1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "interpreter/interpreterRuntime.hpp"
28#include "interpreter/interp_masm.hpp"
29#include "interpreter/templateTable.hpp"
30#include "memory/universe.inline.hpp"
31#include "oops/methodData.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "runtime/synchronizer.hpp"
38#include "utilities/macros.hpp"
39
40#define __ _masm->
41
42// Misc helpers
43
44// Do an oop store like *(base + index + offset) = val
45// index can be noreg,
46static void do_oop_store(InterpreterMacroAssembler* _masm,
47                         Register base,
48                         Register index,
49                         int offset,
50                         Register val,
51                         Register tmp,
52                         BarrierSet::Name barrier,
53                         bool precise) {
54  assert(tmp != val && tmp != base && tmp != index, "register collision");
55  assert(index == noreg || offset == 0, "only one offset");
56  switch (barrier) {
57#if INCLUDE_ALL_GCS
58    case BarrierSet::G1SATBCTLogging:
59      {
60        // Load and record the previous value.
61        __ g1_write_barrier_pre(base, index, offset,
62                                noreg /* pre_val */,
63                                tmp, true /*preserve_o_regs*/);
64
65        // G1 barrier needs uncompressed oop for region cross check.
66        Register new_val = val;
67        if (UseCompressedOops && val != G0) {
68          new_val = tmp;
69          __ mov(val, new_val);
70        }
71
72        if (index == noreg ) {
73          assert(Assembler::is_simm13(offset), "fix this code");
74          __ store_heap_oop(val, base, offset);
75        } else {
76          __ store_heap_oop(val, base, index);
77        }
78
79        // No need for post barrier if storing NULL
80        if (val != G0) {
81          if (precise) {
82            if (index == noreg) {
83              __ add(base, offset, base);
84            } else {
85              __ add(base, index, base);
86            }
87          }
88          __ g1_write_barrier_post(base, new_val, tmp);
89        }
90      }
91      break;
92#endif // INCLUDE_ALL_GCS
93    case BarrierSet::CardTableForRS:
94    case BarrierSet::CardTableExtension:
95      {
96        if (index == noreg ) {
97          assert(Assembler::is_simm13(offset), "fix this code");
98          __ store_heap_oop(val, base, offset);
99        } else {
100          __ store_heap_oop(val, base, index);
101        }
102        // No need for post barrier if storing NULL
103        if (val != G0) {
104          if (precise) {
105            if (index == noreg) {
106              __ add(base, offset, base);
107            } else {
108              __ add(base, index, base);
109            }
110          }
111          __ card_write_barrier_post(base, val, tmp);
112        }
113      }
114      break;
115    case BarrierSet::ModRef:
116      ShouldNotReachHere();
117      break;
118    default      :
119      ShouldNotReachHere();
120
121  }
122}
123
124
125//----------------------------------------------------------------------------------------------------
126// Platform-dependent initialization
127
128void TemplateTable::pd_initialize() {
129  // (none)
130}
131
132
133//----------------------------------------------------------------------------------------------------
134// Condition conversion
135Assembler::Condition ccNot(TemplateTable::Condition cc) {
136  switch (cc) {
137    case TemplateTable::equal        : return Assembler::notEqual;
138    case TemplateTable::not_equal    : return Assembler::equal;
139    case TemplateTable::less         : return Assembler::greaterEqual;
140    case TemplateTable::less_equal   : return Assembler::greater;
141    case TemplateTable::greater      : return Assembler::lessEqual;
142    case TemplateTable::greater_equal: return Assembler::less;
143  }
144  ShouldNotReachHere();
145  return Assembler::zero;
146}
147
148//----------------------------------------------------------------------------------------------------
149// Miscelaneous helper routines
150
151
152Address TemplateTable::at_bcp(int offset) {
153  assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
154  return Address(Lbcp, offset);
155}
156
157
158void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
159                                   Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
160                                   int byte_no) {
161  // With sharing on, may need to test Method* flag.
162  if (!RewriteBytecodes)  return;
163  Label L_patch_done;
164
165  switch (bc) {
166  case Bytecodes::_fast_aputfield:
167  case Bytecodes::_fast_bputfield:
168  case Bytecodes::_fast_zputfield:
169  case Bytecodes::_fast_cputfield:
170  case Bytecodes::_fast_dputfield:
171  case Bytecodes::_fast_fputfield:
172  case Bytecodes::_fast_iputfield:
173  case Bytecodes::_fast_lputfield:
174  case Bytecodes::_fast_sputfield:
175    {
176      // We skip bytecode quickening for putfield instructions when
177      // the put_code written to the constant pool cache is zero.
178      // This is required so that every execution of this instruction
179      // calls out to InterpreterRuntime::resolve_get_put to do
180      // additional, required work.
181      assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
182      assert(load_bc_into_bc_reg, "we use bc_reg as temp");
183      __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
184      __ set(bc, bc_reg);
185      __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
186    }
187    break;
188  default:
189    assert(byte_no == -1, "sanity");
190    if (load_bc_into_bc_reg) {
191      __ set(bc, bc_reg);
192    }
193  }
194
195  if (JvmtiExport::can_post_breakpoint()) {
196    Label L_fast_patch;
197    __ ldub(at_bcp(0), temp_reg);
198    __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
199    // perform the quickening, slowly, in the bowels of the breakpoint table
200    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
201    __ ba_short(L_patch_done);
202    __ bind(L_fast_patch);
203  }
204
205#ifdef ASSERT
206  Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
207  Label L_okay;
208  __ ldub(at_bcp(0), temp_reg);
209  __ cmp(temp_reg, orig_bytecode);
210  __ br(Assembler::equal, false, Assembler::pt, L_okay);
211  __ delayed()->cmp(temp_reg, bc_reg);
212  __ br(Assembler::equal, false, Assembler::pt, L_okay);
213  __ delayed()->nop();
214  __ stop("patching the wrong bytecode");
215  __ bind(L_okay);
216#endif
217
218  // patch bytecode
219  __ stb(bc_reg, at_bcp(0));
220  __ bind(L_patch_done);
221}
222
223//----------------------------------------------------------------------------------------------------
224// Individual instructions
225
226void TemplateTable::nop() {
227  transition(vtos, vtos);
228  // nothing to do
229}
230
231void TemplateTable::shouldnotreachhere() {
232  transition(vtos, vtos);
233  __ stop("shouldnotreachhere bytecode");
234}
235
236void TemplateTable::aconst_null() {
237  transition(vtos, atos);
238  __ clr(Otos_i);
239}
240
241
242void TemplateTable::iconst(int value) {
243  transition(vtos, itos);
244  __ set(value, Otos_i);
245}
246
247
248void TemplateTable::lconst(int value) {
249  transition(vtos, ltos);
250  assert(value >= 0, "check this code");
251#ifdef _LP64
252  __ set(value, Otos_l);
253#else
254  __ set(value, Otos_l2);
255  __ clr( Otos_l1);
256#endif
257}
258
259
260void TemplateTable::fconst(int value) {
261  transition(vtos, ftos);
262  static float zero = 0.0, one = 1.0, two = 2.0;
263  float* p;
264  switch( value ) {
265   default: ShouldNotReachHere();
266   case 0:  p = &zero;  break;
267   case 1:  p = &one;   break;
268   case 2:  p = &two;   break;
269  }
270  AddressLiteral a(p);
271  __ sethi(a, G3_scratch);
272  __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
273}
274
275
276void TemplateTable::dconst(int value) {
277  transition(vtos, dtos);
278  static double zero = 0.0, one = 1.0;
279  double* p;
280  switch( value ) {
281   default: ShouldNotReachHere();
282   case 0:  p = &zero;  break;
283   case 1:  p = &one;   break;
284  }
285  AddressLiteral a(p);
286  __ sethi(a, G3_scratch);
287  __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
288}
289
290
291// %%%%% Should factore most snippet templates across platforms
292
293void TemplateTable::bipush() {
294  transition(vtos, itos);
295  __ ldsb( at_bcp(1), Otos_i );
296}
297
298void TemplateTable::sipush() {
299  transition(vtos, itos);
300  __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
301}
302
303void TemplateTable::ldc(bool wide) {
304  transition(vtos, vtos);
305  Label call_ldc, notInt, isString, notString, notClass, exit;
306
307  if (wide) {
308    __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
309  } else {
310    __ ldub(Lbcp, 1, O1);
311  }
312  __ get_cpool_and_tags(O0, O2);
313
314  const int base_offset = ConstantPool::header_size() * wordSize;
315  const int tags_offset = Array<u1>::base_offset_in_bytes();
316
317  // get type from tags
318  __ add(O2, tags_offset, O2);
319  __ ldub(O2, O1, O2);
320
321  // unresolved class? If so, must resolve
322  __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
323
324  // unresolved class in error state
325  __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
326
327  __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
328  __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
329  __ delayed()->add(O0, base_offset, O0);
330
331  __ bind(call_ldc);
332  __ set(wide, O1);
333  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
334  __ push(atos);
335  __ ba_short(exit);
336
337  __ bind(notClass);
338 // __ add(O0, base_offset, O0);
339  __ sll(O1, LogBytesPerWord, O1);
340  __ cmp(O2, JVM_CONSTANT_Integer);
341  __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
342  __ delayed()->cmp(O2, JVM_CONSTANT_String);
343  __ ld(O0, O1, Otos_i);
344  __ push(itos);
345  __ ba_short(exit);
346
347  __ bind(notInt);
348 // __ cmp(O2, JVM_CONSTANT_String);
349  __ brx(Assembler::notEqual, true, Assembler::pt, notString);
350  __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
351  __ bind(isString);
352  __ stop("string should be rewritten to fast_aldc");
353  __ ba_short(exit);
354
355  __ bind(notString);
356 // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
357  __ push(ftos);
358
359  __ bind(exit);
360}
361
362// Fast path for caching oop constants.
363// %%% We should use this to handle Class and String constants also.
364// %%% It will simplify the ldc/primitive path considerably.
365void TemplateTable::fast_aldc(bool wide) {
366  transition(vtos, atos);
367
368  int index_size = wide ? sizeof(u2) : sizeof(u1);
369  Label resolved;
370
371  // We are resolved if the resolved reference cache entry contains a
372  // non-null object (CallSite, etc.)
373  assert_different_registers(Otos_i, G3_scratch);
374  __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
375  __ load_resolved_reference_at_index(Otos_i, G3_scratch);
376  __ tst(Otos_i);
377  __ br(Assembler::notEqual, false, Assembler::pt, resolved);
378  __ delayed()->set((int)bytecode(), O1);
379
380  address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
381
382  // first time invocation - must resolve first
383  __ call_VM(Otos_i, entry, O1);
384  __ bind(resolved);
385  __ verify_oop(Otos_i);
386}
387
388void TemplateTable::ldc2_w() {
389  transition(vtos, vtos);
390  Label Long, exit;
391
392  __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
393  __ get_cpool_and_tags(O0, O2);
394
395  const int base_offset = ConstantPool::header_size() * wordSize;
396  const int tags_offset = Array<u1>::base_offset_in_bytes();
397  // get type from tags
398  __ add(O2, tags_offset, O2);
399  __ ldub(O2, O1, O2);
400
401  __ sll(O1, LogBytesPerWord, O1);
402  __ add(O0, O1, G3_scratch);
403
404  __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
405  // A double can be placed at word-aligned locations in the constant pool.
406  // Check out Conversions.java for an example.
407  // Also ConstantPool::header_size() is 20, which makes it very difficult
408  // to double-align double on the constant pool.  SG, 11/7/97
409#ifdef _LP64
410  __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
411#else
412  FloatRegister f = Ftos_d;
413  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
414  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
415         f->successor());
416#endif
417  __ push(dtos);
418  __ ba_short(exit);
419
420  __ bind(Long);
421#ifdef _LP64
422  __ ldx(G3_scratch, base_offset, Otos_l);
423#else
424  __ ld(G3_scratch, base_offset, Otos_l);
425  __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
426#endif
427  __ push(ltos);
428
429  __ bind(exit);
430}
431
432void TemplateTable::locals_index(Register reg, int offset) {
433  __ ldub( at_bcp(offset), reg );
434}
435
436void TemplateTable::locals_index_wide(Register reg) {
437  // offset is 2, not 1, because Lbcp points to wide prefix code
438  __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
439}
440
441void TemplateTable::iload() {
442  iload_internal();
443}
444
445void TemplateTable::nofast_iload() {
446  iload_internal(may_not_rewrite);
447}
448
449void TemplateTable::iload_internal(RewriteControl rc) {
450  transition(vtos, itos);
451  // Rewrite iload,iload  pair into fast_iload2
452  //         iload,caload pair into fast_icaload
453  if (RewriteFrequentPairs && rc == may_rewrite) {
454    Label rewrite, done;
455
456    // get next byte
457    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
458
459    // if _iload, wait to rewrite to iload2.  We only want to rewrite the
460    // last two iloads in a pair.  Comparing against fast_iload means that
461    // the next bytecode is neither an iload or a caload, and therefore
462    // an iload pair.
463    __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
464
465    __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
466    __ br(Assembler::equal, false, Assembler::pn, rewrite);
467    __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
468
469    __ cmp(G3_scratch, (int)Bytecodes::_caload);
470    __ br(Assembler::equal, false, Assembler::pn, rewrite);
471    __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
472
473    __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
474    // rewrite
475    // G4_scratch: fast bytecode
476    __ bind(rewrite);
477    patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
478    __ bind(done);
479  }
480
481  // Get the local value into tos
482  locals_index(G3_scratch);
483  __ access_local_int( G3_scratch, Otos_i );
484}
485
486void TemplateTable::fast_iload2() {
487  transition(vtos, itos);
488  locals_index(G3_scratch);
489  __ access_local_int( G3_scratch, Otos_i );
490  __ push_i();
491  locals_index(G3_scratch, 3);  // get next bytecode's local index.
492  __ access_local_int( G3_scratch, Otos_i );
493}
494
495void TemplateTable::fast_iload() {
496  transition(vtos, itos);
497  locals_index(G3_scratch);
498  __ access_local_int( G3_scratch, Otos_i );
499}
500
501void TemplateTable::lload() {
502  transition(vtos, ltos);
503  locals_index(G3_scratch);
504  __ access_local_long( G3_scratch, Otos_l );
505}
506
507
508void TemplateTable::fload() {
509  transition(vtos, ftos);
510  locals_index(G3_scratch);
511  __ access_local_float( G3_scratch, Ftos_f );
512}
513
514
515void TemplateTable::dload() {
516  transition(vtos, dtos);
517  locals_index(G3_scratch);
518  __ access_local_double( G3_scratch, Ftos_d );
519}
520
521
522void TemplateTable::aload() {
523  transition(vtos, atos);
524  locals_index(G3_scratch);
525  __ access_local_ptr( G3_scratch, Otos_i);
526}
527
528
529void TemplateTable::wide_iload() {
530  transition(vtos, itos);
531  locals_index_wide(G3_scratch);
532  __ access_local_int( G3_scratch, Otos_i );
533}
534
535
536void TemplateTable::wide_lload() {
537  transition(vtos, ltos);
538  locals_index_wide(G3_scratch);
539  __ access_local_long( G3_scratch, Otos_l );
540}
541
542
543void TemplateTable::wide_fload() {
544  transition(vtos, ftos);
545  locals_index_wide(G3_scratch);
546  __ access_local_float( G3_scratch, Ftos_f );
547}
548
549
550void TemplateTable::wide_dload() {
551  transition(vtos, dtos);
552  locals_index_wide(G3_scratch);
553  __ access_local_double( G3_scratch, Ftos_d );
554}
555
556
557void TemplateTable::wide_aload() {
558  transition(vtos, atos);
559  locals_index_wide(G3_scratch);
560  __ access_local_ptr( G3_scratch, Otos_i );
561  __ verify_oop(Otos_i);
562}
563
564
565void TemplateTable::iaload() {
566  transition(itos, itos);
567  // Otos_i: index
568  // tos: array
569  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
570  __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
571}
572
573
574void TemplateTable::laload() {
575  transition(itos, ltos);
576  // Otos_i: index
577  // O2: array
578  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
579  __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
580}
581
582
583void TemplateTable::faload() {
584  transition(itos, ftos);
585  // Otos_i: index
586  // O2: array
587  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
588  __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
589}
590
591
592void TemplateTable::daload() {
593  transition(itos, dtos);
594  // Otos_i: index
595  // O2: array
596  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
597  __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
598}
599
600
601void TemplateTable::aaload() {
602  transition(itos, atos);
603  // Otos_i: index
604  // tos: array
605  __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
606  __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
607  __ verify_oop(Otos_i);
608}
609
610
611void TemplateTable::baload() {
612  transition(itos, itos);
613  // Otos_i: index
614  // tos: array
615  __ index_check(O2, Otos_i, 0, G3_scratch, O3);
616  __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
617}
618
619
620void TemplateTable::caload() {
621  transition(itos, itos);
622  // Otos_i: index
623  // tos: array
624  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
625  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
626}
627
628void TemplateTable::fast_icaload() {
629  transition(vtos, itos);
630  // Otos_i: index
631  // tos: array
632  locals_index(G3_scratch);
633  __ access_local_int( G3_scratch, Otos_i );
634  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
635  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
636}
637
638
639void TemplateTable::saload() {
640  transition(itos, itos);
641  // Otos_i: index
642  // tos: array
643  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
644  __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
645}
646
647
648void TemplateTable::iload(int n) {
649  transition(vtos, itos);
650  __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
651}
652
653
654void TemplateTable::lload(int n) {
655  transition(vtos, ltos);
656  assert(n+1 < Argument::n_register_parameters, "would need more code");
657  __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
658}
659
660
661void TemplateTable::fload(int n) {
662  transition(vtos, ftos);
663  assert(n < Argument::n_register_parameters, "would need more code");
664  __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
665}
666
667
668void TemplateTable::dload(int n) {
669  transition(vtos, dtos);
670  FloatRegister dst = Ftos_d;
671  __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
672}
673
674
675void TemplateTable::aload(int n) {
676  transition(vtos, atos);
677  __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
678}
679
680void TemplateTable::aload_0() {
681  aload_0_internal();
682}
683
684void TemplateTable::nofast_aload_0() {
685  aload_0_internal(may_not_rewrite);
686}
687
688void TemplateTable::aload_0_internal(RewriteControl rc) {
689  transition(vtos, atos);
690
691  // According to bytecode histograms, the pairs:
692  //
693  // _aload_0, _fast_igetfield (itos)
694  // _aload_0, _fast_agetfield (atos)
695  // _aload_0, _fast_fgetfield (ftos)
696  //
697  // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
698  // bytecode checks the next bytecode and then rewrites the current
699  // bytecode into a pair bytecode; otherwise it rewrites the current
700  // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
701  //
702  if (RewriteFrequentPairs && rc == may_rewrite) {
703    Label rewrite, done;
704
705    // get next byte
706    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
707
708    // if _getfield then wait with rewrite
709    __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
710
711    // if _igetfield then rewrite to _fast_iaccess_0
712    assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
713    __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
714    __ br(Assembler::equal, false, Assembler::pn, rewrite);
715    __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
716
717    // if _agetfield then rewrite to _fast_aaccess_0
718    assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
719    __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
720    __ br(Assembler::equal, false, Assembler::pn, rewrite);
721    __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
722
723    // if _fgetfield then rewrite to _fast_faccess_0
724    assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
725    __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
726    __ br(Assembler::equal, false, Assembler::pn, rewrite);
727    __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
728
729    // else rewrite to _fast_aload0
730    assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
731    __ set(Bytecodes::_fast_aload_0, G4_scratch);
732
733    // rewrite
734    // G4_scratch: fast bytecode
735    __ bind(rewrite);
736    patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
737    __ bind(done);
738  }
739
740  // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
741  aload(0);
742}
743
744void TemplateTable::istore() {
745  transition(itos, vtos);
746  locals_index(G3_scratch);
747  __ store_local_int( G3_scratch, Otos_i );
748}
749
750
751void TemplateTable::lstore() {
752  transition(ltos, vtos);
753  locals_index(G3_scratch);
754  __ store_local_long( G3_scratch, Otos_l );
755}
756
757
758void TemplateTable::fstore() {
759  transition(ftos, vtos);
760  locals_index(G3_scratch);
761  __ store_local_float( G3_scratch, Ftos_f );
762}
763
764
765void TemplateTable::dstore() {
766  transition(dtos, vtos);
767  locals_index(G3_scratch);
768  __ store_local_double( G3_scratch, Ftos_d );
769}
770
771
772void TemplateTable::astore() {
773  transition(vtos, vtos);
774  __ load_ptr(0, Otos_i);
775  __ inc(Lesp, Interpreter::stackElementSize);
776  __ verify_oop_or_return_address(Otos_i, G3_scratch);
777  locals_index(G3_scratch);
778  __ store_local_ptr(G3_scratch, Otos_i);
779}
780
781
782void TemplateTable::wide_istore() {
783  transition(vtos, vtos);
784  __ pop_i();
785  locals_index_wide(G3_scratch);
786  __ store_local_int( G3_scratch, Otos_i );
787}
788
789
790void TemplateTable::wide_lstore() {
791  transition(vtos, vtos);
792  __ pop_l();
793  locals_index_wide(G3_scratch);
794  __ store_local_long( G3_scratch, Otos_l );
795}
796
797
798void TemplateTable::wide_fstore() {
799  transition(vtos, vtos);
800  __ pop_f();
801  locals_index_wide(G3_scratch);
802  __ store_local_float( G3_scratch, Ftos_f );
803}
804
805
806void TemplateTable::wide_dstore() {
807  transition(vtos, vtos);
808  __ pop_d();
809  locals_index_wide(G3_scratch);
810  __ store_local_double( G3_scratch, Ftos_d );
811}
812
813
814void TemplateTable::wide_astore() {
815  transition(vtos, vtos);
816  __ load_ptr(0, Otos_i);
817  __ inc(Lesp, Interpreter::stackElementSize);
818  __ verify_oop_or_return_address(Otos_i, G3_scratch);
819  locals_index_wide(G3_scratch);
820  __ store_local_ptr(G3_scratch, Otos_i);
821}
822
823
824void TemplateTable::iastore() {
825  transition(itos, vtos);
826  __ pop_i(O2); // index
827  // Otos_i: val
828  // O3: array
829  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
830  __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
831}
832
833
834void TemplateTable::lastore() {
835  transition(ltos, vtos);
836  __ pop_i(O2); // index
837  // Otos_l: val
838  // O3: array
839  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
840  __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
841}
842
843
844void TemplateTable::fastore() {
845  transition(ftos, vtos);
846  __ pop_i(O2); // index
847  // Ftos_f: val
848  // O3: array
849  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
850  __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
851}
852
853
854void TemplateTable::dastore() {
855  transition(dtos, vtos);
856  __ pop_i(O2); // index
857  // Fos_d: val
858  // O3: array
859  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
860  __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
861}
862
863
864void TemplateTable::aastore() {
865  Label store_ok, is_null, done;
866  transition(vtos, vtos);
867  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
868  __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
869  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
870  // Otos_i: val
871  // O2: index
872  // O3: array
873  __ verify_oop(Otos_i);
874  __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
875
876  // do array store check - check for NULL value first
877  __ br_null_short( Otos_i, Assembler::pn, is_null );
878
879  __ load_klass(O3, O4); // get array klass
880  __ load_klass(Otos_i, O5); // get value klass
881
882  // do fast instanceof cache test
883
884  __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
885
886  assert(Otos_i == O0, "just checking");
887
888  // Otos_i:    value
889  // O1:        addr - offset
890  // O2:        index
891  // O3:        array
892  // O4:        array element klass
893  // O5:        value klass
894
895  // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
896
897  // Generate a fast subtype check.  Branch to store_ok if no
898  // failure.  Throw if failure.
899  __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
900
901  // Not a subtype; so must throw exception
902  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
903
904  // Store is OK.
905  __ bind(store_ok);
906  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
907
908  __ ba(done);
909  __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
910
911  __ bind(is_null);
912  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
913
914  __ profile_null_seen(G3_scratch);
915  __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
916  __ bind(done);
917}
918
919
920void TemplateTable::bastore() {
921  transition(itos, vtos);
922  __ pop_i(O2); // index
923  // Otos_i: val
924  // O2: index
925  // O3: array
926  __ index_check(O3, O2, 0, G3_scratch, O2);
927  // Need to check whether array is boolean or byte
928  // since both types share the bastore bytecode.
929  __ load_klass(O3, G4_scratch);
930  __ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
931  __ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
932  __ andcc(G3_scratch, G4_scratch, G0);
933  Label L_skip;
934  __ br(Assembler::zero, false, Assembler::pn, L_skip);
935  __ delayed()->nop();
936  __ and3(Otos_i, 1, Otos_i);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
937  __ bind(L_skip);
938  __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
939}
940
941
942void TemplateTable::castore() {
943  transition(itos, vtos);
944  __ pop_i(O2); // index
945  // Otos_i: val
946  // O3: array
947  __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
948  __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
949}
950
951
952void TemplateTable::sastore() {
953  // %%%%% Factor across platform
954  castore();
955}
956
957
958void TemplateTable::istore(int n) {
959  transition(itos, vtos);
960  __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
961}
962
963
964void TemplateTable::lstore(int n) {
965  transition(ltos, vtos);
966  assert(n+1 < Argument::n_register_parameters, "only handle register cases");
967  __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
968
969}
970
971
972void TemplateTable::fstore(int n) {
973  transition(ftos, vtos);
974  assert(n < Argument::n_register_parameters, "only handle register cases");
975  __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
976}
977
978
979void TemplateTable::dstore(int n) {
980  transition(dtos, vtos);
981  FloatRegister src = Ftos_d;
982  __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
983}
984
985
986void TemplateTable::astore(int n) {
987  transition(vtos, vtos);
988  __ load_ptr(0, Otos_i);
989  __ inc(Lesp, Interpreter::stackElementSize);
990  __ verify_oop_or_return_address(Otos_i, G3_scratch);
991  __ store_local_ptr(n, Otos_i);
992}
993
994
995void TemplateTable::pop() {
996  transition(vtos, vtos);
997  __ inc(Lesp, Interpreter::stackElementSize);
998}
999
1000
1001void TemplateTable::pop2() {
1002  transition(vtos, vtos);
1003  __ inc(Lesp, 2 * Interpreter::stackElementSize);
1004}
1005
1006
1007void TemplateTable::dup() {
1008  transition(vtos, vtos);
1009  // stack: ..., a
1010  // load a and tag
1011  __ load_ptr(0, Otos_i);
1012  __ push_ptr(Otos_i);
1013  // stack: ..., a, a
1014}
1015
1016
1017void TemplateTable::dup_x1() {
1018  transition(vtos, vtos);
1019  // stack: ..., a, b
1020  __ load_ptr( 1, G3_scratch);  // get a
1021  __ load_ptr( 0, Otos_l1);     // get b
1022  __ store_ptr(1, Otos_l1);     // put b
1023  __ store_ptr(0, G3_scratch);  // put a - like swap
1024  __ push_ptr(Otos_l1);         // push b
1025  // stack: ..., b, a, b
1026}
1027
1028
1029void TemplateTable::dup_x2() {
1030  transition(vtos, vtos);
1031  // stack: ..., a, b, c
1032  // get c and push on stack, reuse registers
1033  __ load_ptr( 0, G3_scratch);  // get c
1034  __ push_ptr(G3_scratch);      // push c with tag
1035  // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1036  // (stack offsets n+1 now)
1037  __ load_ptr( 3, Otos_l1);     // get a
1038  __ store_ptr(3, G3_scratch);  // put c at 3
1039  // stack: ..., c, b, c, c  (a in reg)
1040  __ load_ptr( 2, G3_scratch);  // get b
1041  __ store_ptr(2, Otos_l1);     // put a at 2
1042  // stack: ..., c, a, c, c  (b in reg)
1043  __ store_ptr(1, G3_scratch);  // put b at 1
1044  // stack: ..., c, a, b, c
1045}
1046
1047
1048void TemplateTable::dup2() {
1049  transition(vtos, vtos);
1050  __ load_ptr(1, G3_scratch);  // get a
1051  __ load_ptr(0, Otos_l1);     // get b
1052  __ push_ptr(G3_scratch);     // push a
1053  __ push_ptr(Otos_l1);        // push b
1054  // stack: ..., a, b, a, b
1055}
1056
1057
1058void TemplateTable::dup2_x1() {
1059  transition(vtos, vtos);
1060  // stack: ..., a, b, c
1061  __ load_ptr( 1, Lscratch);    // get b
1062  __ load_ptr( 2, Otos_l1);     // get a
1063  __ store_ptr(2, Lscratch);    // put b at a
1064  // stack: ..., b, b, c
1065  __ load_ptr( 0, G3_scratch);  // get c
1066  __ store_ptr(1, G3_scratch);  // put c at b
1067  // stack: ..., b, c, c
1068  __ store_ptr(0, Otos_l1);     // put a at c
1069  // stack: ..., b, c, a
1070  __ push_ptr(Lscratch);        // push b
1071  __ push_ptr(G3_scratch);      // push c
1072  // stack: ..., b, c, a, b, c
1073}
1074
1075
1076// The spec says that these types can be a mixture of category 1 (1 word)
1077// types and/or category 2 types (long and doubles)
1078void TemplateTable::dup2_x2() {
1079  transition(vtos, vtos);
1080  // stack: ..., a, b, c, d
1081  __ load_ptr( 1, Lscratch);    // get c
1082  __ load_ptr( 3, Otos_l1);     // get a
1083  __ store_ptr(3, Lscratch);    // put c at 3
1084  __ store_ptr(1, Otos_l1);     // put a at 1
1085  // stack: ..., c, b, a, d
1086  __ load_ptr( 2, G3_scratch);  // get b
1087  __ load_ptr( 0, Otos_l1);     // get d
1088  __ store_ptr(0, G3_scratch);  // put b at 0
1089  __ store_ptr(2, Otos_l1);     // put d at 2
1090  // stack: ..., c, d, a, b
1091  __ push_ptr(Lscratch);        // push c
1092  __ push_ptr(Otos_l1);         // push d
1093  // stack: ..., c, d, a, b, c, d
1094}
1095
1096
1097void TemplateTable::swap() {
1098  transition(vtos, vtos);
1099  // stack: ..., a, b
1100  __ load_ptr( 1, G3_scratch);  // get a
1101  __ load_ptr( 0, Otos_l1);     // get b
1102  __ store_ptr(0, G3_scratch);  // put b
1103  __ store_ptr(1, Otos_l1);     // put a
1104  // stack: ..., b, a
1105}
1106
1107
1108void TemplateTable::iop2(Operation op) {
1109  transition(itos, itos);
1110  __ pop_i(O1);
1111  switch (op) {
1112   case  add:  __  add(O1, Otos_i, Otos_i);  break;
1113   case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1114     // %%%%% Mul may not exist: better to call .mul?
1115   case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1116   case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1117   case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1118   case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1119   case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1120   case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1121   case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1122   default: ShouldNotReachHere();
1123  }
1124}
1125
1126
1127void TemplateTable::lop2(Operation op) {
1128  transition(ltos, ltos);
1129  __ pop_l(O2);
1130  switch (op) {
1131#ifdef _LP64
1132   case  add:  __  add(O2, Otos_l, Otos_l);  break;
1133   case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1134   case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1135   case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1136   case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1137#else
1138   case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1139   case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1140   case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1141   case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1142   case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1143#endif
1144   default: ShouldNotReachHere();
1145  }
1146}
1147
1148
1149void TemplateTable::idiv() {
1150  // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1151  // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1152
1153  transition(itos, itos);
1154  __ pop_i(O1); // get 1st op
1155
1156  // Y contains upper 32 bits of result, set it to 0 or all ones
1157  __ wry(G0);
1158  __ mov(~0, G3_scratch);
1159
1160  __ tst(O1);
1161     Label neg;
1162  __ br(Assembler::negative, true, Assembler::pn, neg);
1163  __ delayed()->wry(G3_scratch);
1164  __ bind(neg);
1165
1166     Label ok;
1167  __ tst(Otos_i);
1168  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1169
1170  const int min_int = 0x80000000;
1171  Label regular;
1172  __ cmp(Otos_i, -1);
1173  __ br(Assembler::notEqual, false, Assembler::pt, regular);
1174#ifdef _LP64
1175  // Don't put set in delay slot
1176  // Set will turn into multiple instructions in 64 bit mode
1177  __ delayed()->nop();
1178  __ set(min_int, G4_scratch);
1179#else
1180  __ delayed()->set(min_int, G4_scratch);
1181#endif
1182  Label done;
1183  __ cmp(O1, G4_scratch);
1184  __ br(Assembler::equal, true, Assembler::pt, done);
1185  __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1186
1187  __ bind(regular);
1188  __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1189  __ bind(done);
1190}
1191
1192
1193void TemplateTable::irem() {
1194  transition(itos, itos);
1195  __ mov(Otos_i, O2); // save divisor
1196  idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1197  __ smul(Otos_i, O2, Otos_i);
1198  __ sub(O1, Otos_i, Otos_i);
1199}
1200
1201
1202void TemplateTable::lmul() {
1203  transition(ltos, ltos);
1204  __ pop_l(O2);
1205#ifdef _LP64
1206  __ mulx(Otos_l, O2, Otos_l);
1207#else
1208  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1209#endif
1210
1211}
1212
1213
1214void TemplateTable::ldiv() {
1215  transition(ltos, ltos);
1216
1217  // check for zero
1218  __ pop_l(O2);
1219#ifdef _LP64
1220  __ tst(Otos_l);
1221  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1222  __ sdivx(O2, Otos_l, Otos_l);
1223#else
1224  __ orcc(Otos_l1, Otos_l2, G0);
1225  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1226  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1227#endif
1228}
1229
1230
1231void TemplateTable::lrem() {
1232  transition(ltos, ltos);
1233
1234  // check for zero
1235  __ pop_l(O2);
1236#ifdef _LP64
1237  __ tst(Otos_l);
1238  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1239  __ sdivx(O2, Otos_l, Otos_l2);
1240  __ mulx (Otos_l2, Otos_l, Otos_l2);
1241  __ sub  (O2, Otos_l2, Otos_l);
1242#else
1243  __ orcc(Otos_l1, Otos_l2, G0);
1244  __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1245  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1246#endif
1247}
1248
1249
1250void TemplateTable::lshl() {
1251  transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1252
1253  __ pop_l(O2);                          // shift value in O2, O3
1254#ifdef _LP64
1255  __ sllx(O2, Otos_i, Otos_l);
1256#else
1257  __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1258#endif
1259}
1260
1261
1262void TemplateTable::lshr() {
1263  transition(itos, ltos); // %%%% see lshl comment
1264
1265  __ pop_l(O2);                          // shift value in O2, O3
1266#ifdef _LP64
1267  __ srax(O2, Otos_i, Otos_l);
1268#else
1269  __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1270#endif
1271}
1272
1273
1274
1275void TemplateTable::lushr() {
1276  transition(itos, ltos); // %%%% see lshl comment
1277
1278  __ pop_l(O2);                          // shift value in O2, O3
1279#ifdef _LP64
1280  __ srlx(O2, Otos_i, Otos_l);
1281#else
1282  __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1283#endif
1284}
1285
1286
1287void TemplateTable::fop2(Operation op) {
1288  transition(ftos, ftos);
1289  switch (op) {
1290   case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1291   case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1292   case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1293   case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1294   case  rem:
1295     assert(Ftos_f == F0, "just checking");
1296#ifdef _LP64
1297     // LP64 calling conventions use F1, F3 for passing 2 floats
1298     __ pop_f(F1);
1299     __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1300#else
1301     __ pop_i(O0);
1302     __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1303     __ ld( __ d_tmp, O1 );
1304#endif
1305     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1306     assert( Ftos_f == F0, "fix this code" );
1307     break;
1308
1309   default: ShouldNotReachHere();
1310  }
1311}
1312
1313
1314void TemplateTable::dop2(Operation op) {
1315  transition(dtos, dtos);
1316  switch (op) {
1317   case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1318   case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1319   case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1320   case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1321   case  rem:
1322#ifdef _LP64
1323     // Pass arguments in D0, D2
1324     __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1325     __ pop_d( F0 );
1326#else
1327     // Pass arguments in O0O1, O2O3
1328     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1329     __ ldd( __ d_tmp, O2 );
1330     __ pop_d(Ftos_f);
1331     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1332     __ ldd( __ d_tmp, O0 );
1333#endif
1334     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1335     assert( Ftos_d == F0, "fix this code" );
1336     break;
1337
1338   default: ShouldNotReachHere();
1339  }
1340}
1341
1342
1343void TemplateTable::ineg() {
1344  transition(itos, itos);
1345  __ neg(Otos_i);
1346}
1347
1348
1349void TemplateTable::lneg() {
1350  transition(ltos, ltos);
1351#ifdef _LP64
1352  __ sub(G0, Otos_l, Otos_l);
1353#else
1354  __ lneg(Otos_l1, Otos_l2);
1355#endif
1356}
1357
1358
1359void TemplateTable::fneg() {
1360  transition(ftos, ftos);
1361  __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1362}
1363
1364
1365void TemplateTable::dneg() {
1366  transition(dtos, dtos);
1367  __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1368}
1369
1370
1371void TemplateTable::iinc() {
1372  transition(vtos, vtos);
1373  locals_index(G3_scratch);
1374  __ ldsb(Lbcp, 2, O2);  // load constant
1375  __ access_local_int(G3_scratch, Otos_i);
1376  __ add(Otos_i, O2, Otos_i);
1377  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1378}
1379
1380
1381void TemplateTable::wide_iinc() {
1382  transition(vtos, vtos);
1383  locals_index_wide(G3_scratch);
1384  __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1385  __ access_local_int(G3_scratch, Otos_i);
1386  __ add(Otos_i, O3, Otos_i);
1387  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1388}
1389
1390
1391void TemplateTable::convert() {
1392// %%%%% Factor this first part accross platforms
1393  #ifdef ASSERT
1394    TosState tos_in  = ilgl;
1395    TosState tos_out = ilgl;
1396    switch (bytecode()) {
1397      case Bytecodes::_i2l: // fall through
1398      case Bytecodes::_i2f: // fall through
1399      case Bytecodes::_i2d: // fall through
1400      case Bytecodes::_i2b: // fall through
1401      case Bytecodes::_i2c: // fall through
1402      case Bytecodes::_i2s: tos_in = itos; break;
1403      case Bytecodes::_l2i: // fall through
1404      case Bytecodes::_l2f: // fall through
1405      case Bytecodes::_l2d: tos_in = ltos; break;
1406      case Bytecodes::_f2i: // fall through
1407      case Bytecodes::_f2l: // fall through
1408      case Bytecodes::_f2d: tos_in = ftos; break;
1409      case Bytecodes::_d2i: // fall through
1410      case Bytecodes::_d2l: // fall through
1411      case Bytecodes::_d2f: tos_in = dtos; break;
1412      default             : ShouldNotReachHere();
1413    }
1414    switch (bytecode()) {
1415      case Bytecodes::_l2i: // fall through
1416      case Bytecodes::_f2i: // fall through
1417      case Bytecodes::_d2i: // fall through
1418      case Bytecodes::_i2b: // fall through
1419      case Bytecodes::_i2c: // fall through
1420      case Bytecodes::_i2s: tos_out = itos; break;
1421      case Bytecodes::_i2l: // fall through
1422      case Bytecodes::_f2l: // fall through
1423      case Bytecodes::_d2l: tos_out = ltos; break;
1424      case Bytecodes::_i2f: // fall through
1425      case Bytecodes::_l2f: // fall through
1426      case Bytecodes::_d2f: tos_out = ftos; break;
1427      case Bytecodes::_i2d: // fall through
1428      case Bytecodes::_l2d: // fall through
1429      case Bytecodes::_f2d: tos_out = dtos; break;
1430      default             : ShouldNotReachHere();
1431    }
1432    transition(tos_in, tos_out);
1433  #endif
1434
1435
1436  // Conversion
1437  Label done;
1438  switch (bytecode()) {
1439   case Bytecodes::_i2l:
1440#ifdef _LP64
1441    // Sign extend the 32 bits
1442    __ sra ( Otos_i, 0, Otos_l );
1443#else
1444    __ addcc(Otos_i, 0, Otos_l2);
1445    __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1446    __ delayed()->clr(Otos_l1);
1447    __ set(~0, Otos_l1);
1448#endif
1449    break;
1450
1451   case Bytecodes::_i2f:
1452    __ st(Otos_i, __ d_tmp );
1453    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1454    __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1455    break;
1456
1457   case Bytecodes::_i2d:
1458    __ st(Otos_i, __ d_tmp);
1459    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1460    __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1461    break;
1462
1463   case Bytecodes::_i2b:
1464    __ sll(Otos_i, 24, Otos_i);
1465    __ sra(Otos_i, 24, Otos_i);
1466    break;
1467
1468   case Bytecodes::_i2c:
1469    __ sll(Otos_i, 16, Otos_i);
1470    __ srl(Otos_i, 16, Otos_i);
1471    break;
1472
1473   case Bytecodes::_i2s:
1474    __ sll(Otos_i, 16, Otos_i);
1475    __ sra(Otos_i, 16, Otos_i);
1476    break;
1477
1478   case Bytecodes::_l2i:
1479#ifndef _LP64
1480    __ mov(Otos_l2, Otos_i);
1481#else
1482    // Sign-extend into the high 32 bits
1483    __ sra(Otos_l, 0, Otos_i);
1484#endif
1485    break;
1486
1487   case Bytecodes::_l2f:
1488   case Bytecodes::_l2d:
1489    __ st_long(Otos_l, __ d_tmp);
1490    __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1491
1492    if (bytecode() == Bytecodes::_l2f) {
1493      __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1494    } else {
1495      __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1496    }
1497    break;
1498
1499  case Bytecodes::_f2i:  {
1500      Label isNaN;
1501      // result must be 0 if value is NaN; test by comparing value to itself
1502      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1503      __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1504      __ delayed()->clr(Otos_i);                                     // NaN
1505      __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1506      __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1507      __ ld(__ d_tmp, Otos_i);
1508      __ bind(isNaN);
1509    }
1510    break;
1511
1512   case Bytecodes::_f2l:
1513    // must uncache tos
1514    __ push_f();
1515#ifdef _LP64
1516    __ pop_f(F1);
1517#else
1518    __ pop_i(O0);
1519#endif
1520    __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1521    break;
1522
1523   case Bytecodes::_f2d:
1524    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1525    break;
1526
1527   case Bytecodes::_d2i:
1528   case Bytecodes::_d2l:
1529    // must uncache tos
1530    __ push_d();
1531#ifdef _LP64
1532    // LP64 calling conventions pass first double arg in D0
1533    __ pop_d( Ftos_d );
1534#else
1535    __ pop_i( O0 );
1536    __ pop_i( O1 );
1537#endif
1538    __ call_VM_leaf(Lscratch,
1539        bytecode() == Bytecodes::_d2i
1540          ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1541          : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1542    break;
1543
1544    case Bytecodes::_d2f:
1545      __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1546    break;
1547
1548    default: ShouldNotReachHere();
1549  }
1550  __ bind(done);
1551}
1552
1553
1554void TemplateTable::lcmp() {
1555  transition(ltos, itos);
1556
1557#ifdef _LP64
1558  __ pop_l(O1); // pop off value 1, value 2 is in O0
1559  __ lcmp( O1, Otos_l, Otos_i );
1560#else
1561  __ pop_l(O2); // cmp O2,3 to O0,1
1562  __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1563#endif
1564}
1565
1566
1567void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1568
1569  if (is_float) __ pop_f(F2);
1570  else          __ pop_d(F2);
1571
1572  assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1573
1574  __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1575}
1576
1577void TemplateTable::branch(bool is_jsr, bool is_wide) {
1578  // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1579  __ verify_thread();
1580
1581  const Register O2_bumped_count = O2;
1582  __ profile_taken_branch(G3_scratch, O2_bumped_count);
1583
1584  // get (wide) offset to O1_disp
1585  const Register O1_disp = O1;
1586  if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1587  else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1588
1589  // Handle all the JSR stuff here, then exit.
1590  // It's much shorter and cleaner than intermingling with the
1591  // non-JSR normal-branch stuff occurring below.
1592  if( is_jsr ) {
1593    // compute return address as bci in Otos_i
1594    __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1595    __ sub(Lbcp, G3_scratch, G3_scratch);
1596    __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1597
1598    // Bump Lbcp to target of JSR
1599    __ add(Lbcp, O1_disp, Lbcp);
1600    // Push returnAddress for "ret" on stack
1601    __ push_ptr(Otos_i);
1602    // And away we go!
1603    __ dispatch_next(vtos);
1604    return;
1605  }
1606
1607  // Normal (non-jsr) branch handling
1608
1609  // Save the current Lbcp
1610  const Register l_cur_bcp = Lscratch;
1611  __ mov( Lbcp, l_cur_bcp );
1612
1613  bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1614  if ( increment_invocation_counter_for_backward_branches ) {
1615    Label Lforward;
1616    // check branch direction
1617    __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1618    // Bump bytecode pointer by displacement (take the branch)
1619    __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1620
1621    const Register G3_method_counters = G3_scratch;
1622    __ get_method_counters(Lmethod, G3_method_counters, Lforward);
1623
1624    if (TieredCompilation) {
1625      Label Lno_mdo, Loverflow;
1626      int increment = InvocationCounter::count_increment;
1627      if (ProfileInterpreter) {
1628        // If no method data exists, go to profile_continue.
1629        __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1630        __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1631
1632        // Increment backedge counter in the MDO
1633        Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1634                                                 in_bytes(InvocationCounter::counter_offset()));
1635        Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
1636        __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1637                                   (UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
1638        __ ba_short(Loverflow);
1639      }
1640
1641      // If there's no MDO, increment counter in MethodCounters*
1642      __ bind(Lno_mdo);
1643      Address backedge_counter(G3_method_counters,
1644              in_bytes(MethodCounters::backedge_counter_offset()) +
1645              in_bytes(InvocationCounter::counter_offset()));
1646      Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
1647      __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1648                                 (UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
1649      __ bind(Loverflow);
1650
1651      // notify point for loop, pass branch bytecode
1652      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1653
1654      // Was an OSR adapter generated?
1655      // O0 = osr nmethod
1656      __ br_null_short(O0, Assembler::pn, Lforward);
1657
1658      // Has the nmethod been invalidated already?
1659      __ ldub(O0, nmethod::state_offset(), O2);
1660      __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
1661
1662      // migrate the interpreter frame off of the stack
1663
1664      __ mov(G2_thread, L7);
1665      // save nmethod
1666      __ mov(O0, L6);
1667      __ set_last_Java_frame(SP, noreg);
1668      __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1669      __ reset_last_Java_frame();
1670      __ mov(L7, G2_thread);
1671
1672      // move OSR nmethod to I1
1673      __ mov(L6, I1);
1674
1675      // OSR buffer to I0
1676      __ mov(O0, I0);
1677
1678      // remove the interpreter frame
1679      __ restore(I5_savedSP, 0, SP);
1680
1681      // Jump to the osr code.
1682      __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1683      __ jmp(O2, G0);
1684      __ delayed()->nop();
1685
1686    } else { // not TieredCompilation
1687      // Update Backedge branch separately from invocations
1688      const Register G4_invoke_ctr = G4;
1689      __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
1690      if (ProfileInterpreter) {
1691        __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
1692        if (UseOnStackReplacement) {
1693
1694          __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
1695        }
1696      } else {
1697        if (UseOnStackReplacement) {
1698          __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
1699        }
1700      }
1701    }
1702
1703    __ bind(Lforward);
1704  } else
1705    // Bump bytecode pointer by displacement (take the branch)
1706    __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1707
1708  // continue with bytecode @ target
1709  // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1710  // %%%%% and changing dispatch_next to dispatch_only
1711  __ dispatch_next(vtos);
1712}
1713
1714
1715// Note Condition in argument is TemplateTable::Condition
1716// arg scope is within class scope
1717
1718void TemplateTable::if_0cmp(Condition cc) {
1719  // no pointers, integer only!
1720  transition(itos, vtos);
1721  // assume branch is more often taken than not (loops use backward branches)
1722  __ cmp( Otos_i, 0);
1723  __ if_cmp(ccNot(cc), false);
1724}
1725
1726
1727void TemplateTable::if_icmp(Condition cc) {
1728  transition(itos, vtos);
1729  __ pop_i(O1);
1730  __ cmp(O1, Otos_i);
1731  __ if_cmp(ccNot(cc), false);
1732}
1733
1734
1735void TemplateTable::if_nullcmp(Condition cc) {
1736  transition(atos, vtos);
1737  __ tst(Otos_i);
1738  __ if_cmp(ccNot(cc), true);
1739}
1740
1741
1742void TemplateTable::if_acmp(Condition cc) {
1743  transition(atos, vtos);
1744  __ pop_ptr(O1);
1745  __ verify_oop(O1);
1746  __ verify_oop(Otos_i);
1747  __ cmp(O1, Otos_i);
1748  __ if_cmp(ccNot(cc), true);
1749}
1750
1751
1752
1753void TemplateTable::ret() {
1754  transition(vtos, vtos);
1755  locals_index(G3_scratch);
1756  __ access_local_returnAddress(G3_scratch, Otos_i);
1757  // Otos_i contains the bci, compute the bcp from that
1758
1759#ifdef _LP64
1760#ifdef ASSERT
1761  // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1762  // the result.  The return address (really a BCI) was stored with an
1763  // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1764  // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1765  // loaded value.
1766  { Label zzz ;
1767     __ set (65536, G3_scratch) ;
1768     __ cmp (Otos_i, G3_scratch) ;
1769     __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1770     __ delayed()->nop();
1771     __ stop("BCI is in the wrong register half?");
1772     __ bind (zzz) ;
1773  }
1774#endif
1775#endif
1776
1777  __ profile_ret(vtos, Otos_i, G4_scratch);
1778
1779  __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1780  __ add(G3_scratch, Otos_i, G3_scratch);
1781  __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1782  __ dispatch_next(vtos);
1783}
1784
1785
1786void TemplateTable::wide_ret() {
1787  transition(vtos, vtos);
1788  locals_index_wide(G3_scratch);
1789  __ access_local_returnAddress(G3_scratch, Otos_i);
1790  // Otos_i contains the bci, compute the bcp from that
1791
1792  __ profile_ret(vtos, Otos_i, G4_scratch);
1793
1794  __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1795  __ add(G3_scratch, Otos_i, G3_scratch);
1796  __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1797  __ dispatch_next(vtos);
1798}
1799
1800
1801void TemplateTable::tableswitch() {
1802  transition(itos, vtos);
1803  Label default_case, continue_execution;
1804
1805  // align bcp
1806  __ add(Lbcp, BytesPerInt, O1);
1807  __ and3(O1, -BytesPerInt, O1);
1808  // load lo, hi
1809  __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1810  __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1811#ifdef _LP64
1812  // Sign extend the 32 bits
1813  __ sra ( Otos_i, 0, Otos_i );
1814#endif /* _LP64 */
1815
1816  // check against lo & hi
1817  __ cmp( Otos_i, O2);
1818  __ br( Assembler::less, false, Assembler::pn, default_case);
1819  __ delayed()->cmp( Otos_i, O3 );
1820  __ br( Assembler::greater, false, Assembler::pn, default_case);
1821  // lookup dispatch offset
1822  __ delayed()->sub(Otos_i, O2, O2);
1823  __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1824  __ sll(O2, LogBytesPerInt, O2);
1825  __ add(O2, 3 * BytesPerInt, O2);
1826  __ ba(continue_execution);
1827  __ delayed()->ld(O1, O2, O2);
1828  // handle default
1829  __ bind(default_case);
1830  __ profile_switch_default(O3);
1831  __ ld(O1, 0, O2); // get default offset
1832  // continue execution
1833  __ bind(continue_execution);
1834  __ add(Lbcp, O2, Lbcp);
1835  __ dispatch_next(vtos);
1836}
1837
1838
1839void TemplateTable::lookupswitch() {
1840  transition(itos, itos);
1841  __ stop("lookupswitch bytecode should have been rewritten");
1842}
1843
1844void TemplateTable::fast_linearswitch() {
1845  transition(itos, vtos);
1846    Label loop_entry, loop, found, continue_execution;
1847  // align bcp
1848  __ add(Lbcp, BytesPerInt, O1);
1849  __ and3(O1, -BytesPerInt, O1);
1850 // set counter
1851  __ ld(O1, BytesPerInt, O2);
1852  __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1853  __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1854  __ ba(loop_entry);
1855  __ delayed()->add(O3, O2, O2); // counter now points past last pair
1856
1857  // table search
1858  __ bind(loop);
1859  __ cmp(O4, Otos_i);
1860  __ br(Assembler::equal, true, Assembler::pn, found);
1861  __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1862  __ inc(O3, 2 * BytesPerInt);
1863
1864  __ bind(loop_entry);
1865  __ cmp(O2, O3);
1866  __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1867  __ delayed()->ld(O3, 0, O4);
1868
1869  // default case
1870  __ ld(O1, 0, O4); // get default offset
1871  if (ProfileInterpreter) {
1872    __ profile_switch_default(O3);
1873    __ ba_short(continue_execution);
1874  }
1875
1876  // entry found -> get offset
1877  __ bind(found);
1878  if (ProfileInterpreter) {
1879    __ sub(O3, O1, O3);
1880    __ sub(O3, 2*BytesPerInt, O3);
1881    __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1882    __ profile_switch_case(O3, O1, O2, G3_scratch);
1883
1884    __ bind(continue_execution);
1885  }
1886  __ add(Lbcp, O4, Lbcp);
1887  __ dispatch_next(vtos);
1888}
1889
1890
1891void TemplateTable::fast_binaryswitch() {
1892  transition(itos, vtos);
1893  // Implementation using the following core algorithm: (copied from Intel)
1894  //
1895  // int binary_search(int key, LookupswitchPair* array, int n) {
1896  //   // Binary search according to "Methodik des Programmierens" by
1897  //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1898  //   int i = 0;
1899  //   int j = n;
1900  //   while (i+1 < j) {
1901  //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1902  //     // with      Q: for all i: 0 <= i < n: key < a[i]
1903  //     // where a stands for the array and assuming that the (inexisting)
1904  //     // element a[n] is infinitely big.
1905  //     int h = (i + j) >> 1;
1906  //     // i < h < j
1907  //     if (key < array[h].fast_match()) {
1908  //       j = h;
1909  //     } else {
1910  //       i = h;
1911  //     }
1912  //   }
1913  //   // R: a[i] <= key < a[i+1] or Q
1914  //   // (i.e., if key is within array, i is the correct index)
1915  //   return i;
1916  // }
1917
1918  // register allocation
1919  assert(Otos_i == O0, "alias checking");
1920  const Register Rkey     = Otos_i;                    // already set (tosca)
1921  const Register Rarray   = O1;
1922  const Register Ri       = O2;
1923  const Register Rj       = O3;
1924  const Register Rh       = O4;
1925  const Register Rscratch = O5;
1926
1927  const int log_entry_size = 3;
1928  const int entry_size = 1 << log_entry_size;
1929
1930  Label found;
1931  // Find Array start
1932  __ add(Lbcp, 3 * BytesPerInt, Rarray);
1933  __ and3(Rarray, -BytesPerInt, Rarray);
1934  // initialize i & j (in delay slot)
1935  __ clr( Ri );
1936
1937  // and start
1938  Label entry;
1939  __ ba(entry);
1940  __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1941  // (Rj is already in the native byte-ordering.)
1942
1943  // binary search loop
1944  { Label loop;
1945    __ bind( loop );
1946    // int h = (i + j) >> 1;
1947    __ sra( Rh, 1, Rh );
1948    // if (key < array[h].fast_match()) {
1949    //   j = h;
1950    // } else {
1951    //   i = h;
1952    // }
1953    __ sll( Rh, log_entry_size, Rscratch );
1954    __ ld( Rarray, Rscratch, Rscratch );
1955    // (Rscratch is already in the native byte-ordering.)
1956    __ cmp( Rkey, Rscratch );
1957    __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1958    __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1959
1960    // while (i+1 < j)
1961    __ bind( entry );
1962    __ add( Ri, 1, Rscratch );
1963    __ cmp(Rscratch, Rj);
1964    __ br( Assembler::less, true, Assembler::pt, loop );
1965    __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1966  }
1967
1968  // end of binary search, result index is i (must check again!)
1969  Label default_case;
1970  Label continue_execution;
1971  if (ProfileInterpreter) {
1972    __ mov( Ri, Rh );              // Save index in i for profiling
1973  }
1974  __ sll( Ri, log_entry_size, Ri );
1975  __ ld( Rarray, Ri, Rscratch );
1976  // (Rscratch is already in the native byte-ordering.)
1977  __ cmp( Rkey, Rscratch );
1978  __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1979  __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1980
1981  // entry found -> j = offset
1982  __ inc( Ri, BytesPerInt );
1983  __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1984  __ ld( Rarray, Ri, Rj );
1985  // (Rj is already in the native byte-ordering.)
1986
1987  if (ProfileInterpreter) {
1988    __ ba_short(continue_execution);
1989  }
1990
1991  __ bind(default_case); // fall through (if not profiling)
1992  __ profile_switch_default(Ri);
1993
1994  __ bind(continue_execution);
1995  __ add( Lbcp, Rj, Lbcp );
1996  __ dispatch_next( vtos );
1997}
1998
1999
2000void TemplateTable::_return(TosState state) {
2001  transition(state, state);
2002  assert(_desc->calls_vm(), "inconsistent calls_vm information");
2003
2004  if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2005    assert(state == vtos, "only valid state");
2006    __ mov(G0, G3_scratch);
2007    __ access_local_ptr(G3_scratch, Otos_i);
2008    __ load_klass(Otos_i, O2);
2009    __ set(JVM_ACC_HAS_FINALIZER, G3);
2010    __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
2011    __ andcc(G3, O2, G0);
2012    Label skip_register_finalizer;
2013    __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2014    __ delayed()->nop();
2015
2016    // Call out to do finalizer registration
2017    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2018
2019    __ bind(skip_register_finalizer);
2020  }
2021
2022  // Narrow result if state is itos but result type is smaller.
2023  // Need to narrow in the return bytecode rather than in generate_return_entry
2024  // since compiled code callers expect the result to already be narrowed.
2025  if (state == itos) {
2026    __ narrow(Otos_i);
2027  }
2028  __ remove_activation(state, /* throw_monitor_exception */ true);
2029
2030  // The caller's SP was adjusted upon method entry to accomodate
2031  // the callee's non-argument locals. Undo that adjustment.
2032  __ ret();                             // return to caller
2033  __ delayed()->restore(I5_savedSP, G0, SP);
2034}
2035
2036
2037// ----------------------------------------------------------------------------
2038// Volatile variables demand their effects be made known to all CPU's in
2039// order.  Store buffers on most chips allow reads & writes to reorder; the
2040// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2041// memory barrier (i.e., it's not sufficient that the interpreter does not
2042// reorder volatile references, the hardware also must not reorder them).
2043//
2044// According to the new Java Memory Model (JMM):
2045// (1) All volatiles are serialized wrt to each other.
2046// ALSO reads & writes act as aquire & release, so:
2047// (2) A read cannot let unrelated NON-volatile memory refs that happen after
2048// the read float up to before the read.  It's OK for non-volatile memory refs
2049// that happen before the volatile read to float down below it.
2050// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2051// that happen BEFORE the write float down to after the write.  It's OK for
2052// non-volatile memory refs that happen after the volatile write to float up
2053// before it.
2054//
2055// We only put in barriers around volatile refs (they are expensive), not
2056// _between_ memory refs (that would require us to track the flavor of the
2057// previous memory refs).  Requirements (2) and (3) require some barriers
2058// before volatile stores and after volatile loads.  These nearly cover
2059// requirement (1) but miss the volatile-store-volatile-load case.  This final
2060// case is placed after volatile-stores although it could just as well go
2061// before volatile-loads.
2062void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2063  // Helper function to insert a is-volatile test and memory barrier
2064  // All current sparc implementations run in TSO, needing only StoreLoad
2065  if ((order_constraint & Assembler::StoreLoad) == 0) return;
2066  __ membar( order_constraint );
2067}
2068
2069// ----------------------------------------------------------------------------
2070void TemplateTable::resolve_cache_and_index(int byte_no,
2071                                            Register Rcache,
2072                                            Register index,
2073                                            size_t index_size) {
2074  // Depends on cpCacheOop layout!
2075
2076  Label resolved;
2077  Bytecodes::Code code = bytecode();
2078  switch (code) {
2079  case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2080  case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2081  }
2082
2083  assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2084  __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2085  __ cmp(Lbyte_code, code);  // have we resolved this bytecode?
2086  __ br(Assembler::equal, false, Assembler::pt, resolved);
2087  __ delayed()->set(code, O1);
2088
2089  address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2090  // first time invocation - must resolve first
2091  __ call_VM(noreg, entry, O1);
2092  // Update registers with resolved info
2093  __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2094  __ bind(resolved);
2095}
2096
2097void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2098                                               Register method,
2099                                               Register itable_index,
2100                                               Register flags,
2101                                               bool is_invokevirtual,
2102                                               bool is_invokevfinal,
2103                                               bool is_invokedynamic) {
2104  // Uses both G3_scratch and G4_scratch
2105  Register cache = G3_scratch;
2106  Register index = G4_scratch;
2107  assert_different_registers(cache, method, itable_index);
2108
2109  // determine constant pool cache field offsets
2110  assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2111  const int method_offset = in_bytes(
2112      ConstantPoolCache::base_offset() +
2113      ((byte_no == f2_byte)
2114       ? ConstantPoolCacheEntry::f2_offset()
2115       : ConstantPoolCacheEntry::f1_offset()
2116      )
2117    );
2118  const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2119                                    ConstantPoolCacheEntry::flags_offset());
2120  // access constant pool cache fields
2121  const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2122                                    ConstantPoolCacheEntry::f2_offset());
2123
2124  if (is_invokevfinal) {
2125    __ get_cache_and_index_at_bcp(cache, index, 1);
2126    __ ld_ptr(Address(cache, method_offset), method);
2127  } else {
2128    size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2129    resolve_cache_and_index(byte_no, cache, index, index_size);
2130    __ ld_ptr(Address(cache, method_offset), method);
2131  }
2132
2133  if (itable_index != noreg) {
2134    // pick up itable or appendix index from f2 also:
2135    __ ld_ptr(Address(cache, index_offset), itable_index);
2136  }
2137  __ ld_ptr(Address(cache, flags_offset), flags);
2138}
2139
2140// The Rcache register must be set before call
2141void TemplateTable::load_field_cp_cache_entry(Register Robj,
2142                                              Register Rcache,
2143                                              Register index,
2144                                              Register Roffset,
2145                                              Register Rflags,
2146                                              bool is_static) {
2147  assert_different_registers(Rcache, Rflags, Roffset);
2148
2149  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2150
2151  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2152  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2153  if (is_static) {
2154    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2155    const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2156    __ ld_ptr( Robj, mirror_offset, Robj);
2157  }
2158}
2159
2160// The registers Rcache and index expected to be set before call.
2161// Correct values of the Rcache and index registers are preserved.
2162void TemplateTable::jvmti_post_field_access(Register Rcache,
2163                                            Register index,
2164                                            bool is_static,
2165                                            bool has_tos) {
2166  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2167
2168  if (JvmtiExport::can_post_field_access()) {
2169    // Check to see if a field access watch has been set before we take
2170    // the time to call into the VM.
2171    Label Label1;
2172    assert_different_registers(Rcache, index, G1_scratch);
2173    AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2174    __ load_contents(get_field_access_count_addr, G1_scratch);
2175    __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2176
2177    __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2178
2179    if (is_static) {
2180      __ clr(Otos_i);
2181    } else {
2182      if (has_tos) {
2183      // save object pointer before call_VM() clobbers it
2184        __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2185      } else {
2186        // Load top of stack (do not pop the value off the stack);
2187        __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2188      }
2189      __ verify_oop(Otos_i);
2190    }
2191    // Otos_i: object pointer or NULL if static
2192    // Rcache: cache entry pointer
2193    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2194               Otos_i, Rcache);
2195    if (!is_static && has_tos) {
2196      __ pop_ptr(Otos_i);  // restore object pointer
2197      __ verify_oop(Otos_i);
2198    }
2199    __ get_cache_and_index_at_bcp(Rcache, index, 1);
2200    __ bind(Label1);
2201  }
2202}
2203
2204void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2205  transition(vtos, vtos);
2206
2207  Register Rcache = G3_scratch;
2208  Register index  = G4_scratch;
2209  Register Rclass = Rcache;
2210  Register Roffset= G4_scratch;
2211  Register Rflags = G1_scratch;
2212  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2213
2214  resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2215  jvmti_post_field_access(Rcache, index, is_static, false);
2216  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2217
2218  if (!is_static) {
2219    pop_and_check_object(Rclass);
2220  } else {
2221    __ verify_oop(Rclass);
2222  }
2223
2224  Label exit;
2225
2226  Assembler::Membar_mask_bits membar_bits =
2227    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2228
2229  if (__ membar_has_effect(membar_bits)) {
2230    // Get volatile flag
2231    __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2232    __ and3(Rflags, Lscratch, Lscratch);
2233  }
2234
2235  Label checkVolatile;
2236
2237  // compute field type
2238  Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2239  __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2240  // Make sure we don't need to mask Rflags after the above shift
2241  ConstantPoolCacheEntry::verify_tos_state_shift();
2242
2243  // Check atos before itos for getstatic, more likely (in Queens at least)
2244  __ cmp(Rflags, atos);
2245  __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2246  __ delayed() ->cmp(Rflags, itos);
2247
2248  // atos
2249  __ load_heap_oop(Rclass, Roffset, Otos_i);
2250  __ verify_oop(Otos_i);
2251  __ push(atos);
2252  if (!is_static && rc == may_rewrite) {
2253    patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2254  }
2255  __ ba(checkVolatile);
2256  __ delayed()->tst(Lscratch);
2257
2258  __ bind(notObj);
2259
2260  // cmp(Rflags, itos);
2261  __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2262  __ delayed() ->cmp(Rflags, ltos);
2263
2264  // itos
2265  __ ld(Rclass, Roffset, Otos_i);
2266  __ push(itos);
2267  if (!is_static && rc == may_rewrite) {
2268    patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2269  }
2270  __ ba(checkVolatile);
2271  __ delayed()->tst(Lscratch);
2272
2273  __ bind(notInt);
2274
2275  // cmp(Rflags, ltos);
2276  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2277  __ delayed() ->cmp(Rflags, btos);
2278
2279  // ltos
2280  // load must be atomic
2281  __ ld_long(Rclass, Roffset, Otos_l);
2282  __ push(ltos);
2283  if (!is_static && rc == may_rewrite) {
2284    patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2285  }
2286  __ ba(checkVolatile);
2287  __ delayed()->tst(Lscratch);
2288
2289  __ bind(notLong);
2290
2291  // cmp(Rflags, btos);
2292  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2293  __ delayed() ->cmp(Rflags, ztos);
2294
2295  // btos
2296  __ ldsb(Rclass, Roffset, Otos_i);
2297  __ push(itos);
2298  if (!is_static && rc == may_rewrite) {
2299    patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2300  }
2301  __ ba(checkVolatile);
2302  __ delayed()->tst(Lscratch);
2303
2304  __ bind(notByte);
2305
2306  // cmp(Rflags, ztos);
2307  __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2308  __ delayed() ->cmp(Rflags, ctos);
2309
2310  // ztos
2311  __ ldsb(Rclass, Roffset, Otos_i);
2312  __ push(itos);
2313  if (!is_static && rc == may_rewrite) {
2314    // use btos rewriting, no truncating to t/f bit is needed for getfield.
2315    patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2316  }
2317  __ ba(checkVolatile);
2318  __ delayed()->tst(Lscratch);
2319
2320  __ bind(notBool);
2321
2322  // cmp(Rflags, ctos);
2323  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2324  __ delayed() ->cmp(Rflags, stos);
2325
2326  // ctos
2327  __ lduh(Rclass, Roffset, Otos_i);
2328  __ push(itos);
2329  if (!is_static && rc == may_rewrite) {
2330    patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2331  }
2332  __ ba(checkVolatile);
2333  __ delayed()->tst(Lscratch);
2334
2335  __ bind(notChar);
2336
2337  // cmp(Rflags, stos);
2338  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2339  __ delayed() ->cmp(Rflags, ftos);
2340
2341  // stos
2342  __ ldsh(Rclass, Roffset, Otos_i);
2343  __ push(itos);
2344  if (!is_static && rc == may_rewrite) {
2345    patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2346  }
2347  __ ba(checkVolatile);
2348  __ delayed()->tst(Lscratch);
2349
2350  __ bind(notShort);
2351
2352
2353  // cmp(Rflags, ftos);
2354  __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2355  __ delayed() ->tst(Lscratch);
2356
2357  // ftos
2358  __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2359  __ push(ftos);
2360  if (!is_static && rc == may_rewrite) {
2361    patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2362  }
2363  __ ba(checkVolatile);
2364  __ delayed()->tst(Lscratch);
2365
2366  __ bind(notFloat);
2367
2368
2369  // dtos
2370  __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2371  __ push(dtos);
2372  if (!is_static && rc == may_rewrite) {
2373    patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2374  }
2375
2376  __ bind(checkVolatile);
2377  if (__ membar_has_effect(membar_bits)) {
2378    // __ tst(Lscratch); executed in delay slot
2379    __ br(Assembler::zero, false, Assembler::pt, exit);
2380    __ delayed()->nop();
2381    volatile_barrier(membar_bits);
2382  }
2383
2384  __ bind(exit);
2385}
2386
2387void TemplateTable::getfield(int byte_no) {
2388  getfield_or_static(byte_no, false);
2389}
2390
2391void TemplateTable::nofast_getfield(int byte_no) {
2392  getfield_or_static(byte_no, false, may_not_rewrite);
2393}
2394
2395void TemplateTable::getstatic(int byte_no) {
2396  getfield_or_static(byte_no, true);
2397}
2398
2399void TemplateTable::fast_accessfield(TosState state) {
2400  transition(atos, state);
2401  Register Rcache  = G3_scratch;
2402  Register index   = G4_scratch;
2403  Register Roffset = G4_scratch;
2404  Register Rflags  = Rcache;
2405  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2406
2407  __ get_cache_and_index_at_bcp(Rcache, index, 1);
2408  jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2409
2410  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2411
2412  __ null_check(Otos_i);
2413  __ verify_oop(Otos_i);
2414
2415  Label exit;
2416
2417  Assembler::Membar_mask_bits membar_bits =
2418    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2419  if (__ membar_has_effect(membar_bits)) {
2420    // Get volatile flag
2421    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2422    __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2423  }
2424
2425  switch (bytecode()) {
2426    case Bytecodes::_fast_bgetfield:
2427      __ ldsb(Otos_i, Roffset, Otos_i);
2428      break;
2429    case Bytecodes::_fast_cgetfield:
2430      __ lduh(Otos_i, Roffset, Otos_i);
2431      break;
2432    case Bytecodes::_fast_sgetfield:
2433      __ ldsh(Otos_i, Roffset, Otos_i);
2434      break;
2435    case Bytecodes::_fast_igetfield:
2436      __ ld(Otos_i, Roffset, Otos_i);
2437      break;
2438    case Bytecodes::_fast_lgetfield:
2439      __ ld_long(Otos_i, Roffset, Otos_l);
2440      break;
2441    case Bytecodes::_fast_fgetfield:
2442      __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2443      break;
2444    case Bytecodes::_fast_dgetfield:
2445      __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2446      break;
2447    case Bytecodes::_fast_agetfield:
2448      __ load_heap_oop(Otos_i, Roffset, Otos_i);
2449      break;
2450    default:
2451      ShouldNotReachHere();
2452  }
2453
2454  if (__ membar_has_effect(membar_bits)) {
2455    __ btst(Lscratch, Rflags);
2456    __ br(Assembler::zero, false, Assembler::pt, exit);
2457    __ delayed()->nop();
2458    volatile_barrier(membar_bits);
2459    __ bind(exit);
2460  }
2461
2462  if (state == atos) {
2463    __ verify_oop(Otos_i);    // does not blow flags!
2464  }
2465}
2466
2467void TemplateTable::jvmti_post_fast_field_mod() {
2468  if (JvmtiExport::can_post_field_modification()) {
2469    // Check to see if a field modification watch has been set before we take
2470    // the time to call into the VM.
2471    Label done;
2472    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2473    __ load_contents(get_field_modification_count_addr, G4_scratch);
2474    __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2475    __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2476    __ verify_oop(G4_scratch);
2477    __ push_ptr(G4_scratch);    // put the object pointer back on tos
2478    __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2479    // Save tos values before call_VM() clobbers them. Since we have
2480    // to do it for every data type, we use the saved values as the
2481    // jvalue object.
2482    switch (bytecode()) {  // save tos values before call_VM() clobbers them
2483    case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2484    case Bytecodes::_fast_bputfield: // fall through
2485    case Bytecodes::_fast_zputfield: // fall through
2486    case Bytecodes::_fast_sputfield: // fall through
2487    case Bytecodes::_fast_cputfield: // fall through
2488    case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2489    case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2490    case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2491    // get words in right order for use as jvalue object
2492    case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2493    }
2494    // setup pointer to jvalue object
2495    __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2496    // G4_scratch:  object pointer
2497    // G1_scratch: cache entry pointer
2498    // G3_scratch: jvalue object on the stack
2499    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2500    switch (bytecode()) {             // restore tos values
2501    case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2502    case Bytecodes::_fast_bputfield: // fall through
2503    case Bytecodes::_fast_zputfield: // fall through
2504    case Bytecodes::_fast_sputfield: // fall through
2505    case Bytecodes::_fast_cputfield: // fall through
2506    case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2507    case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2508    case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2509    case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2510    }
2511    __ bind(done);
2512  }
2513}
2514
2515// The registers Rcache and index expected to be set before call.
2516// The function may destroy various registers, just not the Rcache and index registers.
2517void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2518  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2519
2520  if (JvmtiExport::can_post_field_modification()) {
2521    // Check to see if a field modification watch has been set before we take
2522    // the time to call into the VM.
2523    Label Label1;
2524    assert_different_registers(Rcache, index, G1_scratch);
2525    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2526    __ load_contents(get_field_modification_count_addr, G1_scratch);
2527    __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2528
2529    // The Rcache and index registers have been already set.
2530    // This allows to eliminate this call but the Rcache and index
2531    // registers must be correspondingly used after this line.
2532    __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2533
2534    __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2535    if (is_static) {
2536      // Life is simple.  Null out the object pointer.
2537      __ clr(G4_scratch);
2538    } else {
2539      Register Rflags = G1_scratch;
2540      // Life is harder. The stack holds the value on top, followed by the
2541      // object.  We don't know the size of the value, though; it could be
2542      // one or two words depending on its type. As a result, we must find
2543      // the type to determine where the object is.
2544
2545      Label two_word, valsizeknown;
2546      __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2547      __ mov(Lesp, G4_scratch);
2548      __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2549      // Make sure we don't need to mask Rflags after the above shift
2550      ConstantPoolCacheEntry::verify_tos_state_shift();
2551      __ cmp(Rflags, ltos);
2552      __ br(Assembler::equal, false, Assembler::pt, two_word);
2553      __ delayed()->cmp(Rflags, dtos);
2554      __ br(Assembler::equal, false, Assembler::pt, two_word);
2555      __ delayed()->nop();
2556      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2557      __ ba_short(valsizeknown);
2558      __ bind(two_word);
2559
2560      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2561
2562      __ bind(valsizeknown);
2563      // setup object pointer
2564      __ ld_ptr(G4_scratch, 0, G4_scratch);
2565      __ verify_oop(G4_scratch);
2566    }
2567    // setup pointer to jvalue object
2568    __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2569    // G4_scratch:  object pointer or NULL if static
2570    // G3_scratch: cache entry pointer
2571    // G1_scratch: jvalue object on the stack
2572    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2573               G4_scratch, G3_scratch, G1_scratch);
2574    __ get_cache_and_index_at_bcp(Rcache, index, 1);
2575    __ bind(Label1);
2576  }
2577}
2578
2579void TemplateTable::pop_and_check_object(Register r) {
2580  __ pop_ptr(r);
2581  __ null_check(r);  // for field access must check obj.
2582  __ verify_oop(r);
2583}
2584
2585void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2586  transition(vtos, vtos);
2587  Register Rcache = G3_scratch;
2588  Register index  = G4_scratch;
2589  Register Rclass = Rcache;
2590  Register Roffset= G4_scratch;
2591  Register Rflags = G1_scratch;
2592  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2593
2594  resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2595  jvmti_post_field_mod(Rcache, index, is_static);
2596  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2597
2598  Assembler::Membar_mask_bits read_bits =
2599    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2600  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2601
2602  Label notVolatile, checkVolatile, exit;
2603  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2604    __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2605    __ and3(Rflags, Lscratch, Lscratch);
2606
2607    if (__ membar_has_effect(read_bits)) {
2608      __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2609      volatile_barrier(read_bits);
2610      __ bind(notVolatile);
2611    }
2612  }
2613
2614  __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2615  // Make sure we don't need to mask Rflags after the above shift
2616  ConstantPoolCacheEntry::verify_tos_state_shift();
2617
2618  // compute field type
2619  Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
2620
2621  if (is_static) {
2622    // putstatic with object type most likely, check that first
2623    __ cmp(Rflags, atos);
2624    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2625    __ delayed()->cmp(Rflags, itos);
2626
2627    // atos
2628    {
2629      __ pop_ptr();
2630      __ verify_oop(Otos_i);
2631      do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2632      __ ba(checkVolatile);
2633      __ delayed()->tst(Lscratch);
2634    }
2635
2636    __ bind(notObj);
2637    // cmp(Rflags, itos);
2638    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2639    __ delayed()->cmp(Rflags, btos);
2640
2641    // itos
2642    {
2643      __ pop_i();
2644      __ st(Otos_i, Rclass, Roffset);
2645      __ ba(checkVolatile);
2646      __ delayed()->tst(Lscratch);
2647    }
2648
2649    __ bind(notInt);
2650  } else {
2651    // putfield with int type most likely, check that first
2652    __ cmp(Rflags, itos);
2653    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2654    __ delayed()->cmp(Rflags, atos);
2655
2656    // itos
2657    {
2658      __ pop_i();
2659      pop_and_check_object(Rclass);
2660      __ st(Otos_i, Rclass, Roffset);
2661      if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2662      __ ba(checkVolatile);
2663      __ delayed()->tst(Lscratch);
2664    }
2665
2666    __ bind(notInt);
2667    // cmp(Rflags, atos);
2668    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2669    __ delayed()->cmp(Rflags, btos);
2670
2671    // atos
2672    {
2673      __ pop_ptr();
2674      pop_and_check_object(Rclass);
2675      __ verify_oop(Otos_i);
2676      do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2677      if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2678      __ ba(checkVolatile);
2679      __ delayed()->tst(Lscratch);
2680    }
2681
2682    __ bind(notObj);
2683  }
2684
2685  // cmp(Rflags, btos);
2686  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2687  __ delayed()->cmp(Rflags, ztos);
2688
2689  // btos
2690  {
2691    __ pop_i();
2692    if (!is_static) pop_and_check_object(Rclass);
2693    __ stb(Otos_i, Rclass, Roffset);
2694    if (!is_static && rc == may_rewrite) {
2695      patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2696    }
2697    __ ba(checkVolatile);
2698    __ delayed()->tst(Lscratch);
2699  }
2700
2701  __ bind(notByte);
2702
2703  // cmp(Rflags, btos);
2704  __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2705  __ delayed()->cmp(Rflags, ltos);
2706
2707  // ztos
2708  {
2709    __ pop_i();
2710    if (!is_static) pop_and_check_object(Rclass);
2711    __ and3(Otos_i, 1, Otos_i);
2712    __ stb(Otos_i, Rclass, Roffset);
2713    if (!is_static && rc == may_rewrite) {
2714      patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
2715    }
2716    __ ba(checkVolatile);
2717    __ delayed()->tst(Lscratch);
2718  }
2719
2720  __ bind(notBool);
2721  // cmp(Rflags, ltos);
2722  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2723  __ delayed()->cmp(Rflags, ctos);
2724
2725  // ltos
2726  {
2727    __ pop_l();
2728    if (!is_static) pop_and_check_object(Rclass);
2729    __ st_long(Otos_l, Rclass, Roffset);
2730    if (!is_static && rc == may_rewrite) {
2731      patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2732    }
2733    __ ba(checkVolatile);
2734    __ delayed()->tst(Lscratch);
2735  }
2736
2737  __ bind(notLong);
2738  // cmp(Rflags, ctos);
2739  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2740  __ delayed()->cmp(Rflags, stos);
2741
2742  // ctos (char)
2743  {
2744    __ pop_i();
2745    if (!is_static) pop_and_check_object(Rclass);
2746    __ sth(Otos_i, Rclass, Roffset);
2747    if (!is_static && rc == may_rewrite) {
2748      patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2749    }
2750    __ ba(checkVolatile);
2751    __ delayed()->tst(Lscratch);
2752  }
2753
2754  __ bind(notChar);
2755  // cmp(Rflags, stos);
2756  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2757  __ delayed()->cmp(Rflags, ftos);
2758
2759  // stos (short)
2760  {
2761    __ pop_i();
2762    if (!is_static) pop_and_check_object(Rclass);
2763    __ sth(Otos_i, Rclass, Roffset);
2764    if (!is_static && rc == may_rewrite) {
2765      patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2766    }
2767    __ ba(checkVolatile);
2768    __ delayed()->tst(Lscratch);
2769  }
2770
2771  __ bind(notShort);
2772  // cmp(Rflags, ftos);
2773  __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2774  __ delayed()->nop();
2775
2776  // ftos
2777  {
2778    __ pop_f();
2779    if (!is_static) pop_and_check_object(Rclass);
2780    __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2781    if (!is_static && rc == may_rewrite) {
2782      patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2783    }
2784    __ ba(checkVolatile);
2785    __ delayed()->tst(Lscratch);
2786  }
2787
2788  __ bind(notFloat);
2789
2790  // dtos
2791  {
2792    __ pop_d();
2793    if (!is_static) pop_and_check_object(Rclass);
2794    __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2795    if (!is_static && rc == may_rewrite) {
2796      patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2797    }
2798  }
2799
2800  __ bind(checkVolatile);
2801  __ tst(Lscratch);
2802
2803  if (__ membar_has_effect(write_bits)) {
2804    // __ tst(Lscratch); in delay slot
2805    __ br(Assembler::zero, false, Assembler::pt, exit);
2806    __ delayed()->nop();
2807    volatile_barrier(Assembler::StoreLoad);
2808    __ bind(exit);
2809  }
2810}
2811
2812void TemplateTable::fast_storefield(TosState state) {
2813  transition(state, vtos);
2814  Register Rcache = G3_scratch;
2815  Register Rclass = Rcache;
2816  Register Roffset= G4_scratch;
2817  Register Rflags = G1_scratch;
2818  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2819
2820  jvmti_post_fast_field_mod();
2821
2822  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2823
2824  Assembler::Membar_mask_bits read_bits =
2825    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2826  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2827
2828  Label notVolatile, checkVolatile, exit;
2829  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2830    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2831    __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2832    __ and3(Rflags, Lscratch, Lscratch);
2833    if (__ membar_has_effect(read_bits)) {
2834      __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2835      volatile_barrier(read_bits);
2836      __ bind(notVolatile);
2837    }
2838  }
2839
2840  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2841  pop_and_check_object(Rclass);
2842
2843  switch (bytecode()) {
2844    case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i);  // fall through to bputfield
2845    case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2846    case Bytecodes::_fast_cputfield: /* fall through */
2847    case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2848    case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2849    case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2850    case Bytecodes::_fast_fputfield:
2851      __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2852      break;
2853    case Bytecodes::_fast_dputfield:
2854      __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2855      break;
2856    case Bytecodes::_fast_aputfield:
2857      do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2858      break;
2859    default:
2860      ShouldNotReachHere();
2861  }
2862
2863  if (__ membar_has_effect(write_bits)) {
2864    __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2865    volatile_barrier(Assembler::StoreLoad);
2866    __ bind(exit);
2867  }
2868}
2869
2870void TemplateTable::putfield(int byte_no) {
2871  putfield_or_static(byte_no, false);
2872}
2873
2874void TemplateTable::nofast_putfield(int byte_no) {
2875  putfield_or_static(byte_no, false, may_not_rewrite);
2876}
2877
2878void TemplateTable::putstatic(int byte_no) {
2879  putfield_or_static(byte_no, true);
2880}
2881
2882void TemplateTable::fast_xaccess(TosState state) {
2883  transition(vtos, state);
2884  Register Rcache = G3_scratch;
2885  Register Roffset = G4_scratch;
2886  Register Rflags  = G4_scratch;
2887  Register Rreceiver = Lscratch;
2888
2889  __ ld_ptr(Llocals, 0, Rreceiver);
2890
2891  // access constant pool cache  (is resolved)
2892  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2893  __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2894  __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2895
2896  __ verify_oop(Rreceiver);
2897  __ null_check(Rreceiver);
2898  if (state == atos) {
2899    __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2900  } else if (state == itos) {
2901    __ ld (Rreceiver, Roffset, Otos_i) ;
2902  } else if (state == ftos) {
2903    __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2904  } else {
2905    ShouldNotReachHere();
2906  }
2907
2908  Assembler::Membar_mask_bits membar_bits =
2909    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2910  if (__ membar_has_effect(membar_bits)) {
2911
2912    // Get is_volatile value in Rflags and check if membar is needed
2913    __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2914
2915    // Test volatile
2916    Label notVolatile;
2917    __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2918    __ btst(Rflags, Lscratch);
2919    __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2920    __ delayed()->nop();
2921    volatile_barrier(membar_bits);
2922    __ bind(notVolatile);
2923  }
2924
2925  __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2926  __ sub(Lbcp, 1, Lbcp);
2927}
2928
2929//----------------------------------------------------------------------------------------------------
2930// Calls
2931
2932void TemplateTable::count_calls(Register method, Register temp) {
2933  // implemented elsewhere
2934  ShouldNotReachHere();
2935}
2936
2937void TemplateTable::prepare_invoke(int byte_no,
2938                                   Register method,  // linked method (or i-klass)
2939                                   Register ra,      // return address
2940                                   Register index,   // itable index, MethodType, etc.
2941                                   Register recv,    // if caller wants to see it
2942                                   Register flags    // if caller wants to test it
2943                                   ) {
2944  // determine flags
2945  const Bytecodes::Code code = bytecode();
2946  const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2947  const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2948  const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2949  const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2950  const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2951  const bool load_receiver       = (recv != noreg);
2952  assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2953  assert(recv  == noreg || recv  == O0, "");
2954  assert(flags == noreg || flags == O1, "");
2955
2956  // setup registers & access constant pool cache
2957  if (recv  == noreg)  recv  = O0;
2958  if (flags == noreg)  flags = O1;
2959  const Register temp = O2;
2960  assert_different_registers(method, ra, index, recv, flags, temp);
2961
2962  load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2963
2964  __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2965
2966  // maybe push appendix to arguments
2967  if (is_invokedynamic || is_invokehandle) {
2968    Label L_no_push;
2969    __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2970    __ btst(flags, temp);
2971    __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2972    __ delayed()->nop();
2973    // Push the appendix as a trailing parameter.
2974    // This must be done before we get the receiver,
2975    // since the parameter_size includes it.
2976    assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2977    __ load_resolved_reference_at_index(temp, index);
2978    __ verify_oop(temp);
2979    __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2980    __ bind(L_no_push);
2981  }
2982
2983  // load receiver if needed (after appendix is pushed so parameter size is correct)
2984  if (load_receiver) {
2985    __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2986    __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2987    __ verify_oop(recv);
2988  }
2989
2990  // compute return type
2991  __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2992  // Make sure we don't need to mask flags after the above shift
2993  ConstantPoolCacheEntry::verify_tos_state_shift();
2994  // load return address
2995  {
2996    const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2997    AddressLiteral table(table_addr);
2998    __ set(table, temp);
2999    __ sll(ra, LogBytesPerWord, ra);
3000    __ ld_ptr(Address(temp, ra), ra);
3001  }
3002}
3003
3004
3005void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
3006  Register Rtemp = G4_scratch;
3007  Register Rcall = Rindex;
3008  assert_different_registers(Rcall, G5_method, Gargs, Rret);
3009
3010  // get target Method* & entry point
3011  __ lookup_virtual_method(Rrecv, Rindex, G5_method);
3012  __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3013  __ profile_called_method(G5_method, Rtemp);
3014  __ call_from_interpreter(Rcall, Gargs, Rret);
3015}
3016
3017void TemplateTable::invokevirtual(int byte_no) {
3018  transition(vtos, vtos);
3019  assert(byte_no == f2_byte, "use this argument");
3020
3021  Register Rscratch = G3_scratch;
3022  Register Rtemp    = G4_scratch;
3023  Register Rret     = Lscratch;
3024  Register O0_recv  = O0;
3025  Label notFinal;
3026
3027  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
3028  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3029
3030  // Check for vfinal
3031  __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
3032  __ btst(Rret, G4_scratch);
3033  __ br(Assembler::zero, false, Assembler::pt, notFinal);
3034  __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
3035
3036  if (RewriteBytecodes && !UseSharedSpaces) {
3037    patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
3038  }
3039
3040  invokevfinal_helper(Rscratch, Rret);
3041
3042  __ bind(notFinal);
3043
3044  __ mov(G5_method, Rscratch);  // better scratch register
3045  __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
3046  // receiver is in O0_recv
3047  __ verify_oop(O0_recv);
3048
3049  // get return address
3050  AddressLiteral table(Interpreter::invoke_return_entry_table());
3051  __ set(table, Rtemp);
3052  __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3053  // Make sure we don't need to mask Rret after the above shift
3054  ConstantPoolCacheEntry::verify_tos_state_shift();
3055  __ sll(Rret,  LogBytesPerWord, Rret);
3056  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3057
3058  // get receiver klass
3059  __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3060  __ load_klass(O0_recv, O0_recv);
3061  __ verify_klass_ptr(O0_recv);
3062
3063  __ profile_virtual_call(O0_recv, O4);
3064
3065  generate_vtable_call(O0_recv, Rscratch, Rret);
3066}
3067
3068void TemplateTable::fast_invokevfinal(int byte_no) {
3069  transition(vtos, vtos);
3070  assert(byte_no == f2_byte, "use this argument");
3071
3072  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3073                             /*is_invokevfinal*/true, false);
3074  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3075  invokevfinal_helper(G3_scratch, Lscratch);
3076}
3077
3078void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3079  Register Rtemp = G4_scratch;
3080
3081  // Load receiver from stack slot
3082  __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3083  __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3084  __ load_receiver(G4_scratch, O0);
3085
3086  // receiver NULL check
3087  __ null_check(O0);
3088
3089  __ profile_final_call(O4);
3090  __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3091
3092  // get return address
3093  AddressLiteral table(Interpreter::invoke_return_entry_table());
3094  __ set(table, Rtemp);
3095  __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3096  // Make sure we don't need to mask Rret after the above shift
3097  ConstantPoolCacheEntry::verify_tos_state_shift();
3098  __ sll(Rret,  LogBytesPerWord, Rret);
3099  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3100
3101
3102  // do the call
3103  __ call_from_interpreter(Rscratch, Gargs, Rret);
3104}
3105
3106
3107void TemplateTable::invokespecial(int byte_no) {
3108  transition(vtos, vtos);
3109  assert(byte_no == f1_byte, "use this argument");
3110
3111  const Register Rret     = Lscratch;
3112  const Register O0_recv  = O0;
3113  const Register Rscratch = G3_scratch;
3114
3115  prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3116  __ null_check(O0_recv);
3117
3118  // do the call
3119  __ profile_call(O4);
3120  __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3121  __ call_from_interpreter(Rscratch, Gargs, Rret);
3122}
3123
3124
3125void TemplateTable::invokestatic(int byte_no) {
3126  transition(vtos, vtos);
3127  assert(byte_no == f1_byte, "use this argument");
3128
3129  const Register Rret     = Lscratch;
3130  const Register Rscratch = G3_scratch;
3131
3132  prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3133
3134  // do the call
3135  __ profile_call(O4);
3136  __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3137  __ call_from_interpreter(Rscratch, Gargs, Rret);
3138}
3139
3140void TemplateTable::invokeinterface_object_method(Register RKlass,
3141                                                  Register Rcall,
3142                                                  Register Rret,
3143                                                  Register Rflags) {
3144  Register Rscratch = G4_scratch;
3145  Register Rindex = Lscratch;
3146
3147  assert_different_registers(Rscratch, Rindex, Rret);
3148
3149  Label notFinal;
3150
3151  // Check for vfinal
3152  __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3153  __ btst(Rflags, Rscratch);
3154  __ br(Assembler::zero, false, Assembler::pt, notFinal);
3155  __ delayed()->nop();
3156
3157  __ profile_final_call(O4);
3158
3159  // do the call - the index (f2) contains the Method*
3160  assert_different_registers(G5_method, Gargs, Rcall);
3161  __ mov(Rindex, G5_method);
3162  __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3163  __ call_from_interpreter(Rcall, Gargs, Rret);
3164  __ bind(notFinal);
3165
3166  __ profile_virtual_call(RKlass, O4);
3167  generate_vtable_call(RKlass, Rindex, Rret);
3168}
3169
3170
3171void TemplateTable::invokeinterface(int byte_no) {
3172  transition(vtos, vtos);
3173  assert(byte_no == f1_byte, "use this argument");
3174
3175  const Register Rinterface  = G1_scratch;
3176  const Register Rret        = G3_scratch;
3177  const Register Rindex      = Lscratch;
3178  const Register O0_recv     = O0;
3179  const Register O1_flags    = O1;
3180  const Register O2_Klass    = O2;
3181  const Register Rscratch    = G4_scratch;
3182  assert_different_registers(Rscratch, G5_method);
3183
3184  prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3185
3186  // get receiver klass
3187  __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3188  __ load_klass(O0_recv, O2_Klass);
3189
3190  // Special case of invokeinterface called for virtual method of
3191  // java.lang.Object.  See cpCacheOop.cpp for details.
3192  // This code isn't produced by javac, but could be produced by
3193  // another compliant java compiler.
3194  Label notMethod;
3195  __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3196  __ btst(O1_flags, Rscratch);
3197  __ br(Assembler::zero, false, Assembler::pt, notMethod);
3198  __ delayed()->nop();
3199
3200  invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3201
3202  __ bind(notMethod);
3203
3204  __ profile_virtual_call(O2_Klass, O4);
3205
3206  //
3207  // find entry point to call
3208  //
3209
3210  // compute start of first itableOffsetEntry (which is at end of vtable)
3211  const int base = in_bytes(Klass::vtable_start_offset());
3212  Label search;
3213  Register Rtemp = O1_flags;
3214
3215  __ ld(O2_Klass, in_bytes(Klass::vtable_length_offset()), Rtemp);
3216  __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3217  if (Assembler::is_simm13(base)) {
3218    __ add(Rtemp, base, Rtemp);
3219  } else {
3220    __ set(base, Rscratch);
3221    __ add(Rscratch, Rtemp, Rtemp);
3222  }
3223  __ add(O2_Klass, Rtemp, Rscratch);
3224
3225  __ bind(search);
3226
3227  __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3228  {
3229    Label ok;
3230
3231    // Check that entry is non-null.  Null entries are probably a bytecode
3232    // problem.  If the interface isn't implemented by the receiver class,
3233    // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3234    // this too but that's only if the entry isn't already resolved, so we
3235    // need to check again.
3236    __ br_notnull_short( Rtemp, Assembler::pt, ok);
3237    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3238    __ should_not_reach_here();
3239    __ bind(ok);
3240  }
3241
3242  __ cmp(Rinterface, Rtemp);
3243  __ brx(Assembler::notEqual, true, Assembler::pn, search);
3244  __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3245
3246  // entry found and Rscratch points to it
3247  __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3248
3249  assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3250  __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3251  __ add(Rscratch, Rindex, Rscratch);
3252  __ ld_ptr(O2_Klass, Rscratch, G5_method);
3253
3254  // Check for abstract method error.
3255  {
3256    Label ok;
3257    __ br_notnull_short(G5_method, Assembler::pt, ok);
3258    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3259    __ should_not_reach_here();
3260    __ bind(ok);
3261  }
3262
3263  Register Rcall = Rinterface;
3264  assert_different_registers(Rcall, G5_method, Gargs, Rret);
3265
3266  __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3267  __ profile_called_method(G5_method, Rscratch);
3268  __ call_from_interpreter(Rcall, Gargs, Rret);
3269}
3270
3271void TemplateTable::invokehandle(int byte_no) {
3272  transition(vtos, vtos);
3273  assert(byte_no == f1_byte, "use this argument");
3274
3275  const Register Rret       = Lscratch;
3276  const Register G4_mtype   = G4_scratch;
3277  const Register O0_recv    = O0;
3278  const Register Rscratch   = G3_scratch;
3279
3280  prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3281  __ null_check(O0_recv);
3282
3283  // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3284  // G5: MH.invokeExact_MT method (from f2)
3285
3286  // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3287
3288  // do the call
3289  __ verify_oop(G4_mtype);
3290  __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3291  __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3292  __ call_from_interpreter(Rscratch, Gargs, Rret);
3293}
3294
3295
3296void TemplateTable::invokedynamic(int byte_no) {
3297  transition(vtos, vtos);
3298  assert(byte_no == f1_byte, "use this argument");
3299
3300  const Register Rret        = Lscratch;
3301  const Register G4_callsite = G4_scratch;
3302  const Register Rscratch    = G3_scratch;
3303
3304  prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3305
3306  // G4: CallSite object (from cpool->resolved_references[f1])
3307  // G5: MH.linkToCallSite method (from f2)
3308
3309  // Note:  G4_callsite is already pushed by prepare_invoke
3310
3311  // %%% should make a type profile for any invokedynamic that takes a ref argument
3312  // profile this call
3313  __ profile_call(O4);
3314
3315  // do the call
3316  __ verify_oop(G4_callsite);
3317  __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3318  __ call_from_interpreter(Rscratch, Gargs, Rret);
3319}
3320
3321
3322//----------------------------------------------------------------------------------------------------
3323// Allocation
3324
3325void TemplateTable::_new() {
3326  transition(vtos, atos);
3327
3328  Label slow_case;
3329  Label done;
3330  Label initialize_header;
3331  Label initialize_object;  // including clearing the fields
3332
3333  Register RallocatedObject = Otos_i;
3334  Register RinstanceKlass = O1;
3335  Register Roffset = O3;
3336  Register Rscratch = O4;
3337
3338  __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3339  __ get_cpool_and_tags(Rscratch, G3_scratch);
3340  // make sure the class we're about to instantiate has been resolved
3341  // This is done before loading InstanceKlass to be consistent with the order
3342  // how Constant Pool is updated (see ConstantPool::klass_at_put)
3343  __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3344  __ ldub(G3_scratch, Roffset, G3_scratch);
3345  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3346  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3347  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3348  // get InstanceKlass
3349  //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3350  __ add(Roffset, sizeof(ConstantPool), Roffset);
3351  __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3352
3353  // make sure klass is fully initialized:
3354  __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3355  __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3356  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3357  __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3358
3359  // get instance_size in InstanceKlass (already aligned)
3360  //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3361
3362  // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3363  __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3364  __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3365  __ delayed()->nop();
3366
3367  // allocate the instance
3368  // 1) Try to allocate in the TLAB
3369  // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3370  // 3) if the above fails (or is not applicable), go to a slow case
3371  // (creates a new TLAB, etc.)
3372
3373  const bool allow_shared_alloc =
3374    Universe::heap()->supports_inline_contig_alloc();
3375
3376  if(UseTLAB) {
3377    Register RoldTopValue = RallocatedObject;
3378    Register RtlabWasteLimitValue = G3_scratch;
3379    Register RnewTopValue = G1_scratch;
3380    Register RendValue = Rscratch;
3381    Register RfreeValue = RnewTopValue;
3382
3383    // check if we can allocate in the TLAB
3384    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3385    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3386    __ add(RoldTopValue, Roffset, RnewTopValue);
3387
3388    // if there is enough space, we do not CAS and do not clear
3389    __ cmp(RnewTopValue, RendValue);
3390    if(ZeroTLAB) {
3391      // the fields have already been cleared
3392      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3393    } else {
3394      // initialize both the header and fields
3395      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3396    }
3397    __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3398
3399    if (allow_shared_alloc) {
3400      // Check if tlab should be discarded (refill_waste_limit >= free)
3401      __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3402      __ sub(RendValue, RoldTopValue, RfreeValue);
3403#ifdef _LP64
3404      __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3405#else
3406      __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3407#endif
3408      __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3409
3410      // increment waste limit to prevent getting stuck on this slow path
3411      if (Assembler::is_simm13(ThreadLocalAllocBuffer::refill_waste_limit_increment())) {
3412        __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3413      } else {
3414        // set64 does not use the temp register if the given constant is 32 bit. So
3415        // we can just use any register; using G0 results in ignoring of the upper 32 bit
3416        // of that value.
3417        __ set64(ThreadLocalAllocBuffer::refill_waste_limit_increment(), G4_scratch, G0);
3418        __ add(RtlabWasteLimitValue, G4_scratch, RtlabWasteLimitValue);
3419      }
3420      __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3421    } else {
3422      // No allocation in the shared eden.
3423      __ ba_short(slow_case);
3424    }
3425  }
3426
3427  // Allocation in the shared Eden
3428  if (allow_shared_alloc) {
3429    Register RoldTopValue = G1_scratch;
3430    Register RtopAddr = G3_scratch;
3431    Register RnewTopValue = RallocatedObject;
3432    Register RendValue = Rscratch;
3433
3434    __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3435
3436    Label retry;
3437    __ bind(retry);
3438    __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3439    __ ld_ptr(RendValue, 0, RendValue);
3440    __ ld_ptr(RtopAddr, 0, RoldTopValue);
3441    __ add(RoldTopValue, Roffset, RnewTopValue);
3442
3443    // RnewTopValue contains the top address after the new object
3444    // has been allocated.
3445    __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3446
3447    __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3448
3449    // if someone beat us on the allocation, try again, otherwise continue
3450    __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3451
3452    // bump total bytes allocated by this thread
3453    // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3454    __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3455  }
3456
3457  if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3458    // clear object fields
3459    __ bind(initialize_object);
3460    __ deccc(Roffset, sizeof(oopDesc));
3461    __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3462    __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3463
3464    // initialize remaining object fields
3465    if (UseBlockZeroing) {
3466      // Use BIS for zeroing
3467      __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3468    } else {
3469      Label loop;
3470      __ subcc(Roffset, wordSize, Roffset);
3471      __ bind(loop);
3472      //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3473      __ st_ptr(G0, G3_scratch, Roffset);
3474      __ br(Assembler::notEqual, false, Assembler::pt, loop);
3475      __ delayed()->subcc(Roffset, wordSize, Roffset);
3476    }
3477    __ ba_short(initialize_header);
3478  }
3479
3480  // slow case
3481  __ bind(slow_case);
3482  __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3483  __ get_constant_pool(O1);
3484
3485  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3486
3487  __ ba_short(done);
3488
3489  // Initialize the header: mark, klass
3490  __ bind(initialize_header);
3491
3492  if (UseBiasedLocking) {
3493    __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3494  } else {
3495    __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3496  }
3497  __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3498  __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3499  __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3500
3501  {
3502    SkipIfEqual skip_if(
3503      _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3504    // Trigger dtrace event
3505    __ push(atos);
3506    __ call_VM_leaf(noreg,
3507       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3508    __ pop(atos);
3509  }
3510
3511  // continue
3512  __ bind(done);
3513}
3514
3515
3516
3517void TemplateTable::newarray() {
3518  transition(itos, atos);
3519  __ ldub(Lbcp, 1, O1);
3520     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3521}
3522
3523
3524void TemplateTable::anewarray() {
3525  transition(itos, atos);
3526  __ get_constant_pool(O1);
3527  __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3528     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3529}
3530
3531
3532void TemplateTable::arraylength() {
3533  transition(atos, itos);
3534  Label ok;
3535  __ verify_oop(Otos_i);
3536  __ tst(Otos_i);
3537  __ throw_if_not_1_x( Assembler::notZero, ok );
3538  __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3539  __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3540}
3541
3542
3543void TemplateTable::checkcast() {
3544  transition(atos, atos);
3545  Label done, is_null, quicked, cast_ok, resolved;
3546  Register Roffset = G1_scratch;
3547  Register RobjKlass = O5;
3548  Register RspecifiedKlass = O4;
3549
3550  // Check for casting a NULL
3551  __ br_null(Otos_i, false, Assembler::pn, is_null);
3552  __ delayed()->nop();
3553
3554  // Get value klass in RobjKlass
3555  __ load_klass(Otos_i, RobjKlass); // get value klass
3556
3557  // Get constant pool tag
3558  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3559
3560  // See if the checkcast has been quickened
3561  __ get_cpool_and_tags(Lscratch, G3_scratch);
3562  __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3563  __ ldub(G3_scratch, Roffset, G3_scratch);
3564  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3565  __ br(Assembler::equal, true, Assembler::pt, quicked);
3566  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3567
3568  __ push_ptr(); // save receiver for result, and for GC
3569  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3570  __ get_vm_result_2(RspecifiedKlass);
3571  __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3572
3573  __ ba_short(resolved);
3574
3575  // Extract target class from constant pool
3576  __ bind(quicked);
3577  __ add(Roffset, sizeof(ConstantPool), Roffset);
3578  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3579  __ bind(resolved);
3580  __ load_klass(Otos_i, RobjKlass); // get value klass
3581
3582  // Generate a fast subtype check.  Branch to cast_ok if no
3583  // failure.  Throw exception if failure.
3584  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3585
3586  // Not a subtype; so must throw exception
3587  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3588
3589  __ bind(cast_ok);
3590
3591  if (ProfileInterpreter) {
3592    __ ba_short(done);
3593  }
3594  __ bind(is_null);
3595  __ profile_null_seen(G3_scratch);
3596  __ bind(done);
3597}
3598
3599
3600void TemplateTable::instanceof() {
3601  Label done, is_null, quicked, resolved;
3602  transition(atos, itos);
3603  Register Roffset = G1_scratch;
3604  Register RobjKlass = O5;
3605  Register RspecifiedKlass = O4;
3606
3607  // Check for casting a NULL
3608  __ br_null(Otos_i, false, Assembler::pt, is_null);
3609  __ delayed()->nop();
3610
3611  // Get value klass in RobjKlass
3612  __ load_klass(Otos_i, RobjKlass); // get value klass
3613
3614  // Get constant pool tag
3615  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3616
3617  // See if the checkcast has been quickened
3618  __ get_cpool_and_tags(Lscratch, G3_scratch);
3619  __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3620  __ ldub(G3_scratch, Roffset, G3_scratch);
3621  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3622  __ br(Assembler::equal, true, Assembler::pt, quicked);
3623  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3624
3625  __ push_ptr(); // save receiver for result, and for GC
3626  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3627  __ get_vm_result_2(RspecifiedKlass);
3628  __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3629
3630  __ ba_short(resolved);
3631
3632  // Extract target class from constant pool
3633  __ bind(quicked);
3634  __ add(Roffset, sizeof(ConstantPool), Roffset);
3635  __ get_constant_pool(Lscratch);
3636  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3637  __ bind(resolved);
3638  __ load_klass(Otos_i, RobjKlass); // get value klass
3639
3640  // Generate a fast subtype check.  Branch to cast_ok if no
3641  // failure.  Return 0 if failure.
3642  __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3643  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3644  // Not a subtype; return 0;
3645  __ clr( Otos_i );
3646
3647  if (ProfileInterpreter) {
3648    __ ba_short(done);
3649  }
3650  __ bind(is_null);
3651  __ profile_null_seen(G3_scratch);
3652  __ bind(done);
3653}
3654
3655void TemplateTable::_breakpoint() {
3656
3657   // Note: We get here even if we are single stepping..
3658   // jbug inists on setting breakpoints at every bytecode
3659   // even if we are in single step mode.
3660
3661   transition(vtos, vtos);
3662   // get the unpatched byte code
3663   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3664   __ mov(O0, Lbyte_code);
3665
3666   // post the breakpoint event
3667   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3668
3669   // complete the execution of original bytecode
3670   __ dispatch_normal(vtos);
3671}
3672
3673
3674//----------------------------------------------------------------------------------------------------
3675// Exceptions
3676
3677void TemplateTable::athrow() {
3678  transition(atos, vtos);
3679
3680  // This works because exception is cached in Otos_i which is same as O0,
3681  // which is same as what throw_exception_entry_expects
3682  assert(Otos_i == Oexception, "see explanation above");
3683
3684  __ verify_oop(Otos_i);
3685  __ null_check(Otos_i);
3686  __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3687}
3688
3689
3690//----------------------------------------------------------------------------------------------------
3691// Synchronization
3692
3693
3694// See frame_sparc.hpp for monitor block layout.
3695// Monitor elements are dynamically allocated by growing stack as needed.
3696
3697void TemplateTable::monitorenter() {
3698  transition(atos, vtos);
3699  __ verify_oop(Otos_i);
3700  // Try to acquire a lock on the object
3701  // Repeat until succeeded (i.e., until
3702  // monitorenter returns true).
3703
3704  {   Label ok;
3705    __ tst(Otos_i);
3706    __ throw_if_not_1_x( Assembler::notZero,  ok);
3707    __ delayed()->mov(Otos_i, Lscratch); // save obj
3708    __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3709  }
3710
3711  assert(O0 == Otos_i, "Be sure where the object to lock is");
3712
3713  // find a free slot in the monitor block
3714
3715
3716  // initialize entry pointer
3717  __ clr(O1); // points to free slot or NULL
3718
3719  {
3720    Label entry, loop, exit;
3721    __ add( __ top_most_monitor(), O2 ); // last one to check
3722    __ ba( entry );
3723    __ delayed()->mov( Lmonitors, O3 ); // first one to check
3724
3725
3726    __ bind( loop );
3727
3728    __ verify_oop(O4);          // verify each monitor's oop
3729    __ tst(O4); // is this entry unused?
3730    __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3731
3732    __ cmp(O4, O0); // check if current entry is for same object
3733    __ brx( Assembler::equal, false, Assembler::pn, exit );
3734    __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3735
3736    __ bind( entry );
3737
3738    __ cmp( O3, O2 );
3739    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3740    __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3741
3742    __ bind( exit );
3743  }
3744
3745  { Label allocated;
3746
3747    // found free slot?
3748    __ br_notnull_short(O1, Assembler::pn, allocated);
3749
3750    __ add_monitor_to_stack( false, O2, O3 );
3751    __ mov(Lmonitors, O1);
3752
3753    __ bind(allocated);
3754  }
3755
3756  // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3757  // The object has already been poped from the stack, so the expression stack looks correct.
3758  __ inc(Lbcp);
3759
3760  __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3761  __ lock_object(O1, O0);
3762
3763  // check if there's enough space on the stack for the monitors after locking
3764  __ generate_stack_overflow_check(0);
3765
3766  // The bcp has already been incremented. Just need to dispatch to next instruction.
3767  __ dispatch_next(vtos);
3768}
3769
3770
3771void TemplateTable::monitorexit() {
3772  transition(atos, vtos);
3773  __ verify_oop(Otos_i);
3774  __ tst(Otos_i);
3775  __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3776
3777  assert(O0 == Otos_i, "just checking");
3778
3779  { Label entry, loop, found;
3780    __ add( __ top_most_monitor(), O2 ); // last one to check
3781    __ ba(entry);
3782    // use Lscratch to hold monitor elem to check, start with most recent monitor,
3783    // By using a local it survives the call to the C routine.
3784    __ delayed()->mov( Lmonitors, Lscratch );
3785
3786    __ bind( loop );
3787
3788    __ verify_oop(O4);          // verify each monitor's oop
3789    __ cmp(O4, O0); // check if current entry is for desired object
3790    __ brx( Assembler::equal, true, Assembler::pt, found );
3791    __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3792
3793    __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3794
3795    __ bind( entry );
3796
3797    __ cmp( Lscratch, O2 );
3798    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3799    __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3800
3801    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3802    __ should_not_reach_here();
3803
3804    __ bind(found);
3805  }
3806  __ unlock_object(O1);
3807}
3808
3809
3810//----------------------------------------------------------------------------------------------------
3811// Wide instructions
3812
3813void TemplateTable::wide() {
3814  transition(vtos, vtos);
3815  __ ldub(Lbcp, 1, G3_scratch);// get next bc
3816  __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3817  AddressLiteral ep(Interpreter::_wentry_point);
3818  __ set(ep, G4_scratch);
3819  __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3820  __ jmp(G3_scratch, G0);
3821  __ delayed()->nop();
3822  // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3823}
3824
3825
3826//----------------------------------------------------------------------------------------------------
3827// Multi arrays
3828
3829void TemplateTable::multianewarray() {
3830  transition(vtos, atos);
3831     // put ndims * wordSize into Lscratch
3832  __ ldub( Lbcp,     3,               Lscratch);
3833  __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3834     // Lesp points past last_dim, so set to O1 to first_dim address
3835  __ add(  Lesp,     Lscratch,        O1);
3836     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3837  __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3838}
3839