1/*
2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_LIRAssembler.hpp"
29#include "c1/c1_MacroAssembler.hpp"
30#include "c1/c1_Runtime1.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciInstance.hpp"
34#include "gc/shared/collectedHeap.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "nativeInst_ppc.hpp"
38#include "oops/objArrayKlass.hpp"
39#include "runtime/sharedRuntime.hpp"
40
41#define __ _masm->
42
43
44const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5;
45
46
47bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
48  Unimplemented(); return false; // Currently not used on this platform.
49}
50
51
52LIR_Opr LIR_Assembler::receiverOpr() {
53  return FrameMap::R3_oop_opr;
54}
55
56
57LIR_Opr LIR_Assembler::osrBufferPointer() {
58  return FrameMap::R3_opr;
59}
60
61
62// This specifies the stack pointer decrement needed to build the frame.
63int LIR_Assembler::initial_frame_size_in_bytes() const {
64  return in_bytes(frame_map()->framesize_in_bytes());
65}
66
67
68// Inline cache check: the inline cached class is in inline_cache_reg;
69// we fetch the class of the receiver and compare it with the cached class.
70// If they do not match we jump to slow case.
71int LIR_Assembler::check_icache() {
72  int offset = __ offset();
73  __ inline_cache_check(R3_ARG1, R19_inline_cache_reg);
74  return offset;
75}
76
77
78void LIR_Assembler::osr_entry() {
79  // On-stack-replacement entry sequence:
80  //
81  //   1. Create a new compiled activation.
82  //   2. Initialize local variables in the compiled activation. The expression
83  //      stack must be empty at the osr_bci; it is not initialized.
84  //   3. Jump to the continuation address in compiled code to resume execution.
85
86  // OSR entry point
87  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
88  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
89  ValueStack* entry_state = osr_entry->end()->state();
90  int number_of_locks = entry_state->locks_size();
91
92  // Create a frame for the compiled activation.
93  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
94
95  // OSR buffer is
96  //
97  // locals[nlocals-1..0]
98  // monitors[number_of_locks-1..0]
99  //
100  // Locals is a direct copy of the interpreter frame so in the osr buffer
101  // the first slot in the local array is the last local from the interpreter
102  // and the last slot is local[0] (receiver) from the interpreter.
103  //
104  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
105  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
106  // in the interpreter frame (the method lock if a sync method).
107
108  // Initialize monitors in the compiled activation.
109  //   R3: pointer to osr buffer
110  //
111  // All other registers are dead at this point and the locals will be
112  // copied into place by code emitted in the IR.
113
114  Register OSR_buf = osrBufferPointer()->as_register();
115  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
116    int monitor_offset = BytesPerWord * method()->max_locals() +
117      (2 * BytesPerWord) * (number_of_locks - 1);
118    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
119    // the OSR buffer using 2 word entries: first the lock and then
120    // the oop.
121    for (int i = 0; i < number_of_locks; i++) {
122      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
123#ifdef ASSERT
124      // Verify the interpreter's monitor has a non-null object.
125      {
126        Label L;
127        __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
128        __ cmpdi(CCR0, R0, 0);
129        __ bne(CCR0, L);
130        __ stop("locked object is NULL");
131        __ bind(L);
132      }
133#endif // ASSERT
134      // Copy the lock field into the compiled activation.
135      Address ml = frame_map()->address_for_monitor_lock(i),
136              mo = frame_map()->address_for_monitor_object(i);
137      assert(ml.index() == noreg && mo.index() == noreg, "sanity");
138      __ ld(R0, slot_offset + 0, OSR_buf);
139      __ std(R0, ml.disp(), ml.base());
140      __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
141      __ std(R0, mo.disp(), mo.base());
142    }
143  }
144}
145
146
147int LIR_Assembler::emit_exception_handler() {
148  // If the last instruction is a call (typically to do a throw which
149  // is coming at the end after block reordering) the return address
150  // must still point into the code area in order to avoid assertion
151  // failures when searching for the corresponding bci => add a nop
152  // (was bug 5/14/1999 - gri).
153  __ nop();
154
155  // Generate code for the exception handler.
156  address handler_base = __ start_a_stub(exception_handler_size());
157
158  if (handler_base == NULL) {
159    // Not enough space left for the handler.
160    bailout("exception handler overflow");
161    return -1;
162  }
163
164  int offset = code_offset();
165  address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id));
166  //__ load_const_optimized(R0, entry_point);
167  __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
168  __ mtctr(R0);
169  __ bctr();
170
171  guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
172  __ end_a_stub();
173
174  return offset;
175}
176
177
178// Emit the code to remove the frame from the stack in the exception
179// unwind path.
180int LIR_Assembler::emit_unwind_handler() {
181  _masm->block_comment("Unwind handler");
182
183  int offset = code_offset();
184  bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
185  const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
186
187  // Fetch the exception from TLS and clear out exception related thread state.
188  __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
189  __ li(R0, 0);
190  __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
191  __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
192
193  __ bind(_unwind_handler_entry);
194  __ verify_not_null_oop(Rexception);
195  if (preserve_exception) { __ mr(Rexception_save, Rexception); }
196
197  // Perform needed unlocking
198  MonitorExitStub* stub = NULL;
199  if (method()->is_synchronized()) {
200    monitor_address(0, FrameMap::R4_opr);
201    stub = new MonitorExitStub(FrameMap::R4_opr, true, 0);
202    __ unlock_object(R5, R6, R4, *stub->entry());
203    __ bind(*stub->continuation());
204  }
205
206  if (compilation()->env()->dtrace_method_probes()) {
207    Unimplemented();
208  }
209
210  // Dispatch to the unwind logic.
211  address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id);
212  //__ load_const_optimized(R0, unwind_stub);
213  __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
214  if (preserve_exception) { __ mr(Rexception, Rexception_save); }
215  __ mtctr(R0);
216  __ bctr();
217
218  // Emit the slow path assembly.
219  if (stub != NULL) {
220    stub->emit_code(this);
221  }
222
223  return offset;
224}
225
226
227int LIR_Assembler::emit_deopt_handler() {
228  // If the last instruction is a call (typically to do a throw which
229  // is coming at the end after block reordering) the return address
230  // must still point into the code area in order to avoid assertion
231  // failures when searching for the corresponding bci => add a nop
232  // (was bug 5/14/1999 - gri).
233  __ nop();
234
235  // Generate code for deopt handler.
236  address handler_base = __ start_a_stub(deopt_handler_size());
237
238  if (handler_base == NULL) {
239    // Not enough space left for the handler.
240    bailout("deopt handler overflow");
241    return -1;
242  }
243
244  int offset = code_offset();
245  __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
246
247  guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
248  __ end_a_stub();
249
250  return offset;
251}
252
253
254void LIR_Assembler::jobject2reg(jobject o, Register reg) {
255  if (o == NULL) {
256    __ li(reg, 0);
257  } else {
258    AddressLiteral addrlit = __ constant_oop_address(o);
259    __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
260  }
261}
262
263
264void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
265  // Allocate a new index in table to hold the object once it's been patched.
266  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
267  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
268
269  AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index));
270  __ load_const(reg, addrlit, R0);
271
272  patching_epilog(patch, lir_patch_normal, reg, info);
273}
274
275
276void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
277  AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
278  __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
279}
280
281
282void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
283  // Allocate a new index in table to hold the klass once it's been patched.
284  int index = __ oop_recorder()->allocate_metadata_index(NULL);
285  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
286
287  AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index));
288  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
289  __ load_const(reg, addrlit, R0);
290
291  patching_epilog(patch, lir_patch_normal, reg, info);
292}
293
294
295void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
296  const bool is_int = result->is_single_cpu();
297  Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
298  Register Rdivisor  = noreg;
299  Register Rscratch  = temp->as_register();
300  Register Rresult   = is_int ? result->as_register() : result->as_register_lo();
301  long divisor = -1;
302
303  if (right->is_register()) {
304    Rdivisor = is_int ? right->as_register() : right->as_register_lo();
305  } else {
306    divisor = is_int ? right->as_constant_ptr()->as_jint()
307                     : right->as_constant_ptr()->as_jlong();
308  }
309
310  assert(Rdividend != Rscratch, "");
311  assert(Rdivisor  != Rscratch, "");
312  assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
313
314  if (Rdivisor == noreg) {
315    if (divisor == 1) { // stupid, but can happen
316      if (code == lir_idiv) {
317        __ mr_if_needed(Rresult, Rdividend);
318      } else {
319        __ li(Rresult, 0);
320      }
321
322    } else if (is_power_of_2(divisor)) {
323      // Convert division by a power of two into some shifts and logical operations.
324      int log2 = log2_intptr(divisor);
325
326      // Round towards 0.
327      if (divisor == 2) {
328        if (is_int) {
329          __ srwi(Rscratch, Rdividend, 31);
330        } else {
331          __ srdi(Rscratch, Rdividend, 63);
332        }
333      } else {
334        if (is_int) {
335          __ srawi(Rscratch, Rdividend, 31);
336        } else {
337          __ sradi(Rscratch, Rdividend, 63);
338        }
339        __ clrldi(Rscratch, Rscratch, 64-log2);
340      }
341      __ add(Rscratch, Rdividend, Rscratch);
342
343      if (code == lir_idiv) {
344        if (is_int) {
345          __ srawi(Rresult, Rscratch, log2);
346        } else {
347          __ sradi(Rresult, Rscratch, log2);
348        }
349      } else { // lir_irem
350        __ clrrdi(Rscratch, Rscratch, log2);
351        __ sub(Rresult, Rdividend, Rscratch);
352      }
353
354    } else if (divisor == -1) {
355      if (code == lir_idiv) {
356        __ neg(Rresult, Rdividend);
357      } else {
358        __ li(Rresult, 0);
359      }
360
361    } else {
362      __ load_const_optimized(Rscratch, divisor);
363      if (code == lir_idiv) {
364        if (is_int) {
365          __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
366        } else {
367          __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
368        }
369      } else {
370        assert(Rscratch != R0, "need both");
371        if (is_int) {
372          __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
373          __ mullw(Rscratch, R0, Rscratch);
374        } else {
375          __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
376          __ mulld(Rscratch, R0, Rscratch);
377        }
378        __ sub(Rresult, Rdividend, Rscratch);
379      }
380
381    }
382    return;
383  }
384
385  Label regular, done;
386  if (is_int) {
387    __ cmpwi(CCR0, Rdivisor, -1);
388  } else {
389    __ cmpdi(CCR0, Rdivisor, -1);
390  }
391  __ bne(CCR0, regular);
392  if (code == lir_idiv) {
393    __ neg(Rresult, Rdividend);
394    __ b(done);
395    __ bind(regular);
396    if (is_int) {
397      __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
398    } else {
399      __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
400    }
401  } else { // lir_irem
402    __ li(Rresult, 0);
403    __ b(done);
404    __ bind(regular);
405    if (is_int) {
406      __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
407      __ mullw(Rscratch, Rscratch, Rdivisor);
408    } else {
409      __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
410      __ mulld(Rscratch, Rscratch, Rdivisor);
411    }
412    __ sub(Rresult, Rdividend, Rscratch);
413  }
414  __ bind(done);
415}
416
417
418void LIR_Assembler::emit_op3(LIR_Op3* op) {
419  switch (op->code()) {
420  case lir_idiv:
421  case lir_irem:
422    arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
423                    op->result_opr(), op->info());
424    break;
425  case lir_fmad:
426    __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
427             op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
428    break;
429  case lir_fmaf:
430    __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
431              op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
432    break;
433  default: ShouldNotReachHere(); break;
434  }
435}
436
437
438void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
439#ifdef ASSERT
440  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
441  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
442  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
443  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
444#endif
445
446  Label *L = op->label();
447  if (op->cond() == lir_cond_always) {
448    __ b(*L);
449  } else {
450    Label done;
451    bool is_unordered = false;
452    if (op->code() == lir_cond_float_branch) {
453      assert(op->ublock() != NULL, "must have unordered successor");
454      is_unordered = true;
455    } else {
456      assert(op->code() == lir_branch, "just checking");
457    }
458
459    bool positive = false;
460    Assembler::Condition cond = Assembler::equal;
461    switch (op->cond()) {
462      case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; is_unordered = false; break;
463      case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; is_unordered = false; break;
464      case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
465      case lir_cond_belowEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
466      case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
467      case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
468      case lir_cond_aboveEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
469      case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
470      default:                    ShouldNotReachHere();
471    }
472    int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
473    int bi = Assembler::bi0(BOOL_RESULT, cond);
474    if (is_unordered) {
475      if (positive) {
476        if (op->ublock() == op->block()) {
477          __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
478        }
479      } else {
480        if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
481      }
482    }
483    __ bc_far_optimized(bo, bi, *L);
484    __ bind(done);
485  }
486}
487
488
489void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
490  Bytecodes::Code code = op->bytecode();
491  LIR_Opr src = op->in_opr(),
492          dst = op->result_opr();
493
494  switch(code) {
495    case Bytecodes::_i2l: {
496      __ extsw(dst->as_register_lo(), src->as_register());
497      break;
498    }
499    case Bytecodes::_l2i: {
500      __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
501      break;
502    }
503    case Bytecodes::_i2b: {
504      __ extsb(dst->as_register(), src->as_register());
505      break;
506    }
507    case Bytecodes::_i2c: {
508      __ clrldi(dst->as_register(), src->as_register(), 64-16);
509      break;
510    }
511    case Bytecodes::_i2s: {
512      __ extsh(dst->as_register(), src->as_register());
513      break;
514    }
515    case Bytecodes::_i2d:
516    case Bytecodes::_l2d: {
517      __ fcfid(dst->as_double_reg(), src->as_double_reg()); // via mem
518      break;
519    }
520    case Bytecodes::_i2f: {
521      FloatRegister rdst = dst->as_float_reg();
522      FloatRegister rsrc = src->as_double_reg(); // via mem
523      if (VM_Version::has_fcfids()) {
524        __ fcfids(rdst, rsrc);
525      } else {
526        __ fcfid(rdst, rsrc);
527        __ frsp(rdst, rdst);
528      }
529      break;
530    }
531    case Bytecodes::_l2f: { // >= Power7
532      assert(VM_Version::has_fcfids(), "fcfid+frsp needs fixup code to avoid rounding incompatibility");
533      __ fcfids(dst->as_float_reg(), src->as_double_reg()); // via mem
534      break;
535    }
536    case Bytecodes::_f2d: {
537      __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
538      break;
539    }
540    case Bytecodes::_d2f: {
541      __ frsp(dst->as_float_reg(), src->as_double_reg());
542      break;
543    }
544    case Bytecodes::_d2i:
545    case Bytecodes::_f2i: {
546      FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
547      Address       addr = frame_map()->address_for_slot(dst->double_stack_ix());
548      Label L;
549      // Result must be 0 if value is NaN; test by comparing value to itself.
550      __ fcmpu(CCR0, rsrc, rsrc);
551      __ li(R0, 0); // 0 in case of NAN
552      __ std(R0, addr.disp(), addr.base());
553      __ bso(CCR0, L);
554      __ fctiwz(rsrc, rsrc); // USE_KILL
555      __ stfd(rsrc, addr.disp(), addr.base());
556      __ bind(L);
557      break;
558    }
559    case Bytecodes::_d2l:
560    case Bytecodes::_f2l: {
561      FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
562      Address       addr = frame_map()->address_for_slot(dst->double_stack_ix());
563      Label L;
564      // Result must be 0 if value is NaN; test by comparing value to itself.
565      __ fcmpu(CCR0, rsrc, rsrc);
566      __ li(R0, 0); // 0 in case of NAN
567      __ std(R0, addr.disp(), addr.base());
568      __ bso(CCR0, L);
569      __ fctidz(rsrc, rsrc); // USE_KILL
570      __ stfd(rsrc, addr.disp(), addr.base());
571      __ bind(L);
572      break;
573    }
574
575    default: ShouldNotReachHere();
576  }
577}
578
579
580void LIR_Assembler::align_call(LIR_Code) {
581  // do nothing since all instructions are word aligned on ppc
582}
583
584
585bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
586  int start_offset = __ offset();
587  // Put the entry point as a constant into the constant pool.
588  const address entry_point_toc_addr   = __ address_constant(target, RelocationHolder::none);
589  if (entry_point_toc_addr == NULL) {
590    bailout("const section overflow");
591    return false;
592  }
593  const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
594
595  // Emit the trampoline stub which will be related to the branch-and-link below.
596  address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
597  if (!stub) {
598    bailout("no space for trampoline stub");
599    return false;
600  }
601  return true;
602}
603
604
605void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
606  assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
607
608  bool success = emit_trampoline_stub_for_call(op->addr());
609  if (!success) { return; }
610
611  __ relocate(rtype);
612  // Note: At this point we do not have the address of the trampoline
613  // stub, and the entry point might be too far away for bl, so __ pc()
614  // serves as dummy and the bl will be patched later.
615  __ code()->set_insts_mark();
616  __ bl(__ pc());
617  add_call_info(code_offset(), op->info());
618}
619
620
621void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
622  __ calculate_address_from_global_toc(R2_TOC, __ method_toc());
623
624  // Virtual call relocation will point to ic load.
625  address virtual_call_meta_addr = __ pc();
626  // Load a clear inline cache.
627  AddressLiteral empty_ic((address) Universe::non_oop_word());
628  bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
629  if (!success) {
630    bailout("const section overflow");
631    return;
632  }
633  // Call to fixup routine. Fixup routine uses ScopeDesc info
634  // to determine who we intended to call.
635  __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
636
637  success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
638  if (!success) { return; }
639
640  // Note: At this point we do not have the address of the trampoline
641  // stub, and the entry point might be too far away for bl, so __ pc()
642  // serves as dummy and the bl will be patched later.
643  __ bl(__ pc());
644  add_call_info(code_offset(), op->info());
645}
646
647
648void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
649  ShouldNotReachHere(); // ic_call is used instead.
650}
651
652
653void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
654  ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
655  __ null_check(addr, stub->entry());
656  append_code_stub(stub);
657}
658
659
660// Attention: caller must encode oop if needed
661int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
662  int store_offset;
663  if (!Assembler::is_simm16(offset)) {
664    // For offsets larger than a simm16 we setup the offset.
665    assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
666    __ load_const_optimized(R0, offset);
667    store_offset = store(from_reg, base, R0, type, wide);
668  } else {
669    store_offset = code_offset();
670    switch (type) {
671      case T_BOOLEAN: // fall through
672      case T_BYTE  : __ stb(from_reg->as_register(), offset, base); break;
673      case T_CHAR  :
674      case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
675      case T_INT   : __ stw(from_reg->as_register(), offset, base); break;
676      case T_LONG  : __ std(from_reg->as_register_lo(), offset, base); break;
677      case T_ADDRESS:
678      case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
679      case T_ARRAY : // fall through
680      case T_OBJECT:
681        {
682          if (UseCompressedOops && !wide) {
683            // Encoding done in caller
684            __ stw(from_reg->as_register(), offset, base);
685          } else {
686            __ std(from_reg->as_register(), offset, base);
687          }
688          __ verify_oop(from_reg->as_register());
689          break;
690        }
691      case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
692      case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
693      default      : ShouldNotReachHere();
694    }
695  }
696  return store_offset;
697}
698
699
700// Attention: caller must encode oop if needed
701int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
702  int store_offset = code_offset();
703  switch (type) {
704    case T_BOOLEAN: // fall through
705    case T_BYTE  : __ stbx(from_reg->as_register(), base, disp); break;
706    case T_CHAR  :
707    case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
708    case T_INT   : __ stwx(from_reg->as_register(), base, disp); break;
709    case T_LONG  :
710#ifdef _LP64
711      __ stdx(from_reg->as_register_lo(), base, disp);
712#else
713      Unimplemented();
714#endif
715      break;
716    case T_ADDRESS:
717      __ stdx(from_reg->as_register(), base, disp);
718      break;
719    case T_ARRAY : // fall through
720    case T_OBJECT:
721      {
722        if (UseCompressedOops && !wide) {
723          // Encoding done in caller.
724          __ stwx(from_reg->as_register(), base, disp);
725        } else {
726          __ stdx(from_reg->as_register(), base, disp);
727        }
728        __ verify_oop(from_reg->as_register()); // kills R0
729        break;
730      }
731    case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
732    case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
733    default      : ShouldNotReachHere();
734  }
735  return store_offset;
736}
737
738
739int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
740  int load_offset;
741  if (!Assembler::is_simm16(offset)) {
742    // For offsets larger than a simm16 we setup the offset.
743    __ load_const_optimized(R0, offset);
744    load_offset = load(base, R0, to_reg, type, wide);
745  } else {
746    load_offset = code_offset();
747    switch(type) {
748      case T_BOOLEAN: // fall through
749      case T_BYTE  :   __ lbz(to_reg->as_register(), offset, base);
750                       __ extsb(to_reg->as_register(), to_reg->as_register()); break;
751      case T_CHAR  :   __ lhz(to_reg->as_register(), offset, base); break;
752      case T_SHORT :   __ lha(to_reg->as_register(), offset, base); break;
753      case T_INT   :   __ lwa(to_reg->as_register(), offset, base); break;
754      case T_LONG  :   __ ld(to_reg->as_register_lo(), offset, base); break;
755      case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
756      case T_ADDRESS:
757        if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
758          __ lwz(to_reg->as_register(), offset, base);
759          __ decode_klass_not_null(to_reg->as_register());
760        } else {
761          __ ld(to_reg->as_register(), offset, base);
762        }
763        break;
764      case T_ARRAY : // fall through
765      case T_OBJECT:
766        {
767          if (UseCompressedOops && !wide) {
768            __ lwz(to_reg->as_register(), offset, base);
769            __ decode_heap_oop(to_reg->as_register());
770          } else {
771            __ ld(to_reg->as_register(), offset, base);
772          }
773          __ verify_oop(to_reg->as_register());
774          break;
775        }
776      case T_FLOAT:  __ lfs(to_reg->as_float_reg(), offset, base); break;
777      case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
778      default      : ShouldNotReachHere();
779    }
780  }
781  return load_offset;
782}
783
784
785int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
786  int load_offset = code_offset();
787  switch(type) {
788    case T_BOOLEAN: // fall through
789    case T_BYTE  :  __ lbzx(to_reg->as_register(), base, disp);
790                    __ extsb(to_reg->as_register(), to_reg->as_register()); break;
791    case T_CHAR  :  __ lhzx(to_reg->as_register(), base, disp); break;
792    case T_SHORT :  __ lhax(to_reg->as_register(), base, disp); break;
793    case T_INT   :  __ lwax(to_reg->as_register(), base, disp); break;
794    case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
795    case T_ARRAY : // fall through
796    case T_OBJECT:
797      {
798        if (UseCompressedOops && !wide) {
799          __ lwzx(to_reg->as_register(), base, disp);
800          __ decode_heap_oop(to_reg->as_register());
801        } else {
802          __ ldx(to_reg->as_register(), base, disp);
803        }
804        __ verify_oop(to_reg->as_register());
805        break;
806      }
807    case T_FLOAT:  __ lfsx(to_reg->as_float_reg() , base, disp); break;
808    case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
809    case T_LONG  :
810#ifdef _LP64
811      __ ldx(to_reg->as_register_lo(), base, disp);
812#else
813      Unimplemented();
814#endif
815      break;
816    default      : ShouldNotReachHere();
817  }
818  return load_offset;
819}
820
821
822void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
823  LIR_Const* c = src->as_constant_ptr();
824  Register src_reg = R0;
825  switch (c->type()) {
826    case T_INT:
827    case T_FLOAT: {
828      int value = c->as_jint_bits();
829      __ load_const_optimized(src_reg, value);
830      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
831      __ stw(src_reg, addr.disp(), addr.base());
832      break;
833    }
834    case T_ADDRESS: {
835      int value = c->as_jint_bits();
836      __ load_const_optimized(src_reg, value);
837      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
838      __ std(src_reg, addr.disp(), addr.base());
839      break;
840    }
841    case T_OBJECT: {
842      jobject2reg(c->as_jobject(), src_reg);
843      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
844      __ std(src_reg, addr.disp(), addr.base());
845      break;
846    }
847    case T_LONG:
848    case T_DOUBLE: {
849      int value = c->as_jlong_bits();
850      __ load_const_optimized(src_reg, value);
851      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
852      __ std(src_reg, addr.disp(), addr.base());
853      break;
854    }
855    default:
856      Unimplemented();
857  }
858}
859
860
861void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
862  LIR_Const* c = src->as_constant_ptr();
863  LIR_Address* addr = dest->as_address_ptr();
864  Register base = addr->base()->as_pointer_register();
865  LIR_Opr tmp = LIR_OprFact::illegalOpr;
866  int offset = -1;
867  // Null check for large offsets in LIRGenerator::do_StoreField.
868  bool needs_explicit_null_check = !ImplicitNullChecks;
869
870  if (info != NULL && needs_explicit_null_check) {
871    explicit_null_check(base, info);
872  }
873
874  switch (c->type()) {
875    case T_FLOAT: type = T_INT;
876    case T_INT:
877    case T_ADDRESS: {
878      tmp = FrameMap::R0_opr;
879      __ load_const_optimized(tmp->as_register(), c->as_jint_bits());
880      break;
881    }
882    case T_DOUBLE: type = T_LONG;
883    case T_LONG: {
884      tmp = FrameMap::R0_long_opr;
885      __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
886      break;
887    }
888    case T_OBJECT: {
889      tmp = FrameMap::R0_opr;
890      if (UseCompressedOops && !wide && c->as_jobject() != NULL) {
891        AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
892        __ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw).
893        __ relocate(oop_addr.rspec(), /*compressed format*/ 1);
894        __ ori(R0, R0, oop_addr.value() & 0xffff);
895      } else {
896        jobject2reg(c->as_jobject(), R0);
897      }
898      break;
899    }
900    default:
901      Unimplemented();
902  }
903
904  // Handle either reg+reg or reg+disp address.
905  if (addr->index()->is_valid()) {
906    assert(addr->disp() == 0, "must be zero");
907    offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
908  } else {
909    assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
910    offset = store(tmp, base, addr->disp(), type, wide, false);
911  }
912
913  if (info != NULL) {
914    assert(offset != -1, "offset should've been set");
915    if (!needs_explicit_null_check) {
916      add_debug_info_for_null_check(offset, info);
917    }
918  }
919}
920
921
922void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
923  LIR_Const* c = src->as_constant_ptr();
924  LIR_Opr to_reg = dest;
925
926  switch (c->type()) {
927    case T_INT: {
928      assert(patch_code == lir_patch_none, "no patching handled here");
929      __ load_const_optimized(dest->as_register(), c->as_jint(), R0);
930      break;
931    }
932    case T_ADDRESS: {
933      assert(patch_code == lir_patch_none, "no patching handled here");
934      __ load_const_optimized(dest->as_register(), c->as_jint(), R0);  // Yes, as_jint ...
935      break;
936    }
937    case T_LONG: {
938      assert(patch_code == lir_patch_none, "no patching handled here");
939      __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
940      break;
941    }
942
943    case T_OBJECT: {
944      if (patch_code == lir_patch_none) {
945        jobject2reg(c->as_jobject(), to_reg->as_register());
946      } else {
947        jobject2reg_with_patching(to_reg->as_register(), info);
948      }
949      break;
950    }
951
952    case T_METADATA:
953      {
954        if (patch_code == lir_patch_none) {
955          metadata2reg(c->as_metadata(), to_reg->as_register());
956        } else {
957          klass2reg_with_patching(to_reg->as_register(), info);
958        }
959      }
960      break;
961
962    case T_FLOAT:
963      {
964        if (to_reg->is_single_fpu()) {
965          address const_addr = __ float_constant(c->as_jfloat());
966          if (const_addr == NULL) {
967            bailout("const section overflow");
968            break;
969          }
970          RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
971          __ relocate(rspec);
972          __ load_const(R0, const_addr);
973          __ lfsx(to_reg->as_float_reg(), R0);
974        } else {
975          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
976          __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
977        }
978      }
979      break;
980
981    case T_DOUBLE:
982      {
983        if (to_reg->is_double_fpu()) {
984          address const_addr = __ double_constant(c->as_jdouble());
985          if (const_addr == NULL) {
986            bailout("const section overflow");
987            break;
988          }
989          RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
990          __ relocate(rspec);
991          __ load_const(R0, const_addr);
992          __ lfdx(to_reg->as_double_reg(), R0);
993        } else {
994          assert(to_reg->is_double_cpu(), "Must be a long register.");
995          __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
996        }
997      }
998      break;
999
1000    default:
1001      ShouldNotReachHere();
1002  }
1003}
1004
1005
1006Address LIR_Assembler::as_Address(LIR_Address* addr) {
1007  Unimplemented(); return Address();
1008}
1009
1010
1011inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
1012  if (addr->index()->is_illegal()) {
1013    return (RegisterOrConstant)(addr->disp());
1014  } else {
1015    return (RegisterOrConstant)(addr->index()->as_pointer_register());
1016  }
1017}
1018
1019
1020void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1021  const Register tmp = R0;
1022  switch (type) {
1023    case T_INT:
1024    case T_FLOAT: {
1025      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1026      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1027      __ lwz(tmp, from.disp(), from.base());
1028      __ stw(tmp, to.disp(), to.base());
1029      break;
1030    }
1031    case T_ADDRESS:
1032    case T_OBJECT: {
1033      Address from = frame_map()->address_for_slot(src->single_stack_ix());
1034      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1035      __ ld(tmp, from.disp(), from.base());
1036      __ std(tmp, to.disp(), to.base());
1037      break;
1038    }
1039    case T_LONG:
1040    case T_DOUBLE: {
1041      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1042      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1043      __ ld(tmp, from.disp(), from.base());
1044      __ std(tmp, to.disp(), to.base());
1045      break;
1046    }
1047
1048    default:
1049      ShouldNotReachHere();
1050  }
1051}
1052
1053
1054Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1055  Unimplemented(); return Address();
1056}
1057
1058
1059Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1060  Unimplemented(); return Address();
1061}
1062
1063
1064void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1065                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1066
1067  assert(type != T_METADATA, "load of metadata ptr not supported");
1068  LIR_Address* addr = src_opr->as_address_ptr();
1069  LIR_Opr to_reg = dest;
1070
1071  Register src = addr->base()->as_pointer_register();
1072  Register disp_reg = noreg;
1073  int disp_value = addr->disp();
1074  bool needs_patching = (patch_code != lir_patch_none);
1075  // null check for large offsets in LIRGenerator::do_LoadField
1076  bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
1077
1078  if (info != NULL && needs_explicit_null_check) {
1079    explicit_null_check(src, info);
1080  }
1081
1082  if (addr->base()->type() == T_OBJECT) {
1083    __ verify_oop(src);
1084  }
1085
1086  PatchingStub* patch = NULL;
1087  if (needs_patching) {
1088    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1089    assert(!to_reg->is_double_cpu() ||
1090           patch_code == lir_patch_none ||
1091           patch_code == lir_patch_normal, "patching doesn't match register");
1092  }
1093
1094  if (addr->index()->is_illegal()) {
1095    if (!Assembler::is_simm16(disp_value)) {
1096      if (needs_patching) {
1097        __ load_const32(R0, 0); // patchable int
1098      } else {
1099        __ load_const_optimized(R0, disp_value);
1100      }
1101      disp_reg = R0;
1102    }
1103  } else {
1104    disp_reg = addr->index()->as_pointer_register();
1105    assert(disp_value == 0, "can't handle 3 operand addresses");
1106  }
1107
1108  // Remember the offset of the load. The patching_epilog must be done
1109  // before the call to add_debug_info, otherwise the PcDescs don't get
1110  // entered in increasing order.
1111  int offset;
1112
1113  if (disp_reg == noreg) {
1114    assert(Assembler::is_simm16(disp_value), "should have set this up");
1115    offset = load(src, disp_value, to_reg, type, wide, unaligned);
1116  } else {
1117    assert(!unaligned, "unexpected");
1118    offset = load(src, disp_reg, to_reg, type, wide);
1119  }
1120
1121  if (patch != NULL) {
1122    patching_epilog(patch, patch_code, src, info);
1123  }
1124  if (info != NULL && !needs_explicit_null_check) {
1125    add_debug_info_for_null_check(offset, info);
1126  }
1127}
1128
1129
1130void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1131  Address addr;
1132  if (src->is_single_word()) {
1133    addr = frame_map()->address_for_slot(src->single_stack_ix());
1134  } else if (src->is_double_word())  {
1135    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1136  }
1137
1138  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1139  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1140}
1141
1142
1143void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1144  Address addr;
1145  if (dest->is_single_word()) {
1146    addr = frame_map()->address_for_slot(dest->single_stack_ix());
1147  } else if (dest->is_double_word())  {
1148    addr = frame_map()->address_for_slot(dest->double_stack_ix());
1149  }
1150  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1151  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1152}
1153
1154
1155void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1156  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1157    if (from_reg->is_double_fpu()) {
1158      // double to double moves
1159      assert(to_reg->is_double_fpu(), "should match");
1160      __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
1161    } else {
1162      // float to float moves
1163      assert(to_reg->is_single_fpu(), "should match");
1164      __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
1165    }
1166  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1167    if (from_reg->is_double_cpu()) {
1168      __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1169    } else if (to_reg->is_double_cpu()) {
1170      // int to int moves
1171      __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
1172    } else {
1173      // int to int moves
1174      __ mr_if_needed(to_reg->as_register(), from_reg->as_register());
1175    }
1176  } else {
1177    ShouldNotReachHere();
1178  }
1179  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1180    __ verify_oop(to_reg->as_register());
1181  }
1182}
1183
1184
1185void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1186                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1187                            bool wide, bool unaligned) {
1188  assert(type != T_METADATA, "store of metadata ptr not supported");
1189  LIR_Address* addr = dest->as_address_ptr();
1190
1191  Register src = addr->base()->as_pointer_register();
1192  Register disp_reg = noreg;
1193  int disp_value = addr->disp();
1194  bool needs_patching = (patch_code != lir_patch_none);
1195  bool compress_oop = (type == T_ARRAY || type == T_OBJECT) && UseCompressedOops && !wide &&
1196                      Universe::narrow_oop_mode() != Universe::UnscaledNarrowOop;
1197  bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
1198  bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
1199  // Null check for large offsets in LIRGenerator::do_StoreField.
1200  bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
1201
1202  if (info != NULL && needs_explicit_null_check) {
1203    explicit_null_check(src, info);
1204  }
1205
1206  if (addr->base()->is_oop_register()) {
1207    __ verify_oop(src);
1208  }
1209
1210  PatchingStub* patch = NULL;
1211  if (needs_patching) {
1212    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1213    assert(!from_reg->is_double_cpu() ||
1214           patch_code == lir_patch_none ||
1215           patch_code == lir_patch_normal, "patching doesn't match register");
1216  }
1217
1218  if (addr->index()->is_illegal()) {
1219    if (load_disp) {
1220      disp_reg = use_R29 ? R29_TOC : R0;
1221      if (needs_patching) {
1222        __ load_const32(disp_reg, 0); // patchable int
1223      } else {
1224        __ load_const_optimized(disp_reg, disp_value);
1225      }
1226    }
1227  } else {
1228    disp_reg = addr->index()->as_pointer_register();
1229    assert(disp_value == 0, "can't handle 3 operand addresses");
1230  }
1231
1232  // remember the offset of the store. The patching_epilog must be done
1233  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1234  // entered in increasing order.
1235  int offset;
1236
1237  if (compress_oop) {
1238    Register co = __ encode_heap_oop(R0, from_reg->as_register());
1239    from_reg = FrameMap::as_opr(co);
1240  }
1241
1242  if (disp_reg == noreg) {
1243    assert(Assembler::is_simm16(disp_value), "should have set this up");
1244    offset = store(from_reg, src, disp_value, type, wide, unaligned);
1245  } else {
1246    assert(!unaligned, "unexpected");
1247    offset = store(from_reg, src, disp_reg, type, wide);
1248  }
1249
1250  if (use_R29) {
1251    __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
1252  }
1253
1254  if (patch != NULL) {
1255    patching_epilog(patch, patch_code, src, info);
1256  }
1257
1258  if (info != NULL && !needs_explicit_null_check) {
1259    add_debug_info_for_null_check(offset, info);
1260  }
1261}
1262
1263
1264void LIR_Assembler::return_op(LIR_Opr result) {
1265  const Register return_pc        = R31;  // Must survive C-call to enable_stack_reserved_zone().
1266  const Register polling_page     = R12;
1267
1268  // Pop the stack before the safepoint code.
1269  int frame_size = initial_frame_size_in_bytes();
1270  if (Assembler::is_simm(frame_size, 16)) {
1271    __ addi(R1_SP, R1_SP, frame_size);
1272  } else {
1273    __ pop_frame();
1274  }
1275
1276  if (LoadPollAddressFromThread) {
1277    // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1278    Unimplemented();
1279  } else {
1280    __ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page()
1281  }
1282
1283  // Restore return pc relative to callers' sp.
1284  __ ld(return_pc, _abi(lr), R1_SP);
1285  // Move return pc to LR.
1286  __ mtlr(return_pc);
1287
1288  if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1289    __ reserved_stack_check(return_pc);
1290  }
1291
1292  // We need to mark the code position where the load from the safepoint
1293  // polling page was emitted as relocInfo::poll_return_type here.
1294  __ relocate(relocInfo::poll_return_type);
1295  __ load_from_polling_page(polling_page);
1296
1297  // Return.
1298  __ blr();
1299}
1300
1301
1302int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1303
1304  if (LoadPollAddressFromThread) {
1305    const Register poll_addr = tmp->as_register();
1306    // TODO: PPC port __ ld(poll_addr, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1307    Unimplemented();
1308    __ relocate(relocInfo::poll_type); // XXX
1309    guarantee(info != NULL, "Shouldn't be NULL");
1310    int offset = __ offset();
1311    add_debug_info_for_branch(info);
1312    __ load_from_polling_page(poll_addr);
1313    return offset;
1314  }
1315
1316  __ load_const_optimized(tmp->as_register(), (intptr_t)os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page()
1317  if (info != NULL) {
1318    add_debug_info_for_branch(info);
1319  }
1320  int offset = __ offset();
1321  __ relocate(relocInfo::poll_type);
1322  __ load_from_polling_page(tmp->as_register());
1323
1324  return offset;
1325}
1326
1327
1328void LIR_Assembler::emit_static_call_stub() {
1329  address call_pc = __ pc();
1330  address stub = __ start_a_stub(static_call_stub_size());
1331  if (stub == NULL) {
1332    bailout("static call stub overflow");
1333    return;
1334  }
1335
1336  // For java_to_interp stubs we use R11_scratch1 as scratch register
1337  // and in call trampoline stubs we use R12_scratch2. This way we
1338  // can distinguish them (see is_NativeCallTrampolineStub_at()).
1339  const Register reg_scratch = R11_scratch1;
1340
1341  // Create a static stub relocation which relates this stub
1342  // with the call instruction at insts_call_instruction_offset in the
1343  // instructions code-section.
1344  int start = __ offset();
1345  __ relocate(static_stub_Relocation::spec(call_pc));
1346
1347  // Now, create the stub's code:
1348  // - load the TOC
1349  // - load the inline cache oop from the constant pool
1350  // - load the call target from the constant pool
1351  // - call
1352  __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1353  AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL);
1354  bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
1355
1356  if (ReoptimizeCallSequences) {
1357    __ b64_patchable((address)-1, relocInfo::none);
1358  } else {
1359    AddressLiteral a((address)-1);
1360    success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
1361    __ mtctr(reg_scratch);
1362    __ bctr();
1363  }
1364  if (!success) {
1365    bailout("const section overflow");
1366    return;
1367  }
1368
1369  assert(__ offset() - start <= static_call_stub_size(), "stub too big");
1370  __ end_a_stub();
1371}
1372
1373
1374void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1375  bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
1376  if (opr1->is_single_fpu()) {
1377    __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
1378  } else if (opr1->is_double_fpu()) {
1379    __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
1380  } else if (opr1->is_single_cpu()) {
1381    if (opr2->is_constant()) {
1382      switch (opr2->as_constant_ptr()->type()) {
1383        case T_INT:
1384          {
1385            jint con = opr2->as_constant_ptr()->as_jint();
1386            if (unsigned_comp) {
1387              if (Assembler::is_uimm(con, 16)) {
1388                __ cmplwi(BOOL_RESULT, opr1->as_register(), con);
1389              } else {
1390                __ load_const_optimized(R0, con);
1391                __ cmplw(BOOL_RESULT, opr1->as_register(), R0);
1392              }
1393            } else {
1394              if (Assembler::is_simm(con, 16)) {
1395                __ cmpwi(BOOL_RESULT, opr1->as_register(), con);
1396              } else {
1397                __ load_const_optimized(R0, con);
1398                __ cmpw(BOOL_RESULT, opr1->as_register(), R0);
1399              }
1400            }
1401          }
1402          break;
1403
1404        case T_OBJECT:
1405          // There are only equal/notequal comparisons on objects.
1406          {
1407            assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1408            jobject con = opr2->as_constant_ptr()->as_jobject();
1409            if (con == NULL) {
1410              __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
1411            } else {
1412              jobject2reg(con, R0);
1413              __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
1414            }
1415          }
1416          break;
1417
1418        default:
1419          ShouldNotReachHere();
1420          break;
1421      }
1422    } else {
1423      if (opr2->is_address()) {
1424        DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
1425        LIR_Address *addr = opr2->as_address_ptr();
1426        BasicType type = addr->type();
1427        if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
1428        else                  { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
1429        __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
1430      } else {
1431        if (unsigned_comp) {
1432          __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1433        } else {
1434          __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1435        }
1436      }
1437    }
1438  } else if (opr1->is_double_cpu()) {
1439    if (opr2->is_constant()) {
1440      jlong con = opr2->as_constant_ptr()->as_jlong();
1441      if (unsigned_comp) {
1442        if (Assembler::is_uimm(con, 16)) {
1443          __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
1444        } else {
1445          __ load_const_optimized(R0, con);
1446          __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
1447        }
1448      } else {
1449        if (Assembler::is_simm(con, 16)) {
1450          __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
1451        } else {
1452          __ load_const_optimized(R0, con);
1453          __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
1454        }
1455      }
1456    } else if (opr2->is_register()) {
1457      if (unsigned_comp) {
1458        __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1459      } else {
1460        __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1461      }
1462    } else {
1463      ShouldNotReachHere();
1464    }
1465  } else if (opr1->is_address()) {
1466    DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
1467    LIR_Address * addr = opr1->as_address_ptr();
1468    BasicType type = addr->type();
1469    assert (opr2->is_constant(), "Checking");
1470    if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
1471    else                  { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
1472    __ cmpdi(BOOL_RESULT, R0, opr2->as_constant_ptr()->as_jint());
1473  } else {
1474    ShouldNotReachHere();
1475  }
1476}
1477
1478
1479void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1480  const Register Rdst = dst->as_register();
1481  Label done;
1482  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1483    bool is_unordered_less = (code == lir_ucmp_fd2i);
1484    if (left->is_single_fpu()) {
1485      __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg());
1486    } else if (left->is_double_fpu()) {
1487      __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg());
1488    } else {
1489      ShouldNotReachHere();
1490    }
1491    __ li(Rdst, is_unordered_less ? -1 : 1);
1492    __ bso(CCR0, done);
1493  } else if (code == lir_cmp_l2i) {
1494    __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo());
1495  } else {
1496    ShouldNotReachHere();
1497  }
1498  __ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1499  __ srwi(Rdst, R0, 30);
1500  __ srawi(R0, R0, 31);
1501  __ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1
1502  __ bind(done);
1503}
1504
1505
1506inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
1507  if (src->is_constant()) {
1508    lasm->const2reg(src, dst, lir_patch_none, NULL);
1509  } else if (src->is_register()) {
1510    lasm->reg2reg(src, dst);
1511  } else if (src->is_stack()) {
1512    lasm->stack2reg(src, dst, dst->type());
1513  } else {
1514    ShouldNotReachHere();
1515  }
1516}
1517
1518
1519void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1520  if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
1521    load_to_reg(this, opr1, result); // Condition doesn't matter.
1522    return;
1523  }
1524
1525  bool positive = false;
1526  Assembler::Condition cond = Assembler::equal;
1527  switch (condition) {
1528    case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; break;
1529    case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; break;
1530    case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
1531    case lir_cond_belowEqual:
1532    case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
1533    case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
1534    case lir_cond_aboveEqual:
1535    case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
1536    default:                    ShouldNotReachHere();
1537  }
1538
1539  // Try to use isel on >=Power7.
1540  if (VM_Version::has_isel() && result->is_cpu_register()) {
1541    bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
1542    const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
1543
1544    // We can use result_reg to load one operand if not already in register.
1545    Register first  = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
1546             second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
1547
1548    if (first != second) {
1549      if (!o1_is_reg) {
1550        load_to_reg(this, opr1, result);
1551      }
1552
1553      if (!o2_is_reg) {
1554        load_to_reg(this, opr2, result);
1555      }
1556
1557      __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
1558      return;
1559    }
1560  } // isel
1561
1562  load_to_reg(this, opr1, result);
1563
1564  Label skip;
1565  int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1566  int bi = Assembler::bi0(BOOL_RESULT, cond);
1567  __ bc(bo, bi, skip);
1568
1569  load_to_reg(this, opr2, result);
1570  __ bind(skip);
1571}
1572
1573
1574void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1575                             CodeEmitInfo* info, bool pop_fpu_stack) {
1576  assert(info == NULL, "unused on this code path");
1577  assert(left->is_register(), "wrong items state");
1578  assert(dest->is_register(), "wrong items state");
1579
1580  if (right->is_register()) {
1581    if (dest->is_float_kind()) {
1582
1583      FloatRegister lreg, rreg, res;
1584      if (right->is_single_fpu()) {
1585        lreg = left->as_float_reg();
1586        rreg = right->as_float_reg();
1587        res  = dest->as_float_reg();
1588        switch (code) {
1589          case lir_add: __ fadds(res, lreg, rreg); break;
1590          case lir_sub: __ fsubs(res, lreg, rreg); break;
1591          case lir_mul: // fall through
1592          case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break;
1593          case lir_div: // fall through
1594          case lir_div_strictfp: __ fdivs(res, lreg, rreg); break;
1595          default: ShouldNotReachHere();
1596        }
1597      } else {
1598        lreg = left->as_double_reg();
1599        rreg = right->as_double_reg();
1600        res  = dest->as_double_reg();
1601        switch (code) {
1602          case lir_add: __ fadd(res, lreg, rreg); break;
1603          case lir_sub: __ fsub(res, lreg, rreg); break;
1604          case lir_mul: // fall through
1605          case lir_mul_strictfp: __ fmul(res, lreg, rreg); break;
1606          case lir_div: // fall through
1607          case lir_div_strictfp: __ fdiv(res, lreg, rreg); break;
1608          default: ShouldNotReachHere();
1609        }
1610      }
1611
1612    } else if (dest->is_double_cpu()) {
1613
1614      Register dst_lo = dest->as_register_lo();
1615      Register op1_lo = left->as_pointer_register();
1616      Register op2_lo = right->as_pointer_register();
1617
1618      switch (code) {
1619        case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
1620        case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
1621        case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
1622        default: ShouldNotReachHere();
1623      }
1624    } else {
1625      assert (right->is_single_cpu(), "Just Checking");
1626
1627      Register lreg = left->as_register();
1628      Register res  = dest->as_register();
1629      Register rreg = right->as_register();
1630      switch (code) {
1631        case lir_add:  __ add  (res, lreg, rreg); break;
1632        case lir_sub:  __ sub  (res, lreg, rreg); break;
1633        case lir_mul:  __ mullw(res, lreg, rreg); break;
1634        default: ShouldNotReachHere();
1635      }
1636    }
1637  } else {
1638    assert (right->is_constant(), "must be constant");
1639
1640    if (dest->is_single_cpu()) {
1641      Register lreg = left->as_register();
1642      Register res  = dest->as_register();
1643      int    simm16 = right->as_constant_ptr()->as_jint();
1644
1645      switch (code) {
1646        case lir_sub:  assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
1647                       simm16 = -simm16;
1648        case lir_add:  if (res == lreg && simm16 == 0) break;
1649                       __ addi(res, lreg, simm16); break;
1650        case lir_mul:  if (res == lreg && simm16 == 1) break;
1651                       __ mulli(res, lreg, simm16); break;
1652        default: ShouldNotReachHere();
1653      }
1654    } else {
1655      Register lreg = left->as_pointer_register();
1656      Register res  = dest->as_register_lo();
1657      long con = right->as_constant_ptr()->as_jlong();
1658      assert(Assembler::is_simm16(con), "must be simm16");
1659
1660      switch (code) {
1661        case lir_sub:  assert(Assembler::is_simm16(-con), "cannot encode");  // see do_ArithmeticOp_Long
1662                       con = -con;
1663        case lir_add:  if (res == lreg && con == 0) break;
1664                       __ addi(res, lreg, (int)con); break;
1665        case lir_mul:  if (res == lreg && con == 1) break;
1666                       __ mulli(res, lreg, (int)con); break;
1667        default: ShouldNotReachHere();
1668      }
1669    }
1670  }
1671}
1672
1673
1674void LIR_Assembler::fpop() {
1675  Unimplemented();
1676  // do nothing
1677}
1678
1679
1680void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1681  switch (code) {
1682    case lir_sqrt: {
1683      __ fsqrt(dest->as_double_reg(), value->as_double_reg());
1684      break;
1685    }
1686    case lir_abs: {
1687      __ fabs(dest->as_double_reg(), value->as_double_reg());
1688      break;
1689    }
1690    default: {
1691      ShouldNotReachHere();
1692      break;
1693    }
1694  }
1695}
1696
1697
1698void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1699  if (right->is_constant()) { // see do_LogicOp
1700    long uimm;
1701    Register d, l;
1702    if (dest->is_single_cpu()) {
1703      uimm = right->as_constant_ptr()->as_jint();
1704      d = dest->as_register();
1705      l = left->as_register();
1706    } else {
1707      uimm = right->as_constant_ptr()->as_jlong();
1708      d = dest->as_register_lo();
1709      l = left->as_register_lo();
1710    }
1711    long uimms  = (unsigned long)uimm >> 16,
1712         uimmss = (unsigned long)uimm >> 32;
1713
1714    switch (code) {
1715      case lir_logic_and:
1716        if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) {
1717          __ andi(d, l, uimm); // special cases
1718        } else if (uimms != 0) { __ andis_(d, l, uimms); }
1719        else { __ andi_(d, l, uimm); }
1720        break;
1721
1722      case lir_logic_or:
1723        if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
1724        else { __ ori(d, l, uimm); }
1725        break;
1726
1727      case lir_logic_xor:
1728        if (uimm == -1) { __ nand(d, l, l); } // special case
1729        else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
1730        else { __ xori(d, l, uimm); }
1731        break;
1732
1733      default: ShouldNotReachHere();
1734    }
1735  } else {
1736    assert(right->is_register(), "right should be in register");
1737
1738    if (dest->is_single_cpu()) {
1739      switch (code) {
1740        case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
1741        case lir_logic_or:  __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
1742        case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
1743        default: ShouldNotReachHere();
1744      }
1745    } else {
1746      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1747                                                                        left->as_register_lo();
1748      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1749                                                                          right->as_register_lo();
1750
1751      switch (code) {
1752        case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
1753        case lir_logic_or:  __ orr (dest->as_register_lo(), l, r); break;
1754        case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
1755        default: ShouldNotReachHere();
1756      }
1757    }
1758  }
1759}
1760
1761
1762int LIR_Assembler::shift_amount(BasicType t) {
1763  int elem_size = type2aelembytes(t);
1764  switch (elem_size) {
1765    case 1 : return 0;
1766    case 2 : return 1;
1767    case 4 : return 2;
1768    case 8 : return 3;
1769  }
1770  ShouldNotReachHere();
1771  return -1;
1772}
1773
1774
1775void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1776  info->add_register_oop(exceptionOop);
1777
1778  // Reuse the debug info from the safepoint poll for the throw op itself.
1779  address pc_for_athrow = __ pc();
1780  int pc_for_athrow_offset = __ offset();
1781  //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1782  //__ relocate(rspec);
1783  //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
1784  __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
1785  add_call_info(pc_for_athrow_offset, info); // for exception handler
1786
1787  address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1788                                                                   : Runtime1::handle_exception_nofpu_id);
1789  //__ load_const_optimized(R0, stub);
1790  __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
1791  __ mtctr(R0);
1792  __ bctr();
1793}
1794
1795
1796void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1797  // Note: Not used with EnableDebuggingOnDemand.
1798  assert(exceptionOop->as_register() == R3, "should match");
1799  __ b(_unwind_handler_entry);
1800}
1801
1802
1803void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1804  Register src = op->src()->as_register();
1805  Register dst = op->dst()->as_register();
1806  Register src_pos = op->src_pos()->as_register();
1807  Register dst_pos = op->dst_pos()->as_register();
1808  Register length  = op->length()->as_register();
1809  Register tmp = op->tmp()->as_register();
1810  Register tmp2 = R0;
1811
1812  int flags = op->flags();
1813  ciArrayKlass* default_type = op->expected_type();
1814  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1815  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1816
1817  // Set up the arraycopy stub information.
1818  ArrayCopyStub* stub = op->stub();
1819  const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame.
1820
1821  // Always do stub if no type information is available. It's ok if
1822  // the known type isn't loaded since the code sanity checks
1823  // in debug mode and the type isn't required when we know the exact type
1824  // also check that the type is an array type.
1825  if (op->expected_type() == NULL) {
1826    assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
1827           length->is_nonvolatile(), "must preserve");
1828    // 3 parms are int. Convert to long.
1829    __ mr(R3_ARG1, src);
1830    __ extsw(R4_ARG2, src_pos);
1831    __ mr(R5_ARG3, dst);
1832    __ extsw(R6_ARG4, dst_pos);
1833    __ extsw(R7_ARG5, length);
1834    address copyfunc_addr = StubRoutines::generic_arraycopy();
1835
1836    if (copyfunc_addr == NULL) { // Use C version if stub was not generated.
1837      address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
1838      __ call_c_with_frame_resize(entry, frame_resize);
1839    } else {
1840#ifndef PRODUCT
1841      if (PrintC1Statistics) {
1842        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1843        int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
1844        __ lwz(R11_scratch1, simm16_offs, tmp);
1845        __ addi(R11_scratch1, R11_scratch1, 1);
1846        __ stw(R11_scratch1, simm16_offs, tmp);
1847      }
1848#endif
1849      __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
1850
1851      __ nand(tmp, R3_RET, R3_RET);
1852      __ subf(length, tmp, length);
1853      __ add(src_pos, tmp, src_pos);
1854      __ add(dst_pos, tmp, dst_pos);
1855    }
1856
1857    __ cmpwi(CCR0, R3_RET, 0);
1858    __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry());
1859    __ bind(*stub->continuation());
1860    return;
1861  }
1862
1863  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1864  Label cont, slow, copyfunc;
1865
1866  bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
1867                                        LIR_OpArrayCopy::dst_null_check |
1868                                        LIR_OpArrayCopy::src_pos_positive_check |
1869                                        LIR_OpArrayCopy::dst_pos_positive_check |
1870                                        LIR_OpArrayCopy::length_positive_check);
1871
1872  // Use only one conditional branch for simple checks.
1873  if (simple_check_flag_set) {
1874    ConditionRegister combined_check = CCR1, tmp_check = CCR1;
1875
1876    // Make sure src and dst are non-null.
1877    if (flags & LIR_OpArrayCopy::src_null_check) {
1878      __ cmpdi(combined_check, src, 0);
1879      tmp_check = CCR0;
1880    }
1881
1882    if (flags & LIR_OpArrayCopy::dst_null_check) {
1883      __ cmpdi(tmp_check, dst, 0);
1884      if (tmp_check != combined_check) {
1885        __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
1886      }
1887      tmp_check = CCR0;
1888    }
1889
1890    // Clear combined_check.eq if not already used.
1891    if (tmp_check == combined_check) {
1892      __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
1893      tmp_check = CCR0;
1894    }
1895
1896    if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1897      // Test src_pos register.
1898      __ cmpwi(tmp_check, src_pos, 0);
1899      __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1900    }
1901
1902    if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1903      // Test dst_pos register.
1904      __ cmpwi(tmp_check, dst_pos, 0);
1905      __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1906    }
1907
1908    if (flags & LIR_OpArrayCopy::length_positive_check) {
1909      // Make sure length isn't negative.
1910      __ cmpwi(tmp_check, length, 0);
1911      __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1912    }
1913
1914    __ beq(combined_check, slow);
1915  }
1916
1917  // If the compiler was not able to prove that exact type of the source or the destination
1918  // of the arraycopy is an array type, check at runtime if the source or the destination is
1919  // an instance type.
1920  if (flags & LIR_OpArrayCopy::type_check) {
1921    if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
1922      __ load_klass(tmp, dst);
1923      __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1924      __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1925      __ bge(CCR0, slow);
1926    }
1927
1928    if (!(flags & LIR_OpArrayCopy::src_objarray)) {
1929      __ load_klass(tmp, src);
1930      __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1931      __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1932      __ bge(CCR0, slow);
1933    }
1934  }
1935
1936  // Higher 32bits must be null.
1937  __ extsw(length, length);
1938
1939  __ extsw(src_pos, src_pos);
1940  if (flags & LIR_OpArrayCopy::src_range_check) {
1941    __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
1942    __ add(tmp, length, src_pos);
1943    __ cmpld(CCR0, tmp2, tmp);
1944    __ ble(CCR0, slow);
1945  }
1946
1947  __ extsw(dst_pos, dst_pos);
1948  if (flags & LIR_OpArrayCopy::dst_range_check) {
1949    __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
1950    __ add(tmp, length, dst_pos);
1951    __ cmpld(CCR0, tmp2, tmp);
1952    __ ble(CCR0, slow);
1953  }
1954
1955  int shift = shift_amount(basic_type);
1956
1957  if (!(flags & LIR_OpArrayCopy::type_check)) {
1958    __ b(cont);
1959  } else {
1960    // We don't know the array types are compatible.
1961    if (basic_type != T_OBJECT) {
1962      // Simple test for basic type arrays.
1963      if (UseCompressedClassPointers) {
1964        // We don't need decode because we just need to compare.
1965        __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src);
1966        __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
1967        __ cmpw(CCR0, tmp, tmp2);
1968      } else {
1969        __ ld(tmp, oopDesc::klass_offset_in_bytes(), src);
1970        __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
1971        __ cmpd(CCR0, tmp, tmp2);
1972      }
1973      __ beq(CCR0, cont);
1974    } else {
1975      // For object arrays, if src is a sub class of dst then we can
1976      // safely do the copy.
1977      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
1978
1979      const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
1980      assert_different_registers(tmp, tmp2, sub_klass, super_klass);
1981
1982      __ load_klass(sub_klass, src);
1983      __ load_klass(super_klass, dst);
1984
1985      __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
1986                                       &cont, copyfunc_addr != NULL ? &copyfunc : &slow, NULL);
1987
1988      address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
1989      //__ load_const_optimized(tmp, slow_stc, tmp2);
1990      __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
1991      __ mtctr(tmp);
1992      __ bctrl(); // sets CR0
1993      __ beq(CCR0, cont);
1994
1995      if (copyfunc_addr != NULL) { // Use stub if available.
1996        __ bind(copyfunc);
1997        // Src is not a sub class of dst so we have to do a
1998        // per-element check.
1999        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2000        if ((flags & mask) != mask) {
2001          assert(flags & mask, "one of the two should be known to be an object array");
2002
2003          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2004            __ load_klass(tmp, src);
2005          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2006            __ load_klass(tmp, dst);
2007          }
2008
2009          __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
2010
2011          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2012          __ load_const_optimized(tmp, objArray_lh);
2013          __ cmpw(CCR0, tmp, tmp2);
2014          __ bne(CCR0, slow);
2015        }
2016
2017        Register src_ptr = R3_ARG1;
2018        Register dst_ptr = R4_ARG2;
2019        Register len     = R5_ARG3;
2020        Register chk_off = R6_ARG4;
2021        Register super_k = R7_ARG5;
2022
2023        __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2024        __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2025        if (shift == 0) {
2026          __ add(src_ptr, src_pos, src_ptr);
2027          __ add(dst_ptr, dst_pos, dst_ptr);
2028        } else {
2029          __ sldi(tmp, src_pos, shift);
2030          __ sldi(tmp2, dst_pos, shift);
2031          __ add(src_ptr, tmp, src_ptr);
2032          __ add(dst_ptr, tmp2, dst_ptr);
2033        }
2034
2035        __ load_klass(tmp, dst);
2036        __ mr(len, length);
2037
2038        int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2039        __ ld(super_k, ek_offset, tmp);
2040
2041        int sco_offset = in_bytes(Klass::super_check_offset_offset());
2042        __ lwz(chk_off, sco_offset, super_k);
2043
2044        __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
2045
2046#ifndef PRODUCT
2047        if (PrintC1Statistics) {
2048          Label failed;
2049          __ cmpwi(CCR0, R3_RET, 0);
2050          __ bne(CCR0, failed);
2051          address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
2052          int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2053          __ lwz(R11_scratch1, simm16_offs, tmp);
2054          __ addi(R11_scratch1, R11_scratch1, 1);
2055          __ stw(R11_scratch1, simm16_offs, tmp);
2056          __ bind(failed);
2057        }
2058#endif
2059
2060        __ nand(tmp, R3_RET, R3_RET);
2061        __ cmpwi(CCR0, R3_RET, 0);
2062        __ beq(CCR0, *stub->continuation());
2063
2064#ifndef PRODUCT
2065        if (PrintC1Statistics) {
2066          address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
2067          int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2068          __ lwz(R11_scratch1, simm16_offs, tmp);
2069          __ addi(R11_scratch1, R11_scratch1, 1);
2070          __ stw(R11_scratch1, simm16_offs, tmp);
2071        }
2072#endif
2073
2074        __ subf(length, tmp, length);
2075        __ add(src_pos, tmp, src_pos);
2076        __ add(dst_pos, tmp, dst_pos);
2077      }
2078    }
2079  }
2080  __ bind(slow);
2081  __ b(*stub->entry());
2082  __ bind(cont);
2083
2084#ifdef ASSERT
2085  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2086    // Sanity check the known type with the incoming class. For the
2087    // primitive case the types must match exactly with src.klass and
2088    // dst.klass each exactly matching the default type. For the
2089    // object array case, if no type check is needed then either the
2090    // dst type is exactly the expected type and the src type is a
2091    // subtype which we can't check or src is the same array as dst
2092    // but not necessarily exactly of type default_type.
2093    Label known_ok, halt;
2094    metadata2reg(op->expected_type()->constant_encoding(), tmp);
2095    if (UseCompressedClassPointers) {
2096      // Tmp holds the default type. It currently comes uncompressed after the
2097      // load of a constant, so encode it.
2098      __ encode_klass_not_null(tmp);
2099      // Load the raw value of the dst klass, since we will be comparing
2100      // uncompressed values directly.
2101      __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2102      __ cmpw(CCR0, tmp, tmp2);
2103      if (basic_type != T_OBJECT) {
2104        __ bne(CCR0, halt);
2105        // Load the raw value of the src klass.
2106        __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src);
2107        __ cmpw(CCR0, tmp, tmp2);
2108        __ beq(CCR0, known_ok);
2109      } else {
2110        __ beq(CCR0, known_ok);
2111        __ cmpw(CCR0, src, dst);
2112        __ beq(CCR0, known_ok);
2113      }
2114    } else {
2115      __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2116      __ cmpd(CCR0, tmp, tmp2);
2117      if (basic_type != T_OBJECT) {
2118        __ bne(CCR0, halt);
2119        // Load the raw value of the src klass.
2120        __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src);
2121        __ cmpd(CCR0, tmp, tmp2);
2122        __ beq(CCR0, known_ok);
2123      } else {
2124        __ beq(CCR0, known_ok);
2125        __ cmpd(CCR0, src, dst);
2126        __ beq(CCR0, known_ok);
2127      }
2128    }
2129    __ bind(halt);
2130    __ stop("incorrect type information in arraycopy");
2131    __ bind(known_ok);
2132  }
2133#endif
2134
2135#ifndef PRODUCT
2136  if (PrintC1Statistics) {
2137    address counter = Runtime1::arraycopy_count_address(basic_type);
2138    int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2139    __ lwz(R11_scratch1, simm16_offs, tmp);
2140    __ addi(R11_scratch1, R11_scratch1, 1);
2141    __ stw(R11_scratch1, simm16_offs, tmp);
2142  }
2143#endif
2144
2145  Register src_ptr = R3_ARG1;
2146  Register dst_ptr = R4_ARG2;
2147  Register len     = R5_ARG3;
2148
2149  __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2150  __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2151  if (shift == 0) {
2152    __ add(src_ptr, src_pos, src_ptr);
2153    __ add(dst_ptr, dst_pos, dst_ptr);
2154  } else {
2155    __ sldi(tmp, src_pos, shift);
2156    __ sldi(tmp2, dst_pos, shift);
2157    __ add(src_ptr, tmp, src_ptr);
2158    __ add(dst_ptr, tmp2, dst_ptr);
2159  }
2160
2161  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2162  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2163  const char *name;
2164  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2165
2166  // Arraycopy stubs takes a length in number of elements, so don't scale it.
2167  __ mr(len, length);
2168  __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0);
2169
2170  __ bind(*stub->continuation());
2171}
2172
2173
2174void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2175  if (dest->is_single_cpu()) {
2176    __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
2177#ifdef _LP64
2178    if (left->type() == T_OBJECT) {
2179      switch (code) {
2180        case lir_shl:  __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
2181        case lir_shr:  __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
2182        case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
2183        default: ShouldNotReachHere();
2184      }
2185    } else
2186#endif
2187      switch (code) {
2188        case lir_shl:  __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2189        case lir_shr:  __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2190        case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2191        default: ShouldNotReachHere();
2192      }
2193  } else {
2194    __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
2195    switch (code) {
2196      case lir_shl:  __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2197      case lir_shr:  __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2198      case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2199      default: ShouldNotReachHere();
2200    }
2201  }
2202}
2203
2204
2205void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2206#ifdef _LP64
2207  if (left->type() == T_OBJECT) {
2208    count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2209    if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
2210    else {
2211      switch (code) {
2212        case lir_shl:  __ sldi(dest->as_register_lo(), left->as_register(), count); break;
2213        case lir_shr:  __ sradi(dest->as_register_lo(), left->as_register(), count); break;
2214        case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
2215        default: ShouldNotReachHere();
2216      }
2217    }
2218    return;
2219  }
2220#endif
2221
2222  if (dest->is_single_cpu()) {
2223    count = count & 0x1F; // Java spec
2224    if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
2225    else {
2226      switch (code) {
2227        case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
2228        case lir_shr:  __ srawi(dest->as_register(), left->as_register(), count); break;
2229        case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
2230        default: ShouldNotReachHere();
2231      }
2232    }
2233  } else if (dest->is_double_cpu()) {
2234    count = count & 63; // Java spec
2235    if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
2236    else {
2237      switch (code) {
2238        case lir_shl:  __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2239        case lir_shr:  __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2240        case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2241        default: ShouldNotReachHere();
2242      }
2243    }
2244  } else {
2245    ShouldNotReachHere();
2246  }
2247}
2248
2249
2250void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2251  if (op->init_check()) {
2252    if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2253      explicit_null_check(op->klass()->as_register(), op->stub()->info());
2254    } else {
2255      add_debug_info_for_null_check_here(op->stub()->info());
2256    }
2257    __ lbz(op->tmp1()->as_register(),
2258           in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
2259    __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2260    __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry());
2261  }
2262  __ allocate_object(op->obj()->as_register(),
2263                     op->tmp1()->as_register(),
2264                     op->tmp2()->as_register(),
2265                     op->tmp3()->as_register(),
2266                     op->header_size(),
2267                     op->object_size(),
2268                     op->klass()->as_register(),
2269                     *op->stub()->entry());
2270
2271  __ bind(*op->stub()->continuation());
2272  __ verify_oop(op->obj()->as_register());
2273}
2274
2275
2276void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2277  LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
2278  if (UseSlowPath ||
2279      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2280      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2281    __ b(*op->stub()->entry());
2282  } else {
2283    __ allocate_array(op->obj()->as_register(),
2284                      op->len()->as_register(),
2285                      op->tmp1()->as_register(),
2286                      op->tmp2()->as_register(),
2287                      op->tmp3()->as_register(),
2288                      arrayOopDesc::header_size(op->type()),
2289                      type2aelembytes(op->type()),
2290                      op->klass()->as_register(),
2291                      *op->stub()->entry());
2292  }
2293  __ bind(*op->stub()->continuation());
2294}
2295
2296
2297void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2298                                        ciMethodData *md, ciProfileData *data,
2299                                        Register recv, Register tmp1, Label* update_done) {
2300  uint i;
2301  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2302    Label next_test;
2303    // See if the receiver is receiver[n].
2304    __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2305    __ verify_klass_ptr(tmp1);
2306    __ cmpd(CCR0, recv, tmp1);
2307    __ bne(CCR0, next_test);
2308
2309    __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2310    __ addi(tmp1, tmp1, DataLayout::counter_increment);
2311    __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2312    __ b(*update_done);
2313
2314    __ bind(next_test);
2315  }
2316
2317  // Didn't find receiver; find next empty slot and fill it in.
2318  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2319    Label next_test;
2320    __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2321    __ cmpdi(CCR0, tmp1, 0);
2322    __ bne(CCR0, next_test);
2323    __ li(tmp1, DataLayout::counter_increment);
2324    __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2325    __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2326    __ b(*update_done);
2327
2328    __ bind(next_test);
2329  }
2330}
2331
2332
2333void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2334                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2335  md = method->method_data_or_null();
2336  assert(md != NULL, "Sanity");
2337  data = md->bci_to_data(bci);
2338  assert(data != NULL,       "need data for checkcast");
2339  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2340  if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2341    // The offset is large so bias the mdo by the base of the slot so
2342    // that the ld can use simm16s to reference the slots of the data.
2343    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2344  }
2345}
2346
2347
2348void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2349  Register obj = op->object()->as_register();
2350  Register k_RInfo = op->tmp1()->as_register();
2351  Register klass_RInfo = op->tmp2()->as_register();
2352  Register Rtmp1 = op->tmp3()->as_register();
2353  Register dst = op->result_opr()->as_register();
2354  ciKlass* k = op->klass();
2355  bool should_profile = op->should_profile();
2356  bool move_obj_to_dst = (op->code() == lir_checkcast);
2357  // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
2358  bool reg_conflict = (obj == k_RInfo || obj == klass_RInfo || obj == Rtmp1);
2359  bool restore_obj = move_obj_to_dst && reg_conflict;
2360
2361  __ cmpdi(CCR0, obj, 0);
2362  if (move_obj_to_dst || reg_conflict) {
2363    __ mr_if_needed(dst, obj);
2364    if (reg_conflict) { obj = dst; }
2365  }
2366
2367  ciMethodData* md;
2368  ciProfileData* data;
2369  int mdo_offset_bias = 0;
2370  if (should_profile) {
2371    ciMethod* method = op->profiled_method();
2372    assert(method != NULL, "Should have method");
2373    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2374
2375    Register mdo      = k_RInfo;
2376    Register data_val = Rtmp1;
2377    Label not_null;
2378    __ bne(CCR0, not_null);
2379    metadata2reg(md->constant_encoding(), mdo);
2380    __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2381    __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2382    __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2383    __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2384    __ b(*obj_is_null);
2385    __ bind(not_null);
2386  } else {
2387    __ beq(CCR0, *obj_is_null);
2388  }
2389
2390  // get object class
2391  __ load_klass(klass_RInfo, obj);
2392
2393  if (k->is_loaded()) {
2394    metadata2reg(k->constant_encoding(), k_RInfo);
2395  } else {
2396    klass2reg_with_patching(k_RInfo, op->info_for_patch());
2397  }
2398
2399  Label profile_cast_failure, failure_restore_obj, profile_cast_success;
2400  Label *failure_target = should_profile ? &profile_cast_failure : failure;
2401  Label *success_target = should_profile ? &profile_cast_success : success;
2402
2403  if (op->fast_check()) {
2404    assert_different_registers(klass_RInfo, k_RInfo);
2405    __ cmpd(CCR0, k_RInfo, klass_RInfo);
2406    if (should_profile) {
2407      __ bne(CCR0, *failure_target);
2408      // Fall through to success case.
2409    } else {
2410      __ beq(CCR0, *success);
2411      // Fall through to failure case.
2412    }
2413  } else {
2414    bool need_slow_path = true;
2415    if (k->is_loaded()) {
2416      if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
2417        need_slow_path = false;
2418      }
2419      // Perform the fast part of the checking logic.
2420      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL),
2421                                       failure_target, NULL, RegisterOrConstant(k->super_check_offset()));
2422    } else {
2423      // Perform the fast part of the checking logic.
2424      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target);
2425    }
2426    if (!need_slow_path) {
2427      if (!should_profile) { __ b(*success); }
2428    } else {
2429      // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2430      address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2431      //__ load_const_optimized(Rtmp1, entry, R0);
2432      __ calculate_address_from_global_toc(Rtmp1, entry, true, true, false);
2433      __ mtctr(Rtmp1);
2434      __ bctrl(); // sets CR0
2435      if (should_profile) {
2436        __ bne(CCR0, *failure_target);
2437        // Fall through to success case.
2438      } else {
2439        __ beq(CCR0, *success);
2440        // Fall through to failure case.
2441      }
2442    }
2443  }
2444
2445  if (should_profile) {
2446    Register mdo = k_RInfo, recv = klass_RInfo;
2447    assert_different_registers(mdo, recv, Rtmp1);
2448    __ bind(profile_cast_success);
2449    metadata2reg(md->constant_encoding(), mdo);
2450    __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2451    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success);
2452    __ b(*success);
2453
2454    // Cast failure case.
2455    __ bind(profile_cast_failure);
2456    metadata2reg(md->constant_encoding(), mdo);
2457    __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2458    __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2459    __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment);
2460    __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2461  }
2462
2463  __ bind(*failure);
2464
2465  if (restore_obj) {
2466    __ mr(op->object()->as_register(), dst);
2467    // Fall through to failure case.
2468  }
2469}
2470
2471
2472void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2473  LIR_Code code = op->code();
2474  if (code == lir_store_check) {
2475    Register value = op->object()->as_register();
2476    Register array = op->array()->as_register();
2477    Register k_RInfo = op->tmp1()->as_register();
2478    Register klass_RInfo = op->tmp2()->as_register();
2479    Register Rtmp1 = op->tmp3()->as_register();
2480    bool should_profile = op->should_profile();
2481
2482    __ verify_oop(value);
2483    CodeStub* stub = op->stub();
2484    // Check if it needs to be profiled.
2485    ciMethodData* md;
2486    ciProfileData* data;
2487    int mdo_offset_bias = 0;
2488    if (should_profile) {
2489      ciMethod* method = op->profiled_method();
2490      assert(method != NULL, "Should have method");
2491      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2492    }
2493    Label profile_cast_success, failure, done;
2494    Label *success_target = should_profile ? &profile_cast_success : &done;
2495
2496    __ cmpdi(CCR0, value, 0);
2497    if (should_profile) {
2498      Label not_null;
2499      __ bne(CCR0, not_null);
2500      Register mdo      = k_RInfo;
2501      Register data_val = Rtmp1;
2502      metadata2reg(md->constant_encoding(), mdo);
2503      __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2504      __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2505      __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2506      __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2507      __ b(done);
2508      __ bind(not_null);
2509    } else {
2510      __ beq(CCR0, done);
2511    }
2512    if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2513      explicit_null_check(array, op->info_for_exception());
2514    } else {
2515      add_debug_info_for_null_check_here(op->info_for_exception());
2516    }
2517    __ load_klass(k_RInfo, array);
2518    __ load_klass(klass_RInfo, value);
2519
2520    // Get instance klass.
2521    __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
2522    // Perform the fast part of the checking logic.
2523    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL);
2524
2525    // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2526    const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2527    //__ load_const_optimized(R0, slow_path);
2528    __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
2529    __ mtctr(R0);
2530    __ bctrl(); // sets CR0
2531    if (!should_profile) {
2532      __ beq(CCR0, done);
2533      __ bind(failure);
2534    } else {
2535      __ bne(CCR0, failure);
2536      // Fall through to the success case.
2537
2538      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2539      assert_different_registers(value, mdo, recv, tmp1);
2540      __ bind(profile_cast_success);
2541      metadata2reg(md->constant_encoding(), mdo);
2542      __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2543      __ load_klass(recv, value);
2544      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2545      __ b(done);
2546
2547      // Cast failure case.
2548      __ bind(failure);
2549      metadata2reg(md->constant_encoding(), mdo);
2550      __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2551      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2552      __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2553      __ addi(tmp1, tmp1, -DataLayout::counter_increment);
2554      __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2555    }
2556    __ b(*stub->entry());
2557    __ bind(done);
2558
2559  } else if (code == lir_checkcast) {
2560    Label success, failure;
2561    emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); // Moves obj to dst.
2562    __ b(*op->stub()->entry());
2563    __ align(32, 12);
2564    __ bind(success);
2565  } else if (code == lir_instanceof) {
2566    Register dst = op->result_opr()->as_register();
2567    Label success, failure, done;
2568    emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
2569    __ li(dst, 0);
2570    __ b(done);
2571    __ align(32, 12);
2572    __ bind(success);
2573    __ li(dst, 1);
2574    __ bind(done);
2575  } else {
2576    ShouldNotReachHere();
2577  }
2578}
2579
2580
2581void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2582  Register addr = op->addr()->as_pointer_register();
2583  Register cmp_value = noreg, new_value = noreg;
2584  bool is_64bit = false;
2585
2586  if (op->code() == lir_cas_long) {
2587    cmp_value = op->cmp_value()->as_register_lo();
2588    new_value = op->new_value()->as_register_lo();
2589    is_64bit = true;
2590  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2591    cmp_value = op->cmp_value()->as_register();
2592    new_value = op->new_value()->as_register();
2593    if (op->code() == lir_cas_obj) {
2594      if (UseCompressedOops) {
2595        Register t1 = op->tmp1()->as_register();
2596        Register t2 = op->tmp2()->as_register();
2597        cmp_value = __ encode_heap_oop(t1, cmp_value);
2598        new_value = __ encode_heap_oop(t2, new_value);
2599      } else {
2600        is_64bit = true;
2601      }
2602    }
2603  } else {
2604    Unimplemented();
2605  }
2606
2607  if (is_64bit) {
2608    __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2609                MacroAssembler::MemBarNone,
2610                MacroAssembler::cmpxchgx_hint_atomic_update(),
2611                noreg, NULL, /*check without ldarx first*/true);
2612  } else {
2613    __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2614                MacroAssembler::MemBarNone,
2615                MacroAssembler::cmpxchgx_hint_atomic_update(),
2616                noreg, /*check without ldarx first*/true);
2617  }
2618
2619  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2620    __ isync();
2621  } else {
2622    __ sync();
2623  }
2624}
2625
2626
2627void LIR_Assembler::set_24bit_FPU() {
2628  Unimplemented();
2629}
2630
2631void LIR_Assembler::reset_FPU() {
2632  Unimplemented();
2633}
2634
2635
2636void LIR_Assembler::breakpoint() {
2637  __ illtrap();
2638}
2639
2640
2641void LIR_Assembler::push(LIR_Opr opr) {
2642  Unimplemented();
2643}
2644
2645void LIR_Assembler::pop(LIR_Opr opr) {
2646  Unimplemented();
2647}
2648
2649
2650void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2651  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2652  Register dst = dst_opr->as_register();
2653  Register reg = mon_addr.base();
2654  int offset = mon_addr.disp();
2655  // Compute pointer to BasicLock.
2656  __ add_const_optimized(dst, reg, offset);
2657}
2658
2659
2660void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2661  Register obj = op->obj_opr()->as_register();
2662  Register hdr = op->hdr_opr()->as_register();
2663  Register lock = op->lock_opr()->as_register();
2664
2665  // Obj may not be an oop.
2666  if (op->code() == lir_lock) {
2667    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2668    if (UseFastLocking) {
2669      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2670      // Add debug info for NullPointerException only if one is possible.
2671      if (op->info() != NULL) {
2672        if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2673          explicit_null_check(obj, op->info());
2674        } else {
2675          add_debug_info_for_null_check_here(op->info());
2676        }
2677      }
2678      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2679    } else {
2680      // always do slow locking
2681      // note: The slow locking code could be inlined here, however if we use
2682      //       slow locking, speed doesn't matter anyway and this solution is
2683      //       simpler and requires less duplicated code - additionally, the
2684      //       slow locking code is the same in either case which simplifies
2685      //       debugging.
2686      __ b(*op->stub()->entry());
2687    }
2688  } else {
2689    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2690    if (UseFastLocking) {
2691      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2692      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2693    } else {
2694      // always do slow unlocking
2695      // note: The slow unlocking code could be inlined here, however if we use
2696      //       slow unlocking, speed doesn't matter anyway and this solution is
2697      //       simpler and requires less duplicated code - additionally, the
2698      //       slow unlocking code is the same in either case which simplifies
2699      //       debugging.
2700      __ b(*op->stub()->entry());
2701    }
2702  }
2703  __ bind(*op->stub()->continuation());
2704}
2705
2706
2707void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2708  ciMethod* method = op->profiled_method();
2709  int bci          = op->profiled_bci();
2710  ciMethod* callee = op->profiled_callee();
2711
2712  // Update counter for all call types.
2713  ciMethodData* md = method->method_data_or_null();
2714  assert(md != NULL, "Sanity");
2715  ciProfileData* data = md->bci_to_data(bci);
2716  assert(data->is_CounterData(), "need CounterData for calls");
2717  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2718  Register mdo = op->mdo()->as_register();
2719#ifdef _LP64
2720  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2721  Register tmp1 = op->tmp1()->as_register_lo();
2722#else
2723  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2724  Register tmp1 = op->tmp1()->as_register();
2725#endif
2726  metadata2reg(md->constant_encoding(), mdo);
2727  int mdo_offset_bias = 0;
2728  if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2729                            data->size_in_bytes())) {
2730    // The offset is large so bias the mdo by the base of the slot so
2731    // that the ld can use simm16s to reference the slots of the data.
2732    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2733    __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2734  }
2735
2736  Bytecodes::Code bc = method->java_code_at_bci(bci);
2737  const bool callee_is_static = callee->is_loaded() && callee->is_static();
2738  // Perform additional virtual call profiling for invokevirtual and
2739  // invokeinterface bytecodes.
2740  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2741      !callee_is_static &&  // Required for optimized MH invokes.
2742      C1ProfileVirtualCalls) {
2743    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2744    Register recv = op->recv()->as_register();
2745    assert_different_registers(mdo, tmp1, recv);
2746    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2747    ciKlass* known_klass = op->known_holder();
2748    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2749      // We know the type that will be seen at this call site; we can
2750      // statically update the MethodData* rather than needing to do
2751      // dynamic tests on the receiver type.
2752
2753      // NOTE: we should probably put a lock around this search to
2754      // avoid collisions by concurrent compilations.
2755      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2756      uint i;
2757      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2758        ciKlass* receiver = vc_data->receiver(i);
2759        if (known_klass->equals(receiver)) {
2760          __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2761          __ addi(tmp1, tmp1, DataLayout::counter_increment);
2762          __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2763          return;
2764        }
2765      }
2766
2767      // Receiver type not found in profile data; select an empty slot.
2768
2769      // Note that this is less efficient than it should be because it
2770      // always does a write to the receiver part of the
2771      // VirtualCallData rather than just the first time.
2772      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2773        ciKlass* receiver = vc_data->receiver(i);
2774        if (receiver == NULL) {
2775          metadata2reg(known_klass->constant_encoding(), tmp1);
2776          __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
2777
2778          __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2779          __ addi(tmp1, tmp1, DataLayout::counter_increment);
2780          __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2781          return;
2782        }
2783      }
2784    } else {
2785      __ load_klass(recv, recv);
2786      Label update_done;
2787      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2788      // Receiver did not match any saved receiver and there is no empty row for it.
2789      // Increment total counter to indicate polymorphic case.
2790      __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2791      __ addi(tmp1, tmp1, DataLayout::counter_increment);
2792      __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2793
2794      __ bind(update_done);
2795    }
2796  } else {
2797    // Static call
2798    __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2799    __ addi(tmp1, tmp1, DataLayout::counter_increment);
2800    __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2801  }
2802}
2803
2804
2805void LIR_Assembler::align_backward_branch_target() {
2806  __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
2807}
2808
2809
2810void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2811  Unimplemented();
2812}
2813
2814
2815void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2816  assert(left->is_register(), "can only handle registers");
2817
2818  if (left->is_single_cpu()) {
2819    __ neg(dest->as_register(), left->as_register());
2820  } else if (left->is_single_fpu()) {
2821    __ fneg(dest->as_float_reg(), left->as_float_reg());
2822  } else if (left->is_double_fpu()) {
2823    __ fneg(dest->as_double_reg(), left->as_double_reg());
2824  } else {
2825    assert (left->is_double_cpu(), "Must be a long");
2826    __ neg(dest->as_register_lo(), left->as_register_lo());
2827  }
2828}
2829
2830
2831void LIR_Assembler::fxch(int i) {
2832  Unimplemented();
2833}
2834
2835void LIR_Assembler::fld(int i) {
2836  Unimplemented();
2837}
2838
2839void LIR_Assembler::ffree(int i) {
2840  Unimplemented();
2841}
2842
2843
2844void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2845                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2846  // Stubs: Called via rt_call, but dest is a stub address (no function descriptor).
2847  if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) ||
2848      dest == Runtime1::entry_for(Runtime1::new_multi_array_id   )) {
2849    //__ load_const_optimized(R0, dest);
2850    __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
2851    __ mtctr(R0);
2852    __ bctrl();
2853    assert(info != NULL, "sanity");
2854    add_call_info_here(info);
2855    return;
2856  }
2857
2858  __ call_c_with_frame_resize(dest, /*no resizing*/ 0);
2859  if (info != NULL) {
2860    add_call_info_here(info);
2861  }
2862}
2863
2864
2865void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2866  ShouldNotReachHere(); // Not needed on _LP64.
2867}
2868
2869void LIR_Assembler::membar() {
2870  __ fence();
2871}
2872
2873void LIR_Assembler::membar_acquire() {
2874  __ acquire();
2875}
2876
2877void LIR_Assembler::membar_release() {
2878  __ release();
2879}
2880
2881void LIR_Assembler::membar_loadload() {
2882  __ membar(Assembler::LoadLoad);
2883}
2884
2885void LIR_Assembler::membar_storestore() {
2886  __ membar(Assembler::StoreStore);
2887}
2888
2889void LIR_Assembler::membar_loadstore() {
2890  __ membar(Assembler::LoadStore);
2891}
2892
2893void LIR_Assembler::membar_storeload() {
2894  __ membar(Assembler::StoreLoad);
2895}
2896
2897void LIR_Assembler::on_spin_wait() {
2898  Unimplemented();
2899}
2900
2901void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
2902  LIR_Address* addr = addr_opr->as_address_ptr();
2903  assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
2904  if (addr->index()->is_illegal()) {
2905    __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
2906  } else {
2907    assert(addr->disp() == 0, "can't have both: index and disp");
2908    __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
2909  }
2910}
2911
2912
2913void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2914  ShouldNotReachHere();
2915}
2916
2917
2918#ifdef ASSERT
2919// Emit run-time assertion.
2920void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2921  Unimplemented();
2922}
2923#endif
2924
2925
2926void LIR_Assembler::peephole(LIR_List* lir) {
2927  // Optimize instruction pairs before emitting.
2928  LIR_OpList* inst = lir->instructions_list();
2929  for (int i = 1; i < inst->length(); i++) {
2930    LIR_Op* op = inst->at(i);
2931
2932    // 2 register-register-moves
2933    if (op->code() == lir_move) {
2934      LIR_Opr in2  = ((LIR_Op1*)op)->in_opr(),
2935              res2 = ((LIR_Op1*)op)->result_opr();
2936      if (in2->is_register() && res2->is_register()) {
2937        LIR_Op* prev = inst->at(i - 1);
2938        if (prev && prev->code() == lir_move) {
2939          LIR_Opr in1  = ((LIR_Op1*)prev)->in_opr(),
2940                  res1 = ((LIR_Op1*)prev)->result_opr();
2941          if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
2942            inst->remove_at(i);
2943          }
2944        }
2945      }
2946    }
2947
2948  }
2949  return;
2950}
2951
2952
2953void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2954  const Register Rptr = src->as_pointer_register(),
2955                 Rtmp = tmp->as_register();
2956  Register Rco = noreg;
2957  if (UseCompressedOops && data->is_oop()) {
2958    Rco = __ encode_heap_oop(Rtmp, data->as_register());
2959  }
2960
2961  Label Lretry;
2962  __ bind(Lretry);
2963
2964  if (data->type() == T_INT) {
2965    const Register Rold = dest->as_register(),
2966                   Rsrc = data->as_register();
2967    assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
2968    __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2969    if (code == lir_xadd) {
2970      __ add(Rtmp, Rsrc, Rold);
2971      __ stwcx_(Rtmp, Rptr);
2972    } else {
2973      __ stwcx_(Rsrc, Rptr);
2974    }
2975  } else if (data->is_oop()) {
2976    assert(code == lir_xchg, "xadd for oops");
2977    const Register Rold = dest->as_register();
2978    if (UseCompressedOops) {
2979      assert_different_registers(Rptr, Rold, Rco);
2980      __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2981      __ stwcx_(Rco, Rptr);
2982    } else {
2983      const Register Robj = data->as_register();
2984      assert_different_registers(Rptr, Rold, Robj);
2985      __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2986      __ stdcx_(Robj, Rptr);
2987    }
2988  } else if (data->type() == T_LONG) {
2989    const Register Rold = dest->as_register_lo(),
2990                   Rsrc = data->as_register_lo();
2991    assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
2992    __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2993    if (code == lir_xadd) {
2994      __ add(Rtmp, Rsrc, Rold);
2995      __ stdcx_(Rtmp, Rptr);
2996    } else {
2997      __ stdcx_(Rsrc, Rptr);
2998    }
2999  } else {
3000    ShouldNotReachHere();
3001  }
3002
3003  if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3004    __ bne_predict_not_taken(CCR0, Lretry);
3005  } else {
3006    __ bne(                  CCR0, Lretry);
3007  }
3008
3009  if (UseCompressedOops && data->is_oop()) {
3010    __ decode_heap_oop(dest->as_register());
3011  }
3012}
3013
3014
3015void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3016  Register obj = op->obj()->as_register();
3017  Register tmp = op->tmp()->as_pointer_register();
3018  LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
3019  ciKlass* exact_klass = op->exact_klass();
3020  intptr_t current_klass = op->current_klass();
3021  bool not_null = op->not_null();
3022  bool no_conflict = op->no_conflict();
3023
3024  Label Lupdate, Ldo_update, Ldone;
3025
3026  bool do_null = !not_null;
3027  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3028  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3029
3030  assert(do_null || do_update, "why are we here?");
3031  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3032
3033  __ verify_oop(obj);
3034
3035  if (do_null) {
3036    if (!TypeEntries::was_null_seen(current_klass)) {
3037      __ cmpdi(CCR0, obj, 0);
3038      __ bne(CCR0, Lupdate);
3039      __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3040      __ ori(R0, R0, TypeEntries::null_seen);
3041      if (do_update) {
3042        __ b(Ldo_update);
3043      } else {
3044        __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3045      }
3046    } else {
3047      if (do_update) {
3048        __ cmpdi(CCR0, obj, 0);
3049        __ beq(CCR0, Ldone);
3050      }
3051    }
3052#ifdef ASSERT
3053  } else {
3054    __ cmpdi(CCR0, obj, 0);
3055    __ bne(CCR0, Lupdate);
3056    __ stop("unexpect null obj", 0x9652);
3057#endif
3058  }
3059
3060  __ bind(Lupdate);
3061  if (do_update) {
3062    Label Lnext;
3063    const Register klass = R29_TOC; // kill and reload
3064    bool klass_reg_used = false;
3065#ifdef ASSERT
3066    if (exact_klass != NULL) {
3067      Label ok;
3068      klass_reg_used = true;
3069      __ load_klass(klass, obj);
3070      metadata2reg(exact_klass->constant_encoding(), R0);
3071      __ cmpd(CCR0, klass, R0);
3072      __ beq(CCR0, ok);
3073      __ stop("exact klass and actual klass differ", 0x8564);
3074      __ bind(ok);
3075    }
3076#endif
3077
3078    if (!no_conflict) {
3079      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3080        klass_reg_used = true;
3081        if (exact_klass != NULL) {
3082          __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3083          metadata2reg(exact_klass->constant_encoding(), klass);
3084        } else {
3085          __ load_klass(klass, obj);
3086          __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
3087        }
3088
3089        // Like InterpreterMacroAssembler::profile_obj_type
3090        __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3091        // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3092        __ cmpd(CCR1, R0, klass);
3093        // Klass seen before, nothing to do (regardless of unknown bit).
3094        //beq(CCR1, do_nothing);
3095
3096        __ andi_(R0, klass, TypeEntries::type_unknown);
3097        // Already unknown. Nothing to do anymore.
3098        //bne(CCR0, do_nothing);
3099        __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
3100        __ beq(CCR0, Lnext);
3101
3102        if (TypeEntries::is_type_none(current_klass)) {
3103          __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3104          __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3105          __ beq(CCR0, Ldo_update); // First time here. Set profile type.
3106        }
3107
3108      } else {
3109        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3110               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3111
3112        __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3113        __ andi_(R0, tmp, TypeEntries::type_unknown);
3114        // Already unknown. Nothing to do anymore.
3115        __ bne(CCR0, Lnext);
3116      }
3117
3118      // Different than before. Cannot keep accurate profile.
3119      __ ori(R0, tmp, TypeEntries::type_unknown);
3120    } else {
3121      // There's a single possible klass at this profile point
3122      assert(exact_klass != NULL, "should be");
3123      __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3124
3125      if (TypeEntries::is_type_none(current_klass)) {
3126        klass_reg_used = true;
3127        metadata2reg(exact_klass->constant_encoding(), klass);
3128
3129        __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3130        // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3131        __ cmpd(CCR1, R0, klass);
3132        // Klass seen before, nothing to do (regardless of unknown bit).
3133        __ beq(CCR1, Lnext);
3134#ifdef ASSERT
3135        {
3136          Label ok;
3137          __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3138          __ beq(CCR0, ok); // First time here.
3139
3140          __ stop("unexpected profiling mismatch", 0x7865);
3141          __ bind(ok);
3142        }
3143#endif
3144        // First time here. Set profile type.
3145        __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3146      } else {
3147        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3148               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3149
3150        // Already unknown. Nothing to do anymore.
3151        __ andi_(R0, tmp, TypeEntries::type_unknown);
3152        __ bne(CCR0, Lnext);
3153
3154        // Different than before. Cannot keep accurate profile.
3155        __ ori(R0, tmp, TypeEntries::type_unknown);
3156      }
3157    }
3158
3159    __ bind(Ldo_update);
3160    __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3161
3162    __ bind(Lnext);
3163    if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
3164  }
3165  __ bind(Ldone);
3166}
3167
3168
3169void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3170  assert(op->crc()->is_single_cpu(), "crc must be register");
3171  assert(op->val()->is_single_cpu(), "byte value must be register");
3172  assert(op->result_opr()->is_single_cpu(), "result must be register");
3173  Register crc = op->crc()->as_register();
3174  Register val = op->val()->as_register();
3175  Register res = op->result_opr()->as_register();
3176
3177  assert_different_registers(val, crc, res);
3178
3179  __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
3180  __ nand(crc, crc, crc); // ~crc
3181  __ update_byte_crc32(crc, val, res);
3182  __ nand(res, crc, crc); // ~crc
3183}
3184
3185#undef __
3186