdx, "tmp register must be rdx");
2550
2551    move_regs(lreg, rax);
2552
2553    int idivl_offset = __ corrected_idivl(rreg);
2554    add_debug_info_for_div0(idivl_offset, info);
2555    if (code == lir_irem) {
2556      move_regs(rdx, dreg); // result is in rdx
2557    } else {
2558      move_regs(rax, dreg);
2559    }
2560  }
2561}
2562
2563
2564void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2565  if (opr1->is_single_cpu()) {
2566    Register reg1 = opr1->as_register();
2567    if (opr2->is_single_cpu()) {
2568      // cpu register - cpu register
2569      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2570        __ cmpptr(reg1, opr2->as_register());
2571      } else {
2572        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2573        __ cmpl(reg1, opr2->as_register());
2574      }
2575    } else if (opr2->is_stack()) {
2576      // cpu register - stack
2577      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2578        __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2579      } else {
2580        __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2581      }
2582    } else if (opr2->is_constant()) {
2583      // cpu register - constant
2584      LIR_Const* c = opr2->as_constant_ptr();
2585      if (c->type() == T_INT) {
2586        __ cmpl(reg1, c->as_jint());
2587      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2588        // In 64bit oops are single register
2589        jobject o = c->as_jobject();
2590        if (o == NULL) {
2591          __ cmpptr(reg1, (int32_t)NULL_WORD);
2592        } else {
2593#ifdef _LP64
2594          __ movoop(rscratch1, o);
2595          __ cmpptr(reg1, rscratch1);
2596#else
2597          __ cmpoop(reg1, c->as_jobject());
2598#endif // _LP64
2599        }
2600      } else {
2601        ShouldNotReachHere();
2602      }
2603      // cpu register - address
2604    } else if (opr2->is_address()) {
2605      if (op->info() != NULL) {
2606        add_debug_info_for_null_check_here(op->info());
2607      }
2608      __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2609    } else {
2610      ShouldNotReachHere();
2611    }
2612
2613  } else if(opr1->is_double_cpu()) {
2614    Register xlo = opr1->as_register_lo();
2615    Register xhi = opr1->as_register_hi();
2616    if (opr2->is_double_cpu()) {
2617#ifdef _LP64
2618      __ cmpptr(xlo, opr2->as_register_lo());
2619#else
2620      // cpu register - cpu register
2621      Register ylo = opr2->as_register_lo();
2622      Register yhi = opr2->as_register_hi();
2623      __ subl(xlo, ylo);
2624      __ sbbl(xhi, yhi);
2625      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2626        __ orl(xhi, xlo);
2627      }
2628#endif // _LP64
2629    } else if (opr2->is_constant()) {
2630      // cpu register - constant 0
2631      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2632#ifdef _LP64
2633      __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2634#else
2635      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2636      __ orl(xhi, xlo);
2637#endif // _LP64
2638    } else {
2639      ShouldNotReachHere();
2640    }
2641
2642  } else if (opr1->is_single_xmm()) {
2643    XMMRegister reg1 = opr1->as_xmm_float_reg();
2644    if (opr2->is_single_xmm()) {
2645      // xmm register - xmm register
2646      __ ucomiss(reg1, opr2->as_xmm_float_reg());
2647    } else if (opr2->is_stack()) {
2648      // xmm register - stack
2649      __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2650    } else if (opr2->is_constant()) {
2651      // xmm register - constant
2652      __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2653    } else if (opr2->is_address()) {
2654      // xmm register - address
2655      if (op->info() != NULL) {
2656        add_debug_info_for_null_check_here(op->info());
2657      }
2658      __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2659    } else {
2660      ShouldNotReachHere();
2661    }
2662
2663  } else if (opr1->is_double_xmm()) {
2664    XMMRegister reg1 = opr1->as_xmm_double_reg();
2665    if (opr2->is_double_xmm()) {
2666      // xmm register - xmm register
2667      __ ucomisd(reg1, opr2->as_xmm_double_reg());
2668    } else if (opr2->is_stack()) {
2669      // xmm register - stack
2670      __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2671    } else if (opr2->is_constant()) {
2672      // xmm register - constant
2673      __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2674    } else if (opr2->is_address()) {
2675      // xmm register - address
2676      if (op->info() != NULL) {
2677        add_debug_info_for_null_check_here(op->info());
2678      }
2679      __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2680    } else {
2681      ShouldNotReachHere();
2682    }
2683
2684  } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2685    assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2686    assert(opr2->is_fpu_register(), "both must be registers");
2687    __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2688
2689  } else if (opr1->is_address() && opr2->is_constant()) {
2690    LIR_Const* c = opr2->as_constant_ptr();
2691#ifdef _LP64
2692    if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2693      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2694      __ movoop(rscratch1, c->as_jobject());
2695    }
2696#endif // LP64
2697    if (op->info() != NULL) {
2698      add_debug_info_for_null_check_here(op->info());
2699    }
2700    // special case: address - constant
2701    LIR_Address* addr = opr1->as_address_ptr();
2702    if (c->type() == T_INT) {
2703      __ cmpl(as_Address(addr), c->as_jint());
2704    } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2705#ifdef _LP64
2706      // %%% Make this explode if addr isn't reachable until we figure out a
2707      // better strategy by giving noreg as the temp for as_Address
2708      __ cmpptr(rscratch1, as_Address(addr, noreg));
2709#else
2710      __ cmpoop(as_Address(addr), c->as_jobject());
2711#endif // _LP64
2712    } else {
2713      ShouldNotReachHere();
2714    }
2715
2716  } else {
2717    ShouldNotReachHere();
2718  }
2719}
2720
2721void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2722  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2723    if (left->is_single_xmm()) {
2724      assert(right->is_single_xmm(), "must match");
2725      __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2726    } else if (left->is_double_xmm()) {
2727      assert(right->is_double_xmm(), "must match");
2728      __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2729
2730    } else {
2731      assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2732      assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2733
2734      assert(left->fpu() == 0, "left must be on TOS");
2735      __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2736                  op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2737    }
2738  } else {
2739    assert(code == lir_cmp_l2i, "check");
2740#ifdef _LP64
2741    Label done;
2742    Register dest = dst->as_register();
2743    __ cmpptr(left->as_register_lo(), right->as_register_lo());
2744    __ movl(dest, -1);
2745    __ jccb(Assembler::less, done);
2746    __ set_byte_if_not_zero(dest);
2747    __ movzbl(dest, dest);
2748    __ bind(done);
2749#else
2750    __ lcmp2int(left->as_register_hi(),
2751                left->as_register_lo(),
2752                right->as_register_hi(),
2753                right->as_register_lo());
2754    move_regs(left->as_register_hi(), dst->as_register());
2755#endif // _LP64
2756  }
2757}
2758
2759
2760void LIR_Assembler::align_call(LIR_Code code) {
2761  if (os::is_MP()) {
2762    // make sure that the displacement word of the call ends up word aligned
2763    int offset = __ offset();
2764    switch (code) {
2765      case lir_static_call:
2766      case lir_optvirtual_call:
2767      case lir_dynamic_call:
2768        offset += NativeCall::displacement_offset;
2769        break;
2770      case lir_icvirtual_call:
2771        offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2772      break;
2773      case lir_virtual_call:  // currently, sparc-specific for niagara
2774      default: ShouldNotReachHere();
2775    }
2776    while (offset++ % BytesPerWord != 0) {
2777      __ nop();
2778    }
2779  }
2780}
2781
2782
2783void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2784  assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2785         "must be aligned");
2786  __ call(AddressLiteral(op->addr(), rtype));
2787  add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
2788}
2789
2790
2791void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2792  RelocationHolder rh = virtual_call_Relocation::spec(pc());
2793  __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2794  assert(!os::is_MP() ||
2795         (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2796         "must be aligned");
2797  __ call(AddressLiteral(op->addr(), rh));
2798  add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
2799}
2800
2801
2802/* Currently, vtable-dispatch is only enabled for sparc platforms */
2803void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2804  ShouldNotReachHere();
2805}
2806
2807
2808void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
2809  __ movptr(FrameMap::method_handle_invoke_SP_save_opr()->as_register(), rsp);
2810}
2811
2812
2813void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
2814  __ movptr(rsp, FrameMap::method_handle_invoke_SP_save_opr()->as_register());
2815}
2816
2817
2818void LIR_Assembler::emit_static_call_stub() {
2819  address call_pc = __ pc();
2820  address stub = __ start_a_stub(call_stub_size);
2821  if (stub == NULL) {
2822    bailout("static call stub overflow");
2823    return;
2824  }
2825
2826  int start = __ offset();
2827  if (os::is_MP()) {
2828    // make sure that the displacement word of the call ends up word aligned
2829    int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2830    while (offset++ % BytesPerWord != 0) {
2831      __ nop();
2832    }
2833  }
2834  __ relocate(static_stub_Relocation::spec(call_pc));
2835  __ movoop(rbx, (jobject)NULL);
2836  // must be set to -1 at code generation time
2837  assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2838  // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2839  __ jump(RuntimeAddress(__ pc()));
2840
2841  assert(__ offset() - start <= call_stub_size, "stub too big")
2842  __ end_a_stub();
2843}
2844
2845
2846void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2847  assert(exceptionOop->as_register() == rax, "must match");
2848  assert(exceptionPC->as_register() == rdx, "must match");
2849
2850  // exception object is not added to oop map by LinearScan
2851  // (LinearScan assumes that no oops are in fixed registers)
2852  info->add_register_oop(exceptionOop);
2853  Runtime1::StubID unwind_id;
2854
2855  // get current pc information
2856  // pc is only needed if the method has an exception handler, the unwind code does not need it.
2857  int pc_for_athrow_offset = __ offset();
2858  InternalAddress pc_for_athrow(__ pc());
2859  __ lea(exceptionPC->as_register(), pc_for_athrow);
2860  add_call_info(pc_for_athrow_offset, info); // for exception handler
2861
2862  __ verify_not_null_oop(rax);
2863  // search an exception handler (rax: exception oop, rdx: throwing pc)
2864  if (compilation()->has_fpu_code()) {
2865    unwind_id = Runtime1::handle_exception_id;
2866  } else {
2867    unwind_id = Runtime1::handle_exception_nofpu_id;
2868  }
2869  __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2870
2871  // enough room for two byte trap
2872  __ nop();
2873}
2874
2875
2876void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2877  assert(exceptionOop->as_register() == rax, "must match");
2878
2879  __ jmp(_unwind_handler_entry);
2880}
2881
2882
2883void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2884
2885  // optimized version for linear scan:
2886  // * count must be already in ECX (guaranteed by LinearScan)
2887  // * left and dest must be equal
2888  // * tmp must be unused
2889  assert(count->as_register() == SHIFT_count, "count must be in ECX");
2890  assert(left == dest, "left and dest must be equal");
2891  assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2892
2893  if (left->is_single_cpu()) {
2894    Register value = left->as_register();
2895    assert(value != SHIFT_count, "left cannot be ECX");
2896
2897    switch (code) {
2898      case lir_shl:  __ shll(value); break;
2899      case lir_shr:  __ sarl(value); break;
2900      case lir_ushr: __ shrl(value); break;
2901      default: ShouldNotReachHere();
2902    }
2903  } else if (left->is_double_cpu()) {
2904    Register lo = left->as_register_lo();
2905    Register hi = left->as_register_hi();
2906    assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2907#ifdef _LP64
2908    switch (code) {
2909      case lir_shl:  __ shlptr(lo);        break;
2910      case lir_shr:  __ sarptr(lo);        break;
2911      case lir_ushr: __ shrptr(lo);        break;
2912      default: ShouldNotReachHere();
2913    }
2914#else
2915
2916    switch (code) {
2917      case lir_shl:  __ lshl(hi, lo);        break;
2918      case lir_shr:  __ lshr(hi, lo, true);  break;
2919      case lir_ushr: __ lshr(hi, lo, false); break;
2920      default: ShouldNotReachHere();
2921    }
2922#endif // LP64
2923  } else {
2924    ShouldNotReachHere();
2925  }
2926}
2927
2928
2929void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2930  if (dest->is_single_cpu()) {
2931    // first move left into dest so that left is not destroyed by the shift
2932    Register value = dest->as_register();
2933    count = count & 0x1F; // Java spec
2934
2935    move_regs(left->as_register(), value);
2936    switch (code) {
2937      case lir_shl:  __ shll(value, count); break;
2938      case lir_shr:  __ sarl(value, count); break;
2939      case lir_ushr: __ shrl(value, count); break;
2940      default: ShouldNotReachHere();
2941    }
2942  } else if (dest->is_double_cpu()) {
2943#ifndef _LP64
2944    Unimplemented();
2945#else
2946    // first move left into dest so that left is not destroyed by the shift
2947    Register value = dest->as_register_lo();
2948    count = count & 0x1F; // Java spec
2949
2950    move_regs(left->as_register_lo(), value);
2951    switch (code) {
2952      case lir_shl:  __ shlptr(value, count); break;
2953      case lir_shr:  __ sarptr(value, count); break;
2954      case lir_ushr: __ shrptr(value, count); break;
2955      default: ShouldNotReachHere();
2956    }
2957#endif // _LP64
2958  } else {
2959    ShouldNotReachHere();
2960  }
2961}
2962
2963
2964void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2965  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2966  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2967  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2968  __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2969}
2970
2971
2972void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2973  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2974  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2975  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2976  __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2977}
2978
2979
2980void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2981  assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2982  int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2983  assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2984  __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2985}
2986
2987
2988// This code replaces a call to arraycopy; no exception may
2989// be thrown in this code, they must be thrown in the System.arraycopy
2990// activation frame; we could save some checks if this would not be the case
2991void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2992  ciArrayKlass* default_type = op->expected_type();
2993  Register src = op->src()->as_register();
2994  Register dst = op->dst()->as_register();
2995  Register src_pos = op->src_pos()->as_register();
2996  Register dst_pos = op->dst_pos()->as_register();
2997  Register length  = op->length()->as_register();
2998  Register tmp = op->tmp()->as_register();
2999
3000  CodeStub* stub = op->stub();
3001  int flags = op->flags();
3002  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3003  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3004
3005  // if we don't know anything or it's an object array, just go through the generic arraycopy
3006  if (default_type == NULL) {
3007    Label done;
3008    // save outgoing arguments on stack in case call to System.arraycopy is needed
3009    // HACK ALERT. This code used to push the parameters in a hardwired fashion
3010    // for interpreter calling conventions. Now we have to do it in new style conventions.
3011    // For the moment until C1 gets the new register allocator I just force all the
3012    // args to the right place (except the register args) and then on the back side
3013    // reload the register args properly if we go slow path. Yuck
3014
3015    // These are proper for the calling convention
3016
3017    store_parameter(length, 2);
3018    store_parameter(dst_pos, 1);
3019    store_parameter(dst, 0);
3020
3021    // these are just temporary placements until we need to reload
3022    store_parameter(src_pos, 3);
3023    store_parameter(src, 4);
3024    NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3025
3026    address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3027
3028    // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3029#ifdef _LP64
3030    // The arguments are in java calling convention so we can trivially shift them to C
3031    // convention
3032    assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3033    __ mov(c_rarg0, j_rarg0);
3034    assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3035    __ mov(c_rarg1, j_rarg1);
3036    assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3037    __ mov(c_rarg2, j_rarg2);
3038    assert_different_registers(c_rarg3, j_rarg4);
3039    __ mov(c_rarg3, j_rarg3);
3040#ifdef _WIN64
3041    // Allocate abi space for args but be sure to keep stack aligned
3042    __ subptr(rsp, 6*wordSize);
3043    store_parameter(j_rarg4, 4);
3044    __ call(RuntimeAddress(entry));
3045    __ addptr(rsp, 6*wordSize);
3046#else
3047    __ mov(c_rarg4, j_rarg4);
3048    __ call(RuntimeAddress(entry));
3049#endif // _WIN64
3050#else
3051    __ push(length);
3052    __ push(dst_pos);
3053    __ push(dst);
3054    __ push(src_pos);
3055    __ push(src);
3056    __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3057
3058#endif // _LP64
3059
3060    __ cmpl(rax, 0);
3061    __ jcc(Assembler::equal, *stub->continuation());
3062
3063    // Reload values from the stack so they are where the stub
3064    // expects them.
3065    __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3066    __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3067    __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3068    __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3069    __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3070    __ jmp(*stub->entry());
3071
3072    __ bind(*stub->continuation());
3073    return;
3074  }
3075
3076  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3077
3078  int elem_size = type2aelembytes(basic_type);
3079  int shift_amount;
3080  Address::ScaleFactor scale;
3081
3082  switch (elem_size) {
3083    case 1 :
3084      shift_amount = 0;
3085      scale = Address::times_1;
3086      break;
3087    case 2 :
3088      shift_amount = 1;
3089      scale = Address::times_2;
3090      break;
3091    case 4 :
3092      shift_amount = 2;
3093      scale = Address::times_4;
3094      break;
3095    case 8 :
3096      shift_amount = 3;
3097      scale = Address::times_8;
3098      break;
3099    default:
3100      ShouldNotReachHere();
3101  }
3102
3103  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3104  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3105  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3106  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3107
3108  // length and pos's are all sign extended at this point on 64bit
3109
3110  // test for NULL
3111  if (flags & LIR_OpArrayCopy::src_null_check) {
3112    __ testptr(src, src);
3113    __ jcc(Assembler::zero, *stub->entry());
3114  }
3115  if (flags & LIR_OpArrayCopy::dst_null_check) {
3116    __ testptr(dst, dst);
3117    __ jcc(Assembler::zero, *stub->entry());
3118  }
3119
3120  // check if negative
3121  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3122    __ testl(src_pos, src_pos);
3123    __ jcc(Assembler::less, *stub->entry());
3124  }
3125  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3126    __ testl(dst_pos, dst_pos);
3127    __ jcc(Assembler::less, *stub->entry());
3128  }
3129  if (flags & LIR_OpArrayCopy::length_positive_check) {
3130    __ testl(length, length);
3131    __ jcc(Assembler::less, *stub->entry());
3132  }
3133
3134  if (flags & LIR_OpArrayCopy::src_range_check) {
3135    __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3136    __ cmpl(tmp, src_length_addr);
3137    __ jcc(Assembler::above, *stub->entry());
3138  }
3139  if (flags & LIR_OpArrayCopy::dst_range_check) {
3140    __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3141    __ cmpl(tmp, dst_length_addr);
3142    __ jcc(Assembler::above, *stub->entry());
3143  }
3144
3145  if (flags & LIR_OpArrayCopy::type_check) {
3146    __ movptr(tmp, src_klass_addr);
3147    __ cmpptr(tmp, dst_klass_addr);
3148    __ jcc(Assembler::notEqual, *stub->entry());
3149  }
3150
3151#ifdef ASSERT
3152  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3153    // Sanity check the known type with the incoming class.  For the
3154    // primitive case the types must match exactly with src.klass and
3155    // dst.klass each exactly matching the default type.  For the
3156    // object array case, if no type check is needed then either the
3157    // dst type is exactly the expected type and the src type is a
3158    // subtype which we can't check or src is the same array as dst
3159    // but not necessarily exactly of type default_type.
3160    Label known_ok, halt;
3161    __ movoop(tmp, default_type->constant_encoding());
3162    if (basic_type != T_OBJECT) {
3163      __ cmpptr(tmp, dst_klass_addr);
3164      __ jcc(Assembler::notEqual, halt);
3165      __ cmpptr(tmp, src_klass_addr);
3166      __ jcc(Assembler::equal, known_ok);
3167    } else {
3168      __ cmpptr(tmp, dst_klass_addr);
3169      __ jcc(Assembler::equal, known_ok);
3170      __ cmpptr(src, dst);
3171      __ jcc(Assembler::equal, known_ok);
3172    }
3173    __ bind(halt);
3174    __ stop("incorrect type information in arraycopy");
3175    __ bind(known_ok);
3176  }
3177#endif
3178
3179  if (shift_amount > 0 && basic_type != T_OBJECT) {
3180    __ shlptr(length, shift_amount);
3181  }
3182
3183#ifdef _LP64
3184  assert_different_registers(c_rarg0, dst, dst_pos, length);
3185  __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3186  __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3187  assert_different_registers(c_rarg1, length);
3188  __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3189  __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3190  __ mov(c_rarg2, length);
3191
3192#else
3193  __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3194  store_parameter(tmp, 0);
3195  __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3196  store_parameter(tmp, 1);
3197  store_parameter(length, 2);
3198#endif // _LP64
3199  if (basic_type == T_OBJECT) {
3200    __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3201  } else {
3202    __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3203  }
3204
3205  __ bind(*stub->continuation());
3206}
3207
3208
3209void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3210  Register obj = op->obj_opr()->as_register();  // may not be an oop
3211  Register hdr = op->hdr_opr()->as_register();
3212  Register lock = op->lock_opr()->as_register();
3213  if (!UseFastLocking) {
3214    __ jmp(*op->stub()->entry());
3215  } else if (op->code() == lir_lock) {
3216    Register scratch = noreg;
3217    if (UseBiasedLocking) {
3218      scratch = op->scratch_opr()->as_register();
3219    }
3220    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3221    // add debug info for NullPointerException only if one is possible
3222    int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3223    if (op->info() != NULL) {
3224      add_debug_info_for_null_check(null_check_offset, op->info());
3225    }
3226    // done
3227  } else if (op->code() == lir_unlock) {
3228    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3229    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3230  } else {
3231    Unimplemented();
3232  }
3233  __ bind(*op->stub()->continuation());
3234}
3235
3236
3237void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3238  ciMethod* method = op->profiled_method();
3239  int bci          = op->profiled_bci();
3240
3241  // Update counter for all call types
3242  ciMethodData* md = method->method_data();
3243  if (md == NULL) {
3244    bailout("out of memory building methodDataOop");
3245    return;
3246  }
3247  ciProfileData* data = md->bci_to_data(bci);
3248  assert(data->is_CounterData(), "need CounterData for calls");
3249  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3250  Register mdo  = op->mdo()->as_register();
3251  __ movoop(mdo, md->constant_encoding());
3252  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3253  Bytecodes::Code bc = method->java_code_at_bci(bci);
3254  // Perform additional virtual call profiling for invokevirtual and
3255  // invokeinterface bytecodes
3256  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3257      Tier1ProfileVirtualCalls) {
3258    assert(op->recv()->is_single_cpu(), "recv must be allocated");
3259    Register recv = op->recv()->as_register();
3260    assert_different_registers(mdo, recv);
3261    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3262    ciKlass* known_klass = op->known_holder();
3263    if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
3264      // We know the type that will be seen at this call site; we can
3265      // statically update the methodDataOop rather than needing to do
3266      // dynamic tests on the receiver type
3267
3268      // NOTE: we should probably put a lock around this search to
3269      // avoid collisions by concurrent compilations
3270      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3271      uint i;
3272      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3273        ciKlass* receiver = vc_data->receiver(i);
3274        if (known_klass->equals(receiver)) {
3275          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3276          __ addl(data_addr, DataLayout::counter_increment);
3277          return;
3278        }
3279      }
3280
3281      // Receiver type not found in profile data; select an empty slot
3282
3283      // Note that this is less efficient than it should be because it
3284      // always does a write to the receiver part of the
3285      // VirtualCallData rather than just the first time
3286      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3287        ciKlass* receiver = vc_data->receiver(i);
3288        if (receiver == NULL) {
3289          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3290          __ movoop(recv_addr, known_klass->constant_encoding());
3291          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3292          __ addl(data_addr, DataLayout::counter_increment);
3293          return;
3294        }
3295      }
3296    } else {
3297      __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3298      Label update_done;
3299      uint i;
3300      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3301        Label next_test;
3302        // See if the receiver is receiver[n].
3303        __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
3304        __ jcc(Assembler::notEqual, next_test);
3305        Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3306        __ addl(data_addr, DataLayout::counter_increment);
3307        __ jmp(update_done);
3308        __ bind(next_test);
3309      }
3310
3311      // Didn't find receiver; find next empty slot and fill it in
3312      for (i = 0; i < VirtualCallData::row_limit(); i++) {
3313        Label next_test;
3314        Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3315        __ cmpptr(recv_addr, (int32_t)NULL_WORD);
3316        __ jcc(Assembler::notEqual, next_test);
3317        __ movptr(recv_addr, recv);
3318        __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
3319        __ jmp(update_done);
3320        __ bind(next_test);
3321      }
3322      // Receiver did not match any saved receiver and there is no empty row for it.
3323      // Increment total counter to indicate polymorphic case.
3324      __ addl(counter_addr, DataLayout::counter_increment);
3325
3326      __ bind(update_done);
3327    }
3328  } else {
3329    // Static call
3330    __ addl(counter_addr, DataLayout::counter_increment);
3331  }
3332}
3333
3334
3335void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3336  Unimplemented();
3337}
3338
3339
3340void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3341  __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3342}
3343
3344
3345void LIR_Assembler::align_backward_branch_target() {
3346  __ align(BytesPerWord);
3347}
3348
3349
3350void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3351  if (left->is_single_cpu()) {
3352    __ negl(left->as_register());
3353    move_regs(left->as_register(), dest->as_register());
3354
3355  } else if (left->is_double_cpu()) {
3356    Register lo = left->as_register_lo();
3357#ifdef _LP64
3358    Register dst = dest->as_register_lo();
3359    __ movptr(dst, lo);
3360    __ negptr(dst);
3361#else
3362    Register hi = left->as_register_hi();
3363    __ lneg(hi, lo);
3364    if (dest->as_register_lo() == hi) {
3365      assert(dest->as_register_hi() != lo, "destroying register");
3366      move_regs(hi, dest->as_register_hi());
3367      move_regs(lo, dest->as_register_lo());
3368    } else {
3369      move_regs(lo, dest->as_register_lo());
3370      move_regs(hi, dest->as_register_hi());
3371    }
3372#endif // _LP64
3373
3374  } else if (dest->is_single_xmm()) {
3375    if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3376      __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3377    }
3378    __ xorps(dest->as_xmm_float_reg(),
3379             ExternalAddress((address)float_signflip_pool));
3380
3381  } else if (dest->is_double_xmm()) {
3382    if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3383      __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3384    }
3385    __ xorpd(dest->as_xmm_double_reg(),
3386             ExternalAddress((address)double_signflip_pool));
3387
3388  } else if (left->is_single_fpu() || left->is_double_fpu()) {
3389    assert(left->fpu() == 0, "arg must be on TOS");
3390    assert(dest->fpu() == 0, "dest must be TOS");
3391    __ fchs();
3392
3393  } else {
3394    ShouldNotReachHere();
3395  }
3396}
3397
3398
3399void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3400  assert(addr->is_address() && dest->is_register(), "check");
3401  Register reg;
3402  reg = dest->as_pointer_register();
3403  __ lea(reg, as_Address(addr->as_address_ptr()));
3404}
3405
3406
3407
3408void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3409  assert(!tmp->is_valid(), "don't need temporary");
3410  __ call(RuntimeAddress(dest));
3411  if (info != NULL) {
3412    add_call_info_here(info);
3413  }
3414}
3415
3416
3417void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3418  assert(type == T_LONG, "only for volatile long fields");
3419
3420  if (info != NULL) {
3421    add_debug_info_for_null_check_here(info);
3422  }
3423
3424  if (src->is_double_xmm()) {
3425    if (dest->is_double_cpu()) {
3426#ifdef _LP64
3427      __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3428#else
3429      __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3430      __ psrlq(src->as_xmm_double_reg(), 32);
3431      __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3432#endif // _LP64
3433    } else if (dest->is_double_stack()) {
3434      __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3435    } else if (dest->is_address()) {
3436      __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3437    } else {
3438      ShouldNotReachHere();
3439    }
3440
3441  } else if (dest->is_double_xmm()) {
3442    if (src->is_double_stack()) {
3443      __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3444    } else if (src->is_address()) {
3445      __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3446    } else {
3447      ShouldNotReachHere();
3448    }
3449
3450  } else if (src->is_double_fpu()) {
3451    assert(src->fpu_regnrLo() == 0, "must be TOS");
3452    if (dest->is_double_stack()) {
3453      __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3454    } else if (dest->is_address()) {
3455      __ fistp_d(as_Address(dest->as_address_ptr()));
3456    } else {
3457      ShouldNotReachHere();
3458    }
3459
3460  } else if (dest->is_double_fpu()) {
3461    assert(dest->fpu_regnrLo() == 0, "must be TOS");
3462    if (src->is_double_stack()) {
3463      __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3464    } else if (src->is_address()) {
3465      __ fild_d(as_Address(src->as_address_ptr()));
3466    } else {
3467      ShouldNotReachHere();
3468    }
3469  } else {
3470    ShouldNotReachHere();
3471  }
3472}
3473
3474
3475void LIR_Assembler::membar() {
3476  // QQQ sparc TSO uses this,
3477  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3478}
3479
3480void LIR_Assembler::membar_acquire() {
3481  // No x86 machines currently require load fences
3482  // __ load_fence();
3483}
3484
3485void LIR_Assembler::membar_release() {
3486  // No x86 machines currently require store fences
3487  // __ store_fence();
3488}
3489
3490void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3491  assert(result_reg->is_register(), "check");
3492#ifdef _LP64
3493  // __ get_thread(result_reg->as_register_lo());
3494  __ mov(result_reg->as_register(), r15_thread);
3495#else
3496  __ get_thread(result_reg->as_register());
3497#endif // _LP64
3498}
3499
3500
3501void LIR_Assembler::peephole(LIR_List*) {
3502  // do nothing for now
3503}
3504
3505
3506#undef __
3507