assembler_x86.hpp revision 623:9adddb8c0fc8
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25class BiasedLockingCounters;
26
27// Contains all the definitions needed for x86 assembly code generation.
28
29// Calling convention
30class Argument VALUE_OBJ_CLASS_SPEC {
31 public:
32  enum {
33#ifdef _LP64
34#ifdef _WIN64
35    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
36    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
37#else
38    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
39    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
40#endif // _WIN64
41    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
42    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
43#else
44    n_register_parameters = 0   // 0 registers used to pass arguments
45#endif // _LP64
46  };
47};
48
49
50#ifdef _LP64
51// Symbolically name the register arguments used by the c calling convention.
52// Windows is different from linux/solaris. So much for standards...
53
54#ifdef _WIN64
55
56REGISTER_DECLARATION(Register, c_rarg0, rcx);
57REGISTER_DECLARATION(Register, c_rarg1, rdx);
58REGISTER_DECLARATION(Register, c_rarg2, r8);
59REGISTER_DECLARATION(Register, c_rarg3, r9);
60
61REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
62REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
63REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
64REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
65
66#else
67
68REGISTER_DECLARATION(Register, c_rarg0, rdi);
69REGISTER_DECLARATION(Register, c_rarg1, rsi);
70REGISTER_DECLARATION(Register, c_rarg2, rdx);
71REGISTER_DECLARATION(Register, c_rarg3, rcx);
72REGISTER_DECLARATION(Register, c_rarg4, r8);
73REGISTER_DECLARATION(Register, c_rarg5, r9);
74
75REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
76REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
77REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
78REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
79REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
80REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
81REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
82REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
83
84#endif // _WIN64
85
86// Symbolically name the register arguments used by the Java calling convention.
87// We have control over the convention for java so we can do what we please.
88// What pleases us is to offset the java calling convention so that when
89// we call a suitable jni method the arguments are lined up and we don't
90// have to do little shuffling. A suitable jni method is non-static and a
91// small number of arguments (two fewer args on windows)
92//
93//        |-------------------------------------------------------|
94//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
95//        |-------------------------------------------------------|
96//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
97//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
98//        |-------------------------------------------------------|
99//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
100//        |-------------------------------------------------------|
101
102REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
103REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
104REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
105// Windows runs out of register args here
106#ifdef _WIN64
107REGISTER_DECLARATION(Register, j_rarg3, rdi);
108REGISTER_DECLARATION(Register, j_rarg4, rsi);
109#else
110REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
111REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
112#endif /* _WIN64 */
113REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
114
115REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
116REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
117REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
118REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
119REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
120REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
121REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
122REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
123
124REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
125REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
126
127REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
128REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
129
130#else
131// rscratch1 will apear in 32bit code that is dead but of course must compile
132// Using noreg ensures if the dead code is incorrectly live and executed it
133// will cause an assertion failure
134#define rscratch1 noreg
135
136#endif // _LP64
137
138// Address is an abstraction used to represent a memory location
139// using any of the amd64 addressing modes with one object.
140//
141// Note: A register location is represented via a Register, not
142//       via an address for efficiency & simplicity reasons.
143
144class ArrayAddress;
145
146class Address VALUE_OBJ_CLASS_SPEC {
147 public:
148  enum ScaleFactor {
149    no_scale = -1,
150    times_1  =  0,
151    times_2  =  1,
152    times_4  =  2,
153    times_8  =  3,
154    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
155  };
156  static ScaleFactor times(int size) {
157    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
158    if (size == 8)  return times_8;
159    if (size == 4)  return times_4;
160    if (size == 2)  return times_2;
161    return times_1;
162  }
163  static int scale_size(ScaleFactor scale) {
164    assert(scale != no_scale, "");
165    assert(((1 << (int)times_1) == 1 &&
166            (1 << (int)times_2) == 2 &&
167            (1 << (int)times_4) == 4 &&
168            (1 << (int)times_8) == 8), "");
169    return (1 << (int)scale);
170  }
171
172 private:
173  Register         _base;
174  Register         _index;
175  ScaleFactor      _scale;
176  int              _disp;
177  RelocationHolder _rspec;
178
179  // Easily misused constructors make them private
180  // %%% can we make these go away?
181  NOT_LP64(Address(address loc, RelocationHolder spec);)
182  Address(int disp, address loc, relocInfo::relocType rtype);
183  Address(int disp, address loc, RelocationHolder spec);
184
185 public:
186
187 int disp() { return _disp; }
188  // creation
189  Address()
190    : _base(noreg),
191      _index(noreg),
192      _scale(no_scale),
193      _disp(0) {
194  }
195
196  // No default displacement otherwise Register can be implicitly
197  // converted to 0(Register) which is quite a different animal.
198
199  Address(Register base, int disp)
200    : _base(base),
201      _index(noreg),
202      _scale(no_scale),
203      _disp(disp) {
204  }
205
206  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
207    : _base (base),
208      _index(index),
209      _scale(scale),
210      _disp (disp) {
211    assert(!index->is_valid() == (scale == Address::no_scale),
212           "inconsistent address");
213  }
214
215  Address(Register base, RegisterConstant index, ScaleFactor scale = times_1, int disp = 0)
216    : _base (base),
217      _index(index.register_or_noreg()),
218      _scale(scale),
219      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
220    if (!index.is_register())  scale = Address::no_scale;
221    assert(!_index->is_valid() == (scale == Address::no_scale),
222           "inconsistent address");
223  }
224
225  Address plus_disp(int disp) const {
226    Address a = (*this);
227    a._disp += disp;
228    return a;
229  }
230
231  // The following two overloads are used in connection with the
232  // ByteSize type (see sizes.hpp).  They simplify the use of
233  // ByteSize'd arguments in assembly code. Note that their equivalent
234  // for the optimized build are the member functions with int disp
235  // argument since ByteSize is mapped to an int type in that case.
236  //
237  // Note: DO NOT introduce similar overloaded functions for WordSize
238  // arguments as in the optimized mode, both ByteSize and WordSize
239  // are mapped to the same type and thus the compiler cannot make a
240  // distinction anymore (=> compiler errors).
241
242#ifdef ASSERT
243  Address(Register base, ByteSize disp)
244    : _base(base),
245      _index(noreg),
246      _scale(no_scale),
247      _disp(in_bytes(disp)) {
248  }
249
250  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
251    : _base(base),
252      _index(index),
253      _scale(scale),
254      _disp(in_bytes(disp)) {
255    assert(!index->is_valid() == (scale == Address::no_scale),
256           "inconsistent address");
257  }
258
259  Address(Register base, RegisterConstant index, ScaleFactor scale, ByteSize disp)
260    : _base (base),
261      _index(index.register_or_noreg()),
262      _scale(scale),
263      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
264    if (!index.is_register())  scale = Address::no_scale;
265    assert(!_index->is_valid() == (scale == Address::no_scale),
266           "inconsistent address");
267  }
268
269#endif // ASSERT
270
271  // accessors
272  bool        uses(Register reg) const { return _base == reg || _index == reg; }
273  Register    base()             const { return _base;  }
274  Register    index()            const { return _index; }
275  ScaleFactor scale()            const { return _scale; }
276  int         disp()             const { return _disp;  }
277
278  // Convert the raw encoding form into the form expected by the constructor for
279  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
280  // that to noreg for the Address constructor.
281  static Address make_raw(int base, int index, int scale, int disp);
282
283  static Address make_array(ArrayAddress);
284
285 private:
286  bool base_needs_rex() const {
287    return _base != noreg && _base->encoding() >= 8;
288  }
289
290  bool index_needs_rex() const {
291    return _index != noreg &&_index->encoding() >= 8;
292  }
293
294  relocInfo::relocType reloc() const { return _rspec.type(); }
295
296  friend class Assembler;
297  friend class MacroAssembler;
298  friend class LIR_Assembler; // base/index/scale/disp
299};
300
301//
302// AddressLiteral has been split out from Address because operands of this type
303// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
304// the few instructions that need to deal with address literals are unique and the
305// MacroAssembler does not have to implement every instruction in the Assembler
306// in order to search for address literals that may need special handling depending
307// on the instruction and the platform. As small step on the way to merging i486/amd64
308// directories.
309//
310class AddressLiteral VALUE_OBJ_CLASS_SPEC {
311  friend class ArrayAddress;
312  RelocationHolder _rspec;
313  // Typically we use AddressLiterals we want to use their rval
314  // However in some situations we want the lval (effect address) of the item.
315  // We provide a special factory for making those lvals.
316  bool _is_lval;
317
318  // If the target is far we'll need to load the ea of this to
319  // a register to reach it. Otherwise if near we can do rip
320  // relative addressing.
321
322  address          _target;
323
324 protected:
325  // creation
326  AddressLiteral()
327    : _is_lval(false),
328      _target(NULL)
329  {}
330
331  public:
332
333
334  AddressLiteral(address target, relocInfo::relocType rtype);
335
336  AddressLiteral(address target, RelocationHolder const& rspec)
337    : _rspec(rspec),
338      _is_lval(false),
339      _target(target)
340  {}
341
342  AddressLiteral addr() {
343    AddressLiteral ret = *this;
344    ret._is_lval = true;
345    return ret;
346  }
347
348
349 private:
350
351  address target() { return _target; }
352  bool is_lval() { return _is_lval; }
353
354  relocInfo::relocType reloc() const { return _rspec.type(); }
355  const RelocationHolder& rspec() const { return _rspec; }
356
357  friend class Assembler;
358  friend class MacroAssembler;
359  friend class Address;
360  friend class LIR_Assembler;
361};
362
363// Convience classes
364class RuntimeAddress: public AddressLiteral {
365
366  public:
367
368  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
369
370};
371
372class OopAddress: public AddressLiteral {
373
374  public:
375
376  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
377
378};
379
380class ExternalAddress: public AddressLiteral {
381
382  public:
383
384  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
385
386};
387
388class InternalAddress: public AddressLiteral {
389
390  public:
391
392  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
393
394};
395
396// x86 can do array addressing as a single operation since disp can be an absolute
397// address amd64 can't. We create a class that expresses the concept but does extra
398// magic on amd64 to get the final result
399
400class ArrayAddress VALUE_OBJ_CLASS_SPEC {
401  private:
402
403  AddressLiteral _base;
404  Address        _index;
405
406  public:
407
408  ArrayAddress() {};
409  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
410  AddressLiteral base() { return _base; }
411  Address index() { return _index; }
412
413};
414
415const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
416
417// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
418// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
419// is what you get. The Assembler is generating code into a CodeBuffer.
420
421class Assembler : public AbstractAssembler  {
422  friend class AbstractAssembler; // for the non-virtual hack
423  friend class LIR_Assembler; // as_Address()
424  friend class StubGenerator;
425
426 public:
427  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
428    zero          = 0x4,
429    notZero       = 0x5,
430    equal         = 0x4,
431    notEqual      = 0x5,
432    less          = 0xc,
433    lessEqual     = 0xe,
434    greater       = 0xf,
435    greaterEqual  = 0xd,
436    below         = 0x2,
437    belowEqual    = 0x6,
438    above         = 0x7,
439    aboveEqual    = 0x3,
440    overflow      = 0x0,
441    noOverflow    = 0x1,
442    carrySet      = 0x2,
443    carryClear    = 0x3,
444    negative      = 0x8,
445    positive      = 0x9,
446    parity        = 0xa,
447    noParity      = 0xb
448  };
449
450  enum Prefix {
451    // segment overrides
452    CS_segment = 0x2e,
453    SS_segment = 0x36,
454    DS_segment = 0x3e,
455    ES_segment = 0x26,
456    FS_segment = 0x64,
457    GS_segment = 0x65,
458
459    REX        = 0x40,
460
461    REX_B      = 0x41,
462    REX_X      = 0x42,
463    REX_XB     = 0x43,
464    REX_R      = 0x44,
465    REX_RB     = 0x45,
466    REX_RX     = 0x46,
467    REX_RXB    = 0x47,
468
469    REX_W      = 0x48,
470
471    REX_WB     = 0x49,
472    REX_WX     = 0x4A,
473    REX_WXB    = 0x4B,
474    REX_WR     = 0x4C,
475    REX_WRB    = 0x4D,
476    REX_WRX    = 0x4E,
477    REX_WRXB   = 0x4F
478  };
479
480  enum WhichOperand {
481    // input to locate_operand, and format code for relocations
482    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
483    disp32_operand = 1,          // embedded 32-bit displacement or address
484    call32_operand = 2,          // embedded 32-bit self-relative displacement
485#ifndef _LP64
486    _WhichOperand_limit = 3
487#else
488     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
489    _WhichOperand_limit = 4
490#endif
491  };
492
493
494
495  // NOTE: The general philopsophy of the declarations here is that 64bit versions
496  // of instructions are freely declared without the need for wrapping them an ifdef.
497  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
498  // In the .cpp file the implementations are wrapped so that they are dropped out
499  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
500  // to the size it was prior to merging up the 32bit and 64bit assemblers.
501  //
502  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
503  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
504
505private:
506
507
508  // 64bit prefixes
509  int prefix_and_encode(int reg_enc, bool byteinst = false);
510  int prefixq_and_encode(int reg_enc);
511
512  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
513  int prefixq_and_encode(int dst_enc, int src_enc);
514
515  void prefix(Register reg);
516  void prefix(Address adr);
517  void prefixq(Address adr);
518
519  void prefix(Address adr, Register reg,  bool byteinst = false);
520  void prefixq(Address adr, Register reg);
521
522  void prefix(Address adr, XMMRegister reg);
523
524  void prefetch_prefix(Address src);
525
526  // Helper functions for groups of instructions
527  void emit_arith_b(int op1, int op2, Register dst, int imm8);
528
529  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
530  // only 32bit??
531  void emit_arith(int op1, int op2, Register dst, jobject obj);
532  void emit_arith(int op1, int op2, Register dst, Register src);
533
534  void emit_operand(Register reg,
535                    Register base, Register index, Address::ScaleFactor scale,
536                    int disp,
537                    RelocationHolder const& rspec,
538                    int rip_relative_correction = 0);
539
540  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
541
542  // operands that only take the original 32bit registers
543  void emit_operand32(Register reg, Address adr);
544
545  void emit_operand(XMMRegister reg,
546                    Register base, Register index, Address::ScaleFactor scale,
547                    int disp,
548                    RelocationHolder const& rspec);
549
550  void emit_operand(XMMRegister reg, Address adr);
551
552  void emit_operand(MMXRegister reg, Address adr);
553
554  // workaround gcc (3.2.1-7) bug
555  void emit_operand(Address adr, MMXRegister reg);
556
557
558  // Immediate-to-memory forms
559  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
560
561  void emit_farith(int b1, int b2, int i);
562
563
564 protected:
565  #ifdef ASSERT
566  void check_relocation(RelocationHolder const& rspec, int format);
567  #endif
568
569  inline void emit_long64(jlong x);
570
571  void emit_data(jint data, relocInfo::relocType    rtype, int format);
572  void emit_data(jint data, RelocationHolder const& rspec, int format);
573  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
574  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
575
576
577  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
578
579  // These are all easily abused and hence protected
580
581  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
582
583  // 32BIT ONLY SECTION
584#ifndef _LP64
585  // Make these disappear in 64bit mode since they would never be correct
586  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
587  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
588
589  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
590
591  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
592#else
593  // 64BIT ONLY SECTION
594  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
595#endif // _LP64
596
597  // These are unique in that we are ensured by the caller that the 32bit
598  // relative in these instructions will always be able to reach the potentially
599  // 64bit address described by entry. Since they can take a 64bit address they
600  // don't have the 32 suffix like the other instructions in this class.
601
602  void call_literal(address entry, RelocationHolder const& rspec);
603  void jmp_literal(address entry, RelocationHolder const& rspec);
604
605  // Avoid using directly section
606  // Instructions in this section are actually usable by anyone without danger
607  // of failure but have performance issues that are addressed my enhanced
608  // instructions which will do the proper thing base on the particular cpu.
609  // We protect them because we don't trust you...
610
611  // Don't use next inc() and dec() methods directly. INC & DEC instructions
612  // could cause a partial flag stall since they don't set CF flag.
613  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
614  // which call inc() & dec() or add() & sub() in accordance with
615  // the product flag UseIncDec value.
616
617  void decl(Register dst);
618  void decl(Address dst);
619  void decq(Register dst);
620  void decq(Address dst);
621
622  void incl(Register dst);
623  void incl(Address dst);
624  void incq(Register dst);
625  void incq(Address dst);
626
627  // New cpus require use of movsd and movss to avoid partial register stall
628  // when loading from memory. But for old Opteron use movlpd instead of movsd.
629  // The selection is done in MacroAssembler::movdbl() and movflt().
630
631  // Move Scalar Single-Precision Floating-Point Values
632  void movss(XMMRegister dst, Address src);
633  void movss(XMMRegister dst, XMMRegister src);
634  void movss(Address dst, XMMRegister src);
635
636  // Move Scalar Double-Precision Floating-Point Values
637  void movsd(XMMRegister dst, Address src);
638  void movsd(XMMRegister dst, XMMRegister src);
639  void movsd(Address dst, XMMRegister src);
640  void movlpd(XMMRegister dst, Address src);
641
642  // New cpus require use of movaps and movapd to avoid partial register stall
643  // when moving between registers.
644  void movaps(XMMRegister dst, XMMRegister src);
645  void movapd(XMMRegister dst, XMMRegister src);
646
647  // End avoid using directly
648
649
650  // Instruction prefixes
651  void prefix(Prefix p);
652
653  public:
654
655  // Creation
656  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
657
658  // Decoding
659  static address locate_operand(address inst, WhichOperand which);
660  static address locate_next_instruction(address inst);
661
662  // Utilities
663
664#ifdef _LP64
665 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
666 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
667#else
668 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
669 static bool is_simm32(int32_t x) { return true; }
670#endif // LP64
671
672  // Generic instructions
673  // Does 32bit or 64bit as needed for the platform. In some sense these
674  // belong in macro assembler but there is no need for both varieties to exist
675
676  void lea(Register dst, Address src);
677
678  void mov(Register dst, Register src);
679
680  void pusha();
681  void popa();
682
683  void pushf();
684  void popf();
685
686  void push(int32_t imm32);
687
688  void push(Register src);
689
690  void pop(Register dst);
691
692  // These are dummies to prevent surprise implicit conversions to Register
693  void push(void* v);
694  void pop(void* v);
695
696
697  // These do register sized moves/scans
698  void rep_mov();
699  void rep_set();
700  void repne_scan();
701#ifdef _LP64
702  void repne_scanl();
703#endif
704
705  // Vanilla instructions in lexical order
706
707  void adcl(Register dst, int32_t imm32);
708  void adcl(Register dst, Address src);
709  void adcl(Register dst, Register src);
710
711  void adcq(Register dst, int32_t imm32);
712  void adcq(Register dst, Address src);
713  void adcq(Register dst, Register src);
714
715
716  void addl(Address dst, int32_t imm32);
717  void addl(Address dst, Register src);
718  void addl(Register dst, int32_t imm32);
719  void addl(Register dst, Address src);
720  void addl(Register dst, Register src);
721
722  void addq(Address dst, int32_t imm32);
723  void addq(Address dst, Register src);
724  void addq(Register dst, int32_t imm32);
725  void addq(Register dst, Address src);
726  void addq(Register dst, Register src);
727
728
729  void addr_nop_4();
730  void addr_nop_5();
731  void addr_nop_7();
732  void addr_nop_8();
733
734  // Add Scalar Double-Precision Floating-Point Values
735  void addsd(XMMRegister dst, Address src);
736  void addsd(XMMRegister dst, XMMRegister src);
737
738  // Add Scalar Single-Precision Floating-Point Values
739  void addss(XMMRegister dst, Address src);
740  void addss(XMMRegister dst, XMMRegister src);
741
742  void andl(Register dst, int32_t imm32);
743  void andl(Register dst, Address src);
744  void andl(Register dst, Register src);
745
746  void andq(Register dst, int32_t imm32);
747  void andq(Register dst, Address src);
748  void andq(Register dst, Register src);
749
750
751  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
752  void andpd(XMMRegister dst, Address src);
753  void andpd(XMMRegister dst, XMMRegister src);
754
755  void bswapl(Register reg);
756
757  void bswapq(Register reg);
758
759  void call(Label& L, relocInfo::relocType rtype);
760  void call(Register reg);  // push pc; pc <- reg
761  void call(Address adr);   // push pc; pc <- adr
762
763  void cdql();
764
765  void cdqq();
766
767  void cld() { emit_byte(0xfc); }
768
769  void clflush(Address adr);
770
771  void cmovl(Condition cc, Register dst, Register src);
772  void cmovl(Condition cc, Register dst, Address src);
773
774  void cmovq(Condition cc, Register dst, Register src);
775  void cmovq(Condition cc, Register dst, Address src);
776
777
778  void cmpb(Address dst, int imm8);
779
780  void cmpl(Address dst, int32_t imm32);
781
782  void cmpl(Register dst, int32_t imm32);
783  void cmpl(Register dst, Register src);
784  void cmpl(Register dst, Address src);
785
786  void cmpq(Address dst, int32_t imm32);
787  void cmpq(Address dst, Register src);
788
789  void cmpq(Register dst, int32_t imm32);
790  void cmpq(Register dst, Register src);
791  void cmpq(Register dst, Address src);
792
793  // these are dummies used to catch attempting to convert NULL to Register
794  void cmpl(Register dst, void* junk); // dummy
795  void cmpq(Register dst, void* junk); // dummy
796
797  void cmpw(Address dst, int imm16);
798
799  void cmpxchg8 (Address adr);
800
801  void cmpxchgl(Register reg, Address adr);
802
803  void cmpxchgq(Register reg, Address adr);
804
805  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
806  void comisd(XMMRegister dst, Address src);
807
808  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
809  void comiss(XMMRegister dst, Address src);
810
811  // Identify processor type and features
812  void cpuid() {
813    emit_byte(0x0F);
814    emit_byte(0xA2);
815  }
816
817  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
818  void cvtsd2ss(XMMRegister dst, XMMRegister src);
819
820  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
821  void cvtsi2sdl(XMMRegister dst, Register src);
822  void cvtsi2sdq(XMMRegister dst, Register src);
823
824  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
825  void cvtsi2ssl(XMMRegister dst, Register src);
826  void cvtsi2ssq(XMMRegister dst, Register src);
827
828  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
829  void cvtdq2pd(XMMRegister dst, XMMRegister src);
830
831  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
832  void cvtdq2ps(XMMRegister dst, XMMRegister src);
833
834  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
835  void cvtss2sd(XMMRegister dst, XMMRegister src);
836
837  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
838  void cvttsd2sil(Register dst, Address src);
839  void cvttsd2sil(Register dst, XMMRegister src);
840  void cvttsd2siq(Register dst, XMMRegister src);
841
842  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
843  void cvttss2sil(Register dst, XMMRegister src);
844  void cvttss2siq(Register dst, XMMRegister src);
845
846  // Divide Scalar Double-Precision Floating-Point Values
847  void divsd(XMMRegister dst, Address src);
848  void divsd(XMMRegister dst, XMMRegister src);
849
850  // Divide Scalar Single-Precision Floating-Point Values
851  void divss(XMMRegister dst, Address src);
852  void divss(XMMRegister dst, XMMRegister src);
853
854  void emms();
855
856  void fabs();
857
858  void fadd(int i);
859
860  void fadd_d(Address src);
861  void fadd_s(Address src);
862
863  // "Alternate" versions of x87 instructions place result down in FPU
864  // stack instead of on TOS
865
866  void fadda(int i); // "alternate" fadd
867  void faddp(int i = 1);
868
869  void fchs();
870
871  void fcom(int i);
872
873  void fcomp(int i = 1);
874  void fcomp_d(Address src);
875  void fcomp_s(Address src);
876
877  void fcompp();
878
879  void fcos();
880
881  void fdecstp();
882
883  void fdiv(int i);
884  void fdiv_d(Address src);
885  void fdivr_s(Address src);
886  void fdiva(int i);  // "alternate" fdiv
887  void fdivp(int i = 1);
888
889  void fdivr(int i);
890  void fdivr_d(Address src);
891  void fdiv_s(Address src);
892
893  void fdivra(int i); // "alternate" reversed fdiv
894
895  void fdivrp(int i = 1);
896
897  void ffree(int i = 0);
898
899  void fild_d(Address adr);
900  void fild_s(Address adr);
901
902  void fincstp();
903
904  void finit();
905
906  void fist_s (Address adr);
907  void fistp_d(Address adr);
908  void fistp_s(Address adr);
909
910  void fld1();
911
912  void fld_d(Address adr);
913  void fld_s(Address adr);
914  void fld_s(int index);
915  void fld_x(Address adr);  // extended-precision (80-bit) format
916
917  void fldcw(Address src);
918
919  void fldenv(Address src);
920
921  void fldlg2();
922
923  void fldln2();
924
925  void fldz();
926
927  void flog();
928  void flog10();
929
930  void fmul(int i);
931
932  void fmul_d(Address src);
933  void fmul_s(Address src);
934
935  void fmula(int i);  // "alternate" fmul
936
937  void fmulp(int i = 1);
938
939  void fnsave(Address dst);
940
941  void fnstcw(Address src);
942
943  void fnstsw_ax();
944
945  void fprem();
946  void fprem1();
947
948  void frstor(Address src);
949
950  void fsin();
951
952  void fsqrt();
953
954  void fst_d(Address adr);
955  void fst_s(Address adr);
956
957  void fstp_d(Address adr);
958  void fstp_d(int index);
959  void fstp_s(Address adr);
960  void fstp_x(Address adr); // extended-precision (80-bit) format
961
962  void fsub(int i);
963  void fsub_d(Address src);
964  void fsub_s(Address src);
965
966  void fsuba(int i);  // "alternate" fsub
967
968  void fsubp(int i = 1);
969
970  void fsubr(int i);
971  void fsubr_d(Address src);
972  void fsubr_s(Address src);
973
974  void fsubra(int i); // "alternate" reversed fsub
975
976  void fsubrp(int i = 1);
977
978  void ftan();
979
980  void ftst();
981
982  void fucomi(int i = 1);
983  void fucomip(int i = 1);
984
985  void fwait();
986
987  void fxch(int i = 1);
988
989  void fxrstor(Address src);
990
991  void fxsave(Address dst);
992
993  void fyl2x();
994
995  void hlt();
996
997  void idivl(Register src);
998
999  void idivq(Register src);
1000
1001  void imull(Register dst, Register src);
1002  void imull(Register dst, Register src, int value);
1003
1004  void imulq(Register dst, Register src);
1005  void imulq(Register dst, Register src, int value);
1006
1007
1008  // jcc is the generic conditional branch generator to run-
1009  // time routines, jcc is used for branches to labels. jcc
1010  // takes a branch opcode (cc) and a label (L) and generates
1011  // either a backward branch or a forward branch and links it
1012  // to the label fixup chain. Usage:
1013  //
1014  // Label L;      // unbound label
1015  // jcc(cc, L);   // forward branch to unbound label
1016  // bind(L);      // bind label to the current pc
1017  // jcc(cc, L);   // backward branch to bound label
1018  // bind(L);      // illegal: a label may be bound only once
1019  //
1020  // Note: The same Label can be used for forward and backward branches
1021  // but it may be bound only once.
1022
1023  void jcc(Condition cc, Label& L,
1024           relocInfo::relocType rtype = relocInfo::none);
1025
1026  // Conditional jump to a 8-bit offset to L.
1027  // WARNING: be very careful using this for forward jumps.  If the label is
1028  // not bound within an 8-bit offset of this instruction, a run-time error
1029  // will occur.
1030  void jccb(Condition cc, Label& L);
1031
1032  void jmp(Address entry);    // pc <- entry
1033
1034  // Label operations & relative jumps (PPUM Appendix D)
1035  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1036
1037  void jmp(Register entry); // pc <- entry
1038
1039  // Unconditional 8-bit offset jump to L.
1040  // WARNING: be very careful using this for forward jumps.  If the label is
1041  // not bound within an 8-bit offset of this instruction, a run-time error
1042  // will occur.
1043  void jmpb(Label& L);
1044
1045  void ldmxcsr( Address src );
1046
1047  void leal(Register dst, Address src);
1048
1049  void leaq(Register dst, Address src);
1050
1051  void lfence() {
1052    emit_byte(0x0F);
1053    emit_byte(0xAE);
1054    emit_byte(0xE8);
1055  }
1056
1057  void lock();
1058
1059  enum Membar_mask_bits {
1060    StoreStore = 1 << 3,
1061    LoadStore  = 1 << 2,
1062    StoreLoad  = 1 << 1,
1063    LoadLoad   = 1 << 0
1064  };
1065
1066  // Serializes memory.
1067  void membar(Membar_mask_bits order_constraint) {
1068    // We only have to handle StoreLoad and LoadLoad
1069    if (order_constraint & StoreLoad) {
1070      // MFENCE subsumes LFENCE
1071      mfence();
1072    } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
1073         lfence();
1074    } */
1075  }
1076
1077  void mfence();
1078
1079  // Moves
1080
1081  void mov64(Register dst, int64_t imm64);
1082
1083  void movb(Address dst, Register src);
1084  void movb(Address dst, int imm8);
1085  void movb(Register dst, Address src);
1086
1087  void movdl(XMMRegister dst, Register src);
1088  void movdl(Register dst, XMMRegister src);
1089
1090  // Move Double Quadword
1091  void movdq(XMMRegister dst, Register src);
1092  void movdq(Register dst, XMMRegister src);
1093
1094  // Move Aligned Double Quadword
1095  void movdqa(Address     dst, XMMRegister src);
1096  void movdqa(XMMRegister dst, Address src);
1097  void movdqa(XMMRegister dst, XMMRegister src);
1098
1099  // Move Unaligned Double Quadword
1100  void movdqu(Address     dst, XMMRegister src);
1101  void movdqu(XMMRegister dst, Address src);
1102  void movdqu(XMMRegister dst, XMMRegister src);
1103
1104  void movl(Register dst, int32_t imm32);
1105  void movl(Address dst, int32_t imm32);
1106  void movl(Register dst, Register src);
1107  void movl(Register dst, Address src);
1108  void movl(Address dst, Register src);
1109
1110  // These dummies prevent using movl from converting a zero (like NULL) into Register
1111  // by giving the compiler two choices it can't resolve
1112
1113  void movl(Address  dst, void* junk);
1114  void movl(Register dst, void* junk);
1115
1116#ifdef _LP64
1117  void movq(Register dst, Register src);
1118  void movq(Register dst, Address src);
1119  void movq(Address dst, Register src);
1120#endif
1121
1122  void movq(Address     dst, MMXRegister src );
1123  void movq(MMXRegister dst, Address src );
1124
1125#ifdef _LP64
1126  // These dummies prevent using movq from converting a zero (like NULL) into Register
1127  // by giving the compiler two choices it can't resolve
1128
1129  void movq(Address  dst, void* dummy);
1130  void movq(Register dst, void* dummy);
1131#endif
1132
1133  // Move Quadword
1134  void movq(Address     dst, XMMRegister src);
1135  void movq(XMMRegister dst, Address src);
1136
1137  void movsbl(Register dst, Address src);
1138  void movsbl(Register dst, Register src);
1139
1140#ifdef _LP64
1141  // Move signed 32bit immediate to 64bit extending sign
1142  void movslq(Address dst, int32_t imm64);
1143  void movslq(Register dst, int32_t imm64);
1144
1145  void movslq(Register dst, Address src);
1146  void movslq(Register dst, Register src);
1147  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1148#endif
1149
1150  void movswl(Register dst, Address src);
1151  void movswl(Register dst, Register src);
1152
1153  void movw(Address dst, int imm16);
1154  void movw(Register dst, Address src);
1155  void movw(Address dst, Register src);
1156
1157  void movzbl(Register dst, Address src);
1158  void movzbl(Register dst, Register src);
1159
1160  void movzwl(Register dst, Address src);
1161  void movzwl(Register dst, Register src);
1162
1163  void mull(Address src);
1164  void mull(Register src);
1165
1166  // Multiply Scalar Double-Precision Floating-Point Values
1167  void mulsd(XMMRegister dst, Address src);
1168  void mulsd(XMMRegister dst, XMMRegister src);
1169
1170  // Multiply Scalar Single-Precision Floating-Point Values
1171  void mulss(XMMRegister dst, Address src);
1172  void mulss(XMMRegister dst, XMMRegister src);
1173
1174  void negl(Register dst);
1175
1176#ifdef _LP64
1177  void negq(Register dst);
1178#endif
1179
1180  void nop(int i = 1);
1181
1182  void notl(Register dst);
1183
1184#ifdef _LP64
1185  void notq(Register dst);
1186#endif
1187
1188  void orl(Address dst, int32_t imm32);
1189  void orl(Register dst, int32_t imm32);
1190  void orl(Register dst, Address src);
1191  void orl(Register dst, Register src);
1192
1193  void orq(Address dst, int32_t imm32);
1194  void orq(Register dst, int32_t imm32);
1195  void orq(Register dst, Address src);
1196  void orq(Register dst, Register src);
1197
1198  void popl(Address dst);
1199
1200#ifdef _LP64
1201  void popq(Address dst);
1202#endif
1203
1204  // Prefetches (SSE, SSE2, 3DNOW only)
1205
1206  void prefetchnta(Address src);
1207  void prefetchr(Address src);
1208  void prefetcht0(Address src);
1209  void prefetcht1(Address src);
1210  void prefetcht2(Address src);
1211  void prefetchw(Address src);
1212
1213  // Shuffle Packed Doublewords
1214  void pshufd(XMMRegister dst, XMMRegister src, int mode);
1215  void pshufd(XMMRegister dst, Address src,     int mode);
1216
1217  // Shuffle Packed Low Words
1218  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1219  void pshuflw(XMMRegister dst, Address src,     int mode);
1220
1221  // Shift Right Logical Quadword Immediate
1222  void psrlq(XMMRegister dst, int shift);
1223
1224  // Interleave Low Bytes
1225  void punpcklbw(XMMRegister dst, XMMRegister src);
1226
1227  void pushl(Address src);
1228
1229  void pushq(Address src);
1230
1231  // Xor Packed Byte Integer Values
1232  void pxor(XMMRegister dst, Address src);
1233  void pxor(XMMRegister dst, XMMRegister src);
1234
1235  void rcll(Register dst, int imm8);
1236
1237  void rclq(Register dst, int imm8);
1238
1239  void ret(int imm16);
1240
1241  void sahf();
1242
1243  void sarl(Register dst, int imm8);
1244  void sarl(Register dst);
1245
1246  void sarq(Register dst, int imm8);
1247  void sarq(Register dst);
1248
1249  void sbbl(Address dst, int32_t imm32);
1250  void sbbl(Register dst, int32_t imm32);
1251  void sbbl(Register dst, Address src);
1252  void sbbl(Register dst, Register src);
1253
1254  void sbbq(Address dst, int32_t imm32);
1255  void sbbq(Register dst, int32_t imm32);
1256  void sbbq(Register dst, Address src);
1257  void sbbq(Register dst, Register src);
1258
1259  void setb(Condition cc, Register dst);
1260
1261  void shldl(Register dst, Register src);
1262
1263  void shll(Register dst, int imm8);
1264  void shll(Register dst);
1265
1266  void shlq(Register dst, int imm8);
1267  void shlq(Register dst);
1268
1269  void shrdl(Register dst, Register src);
1270
1271  void shrl(Register dst, int imm8);
1272  void shrl(Register dst);
1273
1274  void shrq(Register dst, int imm8);
1275  void shrq(Register dst);
1276
1277  void smovl(); // QQQ generic?
1278
1279  // Compute Square Root of Scalar Double-Precision Floating-Point Value
1280  void sqrtsd(XMMRegister dst, Address src);
1281  void sqrtsd(XMMRegister dst, XMMRegister src);
1282
1283  void std() { emit_byte(0xfd); }
1284
1285  void stmxcsr( Address dst );
1286
1287  void subl(Address dst, int32_t imm32);
1288  void subl(Address dst, Register src);
1289  void subl(Register dst, int32_t imm32);
1290  void subl(Register dst, Address src);
1291  void subl(Register dst, Register src);
1292
1293  void subq(Address dst, int32_t imm32);
1294  void subq(Address dst, Register src);
1295  void subq(Register dst, int32_t imm32);
1296  void subq(Register dst, Address src);
1297  void subq(Register dst, Register src);
1298
1299
1300  // Subtract Scalar Double-Precision Floating-Point Values
1301  void subsd(XMMRegister dst, Address src);
1302  void subsd(XMMRegister dst, XMMRegister src);
1303
1304  // Subtract Scalar Single-Precision Floating-Point Values
1305  void subss(XMMRegister dst, Address src);
1306  void subss(XMMRegister dst, XMMRegister src);
1307
1308  void testb(Register dst, int imm8);
1309
1310  void testl(Register dst, int32_t imm32);
1311  void testl(Register dst, Register src);
1312  void testl(Register dst, Address src);
1313
1314  void testq(Register dst, int32_t imm32);
1315  void testq(Register dst, Register src);
1316
1317
1318  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1319  void ucomisd(XMMRegister dst, Address src);
1320  void ucomisd(XMMRegister dst, XMMRegister src);
1321
1322  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1323  void ucomiss(XMMRegister dst, Address src);
1324  void ucomiss(XMMRegister dst, XMMRegister src);
1325
1326  void xaddl(Address dst, Register src);
1327
1328  void xaddq(Address dst, Register src);
1329
1330  void xchgl(Register reg, Address adr);
1331  void xchgl(Register dst, Register src);
1332
1333  void xchgq(Register reg, Address adr);
1334  void xchgq(Register dst, Register src);
1335
1336  void xorl(Register dst, int32_t imm32);
1337  void xorl(Register dst, Address src);
1338  void xorl(Register dst, Register src);
1339
1340  void xorq(Register dst, Address src);
1341  void xorq(Register dst, Register src);
1342
1343  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1344  void xorpd(XMMRegister dst, Address src);
1345  void xorpd(XMMRegister dst, XMMRegister src);
1346
1347  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1348  void xorps(XMMRegister dst, Address src);
1349  void xorps(XMMRegister dst, XMMRegister src);
1350
1351  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1352};
1353
1354
1355// MacroAssembler extends Assembler by frequently used macros.
1356//
1357// Instructions for which a 'better' code sequence exists depending
1358// on arguments should also go in here.
1359
1360class MacroAssembler: public Assembler {
1361  friend class LIR_Assembler;
1362  friend class Runtime1;      // as_Address()
1363 protected:
1364
1365  Address as_Address(AddressLiteral adr);
1366  Address as_Address(ArrayAddress adr);
1367
1368  // Support for VM calls
1369  //
1370  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1371  // may customize this version by overriding it for its purposes (e.g., to save/restore
1372  // additional registers when doing a VM call).
1373#ifdef CC_INTERP
1374  // c++ interpreter never wants to use interp_masm version of call_VM
1375  #define VIRTUAL
1376#else
1377  #define VIRTUAL virtual
1378#endif
1379
1380  VIRTUAL void call_VM_leaf_base(
1381    address entry_point,               // the entry point
1382    int     number_of_arguments        // the number of arguments to pop after the call
1383  );
1384
1385  // This is the base routine called by the different versions of call_VM. The interpreter
1386  // may customize this version by overriding it for its purposes (e.g., to save/restore
1387  // additional registers when doing a VM call).
1388  //
1389  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1390  // returns the register which contains the thread upon return. If a thread register has been
1391  // specified, the return value will correspond to that register. If no last_java_sp is specified
1392  // (noreg) than rsp will be used instead.
1393  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1394    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1395    Register java_thread,              // the thread if computed before     ; use noreg otherwise
1396    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1397    address  entry_point,              // the entry point
1398    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1399    bool     check_exceptions          // whether to check for pending exceptions after return
1400  );
1401
1402  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1403  // The implementation is only non-empty for the InterpreterMacroAssembler,
1404  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1405  virtual void check_and_handle_popframe(Register java_thread);
1406  virtual void check_and_handle_earlyret(Register java_thread);
1407
1408  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1409
1410  // helpers for FPU flag access
1411  // tmp is a temporary register, if none is available use noreg
1412  void save_rax   (Register tmp);
1413  void restore_rax(Register tmp);
1414
1415 public:
1416  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1417
1418  // Support for NULL-checks
1419  //
1420  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1421  // If the accessed location is M[reg + offset] and the offset is known, provide the
1422  // offset. No explicit code generation is needed if the offset is within a certain
1423  // range (0 <= offset <= page_size).
1424
1425  void null_check(Register reg, int offset = -1);
1426  static bool needs_explicit_null_check(intptr_t offset);
1427
1428  // Required platform-specific helpers for Label::patch_instructions.
1429  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1430  void pd_patch_instruction(address branch, address target);
1431#ifndef PRODUCT
1432  static void pd_print_patched_instruction(address branch);
1433#endif
1434
1435  // The following 4 methods return the offset of the appropriate move instruction
1436
1437  // Support for fast byte/short loading with zero extension (depending on particular CPU)
1438  int load_unsigned_byte(Register dst, Address src);
1439  int load_unsigned_short(Register dst, Address src);
1440
1441  // Support for fast byte/short loading with sign extension (depending on particular CPU)
1442  int load_signed_byte(Register dst, Address src);
1443  int load_signed_short(Register dst, Address src);
1444
1445  // Support for sign-extension (hi:lo = extend_sign(lo))
1446  void extend_sign(Register hi, Register lo);
1447
1448  // Loading values by size and signed-ness
1449  void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
1450
1451  // Support for inc/dec with optimal instruction selection depending on value
1452
1453  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1454  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1455
1456  void decrementl(Address dst, int value = 1);
1457  void decrementl(Register reg, int value = 1);
1458
1459  void decrementq(Register reg, int value = 1);
1460  void decrementq(Address dst, int value = 1);
1461
1462  void incrementl(Address dst, int value = 1);
1463  void incrementl(Register reg, int value = 1);
1464
1465  void incrementq(Register reg, int value = 1);
1466  void incrementq(Address dst, int value = 1);
1467
1468
1469  // Support optimal SSE move instructions.
1470  void movflt(XMMRegister dst, XMMRegister src) {
1471    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1472    else                       { movss (dst, src); return; }
1473  }
1474  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1475  void movflt(XMMRegister dst, AddressLiteral src);
1476  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1477
1478  void movdbl(XMMRegister dst, XMMRegister src) {
1479    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1480    else                       { movsd (dst, src); return; }
1481  }
1482
1483  void movdbl(XMMRegister dst, AddressLiteral src);
1484
1485  void movdbl(XMMRegister dst, Address src) {
1486    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1487    else                         { movlpd(dst, src); return; }
1488  }
1489  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1490
1491  void incrementl(AddressLiteral dst);
1492  void incrementl(ArrayAddress dst);
1493
1494  // Alignment
1495  void align(int modulus);
1496
1497  // Misc
1498  void fat_nop(); // 5 byte nop
1499
1500  // Stack frame creation/removal
1501  void enter();
1502  void leave();
1503
1504  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1505  // The pointer will be loaded into the thread register.
1506  void get_thread(Register thread);
1507
1508
1509  // Support for VM calls
1510  //
1511  // It is imperative that all calls into the VM are handled via the call_VM macros.
1512  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1513  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1514
1515
1516  void call_VM(Register oop_result,
1517               address entry_point,
1518               bool check_exceptions = true);
1519  void call_VM(Register oop_result,
1520               address entry_point,
1521               Register arg_1,
1522               bool check_exceptions = true);
1523  void call_VM(Register oop_result,
1524               address entry_point,
1525               Register arg_1, Register arg_2,
1526               bool check_exceptions = true);
1527  void call_VM(Register oop_result,
1528               address entry_point,
1529               Register arg_1, Register arg_2, Register arg_3,
1530               bool check_exceptions = true);
1531
1532  // Overloadings with last_Java_sp
1533  void call_VM(Register oop_result,
1534               Register last_java_sp,
1535               address entry_point,
1536               int number_of_arguments = 0,
1537               bool check_exceptions = true);
1538  void call_VM(Register oop_result,
1539               Register last_java_sp,
1540               address entry_point,
1541               Register arg_1, bool
1542               check_exceptions = true);
1543  void call_VM(Register oop_result,
1544               Register last_java_sp,
1545               address entry_point,
1546               Register arg_1, Register arg_2,
1547               bool check_exceptions = true);
1548  void call_VM(Register oop_result,
1549               Register last_java_sp,
1550               address entry_point,
1551               Register arg_1, Register arg_2, Register arg_3,
1552               bool check_exceptions = true);
1553
1554  void call_VM_leaf(address entry_point,
1555                    int number_of_arguments = 0);
1556  void call_VM_leaf(address entry_point,
1557                    Register arg_1);
1558  void call_VM_leaf(address entry_point,
1559                    Register arg_1, Register arg_2);
1560  void call_VM_leaf(address entry_point,
1561                    Register arg_1, Register arg_2, Register arg_3);
1562
1563  // last Java Frame (fills frame anchor)
1564  void set_last_Java_frame(Register thread,
1565                           Register last_java_sp,
1566                           Register last_java_fp,
1567                           address last_java_pc);
1568
1569  // thread in the default location (r15_thread on 64bit)
1570  void set_last_Java_frame(Register last_java_sp,
1571                           Register last_java_fp,
1572                           address last_java_pc);
1573
1574  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1575
1576  // thread in the default location (r15_thread on 64bit)
1577  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1578
1579  // Stores
1580  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1581  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1582
1583  void g1_write_barrier_pre(Register obj,
1584#ifndef _LP64
1585                            Register thread,
1586#endif
1587                            Register tmp,
1588                            Register tmp2,
1589                            bool     tosca_live);
1590  void g1_write_barrier_post(Register store_addr,
1591                             Register new_val,
1592#ifndef _LP64
1593                             Register thread,
1594#endif
1595                             Register tmp,
1596                             Register tmp2);
1597
1598
1599  // split store_check(Register obj) to enhance instruction interleaving
1600  void store_check_part_1(Register obj);
1601  void store_check_part_2(Register obj);
1602
1603  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1604  void c2bool(Register x);
1605
1606  // C++ bool manipulation
1607
1608  void movbool(Register dst, Address src);
1609  void movbool(Address dst, bool boolconst);
1610  void movbool(Address dst, Register src);
1611  void testbool(Register dst);
1612
1613  // oop manipulations
1614  void load_klass(Register dst, Register src);
1615  void store_klass(Register dst, Register src);
1616
1617  void load_prototype_header(Register dst, Register src);
1618
1619#ifdef _LP64
1620  void store_klass_gap(Register dst, Register src);
1621
1622  void load_heap_oop(Register dst, Address src);
1623  void store_heap_oop(Address dst, Register src);
1624  void encode_heap_oop(Register r);
1625  void decode_heap_oop(Register r);
1626  void encode_heap_oop_not_null(Register r);
1627  void decode_heap_oop_not_null(Register r);
1628  void encode_heap_oop_not_null(Register dst, Register src);
1629  void decode_heap_oop_not_null(Register dst, Register src);
1630
1631  void set_narrow_oop(Register dst, jobject obj);
1632
1633  // if heap base register is used - reinit it with the correct value
1634  void reinit_heapbase();
1635#endif // _LP64
1636
1637  // Int division/remainder for Java
1638  // (as idivl, but checks for special case as described in JVM spec.)
1639  // returns idivl instruction offset for implicit exception handling
1640  int corrected_idivl(Register reg);
1641
1642  // Long division/remainder for Java
1643  // (as idivq, but checks for special case as described in JVM spec.)
1644  // returns idivq instruction offset for implicit exception handling
1645  int corrected_idivq(Register reg);
1646
1647  void int3();
1648
1649  // Long operation macros for a 32bit cpu
1650  // Long negation for Java
1651  void lneg(Register hi, Register lo);
1652
1653  // Long multiplication for Java
1654  // (destroys contents of eax, ebx, ecx and edx)
1655  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1656
1657  // Long shifts for Java
1658  // (semantics as described in JVM spec.)
1659  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1660  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1661
1662  // Long compare for Java
1663  // (semantics as described in JVM spec.)
1664  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1665
1666
1667  // misc
1668
1669  // Sign extension
1670  void sign_extend_short(Register reg);
1671  void sign_extend_byte(Register reg);
1672
1673  // Division by power of 2, rounding towards 0
1674  void division_with_shift(Register reg, int shift_value);
1675
1676  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1677  //
1678  // CF (corresponds to C0) if x < y
1679  // PF (corresponds to C2) if unordered
1680  // ZF (corresponds to C3) if x = y
1681  //
1682  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1683  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1684  void fcmp(Register tmp);
1685  // Variant of the above which allows y to be further down the stack
1686  // and which only pops x and y if specified. If pop_right is
1687  // specified then pop_left must also be specified.
1688  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1689
1690  // Floating-point comparison for Java
1691  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1692  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1693  // (semantics as described in JVM spec.)
1694  void fcmp2int(Register dst, bool unordered_is_less);
1695  // Variant of the above which allows y to be further down the stack
1696  // and which only pops x and y if specified. If pop_right is
1697  // specified then pop_left must also be specified.
1698  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1699
1700  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1701  // tmp is a temporary register, if none is available use noreg
1702  void fremr(Register tmp);
1703
1704
1705  // same as fcmp2int, but using SSE2
1706  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1707  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1708
1709  // Inlined sin/cos generator for Java; must not use CPU instruction
1710  // directly on Intel as it does not have high enough precision
1711  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1712  // number of FPU stack slots in use; all but the topmost will
1713  // require saving if a slow case is necessary. Assumes argument is
1714  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1715  // this code.
1716  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1717
1718  // branch to L if FPU flag C2 is set/not set
1719  // tmp is a temporary register, if none is available use noreg
1720  void jC2 (Register tmp, Label& L);
1721  void jnC2(Register tmp, Label& L);
1722
1723  // Pop ST (ffree & fincstp combined)
1724  void fpop();
1725
1726  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1727  void push_fTOS();
1728
1729  // pops double TOS element from CPU stack and pushes on FPU stack
1730  void pop_fTOS();
1731
1732  void empty_FPU_stack();
1733
1734  void push_IU_state();
1735  void pop_IU_state();
1736
1737  void push_FPU_state();
1738  void pop_FPU_state();
1739
1740  void push_CPU_state();
1741  void pop_CPU_state();
1742
1743  // Round up to a power of two
1744  void round_to(Register reg, int modulus);
1745
1746  // Callee saved registers handling
1747  void push_callee_saved_registers();
1748  void pop_callee_saved_registers();
1749
1750  // allocation
1751  void eden_allocate(
1752    Register obj,                      // result: pointer to object after successful allocation
1753    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1754    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1755    Register t1,                       // temp register
1756    Label&   slow_case                 // continuation point if fast allocation fails
1757  );
1758  void tlab_allocate(
1759    Register obj,                      // result: pointer to object after successful allocation
1760    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1761    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1762    Register t1,                       // temp register
1763    Register t2,                       // temp register
1764    Label&   slow_case                 // continuation point if fast allocation fails
1765  );
1766  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1767
1768  // interface method calling
1769  void lookup_interface_method(Register recv_klass,
1770                               Register intf_klass,
1771                               RegisterConstant itable_index,
1772                               Register method_result,
1773                               Register scan_temp,
1774                               Label& no_such_interface);
1775
1776  //----
1777  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1778
1779  // Debugging
1780
1781  // only if +VerifyOops
1782  void verify_oop(Register reg, const char* s = "broken oop");
1783  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1784
1785  // only if +VerifyFPU
1786  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1787
1788  // prints msg, dumps registers and stops execution
1789  void stop(const char* msg);
1790
1791  // prints msg and continues
1792  void warn(const char* msg);
1793
1794  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1795  static void debug64(char* msg, int64_t pc, int64_t regs[]);
1796
1797  void os_breakpoint();
1798
1799  void untested()                                { stop("untested"); }
1800
1801  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
1802
1803  void should_not_reach_here()                   { stop("should not reach here"); }
1804
1805  void print_CPU_state();
1806
1807  // Stack overflow checking
1808  void bang_stack_with_offset(int offset) {
1809    // stack grows down, caller passes positive offset
1810    assert(offset > 0, "must bang with negative offset");
1811    movl(Address(rsp, (-offset)), rax);
1812  }
1813
1814  // Writes to stack successive pages until offset reached to check for
1815  // stack overflow + shadow pages.  Also, clobbers tmp
1816  void bang_stack_size(Register size, Register tmp);
1817
1818  virtual RegisterConstant delayed_value(intptr_t* delayed_value_addr,
1819                                         Register tmp,
1820                                         int offset);
1821
1822  // Support for serializing memory accesses between threads
1823  void serialize_memory(Register thread, Register tmp);
1824
1825  void verify_tlab();
1826
1827  // Biased locking support
1828  // lock_reg and obj_reg must be loaded up with the appropriate values.
1829  // swap_reg must be rax, and is killed.
1830  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1831  // be killed; if not supplied, push/pop will be used internally to
1832  // allocate a temporary (inefficient, avoid if possible).
1833  // Optional slow case is for implementations (interpreter and C1) which branch to
1834  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1835  // Returns offset of first potentially-faulting instruction for null
1836  // check info (currently consumed only by C1). If
1837  // swap_reg_contains_mark is true then returns -1 as it is assumed
1838  // the calling code has already passed any potential faults.
1839  int biased_locking_enter(Register lock_reg, Register obj_reg,
1840                           Register swap_reg, Register tmp_reg,
1841                           bool swap_reg_contains_mark,
1842                           Label& done, Label* slow_case = NULL,
1843                           BiasedLockingCounters* counters = NULL);
1844  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1845
1846
1847  Condition negate_condition(Condition cond);
1848
1849  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1850  // operands. In general the names are modified to avoid hiding the instruction in Assembler
1851  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1852  // here in MacroAssembler. The major exception to this rule is call
1853
1854  // Arithmetics
1855
1856
1857  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1858  void addptr(Address dst, Register src);
1859
1860  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1861  void addptr(Register dst, int32_t src);
1862  void addptr(Register dst, Register src);
1863
1864  void andptr(Register dst, int32_t src);
1865  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
1866
1867  void cmp8(AddressLiteral src1, int imm);
1868
1869  // renamed to drag out the casting of address to int32_t/intptr_t
1870  void cmp32(Register src1, int32_t imm);
1871
1872  void cmp32(AddressLiteral src1, int32_t imm);
1873  // compare reg - mem, or reg - &mem
1874  void cmp32(Register src1, AddressLiteral src2);
1875
1876  void cmp32(Register src1, Address src2);
1877
1878#ifndef _LP64
1879  void cmpoop(Address dst, jobject obj);
1880  void cmpoop(Register dst, jobject obj);
1881#endif // _LP64
1882
1883  // NOTE src2 must be the lval. This is NOT an mem-mem compare
1884  void cmpptr(Address src1, AddressLiteral src2);
1885
1886  void cmpptr(Register src1, AddressLiteral src2);
1887
1888  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1889  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1890  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1891
1892  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1893  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1894
1895  // cmp64 to avoild hiding cmpq
1896  void cmp64(Register src1, AddressLiteral src);
1897
1898  void cmpxchgptr(Register reg, Address adr);
1899
1900  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
1901
1902
1903  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
1904
1905
1906  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
1907
1908  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
1909
1910  void shlptr(Register dst, int32_t shift);
1911  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
1912
1913  void shrptr(Register dst, int32_t shift);
1914  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
1915
1916  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
1917  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
1918
1919  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
1920
1921  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
1922  void subptr(Register dst, int32_t src);
1923  void subptr(Register dst, Register src);
1924
1925
1926  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
1927  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
1928
1929  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
1930  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
1931
1932  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
1933
1934
1935
1936  // Helper functions for statistics gathering.
1937  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
1938  void cond_inc32(Condition cond, AddressLiteral counter_addr);
1939  // Unconditional atomic increment.
1940  void atomic_incl(AddressLiteral counter_addr);
1941
1942  void lea(Register dst, AddressLiteral adr);
1943  void lea(Address dst, AddressLiteral adr);
1944  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
1945
1946  void leal32(Register dst, Address src) { leal(dst, src); }
1947
1948  void test32(Register src1, AddressLiteral src2);
1949
1950  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1951  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1952  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
1953
1954  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
1955  void testptr(Register src1, Register src2);
1956
1957  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
1958  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
1959
1960  // Calls
1961
1962  void call(Label& L, relocInfo::relocType rtype);
1963  void call(Register entry);
1964
1965  // NOTE: this call tranfers to the effective address of entry NOT
1966  // the address contained by entry. This is because this is more natural
1967  // for jumps/calls.
1968  void call(AddressLiteral entry);
1969
1970  // Jumps
1971
1972  // NOTE: these jumps tranfer to the effective address of dst NOT
1973  // the address contained by dst. This is because this is more natural
1974  // for jumps/calls.
1975  void jump(AddressLiteral dst);
1976  void jump_cc(Condition cc, AddressLiteral dst);
1977
1978  // 32bit can do a case table jump in one instruction but we no longer allow the base
1979  // to be installed in the Address class. This jump will tranfers to the address
1980  // contained in the location described by entry (not the address of entry)
1981  void jump(ArrayAddress entry);
1982
1983  // Floating
1984
1985  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
1986  void andpd(XMMRegister dst, AddressLiteral src);
1987
1988  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
1989  void comiss(XMMRegister dst, AddressLiteral src);
1990
1991  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
1992  void comisd(XMMRegister dst, AddressLiteral src);
1993
1994  void fldcw(Address src) { Assembler::fldcw(src); }
1995  void fldcw(AddressLiteral src);
1996
1997  void fld_s(int index)   { Assembler::fld_s(index); }
1998  void fld_s(Address src) { Assembler::fld_s(src); }
1999  void fld_s(AddressLiteral src);
2000
2001  void fld_d(Address src) { Assembler::fld_d(src); }
2002  void fld_d(AddressLiteral src);
2003
2004  void fld_x(Address src) { Assembler::fld_x(src); }
2005  void fld_x(AddressLiteral src);
2006
2007  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2008  void ldmxcsr(AddressLiteral src);
2009
2010private:
2011  // these are private because users should be doing movflt/movdbl
2012
2013  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2014  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2015  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2016  void movss(XMMRegister dst, AddressLiteral src);
2017
2018  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2019  void movlpd(XMMRegister dst, AddressLiteral src);
2020
2021public:
2022
2023  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2024  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2025  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2026  void movsd(XMMRegister dst, AddressLiteral src);
2027
2028  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2029  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2030  void ucomiss(XMMRegister dst, AddressLiteral src);
2031
2032  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2033  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2034  void ucomisd(XMMRegister dst, AddressLiteral src);
2035
2036  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2037  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2038  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2039  void xorpd(XMMRegister dst, AddressLiteral src);
2040
2041  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2042  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2043  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2044  void xorps(XMMRegister dst, AddressLiteral src);
2045
2046  // Data
2047
2048  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2049
2050  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2051  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2052
2053  void movoop(Register dst, jobject obj);
2054  void movoop(Address dst, jobject obj);
2055
2056  void movptr(ArrayAddress dst, Register src);
2057  // can this do an lea?
2058  void movptr(Register dst, ArrayAddress src);
2059
2060  void movptr(Register dst, Address src);
2061
2062  void movptr(Register dst, AddressLiteral src);
2063
2064  void movptr(Register dst, intptr_t src);
2065  void movptr(Register dst, Register src);
2066  void movptr(Address dst, intptr_t src);
2067
2068  void movptr(Address dst, Register src);
2069
2070#ifdef _LP64
2071  // Generally the next two are only used for moving NULL
2072  // Although there are situations in initializing the mark word where
2073  // they could be used. They are dangerous.
2074
2075  // They only exist on LP64 so that int32_t and intptr_t are not the same
2076  // and we have ambiguous declarations.
2077
2078  void movptr(Address dst, int32_t imm32);
2079  void movptr(Register dst, int32_t imm32);
2080#endif // _LP64
2081
2082  // to avoid hiding movl
2083  void mov32(AddressLiteral dst, Register src);
2084  void mov32(Register dst, AddressLiteral src);
2085
2086  // to avoid hiding movb
2087  void movbyte(ArrayAddress dst, int src);
2088
2089  // Can push value or effective address
2090  void pushptr(AddressLiteral src);
2091
2092  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2093  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2094
2095  void pushoop(jobject obj);
2096
2097  // sign extend as need a l to ptr sized element
2098  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2099  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2100
2101
2102#undef VIRTUAL
2103
2104};
2105
2106/**
2107 * class SkipIfEqual:
2108 *
2109 * Instantiating this class will result in assembly code being output that will
2110 * jump around any code emitted between the creation of the instance and it's
2111 * automatic destruction at the end of a scope block, depending on the value of
2112 * the flag passed to the constructor, which will be checked at run-time.
2113 */
2114class SkipIfEqual {
2115 private:
2116  MacroAssembler* _masm;
2117  Label _label;
2118
2119 public:
2120   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2121   ~SkipIfEqual();
2122};
2123
2124#ifdef ASSERT
2125inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2126#endif
2127