1/*
2 * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2016 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_LIRAssembler.hpp"
29#include "c1/c1_MacroAssembler.hpp"
30#include "c1/c1_Runtime1.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciInstance.hpp"
34#include "gc/shared/collectedHeap.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "nativeInst_s390.hpp"
38#include "oops/objArrayKlass.hpp"
39#include "runtime/sharedRuntime.hpp"
40#include "vmreg_s390.inline.hpp"
41
42#define __ _masm->
43
44#ifndef PRODUCT
45#undef __
46#define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
47#endif
48
49//------------------------------------------------------------
50
51bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
52  // Not used on ZARCH_64
53  ShouldNotCallThis();
54  return false;
55}
56
57LIR_Opr LIR_Assembler::receiverOpr() {
58  return FrameMap::Z_R2_oop_opr;
59}
60
61LIR_Opr LIR_Assembler::osrBufferPointer() {
62  return FrameMap::Z_R2_opr;
63}
64
65int LIR_Assembler::initial_frame_size_in_bytes() const {
66  return in_bytes(frame_map()->framesize_in_bytes());
67}
68
69// Inline cache check: done before the frame is built.
70// The inline cached class is in Z_inline_cache(Z_R9).
71// We fetch the class of the receiver and compare it with the cached class.
72// If they do not match we jump to the slow case.
73int LIR_Assembler::check_icache() {
74  Register receiver = receiverOpr()->as_register();
75  int offset = __ offset();
76  __ inline_cache_check(receiver, Z_inline_cache);
77  return offset;
78}
79
80void LIR_Assembler::osr_entry() {
81  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
82  //
83  //   1. Create a new compiled activation.
84  //   2. Initialize local variables in the compiled activation. The expression stack must be empty
85  //      at the osr_bci; it is not initialized.
86  //   3. Jump to the continuation address in compiled code to resume execution.
87
88  // OSR entry point
89  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
90  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
91  ValueStack* entry_state = osr_entry->end()->state();
92  int number_of_locks = entry_state->locks_size();
93
94  // Create a frame for the compiled activation.
95  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
96
97  // OSR buffer is
98  //
99  // locals[nlocals-1..0]
100  // monitors[number_of_locks-1..0]
101  //
102  // Locals is a direct copy of the interpreter frame so in the osr buffer
103  // the first slot in the local array is the last local from the interpreter
104  // and the last slot is local[0] (receiver) from the interpreter
105  //
106  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
107  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
108  // in the interpreter frame (the method lock if a sync method)
109
110  // Initialize monitors in the compiled activation.
111  //   I0: pointer to osr buffer
112  //
113  // All other registers are dead at this point and the locals will be
114  // copied into place by code emitted in the IR.
115
116  Register OSR_buf = osrBufferPointer()->as_register();
117  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
118    int monitor_offset = BytesPerWord * method()->max_locals() +
119      (2 * BytesPerWord) * (number_of_locks - 1);
120    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
121    // the OSR buffer using 2 word entries: first the lock and then
122    // the oop.
123    for (int i = 0; i < number_of_locks; i++) {
124      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
125      // Verify the interpreter's monitor has a non-null object.
126      __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__);
127      // Copy the lock field into the compiled activation.
128      __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
129      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
130      __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
131      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
132    }
133  }
134}
135
136// --------------------------------------------------------------------------------------------
137
138address LIR_Assembler::emit_call_c(address a) {
139  __ align_call_far_patchable(__ pc());
140  address call_addr = __ call_c_opt(a);
141  if (call_addr == NULL) {
142    bailout("const section overflow");
143  }
144  return call_addr;
145}
146
147int LIR_Assembler::emit_exception_handler() {
148  // If the last instruction is a call (typically to do a throw which
149  // is coming at the end after block reordering) the return address
150  // must still point into the code area in order to avoid assertion
151  // failures when searching for the corresponding bci. => Add a nop.
152  // (was bug 5/14/1999 - gri)
153  __ nop();
154
155  // Generate code for exception handler.
156  address handler_base = __ start_a_stub(exception_handler_size());
157  if (handler_base == NULL) {
158    // Not enough space left for the handler.
159    bailout("exception handler overflow");
160    return -1;
161  }
162
163  int offset = code_offset();
164
165  address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
166  address call_addr = emit_call_c(a);
167  CHECK_BAILOUT_(-1);
168  __ should_not_reach_here();
169  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
170  __ end_a_stub();
171
172  return offset;
173}
174
175// Emit the code to remove the frame from the stack in the exception
176// unwind path.
177int LIR_Assembler::emit_unwind_handler() {
178#ifndef PRODUCT
179  if (CommentedAssembly) {
180    _masm->block_comment("Unwind handler");
181  }
182#endif
183
184  int offset = code_offset();
185  Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
186  Register Rtmp1                      = Z_R11;
187  Register Rtmp2                      = Z_R12;
188
189  // Fetch the exception from TLS and clear out exception related thread state.
190  Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
191  Address exc_pc_addr  = Address(Z_thread, JavaThread::exception_pc_offset());
192  __ z_lg(Z_EXC_OOP, exc_oop_addr);
193  __ clear_mem(exc_oop_addr, sizeof(oop));
194  __ clear_mem(exc_pc_addr, sizeof(intptr_t));
195
196  __ bind(_unwind_handler_entry);
197  __ verify_not_null_oop(Z_EXC_OOP);
198  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
199    __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
200  }
201
202  // Preform needed unlocking.
203  MonitorExitStub* stub = NULL;
204  if (method()->is_synchronized()) {
205    // Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
206    LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
207    monitor_address(0, lock);
208    stub = new MonitorExitStub(lock, true, 0);
209    __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
210    __ bind(*stub->continuation());
211  }
212
213  if (compilation()->env()->dtrace_method_probes()) {
214    ShouldNotReachHere(); // Not supported.
215#if 0
216    __ mov(rdi, r15_thread);
217    __ mov_metadata(rsi, method()->constant_encoding());
218    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
219#endif
220  }
221
222  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
223    __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);  // Restore the exception.
224  }
225
226  // Remove the activation and dispatch to the unwind handler.
227  __ pop_frame();
228  __ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP);
229
230  // Z_EXC_OOP: exception oop
231  // Z_EXC_PC: exception pc
232
233  // Dispatch to the unwind logic.
234  __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
235  __ z_br(Z_R5);
236
237  // Emit the slow path assembly.
238  if (stub != NULL) {
239    stub->emit_code(this);
240  }
241
242  return offset;
243}
244
245int LIR_Assembler::emit_deopt_handler() {
246  // If the last instruction is a call (typically to do a throw which
247  // is coming at the end after block reordering) the return address
248  // must still point into the code area in order to avoid assertion
249  // failures when searching for the corresponding bci. => Add a nop.
250  // (was bug 5/14/1999 - gri)
251  __ nop();
252
253  // Generate code for exception handler.
254  address handler_base = __ start_a_stub(deopt_handler_size());
255  if (handler_base == NULL) {
256    // Not enough space left for the handler.
257    bailout("deopt handler overflow");
258    return -1;
259  }  int offset = code_offset();
260  // Size must be constant (see HandlerImpl::emit_deopt_handler).
261  __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
262  __ call(Z_R1_scratch);
263  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
264  __ end_a_stub();
265
266  return offset;
267}
268
269void LIR_Assembler::jobject2reg(jobject o, Register reg) {
270  if (o == NULL) {
271    __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
272  } else {
273    AddressLiteral a = __ allocate_oop_address(o);
274    bool success = __ load_oop_from_toc(reg, a, reg);
275    if (!success) {
276      bailout("const section overflow");
277    }
278  }
279}
280
281void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
282  // Allocate a new index in table to hold the object once it's been patched.
283  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
284  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
285
286  AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
287  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
288  // The NULL will be dynamically patched later so the sequence to
289  // load the address literal must not be optimized.
290  __ load_const(reg, addrlit);
291
292  patching_epilog(patch, lir_patch_normal, reg, info);
293}
294
295void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
296  bool success = __ set_metadata_constant(md, reg);
297  if (!success) {
298    bailout("const section overflow");
299    return;
300  }
301}
302
303void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
304  // Allocate a new index in table to hold the klass once it's been patched.
305  int index = __ oop_recorder()->allocate_metadata_index(NULL);
306  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
307  AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
308  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
309  // The NULL will be dynamically patched later so the sequence to
310  // load the address literal must not be optimized.
311  __ load_const(reg, addrlit);
312
313  patching_epilog(patch, lir_patch_normal, reg, info);
314}
315
316void LIR_Assembler::emit_op3(LIR_Op3* op) {
317  switch (op->code()) {
318    case lir_idiv:
319    case lir_irem:
320      arithmetic_idiv(op->code(),
321                      op->in_opr1(),
322                      op->in_opr2(),
323                      op->in_opr3(),
324                      op->result_opr(),
325                      op->info());
326      break;
327    case lir_fmad: {
328      const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
329                          opr2 = op->in_opr2()->as_double_reg(),
330                          opr3 = op->in_opr3()->as_double_reg(),
331                          res  = op->result_opr()->as_double_reg();
332      __ z_madbr(opr3, opr1, opr2);
333      if (res != opr3) { __ z_ldr(res, opr3); }
334    } break;
335    case lir_fmaf: {
336      const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
337                          opr2 = op->in_opr2()->as_float_reg(),
338                          opr3 = op->in_opr3()->as_float_reg(),
339                          res  = op->result_opr()->as_float_reg();
340      __ z_maebr(opr3, opr1, opr2);
341      if (res != opr3) { __ z_ler(res, opr3); }
342    } break;
343    default: ShouldNotReachHere(); break;
344  }
345}
346
347
348void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
349#ifdef ASSERT
350  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
351  if (op->block() != NULL)  { _branch_target_blocks.append(op->block()); }
352  if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); }
353#endif
354
355  if (op->cond() == lir_cond_always) {
356    if (op->info() != NULL) { add_debug_info_for_branch(op->info()); }
357    __ branch_optimized(Assembler::bcondAlways, *(op->label()));
358  } else {
359    Assembler::branch_condition acond = Assembler::bcondZero;
360    if (op->code() == lir_cond_float_branch) {
361      assert(op->ublock() != NULL, "must have unordered successor");
362      __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
363    }
364    switch (op->cond()) {
365      case lir_cond_equal:        acond = Assembler::bcondEqual;     break;
366      case lir_cond_notEqual:     acond = Assembler::bcondNotEqual;  break;
367      case lir_cond_less:         acond = Assembler::bcondLow;       break;
368      case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;   break;
369      case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;    break;
370      case lir_cond_greater:      acond = Assembler::bcondHigh;      break;
371      case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;   break;
372      case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;    break;
373      default:                         ShouldNotReachHere();
374    }
375    __ branch_optimized(acond,*(op->label()));
376  }
377}
378
379
380void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
381  LIR_Opr src  = op->in_opr();
382  LIR_Opr dest = op->result_opr();
383
384  switch (op->bytecode()) {
385    case Bytecodes::_i2l:
386      __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
387      break;
388
389    case Bytecodes::_l2i:
390      __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
391      break;
392
393    case Bytecodes::_i2b:
394      __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
395      break;
396
397    case Bytecodes::_i2c:
398      __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
399      break;
400
401    case Bytecodes::_i2s:
402      __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
403      break;
404
405    case Bytecodes::_f2d:
406      assert(dest->is_double_fpu(), "check");
407      __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
408      break;
409
410    case Bytecodes::_d2f:
411      assert(dest->is_single_fpu(), "check");
412      __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
413      break;
414
415    case Bytecodes::_i2f:
416      __ z_cefbr(dest->as_float_reg(), src->as_register());
417      break;
418
419    case Bytecodes::_i2d:
420      __ z_cdfbr(dest->as_double_reg(), src->as_register());
421      break;
422
423    case Bytecodes::_l2f:
424      __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
425      break;
426    case Bytecodes::_l2d:
427      __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
428      break;
429
430    case Bytecodes::_f2i:
431    case Bytecodes::_f2l: {
432      Label done;
433      FloatRegister Rsrc = src->as_float_reg();
434      Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
435      __ clear_reg(Rdst, true, false);
436      __ z_cebr(Rsrc, Rsrc);
437      __ z_brno(done); // NaN -> 0
438      if (op->bytecode() == Bytecodes::_f2i) {
439        __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
440      } else { // op->bytecode() == Bytecodes::_f2l
441        __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
442      }
443      __ bind(done);
444    }
445    break;
446
447    case Bytecodes::_d2i:
448    case Bytecodes::_d2l: {
449      Label done;
450      FloatRegister Rsrc = src->as_double_reg();
451      Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
452      __ clear_reg(Rdst, true, false);  // Don't set CC.
453      __ z_cdbr(Rsrc, Rsrc);
454      __ z_brno(done); // NaN -> 0
455      if (op->bytecode() == Bytecodes::_d2i) {
456        __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
457      } else { // Bytecodes::_d2l
458        __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
459      }
460      __ bind(done);
461    }
462    break;
463
464    default: ShouldNotReachHere();
465  }
466}
467
468void LIR_Assembler::align_call(LIR_Code code) {
469  // End of call instruction must be 4 byte aligned.
470  int offset = __ offset();
471  switch (code) {
472    case lir_icvirtual_call:
473      offset += MacroAssembler::load_const_from_toc_size();
474      // no break
475    case lir_static_call:
476    case lir_optvirtual_call:
477    case lir_dynamic_call:
478      offset += NativeCall::call_far_pcrelative_displacement_offset;
479      break;
480    case lir_virtual_call:   // currently, sparc-specific for niagara
481    default: ShouldNotReachHere();
482  }
483  if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
484    __ nop();
485  }
486}
487
488void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
489  assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
490         "must be aligned (offset=%d)", __ offset());
491  assert(rtype == relocInfo::none ||
492         rtype == relocInfo::opt_virtual_call_type ||
493         rtype == relocInfo::static_call_type, "unexpected rtype");
494  // Prepend each BRASL with a nop.
495  __ relocate(rtype);
496  __ z_nop();
497  __ z_brasl(Z_R14, op->addr());
498  add_call_info(code_offset(), op->info());
499}
500
501void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
502  address virtual_call_oop_addr = NULL;
503  AddressLiteral empty_ic((address) Universe::non_oop_word());
504  virtual_call_oop_addr = __ pc();
505  bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
506  if (!success) {
507    bailout("const section overflow");
508    return;
509  }
510
511  // CALL to fixup routine. Fixup routine uses ScopeDesc info
512  // to determine who we intended to call.
513  __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
514  call(op, relocInfo::none);
515}
516
517// not supported
518void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
519  ShouldNotReachHere();
520}
521
522void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
523  if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
524}
525
526void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
527  assert(src->is_constant(), "should not call otherwise");
528  assert(dest->is_stack(), "should not call otherwise");
529  LIR_Const* c = src->as_constant_ptr();
530
531  unsigned int lmem = 0;
532  unsigned int lcon = 0;
533  int64_t cbits = 0;
534  Address dest_addr;
535  switch (c->type()) {
536    case T_INT:  // fall through
537    case T_FLOAT:
538      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
539      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
540      break;
541
542    case T_ADDRESS:
543      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
544      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
545      break;
546
547    case T_OBJECT:
548      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
549      if (c->as_jobject() == NULL) {
550        __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
551      } else {
552        jobject2reg(c->as_jobject(), Z_R1_scratch);
553        __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
554      }
555      return;
556
557    case T_LONG:  // fall through
558    case T_DOUBLE:
559      dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
560      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
561      break;
562
563    default:
564      ShouldNotReachHere();
565  }
566
567  __ store_const(dest_addr, cbits, lmem, lcon);
568}
569
570void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
571  assert(src->is_constant(), "should not call otherwise");
572  assert(dest->is_address(), "should not call otherwise");
573  // See special case in LIRGenerator::do_StoreIndexed.
574  // T_BYTE: Special case for card mark store.
575  assert(type == T_BYTE || !dest->as_address_ptr()->index()->is_valid(), "not supported");
576  LIR_Const* c = src->as_constant_ptr();
577  Address addr = as_Address(dest->as_address_ptr());
578
579  int store_offset = -1;
580  unsigned int lmem = 0;
581  unsigned int lcon = 0;
582  int64_t cbits = 0;
583  switch (type) {
584    case T_INT:    // fall through
585    case T_FLOAT:
586      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
587      break;
588
589    case T_ADDRESS:
590      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
591      break;
592
593    case T_OBJECT:  // fall through
594    case T_ARRAY:
595      if (c->as_jobject() == NULL) {
596        if (UseCompressedOops && !wide) {
597          store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
598        } else {
599          store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
600        }
601      } else {
602        jobject2reg(c->as_jobject(), Z_R1_scratch);
603        if (UseCompressedOops && !wide) {
604          __ encode_heap_oop(Z_R1_scratch);
605          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
606        } else {
607          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
608        }
609      }
610      assert(store_offset >= 0, "check");
611      break;
612
613    case T_LONG:    // fall through
614    case T_DOUBLE:
615      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
616      break;
617
618    case T_BOOLEAN: // fall through
619    case T_BYTE:
620      lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
621      break;
622
623    case T_CHAR:    // fall through
624    case T_SHORT:
625      lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
626      break;
627
628    default:
629      ShouldNotReachHere();
630  };
631
632  // Index register is normally not supported, but for
633  // LIRGenerator::CardTableModRef_post_barrier we make an exception.
634  if (type == T_BYTE && dest->as_address_ptr()->index()->is_valid()) {
635    __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
636    store_offset = __ offset();
637    if (Immediate::is_uimm12(addr.disp())) {
638      __ z_stc(Z_R0_scratch, addr);
639    } else {
640      __ z_stcy(Z_R0_scratch, addr);
641    }
642  }
643
644  if (store_offset == -1) {
645    store_offset = __ store_const(addr, cbits, lmem, lcon);
646    assert(store_offset >= 0, "check");
647  }
648
649  if (info != NULL) {
650    add_debug_info_for_null_check(store_offset, info);
651  }
652}
653
654void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
655  assert(src->is_constant(), "should not call otherwise");
656  assert(dest->is_register(), "should not call otherwise");
657  LIR_Const* c = src->as_constant_ptr();
658
659  switch (c->type()) {
660    case T_INT: {
661      assert(patch_code == lir_patch_none, "no patching handled here");
662      __ load_const_optimized(dest->as_register(), c->as_jint());
663      break;
664    }
665
666    case T_ADDRESS: {
667      assert(patch_code == lir_patch_none, "no patching handled here");
668      __ load_const_optimized(dest->as_register(), c->as_jint());
669      break;
670    }
671
672    case T_LONG: {
673      assert(patch_code == lir_patch_none, "no patching handled here");
674      __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
675      break;
676    }
677
678    case T_OBJECT: {
679      if (patch_code != lir_patch_none) {
680        jobject2reg_with_patching(dest->as_register(), info);
681      } else {
682        jobject2reg(c->as_jobject(), dest->as_register());
683      }
684      break;
685    }
686
687    case T_METADATA: {
688      if (patch_code != lir_patch_none) {
689        klass2reg_with_patching(dest->as_register(), info);
690      } else {
691        metadata2reg(c->as_metadata(), dest->as_register());
692      }
693      break;
694    }
695
696    case T_FLOAT: {
697      Register toc_reg = Z_R1_scratch;
698      __ load_toc(toc_reg);
699      address const_addr = __ float_constant(c->as_jfloat());
700      if (const_addr == NULL) {
701        bailout("const section overflow");
702        break;
703      }
704      int displ = const_addr - _masm->code()->consts()->start();
705      if (dest->is_single_fpu()) {
706        __ z_ley(dest->as_float_reg(), displ, toc_reg);
707      } else {
708        assert(dest->is_single_cpu(), "Must be a cpu register.");
709        __ z_ly(dest->as_register(), displ, toc_reg);
710      }
711    }
712    break;
713
714    case T_DOUBLE: {
715      Register toc_reg = Z_R1_scratch;
716      __ load_toc(toc_reg);
717      address const_addr = __ double_constant(c->as_jdouble());
718      if (const_addr == NULL) {
719        bailout("const section overflow");
720        break;
721      }
722      int displ = const_addr - _masm->code()->consts()->start();
723      if (dest->is_double_fpu()) {
724        __ z_ldy(dest->as_double_reg(), displ, toc_reg);
725      } else {
726        assert(dest->is_double_cpu(), "Must be a long register.");
727        __ z_lg(dest->as_register_lo(), displ, toc_reg);
728      }
729    }
730    break;
731
732    default:
733      ShouldNotReachHere();
734  }
735}
736
737Address LIR_Assembler::as_Address(LIR_Address* addr) {
738  if (addr->base()->is_illegal()) {
739    Unimplemented();
740  }
741
742  Register base = addr->base()->as_pointer_register();
743
744  if (addr->index()->is_illegal()) {
745    return Address(base, addr->disp());
746  } else if (addr->index()->is_cpu_register()) {
747    Register index = addr->index()->as_pointer_register();
748    return Address(base, index, addr->disp());
749  } else if (addr->index()->is_constant()) {
750    intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
751    return Address(base, addr_offset);
752  } else {
753    ShouldNotReachHere();
754    return Address();
755  }
756}
757
758void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
759  switch (type) {
760    case T_INT:
761    case T_FLOAT: {
762      Register tmp = Z_R1_scratch;
763      Address from = frame_map()->address_for_slot(src->single_stack_ix());
764      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
765      __ mem2reg_opt(tmp, from, false);
766      __ reg2mem_opt(tmp, to, false);
767      break;
768    }
769    case T_ADDRESS:
770    case T_OBJECT: {
771      Register tmp = Z_R1_scratch;
772      Address from = frame_map()->address_for_slot(src->single_stack_ix());
773      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
774      __ mem2reg_opt(tmp, from, true);
775      __ reg2mem_opt(tmp, to, true);
776      break;
777    }
778    case T_LONG:
779    case T_DOUBLE: {
780      Register tmp = Z_R1_scratch;
781      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
782      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
783      __ mem2reg_opt(tmp, from, true);
784      __ reg2mem_opt(tmp, to, true);
785      break;
786    }
787
788    default:
789      ShouldNotReachHere();
790  }
791}
792
793// 4-byte accesses only! Don't use it to access 8 bytes!
794Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
795  ShouldNotCallThis();
796  return 0; // unused
797}
798
799// 4-byte accesses only! Don't use it to access 8 bytes!
800Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
801  ShouldNotCallThis();
802  return 0; // unused
803}
804
805void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
806                            CodeEmitInfo* info, bool wide, bool unaligned) {
807
808  assert(type != T_METADATA, "load of metadata ptr not supported");
809  LIR_Address* addr = src_opr->as_address_ptr();
810  LIR_Opr to_reg = dest;
811
812  Register src = addr->base()->as_pointer_register();
813  Register disp_reg = Z_R0;
814  int disp_value = addr->disp();
815  bool needs_patching = (patch_code != lir_patch_none);
816
817  if (addr->base()->type() == T_OBJECT) {
818    __ verify_oop(src);
819  }
820
821  PatchingStub* patch = NULL;
822  if (needs_patching) {
823    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
824    assert(!to_reg->is_double_cpu() ||
825           patch_code == lir_patch_none ||
826           patch_code == lir_patch_normal, "patching doesn't match register");
827  }
828
829  if (addr->index()->is_illegal()) {
830    if (!Immediate::is_simm20(disp_value)) {
831      if (needs_patching) {
832        __ load_const(Z_R1_scratch, (intptr_t)0);
833      } else {
834        __ load_const_optimized(Z_R1_scratch, disp_value);
835      }
836      disp_reg = Z_R1_scratch;
837      disp_value = 0;
838    }
839  } else {
840    if (!Immediate::is_simm20(disp_value)) {
841      __ load_const_optimized(Z_R1_scratch, disp_value);
842      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
843      disp_reg = Z_R1_scratch;
844      disp_value = 0;
845    }
846    disp_reg = addr->index()->as_pointer_register();
847  }
848
849  // Remember the offset of the load. The patching_epilog must be done
850  // before the call to add_debug_info, otherwise the PcDescs don't get
851  // entered in increasing order.
852  int offset = code_offset();
853
854  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
855
856  bool short_disp = Immediate::is_uimm12(disp_value);
857
858  switch (type) {
859    case T_BOOLEAN: // fall through
860    case T_BYTE  :  __ z_lb(dest->as_register(),   disp_value, disp_reg, src); break;
861    case T_CHAR  :  __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
862    case T_SHORT :
863      if (short_disp) {
864                    __ z_lh(dest->as_register(),   disp_value, disp_reg, src);
865      } else {
866                    __ z_lhy(dest->as_register(),  disp_value, disp_reg, src);
867      }
868      break;
869    case T_INT   :
870      if (short_disp) {
871                    __ z_l(dest->as_register(),    disp_value, disp_reg, src);
872      } else {
873                    __ z_ly(dest->as_register(),   disp_value, disp_reg, src);
874      }
875      break;
876    case T_ADDRESS:
877      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
878        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
879        __ decode_klass_not_null(dest->as_register());
880      } else {
881        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
882      }
883      break;
884    case T_ARRAY : // fall through
885    case T_OBJECT:
886    {
887      if (UseCompressedOops && !wide) {
888        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
889        __ oop_decoder(dest->as_register(), dest->as_register(), true);
890      } else {
891        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
892      }
893      break;
894    }
895    case T_FLOAT:
896      if (short_disp) {
897                    __ z_le(dest->as_float_reg(),  disp_value, disp_reg, src);
898      } else {
899                    __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
900      }
901      break;
902    case T_DOUBLE:
903      if (short_disp) {
904                    __ z_ld(dest->as_double_reg(),  disp_value, disp_reg, src);
905      } else {
906                    __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
907      }
908      break;
909    case T_LONG  :  __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
910    default      : ShouldNotReachHere();
911  }
912  if (type == T_ARRAY || type == T_OBJECT) {
913    __ verify_oop(dest->as_register());
914  }
915
916  if (patch != NULL) {
917    patching_epilog(patch, patch_code, src, info);
918  }
919  if (info != NULL) add_debug_info_for_null_check(offset, info);
920}
921
922void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
923  assert(src->is_stack(), "should not call otherwise");
924  assert(dest->is_register(), "should not call otherwise");
925
926  if (dest->is_single_cpu()) {
927    if (type == T_ARRAY || type == T_OBJECT) {
928      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
929      __ verify_oop(dest->as_register());
930    } else if (type == T_METADATA) {
931      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
932    } else {
933      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
934    }
935  } else if (dest->is_double_cpu()) {
936    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
937    __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
938  } else if (dest->is_single_fpu()) {
939    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
940    __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
941  } else if (dest->is_double_fpu()) {
942    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
943    __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
944  } else {
945    ShouldNotReachHere();
946  }
947}
948
949void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
950  assert(src->is_register(), "should not call otherwise");
951  assert(dest->is_stack(), "should not call otherwise");
952
953  if (src->is_single_cpu()) {
954    const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
955    if (type == T_OBJECT || type == T_ARRAY) {
956      __ verify_oop(src->as_register());
957      __ reg2mem_opt(src->as_register(), dst, true);
958    } else if (type == T_METADATA) {
959      __ reg2mem_opt(src->as_register(), dst, true);
960    } else {
961      __ reg2mem_opt(src->as_register(), dst, false);
962    }
963  } else if (src->is_double_cpu()) {
964    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
965    __ reg2mem_opt(src->as_register_lo(), dstLO, true);
966  } else if (src->is_single_fpu()) {
967    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
968    __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
969  } else if (src->is_double_fpu()) {
970    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
971    __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
972  } else {
973    ShouldNotReachHere();
974  }
975}
976
977void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
978  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
979    if (from_reg->is_double_fpu()) {
980      // double to double moves
981      assert(to_reg->is_double_fpu(), "should match");
982      __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
983    } else {
984      // float to float moves
985      assert(to_reg->is_single_fpu(), "should match");
986      __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
987    }
988  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
989    if (from_reg->is_double_cpu()) {
990      __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
991    } else if (to_reg->is_double_cpu()) {
992      // int to int moves
993      __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
994    } else {
995      // int to int moves
996      __ z_lgr(to_reg->as_register(), from_reg->as_register());
997    }
998  } else {
999    ShouldNotReachHere();
1000  }
1001  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1002    __ verify_oop(to_reg->as_register());
1003  }
1004}
1005
1006void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
1007                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1008                            bool wide, bool unaligned) {
1009  assert(type != T_METADATA, "store of metadata ptr not supported");
1010  LIR_Address* addr = dest_opr->as_address_ptr();
1011
1012  Register dest = addr->base()->as_pointer_register();
1013  Register disp_reg = Z_R0;
1014  int disp_value = addr->disp();
1015  bool needs_patching = (patch_code != lir_patch_none);
1016
1017  if (addr->base()->is_oop_register()) {
1018    __ verify_oop(dest);
1019  }
1020
1021  PatchingStub* patch = NULL;
1022  if (needs_patching) {
1023    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1024    assert(!from->is_double_cpu() ||
1025           patch_code == lir_patch_none ||
1026           patch_code == lir_patch_normal, "patching doesn't match register");
1027  }
1028
1029  assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
1030  if (addr->index()->is_illegal()) {
1031    if (!Immediate::is_simm20(disp_value)) {
1032      if (needs_patching) {
1033        __ load_const(Z_R1_scratch, (intptr_t)0);
1034      } else {
1035        __ load_const_optimized(Z_R1_scratch, disp_value);
1036      }
1037      disp_reg = Z_R1_scratch;
1038      disp_value = 0;
1039    }
1040  } else {
1041    if (!Immediate::is_simm20(disp_value)) {
1042      __ load_const_optimized(Z_R1_scratch, disp_value);
1043      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
1044      disp_reg = Z_R1_scratch;
1045      disp_value = 0;
1046    }
1047    disp_reg = addr->index()->as_pointer_register();
1048  }
1049
1050  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
1051
1052  if (type == T_ARRAY || type == T_OBJECT) {
1053    __ verify_oop(from->as_register());
1054  }
1055
1056  bool short_disp = Immediate::is_uimm12(disp_value);
1057
1058  // Remember the offset of the store. The patching_epilog must be done
1059  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1060  // entered in increasing order.
1061  int offset = code_offset();
1062  switch (type) {
1063    case T_BOOLEAN: // fall through
1064    case T_BYTE  :
1065      if (short_disp) {
1066                    __ z_stc(from->as_register(),  disp_value, disp_reg, dest);
1067      } else {
1068                    __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
1069      }
1070      break;
1071    case T_CHAR  : // fall through
1072    case T_SHORT :
1073      if (short_disp) {
1074                    __ z_sth(from->as_register(),  disp_value, disp_reg, dest);
1075      } else {
1076                    __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
1077      }
1078      break;
1079    case T_INT   :
1080      if (short_disp) {
1081                    __ z_st(from->as_register(),  disp_value, disp_reg, dest);
1082      } else {
1083                    __ z_sty(from->as_register(), disp_value, disp_reg, dest);
1084      }
1085      break;
1086    case T_LONG  :  __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
1087    case T_ADDRESS: __ z_stg(from->as_register(),    disp_value, disp_reg, dest); break;
1088      break;
1089    case T_ARRAY : // fall through
1090    case T_OBJECT:
1091      {
1092        if (UseCompressedOops && !wide) {
1093          Register compressed_src = Z_R14;
1094          __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
1095          offset = code_offset();
1096          if (short_disp) {
1097            __ z_st(compressed_src,  disp_value, disp_reg, dest);
1098          } else {
1099            __ z_sty(compressed_src, disp_value, disp_reg, dest);
1100          }
1101        } else {
1102          __ z_stg(from->as_register(), disp_value, disp_reg, dest);
1103        }
1104        break;
1105      }
1106    case T_FLOAT :
1107      if (short_disp) {
1108        __ z_ste(from->as_float_reg(),  disp_value, disp_reg, dest);
1109      } else {
1110        __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
1111      }
1112      break;
1113    case T_DOUBLE:
1114      if (short_disp) {
1115        __ z_std(from->as_double_reg(),  disp_value, disp_reg, dest);
1116      } else {
1117        __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
1118      }
1119      break;
1120    default: ShouldNotReachHere();
1121  }
1122
1123  if (patch != NULL) {
1124    patching_epilog(patch, patch_code, dest, info);
1125  }
1126
1127  if (info != NULL) add_debug_info_for_null_check(offset, info);
1128}
1129
1130
1131void LIR_Assembler::return_op(LIR_Opr result) {
1132  assert(result->is_illegal() ||
1133         (result->is_single_cpu() && result->as_register() == Z_R2) ||
1134         (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
1135         (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
1136         (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
1137
1138  AddressLiteral pp(os::get_polling_page());
1139  __ load_const_optimized(Z_R1_scratch, pp);
1140
1141  // Pop the frame before the safepoint code.
1142  int retPC_offset = initial_frame_size_in_bytes() + _z_abi16(return_pc);
1143  if (Displacement::is_validDisp(retPC_offset)) {
1144    __ z_lg(Z_R14, retPC_offset, Z_SP);
1145    __ add2reg(Z_SP, initial_frame_size_in_bytes());
1146  } else {
1147    __ add2reg(Z_SP, initial_frame_size_in_bytes());
1148    __ restore_return_pc();
1149  }
1150
1151  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1152    __ reserved_stack_check(Z_R14);
1153  }
1154
1155  // We need to mark the code position where the load from the safepoint
1156  // polling page was emitted as relocInfo::poll_return_type here.
1157  __ relocate(relocInfo::poll_return_type);
1158  __ load_from_polling_page(Z_R1_scratch);
1159
1160  __ z_br(Z_R14); // Return to caller.
1161}
1162
1163int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1164  AddressLiteral pp(os::get_polling_page());
1165  __ load_const_optimized(tmp->as_register_lo(), pp);
1166  guarantee(info != NULL, "Shouldn't be NULL");
1167  add_debug_info_for_branch(info);
1168  int offset = __ offset();
1169  __ relocate(relocInfo::poll_type);
1170  __ load_from_polling_page(tmp->as_register_lo());
1171  return offset;
1172}
1173
1174void LIR_Assembler::emit_static_call_stub() {
1175
1176  // Stub is fixed up when the corresponding call is converted from calling
1177  // compiled code to calling interpreted code.
1178
1179  address call_pc = __ pc();
1180  address stub = __ start_a_stub(call_stub_size());
1181  if (stub == NULL) {
1182    bailout("static call stub overflow");
1183    return;
1184  }
1185
1186  int start = __ offset();
1187
1188  __ relocate(static_stub_Relocation::spec(call_pc));
1189
1190  // See also Matcher::interpreter_method_oop_reg().
1191  AddressLiteral meta = __ allocate_metadata_address(NULL);
1192  bool success = __ load_const_from_toc(Z_method, meta);
1193
1194  __ set_inst_mark();
1195  AddressLiteral a((address)-1);
1196  success = success && __ load_const_from_toc(Z_R1, a);
1197  if (!success) {
1198    bailout("const section overflow");
1199    return;
1200  }
1201
1202  __ z_br(Z_R1);
1203  assert(__ offset() - start <= call_stub_size(), "stub too big");
1204  __ end_a_stub(); // Update current stubs pointer and restore insts_end.
1205}
1206
1207void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1208  bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
1209  if (opr1->is_single_cpu()) {
1210    Register reg1 = opr1->as_register();
1211    if (opr2->is_single_cpu()) {
1212      // cpu register - cpu register
1213      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1214        __ z_clgr(reg1, opr2->as_register());
1215      } else {
1216        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
1217        if (unsigned_comp) {
1218          __ z_clr(reg1, opr2->as_register());
1219        } else {
1220          __ z_cr(reg1, opr2->as_register());
1221        }
1222      }
1223    } else if (opr2->is_stack()) {
1224      // cpu register - stack
1225      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1226        __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1227      } else {
1228        if (unsigned_comp) {
1229          __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1230        } else {
1231          __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1232        }
1233      }
1234    } else if (opr2->is_constant()) {
1235      // cpu register - constant
1236      LIR_Const* c = opr2->as_constant_ptr();
1237      if (c->type() == T_INT) {
1238        if (unsigned_comp) {
1239          __ z_clfi(reg1, c->as_jint());
1240        } else {
1241          __ z_cfi(reg1, c->as_jint());
1242        }
1243      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
1244        // In 64bit oops are single register.
1245        jobject o = c->as_jobject();
1246        if (o == NULL) {
1247          __ z_ltgr(reg1, reg1);
1248        } else {
1249          jobject2reg(o, Z_R1_scratch);
1250          __ z_cgr(reg1, Z_R1_scratch);
1251        }
1252      } else {
1253        fatal("unexpected type: %s", basictype_to_str(c->type()));
1254      }
1255      // cpu register - address
1256    } else if (opr2->is_address()) {
1257      if (op->info() != NULL) {
1258        add_debug_info_for_null_check_here(op->info());
1259      }
1260      if (unsigned_comp) {
1261        __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
1262      } else {
1263        __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
1264      }
1265    } else {
1266      ShouldNotReachHere();
1267    }
1268
1269  } else if (opr1->is_double_cpu()) {
1270    assert(!unsigned_comp, "unexpected");
1271    Register xlo = opr1->as_register_lo();
1272    Register xhi = opr1->as_register_hi();
1273    if (opr2->is_double_cpu()) {
1274      __ z_cgr(xlo, opr2->as_register_lo());
1275    } else if (opr2->is_constant()) {
1276      // cpu register - constant 0
1277      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
1278      __ z_ltgr(xlo, xlo);
1279    } else {
1280      ShouldNotReachHere();
1281    }
1282
1283  } else if (opr1->is_single_fpu()) {
1284    if (opr2->is_single_fpu()) {
1285      __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
1286    } else {
1287      // stack slot
1288      Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
1289      if (Immediate::is_uimm12(addr.disp())) {
1290        __ z_ceb(opr1->as_float_reg(), addr);
1291      } else {
1292        __ z_ley(Z_fscratch_1, addr);
1293        __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
1294      }
1295    }
1296  } else if (opr1->is_double_fpu()) {
1297    if (opr2->is_double_fpu()) {
1298    __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
1299    } else {
1300      // stack slot
1301      Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
1302      if (Immediate::is_uimm12(addr.disp())) {
1303        __ z_cdb(opr1->as_double_reg(), addr);
1304      } else {
1305        __ z_ldy(Z_fscratch_1, addr);
1306        __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
1307      }
1308    }
1309  } else {
1310    ShouldNotReachHere();
1311  }
1312}
1313
1314void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1315  Label    done;
1316  Register dreg = dst->as_register();
1317
1318  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1319    assert((left->is_single_fpu() && right->is_single_fpu()) ||
1320           (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
1321    bool is_single = left->is_single_fpu();
1322    bool is_unordered_less = (code == lir_ucmp_fd2i);
1323    FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
1324    FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
1325    if (is_single) {
1326      __ z_cebr(lreg, rreg);
1327    } else {
1328      __ z_cdbr(lreg, rreg);
1329    }
1330    if (VM_Version::has_LoadStoreConditional()) {
1331      Register one       = Z_R0_scratch;
1332      Register minus_one = Z_R1_scratch;
1333      __ z_lghi(minus_one, -1);
1334      __ z_lghi(one,  1);
1335      __ z_lghi(dreg, 0);
1336      __ z_locgr(dreg, one,       is_unordered_less ? Assembler::bcondHigh            : Assembler::bcondHighOrNotOrdered);
1337      __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
1338    } else {
1339      __ clear_reg(dreg, true, false);
1340      __ z_bre(done); // if (left == right) dst = 0
1341
1342      // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
1343      __ z_lhi(dreg, 1);
1344      __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
1345
1346      // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
1347      __ z_lhi(dreg, -1);
1348    }
1349  } else {
1350    assert(code == lir_cmp_l2i, "check");
1351    if (VM_Version::has_LoadStoreConditional()) {
1352      Register one       = Z_R0_scratch;
1353      Register minus_one = Z_R1_scratch;
1354      __ z_cgr(left->as_register_lo(), right->as_register_lo());
1355      __ z_lghi(minus_one, -1);
1356      __ z_lghi(one,  1);
1357      __ z_lghi(dreg, 0);
1358      __ z_locgr(dreg, one, Assembler::bcondHigh);
1359      __ z_locgr(dreg, minus_one, Assembler::bcondLow);
1360    } else {
1361      __ z_cgr(left->as_register_lo(), right->as_register_lo());
1362      __ z_lghi(dreg,  0);     // eq value
1363      __ z_bre(done);
1364      __ z_lghi(dreg,  1);     // gt value
1365      __ z_brh(done);
1366      __ z_lghi(dreg, -1);     // lt value
1367    }
1368  }
1369  __ bind(done);
1370}
1371
1372// result = condition ? opr1 : opr2
1373void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1374  Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
1375  switch (condition) {
1376    case lir_cond_equal:        acond = Assembler::bcondEqual;    ncond = Assembler::bcondNotEqual; break;
1377    case lir_cond_notEqual:     acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual;    break;
1378    case lir_cond_less:         acond = Assembler::bcondLow;      ncond = Assembler::bcondNotLow;   break;
1379    case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1380    case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1381    case lir_cond_greater:      acond = Assembler::bcondHigh;     ncond = Assembler::bcondNotHigh;  break;
1382    case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1383    case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1384    default:                    ShouldNotReachHere();
1385  }
1386
1387  if (opr1->is_cpu_register()) {
1388    reg2reg(opr1, result);
1389  } else if (opr1->is_stack()) {
1390    stack2reg(opr1, result, result->type());
1391  } else if (opr1->is_constant()) {
1392    const2reg(opr1, result, lir_patch_none, NULL);
1393  } else {
1394    ShouldNotReachHere();
1395  }
1396
1397  if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
1398    // Optimized version that does not require a branch.
1399    if (opr2->is_single_cpu()) {
1400      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1401      __ z_locgr(result->as_register(), opr2->as_register(), ncond);
1402    } else if (opr2->is_double_cpu()) {
1403      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1404      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1405      __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
1406    } else if (opr2->is_single_stack()) {
1407      __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
1408    } else if (opr2->is_double_stack()) {
1409      __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
1410    } else {
1411      ShouldNotReachHere();
1412    }
1413  } else {
1414    Label skip;
1415    __ z_brc(acond, skip);
1416    if (opr2->is_cpu_register()) {
1417      reg2reg(opr2, result);
1418    } else if (opr2->is_stack()) {
1419      stack2reg(opr2, result, result->type());
1420    } else if (opr2->is_constant()) {
1421      const2reg(opr2, result, lir_patch_none, NULL);
1422    } else {
1423      ShouldNotReachHere();
1424    }
1425    __ bind(skip);
1426  }
1427}
1428
1429void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1430                             CodeEmitInfo* info, bool pop_fpu_stack) {
1431  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1432
1433  if (left->is_single_cpu()) {
1434    assert(left == dest, "left and dest must be equal");
1435    Register lreg = left->as_register();
1436
1437    if (right->is_single_cpu()) {
1438      // cpu register - cpu register
1439      Register rreg = right->as_register();
1440      switch (code) {
1441        case lir_add: __ z_ar (lreg, rreg); break;
1442        case lir_sub: __ z_sr (lreg, rreg); break;
1443        case lir_mul: __ z_msr(lreg, rreg); break;
1444        default: ShouldNotReachHere();
1445      }
1446
1447    } else if (right->is_stack()) {
1448      // cpu register - stack
1449      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1450      switch (code) {
1451        case lir_add: __ z_ay(lreg, raddr); break;
1452        case lir_sub: __ z_sy(lreg, raddr); break;
1453        default: ShouldNotReachHere();
1454      }
1455
1456    } else if (right->is_constant()) {
1457      // cpu register - constant
1458      jint c = right->as_constant_ptr()->as_jint();
1459      switch (code) {
1460        case lir_add: __ z_agfi(lreg, c);  break;
1461        case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
1462        case lir_mul: __ z_msfi(lreg, c);  break;
1463        default: ShouldNotReachHere();
1464      }
1465
1466    } else {
1467      ShouldNotReachHere();
1468    }
1469
1470  } else if (left->is_double_cpu()) {
1471    assert(left == dest, "left and dest must be equal");
1472    Register lreg_lo = left->as_register_lo();
1473    Register lreg_hi = left->as_register_hi();
1474
1475    if (right->is_double_cpu()) {
1476      // cpu register - cpu register
1477      Register rreg_lo = right->as_register_lo();
1478      Register rreg_hi = right->as_register_hi();
1479      assert_different_registers(lreg_lo, rreg_lo);
1480      switch (code) {
1481        case lir_add:
1482          __ z_agr(lreg_lo, rreg_lo);
1483          break;
1484        case lir_sub:
1485          __ z_sgr(lreg_lo, rreg_lo);
1486          break;
1487        case lir_mul:
1488          __ z_msgr(lreg_lo, rreg_lo);
1489          break;
1490        default:
1491          ShouldNotReachHere();
1492      }
1493
1494    } else if (right->is_constant()) {
1495      // cpu register - constant
1496      jlong c = right->as_constant_ptr()->as_jlong_bits();
1497      switch (code) {
1498        case lir_add: __ z_agfi(lreg_lo, c); break;
1499        case lir_sub:
1500          if (c != min_jint) {
1501                      __ z_agfi(lreg_lo, -c);
1502          } else {
1503            // -min_jint cannot be represented as simm32 in z_agfi
1504            // min_jint sign extended:      0xffffffff80000000
1505            // -min_jint as 64 bit integer: 0x0000000080000000
1506            // 0x80000000 can be represented as uimm32 in z_algfi
1507            // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
1508                      __ z_algfi(lreg_lo, UCONST64(0x80000000));
1509          }
1510          break;
1511        case lir_mul: __ z_msgfi(lreg_lo, c); break;
1512        default:
1513          ShouldNotReachHere();
1514      }
1515
1516    } else {
1517      ShouldNotReachHere();
1518    }
1519
1520  } else if (left->is_single_fpu()) {
1521    assert(left == dest, "left and dest must be equal");
1522    FloatRegister lreg = left->as_float_reg();
1523    FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
1524    Address raddr;
1525
1526    if (rreg == fnoreg) {
1527      assert(right->is_single_stack(), "constants should be loaded into register");
1528      raddr = frame_map()->address_for_slot(right->single_stack_ix());
1529      if (!Immediate::is_uimm12(raddr.disp())) {
1530        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
1531      }
1532    }
1533
1534    if (rreg != fnoreg) {
1535      switch (code) {
1536        case lir_add: __ z_aebr(lreg, rreg);  break;
1537        case lir_sub: __ z_sebr(lreg, rreg);  break;
1538        case lir_mul_strictfp: // fall through
1539        case lir_mul: __ z_meebr(lreg, rreg); break;
1540        case lir_div_strictfp: // fall through
1541        case lir_div: __ z_debr(lreg, rreg);  break;
1542        default: ShouldNotReachHere();
1543      }
1544    } else {
1545      switch (code) {
1546        case lir_add: __ z_aeb(lreg, raddr);  break;
1547        case lir_sub: __ z_seb(lreg, raddr);  break;
1548        case lir_mul_strictfp: // fall through
1549        case lir_mul: __ z_meeb(lreg, raddr);  break;
1550        case lir_div_strictfp: // fall through
1551        case lir_div: __ z_deb(lreg, raddr);  break;
1552        default: ShouldNotReachHere();
1553      }
1554    }
1555  } else if (left->is_double_fpu()) {
1556    assert(left == dest, "left and dest must be equal");
1557    FloatRegister lreg = left->as_double_reg();
1558    FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
1559    Address raddr;
1560
1561    if (rreg == fnoreg) {
1562      assert(right->is_double_stack(), "constants should be loaded into register");
1563      raddr = frame_map()->address_for_slot(right->double_stack_ix());
1564      if (!Immediate::is_uimm12(raddr.disp())) {
1565        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
1566      }
1567    }
1568
1569    if (rreg != fnoreg) {
1570      switch (code) {
1571        case lir_add: __ z_adbr(lreg, rreg); break;
1572        case lir_sub: __ z_sdbr(lreg, rreg); break;
1573        case lir_mul_strictfp: // fall through
1574        case lir_mul: __ z_mdbr(lreg, rreg); break;
1575        case lir_div_strictfp: // fall through
1576        case lir_div: __ z_ddbr(lreg, rreg); break;
1577        default: ShouldNotReachHere();
1578      }
1579    } else {
1580      switch (code) {
1581        case lir_add: __ z_adb(lreg, raddr); break;
1582        case lir_sub: __ z_sdb(lreg, raddr); break;
1583        case lir_mul_strictfp: // fall through
1584        case lir_mul: __ z_mdb(lreg, raddr); break;
1585        case lir_div_strictfp: // fall through
1586        case lir_div: __ z_ddb(lreg, raddr); break;
1587        default: ShouldNotReachHere();
1588      }
1589    }
1590  } else if (left->is_address()) {
1591    assert(left == dest, "left and dest must be equal");
1592    assert(code == lir_add, "unsupported operation");
1593    assert(right->is_constant(), "unsupported operand");
1594    jint c = right->as_constant_ptr()->as_jint();
1595    LIR_Address* lir_addr = left->as_address_ptr();
1596    Address addr = as_Address(lir_addr);
1597    switch (lir_addr->type()) {
1598      case T_INT:
1599        __ add2mem_32(addr, c, Z_R1_scratch);
1600        break;
1601      case T_LONG:
1602        __ add2mem_64(addr, c, Z_R1_scratch);
1603        break;
1604      default:
1605        ShouldNotReachHere();
1606    }
1607  } else {
1608    ShouldNotReachHere();
1609  }
1610}
1611
1612void LIR_Assembler::fpop() {
1613  // do nothing
1614}
1615
1616void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1617  switch (code) {
1618    case lir_sqrt: {
1619      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1620      FloatRegister src_reg = value->as_double_reg();
1621      FloatRegister dst_reg = dest->as_double_reg();
1622      __ z_sqdbr(dst_reg, src_reg);
1623      break;
1624    }
1625    case lir_abs: {
1626      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1627      FloatRegister src_reg = value->as_double_reg();
1628      FloatRegister dst_reg = dest->as_double_reg();
1629      __ z_lpdbr(dst_reg, src_reg);
1630      break;
1631    }
1632    default: {
1633      ShouldNotReachHere();
1634      break;
1635    }
1636  }
1637}
1638
1639void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1640  if (left->is_single_cpu()) {
1641    Register reg = left->as_register();
1642    if (right->is_constant()) {
1643      int val = right->as_constant_ptr()->as_jint();
1644      switch (code) {
1645        case lir_logic_and: __ z_nilf(reg, val); break;
1646        case lir_logic_or:  __ z_oilf(reg, val); break;
1647        case lir_logic_xor: __ z_xilf(reg, val); break;
1648        default: ShouldNotReachHere();
1649      }
1650    } else if (right->is_stack()) {
1651      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1652      switch (code) {
1653        case lir_logic_and: __ z_ny(reg, raddr); break;
1654        case lir_logic_or:  __ z_oy(reg, raddr); break;
1655        case lir_logic_xor: __ z_xy(reg, raddr); break;
1656        default: ShouldNotReachHere();
1657      }
1658    } else {
1659      Register rright = right->as_register();
1660      switch (code) {
1661        case lir_logic_and: __ z_nr(reg, rright); break;
1662        case lir_logic_or : __ z_or(reg, rright); break;
1663        case lir_logic_xor: __ z_xr(reg, rright); break;
1664        default: ShouldNotReachHere();
1665      }
1666    }
1667    move_regs(reg, dst->as_register());
1668  } else {
1669    Register l_lo = left->as_register_lo();
1670    if (right->is_constant()) {
1671      __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
1672      switch (code) {
1673        case lir_logic_and:
1674          __ z_ngr(l_lo, Z_R1_scratch);
1675          break;
1676        case lir_logic_or:
1677          __ z_ogr(l_lo, Z_R1_scratch);
1678          break;
1679        case lir_logic_xor:
1680          __ z_xgr(l_lo, Z_R1_scratch);
1681          break;
1682        default: ShouldNotReachHere();
1683      }
1684    } else {
1685      Register r_lo;
1686      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
1687        r_lo = right->as_register();
1688      } else {
1689        r_lo = right->as_register_lo();
1690      }
1691      switch (code) {
1692        case lir_logic_and:
1693          __ z_ngr(l_lo, r_lo);
1694          break;
1695        case lir_logic_or:
1696          __ z_ogr(l_lo, r_lo);
1697          break;
1698        case lir_logic_xor:
1699          __ z_xgr(l_lo, r_lo);
1700          break;
1701        default: ShouldNotReachHere();
1702      }
1703    }
1704
1705    Register dst_lo = dst->as_register_lo();
1706
1707    move_regs(l_lo, dst_lo);
1708  }
1709}
1710
1711// See operand selection in LIRGenerator::do_ArithmeticOp_Int().
1712void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
1713  if (left->is_double_cpu()) {
1714    // 64 bit integer case
1715    assert(left->is_double_cpu(), "left must be register");
1716    assert(right->is_double_cpu() || is_power_of_2_long(right->as_jlong()),
1717           "right must be register or power of 2 constant");
1718    assert(result->is_double_cpu(), "result must be register");
1719
1720    Register lreg = left->as_register_lo();
1721    Register dreg = result->as_register_lo();
1722
1723    if (right->is_constant()) {
1724      // Convert division by a power of two into some shifts and logical operations.
1725      Register treg1 = Z_R0_scratch;
1726      Register treg2 = Z_R1_scratch;
1727      jlong divisor = right->as_jlong();
1728      jlong log_divisor = log2_long(right->as_jlong());
1729
1730      if (divisor == min_jlong) {
1731        // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
1732        if (dreg == lreg) {
1733          NearLabel done;
1734          __ load_const_optimized(treg2, min_jlong);
1735          __ z_cgr(lreg, treg2);
1736          __ z_lghi(dreg, 0);           // Preserves condition code.
1737          __ z_brne(done);
1738          __ z_lghi(dreg, 1);           // min_jlong / min_jlong = 1
1739          __ bind(done);
1740        } else {
1741          assert_different_registers(dreg, lreg);
1742          NearLabel done;
1743          __ z_lghi(dreg, 0);
1744          __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
1745          __ z_lghi(dreg, 1);
1746          __ bind(done);
1747        }
1748        return;
1749      }
1750      __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
1751      if (divisor == 2) {
1752        __ z_srlg(treg2, dreg, 63);     // dividend < 0 ? 1 : 0
1753      } else {
1754        __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1755        __ and_imm(treg2, divisor - 1, treg1, true);
1756      }
1757      if (code == lir_idiv) {
1758        __ z_agr(dreg, treg2);
1759        __ z_srag(dreg, dreg, log_divisor);
1760      } else {
1761        assert(code == lir_irem, "check");
1762        __ z_agr(treg2, dreg);
1763        __ and_imm(treg2, ~(divisor - 1), treg1, true);
1764        __ z_sgr(dreg, treg2);
1765      }
1766      return;
1767    }
1768
1769    // Divisor is not a power of 2 constant.
1770    Register rreg = right->as_register_lo();
1771    Register treg = temp->as_register_lo();
1772    assert(right->is_double_cpu(), "right must be register");
1773    assert(lreg == Z_R11, "see ldivInOpr()");
1774    assert(rreg != lreg, "right register must not be same as left register");
1775    assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
1776           (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
1777
1778    Register R1 = lreg->predecessor();
1779    Register R2 = rreg;
1780    assert(code != lir_idiv || lreg==dreg, "see code below");
1781    if (code == lir_idiv) {
1782      __ z_lcgr(lreg, lreg);
1783    } else {
1784      __ clear_reg(dreg, true, false);
1785    }
1786    NearLabel done;
1787    __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
1788    if (code == lir_idiv) {
1789      __ z_lcgr(lreg, lreg); // Revert lcgr above.
1790    }
1791    if (ImplicitDiv0Checks) {
1792      // No debug info because the idiv won't trap.
1793      // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1794      // which is unnecessary, too.
1795      add_debug_info_for_div0(__ offset(), info);
1796    }
1797    __ z_dsgr(R1, R2);
1798    __ bind(done);
1799    return;
1800  }
1801
1802  // 32 bit integer case
1803
1804  assert(left->is_single_cpu(), "left must be register");
1805  assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
1806  assert(result->is_single_cpu(), "result must be register");
1807
1808  Register lreg = left->as_register();
1809  Register dreg = result->as_register();
1810
1811  if (right->is_constant()) {
1812    // Convert division by a power of two into some shifts and logical operations.
1813    Register treg1 = Z_R0_scratch;
1814    Register treg2 = Z_R1_scratch;
1815    jlong divisor = right->as_jint();
1816    jlong log_divisor = log2_long(right->as_jint());
1817    __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
1818    if (divisor == 2) {
1819      __ z_srlg(treg2, dreg, 63);     // dividend < 0 ?  1 : 0
1820    } else {
1821      __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1822      __ and_imm(treg2, divisor - 1, treg1, true);
1823    }
1824    if (code == lir_idiv) {
1825      __ z_agr(dreg, treg2);
1826      __ z_srag(dreg, dreg, log_divisor);
1827    } else {
1828      assert(code == lir_irem, "check");
1829      __ z_agr(treg2, dreg);
1830      __ and_imm(treg2, ~(divisor - 1), treg1, true);
1831      __ z_sgr(dreg, treg2);
1832    }
1833    return;
1834  }
1835
1836  // Divisor is not a power of 2 constant.
1837  Register rreg = right->as_register();
1838  Register treg = temp->as_register();
1839  assert(right->is_single_cpu(), "right must be register");
1840  assert(lreg == Z_R11, "left register must be rax,");
1841  assert(rreg != lreg, "right register must not be same as left register");
1842  assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
1843      || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
1844
1845  Register R1 = lreg->predecessor();
1846  Register R2 = rreg;
1847  __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
1848  if (ImplicitDiv0Checks) {
1849    // No debug info because the idiv won't trap.
1850    // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1851    // which is unnecessary, too.
1852    add_debug_info_for_div0(__ offset(), info);
1853  }
1854  __ z_dsgfr(R1, R2);
1855}
1856
1857void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1858  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1859  assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
1860
1861  // Exception object is not added to oop map by LinearScan
1862  // (LinearScan assumes that no oops are in fixed registers).
1863  info->add_register_oop(exceptionOop);
1864
1865  // Reuse the debug info from the safepoint poll for the throw op itself.
1866  __ get_PC(Z_EXC_PC);
1867  add_call_info(__ offset(), info); // for exception handler
1868  address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1869                                                                    : Runtime1::handle_exception_nofpu_id);
1870  emit_call_c(stub);
1871}
1872
1873void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1874  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1875
1876  __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
1877}
1878
1879void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1880  ciArrayKlass* default_type = op->expected_type();
1881  Register src = op->src()->as_register();
1882  Register dst = op->dst()->as_register();
1883  Register src_pos = op->src_pos()->as_register();
1884  Register dst_pos = op->dst_pos()->as_register();
1885  Register length  = op->length()->as_register();
1886  Register tmp = op->tmp()->as_register();
1887
1888  CodeStub* stub = op->stub();
1889  int flags = op->flags();
1890  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1891  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1892
1893  // If we don't know anything, just go through the generic arraycopy.
1894  if (default_type == NULL) {
1895    Label done;
1896    // Save outgoing arguments in callee saved registers (C convention) in case
1897    // a call to System.arraycopy is needed.
1898    Register callee_saved_src     = Z_R10;
1899    Register callee_saved_src_pos = Z_R11;
1900    Register callee_saved_dst     = Z_R12;
1901    Register callee_saved_dst_pos = Z_R13;
1902    Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
1903
1904    __ lgr_if_needed(callee_saved_src, src);
1905    __ lgr_if_needed(callee_saved_src_pos, src_pos);
1906    __ lgr_if_needed(callee_saved_dst, dst);
1907    __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
1908    __ lgr_if_needed(callee_saved_length, length);
1909
1910    // C function requires 64 bit values.
1911    __ z_lgfr(src_pos, src_pos);
1912    __ z_lgfr(dst_pos, dst_pos);
1913    __ z_lgfr(length, length);
1914
1915    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
1916
1917    address copyfunc_addr = StubRoutines::generic_arraycopy();
1918
1919    // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
1920
1921    // The arguments are in the corresponding registers.
1922    assert(Z_ARG1 == src,     "assumption");
1923    assert(Z_ARG2 == src_pos, "assumption");
1924    assert(Z_ARG3 == dst,     "assumption");
1925    assert(Z_ARG4 == dst_pos, "assumption");
1926    assert(Z_ARG5 == length,  "assumption");
1927    if (copyfunc_addr == NULL) { // Use C version if stub was not generated.
1928      emit_call_c(C_entry);
1929    } else {
1930#ifndef PRODUCT
1931      if (PrintC1Statistics) {
1932        __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
1933        __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
1934      }
1935#endif
1936      emit_call_c(copyfunc_addr);
1937    }
1938    CHECK_BAILOUT();
1939
1940    __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
1941
1942    if (copyfunc_addr != NULL) {
1943      __ z_lgr(tmp, Z_RET);
1944      __ z_xilf(tmp, -1);
1945    }
1946
1947    // Restore values from callee saved registers so they are where the stub
1948    // expects them.
1949    __ lgr_if_needed(src, callee_saved_src);
1950    __ lgr_if_needed(src_pos, callee_saved_src_pos);
1951    __ lgr_if_needed(dst, callee_saved_dst);
1952    __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
1953    __ lgr_if_needed(length, callee_saved_length);
1954
1955    if (copyfunc_addr != NULL) {
1956      __ z_sr(length, tmp);
1957      __ z_ar(src_pos, tmp);
1958      __ z_ar(dst_pos, tmp);
1959    }
1960    __ branch_optimized(Assembler::bcondAlways, *stub->entry());
1961
1962    __ bind(*stub->continuation());
1963    return;
1964  }
1965
1966  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
1967
1968  int elem_size = type2aelembytes(basic_type);
1969  int shift_amount;
1970
1971  switch (elem_size) {
1972    case 1 :
1973      shift_amount = 0;
1974      break;
1975    case 2 :
1976      shift_amount = 1;
1977      break;
1978    case 4 :
1979      shift_amount = 2;
1980      break;
1981    case 8 :
1982      shift_amount = 3;
1983      break;
1984    default:
1985      shift_amount = -1;
1986      ShouldNotReachHere();
1987  }
1988
1989  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
1990  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
1991  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
1992  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
1993
1994  // Length and pos's are all sign extended at this point on 64bit.
1995
1996  // test for NULL
1997  if (flags & LIR_OpArrayCopy::src_null_check) {
1998    __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
1999  }
2000  if (flags & LIR_OpArrayCopy::dst_null_check) {
2001    __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2002  }
2003
2004  // Check if negative.
2005  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2006    __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2007  }
2008  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2009    __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2010  }
2011
2012  // If the compiler was not able to prove that exact type of the source or the destination
2013  // of the arraycopy is an array type, check at runtime if the source or the destination is
2014  // an instance type.
2015  if (flags & LIR_OpArrayCopy::type_check) {
2016    assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
2017
2018    if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2019      __ load_klass(tmp, dst);
2020      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2021      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2022    }
2023
2024    if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2025      __ load_klass(tmp, src);
2026      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2027      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2028    }
2029  }
2030
2031  if (flags & LIR_OpArrayCopy::src_range_check) {
2032    __ z_la(tmp, Address(src_pos, length));
2033    __ z_cl(tmp, src_length_addr);
2034    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2035  }
2036  if (flags & LIR_OpArrayCopy::dst_range_check) {
2037    __ z_la(tmp, Address(dst_pos, length));
2038    __ z_cl(tmp, dst_length_addr);
2039    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2040  }
2041
2042  if (flags & LIR_OpArrayCopy::length_positive_check) {
2043    __ z_ltr(length, length);
2044    __ branch_optimized(Assembler::bcondNegative, *stub->entry());
2045  }
2046
2047  // Stubs require 64 bit values.
2048  __ z_lgfr(src_pos, src_pos); // int -> long
2049  __ z_lgfr(dst_pos, dst_pos); // int -> long
2050  __ z_lgfr(length, length);   // int -> long
2051
2052  if (flags & LIR_OpArrayCopy::type_check) {
2053    // We don't know the array types are compatible.
2054    if (basic_type != T_OBJECT) {
2055      // Simple test for basic type arrays.
2056      if (UseCompressedClassPointers) {
2057        __ z_l(tmp, src_klass_addr);
2058        __ z_c(tmp, dst_klass_addr);
2059      } else {
2060        __ z_lg(tmp, src_klass_addr);
2061        __ z_cg(tmp, dst_klass_addr);
2062      }
2063      __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2064    } else {
2065      // For object arrays, if src is a sub class of dst then we can
2066      // safely do the copy.
2067      NearLabel cont, slow;
2068      Register src_klass = Z_R1_scratch;
2069      Register dst_klass = Z_R10;
2070
2071      __ load_klass(src_klass, src);
2072      __ load_klass(dst_klass, dst);
2073
2074      __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL);
2075
2076      store_parameter(src_klass, 0); // sub
2077      store_parameter(dst_klass, 1); // super
2078      emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
2079      CHECK_BAILOUT();
2080      // Sets condition code 0 for match (2 otherwise).
2081      __ branch_optimized(Assembler::bcondEqual, cont);
2082
2083      __ bind(slow);
2084
2085      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2086      if (copyfunc_addr != NULL) { // use stub if available
2087        // Src is not a sub class of dst so we have to do a
2088        // per-element check.
2089
2090        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2091        if ((flags & mask) != mask) {
2092          // Check that at least both of them object arrays.
2093          assert(flags & mask, "one of the two should be known to be an object array");
2094
2095          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2096            __ load_klass(tmp, src);
2097          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2098            __ load_klass(tmp, dst);
2099          }
2100          Address klass_lh_addr(tmp, Klass::layout_helper_offset());
2101          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2102          __ load_const_optimized(Z_R1_scratch, objArray_lh);
2103          __ z_c(Z_R1_scratch, klass_lh_addr);
2104          __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2105        }
2106
2107        // Save outgoing arguments in callee saved registers (C convention) in case
2108        // a call to System.arraycopy is needed.
2109        Register callee_saved_src     = Z_R10;
2110        Register callee_saved_src_pos = Z_R11;
2111        Register callee_saved_dst     = Z_R12;
2112        Register callee_saved_dst_pos = Z_R13;
2113        Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
2114
2115        __ lgr_if_needed(callee_saved_src, src);
2116        __ lgr_if_needed(callee_saved_src_pos, src_pos);
2117        __ lgr_if_needed(callee_saved_dst, dst);
2118        __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2119        __ lgr_if_needed(callee_saved_length, length);
2120
2121        __ z_llgfr(length, length); // Higher 32bits must be null.
2122
2123        __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
2124        __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
2125
2126        __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
2127        assert_different_registers(Z_ARG1, dst, dst_pos, length);
2128        __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
2129        assert_different_registers(Z_ARG2, dst, length);
2130
2131        __ z_lgr(Z_ARG3, length);
2132        assert_different_registers(Z_ARG3, dst);
2133
2134        __ load_klass(Z_ARG5, dst);
2135        __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
2136        __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
2137        emit_call_c(copyfunc_addr);
2138        CHECK_BAILOUT();
2139
2140#ifndef PRODUCT
2141        if (PrintC1Statistics) {
2142          NearLabel failed;
2143          __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
2144          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
2145          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2146          __ bind(failed);
2147        }
2148#endif
2149
2150        __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2151
2152#ifndef PRODUCT
2153        if (PrintC1Statistics) {
2154          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
2155          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2156        }
2157#endif
2158
2159        __ z_lgr(tmp, Z_RET);
2160        __ z_xilf(tmp, -1);
2161
2162        // Restore previously spilled arguments
2163        __ lgr_if_needed(src, callee_saved_src);
2164        __ lgr_if_needed(src_pos, callee_saved_src_pos);
2165        __ lgr_if_needed(dst, callee_saved_dst);
2166        __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2167        __ lgr_if_needed(length, callee_saved_length);
2168
2169        __ z_sr(length, tmp);
2170        __ z_ar(src_pos, tmp);
2171        __ z_ar(dst_pos, tmp);
2172      }
2173
2174      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2175
2176      __ bind(cont);
2177    }
2178  }
2179
2180#ifdef ASSERT
2181  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2182    // Sanity check the known type with the incoming class. For the
2183    // primitive case the types must match exactly with src.klass and
2184    // dst.klass each exactly matching the default type. For the
2185    // object array case, if no type check is needed then either the
2186    // dst type is exactly the expected type and the src type is a
2187    // subtype which we can't check or src is the same array as dst
2188    // but not necessarily exactly of type default_type.
2189    NearLabel known_ok, halt;
2190    metadata2reg(default_type->constant_encoding(), tmp);
2191    if (UseCompressedClassPointers) {
2192      __ encode_klass_not_null(tmp);
2193    }
2194
2195    if (basic_type != T_OBJECT) {
2196      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2197      else                                    { __ z_cg(tmp, dst_klass_addr); }
2198      __ branch_optimized(Assembler::bcondNotEqual, halt);
2199      if (UseCompressedClassPointers)         { __ z_c (tmp, src_klass_addr); }
2200      else                                    { __ z_cg(tmp, src_klass_addr); }
2201      __ branch_optimized(Assembler::bcondEqual, known_ok);
2202    } else {
2203      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2204      else                                    { __ z_cg(tmp, dst_klass_addr); }
2205      __ branch_optimized(Assembler::bcondEqual, known_ok);
2206      __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
2207    }
2208    __ bind(halt);
2209    __ stop("incorrect type information in arraycopy");
2210    __ bind(known_ok);
2211  }
2212#endif
2213
2214#ifndef PRODUCT
2215  if (PrintC1Statistics) {
2216    __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
2217    __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2218  }
2219#endif
2220
2221  __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
2222  __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
2223
2224  assert_different_registers(Z_ARG1, dst, dst_pos, length);
2225  __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
2226  assert_different_registers(Z_ARG2, length);
2227  __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
2228  __ lgr_if_needed(Z_ARG3, length);
2229
2230  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2231  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2232  const char *name;
2233  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2234  __ call_VM_leaf(entry);
2235
2236  __ bind(*stub->continuation());
2237}
2238
2239void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2240  if (dest->is_single_cpu()) {
2241    if (left->type() == T_OBJECT) {
2242      switch (code) {
2243        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2244        case lir_shr:  __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2245        case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2246        default: ShouldNotReachHere();
2247      }
2248    } else {
2249      assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2250      Register masked_count = Z_R1_scratch;
2251      __ z_lr(masked_count, count->as_register());
2252      __ z_nill(masked_count, 31);
2253      switch (code) {
2254        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
2255        case lir_shr:  __ z_sra  (dest->as_register(), 0, masked_count); break;
2256        case lir_ushr: __ z_srl  (dest->as_register(), 0, masked_count); break;
2257        default: ShouldNotReachHere();
2258      }
2259    }
2260  } else {
2261    switch (code) {
2262      case lir_shl:  __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2263      case lir_shr:  __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2264      case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2265      default: ShouldNotReachHere();
2266    }
2267  }
2268}
2269
2270void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2271  if (left->type() == T_OBJECT) {
2272    count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2273    Register l = left->as_register();
2274    Register d = dest->as_register_lo();
2275    switch (code) {
2276      case lir_shl:  __ z_sllg (d, l, count); break;
2277      case lir_shr:  __ z_srag (d, l, count); break;
2278      case lir_ushr: __ z_srlg (d, l, count); break;
2279      default: ShouldNotReachHere();
2280    }
2281    return;
2282  }
2283  if (dest->is_single_cpu()) {
2284    assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2285    count = count & 0x1F; // Java spec
2286    switch (code) {
2287      case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), count); break;
2288      case lir_shr:  __ z_sra  (dest->as_register(), count); break;
2289      case lir_ushr: __ z_srl  (dest->as_register(), count); break;
2290      default: ShouldNotReachHere();
2291    }
2292  } else if (dest->is_double_cpu()) {
2293    count = count & 63; // Java spec
2294    Register l = left->as_pointer_register();
2295    Register d = dest->as_pointer_register();
2296    switch (code) {
2297      case lir_shl:  __ z_sllg (d, l, count); break;
2298      case lir_shr:  __ z_srag (d, l, count); break;
2299      case lir_ushr: __ z_srlg (d, l, count); break;
2300      default: ShouldNotReachHere();
2301    }
2302  } else {
2303    ShouldNotReachHere();
2304  }
2305}
2306
2307void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2308  if (op->init_check()) {
2309    // Make sure klass is initialized & doesn't have finalizer.
2310    const int state_offset = in_bytes(InstanceKlass::init_state_offset());
2311    Register iklass = op->klass()->as_register();
2312    add_debug_info_for_null_check_here(op->stub()->info());
2313    if (Immediate::is_uimm12(state_offset)) {
2314      __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
2315    } else {
2316      __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
2317    }
2318    __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
2319  }
2320  __ allocate_object(op->obj()->as_register(),
2321                     op->tmp1()->as_register(),
2322                     op->tmp2()->as_register(),
2323                     op->header_size(),
2324                     op->object_size(),
2325                     op->klass()->as_register(),
2326                     *op->stub()->entry());
2327  __ bind(*op->stub()->continuation());
2328  __ verify_oop(op->obj()->as_register());
2329}
2330
2331void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2332  Register len = op->len()->as_register();
2333  __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
2334
2335  if (UseSlowPath ||
2336      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2337      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2338    __ z_brul(*op->stub()->entry());
2339  } else {
2340    __ allocate_array(op->obj()->as_register(),
2341                      op->len()->as_register(),
2342                      op->tmp1()->as_register(),
2343                      op->tmp2()->as_register(),
2344                      arrayOopDesc::header_size(op->type()),
2345                      type2aelembytes(op->type()),
2346                      op->klass()->as_register(),
2347                      *op->stub()->entry());
2348  }
2349  __ bind(*op->stub()->continuation());
2350}
2351
2352void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
2353                                        Register recv, Register tmp1, Label* update_done) {
2354  uint i;
2355  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2356    Label next_test;
2357    // See if the receiver is receiver[n].
2358    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2359    __ z_cg(recv, receiver_addr);
2360    __ z_brne(next_test);
2361    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
2362    __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2363    __ branch_optimized(Assembler::bcondAlways, *update_done);
2364    __ bind(next_test);
2365  }
2366
2367  // Didn't find receiver; find next empty slot and fill it in.
2368  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2369    Label next_test;
2370    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2371    __ z_ltg(Z_R0_scratch, recv_addr);
2372    __ z_brne(next_test);
2373    __ z_stg(recv, recv_addr);
2374    __ load_const_optimized(tmp1, DataLayout::counter_increment);
2375    __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
2376    __ branch_optimized(Assembler::bcondAlways, *update_done);
2377    __ bind(next_test);
2378  }
2379}
2380
2381void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2382                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2383  Unimplemented();
2384}
2385
2386void LIR_Assembler::store_parameter(Register r, int param_num) {
2387  assert(param_num >= 0, "invalid num");
2388  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2389  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2390  __ z_stg(r, offset_in_bytes, Z_SP);
2391}
2392
2393void LIR_Assembler::store_parameter(jint c, int param_num) {
2394  assert(param_num >= 0, "invalid num");
2395  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2396  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2397  __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
2398}
2399
2400void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2401  // We always need a stub for the failure case.
2402  CodeStub* stub = op->stub();
2403  Register obj = op->object()->as_register();
2404  Register k_RInfo = op->tmp1()->as_register();
2405  Register klass_RInfo = op->tmp2()->as_register();
2406  Register dst = op->result_opr()->as_register();
2407  Register Rtmp1 = Z_R1_scratch;
2408  ciKlass* k = op->klass();
2409
2410  assert(!op->tmp3()->is_valid(), "tmp3's not needed");
2411
2412  // Check if it needs to be profiled.
2413  ciMethodData* md = NULL;
2414  ciProfileData* data = NULL;
2415
2416  if (op->should_profile()) {
2417    ciMethod* method = op->profiled_method();
2418    assert(method != NULL, "Should have method");
2419    int bci = op->profiled_bci();
2420    md = method->method_data_or_null();
2421    assert(md != NULL, "Sanity");
2422    data = md->bci_to_data(bci);
2423    assert(data != NULL,                "need data for type check");
2424    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2425  }
2426
2427  // Temp operands do not overlap with inputs, if this is their last
2428  // use (end of range is exclusive), so a register conflict is possible.
2429  if (obj == k_RInfo) {
2430    k_RInfo = dst;
2431  } else if (obj == klass_RInfo) {
2432    klass_RInfo = dst;
2433  }
2434  assert_different_registers(obj, k_RInfo, klass_RInfo);
2435
2436  if (op->should_profile()) {
2437    NearLabel not_null;
2438    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2439    // Object is null; update MDO and exit.
2440    Register mdo = klass_RInfo;
2441    metadata2reg(md->constant_encoding(), mdo);
2442    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2443    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2444    __ or2mem_8(data_addr, header_bits);
2445    __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
2446    __ bind(not_null);
2447  } else {
2448    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
2449  }
2450
2451  NearLabel profile_cast_failure, profile_cast_success;
2452  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2453  Label *success_target = op->should_profile() ? &profile_cast_success : success;
2454
2455  // Patching may screw with our temporaries on sparc,
2456  // so let's do it before loading the class.
2457  if (k->is_loaded()) {
2458    metadata2reg(k->constant_encoding(), k_RInfo);
2459  } else {
2460    klass2reg_with_patching(k_RInfo, op->info_for_patch());
2461  }
2462  assert(obj != k_RInfo, "must be different");
2463
2464  __ verify_oop(obj);
2465
2466  // Get object class.
2467  // Not a safepoint as obj null check happens earlier.
2468  if (op->fast_check()) {
2469    if (UseCompressedClassPointers) {
2470      __ load_klass(klass_RInfo, obj);
2471      __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
2472    } else {
2473      __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
2474      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2475    }
2476    // Successful cast, fall through to profile or jump.
2477  } else {
2478    bool need_slow_path = !k->is_loaded() ||
2479                          ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
2480    intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
2481    __ load_klass(klass_RInfo, obj);
2482    // Perform the fast part of the checking logic.
2483    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
2484                                     (need_slow_path ? success_target : NULL),
2485                                     failure_target, NULL,
2486                                     RegisterOrConstant(super_check_offset));
2487    if (need_slow_path) {
2488      // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2489      address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2490      store_parameter(klass_RInfo, 0); // sub
2491      store_parameter(k_RInfo, 1);     // super
2492      emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2493      CHECK_BAILOUT();
2494      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2495      // Fall through to success case.
2496    }
2497  }
2498
2499  if (op->should_profile()) {
2500    Register mdo = klass_RInfo, recv = k_RInfo;
2501    assert_different_registers(obj, mdo, recv);
2502    __ bind(profile_cast_success);
2503    metadata2reg(md->constant_encoding(), mdo);
2504    __ load_klass(recv, obj);
2505    type_profile_helper(mdo, md, data, recv, Rtmp1, success);
2506    __ branch_optimized(Assembler::bcondAlways, *success);
2507
2508    __ bind(profile_cast_failure);
2509    metadata2reg(md->constant_encoding(), mdo);
2510    __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2511    __ branch_optimized(Assembler::bcondAlways, *failure);
2512  } else {
2513    __ branch_optimized(Assembler::bcondAlways, *success);
2514  }
2515}
2516
2517void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2518  LIR_Code code = op->code();
2519  if (code == lir_store_check) {
2520    Register value = op->object()->as_register();
2521    Register array = op->array()->as_register();
2522    Register k_RInfo = op->tmp1()->as_register();
2523    Register klass_RInfo = op->tmp2()->as_register();
2524    Register Rtmp1 = Z_R1_scratch;
2525
2526    CodeStub* stub = op->stub();
2527
2528    // Check if it needs to be profiled.
2529    ciMethodData* md = NULL;
2530    ciProfileData* data = NULL;
2531
2532    assert_different_registers(value, k_RInfo, klass_RInfo);
2533
2534    if (op->should_profile()) {
2535      ciMethod* method = op->profiled_method();
2536      assert(method != NULL, "Should have method");
2537      int bci = op->profiled_bci();
2538      md = method->method_data_or_null();
2539      assert(md != NULL, "Sanity");
2540      data = md->bci_to_data(bci);
2541      assert(data != NULL,                "need data for type check");
2542      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2543    }
2544    NearLabel profile_cast_success, profile_cast_failure, done;
2545    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2546    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2547
2548    if (op->should_profile()) {
2549      NearLabel not_null;
2550      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2551      // Object is null; update MDO and exit.
2552      Register mdo = klass_RInfo;
2553      metadata2reg(md->constant_encoding(), mdo);
2554      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2555      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2556      __ or2mem_8(data_addr, header_bits);
2557      __ branch_optimized(Assembler::bcondAlways, done);
2558      __ bind(not_null);
2559    } else {
2560      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
2561    }
2562
2563    add_debug_info_for_null_check_here(op->info_for_exception());
2564    __ load_klass(k_RInfo, array);
2565    __ load_klass(klass_RInfo, value);
2566
2567    // Get instance klass (it's already uncompressed).
2568    __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
2569    // Perform the fast part of the checking logic.
2570    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
2571    // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2572    address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2573    store_parameter(klass_RInfo, 0); // sub
2574    store_parameter(k_RInfo, 1);     // super
2575    emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2576    CHECK_BAILOUT();
2577    __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2578    // Fall through to success case.
2579
2580    if (op->should_profile()) {
2581      Register mdo = klass_RInfo, recv = k_RInfo;
2582      assert_different_registers(value, mdo, recv);
2583      __ bind(profile_cast_success);
2584      metadata2reg(md->constant_encoding(), mdo);
2585      __ load_klass(recv, value);
2586      type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
2587      __ branch_optimized(Assembler::bcondAlways, done);
2588
2589      __ bind(profile_cast_failure);
2590      metadata2reg(md->constant_encoding(), mdo);
2591      __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2592      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2593    }
2594
2595    __ bind(done);
2596  } else {
2597    if (code == lir_checkcast) {
2598      Register obj = op->object()->as_register();
2599      Register dst = op->result_opr()->as_register();
2600      NearLabel success;
2601      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2602      __ bind(success);
2603      __ lgr_if_needed(dst, obj);
2604    } else {
2605      if (code == lir_instanceof) {
2606        Register obj = op->object()->as_register();
2607        Register dst = op->result_opr()->as_register();
2608        NearLabel success, failure, done;
2609        emit_typecheck_helper(op, &success, &failure, &failure);
2610        __ bind(failure);
2611        __ clear_reg(dst);
2612        __ branch_optimized(Assembler::bcondAlways, done);
2613        __ bind(success);
2614        __ load_const_optimized(dst, 1);
2615        __ bind(done);
2616      } else {
2617        ShouldNotReachHere();
2618      }
2619    }
2620  }
2621}
2622
2623void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2624  Register addr = op->addr()->as_pointer_register();
2625  Register t1_cmp = Z_R1_scratch;
2626  if (op->code() == lir_cas_long) {
2627    assert(VM_Version::supports_cx8(), "wrong machine");
2628    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2629    Register new_value_lo = op->new_value()->as_register_lo();
2630    __ z_lgr(t1_cmp, cmp_value_lo);
2631    // Perform the compare and swap operation.
2632    __ z_csg(t1_cmp, new_value_lo, 0, addr);
2633  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2634    Register cmp_value = op->cmp_value()->as_register();
2635    Register new_value = op->new_value()->as_register();
2636    if (op->code() == lir_cas_obj) {
2637      if (UseCompressedOops) {
2638                 t1_cmp = op->tmp1()->as_register();
2639        Register t2_new = op->tmp2()->as_register();
2640        assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
2641        __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
2642        __ oop_encoder(t2_new, new_value, true /*maybe null*/);
2643        __ z_cs(t1_cmp, t2_new, 0, addr);
2644      } else {
2645        __ z_lgr(t1_cmp, cmp_value);
2646        __ z_csg(t1_cmp, new_value, 0, addr);
2647      }
2648    } else {
2649      __ z_lr(t1_cmp, cmp_value);
2650      __ z_cs(t1_cmp, new_value, 0, addr);
2651    }
2652  } else {
2653    ShouldNotReachHere(); // new lir_cas_??
2654  }
2655}
2656
2657void LIR_Assembler::set_24bit_FPU() {
2658  ShouldNotCallThis(); // x86 only
2659}
2660
2661void LIR_Assembler::reset_FPU() {
2662  ShouldNotCallThis(); // x86 only
2663}
2664
2665void LIR_Assembler::breakpoint() {
2666  Unimplemented();
2667  //  __ breakpoint_trap();
2668}
2669
2670void LIR_Assembler::push(LIR_Opr opr) {
2671  ShouldNotCallThis(); // unused
2672}
2673
2674void LIR_Assembler::pop(LIR_Opr opr) {
2675  ShouldNotCallThis(); // unused
2676}
2677
2678void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2679  Address addr = frame_map()->address_for_monitor_lock(monitor_no);
2680  __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
2681}
2682
2683void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2684  Register obj = op->obj_opr()->as_register();  // May not be an oop.
2685  Register hdr = op->hdr_opr()->as_register();
2686  Register lock = op->lock_opr()->as_register();
2687  if (!UseFastLocking) {
2688    __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
2689  } else if (op->code() == lir_lock) {
2690    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2691    // Add debug info for NullPointerException only if one is possible.
2692    if (op->info() != NULL) {
2693      add_debug_info_for_null_check_here(op->info());
2694    }
2695    __ lock_object(hdr, obj, lock, *op->stub()->entry());
2696    // done
2697  } else if (op->code() == lir_unlock) {
2698    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2699    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2700  } else {
2701    ShouldNotReachHere();
2702  }
2703  __ bind(*op->stub()->continuation());
2704}
2705
2706void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2707  ciMethod* method = op->profiled_method();
2708  int bci          = op->profiled_bci();
2709  ciMethod* callee = op->profiled_callee();
2710
2711  // Update counter for all call types.
2712  ciMethodData* md = method->method_data_or_null();
2713  assert(md != NULL, "Sanity");
2714  ciProfileData* data = md->bci_to_data(bci);
2715  assert(data->is_CounterData(), "need CounterData for calls");
2716  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2717  Register mdo  = op->mdo()->as_register();
2718  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2719  Register tmp1 = op->tmp1()->as_register_lo();
2720  metadata2reg(md->constant_encoding(), mdo);
2721
2722  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2723  Bytecodes::Code bc = method->java_code_at_bci(bci);
2724  const bool callee_is_static = callee->is_loaded() && callee->is_static();
2725  // Perform additional virtual call profiling for invokevirtual and
2726  // invokeinterface bytecodes.
2727  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2728      !callee_is_static &&  // Required for optimized MH invokes.
2729      C1ProfileVirtualCalls) {
2730    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2731    Register recv = op->recv()->as_register();
2732    assert_different_registers(mdo, tmp1, recv);
2733    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2734    ciKlass* known_klass = op->known_holder();
2735    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2736      // We know the type that will be seen at this call site; we can
2737      // statically update the MethodData* rather than needing to do
2738      // dynamic tests on the receiver type.
2739
2740      // NOTE: we should probably put a lock around this search to
2741      // avoid collisions by concurrent compilations.
2742      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2743      uint i;
2744      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2745        ciKlass* receiver = vc_data->receiver(i);
2746        if (known_klass->equals(receiver)) {
2747          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2748          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2749          return;
2750        }
2751      }
2752
2753      // Receiver type not found in profile data. Select an empty slot.
2754
2755      // Note that this is less efficient than it should be because it
2756      // always does a write to the receiver part of the
2757      // VirtualCallData rather than just the first time.
2758      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2759        ciKlass* receiver = vc_data->receiver(i);
2760        if (receiver == NULL) {
2761          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2762          metadata2reg(known_klass->constant_encoding(), tmp1);
2763          __ z_stg(tmp1, recv_addr);
2764          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2765          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2766          return;
2767        }
2768      }
2769    } else {
2770      __ load_klass(recv, recv);
2771      NearLabel update_done;
2772      type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
2773      // Receiver did not match any saved receiver and there is no empty row for it.
2774      // Increment total counter to indicate polymorphic case.
2775      __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2776      __ bind(update_done);
2777    }
2778  } else {
2779    // static call
2780    __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2781  }
2782}
2783
2784void LIR_Assembler::align_backward_branch_target() {
2785  __ align(OptoLoopAlignment);
2786}
2787
2788void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2789  ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
2790}
2791
2792void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2793  assert(left->is_register(), "can only handle registers");
2794
2795  if (left->is_single_cpu()) {
2796    __ z_lcr(dest->as_register(), left->as_register());
2797  } else if (left->is_single_fpu()) {
2798    __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
2799  } else if (left->is_double_fpu()) {
2800    __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
2801  } else {
2802    assert(left->is_double_cpu(), "Must be a long");
2803    __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
2804  }
2805}
2806
2807void LIR_Assembler::fxch(int i) {
2808  ShouldNotCallThis(); // x86 only
2809}
2810
2811void LIR_Assembler::fld(int i) {
2812  ShouldNotCallThis(); // x86 only
2813}
2814
2815void LIR_Assembler::ffree(int i) {
2816  ShouldNotCallThis(); // x86 only
2817}
2818
2819void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2820                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2821  assert(!tmp->is_valid(), "don't need temporary");
2822  emit_call_c(dest);
2823  CHECK_BAILOUT();
2824  if (info != NULL) {
2825    add_call_info_here(info);
2826  }
2827}
2828
2829void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2830  ShouldNotCallThis(); // not needed on ZARCH_64
2831}
2832
2833void LIR_Assembler::membar() {
2834  __ z_fence();
2835}
2836
2837void LIR_Assembler::membar_acquire() {
2838  __ z_acquire();
2839}
2840
2841void LIR_Assembler::membar_release() {
2842  __ z_release();
2843}
2844
2845void LIR_Assembler::membar_loadload() {
2846  __ z_acquire();
2847}
2848
2849void LIR_Assembler::membar_storestore() {
2850  __ z_release();
2851}
2852
2853void LIR_Assembler::membar_loadstore() {
2854  __ z_acquire();
2855}
2856
2857void LIR_Assembler::membar_storeload() {
2858  __ z_fence();
2859}
2860
2861void LIR_Assembler::on_spin_wait() {
2862  Unimplemented();
2863}
2864
2865void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
2866  LIR_Address* addr = addr_opr->as_address_ptr();
2867  assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
2868  __ load_address(dest->as_pointer_register(), as_Address(addr));
2869}
2870
2871void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2872  ShouldNotCallThis(); // unused
2873}
2874
2875#ifdef ASSERT
2876// Emit run-time assertion.
2877void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2878  Unimplemented();
2879}
2880#endif
2881
2882void LIR_Assembler::peephole(LIR_List*) {
2883  // Do nothing for now.
2884}
2885
2886void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2887  assert(code == lir_xadd, "lir_xchg not supported");
2888  Address src_addr = as_Address(src->as_address_ptr());
2889  Register base = src_addr.base();
2890  intptr_t disp = src_addr.disp();
2891  if (src_addr.index()->is_valid()) {
2892    // LAA and LAAG do not support index register.
2893    __ load_address(Z_R1_scratch, src_addr);
2894    base = Z_R1_scratch;
2895    disp = 0;
2896  }
2897  if (data->type() == T_INT) {
2898    __ z_laa(dest->as_register(), data->as_register(), disp, base);
2899  } else if (data->type() == T_LONG) {
2900    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
2901    __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
2902  } else {
2903    ShouldNotReachHere();
2904  }
2905}
2906
2907void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2908  Register obj = op->obj()->as_register();
2909  Register tmp1 = op->tmp()->as_pointer_register();
2910  Register tmp2 = Z_R1_scratch;
2911  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2912  ciKlass* exact_klass = op->exact_klass();
2913  intptr_t current_klass = op->current_klass();
2914  bool not_null = op->not_null();
2915  bool no_conflict = op->no_conflict();
2916
2917  Label update, next, none, null_seen, init_klass;
2918
2919  bool do_null = !not_null;
2920  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2921  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2922
2923  assert(do_null || do_update, "why are we here?");
2924  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2925
2926  __ verify_oop(obj);
2927
2928  if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
2929    __ z_ltgr(tmp1, obj);
2930  }
2931  if (do_null) {
2932    __ z_brnz(update);
2933    if (!TypeEntries::was_null_seen(current_klass)) {
2934      __ z_lg(tmp1, mdo_addr);
2935      __ z_oill(tmp1, TypeEntries::null_seen);
2936      __ z_stg(tmp1, mdo_addr);
2937    }
2938    if (do_update) {
2939      __ z_bru(next);
2940    }
2941  } else {
2942    __ asm_assert_ne("unexpect null obj", __LINE__);
2943  }
2944
2945  __ bind(update);
2946
2947  if (do_update) {
2948#ifdef ASSERT
2949    if (exact_klass != NULL) {
2950      __ load_klass(tmp1, tmp1);
2951      metadata2reg(exact_klass->constant_encoding(), tmp2);
2952      __ z_cgr(tmp1, tmp2);
2953      __ asm_assert_eq("exact klass and actual klass differ", __LINE__);
2954    }
2955#endif
2956
2957    Label do_update;
2958    __ z_lg(tmp2, mdo_addr);
2959
2960    if (!no_conflict) {
2961      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2962        if (exact_klass != NULL) {
2963          metadata2reg(exact_klass->constant_encoding(), tmp1);
2964        } else {
2965          __ load_klass(tmp1, tmp1);
2966        }
2967
2968        // Klass seen before: nothing to do (regardless of unknown bit).
2969        __ z_lgr(Z_R0_scratch, tmp2);
2970        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
2971        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
2972        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
2973
2974        // Already unknown: Nothing to do anymore.
2975        __ z_tmll(tmp2, TypeEntries::type_unknown);
2976        __ z_brc(Assembler::bcondAllOne, next);
2977
2978        if (TypeEntries::is_type_none(current_klass)) {
2979          __ z_lgr(Z_R0_scratch, tmp2);
2980          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
2981          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
2982          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
2983        }
2984      } else {
2985        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2986               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2987
2988        // Already unknown: Nothing to do anymore.
2989        __ z_tmll(tmp2, TypeEntries::type_unknown);
2990        __ z_brc(Assembler::bcondAllOne, next);
2991      }
2992
2993      // Different than before. Cannot keep accurate profile.
2994      __ z_oill(tmp2, TypeEntries::type_unknown);
2995      __ z_bru(do_update);
2996    } else {
2997      // There's a single possible klass at this profile point.
2998      assert(exact_klass != NULL, "should be");
2999      if (TypeEntries::is_type_none(current_klass)) {
3000        metadata2reg(exact_klass->constant_encoding(), tmp1);
3001        __ z_lgr(Z_R0_scratch, tmp2);
3002        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3003        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3004        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3005#ifdef ASSERT
3006        {
3007          Label ok;
3008          __ z_lgr(Z_R0_scratch, tmp2);
3009          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3010          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3011          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
3012          __ stop("unexpected profiling mismatch");
3013          __ bind(ok);
3014        }
3015#endif
3016
3017      } else {
3018        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3019               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3020
3021        // Already unknown: Nothing to do anymore.
3022        __ z_tmll(tmp2, TypeEntries::type_unknown);
3023        __ z_brc(Assembler::bcondAllOne, next);
3024        __ z_oill(tmp2, TypeEntries::type_unknown);
3025        __ z_bru(do_update);
3026      }
3027    }
3028
3029    __ bind(init_klass);
3030    // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3031    __ z_ogr(tmp2, tmp1);
3032
3033    __ bind(do_update);
3034    __ z_stg(tmp2, mdo_addr);
3035
3036    __ bind(next);
3037  }
3038}
3039
3040void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3041  assert(op->crc()->is_single_cpu(), "crc must be register");
3042  assert(op->val()->is_single_cpu(), "byte value must be register");
3043  assert(op->result_opr()->is_single_cpu(), "result must be register");
3044  Register crc = op->crc()->as_register();
3045  Register val = op->val()->as_register();
3046  Register res = op->result_opr()->as_register();
3047
3048  assert_different_registers(val, crc, res);
3049
3050  __ load_const_optimized(res, StubRoutines::crc_table_addr());
3051  __ not_(crc, noreg, false); // ~crc
3052  __ update_byte_crc32(crc, val, res);
3053  __ not_(res, crc, false); // ~crc
3054}
3055
3056#undef __
3057