assembler_x86.hpp revision 1499:e9ff18c4ace7
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25class BiasedLockingCounters;
26
27// Contains all the definitions needed for x86 assembly code generation.
28
29// Calling convention
30class Argument VALUE_OBJ_CLASS_SPEC {
31 public:
32  enum {
33#ifdef _LP64
34#ifdef _WIN64
35    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
36    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
37#else
38    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
39    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
40#endif // _WIN64
41    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
42    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
43#else
44    n_register_parameters = 0   // 0 registers used to pass arguments
45#endif // _LP64
46  };
47};
48
49
50#ifdef _LP64
51// Symbolically name the register arguments used by the c calling convention.
52// Windows is different from linux/solaris. So much for standards...
53
54#ifdef _WIN64
55
56REGISTER_DECLARATION(Register, c_rarg0, rcx);
57REGISTER_DECLARATION(Register, c_rarg1, rdx);
58REGISTER_DECLARATION(Register, c_rarg2, r8);
59REGISTER_DECLARATION(Register, c_rarg3, r9);
60
61REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
62REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
63REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
64REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
65
66#else
67
68REGISTER_DECLARATION(Register, c_rarg0, rdi);
69REGISTER_DECLARATION(Register, c_rarg1, rsi);
70REGISTER_DECLARATION(Register, c_rarg2, rdx);
71REGISTER_DECLARATION(Register, c_rarg3, rcx);
72REGISTER_DECLARATION(Register, c_rarg4, r8);
73REGISTER_DECLARATION(Register, c_rarg5, r9);
74
75REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
76REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
77REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
78REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
79REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
80REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
81REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
82REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
83
84#endif // _WIN64
85
86// Symbolically name the register arguments used by the Java calling convention.
87// We have control over the convention for java so we can do what we please.
88// What pleases us is to offset the java calling convention so that when
89// we call a suitable jni method the arguments are lined up and we don't
90// have to do little shuffling. A suitable jni method is non-static and a
91// small number of arguments (two fewer args on windows)
92//
93//        |-------------------------------------------------------|
94//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
95//        |-------------------------------------------------------|
96//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
97//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
98//        |-------------------------------------------------------|
99//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
100//        |-------------------------------------------------------|
101
102REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
103REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
104REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
105// Windows runs out of register args here
106#ifdef _WIN64
107REGISTER_DECLARATION(Register, j_rarg3, rdi);
108REGISTER_DECLARATION(Register, j_rarg4, rsi);
109#else
110REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
111REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
112#endif /* _WIN64 */
113REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
114
115REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
116REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
117REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
118REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
119REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
120REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
121REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
122REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
123
124REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
125REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
126
127REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
128REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
129
130#else
131// rscratch1 will apear in 32bit code that is dead but of course must compile
132// Using noreg ensures if the dead code is incorrectly live and executed it
133// will cause an assertion failure
134#define rscratch1 noreg
135
136#endif // _LP64
137
138// JSR 292 fixed register usages:
139REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
140
141// Address is an abstraction used to represent a memory location
142// using any of the amd64 addressing modes with one object.
143//
144// Note: A register location is represented via a Register, not
145//       via an address for efficiency & simplicity reasons.
146
147class ArrayAddress;
148
149class Address VALUE_OBJ_CLASS_SPEC {
150 public:
151  enum ScaleFactor {
152    no_scale = -1,
153    times_1  =  0,
154    times_2  =  1,
155    times_4  =  2,
156    times_8  =  3,
157    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
158  };
159  static ScaleFactor times(int size) {
160    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
161    if (size == 8)  return times_8;
162    if (size == 4)  return times_4;
163    if (size == 2)  return times_2;
164    return times_1;
165  }
166  static int scale_size(ScaleFactor scale) {
167    assert(scale != no_scale, "");
168    assert(((1 << (int)times_1) == 1 &&
169            (1 << (int)times_2) == 2 &&
170            (1 << (int)times_4) == 4 &&
171            (1 << (int)times_8) == 8), "");
172    return (1 << (int)scale);
173  }
174
175 private:
176  Register         _base;
177  Register         _index;
178  ScaleFactor      _scale;
179  int              _disp;
180  RelocationHolder _rspec;
181
182  // Easily misused constructors make them private
183  // %%% can we make these go away?
184  NOT_LP64(Address(address loc, RelocationHolder spec);)
185  Address(int disp, address loc, relocInfo::relocType rtype);
186  Address(int disp, address loc, RelocationHolder spec);
187
188 public:
189
190 int disp() { return _disp; }
191  // creation
192  Address()
193    : _base(noreg),
194      _index(noreg),
195      _scale(no_scale),
196      _disp(0) {
197  }
198
199  // No default displacement otherwise Register can be implicitly
200  // converted to 0(Register) which is quite a different animal.
201
202  Address(Register base, int disp)
203    : _base(base),
204      _index(noreg),
205      _scale(no_scale),
206      _disp(disp) {
207  }
208
209  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
210    : _base (base),
211      _index(index),
212      _scale(scale),
213      _disp (disp) {
214    assert(!index->is_valid() == (scale == Address::no_scale),
215           "inconsistent address");
216  }
217
218  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
219    : _base (base),
220      _index(index.register_or_noreg()),
221      _scale(scale),
222      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
223    if (!index.is_register())  scale = Address::no_scale;
224    assert(!_index->is_valid() == (scale == Address::no_scale),
225           "inconsistent address");
226  }
227
228  Address plus_disp(int disp) const {
229    Address a = (*this);
230    a._disp += disp;
231    return a;
232  }
233
234  // The following two overloads are used in connection with the
235  // ByteSize type (see sizes.hpp).  They simplify the use of
236  // ByteSize'd arguments in assembly code. Note that their equivalent
237  // for the optimized build are the member functions with int disp
238  // argument since ByteSize is mapped to an int type in that case.
239  //
240  // Note: DO NOT introduce similar overloaded functions for WordSize
241  // arguments as in the optimized mode, both ByteSize and WordSize
242  // are mapped to the same type and thus the compiler cannot make a
243  // distinction anymore (=> compiler errors).
244
245#ifdef ASSERT
246  Address(Register base, ByteSize disp)
247    : _base(base),
248      _index(noreg),
249      _scale(no_scale),
250      _disp(in_bytes(disp)) {
251  }
252
253  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
254    : _base(base),
255      _index(index),
256      _scale(scale),
257      _disp(in_bytes(disp)) {
258    assert(!index->is_valid() == (scale == Address::no_scale),
259           "inconsistent address");
260  }
261
262  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
263    : _base (base),
264      _index(index.register_or_noreg()),
265      _scale(scale),
266      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
267    if (!index.is_register())  scale = Address::no_scale;
268    assert(!_index->is_valid() == (scale == Address::no_scale),
269           "inconsistent address");
270  }
271
272#endif // ASSERT
273
274  // accessors
275  bool        uses(Register reg) const { return _base == reg || _index == reg; }
276  Register    base()             const { return _base;  }
277  Register    index()            const { return _index; }
278  ScaleFactor scale()            const { return _scale; }
279  int         disp()             const { return _disp;  }
280
281  // Convert the raw encoding form into the form expected by the constructor for
282  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
283  // that to noreg for the Address constructor.
284  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
285
286  static Address make_array(ArrayAddress);
287
288 private:
289  bool base_needs_rex() const {
290    return _base != noreg && _base->encoding() >= 8;
291  }
292
293  bool index_needs_rex() const {
294    return _index != noreg &&_index->encoding() >= 8;
295  }
296
297  relocInfo::relocType reloc() const { return _rspec.type(); }
298
299  friend class Assembler;
300  friend class MacroAssembler;
301  friend class LIR_Assembler; // base/index/scale/disp
302};
303
304//
305// AddressLiteral has been split out from Address because operands of this type
306// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
307// the few instructions that need to deal with address literals are unique and the
308// MacroAssembler does not have to implement every instruction in the Assembler
309// in order to search for address literals that may need special handling depending
310// on the instruction and the platform. As small step on the way to merging i486/amd64
311// directories.
312//
313class AddressLiteral VALUE_OBJ_CLASS_SPEC {
314  friend class ArrayAddress;
315  RelocationHolder _rspec;
316  // Typically we use AddressLiterals we want to use their rval
317  // However in some situations we want the lval (effect address) of the item.
318  // We provide a special factory for making those lvals.
319  bool _is_lval;
320
321  // If the target is far we'll need to load the ea of this to
322  // a register to reach it. Otherwise if near we can do rip
323  // relative addressing.
324
325  address          _target;
326
327 protected:
328  // creation
329  AddressLiteral()
330    : _is_lval(false),
331      _target(NULL)
332  {}
333
334  public:
335
336
337  AddressLiteral(address target, relocInfo::relocType rtype);
338
339  AddressLiteral(address target, RelocationHolder const& rspec)
340    : _rspec(rspec),
341      _is_lval(false),
342      _target(target)
343  {}
344
345  AddressLiteral addr() {
346    AddressLiteral ret = *this;
347    ret._is_lval = true;
348    return ret;
349  }
350
351
352 private:
353
354  address target() { return _target; }
355  bool is_lval() { return _is_lval; }
356
357  relocInfo::relocType reloc() const { return _rspec.type(); }
358  const RelocationHolder& rspec() const { return _rspec; }
359
360  friend class Assembler;
361  friend class MacroAssembler;
362  friend class Address;
363  friend class LIR_Assembler;
364};
365
366// Convience classes
367class RuntimeAddress: public AddressLiteral {
368
369  public:
370
371  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
372
373};
374
375class OopAddress: public AddressLiteral {
376
377  public:
378
379  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
380
381};
382
383class ExternalAddress: public AddressLiteral {
384
385  public:
386
387  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
388
389};
390
391class InternalAddress: public AddressLiteral {
392
393  public:
394
395  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
396
397};
398
399// x86 can do array addressing as a single operation since disp can be an absolute
400// address amd64 can't. We create a class that expresses the concept but does extra
401// magic on amd64 to get the final result
402
403class ArrayAddress VALUE_OBJ_CLASS_SPEC {
404  private:
405
406  AddressLiteral _base;
407  Address        _index;
408
409  public:
410
411  ArrayAddress() {};
412  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
413  AddressLiteral base() { return _base; }
414  Address index() { return _index; }
415
416};
417
418const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
419
420// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
421// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
422// is what you get. The Assembler is generating code into a CodeBuffer.
423
424class Assembler : public AbstractAssembler  {
425  friend class AbstractAssembler; // for the non-virtual hack
426  friend class LIR_Assembler; // as_Address()
427  friend class StubGenerator;
428
429 public:
430  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
431    zero          = 0x4,
432    notZero       = 0x5,
433    equal         = 0x4,
434    notEqual      = 0x5,
435    less          = 0xc,
436    lessEqual     = 0xe,
437    greater       = 0xf,
438    greaterEqual  = 0xd,
439    below         = 0x2,
440    belowEqual    = 0x6,
441    above         = 0x7,
442    aboveEqual    = 0x3,
443    overflow      = 0x0,
444    noOverflow    = 0x1,
445    carrySet      = 0x2,
446    carryClear    = 0x3,
447    negative      = 0x8,
448    positive      = 0x9,
449    parity        = 0xa,
450    noParity      = 0xb
451  };
452
453  enum Prefix {
454    // segment overrides
455    CS_segment = 0x2e,
456    SS_segment = 0x36,
457    DS_segment = 0x3e,
458    ES_segment = 0x26,
459    FS_segment = 0x64,
460    GS_segment = 0x65,
461
462    REX        = 0x40,
463
464    REX_B      = 0x41,
465    REX_X      = 0x42,
466    REX_XB     = 0x43,
467    REX_R      = 0x44,
468    REX_RB     = 0x45,
469    REX_RX     = 0x46,
470    REX_RXB    = 0x47,
471
472    REX_W      = 0x48,
473
474    REX_WB     = 0x49,
475    REX_WX     = 0x4A,
476    REX_WXB    = 0x4B,
477    REX_WR     = 0x4C,
478    REX_WRB    = 0x4D,
479    REX_WRX    = 0x4E,
480    REX_WRXB   = 0x4F
481  };
482
483  enum WhichOperand {
484    // input to locate_operand, and format code for relocations
485    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
486    disp32_operand = 1,          // embedded 32-bit displacement or address
487    call32_operand = 2,          // embedded 32-bit self-relative displacement
488#ifndef _LP64
489    _WhichOperand_limit = 3
490#else
491     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
492    _WhichOperand_limit = 4
493#endif
494  };
495
496
497
498  // NOTE: The general philopsophy of the declarations here is that 64bit versions
499  // of instructions are freely declared without the need for wrapping them an ifdef.
500  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
501  // In the .cpp file the implementations are wrapped so that they are dropped out
502  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
503  // to the size it was prior to merging up the 32bit and 64bit assemblers.
504  //
505  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
506  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
507
508private:
509
510
511  // 64bit prefixes
512  int prefix_and_encode(int reg_enc, bool byteinst = false);
513  int prefixq_and_encode(int reg_enc);
514
515  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
516  int prefixq_and_encode(int dst_enc, int src_enc);
517
518  void prefix(Register reg);
519  void prefix(Address adr);
520  void prefixq(Address adr);
521
522  void prefix(Address adr, Register reg,  bool byteinst = false);
523  void prefixq(Address adr, Register reg);
524
525  void prefix(Address adr, XMMRegister reg);
526
527  void prefetch_prefix(Address src);
528
529  // Helper functions for groups of instructions
530  void emit_arith_b(int op1, int op2, Register dst, int imm8);
531
532  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
533  // only 32bit??
534  void emit_arith(int op1, int op2, Register dst, jobject obj);
535  void emit_arith(int op1, int op2, Register dst, Register src);
536
537  void emit_operand(Register reg,
538                    Register base, Register index, Address::ScaleFactor scale,
539                    int disp,
540                    RelocationHolder const& rspec,
541                    int rip_relative_correction = 0);
542
543  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
544
545  // operands that only take the original 32bit registers
546  void emit_operand32(Register reg, Address adr);
547
548  void emit_operand(XMMRegister reg,
549                    Register base, Register index, Address::ScaleFactor scale,
550                    int disp,
551                    RelocationHolder const& rspec);
552
553  void emit_operand(XMMRegister reg, Address adr);
554
555  void emit_operand(MMXRegister reg, Address adr);
556
557  // workaround gcc (3.2.1-7) bug
558  void emit_operand(Address adr, MMXRegister reg);
559
560
561  // Immediate-to-memory forms
562  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
563
564  void emit_farith(int b1, int b2, int i);
565
566
567 protected:
568  #ifdef ASSERT
569  void check_relocation(RelocationHolder const& rspec, int format);
570  #endif
571
572  inline void emit_long64(jlong x);
573
574  void emit_data(jint data, relocInfo::relocType    rtype, int format);
575  void emit_data(jint data, RelocationHolder const& rspec, int format);
576  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
577  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
578
579
580  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
581
582  // These are all easily abused and hence protected
583
584  // 32BIT ONLY SECTION
585#ifndef _LP64
586  // Make these disappear in 64bit mode since they would never be correct
587  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
588  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
589
590  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
591  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
592
593  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
594#else
595  // 64BIT ONLY SECTION
596  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
597
598  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
599  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
600
601  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
602  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
603#endif // _LP64
604
605  // These are unique in that we are ensured by the caller that the 32bit
606  // relative in these instructions will always be able to reach the potentially
607  // 64bit address described by entry. Since they can take a 64bit address they
608  // don't have the 32 suffix like the other instructions in this class.
609
610  void call_literal(address entry, RelocationHolder const& rspec);
611  void jmp_literal(address entry, RelocationHolder const& rspec);
612
613  // Avoid using directly section
614  // Instructions in this section are actually usable by anyone without danger
615  // of failure but have performance issues that are addressed my enhanced
616  // instructions which will do the proper thing base on the particular cpu.
617  // We protect them because we don't trust you...
618
619  // Don't use next inc() and dec() methods directly. INC & DEC instructions
620  // could cause a partial flag stall since they don't set CF flag.
621  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
622  // which call inc() & dec() or add() & sub() in accordance with
623  // the product flag UseIncDec value.
624
625  void decl(Register dst);
626  void decl(Address dst);
627  void decq(Register dst);
628  void decq(Address dst);
629
630  void incl(Register dst);
631  void incl(Address dst);
632  void incq(Register dst);
633  void incq(Address dst);
634
635  // New cpus require use of movsd and movss to avoid partial register stall
636  // when loading from memory. But for old Opteron use movlpd instead of movsd.
637  // The selection is done in MacroAssembler::movdbl() and movflt().
638
639  // Move Scalar Single-Precision Floating-Point Values
640  void movss(XMMRegister dst, Address src);
641  void movss(XMMRegister dst, XMMRegister src);
642  void movss(Address dst, XMMRegister src);
643
644  // Move Scalar Double-Precision Floating-Point Values
645  void movsd(XMMRegister dst, Address src);
646  void movsd(XMMRegister dst, XMMRegister src);
647  void movsd(Address dst, XMMRegister src);
648  void movlpd(XMMRegister dst, Address src);
649
650  // New cpus require use of movaps and movapd to avoid partial register stall
651  // when moving between registers.
652  void movaps(XMMRegister dst, XMMRegister src);
653  void movapd(XMMRegister dst, XMMRegister src);
654
655  // End avoid using directly
656
657
658  // Instruction prefixes
659  void prefix(Prefix p);
660
661  public:
662
663  // Creation
664  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
665
666  // Decoding
667  static address locate_operand(address inst, WhichOperand which);
668  static address locate_next_instruction(address inst);
669
670  // Utilities
671
672#ifdef _LP64
673 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
674 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
675#else
676 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
677 static bool is_simm32(int32_t x) { return true; }
678#endif // LP64
679
680  // Generic instructions
681  // Does 32bit or 64bit as needed for the platform. In some sense these
682  // belong in macro assembler but there is no need for both varieties to exist
683
684  void lea(Register dst, Address src);
685
686  void mov(Register dst, Register src);
687
688  void pusha();
689  void popa();
690
691  void pushf();
692  void popf();
693
694  void push(int32_t imm32);
695
696  void push(Register src);
697
698  void pop(Register dst);
699
700  // These are dummies to prevent surprise implicit conversions to Register
701  void push(void* v);
702  void pop(void* v);
703
704
705  // These do register sized moves/scans
706  void rep_mov();
707  void rep_set();
708  void repne_scan();
709#ifdef _LP64
710  void repne_scanl();
711#endif
712
713  // Vanilla instructions in lexical order
714
715  void adcl(Register dst, int32_t imm32);
716  void adcl(Register dst, Address src);
717  void adcl(Register dst, Register src);
718
719  void adcq(Register dst, int32_t imm32);
720  void adcq(Register dst, Address src);
721  void adcq(Register dst, Register src);
722
723
724  void addl(Address dst, int32_t imm32);
725  void addl(Address dst, Register src);
726  void addl(Register dst, int32_t imm32);
727  void addl(Register dst, Address src);
728  void addl(Register dst, Register src);
729
730  void addq(Address dst, int32_t imm32);
731  void addq(Address dst, Register src);
732  void addq(Register dst, int32_t imm32);
733  void addq(Register dst, Address src);
734  void addq(Register dst, Register src);
735
736
737  void addr_nop_4();
738  void addr_nop_5();
739  void addr_nop_7();
740  void addr_nop_8();
741
742  // Add Scalar Double-Precision Floating-Point Values
743  void addsd(XMMRegister dst, Address src);
744  void addsd(XMMRegister dst, XMMRegister src);
745
746  // Add Scalar Single-Precision Floating-Point Values
747  void addss(XMMRegister dst, Address src);
748  void addss(XMMRegister dst, XMMRegister src);
749
750  void andl(Register dst, int32_t imm32);
751  void andl(Register dst, Address src);
752  void andl(Register dst, Register src);
753
754  void andq(Register dst, int32_t imm32);
755  void andq(Register dst, Address src);
756  void andq(Register dst, Register src);
757
758
759  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
760  void andpd(XMMRegister dst, Address src);
761  void andpd(XMMRegister dst, XMMRegister src);
762
763  void bsfl(Register dst, Register src);
764  void bsrl(Register dst, Register src);
765
766#ifdef _LP64
767  void bsfq(Register dst, Register src);
768  void bsrq(Register dst, Register src);
769#endif
770
771  void bswapl(Register reg);
772
773  void bswapq(Register reg);
774
775  void call(Label& L, relocInfo::relocType rtype);
776  void call(Register reg);  // push pc; pc <- reg
777  void call(Address adr);   // push pc; pc <- adr
778
779  void cdql();
780
781  void cdqq();
782
783  void cld() { emit_byte(0xfc); }
784
785  void clflush(Address adr);
786
787  void cmovl(Condition cc, Register dst, Register src);
788  void cmovl(Condition cc, Register dst, Address src);
789
790  void cmovq(Condition cc, Register dst, Register src);
791  void cmovq(Condition cc, Register dst, Address src);
792
793
794  void cmpb(Address dst, int imm8);
795
796  void cmpl(Address dst, int32_t imm32);
797
798  void cmpl(Register dst, int32_t imm32);
799  void cmpl(Register dst, Register src);
800  void cmpl(Register dst, Address src);
801
802  void cmpq(Address dst, int32_t imm32);
803  void cmpq(Address dst, Register src);
804
805  void cmpq(Register dst, int32_t imm32);
806  void cmpq(Register dst, Register src);
807  void cmpq(Register dst, Address src);
808
809  // these are dummies used to catch attempting to convert NULL to Register
810  void cmpl(Register dst, void* junk); // dummy
811  void cmpq(Register dst, void* junk); // dummy
812
813  void cmpw(Address dst, int imm16);
814
815  void cmpxchg8 (Address adr);
816
817  void cmpxchgl(Register reg, Address adr);
818
819  void cmpxchgq(Register reg, Address adr);
820
821  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
822  void comisd(XMMRegister dst, Address src);
823
824  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
825  void comiss(XMMRegister dst, Address src);
826
827  // Identify processor type and features
828  void cpuid() {
829    emit_byte(0x0F);
830    emit_byte(0xA2);
831  }
832
833  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
834  void cvtsd2ss(XMMRegister dst, XMMRegister src);
835
836  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
837  void cvtsi2sdl(XMMRegister dst, Register src);
838  void cvtsi2sdq(XMMRegister dst, Register src);
839
840  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
841  void cvtsi2ssl(XMMRegister dst, Register src);
842  void cvtsi2ssq(XMMRegister dst, Register src);
843
844  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
845  void cvtdq2pd(XMMRegister dst, XMMRegister src);
846
847  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
848  void cvtdq2ps(XMMRegister dst, XMMRegister src);
849
850  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
851  void cvtss2sd(XMMRegister dst, XMMRegister src);
852
853  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
854  void cvttsd2sil(Register dst, Address src);
855  void cvttsd2sil(Register dst, XMMRegister src);
856  void cvttsd2siq(Register dst, XMMRegister src);
857
858  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
859  void cvttss2sil(Register dst, XMMRegister src);
860  void cvttss2siq(Register dst, XMMRegister src);
861
862  // Divide Scalar Double-Precision Floating-Point Values
863  void divsd(XMMRegister dst, Address src);
864  void divsd(XMMRegister dst, XMMRegister src);
865
866  // Divide Scalar Single-Precision Floating-Point Values
867  void divss(XMMRegister dst, Address src);
868  void divss(XMMRegister dst, XMMRegister src);
869
870  void emms();
871
872  void fabs();
873
874  void fadd(int i);
875
876  void fadd_d(Address src);
877  void fadd_s(Address src);
878
879  // "Alternate" versions of x87 instructions place result down in FPU
880  // stack instead of on TOS
881
882  void fadda(int i); // "alternate" fadd
883  void faddp(int i = 1);
884
885  void fchs();
886
887  void fcom(int i);
888
889  void fcomp(int i = 1);
890  void fcomp_d(Address src);
891  void fcomp_s(Address src);
892
893  void fcompp();
894
895  void fcos();
896
897  void fdecstp();
898
899  void fdiv(int i);
900  void fdiv_d(Address src);
901  void fdivr_s(Address src);
902  void fdiva(int i);  // "alternate" fdiv
903  void fdivp(int i = 1);
904
905  void fdivr(int i);
906  void fdivr_d(Address src);
907  void fdiv_s(Address src);
908
909  void fdivra(int i); // "alternate" reversed fdiv
910
911  void fdivrp(int i = 1);
912
913  void ffree(int i = 0);
914
915  void fild_d(Address adr);
916  void fild_s(Address adr);
917
918  void fincstp();
919
920  void finit();
921
922  void fist_s (Address adr);
923  void fistp_d(Address adr);
924  void fistp_s(Address adr);
925
926  void fld1();
927
928  void fld_d(Address adr);
929  void fld_s(Address adr);
930  void fld_s(int index);
931  void fld_x(Address adr);  // extended-precision (80-bit) format
932
933  void fldcw(Address src);
934
935  void fldenv(Address src);
936
937  void fldlg2();
938
939  void fldln2();
940
941  void fldz();
942
943  void flog();
944  void flog10();
945
946  void fmul(int i);
947
948  void fmul_d(Address src);
949  void fmul_s(Address src);
950
951  void fmula(int i);  // "alternate" fmul
952
953  void fmulp(int i = 1);
954
955  void fnsave(Address dst);
956
957  void fnstcw(Address src);
958
959  void fnstsw_ax();
960
961  void fprem();
962  void fprem1();
963
964  void frstor(Address src);
965
966  void fsin();
967
968  void fsqrt();
969
970  void fst_d(Address adr);
971  void fst_s(Address adr);
972
973  void fstp_d(Address adr);
974  void fstp_d(int index);
975  void fstp_s(Address adr);
976  void fstp_x(Address adr); // extended-precision (80-bit) format
977
978  void fsub(int i);
979  void fsub_d(Address src);
980  void fsub_s(Address src);
981
982  void fsuba(int i);  // "alternate" fsub
983
984  void fsubp(int i = 1);
985
986  void fsubr(int i);
987  void fsubr_d(Address src);
988  void fsubr_s(Address src);
989
990  void fsubra(int i); // "alternate" reversed fsub
991
992  void fsubrp(int i = 1);
993
994  void ftan();
995
996  void ftst();
997
998  void fucomi(int i = 1);
999  void fucomip(int i = 1);
1000
1001  void fwait();
1002
1003  void fxch(int i = 1);
1004
1005  void fxrstor(Address src);
1006
1007  void fxsave(Address dst);
1008
1009  void fyl2x();
1010
1011  void hlt();
1012
1013  void idivl(Register src);
1014
1015  void idivq(Register src);
1016
1017  void imull(Register dst, Register src);
1018  void imull(Register dst, Register src, int value);
1019
1020  void imulq(Register dst, Register src);
1021  void imulq(Register dst, Register src, int value);
1022
1023
1024  // jcc is the generic conditional branch generator to run-
1025  // time routines, jcc is used for branches to labels. jcc
1026  // takes a branch opcode (cc) and a label (L) and generates
1027  // either a backward branch or a forward branch and links it
1028  // to the label fixup chain. Usage:
1029  //
1030  // Label L;      // unbound label
1031  // jcc(cc, L);   // forward branch to unbound label
1032  // bind(L);      // bind label to the current pc
1033  // jcc(cc, L);   // backward branch to bound label
1034  // bind(L);      // illegal: a label may be bound only once
1035  //
1036  // Note: The same Label can be used for forward and backward branches
1037  // but it may be bound only once.
1038
1039  void jcc(Condition cc, Label& L,
1040           relocInfo::relocType rtype = relocInfo::none);
1041
1042  // Conditional jump to a 8-bit offset to L.
1043  // WARNING: be very careful using this for forward jumps.  If the label is
1044  // not bound within an 8-bit offset of this instruction, a run-time error
1045  // will occur.
1046  void jccb(Condition cc, Label& L);
1047
1048  void jmp(Address entry);    // pc <- entry
1049
1050  // Label operations & relative jumps (PPUM Appendix D)
1051  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1052
1053  void jmp(Register entry); // pc <- entry
1054
1055  // Unconditional 8-bit offset jump to L.
1056  // WARNING: be very careful using this for forward jumps.  If the label is
1057  // not bound within an 8-bit offset of this instruction, a run-time error
1058  // will occur.
1059  void jmpb(Label& L);
1060
1061  void ldmxcsr( Address src );
1062
1063  void leal(Register dst, Address src);
1064
1065  void leaq(Register dst, Address src);
1066
1067  void lfence() {
1068    emit_byte(0x0F);
1069    emit_byte(0xAE);
1070    emit_byte(0xE8);
1071  }
1072
1073  void lock();
1074
1075  void lzcntl(Register dst, Register src);
1076
1077#ifdef _LP64
1078  void lzcntq(Register dst, Register src);
1079#endif
1080
1081  enum Membar_mask_bits {
1082    StoreStore = 1 << 3,
1083    LoadStore  = 1 << 2,
1084    StoreLoad  = 1 << 1,
1085    LoadLoad   = 1 << 0
1086  };
1087
1088  // Serializes memory and blows flags
1089  void membar(Membar_mask_bits order_constraint) {
1090    if (os::is_MP()) {
1091      // We only have to handle StoreLoad
1092      if (order_constraint & StoreLoad) {
1093        // All usable chips support "locked" instructions which suffice
1094        // as barriers, and are much faster than the alternative of
1095        // using cpuid instruction. We use here a locked add [esp],0.
1096        // This is conveniently otherwise a no-op except for blowing
1097        // flags.
1098        // Any change to this code may need to revisit other places in
1099        // the code where this idiom is used, in particular the
1100        // orderAccess code.
1101        lock();
1102        addl(Address(rsp, 0), 0);// Assert the lock# signal here
1103      }
1104    }
1105  }
1106
1107  void mfence();
1108
1109  // Moves
1110
1111  void mov64(Register dst, int64_t imm64);
1112
1113  void movb(Address dst, Register src);
1114  void movb(Address dst, int imm8);
1115  void movb(Register dst, Address src);
1116
1117  void movdl(XMMRegister dst, Register src);
1118  void movdl(Register dst, XMMRegister src);
1119
1120  // Move Double Quadword
1121  void movdq(XMMRegister dst, Register src);
1122  void movdq(Register dst, XMMRegister src);
1123
1124  // Move Aligned Double Quadword
1125  void movdqa(Address     dst, XMMRegister src);
1126  void movdqa(XMMRegister dst, Address src);
1127  void movdqa(XMMRegister dst, XMMRegister src);
1128
1129  // Move Unaligned Double Quadword
1130  void movdqu(Address     dst, XMMRegister src);
1131  void movdqu(XMMRegister dst, Address src);
1132  void movdqu(XMMRegister dst, XMMRegister src);
1133
1134  void movl(Register dst, int32_t imm32);
1135  void movl(Address dst, int32_t imm32);
1136  void movl(Register dst, Register src);
1137  void movl(Register dst, Address src);
1138  void movl(Address dst, Register src);
1139
1140  // These dummies prevent using movl from converting a zero (like NULL) into Register
1141  // by giving the compiler two choices it can't resolve
1142
1143  void movl(Address  dst, void* junk);
1144  void movl(Register dst, void* junk);
1145
1146#ifdef _LP64
1147  void movq(Register dst, Register src);
1148  void movq(Register dst, Address src);
1149  void movq(Address dst, Register src);
1150#endif
1151
1152  void movq(Address     dst, MMXRegister src );
1153  void movq(MMXRegister dst, Address src );
1154
1155#ifdef _LP64
1156  // These dummies prevent using movq from converting a zero (like NULL) into Register
1157  // by giving the compiler two choices it can't resolve
1158
1159  void movq(Address  dst, void* dummy);
1160  void movq(Register dst, void* dummy);
1161#endif
1162
1163  // Move Quadword
1164  void movq(Address     dst, XMMRegister src);
1165  void movq(XMMRegister dst, Address src);
1166
1167  void movsbl(Register dst, Address src);
1168  void movsbl(Register dst, Register src);
1169
1170#ifdef _LP64
1171  void movsbq(Register dst, Address src);
1172  void movsbq(Register dst, Register src);
1173
1174  // Move signed 32bit immediate to 64bit extending sign
1175  void movslq(Address dst, int32_t imm64);
1176  void movslq(Register dst, int32_t imm64);
1177
1178  void movslq(Register dst, Address src);
1179  void movslq(Register dst, Register src);
1180  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1181#endif
1182
1183  void movswl(Register dst, Address src);
1184  void movswl(Register dst, Register src);
1185
1186#ifdef _LP64
1187  void movswq(Register dst, Address src);
1188  void movswq(Register dst, Register src);
1189#endif
1190
1191  void movw(Address dst, int imm16);
1192  void movw(Register dst, Address src);
1193  void movw(Address dst, Register src);
1194
1195  void movzbl(Register dst, Address src);
1196  void movzbl(Register dst, Register src);
1197
1198#ifdef _LP64
1199  void movzbq(Register dst, Address src);
1200  void movzbq(Register dst, Register src);
1201#endif
1202
1203  void movzwl(Register dst, Address src);
1204  void movzwl(Register dst, Register src);
1205
1206#ifdef _LP64
1207  void movzwq(Register dst, Address src);
1208  void movzwq(Register dst, Register src);
1209#endif
1210
1211  void mull(Address src);
1212  void mull(Register src);
1213
1214  // Multiply Scalar Double-Precision Floating-Point Values
1215  void mulsd(XMMRegister dst, Address src);
1216  void mulsd(XMMRegister dst, XMMRegister src);
1217
1218  // Multiply Scalar Single-Precision Floating-Point Values
1219  void mulss(XMMRegister dst, Address src);
1220  void mulss(XMMRegister dst, XMMRegister src);
1221
1222  void negl(Register dst);
1223
1224#ifdef _LP64
1225  void negq(Register dst);
1226#endif
1227
1228  void nop(int i = 1);
1229
1230  void notl(Register dst);
1231
1232#ifdef _LP64
1233  void notq(Register dst);
1234#endif
1235
1236  void orl(Address dst, int32_t imm32);
1237  void orl(Register dst, int32_t imm32);
1238  void orl(Register dst, Address src);
1239  void orl(Register dst, Register src);
1240
1241  void orq(Address dst, int32_t imm32);
1242  void orq(Register dst, int32_t imm32);
1243  void orq(Register dst, Address src);
1244  void orq(Register dst, Register src);
1245
1246  // SSE4.2 string instructions
1247  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1248  void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1249
1250#ifndef _LP64 // no 32bit push/pop on amd64
1251  void popl(Address dst);
1252#endif
1253
1254#ifdef _LP64
1255  void popq(Address dst);
1256#endif
1257
1258  void popcntl(Register dst, Address src);
1259  void popcntl(Register dst, Register src);
1260
1261#ifdef _LP64
1262  void popcntq(Register dst, Address src);
1263  void popcntq(Register dst, Register src);
1264#endif
1265
1266  // Prefetches (SSE, SSE2, 3DNOW only)
1267
1268  void prefetchnta(Address src);
1269  void prefetchr(Address src);
1270  void prefetcht0(Address src);
1271  void prefetcht1(Address src);
1272  void prefetcht2(Address src);
1273  void prefetchw(Address src);
1274
1275  // Shuffle Packed Doublewords
1276  void pshufd(XMMRegister dst, XMMRegister src, int mode);
1277  void pshufd(XMMRegister dst, Address src,     int mode);
1278
1279  // Shuffle Packed Low Words
1280  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1281  void pshuflw(XMMRegister dst, Address src,     int mode);
1282
1283  // Shift Right Logical Quadword Immediate
1284  void psrlq(XMMRegister dst, int shift);
1285
1286  // Logical Compare Double Quadword
1287  void ptest(XMMRegister dst, XMMRegister src);
1288  void ptest(XMMRegister dst, Address src);
1289
1290  // Interleave Low Bytes
1291  void punpcklbw(XMMRegister dst, XMMRegister src);
1292
1293#ifndef _LP64 // no 32bit push/pop on amd64
1294  void pushl(Address src);
1295#endif
1296
1297  void pushq(Address src);
1298
1299  // Xor Packed Byte Integer Values
1300  void pxor(XMMRegister dst, Address src);
1301  void pxor(XMMRegister dst, XMMRegister src);
1302
1303  void rcll(Register dst, int imm8);
1304
1305  void rclq(Register dst, int imm8);
1306
1307  void ret(int imm16);
1308
1309  void sahf();
1310
1311  void sarl(Register dst, int imm8);
1312  void sarl(Register dst);
1313
1314  void sarq(Register dst, int imm8);
1315  void sarq(Register dst);
1316
1317  void sbbl(Address dst, int32_t imm32);
1318  void sbbl(Register dst, int32_t imm32);
1319  void sbbl(Register dst, Address src);
1320  void sbbl(Register dst, Register src);
1321
1322  void sbbq(Address dst, int32_t imm32);
1323  void sbbq(Register dst, int32_t imm32);
1324  void sbbq(Register dst, Address src);
1325  void sbbq(Register dst, Register src);
1326
1327  void setb(Condition cc, Register dst);
1328
1329  void shldl(Register dst, Register src);
1330
1331  void shll(Register dst, int imm8);
1332  void shll(Register dst);
1333
1334  void shlq(Register dst, int imm8);
1335  void shlq(Register dst);
1336
1337  void shrdl(Register dst, Register src);
1338
1339  void shrl(Register dst, int imm8);
1340  void shrl(Register dst);
1341
1342  void shrq(Register dst, int imm8);
1343  void shrq(Register dst);
1344
1345  void smovl(); // QQQ generic?
1346
1347  // Compute Square Root of Scalar Double-Precision Floating-Point Value
1348  void sqrtsd(XMMRegister dst, Address src);
1349  void sqrtsd(XMMRegister dst, XMMRegister src);
1350
1351  void std() { emit_byte(0xfd); }
1352
1353  void stmxcsr( Address dst );
1354
1355  void subl(Address dst, int32_t imm32);
1356  void subl(Address dst, Register src);
1357  void subl(Register dst, int32_t imm32);
1358  void subl(Register dst, Address src);
1359  void subl(Register dst, Register src);
1360
1361  void subq(Address dst, int32_t imm32);
1362  void subq(Address dst, Register src);
1363  void subq(Register dst, int32_t imm32);
1364  void subq(Register dst, Address src);
1365  void subq(Register dst, Register src);
1366
1367
1368  // Subtract Scalar Double-Precision Floating-Point Values
1369  void subsd(XMMRegister dst, Address src);
1370  void subsd(XMMRegister dst, XMMRegister src);
1371
1372  // Subtract Scalar Single-Precision Floating-Point Values
1373  void subss(XMMRegister dst, Address src);
1374  void subss(XMMRegister dst, XMMRegister src);
1375
1376  void testb(Register dst, int imm8);
1377
1378  void testl(Register dst, int32_t imm32);
1379  void testl(Register dst, Register src);
1380  void testl(Register dst, Address src);
1381
1382  void testq(Register dst, int32_t imm32);
1383  void testq(Register dst, Register src);
1384
1385
1386  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1387  void ucomisd(XMMRegister dst, Address src);
1388  void ucomisd(XMMRegister dst, XMMRegister src);
1389
1390  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1391  void ucomiss(XMMRegister dst, Address src);
1392  void ucomiss(XMMRegister dst, XMMRegister src);
1393
1394  void xaddl(Address dst, Register src);
1395
1396  void xaddq(Address dst, Register src);
1397
1398  void xchgl(Register reg, Address adr);
1399  void xchgl(Register dst, Register src);
1400
1401  void xchgq(Register reg, Address adr);
1402  void xchgq(Register dst, Register src);
1403
1404  void xorl(Register dst, int32_t imm32);
1405  void xorl(Register dst, Address src);
1406  void xorl(Register dst, Register src);
1407
1408  void xorq(Register dst, Address src);
1409  void xorq(Register dst, Register src);
1410
1411  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1412  void xorpd(XMMRegister dst, Address src);
1413  void xorpd(XMMRegister dst, XMMRegister src);
1414
1415  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1416  void xorps(XMMRegister dst, Address src);
1417  void xorps(XMMRegister dst, XMMRegister src);
1418
1419  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1420};
1421
1422
1423// MacroAssembler extends Assembler by frequently used macros.
1424//
1425// Instructions for which a 'better' code sequence exists depending
1426// on arguments should also go in here.
1427
1428class MacroAssembler: public Assembler {
1429  friend class LIR_Assembler;
1430  friend class Runtime1;      // as_Address()
1431 protected:
1432
1433  Address as_Address(AddressLiteral adr);
1434  Address as_Address(ArrayAddress adr);
1435
1436  // Support for VM calls
1437  //
1438  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1439  // may customize this version by overriding it for its purposes (e.g., to save/restore
1440  // additional registers when doing a VM call).
1441#ifdef CC_INTERP
1442  // c++ interpreter never wants to use interp_masm version of call_VM
1443  #define VIRTUAL
1444#else
1445  #define VIRTUAL virtual
1446#endif
1447
1448  VIRTUAL void call_VM_leaf_base(
1449    address entry_point,               // the entry point
1450    int     number_of_arguments        // the number of arguments to pop after the call
1451  );
1452
1453  // This is the base routine called by the different versions of call_VM. The interpreter
1454  // may customize this version by overriding it for its purposes (e.g., to save/restore
1455  // additional registers when doing a VM call).
1456  //
1457  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1458  // returns the register which contains the thread upon return. If a thread register has been
1459  // specified, the return value will correspond to that register. If no last_java_sp is specified
1460  // (noreg) than rsp will be used instead.
1461  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1462    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1463    Register java_thread,              // the thread if computed before     ; use noreg otherwise
1464    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1465    address  entry_point,              // the entry point
1466    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1467    bool     check_exceptions          // whether to check for pending exceptions after return
1468  );
1469
1470  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1471  // The implementation is only non-empty for the InterpreterMacroAssembler,
1472  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1473  virtual void check_and_handle_popframe(Register java_thread);
1474  virtual void check_and_handle_earlyret(Register java_thread);
1475
1476  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1477
1478  // helpers for FPU flag access
1479  // tmp is a temporary register, if none is available use noreg
1480  void save_rax   (Register tmp);
1481  void restore_rax(Register tmp);
1482
1483 public:
1484  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1485
1486  // Support for NULL-checks
1487  //
1488  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1489  // If the accessed location is M[reg + offset] and the offset is known, provide the
1490  // offset. No explicit code generation is needed if the offset is within a certain
1491  // range (0 <= offset <= page_size).
1492
1493  void null_check(Register reg, int offset = -1);
1494  static bool needs_explicit_null_check(intptr_t offset);
1495
1496  // Required platform-specific helpers for Label::patch_instructions.
1497  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1498  void pd_patch_instruction(address branch, address target);
1499#ifndef PRODUCT
1500  static void pd_print_patched_instruction(address branch);
1501#endif
1502
1503  // The following 4 methods return the offset of the appropriate move instruction
1504
1505  // Support for fast byte/short loading with zero extension (depending on particular CPU)
1506  int load_unsigned_byte(Register dst, Address src);
1507  int load_unsigned_short(Register dst, Address src);
1508
1509  // Support for fast byte/short loading with sign extension (depending on particular CPU)
1510  int load_signed_byte(Register dst, Address src);
1511  int load_signed_short(Register dst, Address src);
1512
1513  // Support for sign-extension (hi:lo = extend_sign(lo))
1514  void extend_sign(Register hi, Register lo);
1515
1516  // Loading values by size and signed-ness
1517  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
1518
1519  // Support for inc/dec with optimal instruction selection depending on value
1520
1521  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1522  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1523
1524  void decrementl(Address dst, int value = 1);
1525  void decrementl(Register reg, int value = 1);
1526
1527  void decrementq(Register reg, int value = 1);
1528  void decrementq(Address dst, int value = 1);
1529
1530  void incrementl(Address dst, int value = 1);
1531  void incrementl(Register reg, int value = 1);
1532
1533  void incrementq(Register reg, int value = 1);
1534  void incrementq(Address dst, int value = 1);
1535
1536
1537  // Support optimal SSE move instructions.
1538  void movflt(XMMRegister dst, XMMRegister src) {
1539    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1540    else                       { movss (dst, src); return; }
1541  }
1542  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1543  void movflt(XMMRegister dst, AddressLiteral src);
1544  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1545
1546  void movdbl(XMMRegister dst, XMMRegister src) {
1547    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1548    else                       { movsd (dst, src); return; }
1549  }
1550
1551  void movdbl(XMMRegister dst, AddressLiteral src);
1552
1553  void movdbl(XMMRegister dst, Address src) {
1554    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1555    else                         { movlpd(dst, src); return; }
1556  }
1557  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1558
1559  void incrementl(AddressLiteral dst);
1560  void incrementl(ArrayAddress dst);
1561
1562  // Alignment
1563  void align(int modulus);
1564
1565  // Misc
1566  void fat_nop(); // 5 byte nop
1567
1568  // Stack frame creation/removal
1569  void enter();
1570  void leave();
1571
1572  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1573  // The pointer will be loaded into the thread register.
1574  void get_thread(Register thread);
1575
1576
1577  // Support for VM calls
1578  //
1579  // It is imperative that all calls into the VM are handled via the call_VM macros.
1580  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1581  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1582
1583
1584  void call_VM(Register oop_result,
1585               address entry_point,
1586               bool check_exceptions = true);
1587  void call_VM(Register oop_result,
1588               address entry_point,
1589               Register arg_1,
1590               bool check_exceptions = true);
1591  void call_VM(Register oop_result,
1592               address entry_point,
1593               Register arg_1, Register arg_2,
1594               bool check_exceptions = true);
1595  void call_VM(Register oop_result,
1596               address entry_point,
1597               Register arg_1, Register arg_2, Register arg_3,
1598               bool check_exceptions = true);
1599
1600  // Overloadings with last_Java_sp
1601  void call_VM(Register oop_result,
1602               Register last_java_sp,
1603               address entry_point,
1604               int number_of_arguments = 0,
1605               bool check_exceptions = true);
1606  void call_VM(Register oop_result,
1607               Register last_java_sp,
1608               address entry_point,
1609               Register arg_1, bool
1610               check_exceptions = true);
1611  void call_VM(Register oop_result,
1612               Register last_java_sp,
1613               address entry_point,
1614               Register arg_1, Register arg_2,
1615               bool check_exceptions = true);
1616  void call_VM(Register oop_result,
1617               Register last_java_sp,
1618               address entry_point,
1619               Register arg_1, Register arg_2, Register arg_3,
1620               bool check_exceptions = true);
1621
1622  void call_VM_leaf(address entry_point,
1623                    int number_of_arguments = 0);
1624  void call_VM_leaf(address entry_point,
1625                    Register arg_1);
1626  void call_VM_leaf(address entry_point,
1627                    Register arg_1, Register arg_2);
1628  void call_VM_leaf(address entry_point,
1629                    Register arg_1, Register arg_2, Register arg_3);
1630
1631  // last Java Frame (fills frame anchor)
1632  void set_last_Java_frame(Register thread,
1633                           Register last_java_sp,
1634                           Register last_java_fp,
1635                           address last_java_pc);
1636
1637  // thread in the default location (r15_thread on 64bit)
1638  void set_last_Java_frame(Register last_java_sp,
1639                           Register last_java_fp,
1640                           address last_java_pc);
1641
1642  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1643
1644  // thread in the default location (r15_thread on 64bit)
1645  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1646
1647  // Stores
1648  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1649  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1650
1651  void g1_write_barrier_pre(Register obj,
1652#ifndef _LP64
1653                            Register thread,
1654#endif
1655                            Register tmp,
1656                            Register tmp2,
1657                            bool     tosca_live);
1658  void g1_write_barrier_post(Register store_addr,
1659                             Register new_val,
1660#ifndef _LP64
1661                             Register thread,
1662#endif
1663                             Register tmp,
1664                             Register tmp2);
1665
1666
1667  // split store_check(Register obj) to enhance instruction interleaving
1668  void store_check_part_1(Register obj);
1669  void store_check_part_2(Register obj);
1670
1671  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1672  void c2bool(Register x);
1673
1674  // C++ bool manipulation
1675
1676  void movbool(Register dst, Address src);
1677  void movbool(Address dst, bool boolconst);
1678  void movbool(Address dst, Register src);
1679  void testbool(Register dst);
1680
1681  // oop manipulations
1682  void load_klass(Register dst, Register src);
1683  void store_klass(Register dst, Register src);
1684
1685  void load_prototype_header(Register dst, Register src);
1686
1687#ifdef _LP64
1688  void store_klass_gap(Register dst, Register src);
1689
1690  void load_heap_oop(Register dst, Address src);
1691  void store_heap_oop(Address dst, Register src);
1692
1693  // This dummy is to prevent a call to store_heap_oop from
1694  // converting a zero (like NULL) into a Register by giving
1695  // the compiler two choices it can't resolve
1696
1697  void store_heap_oop(Address dst, void* dummy);
1698
1699  // Used for storing NULL. All other oop constants should be
1700  // stored using routines that take a jobject.
1701  void store_heap_oop_null(Address dst);
1702
1703  void encode_heap_oop(Register r);
1704  void decode_heap_oop(Register r);
1705  void encode_heap_oop_not_null(Register r);
1706  void decode_heap_oop_not_null(Register r);
1707  void encode_heap_oop_not_null(Register dst, Register src);
1708  void decode_heap_oop_not_null(Register dst, Register src);
1709
1710  void set_narrow_oop(Register dst, jobject obj);
1711  void set_narrow_oop(Address dst, jobject obj);
1712  void cmp_narrow_oop(Register dst, jobject obj);
1713  void cmp_narrow_oop(Address dst, jobject obj);
1714
1715  // if heap base register is used - reinit it with the correct value
1716  void reinit_heapbase();
1717#endif // _LP64
1718
1719  // Int division/remainder for Java
1720  // (as idivl, but checks for special case as described in JVM spec.)
1721  // returns idivl instruction offset for implicit exception handling
1722  int corrected_idivl(Register reg);
1723
1724  // Long division/remainder for Java
1725  // (as idivq, but checks for special case as described in JVM spec.)
1726  // returns idivq instruction offset for implicit exception handling
1727  int corrected_idivq(Register reg);
1728
1729  void int3();
1730
1731  // Long operation macros for a 32bit cpu
1732  // Long negation for Java
1733  void lneg(Register hi, Register lo);
1734
1735  // Long multiplication for Java
1736  // (destroys contents of eax, ebx, ecx and edx)
1737  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1738
1739  // Long shifts for Java
1740  // (semantics as described in JVM spec.)
1741  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1742  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1743
1744  // Long compare for Java
1745  // (semantics as described in JVM spec.)
1746  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1747
1748
1749  // misc
1750
1751  // Sign extension
1752  void sign_extend_short(Register reg);
1753  void sign_extend_byte(Register reg);
1754
1755  // Division by power of 2, rounding towards 0
1756  void division_with_shift(Register reg, int shift_value);
1757
1758  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1759  //
1760  // CF (corresponds to C0) if x < y
1761  // PF (corresponds to C2) if unordered
1762  // ZF (corresponds to C3) if x = y
1763  //
1764  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1765  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1766  void fcmp(Register tmp);
1767  // Variant of the above which allows y to be further down the stack
1768  // and which only pops x and y if specified. If pop_right is
1769  // specified then pop_left must also be specified.
1770  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1771
1772  // Floating-point comparison for Java
1773  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1774  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1775  // (semantics as described in JVM spec.)
1776  void fcmp2int(Register dst, bool unordered_is_less);
1777  // Variant of the above which allows y to be further down the stack
1778  // and which only pops x and y if specified. If pop_right is
1779  // specified then pop_left must also be specified.
1780  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1781
1782  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1783  // tmp is a temporary register, if none is available use noreg
1784  void fremr(Register tmp);
1785
1786
1787  // same as fcmp2int, but using SSE2
1788  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1789  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1790
1791  // Inlined sin/cos generator for Java; must not use CPU instruction
1792  // directly on Intel as it does not have high enough precision
1793  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1794  // number of FPU stack slots in use; all but the topmost will
1795  // require saving if a slow case is necessary. Assumes argument is
1796  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1797  // this code.
1798  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1799
1800  // branch to L if FPU flag C2 is set/not set
1801  // tmp is a temporary register, if none is available use noreg
1802  void jC2 (Register tmp, Label& L);
1803  void jnC2(Register tmp, Label& L);
1804
1805  // Pop ST (ffree & fincstp combined)
1806  void fpop();
1807
1808  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1809  void push_fTOS();
1810
1811  // pops double TOS element from CPU stack and pushes on FPU stack
1812  void pop_fTOS();
1813
1814  void empty_FPU_stack();
1815
1816  void push_IU_state();
1817  void pop_IU_state();
1818
1819  void push_FPU_state();
1820  void pop_FPU_state();
1821
1822  void push_CPU_state();
1823  void pop_CPU_state();
1824
1825  // Round up to a power of two
1826  void round_to(Register reg, int modulus);
1827
1828  // Callee saved registers handling
1829  void push_callee_saved_registers();
1830  void pop_callee_saved_registers();
1831
1832  // allocation
1833  void eden_allocate(
1834    Register obj,                      // result: pointer to object after successful allocation
1835    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1836    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1837    Register t1,                       // temp register
1838    Label&   slow_case                 // continuation point if fast allocation fails
1839  );
1840  void tlab_allocate(
1841    Register obj,                      // result: pointer to object after successful allocation
1842    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1843    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1844    Register t1,                       // temp register
1845    Register t2,                       // temp register
1846    Label&   slow_case                 // continuation point if fast allocation fails
1847  );
1848  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1849
1850  // interface method calling
1851  void lookup_interface_method(Register recv_klass,
1852                               Register intf_klass,
1853                               RegisterOrConstant itable_index,
1854                               Register method_result,
1855                               Register scan_temp,
1856                               Label& no_such_interface);
1857
1858  // Test sub_klass against super_klass, with fast and slow paths.
1859
1860  // The fast path produces a tri-state answer: yes / no / maybe-slow.
1861  // One of the three labels can be NULL, meaning take the fall-through.
1862  // If super_check_offset is -1, the value is loaded up from super_klass.
1863  // No registers are killed, except temp_reg.
1864  void check_klass_subtype_fast_path(Register sub_klass,
1865                                     Register super_klass,
1866                                     Register temp_reg,
1867                                     Label* L_success,
1868                                     Label* L_failure,
1869                                     Label* L_slow_path,
1870                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1871
1872  // The rest of the type check; must be wired to a corresponding fast path.
1873  // It does not repeat the fast path logic, so don't use it standalone.
1874  // The temp_reg and temp2_reg can be noreg, if no temps are available.
1875  // Updates the sub's secondary super cache as necessary.
1876  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1877  void check_klass_subtype_slow_path(Register sub_klass,
1878                                     Register super_klass,
1879                                     Register temp_reg,
1880                                     Register temp2_reg,
1881                                     Label* L_success,
1882                                     Label* L_failure,
1883                                     bool set_cond_codes = false);
1884
1885  // Simplified, combined version, good for typical uses.
1886  // Falls through on failure.
1887  void check_klass_subtype(Register sub_klass,
1888                           Register super_klass,
1889                           Register temp_reg,
1890                           Label& L_success);
1891
1892  // method handles (JSR 292)
1893  void check_method_handle_type(Register mtype_reg, Register mh_reg,
1894                                Register temp_reg,
1895                                Label& wrong_method_type);
1896  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1897                                  Register temp_reg);
1898  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1899  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1900
1901
1902  //----
1903  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1904
1905  // Debugging
1906
1907  // only if +VerifyOops
1908  void verify_oop(Register reg, const char* s = "broken oop");
1909  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1910
1911  // only if +VerifyFPU
1912  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1913
1914  // prints msg, dumps registers and stops execution
1915  void stop(const char* msg);
1916
1917  // prints msg and continues
1918  void warn(const char* msg);
1919
1920  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1921  static void debug64(char* msg, int64_t pc, int64_t regs[]);
1922
1923  void os_breakpoint();
1924
1925  void untested()                                { stop("untested"); }
1926
1927  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
1928
1929  void should_not_reach_here()                   { stop("should not reach here"); }
1930
1931  void print_CPU_state();
1932
1933  // Stack overflow checking
1934  void bang_stack_with_offset(int offset) {
1935    // stack grows down, caller passes positive offset
1936    assert(offset > 0, "must bang with negative offset");
1937    movl(Address(rsp, (-offset)), rax);
1938  }
1939
1940  // Writes to stack successive pages until offset reached to check for
1941  // stack overflow + shadow pages.  Also, clobbers tmp
1942  void bang_stack_size(Register size, Register tmp);
1943
1944  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1945                                                Register tmp,
1946                                                int offset);
1947
1948  // Support for serializing memory accesses between threads
1949  void serialize_memory(Register thread, Register tmp);
1950
1951  void verify_tlab();
1952
1953  // Biased locking support
1954  // lock_reg and obj_reg must be loaded up with the appropriate values.
1955  // swap_reg must be rax, and is killed.
1956  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1957  // be killed; if not supplied, push/pop will be used internally to
1958  // allocate a temporary (inefficient, avoid if possible).
1959  // Optional slow case is for implementations (interpreter and C1) which branch to
1960  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1961  // Returns offset of first potentially-faulting instruction for null
1962  // check info (currently consumed only by C1). If
1963  // swap_reg_contains_mark is true then returns -1 as it is assumed
1964  // the calling code has already passed any potential faults.
1965  int biased_locking_enter(Register lock_reg, Register obj_reg,
1966                           Register swap_reg, Register tmp_reg,
1967                           bool swap_reg_contains_mark,
1968                           Label& done, Label* slow_case = NULL,
1969                           BiasedLockingCounters* counters = NULL);
1970  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1971
1972
1973  Condition negate_condition(Condition cond);
1974
1975  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1976  // operands. In general the names are modified to avoid hiding the instruction in Assembler
1977  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1978  // here in MacroAssembler. The major exception to this rule is call
1979
1980  // Arithmetics
1981
1982
1983  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1984  void addptr(Address dst, Register src);
1985
1986  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1987  void addptr(Register dst, int32_t src);
1988  void addptr(Register dst, Register src);
1989
1990  void andptr(Register dst, int32_t src);
1991  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
1992
1993  void cmp8(AddressLiteral src1, int imm);
1994
1995  // renamed to drag out the casting of address to int32_t/intptr_t
1996  void cmp32(Register src1, int32_t imm);
1997
1998  void cmp32(AddressLiteral src1, int32_t imm);
1999  // compare reg - mem, or reg - &mem
2000  void cmp32(Register src1, AddressLiteral src2);
2001
2002  void cmp32(Register src1, Address src2);
2003
2004#ifndef _LP64
2005  void cmpoop(Address dst, jobject obj);
2006  void cmpoop(Register dst, jobject obj);
2007#endif // _LP64
2008
2009  // NOTE src2 must be the lval. This is NOT an mem-mem compare
2010  void cmpptr(Address src1, AddressLiteral src2);
2011
2012  void cmpptr(Register src1, AddressLiteral src2);
2013
2014  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2015  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2016  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2017
2018  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2019  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2020
2021  // cmp64 to avoild hiding cmpq
2022  void cmp64(Register src1, AddressLiteral src);
2023
2024  void cmpxchgptr(Register reg, Address adr);
2025
2026  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2027
2028
2029  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2030
2031
2032  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2033
2034  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2035
2036  void shlptr(Register dst, int32_t shift);
2037  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2038
2039  void shrptr(Register dst, int32_t shift);
2040  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2041
2042  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2043  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2044
2045  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2046
2047  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2048  void subptr(Register dst, int32_t src);
2049  void subptr(Register dst, Register src);
2050
2051
2052  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2053  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2054
2055  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2056  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2057
2058  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2059
2060
2061
2062  // Helper functions for statistics gathering.
2063  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2064  void cond_inc32(Condition cond, AddressLiteral counter_addr);
2065  // Unconditional atomic increment.
2066  void atomic_incl(AddressLiteral counter_addr);
2067
2068  void lea(Register dst, AddressLiteral adr);
2069  void lea(Address dst, AddressLiteral adr);
2070  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2071
2072  void leal32(Register dst, Address src) { leal(dst, src); }
2073
2074  void test32(Register src1, AddressLiteral src2);
2075
2076  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2077  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2078  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2079
2080  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2081  void testptr(Register src1, Register src2);
2082
2083  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2084  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2085
2086  // Calls
2087
2088  void call(Label& L, relocInfo::relocType rtype);
2089  void call(Register entry);
2090
2091  // NOTE: this call tranfers to the effective address of entry NOT
2092  // the address contained by entry. This is because this is more natural
2093  // for jumps/calls.
2094  void call(AddressLiteral entry);
2095
2096  // Jumps
2097
2098  // NOTE: these jumps tranfer to the effective address of dst NOT
2099  // the address contained by dst. This is because this is more natural
2100  // for jumps/calls.
2101  void jump(AddressLiteral dst);
2102  void jump_cc(Condition cc, AddressLiteral dst);
2103
2104  // 32bit can do a case table jump in one instruction but we no longer allow the base
2105  // to be installed in the Address class. This jump will tranfers to the address
2106  // contained in the location described by entry (not the address of entry)
2107  void jump(ArrayAddress entry);
2108
2109  // Floating
2110
2111  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2112  void andpd(XMMRegister dst, AddressLiteral src);
2113
2114  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2115  void comiss(XMMRegister dst, AddressLiteral src);
2116
2117  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2118  void comisd(XMMRegister dst, AddressLiteral src);
2119
2120  void fldcw(Address src) { Assembler::fldcw(src); }
2121  void fldcw(AddressLiteral src);
2122
2123  void fld_s(int index)   { Assembler::fld_s(index); }
2124  void fld_s(Address src) { Assembler::fld_s(src); }
2125  void fld_s(AddressLiteral src);
2126
2127  void fld_d(Address src) { Assembler::fld_d(src); }
2128  void fld_d(AddressLiteral src);
2129
2130  void fld_x(Address src) { Assembler::fld_x(src); }
2131  void fld_x(AddressLiteral src);
2132
2133  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2134  void ldmxcsr(AddressLiteral src);
2135
2136private:
2137  // these are private because users should be doing movflt/movdbl
2138
2139  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2140  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2141  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2142  void movss(XMMRegister dst, AddressLiteral src);
2143
2144  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2145  void movlpd(XMMRegister dst, AddressLiteral src);
2146
2147public:
2148
2149  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2150  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2151  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2152  void movsd(XMMRegister dst, AddressLiteral src);
2153
2154  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2155  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2156  void ucomiss(XMMRegister dst, AddressLiteral src);
2157
2158  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2159  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2160  void ucomisd(XMMRegister dst, AddressLiteral src);
2161
2162  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2163  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2164  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2165  void xorpd(XMMRegister dst, AddressLiteral src);
2166
2167  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2168  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2169  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2170  void xorps(XMMRegister dst, AddressLiteral src);
2171
2172  // Data
2173
2174  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2175
2176  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2177  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2178
2179  void movoop(Register dst, jobject obj);
2180  void movoop(Address dst, jobject obj);
2181
2182  void movptr(ArrayAddress dst, Register src);
2183  // can this do an lea?
2184  void movptr(Register dst, ArrayAddress src);
2185
2186  void movptr(Register dst, Address src);
2187
2188  void movptr(Register dst, AddressLiteral src);
2189
2190  void movptr(Register dst, intptr_t src);
2191  void movptr(Register dst, Register src);
2192  void movptr(Address dst, intptr_t src);
2193
2194  void movptr(Address dst, Register src);
2195
2196#ifdef _LP64
2197  // Generally the next two are only used for moving NULL
2198  // Although there are situations in initializing the mark word where
2199  // they could be used. They are dangerous.
2200
2201  // They only exist on LP64 so that int32_t and intptr_t are not the same
2202  // and we have ambiguous declarations.
2203
2204  void movptr(Address dst, int32_t imm32);
2205  void movptr(Register dst, int32_t imm32);
2206#endif // _LP64
2207
2208  // to avoid hiding movl
2209  void mov32(AddressLiteral dst, Register src);
2210  void mov32(Register dst, AddressLiteral src);
2211
2212  // to avoid hiding movb
2213  void movbyte(ArrayAddress dst, int src);
2214
2215  // Can push value or effective address
2216  void pushptr(AddressLiteral src);
2217
2218  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2219  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2220
2221  void pushoop(jobject obj);
2222
2223  // sign extend as need a l to ptr sized element
2224  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2225  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2226
2227  // IndexOf strings.
2228  void string_indexof(Register str1, Register str2,
2229                      Register cnt1, Register cnt2, Register result,
2230                      XMMRegister vec, Register tmp);
2231
2232  // Compare strings.
2233  void string_compare(Register str1, Register str2,
2234                      Register cnt1, Register cnt2, Register result,
2235                      XMMRegister vec1, XMMRegister vec2);
2236
2237  // Compare char[] arrays.
2238  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2239                          Register limit, Register result, Register chr,
2240                          XMMRegister vec1, XMMRegister vec2);
2241
2242#undef VIRTUAL
2243
2244};
2245
2246/**
2247 * class SkipIfEqual:
2248 *
2249 * Instantiating this class will result in assembly code being output that will
2250 * jump around any code emitted between the creation of the instance and it's
2251 * automatic destruction at the end of a scope block, depending on the value of
2252 * the flag passed to the constructor, which will be checked at run-time.
2253 */
2254class SkipIfEqual {
2255 private:
2256  MacroAssembler* _masm;
2257  Label _label;
2258
2259 public:
2260   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2261   ~SkipIfEqual();
2262};
2263
2264#ifdef ASSERT
2265inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2266#endif
2267