1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.inline.hpp"
27#include "compiler/disassembler.hpp"
28#include "gc/shared/cardTableModRefBS.hpp"
29#include "gc/shared/collectedHeap.inline.hpp"
30#include "interpreter/interpreter.hpp"
31#include "memory/resourceArea.hpp"
32#include "memory/universe.hpp"
33#include "oops/klass.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/biasedLocking.hpp"
36#include "runtime/interfaceSupport.hpp"
37#include "runtime/objectMonitor.hpp"
38#include "runtime/os.inline.hpp"
39#include "runtime/sharedRuntime.hpp"
40#include "runtime/stubRoutines.hpp"
41#include "utilities/macros.hpp"
42#if INCLUDE_ALL_GCS
43#include "gc/g1/g1CollectedHeap.inline.hpp"
44#include "gc/g1/g1SATBCardTableModRefBS.hpp"
45#include "gc/g1/heapRegion.hpp"
46#endif // INCLUDE_ALL_GCS
47#ifdef COMPILER2
48#include "opto/intrinsicnode.hpp"
49#endif
50
51#ifdef PRODUCT
52#define BLOCK_COMMENT(str) /* nothing */
53#define STOP(error) stop(error)
54#else
55#define BLOCK_COMMENT(str) block_comment(str)
56#define STOP(error) block_comment(error); stop(error)
57#endif
58
59// Convert the raw encoding form into the form expected by the
60// constructor for Address.
61Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
62  assert(scale == 0, "not supported");
63  RelocationHolder rspec;
64  if (disp_reloc != relocInfo::none) {
65    rspec = Relocation::spec_simple(disp_reloc);
66  }
67
68  Register rindex = as_Register(index);
69  if (rindex != G0) {
70    Address madr(as_Register(base), rindex);
71    madr._rspec = rspec;
72    return madr;
73  } else {
74    Address madr(as_Register(base), disp);
75    madr._rspec = rspec;
76    return madr;
77  }
78}
79
80Address Argument::address_in_frame() const {
81  // Warning: In LP64 mode disp will occupy more than 10 bits, but
82  //          op codes such as ld or ldx, only access disp() to get
83  //          their simm13 argument.
84  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
85  if (is_in())
86    return Address(FP, disp); // In argument.
87  else
88    return Address(SP, disp); // Out argument.
89}
90
91static const char* argumentNames[][2] = {
92  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
93  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
94  {"A(n>9)","P(n>9)"}
95};
96
97const char* Argument::name() const {
98  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
99  int num = number();
100  if (num >= nofArgs)  num = nofArgs - 1;
101  return argumentNames[num][is_in() ? 1 : 0];
102}
103
104#ifdef ASSERT
105// On RISC, there's no benefit to verifying instruction boundaries.
106bool AbstractAssembler::pd_check_instruction_mark() { return false; }
107#endif
108
109// Patch instruction inst at offset inst_pos to refer to dest_pos
110// and return the resulting instruction.
111// We should have pcs, not offsets, but since all is relative, it will work out
112// OK.
113int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
114  int m; // mask for displacement field
115  int v; // new value for displacement field
116  const int word_aligned_ones = -4;
117  switch (inv_op(inst)) {
118  default: ShouldNotReachHere();
119  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
120  case branch_op:
121    switch (inv_op2(inst)) {
122      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
123      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
124      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
125      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
126      case bpr_op2: {
127        if (is_cbcond(inst)) {
128          m = wdisp10(word_aligned_ones, 0);
129          v = wdisp10(dest_pos, inst_pos);
130        } else {
131          m = wdisp16(word_aligned_ones, 0);
132          v = wdisp16(dest_pos, inst_pos);
133        }
134        break;
135      }
136      default: ShouldNotReachHere();
137    }
138  }
139  return  inst & ~m  |  v;
140}
141
142// Return the offset of the branch destionation of instruction inst
143// at offset pos.
144// Should have pcs, but since all is relative, it works out.
145int MacroAssembler::branch_destination(int inst, int pos) {
146  int r;
147  switch (inv_op(inst)) {
148  default: ShouldNotReachHere();
149  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
150  case branch_op:
151    switch (inv_op2(inst)) {
152      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
153      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
154      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
155      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
156      case bpr_op2: {
157        if (is_cbcond(inst)) {
158          r = inv_wdisp10(inst, pos);
159        } else {
160          r = inv_wdisp16(inst, pos);
161        }
162        break;
163      }
164      default: ShouldNotReachHere();
165    }
166  }
167  return r;
168}
169
170void MacroAssembler::null_check(Register reg, int offset) {
171  if (needs_explicit_null_check((intptr_t)offset)) {
172    // provoke OS NULL exception if reg = NULL by
173    // accessing M[reg] w/o changing any registers
174    ld_ptr(reg, 0, G0);
175  }
176  else {
177    // nothing to do, (later) access of M[reg + offset]
178    // will provoke OS NULL exception if reg = NULL
179  }
180}
181
182// Ring buffer jumps
183
184
185void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
186  assert_not_delayed();
187  jmpl(r1, r2, G0);
188}
189void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
190  assert_not_delayed();
191  jmp(r1, offset);
192}
193
194// This code sequence is relocatable to any address, even on LP64.
195void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
196  assert_not_delayed();
197  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
198  // variable length instruction streams.
199  patchable_sethi(addrlit, temp);
200  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
201  jmpl(a.base(), a.disp(), d);
202}
203
204void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
205  jumpl(addrlit, temp, G0, offset, file, line);
206}
207
208
209// Conditional breakpoint (for assertion checks in assembly code)
210void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
211  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
212}
213
214// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
215void MacroAssembler::breakpoint_trap() {
216  trap(ST_RESERVED_FOR_USER_0);
217}
218
219// Write serialization page so VM thread can do a pseudo remote membar
220// We use the current thread pointer to calculate a thread specific
221// offset to write to within the page. This minimizes bus traffic
222// due to cache line collision.
223void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
224  srl(thread, os::get_serialize_page_shift_count(), tmp2);
225  if (Assembler::is_simm13(os::vm_page_size())) {
226    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
227  }
228  else {
229    set((os::vm_page_size() - sizeof(int)), tmp1);
230    and3(tmp2, tmp1, tmp2);
231  }
232  set(os::get_memory_serialize_page(), tmp1);
233  st(G0, tmp1, tmp2);
234}
235
236
237
238void MacroAssembler::enter() {
239  Unimplemented();
240}
241
242void MacroAssembler::leave() {
243  Unimplemented();
244}
245
246// Calls to C land
247
248#ifdef ASSERT
249// a hook for debugging
250static Thread* reinitialize_thread() {
251  return Thread::current();
252}
253#else
254#define reinitialize_thread Thread::current
255#endif
256
257#ifdef ASSERT
258address last_get_thread = NULL;
259#endif
260
261// call this when G2_thread is not known to be valid
262void MacroAssembler::get_thread() {
263  save_frame(0);                // to avoid clobbering O0
264  mov(G1, L0);                  // avoid clobbering G1
265  mov(G5_method, L1);           // avoid clobbering G5
266  mov(G3, L2);                  // avoid clobbering G3 also
267  mov(G4, L5);                  // avoid clobbering G4
268#ifdef ASSERT
269  AddressLiteral last_get_thread_addrlit(&last_get_thread);
270  set(last_get_thread_addrlit, L3);
271  rdpc(L4);
272  inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
273#endif
274  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
275  delayed()->nop();
276  mov(L0, G1);
277  mov(L1, G5_method);
278  mov(L2, G3);
279  mov(L5, G4);
280  restore(O0, 0, G2_thread);
281}
282
283static Thread* verify_thread_subroutine(Thread* gthread_value) {
284  Thread* correct_value = Thread::current();
285  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
286  return correct_value;
287}
288
289void MacroAssembler::verify_thread() {
290  if (VerifyThread) {
291    // NOTE: this chops off the heads of the 64-bit O registers.
292    // make sure G2_thread contains the right value
293    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
294    mov(G1, L1);                // avoid clobbering G1
295    // G2 saved below
296    mov(G3, L3);                // avoid clobbering G3
297    mov(G4, L4);                // avoid clobbering G4
298    mov(G5_method, L5);         // avoid clobbering G5_method
299#if defined(COMPILER2) && !defined(_LP64)
300    // Save & restore possible 64-bit Long arguments in G-regs
301    srlx(G1,32,L0);
302    srlx(G4,32,L6);
303#endif
304    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
305    delayed()->mov(G2_thread, O0);
306
307    mov(L1, G1);                // Restore G1
308    // G2 restored below
309    mov(L3, G3);                // restore G3
310    mov(L4, G4);                // restore G4
311    mov(L5, G5_method);         // restore G5_method
312#if defined(COMPILER2) && !defined(_LP64)
313    // Save & restore possible 64-bit Long arguments in G-regs
314    sllx(L0,32,G2);             // Move old high G1 bits high in G2
315    srl(G1, 0,G1);              // Clear current high G1 bits
316    or3 (G1,G2,G1);             // Recover 64-bit G1
317    sllx(L6,32,G2);             // Move old high G4 bits high in G2
318    srl(G4, 0,G4);              // Clear current high G4 bits
319    or3 (G4,G2,G4);             // Recover 64-bit G4
320#endif
321    restore(O0, 0, G2_thread);
322  }
323}
324
325
326void MacroAssembler::save_thread(const Register thread_cache) {
327  verify_thread();
328  if (thread_cache->is_valid()) {
329    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
330    mov(G2_thread, thread_cache);
331  }
332  if (VerifyThread) {
333    // smash G2_thread, as if the VM were about to anyway
334    set(0x67676767, G2_thread);
335  }
336}
337
338
339void MacroAssembler::restore_thread(const Register thread_cache) {
340  if (thread_cache->is_valid()) {
341    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
342    mov(thread_cache, G2_thread);
343    verify_thread();
344  } else {
345    // do it the slow way
346    get_thread();
347  }
348}
349
350
351// %%% maybe get rid of [re]set_last_Java_frame
352void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
353  assert_not_delayed();
354  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
355                           JavaFrameAnchor::flags_offset());
356  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
357
358  // Always set last_Java_pc and flags first because once last_Java_sp is visible
359  // has_last_Java_frame is true and users will look at the rest of the fields.
360  // (Note: flags should always be zero before we get here so doesn't need to be set.)
361
362#ifdef ASSERT
363  // Verify that flags was zeroed on return to Java
364  Label PcOk;
365  save_frame(0);                // to avoid clobbering O0
366  ld_ptr(pc_addr, L0);
367  br_null_short(L0, Assembler::pt, PcOk);
368  STOP("last_Java_pc not zeroed before leaving Java");
369  bind(PcOk);
370
371  // Verify that flags was zeroed on return to Java
372  Label FlagsOk;
373  ld(flags, L0);
374  tst(L0);
375  br(Assembler::zero, false, Assembler::pt, FlagsOk);
376  delayed() -> restore();
377  STOP("flags not zeroed before leaving Java");
378  bind(FlagsOk);
379#endif /* ASSERT */
380  //
381  // When returning from calling out from Java mode the frame anchor's last_Java_pc
382  // will always be set to NULL. It is set here so that if we are doing a call to
383  // native (not VM) that we capture the known pc and don't have to rely on the
384  // native call having a standard frame linkage where we can find the pc.
385
386  if (last_Java_pc->is_valid()) {
387    st_ptr(last_Java_pc, pc_addr);
388  }
389
390#ifdef _LP64
391#ifdef ASSERT
392  // Make sure that we have an odd stack
393  Label StackOk;
394  andcc(last_java_sp, 0x01, G0);
395  br(Assembler::notZero, false, Assembler::pt, StackOk);
396  delayed()->nop();
397  STOP("Stack Not Biased in set_last_Java_frame");
398  bind(StackOk);
399#endif // ASSERT
400  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
401  add( last_java_sp, STACK_BIAS, G4_scratch );
402  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
403#else
404  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
405#endif // _LP64
406}
407
408void MacroAssembler::reset_last_Java_frame(void) {
409  assert_not_delayed();
410
411  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
412  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
413  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
414
415#ifdef ASSERT
416  // check that it WAS previously set
417    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
418    ld_ptr(sp_addr, L0);
419    tst(L0);
420    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
421    restore();
422#endif // ASSERT
423
424  st_ptr(G0, sp_addr);
425  // Always return last_Java_pc to zero
426  st_ptr(G0, pc_addr);
427  // Always null flags after return to Java
428  st(G0, flags);
429}
430
431
432void MacroAssembler::call_VM_base(
433  Register        oop_result,
434  Register        thread_cache,
435  Register        last_java_sp,
436  address         entry_point,
437  int             number_of_arguments,
438  bool            check_exceptions)
439{
440  assert_not_delayed();
441
442  // determine last_java_sp register
443  if (!last_java_sp->is_valid()) {
444    last_java_sp = SP;
445  }
446  // debugging support
447  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
448
449  // 64-bit last_java_sp is biased!
450  set_last_Java_frame(last_java_sp, noreg);
451  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
452  save_thread(thread_cache);
453  // do the call
454  call(entry_point, relocInfo::runtime_call_type);
455  if (!VerifyThread)
456    delayed()->mov(G2_thread, O0);  // pass thread as first argument
457  else
458    delayed()->nop();             // (thread already passed)
459  restore_thread(thread_cache);
460  reset_last_Java_frame();
461
462  // check for pending exceptions. use Gtemp as scratch register.
463  if (check_exceptions) {
464    check_and_forward_exception(Gtemp);
465  }
466
467#ifdef ASSERT
468  set(badHeapWordVal, G3);
469  set(badHeapWordVal, G4);
470  set(badHeapWordVal, G5);
471#endif
472
473  // get oop result if there is one and reset the value in the thread
474  if (oop_result->is_valid()) {
475    get_vm_result(oop_result);
476  }
477}
478
479void MacroAssembler::check_and_forward_exception(Register scratch_reg)
480{
481  Label L;
482
483  check_and_handle_popframe(scratch_reg);
484  check_and_handle_earlyret(scratch_reg);
485
486  Address exception_addr(G2_thread, Thread::pending_exception_offset());
487  ld_ptr(exception_addr, scratch_reg);
488  br_null_short(scratch_reg, pt, L);
489  // we use O7 linkage so that forward_exception_entry has the issuing PC
490  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
491  delayed()->nop();
492  bind(L);
493}
494
495
496void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
497}
498
499
500void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
501}
502
503
504void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
505  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
506}
507
508
509void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
510  // O0 is reserved for the thread
511  mov(arg_1, O1);
512  call_VM(oop_result, entry_point, 1, check_exceptions);
513}
514
515
516void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
517  // O0 is reserved for the thread
518  mov(arg_1, O1);
519  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
520  call_VM(oop_result, entry_point, 2, check_exceptions);
521}
522
523
524void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
525  // O0 is reserved for the thread
526  mov(arg_1, O1);
527  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
528  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
529  call_VM(oop_result, entry_point, 3, check_exceptions);
530}
531
532
533
534// Note: The following call_VM overloadings are useful when a "save"
535// has already been performed by a stub, and the last Java frame is
536// the previous one.  In that case, last_java_sp must be passed as FP
537// instead of SP.
538
539
540void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
541  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
542}
543
544
545void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
546  // O0 is reserved for the thread
547  mov(arg_1, O1);
548  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
549}
550
551
552void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
553  // O0 is reserved for the thread
554  mov(arg_1, O1);
555  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
556  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
557}
558
559
560void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
561  // O0 is reserved for the thread
562  mov(arg_1, O1);
563  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
564  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
565  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
566}
567
568
569
570void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
571  assert_not_delayed();
572  save_thread(thread_cache);
573  // do the call
574  call(entry_point, relocInfo::runtime_call_type);
575  delayed()->nop();
576  restore_thread(thread_cache);
577#ifdef ASSERT
578  set(badHeapWordVal, G3);
579  set(badHeapWordVal, G4);
580  set(badHeapWordVal, G5);
581#endif
582}
583
584
585void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
586  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
587}
588
589
590void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
591  mov(arg_1, O0);
592  call_VM_leaf(thread_cache, entry_point, 1);
593}
594
595
596void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
597  mov(arg_1, O0);
598  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
599  call_VM_leaf(thread_cache, entry_point, 2);
600}
601
602
603void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
604  mov(arg_1, O0);
605  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
606  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
607  call_VM_leaf(thread_cache, entry_point, 3);
608}
609
610
611void MacroAssembler::get_vm_result(Register oop_result) {
612  verify_thread();
613  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
614  ld_ptr(    vm_result_addr, oop_result);
615  st_ptr(G0, vm_result_addr);
616  verify_oop(oop_result);
617}
618
619
620void MacroAssembler::get_vm_result_2(Register metadata_result) {
621  verify_thread();
622  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
623  ld_ptr(vm_result_addr_2, metadata_result);
624  st_ptr(G0, vm_result_addr_2);
625}
626
627
628// We require that C code which does not return a value in vm_result will
629// leave it undisturbed.
630void MacroAssembler::set_vm_result(Register oop_result) {
631  verify_thread();
632  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
633  verify_oop(oop_result);
634
635# ifdef ASSERT
636    // Check that we are not overwriting any other oop.
637    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
638    ld_ptr(vm_result_addr, L0);
639    tst(L0);
640    restore();
641    breakpoint_trap(notZero, Assembler::ptr_cc);
642    // }
643# endif
644
645  st_ptr(oop_result, vm_result_addr);
646}
647
648
649void MacroAssembler::ic_call(address entry, bool emit_delay, jint method_index) {
650  RelocationHolder rspec = virtual_call_Relocation::spec(pc(), method_index);
651  patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
652  relocate(rspec);
653  call(entry, relocInfo::none);
654  if (emit_delay) {
655    delayed()->nop();
656  }
657}
658
659void MacroAssembler::card_table_write(jbyte* byte_map_base,
660                                      Register tmp, Register obj) {
661#ifdef _LP64
662  srlx(obj, CardTableModRefBS::card_shift, obj);
663#else
664  srl(obj, CardTableModRefBS::card_shift, obj);
665#endif
666  assert(tmp != obj, "need separate temp reg");
667  set((address) byte_map_base, tmp);
668  stb(G0, tmp, obj);
669}
670
671
672void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
673  address save_pc;
674  int shiftcnt;
675#ifdef _LP64
676# ifdef CHECK_DELAY
677  assert_not_delayed((char*) "cannot put two instructions in delay slot");
678# endif
679  v9_dep();
680  save_pc = pc();
681
682  int msb32 = (int) (addrlit.value() >> 32);
683  int lsb32 = (int) (addrlit.value());
684
685  if (msb32 == 0 && lsb32 >= 0) {
686    Assembler::sethi(lsb32, d, addrlit.rspec());
687  }
688  else if (msb32 == -1) {
689    Assembler::sethi(~lsb32, d, addrlit.rspec());
690    xor3(d, ~low10(~0), d);
691  }
692  else {
693    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
694    if (msb32 & 0x3ff)                            // Any bits?
695      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
696    if (lsb32 & 0xFFFFFC00) {                     // done?
697      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
698        sllx(d, 12, d);                           // Make room for next 12 bits
699        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
700        shiftcnt = 0;                             // We already shifted
701      }
702      else
703        shiftcnt = 12;
704      if ((lsb32 >> 10) & 0x3ff) {
705        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
706        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
707        shiftcnt = 0;
708      }
709      else
710        shiftcnt = 10;
711      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
712    }
713    else
714      sllx(d, 32, d);
715  }
716  // Pad out the instruction sequence so it can be patched later.
717  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
718                           addrlit.rtype() != relocInfo::runtime_call_type)) {
719    while (pc() < (save_pc + (7 * BytesPerInstWord)))
720      nop();
721  }
722#else
723  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
724#endif
725}
726
727
728void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
729  internal_sethi(addrlit, d, false);
730}
731
732
733void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
734  internal_sethi(addrlit, d, true);
735}
736
737
738int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
739#ifdef _LP64
740  if (worst_case)  return 7;
741  intptr_t iaddr = (intptr_t) a;
742  int msb32 = (int) (iaddr >> 32);
743  int lsb32 = (int) (iaddr);
744  int count;
745  if (msb32 == 0 && lsb32 >= 0)
746    count = 1;
747  else if (msb32 == -1)
748    count = 2;
749  else {
750    count = 2;
751    if (msb32 & 0x3ff)
752      count++;
753    if (lsb32 & 0xFFFFFC00 ) {
754      if ((lsb32 >> 20) & 0xfff)  count += 2;
755      if ((lsb32 >> 10) & 0x3ff)  count += 2;
756    }
757  }
758  return count;
759#else
760  return 1;
761#endif
762}
763
764int MacroAssembler::worst_case_insts_for_set() {
765  return insts_for_sethi(NULL, true) + 1;
766}
767
768
769// Keep in sync with MacroAssembler::insts_for_internal_set
770void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
771  intptr_t value = addrlit.value();
772
773  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
774    // can optimize
775    if (-4096 <= value && value <= 4095) {
776      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
777      return;
778    }
779    if (inv_hi22(hi22(value)) == value) {
780      sethi(addrlit, d);
781      return;
782    }
783  }
784  assert_not_delayed((char*) "cannot put two instructions in delay slot");
785  internal_sethi(addrlit, d, ForceRelocatable);
786  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
787    add(d, addrlit.low10(), d, addrlit.rspec());
788  }
789}
790
791// Keep in sync with MacroAssembler::internal_set
792int MacroAssembler::insts_for_internal_set(intptr_t value) {
793  // can optimize
794  if (-4096 <= value && value <= 4095) {
795    return 1;
796  }
797  if (inv_hi22(hi22(value)) == value) {
798    return insts_for_sethi((address) value);
799  }
800  int count = insts_for_sethi((address) value);
801  AddressLiteral al(value);
802  if (al.low10() != 0) {
803    count++;
804  }
805  return count;
806}
807
808void MacroAssembler::set(const AddressLiteral& al, Register d) {
809  internal_set(al, d, false);
810}
811
812void MacroAssembler::set(intptr_t value, Register d) {
813  AddressLiteral al(value);
814  internal_set(al, d, false);
815}
816
817void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
818  AddressLiteral al(addr, rspec);
819  internal_set(al, d, false);
820}
821
822void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
823  internal_set(al, d, true);
824}
825
826void MacroAssembler::patchable_set(intptr_t value, Register d) {
827  AddressLiteral al(value);
828  internal_set(al, d, true);
829}
830
831
832void MacroAssembler::set64(jlong value, Register d, Register tmp) {
833  assert_not_delayed();
834  v9_dep();
835
836  int hi = (int)(value >> 32);
837  int lo = (int)(value & ~0);
838  int bits_33to2 = (int)((value >> 2) & ~0);
839  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
840  if (Assembler::is_simm13(lo) && value == lo) {
841    or3(G0, lo, d);
842  } else if (hi == 0) {
843    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
844    if (low10(lo) != 0)
845      or3(d, low10(lo), d);
846  }
847  else if ((hi >> 2) == 0) {
848    Assembler::sethi(bits_33to2, d);  // hardware version zero-extends to upper 32
849    sllx(d, 2, d);
850    if (low12(lo) != 0)
851      or3(d, low12(lo), d);
852  }
853  else if (hi == -1) {
854    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
855    xor3(d, low10(lo) ^ ~low10(~0), d);
856  }
857  else if (lo == 0) {
858    if (Assembler::is_simm13(hi)) {
859      or3(G0, hi, d);
860    } else {
861      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
862      if (low10(hi) != 0)
863        or3(d, low10(hi), d);
864    }
865    sllx(d, 32, d);
866  }
867  else {
868    Assembler::sethi(hi, tmp);
869    Assembler::sethi(lo,   d); // macro assembler version sign-extends
870    if (low10(hi) != 0)
871      or3 (tmp, low10(hi), tmp);
872    if (low10(lo) != 0)
873      or3 (  d, low10(lo),   d);
874    sllx(tmp, 32, tmp);
875    or3 (d, tmp, d);
876  }
877}
878
879int MacroAssembler::insts_for_set64(jlong value) {
880  v9_dep();
881
882  int hi = (int) (value >> 32);
883  int lo = (int) (value & ~0);
884  int count = 0;
885
886  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
887  if (Assembler::is_simm13(lo) && value == lo) {
888    count++;
889  } else if (hi == 0) {
890    count++;
891    if (low10(lo) != 0)
892      count++;
893  }
894  else if (hi == -1) {
895    count += 2;
896  }
897  else if (lo == 0) {
898    if (Assembler::is_simm13(hi)) {
899      count++;
900    } else {
901      count++;
902      if (low10(hi) != 0)
903        count++;
904    }
905    count++;
906  }
907  else {
908    count += 2;
909    if (low10(hi) != 0)
910      count++;
911    if (low10(lo) != 0)
912      count++;
913    count += 2;
914  }
915  return count;
916}
917
918// compute size in bytes of sparc frame, given
919// number of extraWords
920int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
921
922  int nWords = frame::memory_parameter_word_sp_offset;
923
924  nWords += extraWords;
925
926  if (nWords & 1) ++nWords; // round up to double-word
927
928  return nWords * BytesPerWord;
929}
930
931
932// save_frame: given number of "extra" words in frame,
933// issue approp. save instruction (p 200, v8 manual)
934
935void MacroAssembler::save_frame(int extraWords) {
936  int delta = -total_frame_size_in_bytes(extraWords);
937  if (is_simm13(delta)) {
938    save(SP, delta, SP);
939  } else {
940    set(delta, G3_scratch);
941    save(SP, G3_scratch, SP);
942  }
943}
944
945
946void MacroAssembler::save_frame_c1(int size_in_bytes) {
947  if (is_simm13(-size_in_bytes)) {
948    save(SP, -size_in_bytes, SP);
949  } else {
950    set(-size_in_bytes, G3_scratch);
951    save(SP, G3_scratch, SP);
952  }
953}
954
955
956void MacroAssembler::save_frame_and_mov(int extraWords,
957                                        Register s1, Register d1,
958                                        Register s2, Register d2) {
959  assert_not_delayed();
960
961  // The trick here is to use precisely the same memory word
962  // that trap handlers also use to save the register.
963  // This word cannot be used for any other purpose, but
964  // it works fine to save the register's value, whether or not
965  // an interrupt flushes register windows at any given moment!
966  Address s1_addr;
967  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
968    s1_addr = s1->address_in_saved_window();
969    st_ptr(s1, s1_addr);
970  }
971
972  Address s2_addr;
973  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
974    s2_addr = s2->address_in_saved_window();
975    st_ptr(s2, s2_addr);
976  }
977
978  save_frame(extraWords);
979
980  if (s1_addr.base() == SP) {
981    ld_ptr(s1_addr.after_save(), d1);
982  } else if (s1->is_valid()) {
983    mov(s1->after_save(), d1);
984  }
985
986  if (s2_addr.base() == SP) {
987    ld_ptr(s2_addr.after_save(), d2);
988  } else if (s2->is_valid()) {
989    mov(s2->after_save(), d2);
990  }
991}
992
993
994AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
995  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
996  int index = oop_recorder()->allocate_metadata_index(obj);
997  RelocationHolder rspec = metadata_Relocation::spec(index);
998  return AddressLiteral((address)obj, rspec);
999}
1000
1001AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1002  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1003  int index = oop_recorder()->find_index(obj);
1004  RelocationHolder rspec = metadata_Relocation::spec(index);
1005  return AddressLiteral((address)obj, rspec);
1006}
1007
1008
1009AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1010  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1011  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1012  int oop_index = oop_recorder()->find_index(obj);
1013  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1014}
1015
1016void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1017  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1018  int oop_index = oop_recorder()->find_index(obj);
1019  RelocationHolder rspec = oop_Relocation::spec(oop_index);
1020
1021  assert_not_delayed();
1022  // Relocation with special format (see relocInfo_sparc.hpp).
1023  relocate(rspec, 1);
1024  // Assembler::sethi(0x3fffff, d);
1025  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1026  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1027  add(d, 0x3ff, d);
1028
1029}
1030
1031void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1032  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1033  int klass_index = oop_recorder()->find_index(k);
1034  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1035  narrowOop encoded_k = Klass::encode_klass(k);
1036
1037  assert_not_delayed();
1038  // Relocation with special format (see relocInfo_sparc.hpp).
1039  relocate(rspec, 1);
1040  // Assembler::sethi(encoded_k, d);
1041  emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1042  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1043  add(d, low10(encoded_k), d);
1044
1045}
1046
1047void MacroAssembler::align(int modulus) {
1048  while (offset() % modulus != 0) nop();
1049}
1050
1051void RegistersForDebugging::print(outputStream* s) {
1052  FlagSetting fs(Debugging, true);
1053  int j;
1054  for (j = 0; j < 8; ++j) {
1055    if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1056    else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1057  }
1058  s->cr();
1059
1060  for (j = 0;  j < 8;  ++j) {
1061    s->print("l%d = ", j); os::print_location(s, l[j]);
1062  }
1063  s->cr();
1064
1065  for (j = 0; j < 8; ++j) {
1066    if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1067    else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1068  }
1069  s->cr();
1070
1071  for (j = 0; j < 8; ++j) {
1072    s->print("g%d = ", j); os::print_location(s, g[j]);
1073  }
1074  s->cr();
1075
1076  // print out floats with compression
1077  for (j = 0; j < 32; ) {
1078    jfloat val = f[j];
1079    int last = j;
1080    for ( ;  last+1 < 32;  ++last ) {
1081      char b1[1024], b2[1024];
1082      sprintf(b1, "%f", val);
1083      sprintf(b2, "%f", f[last+1]);
1084      if (strcmp(b1, b2))
1085        break;
1086    }
1087    s->print("f%d", j);
1088    if ( j != last )  s->print(" - f%d", last);
1089    s->print(" = %f", val);
1090    s->fill_to(25);
1091    s->print_cr(" (0x%x)", *(int*)&val);
1092    j = last + 1;
1093  }
1094  s->cr();
1095
1096  // and doubles (evens only)
1097  for (j = 0; j < 32; ) {
1098    jdouble val = d[j];
1099    int last = j;
1100    for ( ;  last+1 < 32;  ++last ) {
1101      char b1[1024], b2[1024];
1102      sprintf(b1, "%f", val);
1103      sprintf(b2, "%f", d[last+1]);
1104      if (strcmp(b1, b2))
1105        break;
1106    }
1107    s->print("d%d", 2 * j);
1108    if ( j != last )  s->print(" - d%d", last);
1109    s->print(" = %f", val);
1110    s->fill_to(30);
1111    s->print("(0x%x)", *(int*)&val);
1112    s->fill_to(42);
1113    s->print_cr("(0x%x)", *(1 + (int*)&val));
1114    j = last + 1;
1115  }
1116  s->cr();
1117}
1118
1119void RegistersForDebugging::save_registers(MacroAssembler* a) {
1120  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1121  a->flushw();
1122  int i;
1123  for (i = 0; i < 8; ++i) {
1124    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1125    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1126    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1127    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1128  }
1129  for (i = 0;  i < 32; ++i) {
1130    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1131  }
1132  for (i = 0; i < 64; i += 2) {
1133    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1134  }
1135}
1136
1137void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1138  for (int i = 1; i < 8;  ++i) {
1139    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1140  }
1141  for (int j = 0; j < 32; ++j) {
1142    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1143  }
1144  for (int k = 0; k < 64; k += 2) {
1145    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1146  }
1147}
1148
1149
1150// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1151void MacroAssembler::push_fTOS() {
1152  // %%%%%% need to implement this
1153}
1154
1155// pops double TOS element from CPU stack and pushes on FPU stack
1156void MacroAssembler::pop_fTOS() {
1157  // %%%%%% need to implement this
1158}
1159
1160void MacroAssembler::empty_FPU_stack() {
1161  // %%%%%% need to implement this
1162}
1163
1164void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1165  // plausibility check for oops
1166  if (!VerifyOops) return;
1167
1168  if (reg == G0)  return;       // always NULL, which is always an oop
1169
1170  BLOCK_COMMENT("verify_oop {");
1171  char buffer[64];
1172#ifdef COMPILER1
1173  if (CommentedAssembly) {
1174    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1175    block_comment(buffer);
1176  }
1177#endif
1178
1179  const char* real_msg = NULL;
1180  {
1181    ResourceMark rm;
1182    stringStream ss;
1183    ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
1184    real_msg = code_string(ss.as_string());
1185  }
1186
1187  // Call indirectly to solve generation ordering problem
1188  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1189
1190  // Make some space on stack above the current register window.
1191  // Enough to hold 8 64-bit registers.
1192  add(SP,-8*8,SP);
1193
1194  // Save some 64-bit registers; a normal 'save' chops the heads off
1195  // of 64-bit longs in the 32-bit build.
1196  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1197  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1198  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1199  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1200
1201  // Size of set() should stay the same
1202  patchable_set((intptr_t)real_msg, O1);
1203  // Load address to call to into O7
1204  load_ptr_contents(a, O7);
1205  // Register call to verify_oop_subroutine
1206  callr(O7, G0);
1207  delayed()->nop();
1208  // recover frame size
1209  add(SP, 8*8,SP);
1210  BLOCK_COMMENT("} verify_oop");
1211}
1212
1213void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1214  // plausibility check for oops
1215  if (!VerifyOops) return;
1216
1217  const char* real_msg = NULL;
1218  {
1219    ResourceMark rm;
1220    stringStream ss;
1221    ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1222    real_msg = code_string(ss.as_string());
1223  }
1224
1225  // Call indirectly to solve generation ordering problem
1226  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1227
1228  // Make some space on stack above the current register window.
1229  // Enough to hold 8 64-bit registers.
1230  add(SP,-8*8,SP);
1231
1232  // Save some 64-bit registers; a normal 'save' chops the heads off
1233  // of 64-bit longs in the 32-bit build.
1234  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1235  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1236  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1237  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1238
1239  // Size of set() should stay the same
1240  patchable_set((intptr_t)real_msg, O1);
1241  // Load address to call to into O7
1242  load_ptr_contents(a, O7);
1243  // Register call to verify_oop_subroutine
1244  callr(O7, G0);
1245  delayed()->nop();
1246  // recover frame size
1247  add(SP, 8*8,SP);
1248}
1249
1250// side-door communication with signalHandler in os_solaris.cpp
1251address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1252
1253// This macro is expanded just once; it creates shared code.  Contract:
1254// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1255// registers, including flags.  May not use a register 'save', as this blows
1256// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1257// call.
1258void MacroAssembler::verify_oop_subroutine() {
1259  // Leaf call; no frame.
1260  Label succeed, fail, null_or_fail;
1261
1262  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1263  // O0 is now the oop to be checked.  O7 is the return address.
1264  Register O0_obj = O0;
1265
1266  // Save some more registers for temps.
1267  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1268  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1269  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1270  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1271
1272  // Save flags
1273  Register O5_save_flags = O5;
1274  rdccr( O5_save_flags );
1275
1276  { // count number of verifies
1277    Register O2_adr   = O2;
1278    Register O3_accum = O3;
1279    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1280  }
1281
1282  Register O2_mask = O2;
1283  Register O3_bits = O3;
1284  Register O4_temp = O4;
1285
1286  // mark lower end of faulting range
1287  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1288  _verify_oop_implicit_branch[0] = pc();
1289
1290  // We can't check the mark oop because it could be in the process of
1291  // locking or unlocking while this is running.
1292  set(Universe::verify_oop_mask (), O2_mask);
1293  set(Universe::verify_oop_bits (), O3_bits);
1294
1295  // assert((obj & oop_mask) == oop_bits);
1296  and3(O0_obj, O2_mask, O4_temp);
1297  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1298
1299  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1300    // the null_or_fail case is useless; must test for null separately
1301    br_null_short(O0_obj, pn, succeed);
1302  }
1303
1304  // Check the Klass* of this object for being in the right area of memory.
1305  // Cannot do the load in the delay above slot in case O0 is null
1306  load_klass(O0_obj, O0_obj);
1307  // assert((klass != NULL)
1308  br_null_short(O0_obj, pn, fail);
1309
1310  wrccr( O5_save_flags ); // Restore CCR's
1311
1312  // mark upper end of faulting range
1313  _verify_oop_implicit_branch[1] = pc();
1314
1315  //-----------------------
1316  // all tests pass
1317  bind(succeed);
1318
1319  // Restore prior 64-bit registers
1320  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1321  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1322  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1323  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1324  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1325  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1326
1327  retl();                       // Leaf return; restore prior O7 in delay slot
1328  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1329
1330  //-----------------------
1331  bind(null_or_fail);           // nulls are less common but OK
1332  br_null(O0_obj, false, pt, succeed);
1333  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1334
1335  //-----------------------
1336  // report failure:
1337  bind(fail);
1338  _verify_oop_implicit_branch[2] = pc();
1339
1340  wrccr( O5_save_flags ); // Restore CCR's
1341
1342  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1343
1344  // stop_subroutine expects message pointer in I1.
1345  mov(I1, O1);
1346
1347  // Restore prior 64-bit registers
1348  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1349  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1350  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1351  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1352  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1353  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1354
1355  // factor long stop-sequence into subroutine to save space
1356  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1357
1358  // call indirectly to solve generation ordering problem
1359  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1360  load_ptr_contents(al, O5);
1361  jmpl(O5, 0, O7);
1362  delayed()->nop();
1363}
1364
1365
1366void MacroAssembler::stop(const char* msg) {
1367  // save frame first to get O7 for return address
1368  // add one word to size in case struct is odd number of words long
1369  // It must be doubleword-aligned for storing doubles into it.
1370
1371    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1372
1373    // stop_subroutine expects message pointer in I1.
1374    // Size of set() should stay the same
1375    patchable_set((intptr_t)msg, O1);
1376
1377    // factor long stop-sequence into subroutine to save space
1378    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1379
1380    // call indirectly to solve generation ordering problem
1381    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1382    load_ptr_contents(a, O5);
1383    jmpl(O5, 0, O7);
1384    delayed()->nop();
1385
1386    breakpoint_trap();   // make stop actually stop rather than writing
1387                         // unnoticeable results in the output files.
1388
1389    // restore(); done in callee to save space!
1390}
1391
1392
1393void MacroAssembler::warn(const char* msg) {
1394  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1395  RegistersForDebugging::save_registers(this);
1396  mov(O0, L0);
1397  // Size of set() should stay the same
1398  patchable_set((intptr_t)msg, O0);
1399  call( CAST_FROM_FN_PTR(address, warning) );
1400  delayed()->nop();
1401//  ret();
1402//  delayed()->restore();
1403  RegistersForDebugging::restore_registers(this, L0);
1404  restore();
1405}
1406
1407
1408void MacroAssembler::untested(const char* what) {
1409  // We must be able to turn interactive prompting off
1410  // in order to run automated test scripts on the VM
1411  // Use the flag ShowMessageBoxOnError
1412
1413  const char* b = NULL;
1414  {
1415    ResourceMark rm;
1416    stringStream ss;
1417    ss.print("untested: %s", what);
1418    b = code_string(ss.as_string());
1419  }
1420  if (ShowMessageBoxOnError) { STOP(b); }
1421  else                       { warn(b); }
1422}
1423
1424
1425void MacroAssembler::stop_subroutine() {
1426  RegistersForDebugging::save_registers(this);
1427
1428  // for the sake of the debugger, stick a PC on the current frame
1429  // (this assumes that the caller has performed an extra "save")
1430  mov(I7, L7);
1431  add(O7, -7 * BytesPerInt, I7);
1432
1433  save_frame(); // one more save to free up another O7 register
1434  mov(I0, O1); // addr of reg save area
1435
1436  // We expect pointer to message in I1. Caller must set it up in O1
1437  mov(I1, O0); // get msg
1438  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1439  delayed()->nop();
1440
1441  restore();
1442
1443  RegistersForDebugging::restore_registers(this, O0);
1444
1445  save_frame(0);
1446  call(CAST_FROM_FN_PTR(address,breakpoint));
1447  delayed()->nop();
1448  restore();
1449
1450  mov(L7, I7);
1451  retl();
1452  delayed()->restore(); // see stop above
1453}
1454
1455
1456void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1457  if ( ShowMessageBoxOnError ) {
1458    JavaThread* thread = JavaThread::current();
1459    JavaThreadState saved_state = thread->thread_state();
1460    thread->set_thread_state(_thread_in_vm);
1461      {
1462        // In order to get locks work, we need to fake a in_VM state
1463        ttyLocker ttyl;
1464        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1465        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1466        BytecodeCounter::print();
1467        }
1468        if (os::message_box(msg, "Execution stopped, print registers?"))
1469          regs->print(::tty);
1470      }
1471    BREAKPOINT;
1472      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1473  }
1474  else {
1475     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1476  }
1477  assert(false, "DEBUG MESSAGE: %s", msg);
1478}
1479
1480
1481void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1482  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1483  Label no_extras;
1484  br( negative, true, pt, no_extras ); // if neg, clear reg
1485  delayed()->set(0, Rresult);          // annuled, so only if taken
1486  bind( no_extras );
1487}
1488
1489
1490void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1491#ifdef _LP64
1492  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1493#else
1494  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1495#endif
1496  bclr(1, Rresult);
1497  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1498}
1499
1500
1501void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1502  calc_frame_size(Rextra_words, Rresult);
1503  neg(Rresult);
1504  save(SP, Rresult, SP);
1505}
1506
1507
1508// ---------------------------------------------------------
1509Assembler::RCondition cond2rcond(Assembler::Condition c) {
1510  switch (c) {
1511    /*case zero: */
1512    case Assembler::equal:        return Assembler::rc_z;
1513    case Assembler::lessEqual:    return Assembler::rc_lez;
1514    case Assembler::less:         return Assembler::rc_lz;
1515    /*case notZero:*/
1516    case Assembler::notEqual:     return Assembler::rc_nz;
1517    case Assembler::greater:      return Assembler::rc_gz;
1518    case Assembler::greaterEqual: return Assembler::rc_gez;
1519  }
1520  ShouldNotReachHere();
1521  return Assembler::rc_z;
1522}
1523
1524// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
1525void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1526  tst(s1);
1527  br (c, a, p, L);
1528}
1529
1530// Compares a pointer register with zero and branches on null.
1531// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1532void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1533  assert_not_delayed();
1534#ifdef _LP64
1535  bpr( rc_z, a, p, s1, L );
1536#else
1537  tst(s1);
1538  br ( zero, a, p, L );
1539#endif
1540}
1541
1542void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1543  assert_not_delayed();
1544#ifdef _LP64
1545  bpr( rc_nz, a, p, s1, L );
1546#else
1547  tst(s1);
1548  br ( notZero, a, p, L );
1549#endif
1550}
1551
1552// Compare registers and branch with nop in delay slot or cbcond without delay slot.
1553
1554// Compare integer (32 bit) values (icc only).
1555void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1556                                      Predict p, Label& L) {
1557  assert_not_delayed();
1558  if (use_cbcond(L)) {
1559    Assembler::cbcond(c, icc, s1, s2, L);
1560  } else {
1561    cmp(s1, s2);
1562    br(c, false, p, L);
1563    delayed()->nop();
1564  }
1565}
1566
1567// Compare integer (32 bit) values (icc only).
1568void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1569                                      Predict p, Label& L) {
1570  assert_not_delayed();
1571  if (is_simm(simm13a,5) && use_cbcond(L)) {
1572    Assembler::cbcond(c, icc, s1, simm13a, L);
1573  } else {
1574    cmp(s1, simm13a);
1575    br(c, false, p, L);
1576    delayed()->nop();
1577  }
1578}
1579
1580// Branch that tests xcc in LP64 and icc in !LP64
1581void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1582                                       Predict p, Label& L) {
1583  assert_not_delayed();
1584  if (use_cbcond(L)) {
1585    Assembler::cbcond(c, ptr_cc, s1, s2, L);
1586  } else {
1587    cmp(s1, s2);
1588    brx(c, false, p, L);
1589    delayed()->nop();
1590  }
1591}
1592
1593// Branch that tests xcc in LP64 and icc in !LP64
1594void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1595                                       Predict p, Label& L) {
1596  assert_not_delayed();
1597  if (is_simm(simm13a,5) && use_cbcond(L)) {
1598    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1599  } else {
1600    cmp(s1, simm13a);
1601    brx(c, false, p, L);
1602    delayed()->nop();
1603  }
1604}
1605
1606// Short branch version for compares a pointer with zero.
1607
1608void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1609  assert_not_delayed();
1610  if (use_cbcond(L)) {
1611    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1612    return;
1613  }
1614  br_null(s1, false, p, L);
1615  delayed()->nop();
1616}
1617
1618void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1619  assert_not_delayed();
1620  if (use_cbcond(L)) {
1621    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1622    return;
1623  }
1624  br_notnull(s1, false, p, L);
1625  delayed()->nop();
1626}
1627
1628// Unconditional short branch
1629void MacroAssembler::ba_short(Label& L) {
1630  if (use_cbcond(L)) {
1631    Assembler::cbcond(equal, icc, G0, G0, L);
1632    return;
1633  }
1634  br(always, false, pt, L);
1635  delayed()->nop();
1636}
1637
1638// instruction sequences factored across compiler & interpreter
1639
1640
1641void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1642                           Register Rb_hi, Register Rb_low,
1643                           Register Rresult) {
1644
1645  Label check_low_parts, done;
1646
1647  cmp(Ra_hi, Rb_hi );  // compare hi parts
1648  br(equal, true, pt, check_low_parts);
1649  delayed()->cmp(Ra_low, Rb_low); // test low parts
1650
1651  // And, with an unsigned comparison, it does not matter if the numbers
1652  // are negative or not.
1653  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1654  // The second one is bigger (unsignedly).
1655
1656  // Other notes:  The first move in each triplet can be unconditional
1657  // (and therefore probably prefetchable).
1658  // And the equals case for the high part does not need testing,
1659  // since that triplet is reached only after finding the high halves differ.
1660
1661  mov(-1, Rresult);
1662  ba(done);
1663  delayed()->movcc(greater, false, icc,  1, Rresult);
1664
1665  bind(check_low_parts);
1666
1667  mov(                               -1, Rresult);
1668  movcc(equal,           false, icc,  0, Rresult);
1669  movcc(greaterUnsigned, false, icc,  1, Rresult);
1670
1671  bind(done);
1672}
1673
1674void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1675  subcc(  G0, Rlow, Rlow );
1676  subc(   G0, Rhi,  Rhi  );
1677}
1678
1679void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1680                           Register Rcount,
1681                           Register Rout_high, Register Rout_low,
1682                           Register Rtemp ) {
1683
1684
1685  Register Ralt_count = Rtemp;
1686  Register Rxfer_bits = Rtemp;
1687
1688  assert( Ralt_count != Rin_high
1689      &&  Ralt_count != Rin_low
1690      &&  Ralt_count != Rcount
1691      &&  Rxfer_bits != Rin_low
1692      &&  Rxfer_bits != Rin_high
1693      &&  Rxfer_bits != Rcount
1694      &&  Rxfer_bits != Rout_low
1695      &&  Rout_low   != Rin_high,
1696        "register alias checks");
1697
1698  Label big_shift, done;
1699
1700  // This code can be optimized to use the 64 bit shifts in V9.
1701  // Here we use the 32 bit shifts.
1702
1703  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1704  subcc(Rcount,   31, Ralt_count);
1705  br(greater, true, pn, big_shift);
1706  delayed()->dec(Ralt_count);
1707
1708  // shift < 32 bits, Ralt_count = Rcount-31
1709
1710  // We get the transfer bits by shifting right by 32-count the low
1711  // register. This is done by shifting right by 31-count and then by one
1712  // more to take care of the special (rare) case where count is zero
1713  // (shifting by 32 would not work).
1714
1715  neg(Ralt_count);
1716
1717  // The order of the next two instructions is critical in the case where
1718  // Rin and Rout are the same and should not be reversed.
1719
1720  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1721  if (Rcount != Rout_low) {
1722    sll(Rin_low, Rcount, Rout_low); // low half
1723  }
1724  sll(Rin_high, Rcount, Rout_high);
1725  if (Rcount == Rout_low) {
1726    sll(Rin_low, Rcount, Rout_low); // low half
1727  }
1728  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1729  ba(done);
1730  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1731
1732  // shift >= 32 bits, Ralt_count = Rcount-32
1733  bind(big_shift);
1734  sll(Rin_low, Ralt_count, Rout_high  );
1735  clr(Rout_low);
1736
1737  bind(done);
1738}
1739
1740
1741void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1742                           Register Rcount,
1743                           Register Rout_high, Register Rout_low,
1744                           Register Rtemp ) {
1745
1746  Register Ralt_count = Rtemp;
1747  Register Rxfer_bits = Rtemp;
1748
1749  assert( Ralt_count != Rin_high
1750      &&  Ralt_count != Rin_low
1751      &&  Ralt_count != Rcount
1752      &&  Rxfer_bits != Rin_low
1753      &&  Rxfer_bits != Rin_high
1754      &&  Rxfer_bits != Rcount
1755      &&  Rxfer_bits != Rout_high
1756      &&  Rout_high  != Rin_low,
1757        "register alias checks");
1758
1759  Label big_shift, done;
1760
1761  // This code can be optimized to use the 64 bit shifts in V9.
1762  // Here we use the 32 bit shifts.
1763
1764  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1765  subcc(Rcount,   31, Ralt_count);
1766  br(greater, true, pn, big_shift);
1767  delayed()->dec(Ralt_count);
1768
1769  // shift < 32 bits, Ralt_count = Rcount-31
1770
1771  // We get the transfer bits by shifting left by 32-count the high
1772  // register. This is done by shifting left by 31-count and then by one
1773  // more to take care of the special (rare) case where count is zero
1774  // (shifting by 32 would not work).
1775
1776  neg(Ralt_count);
1777  if (Rcount != Rout_low) {
1778    srl(Rin_low, Rcount, Rout_low);
1779  }
1780
1781  // The order of the next two instructions is critical in the case where
1782  // Rin and Rout are the same and should not be reversed.
1783
1784  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1785  sra(Rin_high,     Rcount, Rout_high ); // high half
1786  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1787  if (Rcount == Rout_low) {
1788    srl(Rin_low, Rcount, Rout_low);
1789  }
1790  ba(done);
1791  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1792
1793  // shift >= 32 bits, Ralt_count = Rcount-32
1794  bind(big_shift);
1795
1796  sra(Rin_high, Ralt_count, Rout_low);
1797  sra(Rin_high,         31, Rout_high); // sign into hi
1798
1799  bind( done );
1800}
1801
1802
1803
1804void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
1805                            Register Rcount,
1806                            Register Rout_high, Register Rout_low,
1807                            Register Rtemp ) {
1808
1809  Register Ralt_count = Rtemp;
1810  Register Rxfer_bits = Rtemp;
1811
1812  assert( Ralt_count != Rin_high
1813      &&  Ralt_count != Rin_low
1814      &&  Ralt_count != Rcount
1815      &&  Rxfer_bits != Rin_low
1816      &&  Rxfer_bits != Rin_high
1817      &&  Rxfer_bits != Rcount
1818      &&  Rxfer_bits != Rout_high
1819      &&  Rout_high  != Rin_low,
1820        "register alias checks");
1821
1822  Label big_shift, done;
1823
1824  // This code can be optimized to use the 64 bit shifts in V9.
1825  // Here we use the 32 bit shifts.
1826
1827  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1828  subcc(Rcount,   31, Ralt_count);
1829  br(greater, true, pn, big_shift);
1830  delayed()->dec(Ralt_count);
1831
1832  // shift < 32 bits, Ralt_count = Rcount-31
1833
1834  // We get the transfer bits by shifting left by 32-count the high
1835  // register. This is done by shifting left by 31-count and then by one
1836  // more to take care of the special (rare) case where count is zero
1837  // (shifting by 32 would not work).
1838
1839  neg(Ralt_count);
1840  if (Rcount != Rout_low) {
1841    srl(Rin_low, Rcount, Rout_low);
1842  }
1843
1844  // The order of the next two instructions is critical in the case where
1845  // Rin and Rout are the same and should not be reversed.
1846
1847  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1848  srl(Rin_high,     Rcount, Rout_high ); // high half
1849  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1850  if (Rcount == Rout_low) {
1851    srl(Rin_low, Rcount, Rout_low);
1852  }
1853  ba(done);
1854  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1855
1856  // shift >= 32 bits, Ralt_count = Rcount-32
1857  bind(big_shift);
1858
1859  srl(Rin_high, Ralt_count, Rout_low);
1860  clr(Rout_high);
1861
1862  bind( done );
1863}
1864
1865#ifdef _LP64
1866void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
1867  cmp(Ra, Rb);
1868  mov(-1, Rresult);
1869  movcc(equal,   false, xcc,  0, Rresult);
1870  movcc(greater, false, xcc,  1, Rresult);
1871}
1872#endif
1873
1874
1875void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
1876  switch (size_in_bytes) {
1877  case  8:  ld_long(src, dst); break;
1878  case  4:  ld(     src, dst); break;
1879  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
1880  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
1881  default:  ShouldNotReachHere();
1882  }
1883}
1884
1885void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
1886  switch (size_in_bytes) {
1887  case  8:  st_long(src, dst); break;
1888  case  4:  st(     src, dst); break;
1889  case  2:  sth(    src, dst); break;
1890  case  1:  stb(    src, dst); break;
1891  default:  ShouldNotReachHere();
1892  }
1893}
1894
1895
1896void MacroAssembler::float_cmp( bool is_float, int unordered_result,
1897                                FloatRegister Fa, FloatRegister Fb,
1898                                Register Rresult) {
1899  if (is_float) {
1900    fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
1901  } else {
1902    fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
1903  }
1904
1905  if (unordered_result == 1) {
1906    mov(                                    -1, Rresult);
1907    movcc(f_equal,              true, fcc0,  0, Rresult);
1908    movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
1909  } else {
1910    mov(                                    -1, Rresult);
1911    movcc(f_equal,              true, fcc0,  0, Rresult);
1912    movcc(f_greater,            true, fcc0,  1, Rresult);
1913  }
1914}
1915
1916
1917void MacroAssembler::save_all_globals_into_locals() {
1918  mov(G1,L1);
1919  mov(G2,L2);
1920  mov(G3,L3);
1921  mov(G4,L4);
1922  mov(G5,L5);
1923  mov(G6,L6);
1924  mov(G7,L7);
1925}
1926
1927void MacroAssembler::restore_globals_from_locals() {
1928  mov(L1,G1);
1929  mov(L2,G2);
1930  mov(L3,G3);
1931  mov(L4,G4);
1932  mov(L5,G5);
1933  mov(L6,G6);
1934  mov(L7,G7);
1935}
1936
1937RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1938                                                      Register tmp,
1939                                                      int offset) {
1940  intptr_t value = *delayed_value_addr;
1941  if (value != 0)
1942    return RegisterOrConstant(value + offset);
1943
1944  // load indirectly to solve generation ordering problem
1945  AddressLiteral a(delayed_value_addr);
1946  load_ptr_contents(a, tmp);
1947
1948#ifdef ASSERT
1949  tst(tmp);
1950  breakpoint_trap(zero, xcc);
1951#endif
1952
1953  if (offset != 0)
1954    add(tmp, offset, tmp);
1955
1956  return RegisterOrConstant(tmp);
1957}
1958
1959
1960RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
1961  assert(d.register_or_noreg() != G0, "lost side effect");
1962  if ((s2.is_constant() && s2.as_constant() == 0) ||
1963      (s2.is_register() && s2.as_register() == G0)) {
1964    // Do nothing, just move value.
1965    if (s1.is_register()) {
1966      if (d.is_constant())  d = temp;
1967      mov(s1.as_register(), d.as_register());
1968      return d;
1969    } else {
1970      return s1;
1971    }
1972  }
1973
1974  if (s1.is_register()) {
1975    assert_different_registers(s1.as_register(), temp);
1976    if (d.is_constant())  d = temp;
1977    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
1978    return d;
1979  } else {
1980    if (s2.is_register()) {
1981      assert_different_registers(s2.as_register(), temp);
1982      if (d.is_constant())  d = temp;
1983      set(s1.as_constant(), temp);
1984      andn(temp, s2.as_register(), d.as_register());
1985      return d;
1986    } else {
1987      intptr_t res = s1.as_constant() & ~s2.as_constant();
1988      return res;
1989    }
1990  }
1991}
1992
1993RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
1994  assert(d.register_or_noreg() != G0, "lost side effect");
1995  if ((s2.is_constant() && s2.as_constant() == 0) ||
1996      (s2.is_register() && s2.as_register() == G0)) {
1997    // Do nothing, just move value.
1998    if (s1.is_register()) {
1999      if (d.is_constant())  d = temp;
2000      mov(s1.as_register(), d.as_register());
2001      return d;
2002    } else {
2003      return s1;
2004    }
2005  }
2006
2007  if (s1.is_register()) {
2008    assert_different_registers(s1.as_register(), temp);
2009    if (d.is_constant())  d = temp;
2010    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2011    return d;
2012  } else {
2013    if (s2.is_register()) {
2014      assert_different_registers(s2.as_register(), temp);
2015      if (d.is_constant())  d = temp;
2016      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2017      return d;
2018    } else {
2019      intptr_t res = s1.as_constant() + s2.as_constant();
2020      return res;
2021    }
2022  }
2023}
2024
2025RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2026  assert(d.register_or_noreg() != G0, "lost side effect");
2027  if (!is_simm13(s2.constant_or_zero()))
2028    s2 = (s2.as_constant() & 0xFF);
2029  if ((s2.is_constant() && s2.as_constant() == 0) ||
2030      (s2.is_register() && s2.as_register() == G0)) {
2031    // Do nothing, just move value.
2032    if (s1.is_register()) {
2033      if (d.is_constant())  d = temp;
2034      mov(s1.as_register(), d.as_register());
2035      return d;
2036    } else {
2037      return s1;
2038    }
2039  }
2040
2041  if (s1.is_register()) {
2042    assert_different_registers(s1.as_register(), temp);
2043    if (d.is_constant())  d = temp;
2044    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2045    return d;
2046  } else {
2047    if (s2.is_register()) {
2048      assert_different_registers(s2.as_register(), temp);
2049      if (d.is_constant())  d = temp;
2050      set(s1.as_constant(), temp);
2051      sll_ptr(temp, s2.as_register(), d.as_register());
2052      return d;
2053    } else {
2054      intptr_t res = s1.as_constant() << s2.as_constant();
2055      return res;
2056    }
2057  }
2058}
2059
2060
2061// Look up the method for a megamorphic invokeinterface call.
2062// The target method is determined by <intf_klass, itable_index>.
2063// The receiver klass is in recv_klass.
2064// On success, the result will be in method_result, and execution falls through.
2065// On failure, execution transfers to the given label.
2066void MacroAssembler::lookup_interface_method(Register recv_klass,
2067                                             Register intf_klass,
2068                                             RegisterOrConstant itable_index,
2069                                             Register method_result,
2070                                             Register scan_temp,
2071                                             Register sethi_temp,
2072                                             Label& L_no_such_interface) {
2073  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2074  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2075         "caller must use same register for non-constant itable index as for method");
2076
2077  Label L_no_such_interface_restore;
2078  bool did_save = false;
2079  if (scan_temp == noreg || sethi_temp == noreg) {
2080    Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2081    Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2082    assert(method_result->is_global(), "must be able to return value");
2083    scan_temp  = L2;
2084    sethi_temp = L3;
2085    save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2086    recv_klass = recv_2;
2087    intf_klass = intf_2;
2088    did_save = true;
2089  }
2090
2091  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2092  int vtable_base = in_bytes(Klass::vtable_start_offset());
2093  int scan_step   = itableOffsetEntry::size() * wordSize;
2094  int vte_size    = vtableEntry::size_in_bytes();
2095
2096  lduw(recv_klass, in_bytes(Klass::vtable_length_offset()), scan_temp);
2097  // %%% We should store the aligned, prescaled offset in the klassoop.
2098  // Then the next several instructions would fold away.
2099
2100  int itb_offset = vtable_base;
2101  int itb_scale = exact_log2(vtableEntry::size_in_bytes());
2102  sll(scan_temp, itb_scale,  scan_temp);
2103  add(scan_temp, itb_offset, scan_temp);
2104  add(recv_klass, scan_temp, scan_temp);
2105
2106  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2107  RegisterOrConstant itable_offset = itable_index;
2108  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2109  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2110  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2111
2112  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2113  //   if (scan->interface() == intf) {
2114  //     result = (klass + scan->offset() + itable_index);
2115  //   }
2116  // }
2117  Label L_search, L_found_method;
2118
2119  for (int peel = 1; peel >= 0; peel--) {
2120    // %%%% Could load both offset and interface in one ldx, if they were
2121    // in the opposite order.  This would save a load.
2122    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2123
2124    // Check that this entry is non-null.  A null entry means that
2125    // the receiver class doesn't implement the interface, and wasn't the
2126    // same as when the caller was compiled.
2127    bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2128    delayed()->cmp(method_result, intf_klass);
2129
2130    if (peel) {
2131      brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2132    } else {
2133      brx(Assembler::notEqual, false, Assembler::pn, L_search);
2134      // (invert the test to fall through to found_method...)
2135    }
2136    delayed()->add(scan_temp, scan_step, scan_temp);
2137
2138    if (!peel)  break;
2139
2140    bind(L_search);
2141  }
2142
2143  bind(L_found_method);
2144
2145  // Got a hit.
2146  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2147  // scan_temp[-scan_step] points to the vtable offset we need
2148  ito_offset -= scan_step;
2149  lduw(scan_temp, ito_offset, scan_temp);
2150  ld_ptr(recv_klass, scan_temp, method_result);
2151
2152  if (did_save) {
2153    Label L_done;
2154    ba(L_done);
2155    delayed()->restore();
2156
2157    bind(L_no_such_interface_restore);
2158    ba(L_no_such_interface);
2159    delayed()->restore();
2160
2161    bind(L_done);
2162  }
2163}
2164
2165
2166// virtual method calling
2167void MacroAssembler::lookup_virtual_method(Register recv_klass,
2168                                           RegisterOrConstant vtable_index,
2169                                           Register method_result) {
2170  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2171  Register sethi_temp = method_result;
2172  const int base = in_bytes(Klass::vtable_start_offset()) +
2173                   // method pointer offset within the vtable entry:
2174                   vtableEntry::method_offset_in_bytes();
2175  RegisterOrConstant vtable_offset = vtable_index;
2176  // Each of the following three lines potentially generates an instruction.
2177  // But the total number of address formation instructions will always be
2178  // at most two, and will often be zero.  In any case, it will be optimal.
2179  // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2180  // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2181  vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size_in_bytes()), vtable_offset);
2182  vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2183  Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2184  ld_ptr(vtable_entry_addr, method_result);
2185}
2186
2187
2188void MacroAssembler::check_klass_subtype(Register sub_klass,
2189                                         Register super_klass,
2190                                         Register temp_reg,
2191                                         Register temp2_reg,
2192                                         Label& L_success) {
2193  Register sub_2 = sub_klass;
2194  Register sup_2 = super_klass;
2195  if (!sub_2->is_global())  sub_2 = L0;
2196  if (!sup_2->is_global())  sup_2 = L1;
2197  bool did_save = false;
2198  if (temp_reg == noreg || temp2_reg == noreg) {
2199    temp_reg = L2;
2200    temp2_reg = L3;
2201    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2202    sub_klass = sub_2;
2203    super_klass = sup_2;
2204    did_save = true;
2205  }
2206  Label L_failure, L_pop_to_failure, L_pop_to_success;
2207  check_klass_subtype_fast_path(sub_klass, super_klass,
2208                                temp_reg, temp2_reg,
2209                                (did_save ? &L_pop_to_success : &L_success),
2210                                (did_save ? &L_pop_to_failure : &L_failure), NULL);
2211
2212  if (!did_save)
2213    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2214  check_klass_subtype_slow_path(sub_2, sup_2,
2215                                L2, L3, L4, L5,
2216                                NULL, &L_pop_to_failure);
2217
2218  // on success:
2219  bind(L_pop_to_success);
2220  restore();
2221  ba_short(L_success);
2222
2223  // on failure:
2224  bind(L_pop_to_failure);
2225  restore();
2226  bind(L_failure);
2227}
2228
2229
2230void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2231                                                   Register super_klass,
2232                                                   Register temp_reg,
2233                                                   Register temp2_reg,
2234                                                   Label* L_success,
2235                                                   Label* L_failure,
2236                                                   Label* L_slow_path,
2237                                        RegisterOrConstant super_check_offset) {
2238  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2239  int sco_offset = in_bytes(Klass::super_check_offset_offset());
2240
2241  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2242  bool need_slow_path = (must_load_sco ||
2243                         super_check_offset.constant_or_zero() == sco_offset);
2244
2245  assert_different_registers(sub_klass, super_klass, temp_reg);
2246  if (super_check_offset.is_register()) {
2247    assert_different_registers(sub_klass, super_klass, temp_reg,
2248                               super_check_offset.as_register());
2249  } else if (must_load_sco) {
2250    assert(temp2_reg != noreg, "supply either a temp or a register offset");
2251  }
2252
2253  Label L_fallthrough;
2254  int label_nulls = 0;
2255  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2256  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2257  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2258  assert(label_nulls <= 1 ||
2259         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2260         "at most one NULL in the batch, usually");
2261
2262  // If the pointers are equal, we are done (e.g., String[] elements).
2263  // This self-check enables sharing of secondary supertype arrays among
2264  // non-primary types such as array-of-interface.  Otherwise, each such
2265  // type would need its own customized SSA.
2266  // We move this check to the front of the fast path because many
2267  // type checks are in fact trivially successful in this manner,
2268  // so we get a nicely predicted branch right at the start of the check.
2269  cmp(super_klass, sub_klass);
2270  brx(Assembler::equal, false, Assembler::pn, *L_success);
2271  delayed()->nop();
2272
2273  // Check the supertype display:
2274  if (must_load_sco) {
2275    // The super check offset is always positive...
2276    lduw(super_klass, sco_offset, temp2_reg);
2277    super_check_offset = RegisterOrConstant(temp2_reg);
2278    // super_check_offset is register.
2279    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2280  }
2281  ld_ptr(sub_klass, super_check_offset, temp_reg);
2282  cmp(super_klass, temp_reg);
2283
2284  // This check has worked decisively for primary supers.
2285  // Secondary supers are sought in the super_cache ('super_cache_addr').
2286  // (Secondary supers are interfaces and very deeply nested subtypes.)
2287  // This works in the same check above because of a tricky aliasing
2288  // between the super_cache and the primary super display elements.
2289  // (The 'super_check_addr' can address either, as the case requires.)
2290  // Note that the cache is updated below if it does not help us find
2291  // what we need immediately.
2292  // So if it was a primary super, we can just fail immediately.
2293  // Otherwise, it's the slow path for us (no success at this point).
2294
2295  // Hacked ba(), which may only be used just before L_fallthrough.
2296#define FINAL_JUMP(label)            \
2297  if (&(label) != &L_fallthrough) {  \
2298    ba(label);  delayed()->nop();    \
2299  }
2300
2301  if (super_check_offset.is_register()) {
2302    brx(Assembler::equal, false, Assembler::pn, *L_success);
2303    delayed()->cmp(super_check_offset.as_register(), sc_offset);
2304
2305    if (L_failure == &L_fallthrough) {
2306      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2307      delayed()->nop();
2308    } else {
2309      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2310      delayed()->nop();
2311      FINAL_JUMP(*L_slow_path);
2312    }
2313  } else if (super_check_offset.as_constant() == sc_offset) {
2314    // Need a slow path; fast failure is impossible.
2315    if (L_slow_path == &L_fallthrough) {
2316      brx(Assembler::equal, false, Assembler::pt, *L_success);
2317      delayed()->nop();
2318    } else {
2319      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2320      delayed()->nop();
2321      FINAL_JUMP(*L_success);
2322    }
2323  } else {
2324    // No slow path; it's a fast decision.
2325    if (L_failure == &L_fallthrough) {
2326      brx(Assembler::equal, false, Assembler::pt, *L_success);
2327      delayed()->nop();
2328    } else {
2329      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2330      delayed()->nop();
2331      FINAL_JUMP(*L_success);
2332    }
2333  }
2334
2335  bind(L_fallthrough);
2336
2337#undef FINAL_JUMP
2338}
2339
2340
2341void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2342                                                   Register super_klass,
2343                                                   Register count_temp,
2344                                                   Register scan_temp,
2345                                                   Register scratch_reg,
2346                                                   Register coop_reg,
2347                                                   Label* L_success,
2348                                                   Label* L_failure) {
2349  assert_different_registers(sub_klass, super_klass,
2350                             count_temp, scan_temp, scratch_reg, coop_reg);
2351
2352  Label L_fallthrough, L_loop;
2353  int label_nulls = 0;
2354  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2355  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2356  assert(label_nulls <= 1, "at most one NULL in the batch");
2357
2358  // a couple of useful fields in sub_klass:
2359  int ss_offset = in_bytes(Klass::secondary_supers_offset());
2360  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2361
2362  // Do a linear scan of the secondary super-klass chain.
2363  // This code is rarely used, so simplicity is a virtue here.
2364
2365#ifndef PRODUCT
2366  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2367  inc_counter((address) pst_counter, count_temp, scan_temp);
2368#endif
2369
2370  // We will consult the secondary-super array.
2371  ld_ptr(sub_klass, ss_offset, scan_temp);
2372
2373  Register search_key = super_klass;
2374
2375  // Load the array length.  (Positive movl does right thing on LP64.)
2376  lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2377
2378  // Check for empty secondary super list
2379  tst(count_temp);
2380
2381  // In the array of super classes elements are pointer sized.
2382  int element_size = wordSize;
2383
2384  // Top of search loop
2385  bind(L_loop);
2386  br(Assembler::equal, false, Assembler::pn, *L_failure);
2387  delayed()->add(scan_temp, element_size, scan_temp);
2388
2389  // Skip the array header in all array accesses.
2390  int elem_offset = Array<Klass*>::base_offset_in_bytes();
2391  elem_offset -= element_size;   // the scan pointer was pre-incremented also
2392
2393  // Load next super to check
2394    ld_ptr( scan_temp, elem_offset, scratch_reg );
2395
2396  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2397  cmp(scratch_reg, search_key);
2398
2399  // A miss means we are NOT a subtype and need to keep looping
2400  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2401  delayed()->deccc(count_temp); // decrement trip counter in delay slot
2402
2403  // Success.  Cache the super we found and proceed in triumph.
2404  st_ptr(super_klass, sub_klass, sc_offset);
2405
2406  if (L_success != &L_fallthrough) {
2407    ba(*L_success);
2408    delayed()->nop();
2409  }
2410
2411  bind(L_fallthrough);
2412}
2413
2414
2415RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2416                                                   Register temp_reg,
2417                                                   int extra_slot_offset) {
2418  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2419  int stackElementSize = Interpreter::stackElementSize;
2420  int offset = extra_slot_offset * stackElementSize;
2421  if (arg_slot.is_constant()) {
2422    offset += arg_slot.as_constant() * stackElementSize;
2423    return offset;
2424  } else {
2425    assert(temp_reg != noreg, "must specify");
2426    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2427    if (offset != 0)
2428      add(temp_reg, offset, temp_reg);
2429    return temp_reg;
2430  }
2431}
2432
2433
2434Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2435                                         Register temp_reg,
2436                                         int extra_slot_offset) {
2437  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2438}
2439
2440
2441void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2442                                          Register temp_reg,
2443                                          Label& done, Label* slow_case,
2444                                          BiasedLockingCounters* counters) {
2445  assert(UseBiasedLocking, "why call this otherwise?");
2446
2447  if (PrintBiasedLockingStatistics) {
2448    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2449    if (counters == NULL)
2450      counters = BiasedLocking::counters();
2451  }
2452
2453  Label cas_label;
2454
2455  // Biased locking
2456  // See whether the lock is currently biased toward our thread and
2457  // whether the epoch is still valid
2458  // Note that the runtime guarantees sufficient alignment of JavaThread
2459  // pointers to allow age to be placed into low bits
2460  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2461  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2462  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2463
2464  load_klass(obj_reg, temp_reg);
2465  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2466  or3(G2_thread, temp_reg, temp_reg);
2467  xor3(mark_reg, temp_reg, temp_reg);
2468  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2469  if (counters != NULL) {
2470    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2471    // Reload mark_reg as we may need it later
2472    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2473  }
2474  brx(Assembler::equal, true, Assembler::pt, done);
2475  delayed()->nop();
2476
2477  Label try_revoke_bias;
2478  Label try_rebias;
2479  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2480  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2481
2482  // At this point we know that the header has the bias pattern and
2483  // that we are not the bias owner in the current epoch. We need to
2484  // figure out more details about the state of the header in order to
2485  // know what operations can be legally performed on the object's
2486  // header.
2487
2488  // If the low three bits in the xor result aren't clear, that means
2489  // the prototype header is no longer biased and we have to revoke
2490  // the bias on this object.
2491  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2492  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2493
2494  // Biasing is still enabled for this data type. See whether the
2495  // epoch of the current bias is still valid, meaning that the epoch
2496  // bits of the mark word are equal to the epoch bits of the
2497  // prototype header. (Note that the prototype header's epoch bits
2498  // only change at a safepoint.) If not, attempt to rebias the object
2499  // toward the current thread. Note that we must be absolutely sure
2500  // that the current epoch is invalid in order to do this because
2501  // otherwise the manipulations it performs on the mark word are
2502  // illegal.
2503  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2504  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2505
2506  // The epoch of the current bias is still valid but we know nothing
2507  // about the owner; it might be set or it might be clear. Try to
2508  // acquire the bias of the object using an atomic operation. If this
2509  // fails we will go in to the runtime to revoke the object's bias.
2510  // Note that we first construct the presumed unbiased header so we
2511  // don't accidentally blow away another thread's valid bias.
2512  delayed()->and3(mark_reg,
2513                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2514                  mark_reg);
2515  or3(G2_thread, mark_reg, temp_reg);
2516  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2517  // If the biasing toward our thread failed, this means that
2518  // another thread succeeded in biasing it toward itself and we
2519  // need to revoke that bias. The revocation will occur in the
2520  // interpreter runtime in the slow case.
2521  cmp(mark_reg, temp_reg);
2522  if (counters != NULL) {
2523    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2524  }
2525  if (slow_case != NULL) {
2526    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2527    delayed()->nop();
2528  }
2529  ba_short(done);
2530
2531  bind(try_rebias);
2532  // At this point we know the epoch has expired, meaning that the
2533  // current "bias owner", if any, is actually invalid. Under these
2534  // circumstances _only_, we are allowed to use the current header's
2535  // value as the comparison value when doing the cas to acquire the
2536  // bias in the current epoch. In other words, we allow transfer of
2537  // the bias from one thread to another directly in this situation.
2538  //
2539  // FIXME: due to a lack of registers we currently blow away the age
2540  // bits in this situation. Should attempt to preserve them.
2541  load_klass(obj_reg, temp_reg);
2542  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2543  or3(G2_thread, temp_reg, temp_reg);
2544  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2545  // If the biasing toward our thread failed, this means that
2546  // another thread succeeded in biasing it toward itself and we
2547  // need to revoke that bias. The revocation will occur in the
2548  // interpreter runtime in the slow case.
2549  cmp(mark_reg, temp_reg);
2550  if (counters != NULL) {
2551    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2552  }
2553  if (slow_case != NULL) {
2554    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2555    delayed()->nop();
2556  }
2557  ba_short(done);
2558
2559  bind(try_revoke_bias);
2560  // The prototype mark in the klass doesn't have the bias bit set any
2561  // more, indicating that objects of this data type are not supposed
2562  // to be biased any more. We are going to try to reset the mark of
2563  // this object to the prototype value and fall through to the
2564  // CAS-based locking scheme. Note that if our CAS fails, it means
2565  // that another thread raced us for the privilege of revoking the
2566  // bias of this particular object, so it's okay to continue in the
2567  // normal locking code.
2568  //
2569  // FIXME: due to a lack of registers we currently blow away the age
2570  // bits in this situation. Should attempt to preserve them.
2571  load_klass(obj_reg, temp_reg);
2572  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2573  cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2574  // Fall through to the normal CAS-based lock, because no matter what
2575  // the result of the above CAS, some thread must have succeeded in
2576  // removing the bias bit from the object's header.
2577  if (counters != NULL) {
2578    cmp(mark_reg, temp_reg);
2579    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2580  }
2581
2582  bind(cas_label);
2583}
2584
2585void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2586                                          bool allow_delay_slot_filling) {
2587  // Check for biased locking unlock case, which is a no-op
2588  // Note: we do not have to check the thread ID for two reasons.
2589  // First, the interpreter checks for IllegalMonitorStateException at
2590  // a higher level. Second, if the bias was revoked while we held the
2591  // lock, the object could not be rebiased toward another thread, so
2592  // the bias bit would be clear.
2593  ld_ptr(mark_addr, temp_reg);
2594  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2595  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2596  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2597  delayed();
2598  if (!allow_delay_slot_filling) {
2599    nop();
2600  }
2601}
2602
2603
2604// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2605// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2606// The code could be tightened up considerably.
2607//
2608// box->dhw disposition - post-conditions at DONE_LABEL.
2609// -   Successful inflated lock:  box->dhw != 0.
2610//     Any non-zero value suffices.
2611//     Consider G2_thread, rsp, boxReg, or markOopDesc::unused_mark()
2612// -   Successful Stack-lock: box->dhw == mark.
2613//     box->dhw must contain the displaced mark word value
2614// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2615//     The slow-path fast_enter() and slow_enter() operators
2616//     are responsible for setting box->dhw = NonZero (typically markOopDesc::unused_mark()).
2617// -   Biased: box->dhw is undefined
2618//
2619// SPARC refworkload performance - specifically jetstream and scimark - are
2620// extremely sensitive to the size of the code emitted by compiler_lock_object
2621// and compiler_unlock_object.  Critically, the key factor is code size, not path
2622// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2623// effect).
2624
2625
2626void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2627                                          Register Rbox, Register Rscratch,
2628                                          BiasedLockingCounters* counters,
2629                                          bool try_bias) {
2630   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2631
2632   verify_oop(Roop);
2633   Label done ;
2634
2635   if (counters != NULL) {
2636     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2637   }
2638
2639   if (EmitSync & 1) {
2640     mov(3, Rscratch);
2641     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2642     cmp(SP, G0);
2643     return ;
2644   }
2645
2646   if (EmitSync & 2) {
2647
2648     // Fetch object's markword
2649     ld_ptr(mark_addr, Rmark);
2650
2651     if (try_bias) {
2652        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2653     }
2654
2655     // Save Rbox in Rscratch to be used for the cas operation
2656     mov(Rbox, Rscratch);
2657
2658     // set Rmark to markOop | markOopDesc::unlocked_value
2659     or3(Rmark, markOopDesc::unlocked_value, Rmark);
2660
2661     // Initialize the box.  (Must happen before we update the object mark!)
2662     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2663
2664     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2665     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2666     cas_ptr(mark_addr.base(), Rmark, Rscratch);
2667
2668     // if compare/exchange succeeded we found an unlocked object and we now have locked it
2669     // hence we are done
2670     cmp(Rmark, Rscratch);
2671#ifdef _LP64
2672     sub(Rscratch, STACK_BIAS, Rscratch);
2673#endif
2674     brx(Assembler::equal, false, Assembler::pt, done);
2675     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2676
2677     // we did not find an unlocked object so see if this is a recursive case
2678     // sub(Rscratch, SP, Rscratch);
2679     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2680     andcc(Rscratch, 0xfffff003, Rscratch);
2681     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2682     bind (done);
2683     return ;
2684   }
2685
2686   Label Egress ;
2687
2688   if (EmitSync & 256) {
2689      Label IsInflated ;
2690
2691      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2692      // Triage: biased, stack-locked, neutral, inflated
2693      if (try_bias) {
2694        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2695        // Invariant: if control reaches this point in the emitted stream
2696        // then Rmark has not been modified.
2697      }
2698
2699      // Store mark into displaced mark field in the on-stack basic-lock "box"
2700      // Critically, this must happen before the CAS
2701      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2702      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2703      andcc(Rmark, 2, G0);
2704      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2705      delayed()->
2706
2707      // Try stack-lock acquisition.
2708      // Beware: the 1st instruction is in a delay slot
2709      mov(Rbox,  Rscratch);
2710      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2711      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2712      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2713      cmp(Rmark, Rscratch);
2714      brx(Assembler::equal, false, Assembler::pt, done);
2715      delayed()->sub(Rscratch, SP, Rscratch);
2716
2717      // Stack-lock attempt failed - check for recursive stack-lock.
2718      // See the comments below about how we might remove this case.
2719#ifdef _LP64
2720      sub(Rscratch, STACK_BIAS, Rscratch);
2721#endif
2722      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2723      andcc(Rscratch, 0xfffff003, Rscratch);
2724      br(Assembler::always, false, Assembler::pt, done);
2725      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2726
2727      bind(IsInflated);
2728      if (EmitSync & 64) {
2729         // If m->owner != null goto IsLocked
2730         // Pessimistic form: Test-and-CAS vs CAS
2731         // The optimistic form avoids RTS->RTO cache line upgrades.
2732         ld_ptr(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rscratch);
2733         andcc(Rscratch, Rscratch, G0);
2734         brx(Assembler::notZero, false, Assembler::pn, done);
2735         delayed()->nop();
2736         // m->owner == null : it's unlocked.
2737      }
2738
2739      // Try to CAS m->owner from null to Self
2740      // Invariant: if we acquire the lock then _recursions should be 0.
2741      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2742      mov(G2_thread, Rscratch);
2743      cas_ptr(Rmark, G0, Rscratch);
2744      cmp(Rscratch, G0);
2745      // Intentional fall-through into done
2746   } else {
2747      // Aggressively avoid the Store-before-CAS penalty
2748      // Defer the store into box->dhw until after the CAS
2749      Label IsInflated, Recursive ;
2750
2751// Anticipate CAS -- Avoid RTS->RTO upgrade
2752// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2753
2754      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2755      // Triage: biased, stack-locked, neutral, inflated
2756
2757      if (try_bias) {
2758        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2759        // Invariant: if control reaches this point in the emitted stream
2760        // then Rmark has not been modified.
2761      }
2762      andcc(Rmark, 2, G0);
2763      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2764      delayed()->                         // Beware - dangling delay-slot
2765
2766      // Try stack-lock acquisition.
2767      // Transiently install BUSY (0) encoding in the mark word.
2768      // if the CAS of 0 into the mark was successful then we execute:
2769      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2770      //   ST obj->mark = box    -- overwrite transient 0 value
2771      // This presumes TSO, of course.
2772
2773      mov(0, Rscratch);
2774      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2775      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2776      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2777// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2778      cmp(Rscratch, Rmark);
2779      brx(Assembler::notZero, false, Assembler::pn, Recursive);
2780      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2781      if (counters != NULL) {
2782        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2783      }
2784      ba(done);
2785      delayed()->st_ptr(Rbox, mark_addr);
2786
2787      bind(Recursive);
2788      // Stack-lock attempt failed - check for recursive stack-lock.
2789      // Tests show that we can remove the recursive case with no impact
2790      // on refworkload 0.83.  If we need to reduce the size of the code
2791      // emitted by compiler_lock_object() the recursive case is perfect
2792      // candidate.
2793      //
2794      // A more extreme idea is to always inflate on stack-lock recursion.
2795      // This lets us eliminate the recursive checks in compiler_lock_object
2796      // and compiler_unlock_object and the (box->dhw == 0) encoding.
2797      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2798      // and showed a performance *increase*.  In the same experiment I eliminated
2799      // the fast-path stack-lock code from the interpreter and always passed
2800      // control to the "slow" operators in synchronizer.cpp.
2801
2802      // RScratch contains the fetched obj->mark value from the failed CAS.
2803#ifdef _LP64
2804      sub(Rscratch, STACK_BIAS, Rscratch);
2805#endif
2806      sub(Rscratch, SP, Rscratch);
2807      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2808      andcc(Rscratch, 0xfffff003, Rscratch);
2809      if (counters != NULL) {
2810        // Accounting needs the Rscratch register
2811        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2812        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2813        ba_short(done);
2814      } else {
2815        ba(done);
2816        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2817      }
2818
2819      bind   (IsInflated);
2820
2821      // Try to CAS m->owner from null to Self
2822      // Invariant: if we acquire the lock then _recursions should be 0.
2823      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2824      mov(G2_thread, Rscratch);
2825      cas_ptr(Rmark, G0, Rscratch);
2826      andcc(Rscratch, Rscratch, G0);             // set ICCs for done: icc.zf iff success
2827      // set icc.zf : 1=success 0=failure
2828      // ST box->displaced_header = NonZero.
2829      // Any non-zero value suffices:
2830      //    markOopDesc::unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2831      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2832      // Intentional fall-through into done
2833   }
2834
2835   bind   (done);
2836}
2837
2838void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
2839                                            Register Rbox, Register Rscratch,
2840                                            bool try_bias) {
2841   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2842
2843   Label done ;
2844
2845   if (EmitSync & 4) {
2846     cmp(SP, G0);
2847     return ;
2848   }
2849
2850   if (EmitSync & 8) {
2851     if (try_bias) {
2852        biased_locking_exit(mark_addr, Rscratch, done);
2853     }
2854
2855     // Test first if it is a fast recursive unlock
2856     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
2857     br_null_short(Rmark, Assembler::pt, done);
2858
2859     // Check if it is still a light weight lock, this is is true if we see
2860     // the stack address of the basicLock in the markOop of the object
2861     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2862     cas_ptr(mark_addr.base(), Rbox, Rmark);
2863     ba(done);
2864     delayed()->cmp(Rbox, Rmark);
2865     bind(done);
2866     return ;
2867   }
2868
2869   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
2870   // is too large performance rolls abruptly off a cliff.
2871   // This could be related to inlining policies, code cache management, or
2872   // I$ effects.
2873   Label LStacked ;
2874
2875   if (try_bias) {
2876      // TODO: eliminate redundant LDs of obj->mark
2877      biased_locking_exit(mark_addr, Rscratch, done);
2878   }
2879
2880   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
2881   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
2882   andcc(Rscratch, Rscratch, G0);
2883   brx(Assembler::zero, false, Assembler::pn, done);
2884   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
2885   andcc(Rmark, 2, G0);
2886   brx(Assembler::zero, false, Assembler::pt, LStacked);
2887   delayed()->nop();
2888
2889   // It's inflated
2890   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
2891   // the ST of 0 into _owner which releases the lock.  This prevents loads
2892   // and stores within the critical section from reordering (floating)
2893   // past the store that releases the lock.  But TSO is a strong memory model
2894   // and that particular flavor of barrier is a noop, so we can safely elide it.
2895   // Note that we use 1-0 locking by default for the inflated case.  We
2896   // close the resultant (and rare) race by having contended threads in
2897   // monitorenter periodically poll _owner.
2898
2899   if (EmitSync & 1024) {
2900     // Emit code to check that _owner == Self
2901     // We could fold the _owner test into subsequent code more efficiently
2902     // than using a stand-alone check, but since _owner checking is off by
2903     // default we don't bother. We also might consider predicating the
2904     // _owner==Self check on Xcheck:jni or running on a debug build.
2905     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), Rscratch);
2906     orcc(Rscratch, G0, G0);
2907     brx(Assembler::notZero, false, Assembler::pn, done);
2908     delayed()->nop();
2909   }
2910
2911   if (EmitSync & 512) {
2912     // classic lock release code absent 1-0 locking
2913     //   m->Owner = null;
2914     //   membar #storeload
2915     //   if (m->cxq|m->EntryList) == null goto Success
2916     //   if (m->succ != null) goto Success
2917     //   if CAS (&m->Owner,0,Self) != 0 goto Success
2918     //   goto SlowPath
2919     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
2920     orcc(Rbox, G0, G0);
2921     brx(Assembler::notZero, false, Assembler::pn, done);
2922     delayed()->nop();
2923     st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2924     if (os::is_MP()) { membar(StoreLoad); }
2925     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
2926     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
2927     orcc(Rbox, Rscratch, G0);
2928     brx(Assembler::zero, false, Assembler::pt, done);
2929     delayed()->
2930     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2931     andcc(Rscratch, Rscratch, G0);
2932     brx(Assembler::notZero, false, Assembler::pt, done);
2933     delayed()->andcc(G0, G0, G0);
2934     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2935     mov(G2_thread, Rscratch);
2936     cas_ptr(Rmark, G0, Rscratch);
2937     cmp(Rscratch, G0);
2938     // invert icc.zf and goto done
2939     brx(Assembler::notZero, false, Assembler::pt, done);
2940     delayed()->cmp(G0, G0);
2941     br(Assembler::always, false, Assembler::pt, done);
2942     delayed()->cmp(G0, 1);
2943   } else {
2944     // 1-0 form : avoids CAS and MEMBAR in the common case
2945     // Do not bother to ratify that m->Owner == Self.
2946     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
2947     orcc(Rbox, G0, G0);
2948     brx(Assembler::notZero, false, Assembler::pn, done);
2949     delayed()->
2950     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
2951     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
2952     orcc(Rbox, Rscratch, G0);
2953     if (EmitSync & 16384) {
2954       // As an optional optimization, if (EntryList|cxq) != null and _succ is null then
2955       // we should transfer control directly to the slow-path.
2956       // This test makes the reacquire operation below very infrequent.
2957       // The logic is equivalent to :
2958       //   if (cxq|EntryList) == null : Owner=null; goto Success
2959       //   if succ == null : goto SlowPath
2960       //   Owner=null; membar #storeload
2961       //   if succ != null : goto Success
2962       //   if CAS(&Owner,null,Self) != null goto Success
2963       //   goto SlowPath
2964       brx(Assembler::zero, true, Assembler::pt, done);
2965       delayed()->
2966       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2967       ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2968       andcc(Rscratch, Rscratch, G0) ;
2969       brx(Assembler::zero, false, Assembler::pt, done);
2970       delayed()->orcc(G0, 1, G0);
2971       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2972     } else {
2973       brx(Assembler::zero, false, Assembler::pt, done);
2974       delayed()->
2975       st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2976     }
2977     if (os::is_MP()) { membar(StoreLoad); }
2978     // Check that _succ is (or remains) non-zero
2979     ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
2980     andcc(Rscratch, Rscratch, G0);
2981     brx(Assembler::notZero, false, Assembler::pt, done);
2982     delayed()->andcc(G0, G0, G0);
2983     add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2984     mov(G2_thread, Rscratch);
2985     cas_ptr(Rmark, G0, Rscratch);
2986     cmp(Rscratch, G0);
2987     // invert icc.zf and goto done
2988     // A slightly better v8+/v9 idiom would be the following:
2989     //   movrnz Rscratch,1,Rscratch
2990     //   ba done
2991     //   xorcc Rscratch,1,G0
2992     // In v8+ mode the idiom would be valid IFF Rscratch was a G or O register
2993     brx(Assembler::notZero, false, Assembler::pt, done);
2994     delayed()->cmp(G0, G0);
2995     br(Assembler::always, false, Assembler::pt, done);
2996     delayed()->cmp(G0, 1);
2997   }
2998
2999   bind   (LStacked);
3000   // Consider: we could replace the expensive CAS in the exit
3001   // path with a simple ST of the displaced mark value fetched from
3002   // the on-stack basiclock box.  That admits a race where a thread T2
3003   // in the slow lock path -- inflating with monitor M -- could race a
3004   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3005   // More precisely T1 in the stack-lock unlock path could "stomp" the
3006   // inflated mark value M installed by T2, resulting in an orphan
3007   // object monitor M and T2 becoming stranded.  We can remedy that situation
3008   // by having T2 periodically poll the object's mark word using timed wait
3009   // operations.  If T2 discovers that a stomp has occurred it vacates
3010   // the monitor M and wakes any other threads stranded on the now-orphan M.
3011   // In addition the monitor scavenger, which performs deflation,
3012   // would also need to check for orpan monitors and stranded threads.
3013   //
3014   // Finally, inflation is also used when T2 needs to assign a hashCode
3015   // to O and O is stack-locked by T1.  The "stomp" race could cause
3016   // an assigned hashCode value to be lost.  We can avoid that condition
3017   // and provide the necessary hashCode stability invariants by ensuring
3018   // that hashCode generation is idempotent between copying GCs.
3019   // For example we could compute the hashCode of an object O as
3020   // O's heap address XOR some high quality RNG value that is refreshed
3021   // at GC-time.  The monitor scavenger would install the hashCode
3022   // found in any orphan monitors.  Again, the mechanism admits a
3023   // lost-update "stomp" WAW race but detects and recovers as needed.
3024   //
3025   // A prototype implementation showed excellent results, although
3026   // the scavenger and timeout code was rather involved.
3027
3028   cas_ptr(mark_addr.base(), Rbox, Rscratch);
3029   cmp(Rbox, Rscratch);
3030   // Intentional fall through into done ...
3031
3032   bind(done);
3033}
3034
3035
3036
3037void MacroAssembler::print_CPU_state() {
3038  // %%%%% need to implement this
3039}
3040
3041void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3042  // %%%%% need to implement this
3043}
3044
3045void MacroAssembler::push_IU_state() {
3046  // %%%%% need to implement this
3047}
3048
3049
3050void MacroAssembler::pop_IU_state() {
3051  // %%%%% need to implement this
3052}
3053
3054
3055void MacroAssembler::push_FPU_state() {
3056  // %%%%% need to implement this
3057}
3058
3059
3060void MacroAssembler::pop_FPU_state() {
3061  // %%%%% need to implement this
3062}
3063
3064
3065void MacroAssembler::push_CPU_state() {
3066  // %%%%% need to implement this
3067}
3068
3069
3070void MacroAssembler::pop_CPU_state() {
3071  // %%%%% need to implement this
3072}
3073
3074
3075
3076void MacroAssembler::verify_tlab() {
3077#ifdef ASSERT
3078  if (UseTLAB && VerifyOops) {
3079    Label next, next2, ok;
3080    Register t1 = L0;
3081    Register t2 = L1;
3082    Register t3 = L2;
3083
3084    save_frame(0);
3085    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3086    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3087    or3(t1, t2, t3);
3088    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3089    STOP("assert(top >= start)");
3090    should_not_reach_here();
3091
3092    bind(next);
3093    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3094    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3095    or3(t3, t2, t3);
3096    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3097    STOP("assert(top <= end)");
3098    should_not_reach_here();
3099
3100    bind(next2);
3101    and3(t3, MinObjAlignmentInBytesMask, t3);
3102    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3103    STOP("assert(aligned)");
3104    should_not_reach_here();
3105
3106    bind(ok);
3107    restore();
3108  }
3109#endif
3110}
3111
3112
3113void MacroAssembler::eden_allocate(
3114  Register obj,                        // result: pointer to object after successful allocation
3115  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3116  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3117  Register t1,                         // temp register
3118  Register t2,                         // temp register
3119  Label&   slow_case                   // continuation point if fast allocation fails
3120){
3121  // make sure arguments make sense
3122  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3123  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3124  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3125
3126  if (!Universe::heap()->supports_inline_contig_alloc()) {
3127    // No allocation in the shared eden.
3128    ba(slow_case);
3129    delayed()->nop();
3130  } else {
3131    // get eden boundaries
3132    // note: we need both top & top_addr!
3133    const Register top_addr = t1;
3134    const Register end      = t2;
3135
3136    CollectedHeap* ch = Universe::heap();
3137    set((intx)ch->top_addr(), top_addr);
3138    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3139    ld_ptr(top_addr, delta, end);
3140    ld_ptr(top_addr, 0, obj);
3141
3142    // try to allocate
3143    Label retry;
3144    bind(retry);
3145#ifdef ASSERT
3146    // make sure eden top is properly aligned
3147    {
3148      Label L;
3149      btst(MinObjAlignmentInBytesMask, obj);
3150      br(Assembler::zero, false, Assembler::pt, L);
3151      delayed()->nop();
3152      STOP("eden top is not properly aligned");
3153      bind(L);
3154    }
3155#endif // ASSERT
3156    const Register free = end;
3157    sub(end, obj, free);                                   // compute amount of free space
3158    if (var_size_in_bytes->is_valid()) {
3159      // size is unknown at compile time
3160      cmp(free, var_size_in_bytes);
3161      brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3162      delayed()->add(obj, var_size_in_bytes, end);
3163    } else {
3164      // size is known at compile time
3165      cmp(free, con_size_in_bytes);
3166      brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3167      delayed()->add(obj, con_size_in_bytes, end);
3168    }
3169    // Compare obj with the value at top_addr; if still equal, swap the value of
3170    // end with the value at top_addr. If not equal, read the value at top_addr
3171    // into end.
3172    cas_ptr(top_addr, obj, end);
3173    // if someone beat us on the allocation, try again, otherwise continue
3174    cmp(obj, end);
3175    brx(Assembler::notEqual, false, Assembler::pn, retry);
3176    delayed()->mov(end, obj);                              // nop if successfull since obj == end
3177
3178#ifdef ASSERT
3179    // make sure eden top is properly aligned
3180    {
3181      Label L;
3182      const Register top_addr = t1;
3183
3184      set((intx)ch->top_addr(), top_addr);
3185      ld_ptr(top_addr, 0, top_addr);
3186      btst(MinObjAlignmentInBytesMask, top_addr);
3187      br(Assembler::zero, false, Assembler::pt, L);
3188      delayed()->nop();
3189      STOP("eden top is not properly aligned");
3190      bind(L);
3191    }
3192#endif // ASSERT
3193  }
3194}
3195
3196
3197void MacroAssembler::tlab_allocate(
3198  Register obj,                        // result: pointer to object after successful allocation
3199  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3200  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3201  Register t1,                         // temp register
3202  Label&   slow_case                   // continuation point if fast allocation fails
3203){
3204  // make sure arguments make sense
3205  assert_different_registers(obj, var_size_in_bytes, t1);
3206  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3207  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3208
3209  const Register free  = t1;
3210
3211  verify_tlab();
3212
3213  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3214
3215  // calculate amount of free space
3216  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3217  sub(free, obj, free);
3218
3219  Label done;
3220  if (var_size_in_bytes == noreg) {
3221    cmp(free, con_size_in_bytes);
3222  } else {
3223    cmp(free, var_size_in_bytes);
3224  }
3225  br(Assembler::less, false, Assembler::pn, slow_case);
3226  // calculate the new top pointer
3227  if (var_size_in_bytes == noreg) {
3228    delayed()->add(obj, con_size_in_bytes, free);
3229  } else {
3230    delayed()->add(obj, var_size_in_bytes, free);
3231  }
3232
3233  bind(done);
3234
3235#ifdef ASSERT
3236  // make sure new free pointer is properly aligned
3237  {
3238    Label L;
3239    btst(MinObjAlignmentInBytesMask, free);
3240    br(Assembler::zero, false, Assembler::pt, L);
3241    delayed()->nop();
3242    STOP("updated TLAB free is not properly aligned");
3243    bind(L);
3244  }
3245#endif // ASSERT
3246
3247  // update the tlab top pointer
3248  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3249  verify_tlab();
3250}
3251
3252
3253void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3254  Register top = O0;
3255  Register t1 = G1;
3256  Register t2 = G3;
3257  Register t3 = O1;
3258  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3259  Label do_refill, discard_tlab;
3260
3261  if (!Universe::heap()->supports_inline_contig_alloc()) {
3262    // No allocation in the shared eden.
3263    ba(slow_case);
3264    delayed()->nop();
3265  }
3266
3267  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3268  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3269  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3270
3271  // calculate amount of free space
3272  sub(t1, top, t1);
3273  srl_ptr(t1, LogHeapWordSize, t1);
3274
3275  // Retain tlab and allocate object in shared space if
3276  // the amount free in the tlab is too large to discard.
3277  cmp(t1, t2);
3278
3279  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3280  // increment waste limit to prevent getting stuck on this slow path
3281  if (Assembler::is_simm13(ThreadLocalAllocBuffer::refill_waste_limit_increment())) {
3282    delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3283  } else {
3284    delayed()->nop();
3285    // set64 does not use the temp register if the given constant is 32 bit. So
3286    // we can just use any register; using G0 results in ignoring of the upper 32 bit
3287    // of that value.
3288    set64(ThreadLocalAllocBuffer::refill_waste_limit_increment(), t3, G0);
3289    add(t2, t3, t2);
3290  }
3291
3292  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3293  if (TLABStats) {
3294    // increment number of slow_allocations
3295    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3296    add(t2, 1, t2);
3297    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3298  }
3299  ba(try_eden);
3300  delayed()->nop();
3301
3302  bind(discard_tlab);
3303  if (TLABStats) {
3304    // increment number of refills
3305    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3306    add(t2, 1, t2);
3307    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3308    // accumulate wastage
3309    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3310    add(t2, t1, t2);
3311    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3312  }
3313
3314  // if tlab is currently allocated (top or end != null) then
3315  // fill [top, end + alignment_reserve) with array object
3316  br_null_short(top, Assembler::pn, do_refill);
3317
3318  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3319  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3320  // set klass to intArrayKlass
3321  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3322  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3323  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3324  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3325  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3326  ld_ptr(t2, 0, t2);
3327  // store klass last.  concurrent gcs assumes klass length is valid if
3328  // klass field is not null.
3329  store_klass(t2, top);
3330  verify_oop(top);
3331
3332  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3333  sub(top, t1, t1); // size of tlab's allocated portion
3334  incr_allocated_bytes(t1, t2, t3);
3335
3336  // refill the tlab with an eden allocation
3337  bind(do_refill);
3338  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3339  sll_ptr(t1, LogHeapWordSize, t1);
3340  // allocate new tlab, address returned in top
3341  eden_allocate(top, t1, 0, t2, t3, slow_case);
3342
3343  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3344  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3345#ifdef ASSERT
3346  // check that tlab_size (t1) is still valid
3347  {
3348    Label ok;
3349    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3350    sll_ptr(t2, LogHeapWordSize, t2);
3351    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3352    STOP("assert(t1 == tlab_size)");
3353    should_not_reach_here();
3354
3355    bind(ok);
3356  }
3357#endif // ASSERT
3358  add(top, t1, top); // t1 is tlab_size
3359  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3360  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3361
3362  if (ZeroTLAB) {
3363    // This is a fast TLAB refill, therefore the GC is not notified of it.
3364    // So compiled code must fill the new TLAB with zeroes.
3365    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3366    zero_memory(t2, t1);
3367  }
3368  verify_tlab();
3369  ba(retry);
3370  delayed()->nop();
3371}
3372
3373void MacroAssembler::zero_memory(Register base, Register index) {
3374  assert_different_registers(base, index);
3375  Label loop;
3376  bind(loop);
3377  subcc(index, HeapWordSize, index);
3378  brx(Assembler::greaterEqual, true, Assembler::pt, loop);
3379  delayed()->st_ptr(G0, base, index);
3380}
3381
3382void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3383                                          Register t1, Register t2) {
3384  // Bump total bytes allocated by this thread
3385  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3386  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3387  // v8 support has gone the way of the dodo
3388  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3389  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3390  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3391}
3392
3393Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3394  switch (cond) {
3395    // Note some conditions are synonyms for others
3396    case Assembler::never:                return Assembler::always;
3397    case Assembler::zero:                 return Assembler::notZero;
3398    case Assembler::lessEqual:            return Assembler::greater;
3399    case Assembler::less:                 return Assembler::greaterEqual;
3400    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3401    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3402    case Assembler::negative:             return Assembler::positive;
3403    case Assembler::overflowSet:          return Assembler::overflowClear;
3404    case Assembler::always:               return Assembler::never;
3405    case Assembler::notZero:              return Assembler::zero;
3406    case Assembler::greater:              return Assembler::lessEqual;
3407    case Assembler::greaterEqual:         return Assembler::less;
3408    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3409    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3410    case Assembler::positive:             return Assembler::negative;
3411    case Assembler::overflowClear:        return Assembler::overflowSet;
3412  }
3413
3414  ShouldNotReachHere(); return Assembler::overflowClear;
3415}
3416
3417void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3418                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3419  Condition negated_cond = negate_condition(cond);
3420  Label L;
3421  brx(negated_cond, false, Assembler::pt, L);
3422  delayed()->nop();
3423  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3424  bind(L);
3425}
3426
3427void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3428  AddressLiteral addrlit(counter_addr);
3429  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3430  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3431  ld(addr, Rtmp2);
3432  inc(Rtmp2);
3433  st(Rtmp2, addr);
3434}
3435
3436void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3437  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3438}
3439
3440SkipIfEqual::SkipIfEqual(
3441    MacroAssembler* masm, Register temp, const bool* flag_addr,
3442    Assembler::Condition condition) {
3443  _masm = masm;
3444  AddressLiteral flag(flag_addr);
3445  _masm->sethi(flag, temp);
3446  _masm->ldub(temp, flag.low10(), temp);
3447  _masm->tst(temp);
3448  _masm->br(condition, false, Assembler::pt, _label);
3449  _masm->delayed()->nop();
3450}
3451
3452SkipIfEqual::~SkipIfEqual() {
3453  _masm->bind(_label);
3454}
3455
3456
3457// Writes to stack successive pages until offset reached to check for
3458// stack overflow + shadow pages.  This clobbers tsp and scratch.
3459void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3460                                     Register Rscratch) {
3461  // Use stack pointer in temp stack pointer
3462  mov(SP, Rtsp);
3463
3464  // Bang stack for total size given plus stack shadow page size.
3465  // Bang one page at a time because a large size can overflow yellow and
3466  // red zones (the bang will fail but stack overflow handling can't tell that
3467  // it was a stack overflow bang vs a regular segv).
3468  int offset = os::vm_page_size();
3469  Register Roffset = Rscratch;
3470
3471  Label loop;
3472  bind(loop);
3473  set((-offset)+STACK_BIAS, Rscratch);
3474  st(G0, Rtsp, Rscratch);
3475  set(offset, Roffset);
3476  sub(Rsize, Roffset, Rsize);
3477  cmp(Rsize, G0);
3478  br(Assembler::greater, false, Assembler::pn, loop);
3479  delayed()->sub(Rtsp, Roffset, Rtsp);
3480
3481  // Bang down shadow pages too.
3482  // At this point, (tmp-0) is the last address touched, so don't
3483  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3484  // was post-decremented.)  Skip this address by starting at i=1, and
3485  // touch a few more pages below.  N.B.  It is important to touch all
3486  // the way down to and including i=StackShadowPages.
3487  for (int i = 1; i < JavaThread::stack_shadow_zone_size() / os::vm_page_size(); i++) {
3488    set((-i*offset)+STACK_BIAS, Rscratch);
3489    st(G0, Rtsp, Rscratch);
3490  }
3491}
3492
3493void MacroAssembler::reserved_stack_check() {
3494  // testing if reserved zone needs to be enabled
3495  Label no_reserved_zone_enabling;
3496
3497  ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G4_scratch);
3498  cmp_and_brx_short(SP, G4_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
3499
3500  call_VM_leaf(L0, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
3501
3502  AddressLiteral stub(StubRoutines::throw_delayed_StackOverflowError_entry());
3503  jump_to(stub, G4_scratch);
3504  delayed()->restore();
3505
3506  should_not_reach_here();
3507
3508  bind(no_reserved_zone_enabling);
3509}
3510
3511///////////////////////////////////////////////////////////////////////////////////
3512#if INCLUDE_ALL_GCS
3513
3514static address satb_log_enqueue_with_frame = NULL;
3515static u_char* satb_log_enqueue_with_frame_end = NULL;
3516
3517static address satb_log_enqueue_frameless = NULL;
3518static u_char* satb_log_enqueue_frameless_end = NULL;
3519
3520static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3521
3522static void generate_satb_log_enqueue(bool with_frame) {
3523  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3524  CodeBuffer buf(bb);
3525  MacroAssembler masm(&buf);
3526
3527#define __ masm.
3528
3529  address start = __ pc();
3530  Register pre_val;
3531
3532  Label refill, restart;
3533  if (with_frame) {
3534    __ save_frame(0);
3535    pre_val = I0;  // Was O0 before the save.
3536  } else {
3537    pre_val = O0;
3538  }
3539
3540  int satb_q_index_byte_offset =
3541    in_bytes(JavaThread::satb_mark_queue_offset() +
3542             SATBMarkQueue::byte_offset_of_index());
3543
3544  int satb_q_buf_byte_offset =
3545    in_bytes(JavaThread::satb_mark_queue_offset() +
3546             SATBMarkQueue::byte_offset_of_buf());
3547
3548  assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3549         in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
3550         "check sizes in assembly below");
3551
3552  __ bind(restart);
3553
3554  // Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
3555  // so ld_ptr is appropriate.
3556  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3557
3558  // index == 0?
3559  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3560
3561  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3562  __ sub(L0, oopSize, L0);
3563
3564  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3565  if (!with_frame) {
3566    // Use return-from-leaf
3567    __ retl();
3568    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3569  } else {
3570    // Not delayed.
3571    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3572  }
3573  if (with_frame) {
3574    __ ret();
3575    __ delayed()->restore();
3576  }
3577  __ bind(refill);
3578
3579  address handle_zero =
3580    CAST_FROM_FN_PTR(address,
3581                     &SATBMarkQueueSet::handle_zero_index_for_thread);
3582  // This should be rare enough that we can afford to save all the
3583  // scratch registers that the calling context might be using.
3584  __ mov(G1_scratch, L0);
3585  __ mov(G3_scratch, L1);
3586  __ mov(G4, L2);
3587  // We need the value of O0 above (for the write into the buffer), so we
3588  // save and restore it.
3589  __ mov(O0, L3);
3590  // Since the call will overwrite O7, we save and restore that, as well.
3591  __ mov(O7, L4);
3592  __ call_VM_leaf(L5, handle_zero, G2_thread);
3593  __ mov(L0, G1_scratch);
3594  __ mov(L1, G3_scratch);
3595  __ mov(L2, G4);
3596  __ mov(L3, O0);
3597  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3598  __ delayed()->mov(L4, O7);
3599
3600  if (with_frame) {
3601    satb_log_enqueue_with_frame = start;
3602    satb_log_enqueue_with_frame_end = __ pc();
3603  } else {
3604    satb_log_enqueue_frameless = start;
3605    satb_log_enqueue_frameless_end = __ pc();
3606  }
3607
3608#undef __
3609}
3610
3611static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3612  if (with_frame) {
3613    if (satb_log_enqueue_with_frame == 0) {
3614      generate_satb_log_enqueue(with_frame);
3615      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3616    }
3617  } else {
3618    if (satb_log_enqueue_frameless == 0) {
3619      generate_satb_log_enqueue(with_frame);
3620      assert(satb_log_enqueue_frameless != 0, "postcondition.");
3621    }
3622  }
3623}
3624
3625void MacroAssembler::g1_write_barrier_pre(Register obj,
3626                                          Register index,
3627                                          int offset,
3628                                          Register pre_val,
3629                                          Register tmp,
3630                                          bool preserve_o_regs) {
3631  Label filtered;
3632
3633  if (obj == noreg) {
3634    // We are not loading the previous value so make
3635    // sure that we don't trash the value in pre_val
3636    // with the code below.
3637    assert_different_registers(pre_val, tmp);
3638  } else {
3639    // We will be loading the previous value
3640    // in this code so...
3641    assert(offset == 0 || index == noreg, "choose one");
3642    assert(pre_val == noreg, "check this code");
3643  }
3644
3645  // Is marking active?
3646  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3647    ld(G2,
3648       in_bytes(JavaThread::satb_mark_queue_offset() +
3649                SATBMarkQueue::byte_offset_of_active()),
3650       tmp);
3651  } else {
3652    guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
3653              "Assumption");
3654    ldsb(G2,
3655         in_bytes(JavaThread::satb_mark_queue_offset() +
3656                  SATBMarkQueue::byte_offset_of_active()),
3657         tmp);
3658  }
3659
3660  // Is marking active?
3661  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3662
3663  // Do we need to load the previous value?
3664  if (obj != noreg) {
3665    // Load the previous value...
3666    if (index == noreg) {
3667      if (Assembler::is_simm13(offset)) {
3668        load_heap_oop(obj, offset, tmp);
3669      } else {
3670        set(offset, tmp);
3671        load_heap_oop(obj, tmp, tmp);
3672      }
3673    } else {
3674      load_heap_oop(obj, index, tmp);
3675    }
3676    // Previous value has been loaded into tmp
3677    pre_val = tmp;
3678  }
3679
3680  assert(pre_val != noreg, "must have a real register");
3681
3682  // Is the previous value null?
3683  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
3684
3685  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3686  // case, pre_val will be a scratch G-reg, but there are some cases in
3687  // which it's an O-reg.  In the first case, do a normal call.  In the
3688  // latter, do a save here and call the frameless version.
3689
3690  guarantee(pre_val->is_global() || pre_val->is_out(),
3691            "Or we need to think harder.");
3692
3693  if (pre_val->is_global() && !preserve_o_regs) {
3694    generate_satb_log_enqueue_if_necessary(true); // with frame
3695
3696    call(satb_log_enqueue_with_frame);
3697    delayed()->mov(pre_val, O0);
3698  } else {
3699    generate_satb_log_enqueue_if_necessary(false); // frameless
3700
3701    save_frame(0);
3702    call(satb_log_enqueue_frameless);
3703    delayed()->mov(pre_val->after_save(), O0);
3704    restore();
3705  }
3706
3707  bind(filtered);
3708}
3709
3710static address dirty_card_log_enqueue = 0;
3711static u_char* dirty_card_log_enqueue_end = 0;
3712
3713// This gets to assume that o0 contains the object address.
3714static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
3715  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
3716  CodeBuffer buf(bb);
3717  MacroAssembler masm(&buf);
3718#define __ masm.
3719  address start = __ pc();
3720
3721  Label not_already_dirty, restart, refill, young_card;
3722
3723#ifdef _LP64
3724  __ srlx(O0, CardTableModRefBS::card_shift, O0);
3725#else
3726  __ srl(O0, CardTableModRefBS::card_shift, O0);
3727#endif
3728  AddressLiteral addrlit(byte_map_base);
3729  __ set(addrlit, O1); // O1 := <card table base>
3730  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3731
3732  __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
3733
3734  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3735  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3736
3737  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
3738  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
3739
3740  __ bind(young_card);
3741  // We didn't take the branch, so we're already dirty: return.
3742  // Use return-from-leaf
3743  __ retl();
3744  __ delayed()->nop();
3745
3746  // Not dirty.
3747  __ bind(not_already_dirty);
3748
3749  // Get O0 + O1 into a reg by itself
3750  __ add(O0, O1, O3);
3751
3752  // First, dirty it.
3753  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
3754
3755  int dirty_card_q_index_byte_offset =
3756    in_bytes(JavaThread::dirty_card_queue_offset() +
3757             DirtyCardQueue::byte_offset_of_index());
3758  int dirty_card_q_buf_byte_offset =
3759    in_bytes(JavaThread::dirty_card_queue_offset() +
3760             DirtyCardQueue::byte_offset_of_buf());
3761  __ bind(restart);
3762
3763  // Load the index into the update buffer. DirtyCardQueue::_index is
3764  // a size_t so ld_ptr is appropriate here.
3765  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
3766
3767  // index == 0?
3768  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3769
3770  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
3771  __ sub(L0, oopSize, L0);
3772
3773  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
3774  // Use return-from-leaf
3775  __ retl();
3776  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
3777
3778  __ bind(refill);
3779  address handle_zero =
3780    CAST_FROM_FN_PTR(address,
3781                     &DirtyCardQueueSet::handle_zero_index_for_thread);
3782  // This should be rare enough that we can afford to save all the
3783  // scratch registers that the calling context might be using.
3784  __ mov(G1_scratch, L3);
3785  __ mov(G3_scratch, L5);
3786  // We need the value of O3 above (for the write into the buffer), so we
3787  // save and restore it.
3788  __ mov(O3, L6);
3789  // Since the call will overwrite O7, we save and restore that, as well.
3790  __ mov(O7, L4);
3791
3792  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
3793  __ mov(L3, G1_scratch);
3794  __ mov(L5, G3_scratch);
3795  __ mov(L6, O3);
3796  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3797  __ delayed()->mov(L4, O7);
3798
3799  dirty_card_log_enqueue = start;
3800  dirty_card_log_enqueue_end = __ pc();
3801  // XXX Should have a guarantee here about not going off the end!
3802  // Does it already do so?  Do an experiment...
3803
3804#undef __
3805
3806}
3807
3808static inline void
3809generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
3810  if (dirty_card_log_enqueue == 0) {
3811    generate_dirty_card_log_enqueue(byte_map_base);
3812    assert(dirty_card_log_enqueue != 0, "postcondition.");
3813  }
3814}
3815
3816
3817void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3818
3819  Label filtered;
3820  MacroAssembler* post_filter_masm = this;
3821
3822  if (new_val == G0) return;
3823
3824  G1SATBCardTableLoggingModRefBS* bs =
3825    barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3826
3827  if (G1RSBarrierRegionFilter) {
3828    xor3(store_addr, new_val, tmp);
3829#ifdef _LP64
3830    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3831#else
3832    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3833#endif
3834
3835    // XXX Should I predict this taken or not?  Does it matter?
3836    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3837  }
3838
3839  // If the "store_addr" register is an "in" or "local" register, move it to
3840  // a scratch reg so we can pass it as an argument.
3841  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
3842  // Pick a scratch register different from "tmp".
3843  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
3844  // Make sure we use up the delay slot!
3845  if (use_scr) {
3846    post_filter_masm->mov(store_addr, scr);
3847  } else {
3848    post_filter_masm->nop();
3849  }
3850  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
3851  save_frame(0);
3852  call(dirty_card_log_enqueue);
3853  if (use_scr) {
3854    delayed()->mov(scr, O0);
3855  } else {
3856    delayed()->mov(store_addr->after_save(), O0);
3857  }
3858  restore();
3859
3860  bind(filtered);
3861}
3862
3863#endif // INCLUDE_ALL_GCS
3864///////////////////////////////////////////////////////////////////////////////////
3865
3866void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3867  // If we're writing constant NULL, we can skip the write barrier.
3868  if (new_val == G0) return;
3869  CardTableModRefBS* bs =
3870    barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3871  assert(bs->kind() == BarrierSet::CardTableForRS ||
3872         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3873  card_table_write(bs->byte_map_base, tmp, store_addr);
3874}
3875
3876void MacroAssembler::load_mirror(Register mirror, Register method) {
3877  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3878  ld_ptr(method, in_bytes(Method::const_offset()), mirror);
3879  ld_ptr(mirror, in_bytes(ConstMethod::constants_offset()), mirror);
3880  ld_ptr(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3881  ld_ptr(mirror, mirror_offset, mirror);
3882}
3883
3884void MacroAssembler::load_klass(Register src_oop, Register klass) {
3885  // The number of bytes in this code is used by
3886  // MachCallDynamicJavaNode::ret_addr_offset()
3887  // if this changes, change that.
3888  if (UseCompressedClassPointers) {
3889    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3890    decode_klass_not_null(klass);
3891  } else {
3892    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3893  }
3894}
3895
3896void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3897  if (UseCompressedClassPointers) {
3898    assert(dst_oop != klass, "not enough registers");
3899    encode_klass_not_null(klass);
3900    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3901  } else {
3902    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3903  }
3904}
3905
3906void MacroAssembler::store_klass_gap(Register s, Register d) {
3907  if (UseCompressedClassPointers) {
3908    assert(s != d, "not enough registers");
3909    st(s, d, oopDesc::klass_gap_offset_in_bytes());
3910  }
3911}
3912
3913void MacroAssembler::load_heap_oop(const Address& s, Register d) {
3914  if (UseCompressedOops) {
3915    lduw(s, d);
3916    decode_heap_oop(d);
3917  } else {
3918    ld_ptr(s, d);
3919  }
3920}
3921
3922void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
3923   if (UseCompressedOops) {
3924    lduw(s1, s2, d);
3925    decode_heap_oop(d, d);
3926  } else {
3927    ld_ptr(s1, s2, d);
3928  }
3929}
3930
3931void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
3932   if (UseCompressedOops) {
3933    lduw(s1, simm13a, d);
3934    decode_heap_oop(d, d);
3935  } else {
3936    ld_ptr(s1, simm13a, d);
3937  }
3938}
3939
3940void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
3941  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
3942  else                   load_heap_oop(s1, s2.as_register(), d);
3943}
3944
3945void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
3946  if (UseCompressedOops) {
3947    assert(s1 != d && s2 != d, "not enough registers");
3948    encode_heap_oop(d);
3949    st(d, s1, s2);
3950  } else {
3951    st_ptr(d, s1, s2);
3952  }
3953}
3954
3955void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
3956  if (UseCompressedOops) {
3957    assert(s1 != d, "not enough registers");
3958    encode_heap_oop(d);
3959    st(d, s1, simm13a);
3960  } else {
3961    st_ptr(d, s1, simm13a);
3962  }
3963}
3964
3965void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
3966  if (UseCompressedOops) {
3967    assert(a.base() != d, "not enough registers");
3968    encode_heap_oop(d);
3969    st(d, a, offset);
3970  } else {
3971    st_ptr(d, a, offset);
3972  }
3973}
3974
3975
3976void MacroAssembler::encode_heap_oop(Register src, Register dst) {
3977  assert (UseCompressedOops, "must be compressed");
3978  assert (Universe::heap() != NULL, "java heap should be initialized");
3979  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3980  verify_oop(src);
3981  if (Universe::narrow_oop_base() == NULL) {
3982    srlx(src, LogMinObjAlignmentInBytes, dst);
3983    return;
3984  }
3985  Label done;
3986  if (src == dst) {
3987    // optimize for frequent case src == dst
3988    bpr(rc_nz, true, Assembler::pt, src, done);
3989    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
3990    bind(done);
3991    srlx(src, LogMinObjAlignmentInBytes, dst);
3992  } else {
3993    bpr(rc_z, false, Assembler::pn, src, done);
3994    delayed() -> mov(G0, dst);
3995    // could be moved before branch, and annulate delay,
3996    // but may add some unneeded work decoding null
3997    sub(src, G6_heapbase, dst);
3998    srlx(dst, LogMinObjAlignmentInBytes, dst);
3999    bind(done);
4000  }
4001}
4002
4003
4004void MacroAssembler::encode_heap_oop_not_null(Register r) {
4005  assert (UseCompressedOops, "must be compressed");
4006  assert (Universe::heap() != NULL, "java heap should be initialized");
4007  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4008  verify_oop(r);
4009  if (Universe::narrow_oop_base() != NULL)
4010    sub(r, G6_heapbase, r);
4011  srlx(r, LogMinObjAlignmentInBytes, r);
4012}
4013
4014void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4015  assert (UseCompressedOops, "must be compressed");
4016  assert (Universe::heap() != NULL, "java heap should be initialized");
4017  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4018  verify_oop(src);
4019  if (Universe::narrow_oop_base() == NULL) {
4020    srlx(src, LogMinObjAlignmentInBytes, dst);
4021  } else {
4022    sub(src, G6_heapbase, dst);
4023    srlx(dst, LogMinObjAlignmentInBytes, dst);
4024  }
4025}
4026
4027// Same algorithm as oops.inline.hpp decode_heap_oop.
4028void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4029  assert (UseCompressedOops, "must be compressed");
4030  assert (Universe::heap() != NULL, "java heap should be initialized");
4031  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4032  sllx(src, LogMinObjAlignmentInBytes, dst);
4033  if (Universe::narrow_oop_base() != NULL) {
4034    Label done;
4035    bpr(rc_nz, true, Assembler::pt, dst, done);
4036    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4037    bind(done);
4038  }
4039  verify_oop(dst);
4040}
4041
4042void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4043  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4044  // pd_code_size_limit.
4045  // Also do not verify_oop as this is called by verify_oop.
4046  assert (UseCompressedOops, "must be compressed");
4047  assert (Universe::heap() != NULL, "java heap should be initialized");
4048  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4049  sllx(r, LogMinObjAlignmentInBytes, r);
4050  if (Universe::narrow_oop_base() != NULL)
4051    add(r, G6_heapbase, r);
4052}
4053
4054void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4055  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4056  // pd_code_size_limit.
4057  // Also do not verify_oop as this is called by verify_oop.
4058  assert (UseCompressedOops, "must be compressed");
4059  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4060  sllx(src, LogMinObjAlignmentInBytes, dst);
4061  if (Universe::narrow_oop_base() != NULL)
4062    add(dst, G6_heapbase, dst);
4063}
4064
4065void MacroAssembler::encode_klass_not_null(Register r) {
4066  assert (UseCompressedClassPointers, "must be compressed");
4067  if (Universe::narrow_klass_base() != NULL) {
4068    assert(r != G6_heapbase, "bad register choice");
4069    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4070    sub(r, G6_heapbase, r);
4071    if (Universe::narrow_klass_shift() != 0) {
4072      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4073      srlx(r, LogKlassAlignmentInBytes, r);
4074    }
4075    reinit_heapbase();
4076  } else {
4077    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4078    srlx(r, Universe::narrow_klass_shift(), r);
4079  }
4080}
4081
4082void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4083  if (src == dst) {
4084    encode_klass_not_null(src);
4085  } else {
4086    assert (UseCompressedClassPointers, "must be compressed");
4087    if (Universe::narrow_klass_base() != NULL) {
4088      set((intptr_t)Universe::narrow_klass_base(), dst);
4089      sub(src, dst, dst);
4090      if (Universe::narrow_klass_shift() != 0) {
4091        srlx(dst, LogKlassAlignmentInBytes, dst);
4092      }
4093    } else {
4094      // shift src into dst
4095      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4096      srlx(src, Universe::narrow_klass_shift(), dst);
4097    }
4098  }
4099}
4100
4101// Function instr_size_for_decode_klass_not_null() counts the instructions
4102// generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
4103// the instructions they generate change, then this method needs to be updated.
4104int MacroAssembler::instr_size_for_decode_klass_not_null() {
4105  assert (UseCompressedClassPointers, "only for compressed klass ptrs");
4106  int num_instrs = 1;  // shift src,dst or add
4107  if (Universe::narrow_klass_base() != NULL) {
4108    // set + add + set
4109    num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
4110                  insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
4111    if (Universe::narrow_klass_shift() != 0) {
4112      num_instrs += 1;  // sllx
4113    }
4114  }
4115  return num_instrs * BytesPerInstWord;
4116}
4117
4118// !!! If the instructions that get generated here change then function
4119// instr_size_for_decode_klass_not_null() needs to get updated.
4120void  MacroAssembler::decode_klass_not_null(Register r) {
4121  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4122  // pd_code_size_limit.
4123  assert (UseCompressedClassPointers, "must be compressed");
4124  if (Universe::narrow_klass_base() != NULL) {
4125    assert(r != G6_heapbase, "bad register choice");
4126    set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4127    if (Universe::narrow_klass_shift() != 0)
4128      sllx(r, LogKlassAlignmentInBytes, r);
4129    add(r, G6_heapbase, r);
4130    reinit_heapbase();
4131  } else {
4132    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4133    sllx(r, Universe::narrow_klass_shift(), r);
4134  }
4135}
4136
4137void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4138  if (src == dst) {
4139    decode_klass_not_null(src);
4140  } else {
4141    // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4142    // pd_code_size_limit.
4143    assert (UseCompressedClassPointers, "must be compressed");
4144    if (Universe::narrow_klass_base() != NULL) {
4145      if (Universe::narrow_klass_shift() != 0) {
4146        assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
4147        set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4148        sllx(src, LogKlassAlignmentInBytes, dst);
4149        add(dst, G6_heapbase, dst);
4150        reinit_heapbase();
4151      } else {
4152        set((intptr_t)Universe::narrow_klass_base(), dst);
4153        add(src, dst, dst);
4154      }
4155    } else {
4156      // shift/mov src into dst.
4157      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4158      sllx(src, Universe::narrow_klass_shift(), dst);
4159    }
4160  }
4161}
4162
4163void MacroAssembler::reinit_heapbase() {
4164  if (UseCompressedOops || UseCompressedClassPointers) {
4165    if (Universe::heap() != NULL) {
4166      set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
4167    } else {
4168      AddressLiteral base(Universe::narrow_ptrs_base_addr());
4169      load_ptr_contents(base, G6_heapbase);
4170    }
4171  }
4172}
4173
4174#ifdef COMPILER2
4175
4176// Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
4177void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt, Register result,
4178                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4,
4179                                        FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone) {
4180  Label Lloop, Lslow;
4181  assert(UseVIS >= 3, "VIS3 is required");
4182  assert_different_registers(src, dst, cnt, tmp1, tmp2, tmp3, tmp4, result);
4183  assert_different_registers(ftmp1, ftmp2, ftmp3);
4184
4185  // Check if cnt >= 8 (= 16 bytes)
4186  cmp(cnt, 8);
4187  br(Assembler::less, false, Assembler::pn, Lslow);
4188  delayed()->mov(cnt, result); // copy count
4189
4190  // Check for 8-byte alignment of src and dst
4191  or3(src, dst, tmp1);
4192  andcc(tmp1, 7, G0);
4193  br(Assembler::notZero, false, Assembler::pn, Lslow);
4194  delayed()->nop();
4195
4196  // Set mask for bshuffle instruction
4197  Register mask = tmp4;
4198  set(0x13579bdf, mask);
4199  bmask(mask, G0, G0);
4200
4201  // Set mask to 0xff00 ff00 ff00 ff00 to check for non-latin1 characters
4202  Assembler::sethi(0xff00fc00, mask); // mask = 0x0000 0000 ff00 fc00
4203  add(mask, 0x300, mask);             // mask = 0x0000 0000 ff00 ff00
4204  sllx(mask, 32, tmp1);               // tmp1 = 0xff00 ff00 0000 0000
4205  or3(mask, tmp1, mask);              // mask = 0xff00 ff00 ff00 ff00
4206
4207  // Load first 8 bytes
4208  ldx(src, 0, tmp1);
4209
4210  bind(Lloop);
4211  // Load next 8 bytes
4212  ldx(src, 8, tmp2);
4213
4214  // Check for non-latin1 character by testing if the most significant byte of a char is set.
4215  // Although we have to move the data between integer and floating point registers, this is
4216  // still faster than the corresponding VIS instructions (ford/fand/fcmpd).
4217  or3(tmp1, tmp2, tmp3);
4218  btst(tmp3, mask);
4219  // annul zeroing if branch is not taken to preserve original count
4220  brx(Assembler::notZero, true, Assembler::pn, Ldone);
4221  delayed()->mov(G0, result); // 0 - failed
4222
4223  // Move bytes into float register
4224  movxtod(tmp1, ftmp1);
4225  movxtod(tmp2, ftmp2);
4226
4227  // Compress by copying one byte per char from ftmp1 and ftmp2 to ftmp3
4228  bshuffle(ftmp1, ftmp2, ftmp3);
4229  stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4230
4231  // Increment addresses and decrement count
4232  inc(src, 16);
4233  inc(dst, 8);
4234  dec(cnt, 8);
4235
4236  cmp(cnt, 8);
4237  // annul LDX if branch is not taken to prevent access past end of string
4238  br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4239  delayed()->ldx(src, 0, tmp1);
4240
4241  // Fallback to slow version
4242  bind(Lslow);
4243}
4244
4245// Compress char[] to byte[]. Return 0 on failure.
4246void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register result, Register tmp, Label& Ldone) {
4247  Label Lloop;
4248  assert_different_registers(src, dst, cnt, tmp, result);
4249
4250  lduh(src, 0, tmp);
4251
4252  bind(Lloop);
4253  inc(src, sizeof(jchar));
4254  cmp(tmp, 0xff);
4255  // annul zeroing if branch is not taken to preserve original count
4256  br(Assembler::greater, true, Assembler::pn, Ldone); // don't check xcc
4257  delayed()->mov(G0, result); // 0 - failed
4258  deccc(cnt);
4259  stb(tmp, dst, 0);
4260  inc(dst);
4261  // annul LDUH if branch is not taken to prevent access past end of string
4262  br(Assembler::notZero, true, Assembler::pt, Lloop);
4263  delayed()->lduh(src, 0, tmp); // hoisted
4264}
4265
4266// Inflate byte[] to char[] by inflating 16 bytes at once.
4267void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
4268                                       FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone) {
4269  Label Lloop, Lslow;
4270  assert(UseVIS >= 3, "VIS3 is required");
4271  assert_different_registers(src, dst, cnt, tmp);
4272  assert_different_registers(ftmp1, ftmp2, ftmp3, ftmp4);
4273
4274  // Check if cnt >= 8 (= 16 bytes)
4275  cmp(cnt, 8);
4276  br(Assembler::less, false, Assembler::pn, Lslow);
4277  delayed()->nop();
4278
4279  // Check for 8-byte alignment of src and dst
4280  or3(src, dst, tmp);
4281  andcc(tmp, 7, G0);
4282  br(Assembler::notZero, false, Assembler::pn, Lslow);
4283  // Initialize float register to zero
4284  FloatRegister zerof = ftmp4;
4285  delayed()->fzero(FloatRegisterImpl::D, zerof);
4286
4287  // Load first 8 bytes
4288  ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4289
4290  bind(Lloop);
4291  inc(src, 8);
4292  dec(cnt, 8);
4293
4294  // Inflate the string by interleaving each byte from the source array
4295  // with a zero byte and storing the result in the destination array.
4296  fpmerge(zerof, ftmp1->successor(), ftmp2);
4297  stf(FloatRegisterImpl::D, ftmp2, dst, 8);
4298  fpmerge(zerof, ftmp1, ftmp3);
4299  stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4300
4301  inc(dst, 16);
4302
4303  cmp(cnt, 8);
4304  // annul LDX if branch is not taken to prevent access past end of string
4305  br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4306  delayed()->ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4307
4308  // Fallback to slow version
4309  bind(Lslow);
4310}
4311
4312// Inflate byte[] to char[].
4313void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone) {
4314  Label Loop;
4315  assert_different_registers(src, dst, cnt, tmp);
4316
4317  ldub(src, 0, tmp);
4318  bind(Loop);
4319  inc(src);
4320  deccc(cnt);
4321  sth(tmp, dst, 0);
4322  inc(dst, sizeof(jchar));
4323  // annul LDUB if branch is not taken to prevent access past end of string
4324  br(Assembler::notZero, true, Assembler::pt, Loop);
4325  delayed()->ldub(src, 0, tmp); // hoisted
4326}
4327
4328void MacroAssembler::string_compare(Register str1, Register str2,
4329                                    Register cnt1, Register cnt2,
4330                                    Register tmp1, Register tmp2,
4331                                    Register result, int ae) {
4332  Label Ldone, Lloop;
4333  assert_different_registers(str1, str2, cnt1, cnt2, tmp1, result);
4334  int stride1, stride2;
4335
4336  // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
4337  // we interchange str1 and str2 in the UL case and negate the result.
4338  // Like this, str1 is always latin1 encoded, expect for the UU case.
4339
4340  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4341    srl(cnt2, 1, cnt2);
4342  }
4343
4344  // See if the lengths are different, and calculate min in cnt1.
4345  // Save diff in case we need it for a tie-breaker.
4346  Label Lskip;
4347  Register diff = tmp1;
4348  subcc(cnt1, cnt2, diff);
4349  br(Assembler::greater, true, Assembler::pt, Lskip);
4350  // cnt2 is shorter, so use its count:
4351  delayed()->mov(cnt2, cnt1);
4352  bind(Lskip);
4353
4354  // Rename registers
4355  Register limit1 = cnt1;
4356  Register limit2 = limit1;
4357  Register chr1   = result;
4358  Register chr2   = cnt2;
4359  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4360    // We need an additional register to keep track of two limits
4361    assert_different_registers(str1, str2, cnt1, cnt2, tmp1, tmp2, result);
4362    limit2 = tmp2;
4363  }
4364
4365  // Is the minimum length zero?
4366  cmp(limit1, (int)0); // use cast to resolve overloading ambiguity
4367  br(Assembler::equal, true, Assembler::pn, Ldone);
4368  // result is difference in lengths
4369  if (ae == StrIntrinsicNode::UU) {
4370    delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4371  } else {
4372    delayed()->mov(diff, result);
4373  }
4374
4375  // Load first characters
4376  if (ae == StrIntrinsicNode::LL) {
4377    stride1 = stride2 = sizeof(jbyte);
4378    ldub(str1, 0, chr1);
4379    ldub(str2, 0, chr2);
4380  } else if (ae == StrIntrinsicNode::UU) {
4381    stride1 = stride2 = sizeof(jchar);
4382    lduh(str1, 0, chr1);
4383    lduh(str2, 0, chr2);
4384  } else {
4385    stride1 = sizeof(jbyte);
4386    stride2 = sizeof(jchar);
4387    ldub(str1, 0, chr1);
4388    lduh(str2, 0, chr2);
4389  }
4390
4391  // Compare first characters
4392  subcc(chr1, chr2, chr1);
4393  br(Assembler::notZero, false, Assembler::pt, Ldone);
4394  assert(chr1 == result, "result must be pre-placed");
4395  delayed()->nop();
4396
4397  // Check if the strings start at same location
4398  cmp(str1, str2);
4399  brx(Assembler::equal, true, Assembler::pn, Ldone);
4400  delayed()->mov(G0, result);  // result is zero
4401
4402  // We have no guarantee that on 64 bit the higher half of limit is 0
4403  signx(limit1);
4404
4405  // Get limit
4406  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4407    sll(limit1, 1, limit2);
4408    subcc(limit2, stride2, chr2);
4409  }
4410  subcc(limit1, stride1, chr1);
4411  br(Assembler::zero, true, Assembler::pn, Ldone);
4412  // result is difference in lengths
4413  if (ae == StrIntrinsicNode::UU) {
4414    delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4415  } else {
4416    delayed()->mov(diff, result);
4417  }
4418
4419  // Shift str1 and str2 to the end of the arrays, negate limit
4420  add(str1, limit1, str1);
4421  add(str2, limit2, str2);
4422  neg(chr1, limit1);  // limit1 = -(limit1-stride1)
4423  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4424    neg(chr2, limit2);  // limit2 = -(limit2-stride2)
4425  }
4426
4427  // Compare the rest of the characters
4428  load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
4429
4430  bind(Lloop);
4431  load_sized_value(Address(str2, limit2), chr2, (ae == StrIntrinsicNode::LL) ? 1 : 2, false);
4432
4433  subcc(chr1, chr2, chr1);
4434  br(Assembler::notZero, false, Assembler::pt, Ldone);
4435  assert(chr1 == result, "result must be pre-placed");
4436  delayed()->inccc(limit1, stride1);
4437  if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4438    inccc(limit2, stride2);
4439  }
4440
4441  // annul LDUB if branch is not taken to prevent access past end of string
4442  br(Assembler::notZero, true, Assembler::pt, Lloop);
4443  delayed()->load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
4444
4445  // If strings are equal up to min length, return the length difference.
4446  if (ae == StrIntrinsicNode::UU) {
4447    // Divide by 2 to get number of chars
4448    sra(diff, 1, result);
4449  } else {
4450    mov(diff, result);
4451  }
4452
4453  // Otherwise, return the difference between the first mismatched chars.
4454  bind(Ldone);
4455  if(ae == StrIntrinsicNode::UL) {
4456    // Negate result (see note above)
4457    neg(result);
4458  }
4459}
4460
4461void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
4462                                  Register limit, Register tmp, Register result, bool is_byte) {
4463  Label Ldone, Lloop, Lremaining;
4464  assert_different_registers(ary1, ary2, limit, tmp, result);
4465
4466  int length_offset  = arrayOopDesc::length_offset_in_bytes();
4467  int base_offset    = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
4468  assert(base_offset % 8 == 0, "Base offset must be 8-byte aligned");
4469
4470  if (is_array_equ) {
4471    // return true if the same array
4472    cmp(ary1, ary2);
4473    brx(Assembler::equal, true, Assembler::pn, Ldone);
4474    delayed()->mov(1, result);  // equal
4475
4476    br_null(ary1, true, Assembler::pn, Ldone);
4477    delayed()->clr(result);     // not equal
4478
4479    br_null(ary2, true, Assembler::pn, Ldone);
4480    delayed()->clr(result);     // not equal
4481
4482    // load the lengths of arrays
4483    ld(Address(ary1, length_offset), limit);
4484    ld(Address(ary2, length_offset), tmp);
4485
4486    // return false if the two arrays are not equal length
4487    cmp(limit, tmp);
4488    br(Assembler::notEqual, true, Assembler::pn, Ldone);
4489    delayed()->clr(result);     // not equal
4490  }
4491
4492  cmp_zero_and_br(Assembler::zero, limit, Ldone, true, Assembler::pn);
4493  delayed()->mov(1, result); // zero-length arrays are equal
4494
4495  if (is_array_equ) {
4496    // load array addresses
4497    add(ary1, base_offset, ary1);
4498    add(ary2, base_offset, ary2);
4499    // set byte count
4500    if (!is_byte) {
4501      sll(limit, exact_log2(sizeof(jchar)), limit);
4502    }
4503  } else {
4504    // We have no guarantee that on 64 bit the higher half of limit is 0
4505    signx(limit);
4506  }
4507
4508#ifdef ASSERT
4509  // Sanity check for doubleword (8-byte) alignment of ary1 and ary2.
4510  // Guaranteed on 64-bit systems (see arrayOopDesc::header_size_in_bytes()).
4511  Label Laligned;
4512  or3(ary1, ary2, tmp);
4513  andcc(tmp, 7, tmp);
4514  br_null_short(tmp, Assembler::pn, Laligned);
4515  STOP("First array element is not 8-byte aligned.");
4516  should_not_reach_here();
4517  bind(Laligned);
4518#endif
4519
4520  // Shift ary1 and ary2 to the end of the arrays, negate limit
4521  add(ary1, limit, ary1);
4522  add(ary2, limit, ary2);
4523  neg(limit, limit);
4524
4525  // MAIN LOOP
4526  // Load and compare array elements of size 'byte_width' until the elements are not
4527  // equal or we reached the end of the arrays. If the size of the arrays is not a
4528  // multiple of 'byte_width', we simply read over the end of the array, bail out and
4529  // compare the remaining bytes below by skipping the garbage bytes.
4530  ldx(ary1, limit, result);
4531  bind(Lloop);
4532  ldx(ary2, limit, tmp);
4533  inccc(limit, 8);
4534  // Bail out if we reached the end (but still do the comparison)
4535  br(Assembler::positive, false, Assembler::pn, Lremaining);
4536  delayed()->cmp(result, tmp);
4537  // Check equality of elements
4538  brx(Assembler::equal, false, Assembler::pt, target(Lloop));
4539  delayed()->ldx(ary1, limit, result);
4540
4541  ba(Ldone);
4542  delayed()->clr(result); // not equal
4543
4544  // TAIL COMPARISON
4545  // We got here because we reached the end of the arrays. 'limit' is the number of
4546  // garbage bytes we may have compared by reading over the end of the arrays. Shift
4547  // out the garbage and compare the remaining elements.
4548  bind(Lremaining);
4549  // Optimistic shortcut: elements potentially including garbage are equal
4550  brx(Assembler::equal, true, Assembler::pt, target(Ldone));
4551  delayed()->mov(1, result); // equal
4552  // Shift 'limit' bytes to the right and compare
4553  sll(limit, 3, limit); // bytes to bits
4554  srlx(result, limit, result);
4555  srlx(tmp, limit, tmp);
4556  cmp(result, tmp);
4557  clr(result);
4558  movcc(Assembler::equal, false, xcc, 1, result);
4559
4560  bind(Ldone);
4561}
4562
4563void MacroAssembler::has_negatives(Register inp, Register size, Register result, Register t2, Register t3, Register t4, Register t5) {
4564
4565  // test for negative bytes in input string of a given size
4566  // result 1 if found, 0 otherwise.
4567
4568  Label Lcore, Ltail, Lreturn, Lcore_rpt;
4569
4570  assert_different_registers(inp, size, t2, t3, t4, t5, result);
4571
4572  Register i     = result;  // result used as integer index i until very end
4573  Register lmask = t2;      // t2 is aliased to lmask
4574
4575  // INITIALIZATION
4576  // ===========================================================
4577  // initialize highbits mask -> lmask = 0x8080808080808080  (8B/64b)
4578  // compute unaligned offset -> i
4579  // compute core end index   -> t5
4580  Assembler::sethi(0x80808000, t2);   //! sethi macro fails to emit optimal
4581  add(t2, 0x80, t2);
4582  sllx(t2, 32, t3);
4583  or3(t3, t2, lmask);                 // 0x8080808080808080 -> lmask
4584  sra(size,0,size);
4585  andcc(inp, 0x7, i);                 // unaligned offset -> i
4586  br(Assembler::zero, true, Assembler::pn, Lcore); // starts 8B aligned?
4587  delayed()->add(size, -8, t5);       // (annuled) core end index -> t5
4588
4589  // ===========================================================
4590
4591  // UNALIGNED HEAD
4592  // ===========================================================
4593  // * unaligned head handling: grab aligned 8B containing unaligned inp(ut)
4594  // * obliterate (ignore) bytes outside string by shifting off reg ends
4595  // * compare with bitmask, short circuit return true if one or more high
4596  //   bits set.
4597  cmp(size, 0);
4598  br(Assembler::zero, true, Assembler::pn, Lreturn); // short-circuit?
4599  delayed()->mov(0,result);      // annuled so i not clobbered for following
4600  neg(i, t4);
4601  add(i, size, t5);
4602  ldx(inp, t4, t3);  // raw aligned 8B containing unaligned head -> t3
4603  mov(8, t4);
4604  sub(t4, t5, t4);
4605  sra(t4, 31, t5);
4606  andn(t4, t5, t5);
4607  add(i, t5, t4);
4608  sll(t5, 3, t5);
4609  sll(t4, 3, t4);   // # bits to shift right, left -> t5,t4
4610  srlx(t3, t5, t3);
4611  sllx(t3, t4, t3); // bytes outside string in 8B header obliterated -> t3
4612  andcc(lmask, t3, G0);
4613  brx(Assembler::notZero, true, Assembler::pn, Lreturn); // short circuit?
4614  delayed()->mov(1,result);      // annuled so i not clobbered for following
4615  add(size, -8, t5);             // core end index -> t5
4616  mov(8, t4);
4617  sub(t4, i, i);                 // # bytes examined in unalgn head (<8) -> i
4618  // ===========================================================
4619
4620  // ALIGNED CORE
4621  // ===========================================================
4622  // * iterate index i over aligned 8B sections of core, comparing with
4623  //   bitmask, short circuit return true if one or more high bits set
4624  // t5 contains core end index/loop limit which is the index
4625  //     of the MSB of last (unaligned) 8B fully contained in the string.
4626  // inp   contains address of first byte in string/array
4627  // lmask contains 8B high bit mask for comparison
4628  // i     contains next index to be processed (adr. inp+i is on 8B boundary)
4629  bind(Lcore);
4630  cmp_and_br_short(i, t5, Assembler::greater, Assembler::pn, Ltail);
4631  bind(Lcore_rpt);
4632  ldx(inp, i, t3);
4633  andcc(t3, lmask, G0);
4634  brx(Assembler::notZero, true, Assembler::pn, Lreturn);
4635  delayed()->mov(1, result);    // annuled so i not clobbered for following
4636  add(i, 8, i);
4637  cmp_and_br_short(i, t5, Assembler::lessEqual, Assembler::pn, Lcore_rpt);
4638  // ===========================================================
4639
4640  // ALIGNED TAIL (<8B)
4641  // ===========================================================
4642  // handle aligned tail of 7B or less as complete 8B, obliterating end of
4643  // string bytes by shifting them off end, compare what's left with bitmask
4644  // inp   contains address of first byte in string/array
4645  // lmask contains 8B high bit mask for comparison
4646  // i     contains next index to be processed (adr. inp+i is on 8B boundary)
4647  bind(Ltail);
4648  subcc(size, i, t4);   // # of remaining bytes in string -> t4
4649  // return 0 if no more remaining bytes
4650  br(Assembler::lessEqual, true, Assembler::pn, Lreturn);
4651  delayed()->mov(0, result); // annuled so i not clobbered for following
4652  ldx(inp, i, t3);       // load final 8B (aligned) containing tail -> t3
4653  mov(8, t5);
4654  sub(t5, t4, t4);
4655  mov(0, result);        // ** i clobbered at this point
4656  sll(t4, 3, t4);        // bits beyond end of string          -> t4
4657  srlx(t3, t4, t3);      // bytes beyond end now obliterated   -> t3
4658  andcc(lmask, t3, G0);
4659  movcc(Assembler::notZero, false, xcc,  1, result);
4660  bind(Lreturn);
4661}
4662
4663#endif
4664
4665
4666// Use BIS for zeroing (count is in bytes).
4667void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4668  assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4669  Register end = count;
4670  int cache_line_size = VM_Version::prefetch_data_size();
4671  assert(cache_line_size > 0, "cache line size should be known for this code");
4672  // Minimum count when BIS zeroing can be used since
4673  // it needs membar which is expensive.
4674  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4675
4676  Label small_loop;
4677  // Check if count is negative (dead code) or zero.
4678  // Note, count uses 64bit in 64 bit VM.
4679  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4680
4681  // Use BIS zeroing only for big arrays since it requires membar.
4682  if (Assembler::is_simm13(block_zero_size)) { // < 4096
4683    cmp(count, block_zero_size);
4684  } else {
4685    set(block_zero_size, temp);
4686    cmp(count, temp);
4687  }
4688  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4689  delayed()->add(to, count, end);
4690
4691  // Note: size is >= three (32 bytes) cache lines.
4692
4693  // Clean the beginning of space up to next cache line.
4694  for (int offs = 0; offs < cache_line_size; offs += 8) {
4695    stx(G0, to, offs);
4696  }
4697
4698  // align to next cache line
4699  add(to, cache_line_size, to);
4700  and3(to, -cache_line_size, to);
4701
4702  // Note: size left >= two (32 bytes) cache lines.
4703
4704  // BIS should not be used to zero tail (64 bytes)
4705  // to avoid zeroing a header of the following object.
4706  sub(end, (cache_line_size*2)-8, end);
4707
4708  Label bis_loop;
4709  bind(bis_loop);
4710  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4711  add(to, cache_line_size, to);
4712  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4713
4714  // BIS needs membar.
4715  membar(Assembler::StoreLoad);
4716
4717  add(end, (cache_line_size*2)-8, end); // restore end
4718  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4719
4720  // Clean the tail.
4721  bind(small_loop);
4722  stx(G0, to, 0);
4723  add(to, 8, to);
4724  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4725  nop(); // Separate short branches
4726}
4727
4728/**
4729 * Update CRC-32[C] with a byte value according to constants in table
4730 *
4731 * @param [in,out]crc   Register containing the crc.
4732 * @param [in]val       Register containing the byte to fold into the CRC.
4733 * @param [in]table     Register containing the table of crc constants.
4734 *
4735 * uint32_t crc;
4736 * val = crc_table[(val ^ crc) & 0xFF];
4737 * crc = val ^ (crc >> 8);
4738 */
4739void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4740  xor3(val, crc, val);
4741  and3(val, 0xFF, val);
4742  sllx(val, 2, val);
4743  lduw(table, val, val);
4744  srlx(crc, 8, crc);
4745  xor3(val, crc, crc);
4746}
4747
4748// Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
4749void MacroAssembler::reverse_bytes_32(Register src, Register dst, Register tmp) {
4750    srlx(src, 24, dst);
4751
4752    sllx(src, 32+8, tmp);
4753    srlx(tmp, 32+24, tmp);
4754    sllx(tmp, 8, tmp);
4755    or3(dst, tmp, dst);
4756
4757    sllx(src, 32+16, tmp);
4758    srlx(tmp, 32+24, tmp);
4759    sllx(tmp, 16, tmp);
4760    or3(dst, tmp, dst);
4761
4762    sllx(src, 32+24, tmp);
4763    srlx(tmp, 32, tmp);
4764    or3(dst, tmp, dst);
4765}
4766
4767void MacroAssembler::movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2) {
4768  reverse_bytes_32(src, tmp1, tmp2);
4769  movxtod(tmp1, dst);
4770}
4771
4772void MacroAssembler::movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2) {
4773  movdtox(src, tmp1);
4774  reverse_bytes_32(tmp1, dst, tmp2);
4775}
4776
4777void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset) {
4778  xmulx(xcrc_hi, xK_hi, xtmp_lo);
4779  xmulxhi(xcrc_hi, xK_hi, xtmp_hi);
4780  xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4781  xmulx(xcrc_lo, xK_lo, xcrc_lo);
4782  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4783  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4784  ldxl(buf, G0, xtmp_lo);
4785  inc(buf, 8);
4786  ldxl(buf, G0, xtmp_hi);
4787  inc(buf, 8);
4788  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4789  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4790}
4791
4792void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo) {
4793  mov(xcrc_lo, xtmp_lo);
4794  mov(xcrc_hi, xtmp_hi);
4795  xmulx(xtmp_hi, xK_hi, xtmp_lo);
4796  xmulxhi(xtmp_hi, xK_hi, xtmp_hi);
4797  xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4798  xmulx(xcrc_lo, xK_lo, xcrc_lo);
4799  xor3(xcrc_lo, xbuf_lo, xcrc_lo);
4800  xor3(xcrc_hi, xbuf_hi, xcrc_hi);
4801  xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4802  xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4803}
4804
4805void MacroAssembler::fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp) {
4806  and3(xcrc, 0xFF, tmp);
4807  sllx(tmp, 2, tmp);
4808  lduw(table, tmp, xtmp);
4809  srlx(xcrc, 8, xcrc);
4810  xor3(xtmp, xcrc, xcrc);
4811}
4812
4813void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4814  and3(crc, 0xFF, tmp);
4815  srlx(crc, 8, crc);
4816  sllx(tmp, 2, tmp);
4817  lduw(table, tmp, tmp);
4818  xor3(tmp, crc, crc);
4819}
4820
4821#define CRC32_TMP_REG_NUM 18
4822
4823#define CRC32_CONST_64  0x163cd6124
4824#define CRC32_CONST_96  0x0ccaa009e
4825#define CRC32_CONST_160 0x1751997d0
4826#define CRC32_CONST_480 0x1c6e41596
4827#define CRC32_CONST_544 0x154442bd4
4828
4829void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table) {
4830
4831  Label L_cleanup_loop, L_cleanup_check, L_align_loop, L_align_check;
4832  Label L_main_loop_prologue;
4833  Label L_fold_512b, L_fold_512b_loop, L_fold_128b;
4834  Label L_fold_tail, L_fold_tail_loop;
4835  Label L_8byte_fold_loop, L_8byte_fold_check;
4836
4837  const Register tmp[CRC32_TMP_REG_NUM] = {L0, L1, L2, L3, L4, L5, L6, G1, I0, I1, I2, I3, I4, I5, I7, O4, O5, G3};
4838
4839  Register const_64  = tmp[CRC32_TMP_REG_NUM-1];
4840  Register const_96  = tmp[CRC32_TMP_REG_NUM-1];
4841  Register const_160 = tmp[CRC32_TMP_REG_NUM-2];
4842  Register const_480 = tmp[CRC32_TMP_REG_NUM-1];
4843  Register const_544 = tmp[CRC32_TMP_REG_NUM-2];
4844
4845  set(ExternalAddress(StubRoutines::crc_table_addr()), table);
4846
4847  not1(crc); // ~c
4848  clruwu(crc); // clear upper 32 bits of crc
4849
4850  // Check if below cutoff, proceed directly to cleanup code
4851  mov(31, G4);
4852  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4853
4854  // Align buffer to 8 byte boundry
4855  mov(8, O5);
4856  and3(buf, 0x7, O4);
4857  sub(O5, O4, O5);
4858  and3(O5, 0x7, O5);
4859  sub(len, O5, len);
4860  ba(L_align_check);
4861  delayed()->nop();
4862
4863  // Alignment loop, table look up method for up to 7 bytes
4864  bind(L_align_loop);
4865  ldub(buf, 0, O4);
4866  inc(buf);
4867  dec(O5);
4868  xor3(O4, crc, O4);
4869  and3(O4, 0xFF, O4);
4870  sllx(O4, 2, O4);
4871  lduw(table, O4, O4);
4872  srlx(crc, 8, crc);
4873  xor3(O4, crc, crc);
4874  bind(L_align_check);
4875  nop();
4876  cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_align_loop);
4877
4878  // Aligned on 64-bit (8-byte) boundry at this point
4879  // Check if still above cutoff (31-bytes)
4880  mov(31, G4);
4881  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4882  // At least 32 bytes left to process
4883
4884  // Free up registers by storing them to FP registers
4885  for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
4886    movxtod(tmp[i], as_FloatRegister(2*i));
4887  }
4888
4889  // Determine which loop to enter
4890  // Shared prologue
4891  ldxl(buf, G0, tmp[0]);
4892  inc(buf, 8);
4893  ldxl(buf, G0, tmp[1]);
4894  inc(buf, 8);
4895  xor3(tmp[0], crc, tmp[0]); // Fold CRC into first few bytes
4896  and3(crc, 0, crc); // Clear out the crc register
4897  // Main loop needs 128-bytes at least
4898  mov(128, G4);
4899  mov(64, tmp[2]);
4900  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_main_loop_prologue);
4901  // Less than 64 bytes
4902  nop();
4903  cmp_and_br_short(len, tmp[2], Assembler::lessUnsigned, Assembler::pt, L_fold_tail);
4904  // Between 64 and 127 bytes
4905  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4906  set64(CRC32_CONST_160, const_160, tmp[9]);
4907  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4908  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[4], tmp[5], buf, 16);
4909  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[6], tmp[7], buf, 32);
4910  dec(len, 48);
4911  ba(L_fold_tail);
4912  delayed()->nop();
4913
4914  bind(L_main_loop_prologue);
4915  for (int i = 2; i < 8; i++) {
4916    ldxl(buf, G0, tmp[i]);
4917    inc(buf, 8);
4918  }
4919
4920  // Fold total 512 bits of polynomial on each iteration,
4921  // 128 bits per each of 4 parallel streams
4922  set64(CRC32_CONST_480, const_480, tmp[8]);
4923  set64(CRC32_CONST_544, const_544, tmp[9]);
4924
4925  mov(128, G4);
4926  bind(L_fold_512b_loop);
4927  fold_128bit_crc32(tmp[1], tmp[0], const_480, const_544, tmp[9],  tmp[8],  buf,  0);
4928  fold_128bit_crc32(tmp[3], tmp[2], const_480, const_544, tmp[11], tmp[10], buf, 16);
4929  fold_128bit_crc32(tmp[5], tmp[4], const_480, const_544, tmp[13], tmp[12], buf, 32);
4930  fold_128bit_crc32(tmp[7], tmp[6], const_480, const_544, tmp[15], tmp[14], buf, 64);
4931  dec(len, 64);
4932  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_512b_loop);
4933
4934  // Fold 512 bits to 128 bits
4935  bind(L_fold_512b);
4936  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4937  set64(CRC32_CONST_160, const_160, tmp[9]);
4938
4939  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[3], tmp[2]);
4940  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[5], tmp[4]);
4941  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[7], tmp[6]);
4942  dec(len, 48);
4943
4944  // Fold the rest of 128 bits data chunks
4945  bind(L_fold_tail);
4946  mov(32, G4);
4947  cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_fold_128b);
4948
4949  set64(CRC32_CONST_96,  const_96,  tmp[8]);
4950  set64(CRC32_CONST_160, const_160, tmp[9]);
4951
4952  bind(L_fold_tail_loop);
4953  fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4954  sub(len, 16, len);
4955  cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_tail_loop);
4956
4957  // Fold the 128 bits in tmps 0 - 1 into tmp 1
4958  bind(L_fold_128b);
4959
4960  set64(CRC32_CONST_64, const_64, tmp[4]);
4961
4962  xmulx(const_64, tmp[0], tmp[2]);
4963  xmulxhi(const_64, tmp[0], tmp[3]);
4964
4965  srl(tmp[2], G0, tmp[4]);
4966  xmulx(const_64, tmp[4], tmp[4]);
4967
4968  srlx(tmp[2], 32, tmp[2]);
4969  sllx(tmp[3], 32, tmp[3]);
4970  or3(tmp[2], tmp[3], tmp[2]);
4971
4972  xor3(tmp[4], tmp[1], tmp[4]);
4973  xor3(tmp[4], tmp[2], tmp[1]);
4974  dec(len, 8);
4975
4976  // Use table lookup for the 8 bytes left in tmp[1]
4977  dec(len, 8);
4978
4979  // 8 8-bit folds to compute 32-bit CRC.
4980  for (int j = 0; j < 4; j++) {
4981    fold_8bit_crc32(tmp[1], table, tmp[2], tmp[3]);
4982  }
4983  srl(tmp[1], G0, crc); // move 32 bits to general register
4984  for (int j = 0; j < 4; j++) {
4985    fold_8bit_crc32(crc, table, tmp[3]);
4986  }
4987
4988  bind(L_8byte_fold_check);
4989
4990  // Restore int registers saved in FP registers
4991  for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
4992    movdtox(as_FloatRegister(2*i), tmp[i]);
4993  }
4994
4995  ba(L_cleanup_check);
4996  delayed()->nop();
4997
4998  // Table look-up method for the remaining few bytes
4999  bind(L_cleanup_loop);
5000  ldub(buf, 0, O4);
5001  inc(buf);
5002  dec(len);
5003  xor3(O4, crc, O4);
5004  and3(O4, 0xFF, O4);
5005  sllx(O4, 2, O4);
5006  lduw(table, O4, O4);
5007  srlx(crc, 8, crc);
5008  xor3(O4, crc, crc);
5009  bind(L_cleanup_check);
5010  nop();
5011  cmp_and_br_short(len, 0, Assembler::greaterUnsigned, Assembler::pt, L_cleanup_loop);
5012
5013  not1(crc);
5014}
5015
5016#define CHUNK_LEN   128          /* 128 x 8B = 1KB */
5017#define CHUNK_K1    0x1307a0206  /* reverseBits(pow(x, CHUNK_LEN*8*8*3 - 32) mod P(x)) << 1 */
5018#define CHUNK_K2    0x1a0f717c4  /* reverseBits(pow(x, CHUNK_LEN*8*8*2 - 32) mod P(x)) << 1 */
5019#define CHUNK_K3    0x0170076fa  /* reverseBits(pow(x, CHUNK_LEN*8*8*1 - 32) mod P(x)) << 1 */
5020
5021void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, Register table) {
5022
5023  Label L_crc32c_head, L_crc32c_aligned;
5024  Label L_crc32c_parallel, L_crc32c_parallel_loop;
5025  Label L_crc32c_serial, L_crc32c_x32_loop, L_crc32c_x8, L_crc32c_x8_loop;
5026  Label L_crc32c_done, L_crc32c_tail, L_crc32c_return;
5027
5028  set(ExternalAddress(StubRoutines::crc32c_table_addr()), table);
5029
5030  cmp_and_br_short(len, 0, Assembler::lessEqual, Assembler::pn, L_crc32c_return);
5031
5032  // clear upper 32 bits of crc
5033  clruwu(crc);
5034
5035  and3(buf, 7, G4);
5036  cmp_and_brx_short(G4, 0, Assembler::equal, Assembler::pt, L_crc32c_aligned);
5037
5038  mov(8, G1);
5039  sub(G1, G4, G4);
5040
5041  // ------ process the misaligned head (7 bytes or less) ------
5042  bind(L_crc32c_head);
5043
5044  // crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
5045  ldub(buf, 0, G1);
5046  update_byte_crc32(crc, G1, table);
5047
5048  inc(buf);
5049  dec(len);
5050  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pn, L_crc32c_return);
5051  dec(G4);
5052  cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_head);
5053
5054  // ------ process the 8-byte-aligned body ------
5055  bind(L_crc32c_aligned);
5056  nop();
5057  cmp_and_br_short(len, 8, Assembler::less, Assembler::pn, L_crc32c_tail);
5058
5059  // reverse the byte order of lower 32 bits to big endian, and move to FP side
5060  movitof_revbytes(crc, F0, G1, G3);
5061
5062  set(CHUNK_LEN*8*4, G4);
5063  cmp_and_br_short(len, G4, Assembler::less, Assembler::pt, L_crc32c_serial);
5064
5065  // ------ process four 1KB chunks in parallel ------
5066  bind(L_crc32c_parallel);
5067
5068  fzero(FloatRegisterImpl::D, F2);
5069  fzero(FloatRegisterImpl::D, F4);
5070  fzero(FloatRegisterImpl::D, F6);
5071
5072  mov(CHUNK_LEN - 1, G4);
5073  bind(L_crc32c_parallel_loop);
5074  // schedule ldf's ahead of crc32c's to hide the load-use latency
5075  ldf(FloatRegisterImpl::D, buf, 0,            F8);
5076  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8,  F10);
5077  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
5078  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*24, F14);
5079  crc32c(F0, F8,  F0);
5080  crc32c(F2, F10, F2);
5081  crc32c(F4, F12, F4);
5082  crc32c(F6, F14, F6);
5083  inc(buf, 8);
5084  dec(G4);
5085  cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_parallel_loop);
5086
5087  ldf(FloatRegisterImpl::D, buf, 0,            F8);
5088  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8,  F10);
5089  ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
5090  crc32c(F0, F8,  F0);
5091  crc32c(F2, F10, F2);
5092  crc32c(F4, F12, F4);
5093
5094  inc(buf, CHUNK_LEN*24);
5095  ldfl(FloatRegisterImpl::D, buf, G0, F14);  // load in little endian
5096  inc(buf, 8);
5097
5098  prefetch(buf, 0,            Assembler::severalReads);
5099  prefetch(buf, CHUNK_LEN*8,  Assembler::severalReads);
5100  prefetch(buf, CHUNK_LEN*16, Assembler::severalReads);
5101  prefetch(buf, CHUNK_LEN*24, Assembler::severalReads);
5102
5103  // move to INT side, and reverse the byte order of lower 32 bits to little endian
5104  movftoi_revbytes(F0, O4, G1, G4);
5105  movftoi_revbytes(F2, O5, G1, G4);
5106  movftoi_revbytes(F4, G5, G1, G4);
5107
5108  // combine the results of 4 chunks
5109  set64(CHUNK_K1, G3, G1);
5110  xmulx(O4, G3, O4);
5111  set64(CHUNK_K2, G3, G1);
5112  xmulx(O5, G3, O5);
5113  set64(CHUNK_K3, G3, G1);
5114  xmulx(G5, G3, G5);
5115
5116  movdtox(F14, G4);
5117  xor3(O4, O5, O5);
5118  xor3(G5, O5, O5);
5119  xor3(G4, O5, O5);
5120
5121  // reverse the byte order to big endian, via stack, and move to FP side
5122  // TODO: use new revb instruction
5123  add(SP, -8, G1);
5124  srlx(G1, 3, G1);
5125  sllx(G1, 3, G1);
5126  stx(O5, G1, G0);
5127  ldfl(FloatRegisterImpl::D, G1, G0, F2);  // load in little endian
5128
5129  crc32c(F6, F2, F0);
5130
5131  set(CHUNK_LEN*8*4, G4);
5132  sub(len, G4, len);
5133  cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_parallel);
5134  nop();
5135  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_done);
5136
5137  bind(L_crc32c_serial);
5138
5139  mov(32, G4);
5140  cmp_and_br_short(len, G4, Assembler::less, Assembler::pn, L_crc32c_x8);
5141
5142  // ------ process 32B chunks ------
5143  bind(L_crc32c_x32_loop);
5144  ldf(FloatRegisterImpl::D, buf, 0, F2);
5145  crc32c(F0, F2, F0);
5146  ldf(FloatRegisterImpl::D, buf, 8, F2);
5147  crc32c(F0, F2, F0);
5148  ldf(FloatRegisterImpl::D, buf, 16, F2);
5149  crc32c(F0, F2, F0);
5150  ldf(FloatRegisterImpl::D, buf, 24, F2);
5151  inc(buf, 32);
5152  crc32c(F0, F2, F0);
5153  dec(len, 32);
5154  cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_x32_loop);
5155
5156  bind(L_crc32c_x8);
5157  nop();
5158  cmp_and_br_short(len, 8, Assembler::less, Assembler::pt, L_crc32c_done);
5159
5160  // ------ process 8B chunks ------
5161  bind(L_crc32c_x8_loop);
5162  ldf(FloatRegisterImpl::D, buf, 0, F2);
5163  inc(buf, 8);
5164  crc32c(F0, F2, F0);
5165  dec(len, 8);
5166  cmp_and_br_short(len, 8, Assembler::greaterEqual, Assembler::pt, L_crc32c_x8_loop);
5167
5168  bind(L_crc32c_done);
5169
5170  // move to INT side, and reverse the byte order of lower 32 bits to little endian
5171  movftoi_revbytes(F0, crc, G1, G3);
5172
5173  cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_return);
5174
5175  // ------ process the misaligned tail (7 bytes or less) ------
5176  bind(L_crc32c_tail);
5177
5178  // crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
5179  ldub(buf, 0, G1);
5180  update_byte_crc32(crc, G1, table);
5181
5182  inc(buf);
5183  dec(len);
5184  cmp_and_br_short(len, 0, Assembler::greater, Assembler::pt, L_crc32c_tail);
5185
5186  bind(L_crc32c_return);
5187  nop();
5188}
5189