1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "oops/constMethod.hpp"
28#include "oops/method.hpp"
29#include "runtime/arguments.hpp"
30#include "runtime/frame.inline.hpp"
31#include "runtime/synchronizer.hpp"
32#include "utilities/macros.hpp"
33
34
35int AbstractInterpreter::BasicType_as_index(BasicType type) {
36  int i = 0;
37  switch (type) {
38    case T_BOOLEAN: i = 0; break;
39    case T_CHAR   : i = 1; break;
40    case T_BYTE   : i = 2; break;
41    case T_SHORT  : i = 3; break;
42    case T_INT    : i = 4; break;
43    case T_LONG   : i = 5; break;
44    case T_VOID   : i = 6; break;
45    case T_FLOAT  : i = 7; break;
46    case T_DOUBLE : i = 8; break;
47    case T_OBJECT : i = 9; break;
48    case T_ARRAY  : i = 9; break;
49    default       : ShouldNotReachHere();
50  }
51  assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
52  return i;
53}
54
55bool AbstractInterpreter::can_be_compiled(methodHandle m) {
56  // No special entry points that preclude compilation
57  return true;
58}
59
60static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
61
62  // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
63  // expression stack, the callee will have callee_extra_locals (so we can account for
64  // frame extension) and monitor_size for monitors. Basically we need to calculate
65  // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
66  //
67  //
68  // The big complicating thing here is that we must ensure that the stack stays properly
69  // aligned. This would be even uglier if monitor size wasn't modulo what the stack
70  // needs to be aligned for). We are given that the sp (fp) is already aligned by
71  // the caller so we must ensure that it is properly aligned for our callee.
72  //
73  const int rounded_vm_local_words =
74       round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
75  // callee_locals and max_stack are counts, not the size in frame.
76  const int locals_size =
77       round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
78  const int max_stack_words = max_stack * Interpreter::stackElementWords;
79  return (round_to((max_stack_words
80                   + rounded_vm_local_words
81                   + frame::memory_parameter_word_sp_offset), WordsPerLong)
82                   // already rounded
83                   + locals_size + monitor_size);
84}
85
86// How much stack a method top interpreter activation needs in words.
87int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
88
89  // See call_stub code
90  int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
91                                 WordsPerLong);    // 7 + register save area
92
93  // Save space for one monitor to get into the interpreted method in case
94  // the method is synchronized
95  int monitor_size    = method->is_synchronized() ?
96                                1*frame::interpreter_frame_monitor_size() : 0;
97  return size_activation_helper(method->max_locals(), method->max_stack(),
98                                monitor_size) + call_stub_size;
99}
100
101int AbstractInterpreter::size_activation(int max_stack,
102                                         int temps,
103                                         int extra_args,
104                                         int monitors,
105                                         int callee_params,
106                                         int callee_locals,
107                                         bool is_top_frame) {
108  // Note: This calculation must exactly parallel the frame setup
109  // in TemplateInterpreterGenerator::generate_fixed_frame.
110
111  int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
112
113  assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
114
115  //
116  // Note: if you look closely this appears to be doing something much different
117  // than generate_fixed_frame. What is happening is this. On sparc we have to do
118  // this dance with interpreter_sp_adjustment because the window save area would
119  // appear just below the bottom (tos) of the caller's java expression stack. Because
120  // the interpreter want to have the locals completely contiguous generate_fixed_frame
121  // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
122  // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
123  // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
124  // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
125  // because the oldest frame would have adjust its callers frame and yet that frame
126  // already exists and isn't part of this array of frames we are unpacking. So at first
127  // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
128  // will after it calculates all of the frame's on_stack_size()'s will then figure out the
129  // amount to adjust the caller of the initial (oldest) frame and the calculation will all
130  // add up. It does seem like it simpler to account for the adjustment here (and remove the
131  // callee... parameters here). However this would mean that this routine would have to take
132  // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
133  // and run the calling loop in the reverse order. This would also would appear to mean making
134  // this code aware of what the interactions are when that initial caller fram was an osr or
135  // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
136  // there is no sense in messing working code.
137  //
138
139  int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
140  assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
141
142  int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
143
144  return raw_frame_size;
145}
146
147void AbstractInterpreter::layout_activation(Method* method,
148                                            int tempcount,
149                                            int popframe_extra_args,
150                                            int moncount,
151                                            int caller_actual_parameters,
152                                            int callee_param_count,
153                                            int callee_local_count,
154                                            frame* caller,
155                                            frame* interpreter_frame,
156                                            bool is_top_frame,
157                                            bool is_bottom_frame) {
158  // Set up the following variables:
159  //   - Lmethod
160  //   - Llocals
161  //   - Lmonitors (to the indicated number of monitors)
162  //   - Lesp (to the indicated number of temps)
163  // The frame caller on entry is a description of the caller of the
164  // frame we are about to layout. We are guaranteed that we will be
165  // able to fill in a new interpreter frame as its callee (i.e. the
166  // stack space is allocated and the amount was determined by an
167  // earlier call to the size_activation() method).  On return caller
168  // while describe the interpreter frame we just layed out.
169
170  // The skeleton frame must already look like an interpreter frame
171  // even if not fully filled out.
172  assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
173
174  int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
175  int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
176  assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
177
178  intptr_t* fp = interpreter_frame->fp();
179
180  JavaThread* thread = JavaThread::current();
181  RegisterMap map(thread, false);
182  // More verification that skeleton frame is properly walkable
183  assert(fp == caller->sp(), "fp must match");
184
185  intptr_t* montop     = fp - rounded_vm_local_words;
186
187  // preallocate monitors (cf. __ add_monitor_to_stack)
188  intptr_t* monitors = montop - monitor_size;
189
190  // preallocate stack space
191  intptr_t*  esp = monitors - 1 -
192    (tempcount * Interpreter::stackElementWords) -
193    popframe_extra_args;
194
195  int local_words = method->max_locals() * Interpreter::stackElementWords;
196  NEEDS_CLEANUP;
197  intptr_t* locals;
198  if (caller->is_interpreted_frame()) {
199    // Can force the locals area to end up properly overlapping the top of the expression stack.
200    intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
201    // Note that this computation means we replace size_of_parameters() values from the caller
202    // interpreter frame's expression stack with our argument locals
203    int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
204    locals = Lesp_ptr + parm_words;
205    int delta = local_words - parm_words;
206    int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
207    *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
208    if (!is_bottom_frame) {
209      // Llast_SP is set below for the current frame to SP (with the
210      // extra space for the callee's locals). Here we adjust
211      // Llast_SP for the caller's frame, removing the extra space
212      // for the current method's locals.
213      *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
214    } else {
215      assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
216    }
217  } else {
218    assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
219    // Don't have Lesp available; lay out locals block in the caller
220    // adjacent to the register window save area.
221    //
222    // Compiled frames do not allocate a varargs area which is why this if
223    // statement is needed.
224    //
225    if (caller->is_compiled_frame()) {
226      locals = fp + frame::register_save_words + local_words - 1;
227    } else {
228      locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
229    }
230    if (!caller->is_entry_frame()) {
231      // Caller wants his own SP back
232      int caller_frame_size = caller->cb()->frame_size();
233      *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
234    }
235  }
236  if (TraceDeoptimization) {
237    if (caller->is_entry_frame()) {
238      // make sure I5_savedSP and the entry frames notion of saved SP
239      // agree.  This assertion duplicate a check in entry frame code
240      // but catches the failure earlier.
241      assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
242             "would change callers SP");
243    }
244    if (caller->is_entry_frame()) {
245      tty->print("entry ");
246    }
247    if (caller->is_compiled_frame()) {
248      tty->print("compiled ");
249      if (caller->is_deoptimized_frame()) {
250        tty->print("(deopt) ");
251      }
252    }
253    if (caller->is_interpreted_frame()) {
254      tty->print("interpreted ");
255    }
256    tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
257    tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
258    tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
259    tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
260    tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
261    tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
262    tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
263    tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
264    tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
265  }
266
267  if (method->max_locals() > 0) {
268    assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
269    assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
270    assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
271    assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
272  }
273#ifdef _LP64
274  assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
275#endif
276
277  *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
278  *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
279  *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
280  *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
281  // Llast_SP will be same as SP as there is no adapter space
282  *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
283  *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
284  // save the mirror in the interpreter frame
285  *interpreter_frame->interpreter_frame_mirror_addr() = method->method_holder()->java_mirror();
286#ifdef FAST_DISPATCH
287  *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
288#endif
289
290#ifdef ASSERT
291  BasicObjectLock* mp = (BasicObjectLock*)monitors;
292
293  assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
294  assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
295  assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
296  assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
297  assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
298
299  // check bounds
300  intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
301  intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
302  assert(lo < monitors && montop <= hi, "monitors in bounds");
303  assert(lo <= esp && esp < monitors, "esp in bounds");
304#endif // ASSERT
305}
306