1/*
2 * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "assembler_arm.inline.hpp"
28#include "interpreter/interpreter.hpp"
29#include "nativeInst_arm.hpp"
30#include "oops/instanceOop.hpp"
31#include "oops/method.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/frame.inline.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43
44// Declaration and definition of StubGenerator (no .hpp file).
45// For a more detailed description of the stub routine structure
46// see the comment in stubRoutines.hpp
47
48#define __ _masm->
49
50#ifdef PRODUCT
51#define BLOCK_COMMENT(str) /* nothing */
52#else
53#define BLOCK_COMMENT(str) __ block_comment(str)
54#endif
55
56#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
57
58// -------------------------------------------------------------------------------------------------------------------------
59// Stub Code definitions
60
61// Platform dependent parameters for array copy stubs
62
63// Note: we have noticed a huge change in behavior on a microbenchmark
64// from platform to platform depending on the configuration.
65
66// Instead of adding a series of command line options (which
67// unfortunately have to be done in the shared file and cannot appear
68// only in the ARM port), the tested result are hard-coded here in a set
69// of options, selected by specifying 'ArmCopyPlatform'
70
71// Currently, this 'platform' is hardcoded to a value that is a good
72// enough trade-off.  However, one can easily modify this file to test
73// the hard-coded configurations or create new ones. If the gain is
74// significant, we could decide to either add command line options or
75// add code to automatically choose a configuration.
76
77// see comments below for the various configurations created
78#define DEFAULT_ARRAYCOPY_CONFIG 0
79#define TEGRA2_ARRAYCOPY_CONFIG 1
80#define IMX515_ARRAYCOPY_CONFIG 2
81
82// Hard coded choices (XXX: could be changed to a command line option)
83#define ArmCopyPlatform DEFAULT_ARRAYCOPY_CONFIG
84
85#ifdef AARCH64
86#define ArmCopyCacheLineSize 64
87#else
88#define ArmCopyCacheLineSize 32 // not worth optimizing to 64 according to measured gains
89#endif // AARCH64
90
91// TODO-AARCH64: tune and revise AArch64 arraycopy optimizations
92
93// configuration for each kind of loop
94typedef struct {
95  int pld_distance;       // prefetch distance (0 => no prefetch, <0: prefetch_before);
96#ifndef AARCH64
97  bool split_ldm;         // if true, split each STM in STMs with fewer registers
98  bool split_stm;         // if true, split each LTM in LTMs with fewer registers
99#endif // !AARCH64
100} arraycopy_loop_config;
101
102// configuration for all loops
103typedef struct {
104  // const char *description;
105  arraycopy_loop_config forward_aligned;
106  arraycopy_loop_config backward_aligned;
107  arraycopy_loop_config forward_shifted;
108  arraycopy_loop_config backward_shifted;
109} arraycopy_platform_config;
110
111// configured platforms
112static arraycopy_platform_config arraycopy_configurations[] = {
113  // configuration parameters for arraycopy loops
114#ifdef AARCH64
115  {
116    {-256 }, // forward aligned
117    {-128 }, // backward aligned
118    {-256 }, // forward shifted
119    {-128 }  // backward shifted
120  }
121#else
122
123  // Configurations were chosen based on manual analysis of benchmark
124  // results, minimizing overhead with respect to best results on the
125  // different test cases.
126
127  // Prefetch before is always favored since it avoids dirtying the
128  // cache uselessly for small copies. Code for prefetch after has
129  // been kept in case the difference is significant for some
130  // platforms but we might consider dropping it.
131
132  // distance, ldm, stm
133  {
134    // default: tradeoff tegra2/imx515/nv-tegra2,
135    // Notes on benchmarking:
136    // - not far from optimal configuration on nv-tegra2
137    // - within 5% of optimal configuration except for backward aligned on IMX
138    // - up to 40% from optimal configuration for backward shifted and backward align for tegra2
139    //   but still on par with the operating system copy
140    {-256, true,  true  }, // forward aligned
141    {-256, true,  true  }, // backward aligned
142    {-256, false, false }, // forward shifted
143    {-256, true,  true  } // backward shifted
144  },
145  {
146    // configuration tuned on tegra2-4.
147    // Warning: should not be used on nv-tegra2 !
148    // Notes:
149    // - prefetch after gives 40% gain on backward copies on tegra2-4,
150    //   resulting in better number than the operating system
151    //   copy. However, this can lead to a 300% loss on nv-tegra and has
152    //   more impact on the cache (fetches futher than what is
153    //   copied). Use this configuration with care, in case it improves
154    //   reference benchmarks.
155    {-256, true,  true  }, // forward aligned
156    {96,   false, false }, // backward aligned
157    {-256, false, false }, // forward shifted
158    {96,   false, false } // backward shifted
159  },
160  {
161    // configuration tuned on imx515
162    // Notes:
163    // - smaller prefetch distance is sufficient to get good result and might be more stable
164    // - refined backward aligned options within 5% of optimal configuration except for
165    //   tests were the arrays fit in the cache
166    {-160, false, false }, // forward aligned
167    {-160, false, false }, // backward aligned
168    {-160, false, false }, // forward shifted
169    {-160, true,  true  } // backward shifted
170  }
171#endif // AARCH64
172};
173
174class StubGenerator: public StubCodeGenerator {
175
176#ifdef PRODUCT
177#define inc_counter_np(a,b,c) ((void)0)
178#else
179#define inc_counter_np(counter, t1, t2) \
180  BLOCK_COMMENT("inc_counter " #counter); \
181  __ inc_counter(&counter, t1, t2);
182#endif
183
184 private:
185
186  address generate_call_stub(address& return_address) {
187    StubCodeMark mark(this, "StubRoutines", "call_stub");
188    address start = __ pc();
189
190#ifdef AARCH64
191    const int saved_regs_size = 192;
192
193    __ stp(FP, LR, Address(SP, -saved_regs_size, pre_indexed));
194    __ mov(FP, SP);
195
196    int sp_offset = 16;
197    assert(frame::entry_frame_call_wrapper_offset * wordSize == sp_offset, "adjust this code");
198    __ stp(R0,  ZR,  Address(SP, sp_offset)); sp_offset += 16;
199
200    const int saved_result_and_result_type_offset = sp_offset;
201    __ stp(R1,  R2,  Address(SP, sp_offset)); sp_offset += 16;
202    __ stp(R19, R20, Address(SP, sp_offset)); sp_offset += 16;
203    __ stp(R21, R22, Address(SP, sp_offset)); sp_offset += 16;
204    __ stp(R23, R24, Address(SP, sp_offset)); sp_offset += 16;
205    __ stp(R25, R26, Address(SP, sp_offset)); sp_offset += 16;
206    __ stp(R27, R28, Address(SP, sp_offset)); sp_offset += 16;
207
208    __ stp_d(V8,  V9,  Address(SP, sp_offset)); sp_offset += 16;
209    __ stp_d(V10, V11, Address(SP, sp_offset)); sp_offset += 16;
210    __ stp_d(V12, V13, Address(SP, sp_offset)); sp_offset += 16;
211    __ stp_d(V14, V15, Address(SP, sp_offset)); sp_offset += 16;
212    assert (sp_offset == saved_regs_size, "adjust this code");
213
214    __ mov(Rmethod, R3);
215    __ mov(Rthread, R7);
216    __ reinit_heapbase();
217
218    { // Pass parameters
219      Label done_parameters, pass_parameters;
220
221      __ mov(Rparams, SP);
222      __ cbz_w(R6, done_parameters);
223
224      __ sub(Rtemp, SP, R6, ex_uxtw, LogBytesPerWord);
225      __ align_reg(SP, Rtemp, StackAlignmentInBytes);
226      __ add(Rparams, SP, R6, ex_uxtw, LogBytesPerWord);
227
228      __ bind(pass_parameters);
229      __ subs_w(R6, R6, 1);
230      __ ldr(Rtemp, Address(R5, wordSize, post_indexed));
231      __ str(Rtemp, Address(Rparams, -wordSize, pre_indexed));
232      __ b(pass_parameters, ne);
233
234      __ bind(done_parameters);
235
236#ifdef ASSERT
237      {
238        Label L;
239        __ cmp(SP, Rparams);
240        __ b(L, eq);
241        __ stop("SP does not match Rparams");
242        __ bind(L);
243      }
244#endif
245    }
246
247    __ mov(Rsender_sp, SP);
248    __ blr(R4);
249    return_address = __ pc();
250
251    __ mov(SP, FP);
252
253    __ ldp(R1, R2, Address(SP, saved_result_and_result_type_offset));
254
255    { // Handle return value
256      Label cont;
257      __ str(R0, Address(R1));
258
259      __ cmp_w(R2, T_DOUBLE);
260      __ ccmp_w(R2, T_FLOAT, Assembler::flags_for_condition(eq), ne);
261      __ b(cont, ne);
262
263      __ str_d(V0, Address(R1));
264      __ bind(cont);
265    }
266
267    sp_offset = saved_result_and_result_type_offset + 16;
268    __ ldp(R19, R20, Address(SP, sp_offset)); sp_offset += 16;
269    __ ldp(R21, R22, Address(SP, sp_offset)); sp_offset += 16;
270    __ ldp(R23, R24, Address(SP, sp_offset)); sp_offset += 16;
271    __ ldp(R25, R26, Address(SP, sp_offset)); sp_offset += 16;
272    __ ldp(R27, R28, Address(SP, sp_offset)); sp_offset += 16;
273
274    __ ldp_d(V8,  V9,  Address(SP, sp_offset)); sp_offset += 16;
275    __ ldp_d(V10, V11, Address(SP, sp_offset)); sp_offset += 16;
276    __ ldp_d(V12, V13, Address(SP, sp_offset)); sp_offset += 16;
277    __ ldp_d(V14, V15, Address(SP, sp_offset)); sp_offset += 16;
278    assert (sp_offset == saved_regs_size, "adjust this code");
279
280    __ ldp(FP, LR, Address(SP, saved_regs_size, post_indexed));
281    __ ret();
282
283#else // AARCH64
284
285    assert(frame::entry_frame_call_wrapper_offset == 0, "adjust this code");
286
287    __ mov(Rtemp, SP);
288    __ push(RegisterSet(FP) | RegisterSet(LR));
289#ifndef __SOFTFP__
290    __ fstmdbd(SP, FloatRegisterSet(D8, 8), writeback);
291#endif
292    __ stmdb(SP, RegisterSet(R0, R2) | RegisterSet(R4, R6) | RegisterSet(R8, R10) | altFP_7_11, writeback);
293    __ mov(Rmethod, R3);
294    __ ldmia(Rtemp, RegisterSet(R1, R3) | Rthread); // stacked arguments
295
296    // XXX: TODO
297    // Would be better with respect to native tools if the following
298    // setting of FP was changed to conform to the native ABI, with FP
299    // pointing to the saved FP slot (and the corresponding modifications
300    // for entry_frame_call_wrapper_offset and frame::real_fp).
301    __ mov(FP, SP);
302
303    {
304      Label no_parameters, pass_parameters;
305      __ cmp(R3, 0);
306      __ b(no_parameters, eq);
307
308      __ bind(pass_parameters);
309      __ ldr(Rtemp, Address(R2, wordSize, post_indexed)); // Rtemp OK, unused and scratchable
310      __ subs(R3, R3, 1);
311      __ push(Rtemp);
312      __ b(pass_parameters, ne);
313      __ bind(no_parameters);
314    }
315
316    __ mov(Rsender_sp, SP);
317    __ blx(R1);
318    return_address = __ pc();
319
320    __ add(SP, FP, wordSize); // Skip link to JavaCallWrapper
321    __ pop(RegisterSet(R2, R3));
322#ifndef __ABI_HARD__
323    __ cmp(R3, T_LONG);
324    __ cmp(R3, T_DOUBLE, ne);
325    __ str(R0, Address(R2));
326    __ str(R1, Address(R2, wordSize), eq);
327#else
328    Label cont, l_float, l_double;
329
330    __ cmp(R3, T_DOUBLE);
331    __ b(l_double, eq);
332
333    __ cmp(R3, T_FLOAT);
334    __ b(l_float, eq);
335
336    __ cmp(R3, T_LONG);
337    __ str(R0, Address(R2));
338    __ str(R1, Address(R2, wordSize), eq);
339    __ b(cont);
340
341
342    __ bind(l_double);
343    __ fstd(D0, Address(R2));
344    __ b(cont);
345
346    __ bind(l_float);
347    __ fsts(S0, Address(R2));
348
349    __ bind(cont);
350#endif
351
352    __ pop(RegisterSet(R4, R6) | RegisterSet(R8, R10) | altFP_7_11);
353#ifndef __SOFTFP__
354    __ fldmiad(SP, FloatRegisterSet(D8, 8), writeback);
355#endif
356    __ pop(RegisterSet(FP) | RegisterSet(PC));
357
358#endif // AARCH64
359    return start;
360  }
361
362
363  // (in) Rexception_obj: exception oop
364  address generate_catch_exception() {
365    StubCodeMark mark(this, "StubRoutines", "catch_exception");
366    address start = __ pc();
367
368    __ str(Rexception_obj, Address(Rthread, Thread::pending_exception_offset()));
369    __ b(StubRoutines::_call_stub_return_address);
370
371    return start;
372  }
373
374
375  // (in) Rexception_pc: return address
376  address generate_forward_exception() {
377    StubCodeMark mark(this, "StubRoutines", "forward exception");
378    address start = __ pc();
379
380    __ mov(c_rarg0, Rthread);
381    __ mov(c_rarg1, Rexception_pc);
382    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
383                         SharedRuntime::exception_handler_for_return_address),
384                         c_rarg0, c_rarg1);
385    __ ldr(Rexception_obj, Address(Rthread, Thread::pending_exception_offset()));
386    const Register Rzero = __ zero_register(Rtemp); // Rtemp OK (cleared by above call)
387    __ str(Rzero, Address(Rthread, Thread::pending_exception_offset()));
388
389#ifdef ASSERT
390    // make sure exception is set
391    { Label L;
392      __ cbnz(Rexception_obj, L);
393      __ stop("StubRoutines::forward exception: no pending exception (2)");
394      __ bind(L);
395    }
396#endif
397
398    // Verify that there is really a valid exception in RAX.
399    __ verify_oop(Rexception_obj);
400
401    __ jump(R0); // handler is returned in R0 by runtime function
402    return start;
403  }
404
405
406#ifndef AARCH64
407
408  // Integer division shared routine
409  //   Input:
410  //     R0  - dividend
411  //     R2  - divisor
412  //   Output:
413  //     R0  - remainder
414  //     R1  - quotient
415  //   Destroys:
416  //     R2
417  //     LR
418  address generate_idiv_irem() {
419    Label positive_arguments, negative_or_zero, call_slow_path;
420    Register dividend  = R0;
421    Register divisor   = R2;
422    Register remainder = R0;
423    Register quotient  = R1;
424    Register tmp       = LR;
425    assert(dividend == remainder, "must be");
426
427    address start = __ pc();
428
429    // Check for special cases: divisor <= 0 or dividend < 0
430    __ cmp(divisor, 0);
431    __ orrs(quotient, dividend, divisor, ne);
432    __ b(negative_or_zero, le);
433
434    __ bind(positive_arguments);
435    // Save return address on stack to free one extra register
436    __ push(LR);
437    // Approximate the mamximum order of the quotient
438    __ clz(tmp, dividend);
439    __ clz(quotient, divisor);
440    __ subs(tmp, quotient, tmp);
441    __ mov(quotient, 0);
442    // Jump to the appropriate place in the unrolled loop below
443    __ ldr(PC, Address(PC, tmp, lsl, 2), pl);
444    // If divisor is greater than dividend, return immediately
445    __ pop(PC);
446
447    // Offset table
448    Label offset_table[32];
449    int i;
450    for (i = 0; i <= 31; i++) {
451      __ emit_address(offset_table[i]);
452    }
453
454    // Unrolled loop of 32 division steps
455    for (i = 31; i >= 0; i--) {
456      __ bind(offset_table[i]);
457      __ cmp(remainder, AsmOperand(divisor, lsl, i));
458      __ sub(remainder, remainder, AsmOperand(divisor, lsl, i), hs);
459      __ add(quotient, quotient, 1 << i, hs);
460    }
461    __ pop(PC);
462
463    __ bind(negative_or_zero);
464    // Find the combination of argument signs and jump to corresponding handler
465    __ andr(quotient, dividend, 0x80000000, ne);
466    __ orr(quotient, quotient, AsmOperand(divisor, lsr, 31), ne);
467    __ add(PC, PC, AsmOperand(quotient, ror, 26), ne);
468    __ str(LR, Address(Rthread, JavaThread::saved_exception_pc_offset()));
469
470    // The leaf runtime function can destroy R0-R3 and R12 registers which are still alive
471    RegisterSet saved_registers = RegisterSet(R3) | RegisterSet(R12);
472#if R9_IS_SCRATCHED
473    // Safer to save R9 here since callers may have been written
474    // assuming R9 survives. This is suboptimal but may not be worth
475    // revisiting for this slow case.
476
477    // save also R10 for alignment
478    saved_registers = saved_registers | RegisterSet(R9, R10);
479#endif
480    {
481      // divisor == 0
482      FixedSizeCodeBlock zero_divisor(_masm, 8, true);
483      __ push(saved_registers);
484      __ mov(R0, Rthread);
485      __ mov(R1, LR);
486      __ mov(R2, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
487      __ b(call_slow_path);
488    }
489
490    {
491      // divisor > 0 && dividend < 0
492      FixedSizeCodeBlock positive_divisor_negative_dividend(_masm, 8, true);
493      __ push(LR);
494      __ rsb(dividend, dividend, 0);
495      __ bl(positive_arguments);
496      __ rsb(remainder, remainder, 0);
497      __ rsb(quotient, quotient, 0);
498      __ pop(PC);
499    }
500
501    {
502      // divisor < 0 && dividend > 0
503      FixedSizeCodeBlock negative_divisor_positive_dividend(_masm, 8, true);
504      __ push(LR);
505      __ rsb(divisor, divisor, 0);
506      __ bl(positive_arguments);
507      __ rsb(quotient, quotient, 0);
508      __ pop(PC);
509    }
510
511    {
512      // divisor < 0 && dividend < 0
513      FixedSizeCodeBlock negative_divisor_negative_dividend(_masm, 8, true);
514      __ push(LR);
515      __ rsb(dividend, dividend, 0);
516      __ rsb(divisor, divisor, 0);
517      __ bl(positive_arguments);
518      __ rsb(remainder, remainder, 0);
519      __ pop(PC);
520    }
521
522    __ bind(call_slow_path);
523    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::continuation_for_implicit_exception));
524    __ pop(saved_registers);
525    __ bx(R0);
526
527    return start;
528  }
529
530
531 // As per atomic.hpp the Atomic read-modify-write operations must be logically implemented as:
532 //  <fence>; <op>; <membar StoreLoad|StoreStore>
533 // But for load-linked/store-conditional based systems a fence here simply means
534 // no load/store can be reordered with respect to the initial load-linked, so we have:
535 // <membar storeload|loadload> ; load-linked; <op>; store-conditional; <membar storeload|storestore>
536 // There are no memory actions in <op> so nothing further is needed.
537 //
538 // So we define the following for convenience:
539#define MEMBAR_ATOMIC_OP_PRE \
540    MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad|MacroAssembler::LoadLoad)
541#define MEMBAR_ATOMIC_OP_POST \
542    MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad|MacroAssembler::StoreStore)
543
544  // Note: JDK 9 only supports ARMv7+ so we always have ldrexd available even though the
545  // code below allows for it to be otherwise. The else clause indicates an ARMv5 system
546  // for which we do not support MP and so membars are not necessary. This ARMv5 code will
547  // be removed in the future.
548
549  // Support for jint Atomic::add(jint add_value, volatile jint *dest)
550  //
551  // Arguments :
552  //
553  //      add_value:      R0
554  //      dest:           R1
555  //
556  // Results:
557  //
558  //     R0: the new stored in dest
559  //
560  // Overwrites:
561  //
562  //     R1, R2, R3
563  //
564  address generate_atomic_add() {
565    address start;
566
567    StubCodeMark mark(this, "StubRoutines", "atomic_add");
568    Label retry;
569    start = __ pc();
570    Register addval    = R0;
571    Register dest      = R1;
572    Register prev      = R2;
573    Register ok        = R2;
574    Register newval    = R3;
575
576    if (VM_Version::supports_ldrex()) {
577      __ membar(MEMBAR_ATOMIC_OP_PRE, prev);
578      __ bind(retry);
579      __ ldrex(newval, Address(dest));
580      __ add(newval, addval, newval);
581      __ strex(ok, newval, Address(dest));
582      __ cmp(ok, 0);
583      __ b(retry, ne);
584      __ mov (R0, newval);
585      __ membar(MEMBAR_ATOMIC_OP_POST, prev);
586    } else {
587      __ bind(retry);
588      __ ldr (prev, Address(dest));
589      __ add(newval, addval, prev);
590      __ atomic_cas_bool(prev, newval, dest, 0, noreg/*ignored*/);
591      __ b(retry, ne);
592      __ mov (R0, newval);
593    }
594    __ bx(LR);
595
596    return start;
597  }
598
599  // Support for jint Atomic::xchg(jint exchange_value, volatile jint *dest)
600  //
601  // Arguments :
602  //
603  //      exchange_value: R0
604  //      dest:           R1
605  //
606  // Results:
607  //
608  //     R0: the value previously stored in dest
609  //
610  // Overwrites:
611  //
612  //     R1, R2, R3
613  //
614  address generate_atomic_xchg() {
615    address start;
616
617    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
618    start = __ pc();
619    Register newval    = R0;
620    Register dest      = R1;
621    Register prev      = R2;
622
623    Label retry;
624
625    if (VM_Version::supports_ldrex()) {
626      Register ok=R3;
627      __ membar(MEMBAR_ATOMIC_OP_PRE, prev);
628      __ bind(retry);
629      __ ldrex(prev, Address(dest));
630      __ strex(ok, newval, Address(dest));
631      __ cmp(ok, 0);
632      __ b(retry, ne);
633      __ mov (R0, prev);
634      __ membar(MEMBAR_ATOMIC_OP_POST, prev);
635    } else {
636      __ bind(retry);
637      __ ldr (prev, Address(dest));
638      __ atomic_cas_bool(prev, newval, dest, 0, noreg/*ignored*/);
639      __ b(retry, ne);
640      __ mov (R0, prev);
641    }
642    __ bx(LR);
643
644    return start;
645  }
646
647  // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint *dest, jint compare_value)
648  //
649  // Arguments :
650  //
651  //      compare_value:  R0
652  //      exchange_value: R1
653  //      dest:           R2
654  //
655  // Results:
656  //
657  //     R0: the value previously stored in dest
658  //
659  // Overwrites:
660  //
661  //     R0, R1, R2, R3, Rtemp
662  //
663  address generate_atomic_cmpxchg() {
664    address start;
665
666    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
667    start = __ pc();
668    Register cmp       = R0;
669    Register newval    = R1;
670    Register dest      = R2;
671    Register temp1     = R3;
672    Register temp2     = Rtemp; // Rtemp free (native ABI)
673
674    __ membar(MEMBAR_ATOMIC_OP_PRE, temp1);
675
676    // atomic_cas returns previous value in R0
677    __ atomic_cas(temp1, temp2, cmp, newval, dest, 0);
678
679    __ membar(MEMBAR_ATOMIC_OP_POST, temp1);
680
681    __ bx(LR);
682
683    return start;
684  }
685
686  // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
687  // reordered before by a wrapper to (jlong compare_value, jlong exchange_value, volatile jlong *dest)
688  //
689  // Arguments :
690  //
691  //      compare_value:  R1 (High), R0 (Low)
692  //      exchange_value: R3 (High), R2 (Low)
693  //      dest:           SP+0
694  //
695  // Results:
696  //
697  //     R0:R1: the value previously stored in dest
698  //
699  // Overwrites:
700  //
701  address generate_atomic_cmpxchg_long() {
702    address start;
703
704    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
705    start = __ pc();
706    Register cmp_lo      = R0;
707    Register cmp_hi      = R1;
708    Register newval_lo   = R2;
709    Register newval_hi   = R3;
710    Register addr        = Rtemp;  /* After load from stack */
711    Register temp_lo     = R4;
712    Register temp_hi     = R5;
713    Register temp_result = R8;
714    assert_different_registers(cmp_lo, newval_lo, temp_lo, addr, temp_result, R7);
715    assert_different_registers(cmp_hi, newval_hi, temp_hi, addr, temp_result, R7);
716
717    __ membar(MEMBAR_ATOMIC_OP_PRE, Rtemp); // Rtemp free (native ABI)
718
719    // Stack is unaligned, maintain double word alignment by pushing
720    // odd number of regs.
721    __ push(RegisterSet(temp_result) | RegisterSet(temp_lo, temp_hi));
722    __ ldr(addr, Address(SP, 12));
723
724    // atomic_cas64 returns previous value in temp_lo, temp_hi
725    __ atomic_cas64(temp_lo, temp_hi, temp_result, cmp_lo, cmp_hi,
726                    newval_lo, newval_hi, addr, 0);
727    __ mov(R0, temp_lo);
728    __ mov(R1, temp_hi);
729
730    __ pop(RegisterSet(temp_result) | RegisterSet(temp_lo, temp_hi));
731
732    __ membar(MEMBAR_ATOMIC_OP_POST, Rtemp); // Rtemp free (native ABI)
733    __ bx(LR);
734
735    return start;
736  }
737
738  address generate_atomic_load_long() {
739    address start;
740
741    StubCodeMark mark(this, "StubRoutines", "atomic_load_long");
742    start = __ pc();
743    Register result_lo = R0;
744    Register result_hi = R1;
745    Register src       = R0;
746
747    if (!os::is_MP()) {
748      __ ldmia(src, RegisterSet(result_lo, result_hi));
749      __ bx(LR);
750    } else if (VM_Version::supports_ldrexd()) {
751      __ ldrexd(result_lo, Address(src));
752      __ clrex(); // FIXME: safe to remove?
753      __ bx(LR);
754    } else {
755      __ stop("Atomic load(jlong) unsupported on this platform");
756      __ bx(LR);
757    }
758
759    return start;
760  }
761
762  address generate_atomic_store_long() {
763    address start;
764
765    StubCodeMark mark(this, "StubRoutines", "atomic_store_long");
766    start = __ pc();
767    Register newval_lo = R0;
768    Register newval_hi = R1;
769    Register dest      = R2;
770    Register scratch_lo    = R2;
771    Register scratch_hi    = R3;  /* After load from stack */
772    Register result    = R3;
773
774    if (!os::is_MP()) {
775      __ stmia(dest, RegisterSet(newval_lo, newval_hi));
776      __ bx(LR);
777    } else if (VM_Version::supports_ldrexd()) {
778      __ mov(Rtemp, dest);  // get dest to Rtemp
779      Label retry;
780      __ bind(retry);
781      __ ldrexd(scratch_lo, Address(Rtemp));
782      __ strexd(result, R0, Address(Rtemp));
783      __ rsbs(result, result, 1);
784      __ b(retry, eq);
785      __ bx(LR);
786    } else {
787      __ stop("Atomic store(jlong) unsupported on this platform");
788      __ bx(LR);
789    }
790
791    return start;
792  }
793
794
795#endif // AARCH64
796
797#ifdef COMPILER2
798  // Support for uint StubRoutine::Arm::partial_subtype_check( Klass sub, Klass super );
799  // Arguments :
800  //
801  //      ret  : R0, returned
802  //      icc/xcc: set as R0 (depending on wordSize)
803  //      sub  : R1, argument, not changed
804  //      super: R2, argument, not changed
805  //      raddr: LR, blown by call
806  address generate_partial_subtype_check() {
807    __ align(CodeEntryAlignment);
808    StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
809    address start = __ pc();
810
811    // based on SPARC check_klass_subtype_[fast|slow]_path (without CompressedOops)
812
813    // R0 used as tmp_reg (in addition to return reg)
814    Register sub_klass = R1;
815    Register super_klass = R2;
816    Register tmp_reg2 = R3;
817    Register tmp_reg3 = R4;
818#define saved_set tmp_reg2, tmp_reg3
819
820    Label L_loop, L_fail;
821
822    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
823
824    // fast check should be redundant
825
826    // slow check
827    {
828      __ raw_push(saved_set);
829
830      // a couple of useful fields in sub_klass:
831      int ss_offset = in_bytes(Klass::secondary_supers_offset());
832
833      // Do a linear scan of the secondary super-klass chain.
834      // This code is rarely used, so simplicity is a virtue here.
835
836      inc_counter_np(SharedRuntime::_partial_subtype_ctr, tmp_reg2, tmp_reg3);
837
838      Register scan_temp = tmp_reg2;
839      Register count_temp = tmp_reg3;
840
841      // We will consult the secondary-super array.
842      __ ldr(scan_temp, Address(sub_klass, ss_offset));
843
844      Register search_key = super_klass;
845
846      // Load the array length.
847      __ ldr_s32(count_temp, Address(scan_temp, Array<Klass*>::length_offset_in_bytes()));
848      __ add(scan_temp, scan_temp, Array<Klass*>::base_offset_in_bytes());
849
850      __ add(count_temp, count_temp, 1);
851
852      // Top of search loop
853      __ bind(L_loop);
854      // Notes:
855      //  scan_temp starts at the array elements
856      //  count_temp is 1+size
857      __ subs(count_temp, count_temp, 1);
858      __ b(L_fail, eq); // not found in the array
859
860      // Load next super to check
861      // In the array of super classes elements are pointer sized.
862      int element_size = wordSize;
863      __ ldr(R0, Address(scan_temp, element_size, post_indexed));
864
865      // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
866      __ subs(R0, R0, search_key); // set R0 to 0 on success (and flags to eq)
867
868      // A miss means we are NOT a subtype and need to keep looping
869      __ b(L_loop, ne);
870
871      // Falling out the bottom means we found a hit; we ARE a subtype
872
873      // Success.  Cache the super we found and proceed in triumph.
874      __ str(super_klass, Address(sub_klass, sc_offset));
875
876      // Return success
877      // R0 is already 0 and flags are already set to eq
878      __ raw_pop(saved_set);
879      __ ret();
880
881      // Return failure
882      __ bind(L_fail);
883#ifdef AARCH64
884      // count_temp is 0, can't use ZR here
885      __ adds(R0, count_temp, 1); // sets the flags
886#else
887      __ movs(R0, 1); // sets the flags
888#endif
889      __ raw_pop(saved_set);
890      __ ret();
891    }
892    return start;
893  }
894#undef saved_set
895#endif // COMPILER2
896
897
898  //----------------------------------------------------------------------------------------------------
899  // Non-destructive plausibility checks for oops
900
901  address generate_verify_oop() {
902    StubCodeMark mark(this, "StubRoutines", "verify_oop");
903    address start = __ pc();
904
905    // Incoming arguments:
906    //
907    // R0: error message (char* )
908    // R1: address of register save area
909    // R2: oop to verify
910    //
911    // All registers are saved before calling this stub. However, condition flags should be saved here.
912
913    const Register oop   = R2;
914    const Register klass = R3;
915    const Register tmp1  = R6;
916    const Register tmp2  = R8;
917
918    const Register flags     = Rtmp_save0; // R4/R19
919    const Register ret_addr  = Rtmp_save1; // R5/R20
920    assert_different_registers(oop, klass, tmp1, tmp2, flags, ret_addr, R7);
921
922    Label exit, error;
923    InlinedAddress verify_oop_count((address) StubRoutines::verify_oop_count_addr());
924
925#ifdef AARCH64
926    __ mrs(flags, Assembler::SysReg_NZCV);
927#else
928    __ mrs(Assembler::CPSR, flags);
929#endif // AARCH64
930
931    __ ldr_literal(tmp1, verify_oop_count);
932    __ ldr_s32(tmp2, Address(tmp1));
933    __ add(tmp2, tmp2, 1);
934    __ str_32(tmp2, Address(tmp1));
935
936    // make sure object is 'reasonable'
937    __ cbz(oop, exit);                           // if obj is NULL it is ok
938
939    // Check if the oop is in the right area of memory
940    // Note: oop_mask and oop_bits must be updated if the code is saved/reused
941    const address oop_mask = (address) Universe::verify_oop_mask();
942    const address oop_bits = (address) Universe::verify_oop_bits();
943    __ mov_address(tmp1, oop_mask, symbolic_Relocation::oop_mask_reference);
944    __ andr(tmp2, oop, tmp1);
945    __ mov_address(tmp1, oop_bits, symbolic_Relocation::oop_bits_reference);
946    __ cmp(tmp2, tmp1);
947    __ b(error, ne);
948
949    // make sure klass is 'reasonable'
950    __ load_klass(klass, oop);                   // get klass
951    __ cbz(klass, error);                        // if klass is NULL it is broken
952
953    // return if everything seems ok
954    __ bind(exit);
955
956#ifdef AARCH64
957    __ msr(Assembler::SysReg_NZCV, flags);
958#else
959    __ msr(Assembler::CPSR_f, flags);
960#endif // AARCH64
961
962    __ ret();
963
964    // handle errors
965    __ bind(error);
966
967    __ mov(ret_addr, LR);                      // save return address
968
969    // R0: error message
970    // R1: register save area
971    __ call(CAST_FROM_FN_PTR(address, MacroAssembler::debug));
972
973    __ mov(LR, ret_addr);
974    __ b(exit);
975
976    __ bind_literal(verify_oop_count);
977
978    return start;
979  }
980
981  //----------------------------------------------------------------------------------------------------
982  // Array copy stubs
983
984  //
985  //  Generate overlap test for array copy stubs
986  //
987  //  Input:
988  //    R0    -  array1
989  //    R1    -  array2
990  //    R2    -  element count, 32-bit int
991  //
992  //  input registers are preserved
993  //
994  void array_overlap_test(address no_overlap_target, int log2_elem_size, Register tmp1, Register tmp2) {
995    assert(no_overlap_target != NULL, "must be generated");
996    array_overlap_test(no_overlap_target, NULL, log2_elem_size, tmp1, tmp2);
997  }
998  void array_overlap_test(Label& L_no_overlap, int log2_elem_size, Register tmp1, Register tmp2) {
999    array_overlap_test(NULL, &L_no_overlap, log2_elem_size, tmp1, tmp2);
1000  }
1001  void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size, Register tmp1, Register tmp2) {
1002    const Register from       = R0;
1003    const Register to         = R1;
1004    const Register count      = R2;
1005    const Register to_from    = tmp1; // to - from
1006#ifndef AARCH64
1007    const Register byte_count = (log2_elem_size == 0) ? count : tmp2; // count << log2_elem_size
1008#endif // AARCH64
1009    assert_different_registers(from, to, count, tmp1, tmp2);
1010
1011    // no_overlap version works if 'to' lower (unsigned) than 'from'
1012    // and or 'to' more than (count*size) from 'from'
1013
1014    BLOCK_COMMENT("Array Overlap Test:");
1015    __ subs(to_from, to, from);
1016#ifndef AARCH64
1017    if (log2_elem_size != 0) {
1018      __ mov(byte_count, AsmOperand(count, lsl, log2_elem_size));
1019    }
1020#endif // !AARCH64
1021    if (NOLp == NULL)
1022      __ b(no_overlap_target,lo);
1023    else
1024      __ b((*NOLp), lo);
1025#ifdef AARCH64
1026    __ subs(ZR, to_from, count, ex_sxtw, log2_elem_size);
1027#else
1028    __ cmp(to_from, byte_count);
1029#endif // AARCH64
1030    if (NOLp == NULL)
1031      __ b(no_overlap_target, ge);
1032    else
1033      __ b((*NOLp), ge);
1034  }
1035
1036#ifdef AARCH64
1037  // TODO-AARCH64: revise usages of bulk_* methods (probably ldp`s and stp`s should interlace)
1038
1039  // Loads [from, from + count*wordSize) into regs[0], regs[1], ..., regs[count-1]
1040  // and increases 'from' by count*wordSize.
1041  void bulk_load_forward(Register from, const Register regs[], int count) {
1042    assert (count > 0 && count % 2 == 0, "count must be positive even number");
1043    int bytes = count * wordSize;
1044
1045    int offset = 0;
1046    __ ldp(regs[0], regs[1], Address(from, bytes, post_indexed));
1047    offset += 2*wordSize;
1048
1049    for (int i = 2; i < count; i += 2) {
1050      __ ldp(regs[i], regs[i+1], Address(from, -bytes + offset));
1051      offset += 2*wordSize;
1052    }
1053
1054    assert (offset == bytes, "must be");
1055  }
1056
1057  // Stores regs[0], regs[1], ..., regs[count-1] to [to, to + count*wordSize)
1058  // and increases 'to' by count*wordSize.
1059  void bulk_store_forward(Register to, const Register regs[], int count) {
1060    assert (count > 0 && count % 2 == 0, "count must be positive even number");
1061    int bytes = count * wordSize;
1062
1063    int offset = 0;
1064    __ stp(regs[0], regs[1], Address(to, bytes, post_indexed));
1065    offset += 2*wordSize;
1066
1067    for (int i = 2; i < count; i += 2) {
1068      __ stp(regs[i], regs[i+1], Address(to, -bytes + offset));
1069      offset += 2*wordSize;
1070    }
1071
1072    assert (offset == bytes, "must be");
1073  }
1074
1075  // Loads [from - count*wordSize, from) into regs[0], regs[1], ..., regs[count-1]
1076  // and decreases 'from' by count*wordSize.
1077  // Note that the word with lowest address goes to regs[0].
1078  void bulk_load_backward(Register from, const Register regs[], int count) {
1079    assert (count > 0 && count % 2 == 0, "count must be positive even number");
1080    int bytes = count * wordSize;
1081
1082    int offset = 0;
1083
1084    for (int i = count - 2; i > 0; i -= 2) {
1085      offset += 2*wordSize;
1086      __ ldp(regs[i], regs[i+1], Address(from, -offset));
1087    }
1088
1089    offset += 2*wordSize;
1090    __ ldp(regs[0], regs[1], Address(from, -bytes, pre_indexed));
1091
1092    assert (offset == bytes, "must be");
1093  }
1094
1095  // Stores regs[0], regs[1], ..., regs[count-1] into [to - count*wordSize, to)
1096  // and decreases 'to' by count*wordSize.
1097  // Note that regs[0] value goes into the memory with lowest address.
1098  void bulk_store_backward(Register to, const Register regs[], int count) {
1099    assert (count > 0 && count % 2 == 0, "count must be positive even number");
1100    int bytes = count * wordSize;
1101
1102    int offset = 0;
1103
1104    for (int i = count - 2; i > 0; i -= 2) {
1105      offset += 2*wordSize;
1106      __ stp(regs[i], regs[i+1], Address(to, -offset));
1107    }
1108
1109    offset += 2*wordSize;
1110    __ stp(regs[0], regs[1], Address(to, -bytes, pre_indexed));
1111
1112    assert (offset == bytes, "must be");
1113  }
1114#endif // AARCH64
1115
1116  // TODO-AARCH64: rearrange in-loop prefetches:
1117  //   probably we should choose between "prefetch-store before or after store", not "before or after load".
1118  void prefetch(Register from, Register to, int offset, int to_delta = 0) {
1119    __ prefetch_read(Address(from, offset));
1120#ifdef AARCH64
1121  // Next line commented out to avoid significant loss of performance in memory copy - JDK-8078120
1122  // __ prfm(pstl1keep, Address(to, offset + to_delta));
1123#endif // AARCH64
1124  }
1125
1126  // Generate the inner loop for forward aligned array copy
1127  //
1128  // Arguments
1129  //      from:      src address, 64 bits  aligned
1130  //      to:        dst address, wordSize aligned
1131  //      count:     number of elements (32-bit int)
1132  //      bytes_per_count: number of bytes for each unit of 'count'
1133  //
1134  // Return the minimum initial value for count
1135  //
1136  // Notes:
1137  // - 'from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA, required for AArch64)
1138  // - 'to' aligned on wordSize
1139  // - 'count' must be greater or equal than the returned value
1140  //
1141  // Increases 'from' and 'to' by count*bytes_per_count.
1142  //
1143  // Scratches 'count', R3.
1144  // On AArch64 also scratches R4-R10; on 32-bit ARM R4-R10 are preserved (saved/restored).
1145  //
1146  int generate_forward_aligned_copy_loop(Register from, Register to, Register count, int bytes_per_count) {
1147    assert (from == R0 && to == R1 && count == R2, "adjust the implementation below");
1148
1149    const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iteration
1150    arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].forward_aligned;
1151    int pld_offset = config->pld_distance;
1152    const int count_per_loop = bytes_per_loop / bytes_per_count;
1153
1154#ifndef AARCH64
1155    bool split_read= config->split_ldm;
1156    bool split_write= config->split_stm;
1157
1158    // XXX optim: use VLDM/VSTM when available (Neon) with PLD
1159    //  NEONCopyPLD
1160    //      PLD [r1, #0xC0]
1161    //      VLDM r1!,{d0-d7}
1162    //      VSTM r0!,{d0-d7}
1163    //      SUBS r2,r2,#0x40
1164    //      BGE NEONCopyPLD
1165
1166    __ push(RegisterSet(R4,R10));
1167#endif // !AARCH64
1168
1169    const bool prefetch_before = pld_offset < 0;
1170    const bool prefetch_after = pld_offset > 0;
1171
1172    Label L_skip_pld;
1173
1174    // predecrease to exit when there is less than count_per_loop
1175    __ sub_32(count, count, count_per_loop);
1176
1177    if (pld_offset != 0) {
1178      pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1179
1180      prefetch(from, to, 0);
1181
1182      if (prefetch_before) {
1183        // If prefetch is done ahead, final PLDs that overflow the
1184        // copied area can be easily avoided. 'count' is predecreased
1185        // by the prefetch distance to optimize the inner loop and the
1186        // outer loop skips the PLD.
1187        __ subs_32(count, count, (bytes_per_loop+pld_offset)/bytes_per_count);
1188
1189        // skip prefetch for small copies
1190        __ b(L_skip_pld, lt);
1191      }
1192
1193      int offset = ArmCopyCacheLineSize;
1194      while (offset <= pld_offset) {
1195        prefetch(from, to, offset);
1196        offset += ArmCopyCacheLineSize;
1197      };
1198    }
1199
1200#ifdef AARCH64
1201    const Register data_regs[8] = {R3, R4, R5, R6, R7, R8, R9, R10};
1202#endif // AARCH64
1203    {
1204      // LDM (32-bit ARM) / LDP (AArch64) copy of 'bytes_per_loop' bytes
1205
1206      // 32-bit ARM note: we have tried implementing loop unrolling to skip one
1207      // PLD with 64 bytes cache line but the gain was not significant.
1208
1209      Label L_copy_loop;
1210      __ align(OptoLoopAlignment);
1211      __ BIND(L_copy_loop);
1212
1213      if (prefetch_before) {
1214        prefetch(from, to, bytes_per_loop + pld_offset);
1215        __ BIND(L_skip_pld);
1216      }
1217
1218#ifdef AARCH64
1219      bulk_load_forward(from, data_regs, 8);
1220#else
1221      if (split_read) {
1222        // Split the register set in two sets so that there is less
1223        // latency between LDM and STM (R3-R6 available while R7-R10
1224        // still loading) and less register locking issue when iterating
1225        // on the first LDM.
1226        __ ldmia(from, RegisterSet(R3, R6), writeback);
1227        __ ldmia(from, RegisterSet(R7, R10), writeback);
1228      } else {
1229        __ ldmia(from, RegisterSet(R3, R10), writeback);
1230      }
1231#endif // AARCH64
1232
1233      __ subs_32(count, count, count_per_loop);
1234
1235      if (prefetch_after) {
1236        prefetch(from, to, pld_offset, bytes_per_loop);
1237      }
1238
1239#ifdef AARCH64
1240      bulk_store_forward(to, data_regs, 8);
1241#else
1242      if (split_write) {
1243        __ stmia(to, RegisterSet(R3, R6), writeback);
1244        __ stmia(to, RegisterSet(R7, R10), writeback);
1245      } else {
1246        __ stmia(to, RegisterSet(R3, R10), writeback);
1247      }
1248#endif // AARCH64
1249
1250      __ b(L_copy_loop, ge);
1251
1252      if (prefetch_before) {
1253        // the inner loop may end earlier, allowing to skip PLD for the last iterations
1254        __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1255        __ b(L_skip_pld, ge);
1256      }
1257    }
1258    BLOCK_COMMENT("Remaining bytes:");
1259    // still 0..bytes_per_loop-1 aligned bytes to copy, count already decreased by (at least) bytes_per_loop bytes
1260
1261    // __ add(count, count, ...); // addition useless for the bit tests
1262    assert (pld_offset % bytes_per_loop == 0, "decreasing count by pld_offset before loop must not change tested bits");
1263
1264#ifdef AARCH64
1265    assert (bytes_per_loop == 64, "adjust the code below");
1266    assert (bytes_per_count <= 8, "adjust the code below");
1267
1268    {
1269      Label L;
1270      __ tbz(count, exact_log2(32/bytes_per_count), L);
1271
1272      bulk_load_forward(from, data_regs, 4);
1273      bulk_store_forward(to, data_regs, 4);
1274
1275      __ bind(L);
1276    }
1277
1278    {
1279      Label L;
1280      __ tbz(count, exact_log2(16/bytes_per_count), L);
1281
1282      bulk_load_forward(from, data_regs, 2);
1283      bulk_store_forward(to, data_regs, 2);
1284
1285      __ bind(L);
1286    }
1287
1288    {
1289      Label L;
1290      __ tbz(count, exact_log2(8/bytes_per_count), L);
1291
1292      __ ldr(R3, Address(from, 8, post_indexed));
1293      __ str(R3, Address(to,   8, post_indexed));
1294
1295      __ bind(L);
1296    }
1297
1298    if (bytes_per_count <= 4) {
1299      Label L;
1300      __ tbz(count, exact_log2(4/bytes_per_count), L);
1301
1302      __ ldr_w(R3, Address(from, 4, post_indexed));
1303      __ str_w(R3, Address(to,   4, post_indexed));
1304
1305      __ bind(L);
1306    }
1307
1308    if (bytes_per_count <= 2) {
1309      Label L;
1310      __ tbz(count, exact_log2(2/bytes_per_count), L);
1311
1312      __ ldrh(R3, Address(from, 2, post_indexed));
1313      __ strh(R3, Address(to,   2, post_indexed));
1314
1315      __ bind(L);
1316    }
1317
1318    if (bytes_per_count <= 1) {
1319      Label L;
1320      __ tbz(count, 0, L);
1321
1322      __ ldrb(R3, Address(from, 1, post_indexed));
1323      __ strb(R3, Address(to,   1, post_indexed));
1324
1325      __ bind(L);
1326    }
1327#else
1328    __ tst(count, 16 / bytes_per_count);
1329    __ ldmia(from, RegisterSet(R3, R6), writeback, ne); // copy 16 bytes
1330    __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1331
1332    __ tst(count, 8 / bytes_per_count);
1333    __ ldmia(from, RegisterSet(R3, R4), writeback, ne); // copy 8 bytes
1334    __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1335
1336    if (bytes_per_count <= 4) {
1337      __ tst(count, 4 / bytes_per_count);
1338      __ ldr(R3, Address(from, 4, post_indexed), ne); // copy 4 bytes
1339      __ str(R3, Address(to, 4, post_indexed), ne);
1340    }
1341
1342    if (bytes_per_count <= 2) {
1343      __ tst(count, 2 / bytes_per_count);
1344      __ ldrh(R3, Address(from, 2, post_indexed), ne); // copy 2 bytes
1345      __ strh(R3, Address(to, 2, post_indexed), ne);
1346    }
1347
1348    if (bytes_per_count == 1) {
1349      __ tst(count, 1);
1350      __ ldrb(R3, Address(from, 1, post_indexed), ne);
1351      __ strb(R3, Address(to, 1, post_indexed), ne);
1352    }
1353
1354    __ pop(RegisterSet(R4,R10));
1355#endif // AARCH64
1356
1357    return count_per_loop;
1358  }
1359
1360
1361  // Generate the inner loop for backward aligned array copy
1362  //
1363  // Arguments
1364  //      end_from:      src end address, 64 bits  aligned
1365  //      end_to:        dst end address, wordSize aligned
1366  //      count:         number of elements (32-bit int)
1367  //      bytes_per_count: number of bytes for each unit of 'count'
1368  //
1369  // Return the minimum initial value for count
1370  //
1371  // Notes:
1372  // - 'end_from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA, required for AArch64)
1373  // - 'end_to' aligned on wordSize
1374  // - 'count' must be greater or equal than the returned value
1375  //
1376  // Decreases 'end_from' and 'end_to' by count*bytes_per_count.
1377  //
1378  // Scratches 'count', R3.
1379  // On AArch64 also scratches R4-R10; on 32-bit ARM R4-R10 are preserved (saved/restored).
1380  //
1381  int generate_backward_aligned_copy_loop(Register end_from, Register end_to, Register count, int bytes_per_count) {
1382    assert (end_from == R0 && end_to == R1 && count == R2, "adjust the implementation below");
1383
1384    const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iteration
1385    const int count_per_loop = bytes_per_loop / bytes_per_count;
1386
1387    arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].backward_aligned;
1388    int pld_offset = config->pld_distance;
1389
1390#ifndef AARCH64
1391    bool split_read= config->split_ldm;
1392    bool split_write= config->split_stm;
1393
1394    // See the forward copy variant for additional comments.
1395
1396    __ push(RegisterSet(R4,R10));
1397#endif // !AARCH64
1398
1399    __ sub_32(count, count, count_per_loop);
1400
1401    const bool prefetch_before = pld_offset < 0;
1402    const bool prefetch_after = pld_offset > 0;
1403
1404    Label L_skip_pld;
1405
1406    if (pld_offset != 0) {
1407      pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1408
1409      prefetch(end_from, end_to, -wordSize);
1410
1411      if (prefetch_before) {
1412        __ subs_32(count, count, (bytes_per_loop + pld_offset) / bytes_per_count);
1413        __ b(L_skip_pld, lt);
1414      }
1415
1416      int offset = ArmCopyCacheLineSize;
1417      while (offset <= pld_offset) {
1418        prefetch(end_from, end_to, -(wordSize + offset));
1419        offset += ArmCopyCacheLineSize;
1420      };
1421    }
1422
1423#ifdef AARCH64
1424    const Register data_regs[8] = {R3, R4, R5, R6, R7, R8, R9, R10};
1425#endif // AARCH64
1426    {
1427      // LDM (32-bit ARM) / LDP (AArch64) copy of 'bytes_per_loop' bytes
1428
1429      // 32-bit ARM note: we have tried implementing loop unrolling to skip one
1430      // PLD with 64 bytes cache line but the gain was not significant.
1431
1432      Label L_copy_loop;
1433      __ align(OptoLoopAlignment);
1434      __ BIND(L_copy_loop);
1435
1436      if (prefetch_before) {
1437        prefetch(end_from, end_to, -(wordSize + bytes_per_loop + pld_offset));
1438        __ BIND(L_skip_pld);
1439      }
1440
1441#ifdef AARCH64
1442      bulk_load_backward(end_from, data_regs, 8);
1443#else
1444      if (split_read) {
1445        __ ldmdb(end_from, RegisterSet(R7, R10), writeback);
1446        __ ldmdb(end_from, RegisterSet(R3, R6), writeback);
1447      } else {
1448        __ ldmdb(end_from, RegisterSet(R3, R10), writeback);
1449      }
1450#endif // AARCH64
1451
1452      __ subs_32(count, count, count_per_loop);
1453
1454      if (prefetch_after) {
1455        prefetch(end_from, end_to, -(wordSize + pld_offset), -bytes_per_loop);
1456      }
1457
1458#ifdef AARCH64
1459      bulk_store_backward(end_to, data_regs, 8);
1460#else
1461      if (split_write) {
1462        __ stmdb(end_to, RegisterSet(R7, R10), writeback);
1463        __ stmdb(end_to, RegisterSet(R3, R6), writeback);
1464      } else {
1465        __ stmdb(end_to, RegisterSet(R3, R10), writeback);
1466      }
1467#endif // AARCH64
1468
1469      __ b(L_copy_loop, ge);
1470
1471      if (prefetch_before) {
1472        __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1473        __ b(L_skip_pld, ge);
1474      }
1475    }
1476    BLOCK_COMMENT("Remaining bytes:");
1477    // still 0..bytes_per_loop-1 aligned bytes to copy, count already decreased by (at least) bytes_per_loop bytes
1478
1479    // __ add(count, count, ...); // addition useless for the bit tests
1480    assert (pld_offset % bytes_per_loop == 0, "decreasing count by pld_offset before loop must not change tested bits");
1481
1482#ifdef AARCH64
1483    assert (bytes_per_loop == 64, "adjust the code below");
1484    assert (bytes_per_count <= 8, "adjust the code below");
1485
1486    {
1487      Label L;
1488      __ tbz(count, exact_log2(32/bytes_per_count), L);
1489
1490      bulk_load_backward(end_from, data_regs, 4);
1491      bulk_store_backward(end_to, data_regs, 4);
1492
1493      __ bind(L);
1494    }
1495
1496    {
1497      Label L;
1498      __ tbz(count, exact_log2(16/bytes_per_count), L);
1499
1500      bulk_load_backward(end_from, data_regs, 2);
1501      bulk_store_backward(end_to, data_regs, 2);
1502
1503      __ bind(L);
1504    }
1505
1506    {
1507      Label L;
1508      __ tbz(count, exact_log2(8/bytes_per_count), L);
1509
1510      __ ldr(R3, Address(end_from, -8, pre_indexed));
1511      __ str(R3, Address(end_to,   -8, pre_indexed));
1512
1513      __ bind(L);
1514    }
1515
1516    if (bytes_per_count <= 4) {
1517      Label L;
1518      __ tbz(count, exact_log2(4/bytes_per_count), L);
1519
1520      __ ldr_w(R3, Address(end_from, -4, pre_indexed));
1521      __ str_w(R3, Address(end_to,   -4, pre_indexed));
1522
1523      __ bind(L);
1524    }
1525
1526    if (bytes_per_count <= 2) {
1527      Label L;
1528      __ tbz(count, exact_log2(2/bytes_per_count), L);
1529
1530      __ ldrh(R3, Address(end_from, -2, pre_indexed));
1531      __ strh(R3, Address(end_to,   -2, pre_indexed));
1532
1533      __ bind(L);
1534    }
1535
1536    if (bytes_per_count <= 1) {
1537      Label L;
1538      __ tbz(count, 0, L);
1539
1540      __ ldrb(R3, Address(end_from, -1, pre_indexed));
1541      __ strb(R3, Address(end_to,   -1, pre_indexed));
1542
1543      __ bind(L);
1544    }
1545#else
1546    __ tst(count, 16 / bytes_per_count);
1547    __ ldmdb(end_from, RegisterSet(R3, R6), writeback, ne); // copy 16 bytes
1548    __ stmdb(end_to, RegisterSet(R3, R6), writeback, ne);
1549
1550    __ tst(count, 8 / bytes_per_count);
1551    __ ldmdb(end_from, RegisterSet(R3, R4), writeback, ne); // copy 8 bytes
1552    __ stmdb(end_to, RegisterSet(R3, R4), writeback, ne);
1553
1554    if (bytes_per_count <= 4) {
1555      __ tst(count, 4 / bytes_per_count);
1556      __ ldr(R3, Address(end_from, -4, pre_indexed), ne); // copy 4 bytes
1557      __ str(R3, Address(end_to, -4, pre_indexed), ne);
1558    }
1559
1560    if (bytes_per_count <= 2) {
1561      __ tst(count, 2 / bytes_per_count);
1562      __ ldrh(R3, Address(end_from, -2, pre_indexed), ne); // copy 2 bytes
1563      __ strh(R3, Address(end_to, -2, pre_indexed), ne);
1564    }
1565
1566    if (bytes_per_count == 1) {
1567      __ tst(count, 1);
1568      __ ldrb(R3, Address(end_from, -1, pre_indexed), ne);
1569      __ strb(R3, Address(end_to, -1, pre_indexed), ne);
1570    }
1571
1572    __ pop(RegisterSet(R4,R10));
1573#endif // AARCH64
1574
1575    return count_per_loop;
1576  }
1577
1578
1579  // Generate the inner loop for shifted forward array copy (unaligned copy).
1580  // It can be used when bytes_per_count < wordSize, i.e.
1581  //  byte/short copy on 32-bit ARM, byte/short/int/compressed-oop copy on AArch64.
1582  //
1583  // Arguments
1584  //      from:      start src address, 64 bits aligned
1585  //      to:        start dst address, (now) wordSize aligned
1586  //      count:     number of elements (32-bit int)
1587  //      bytes_per_count: number of bytes for each unit of 'count'
1588  //      lsr_shift: shift applied to 'old' value to skipped already written bytes
1589  //      lsl_shift: shift applied to 'new' value to set the high bytes of the next write
1590  //
1591  // Return the minimum initial value for count
1592  //
1593  // Notes:
1594  // - 'from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA, required for AArch64)
1595  // - 'to' aligned on wordSize
1596  // - 'count' must be greater or equal than the returned value
1597  // - 'lsr_shift' + 'lsl_shift' = BitsPerWord
1598  // - 'bytes_per_count' is 1 or 2 on 32-bit ARM; 1, 2 or 4 on AArch64
1599  //
1600  // Increases 'to' by count*bytes_per_count.
1601  //
1602  // Scratches 'from' and 'count', R3-R10, R12
1603  //
1604  // On entry:
1605  // - R12 is preloaded with the first 'BitsPerWord' bits read just before 'from'
1606  // - (R12 >> lsr_shift) is the part not yet written (just before 'to')
1607  // --> (*to) = (R12 >> lsr_shift) | (*from) << lsl_shift); ...
1608  //
1609  // This implementation may read more bytes than required.
1610  // Actually, it always reads exactly all data from the copied region with upper bound aligned up by wordSize,
1611  // so excessive read do not cross a word bound and is thus harmless.
1612  //
1613  int generate_forward_shifted_copy_loop(Register from, Register to, Register count, int bytes_per_count, int lsr_shift, int lsl_shift) {
1614    assert (from == R0 && to == R1 && count == R2, "adjust the implementation below");
1615
1616    const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iter
1617    const int count_per_loop = bytes_per_loop / bytes_per_count;
1618
1619    arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].forward_shifted;
1620    int pld_offset = config->pld_distance;
1621
1622#ifndef AARCH64
1623    bool split_read= config->split_ldm;
1624    bool split_write= config->split_stm;
1625#endif // !AARCH64
1626
1627    const bool prefetch_before = pld_offset < 0;
1628    const bool prefetch_after = pld_offset > 0;
1629    Label L_skip_pld, L_last_read, L_done;
1630    if (pld_offset != 0) {
1631
1632      pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1633
1634      prefetch(from, to, 0);
1635
1636      if (prefetch_before) {
1637        __ cmp_32(count, count_per_loop);
1638        __ b(L_last_read, lt);
1639        // skip prefetch for small copies
1640        // warning: count is predecreased by the prefetch distance to optimize the inner loop
1641        __ subs_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
1642        __ b(L_skip_pld, lt);
1643      }
1644
1645      int offset = ArmCopyCacheLineSize;
1646      while (offset <= pld_offset) {
1647        prefetch(from, to, offset);
1648        offset += ArmCopyCacheLineSize;
1649      };
1650    }
1651
1652    Label L_shifted_loop;
1653
1654    __ align(OptoLoopAlignment);
1655    __ BIND(L_shifted_loop);
1656
1657    if (prefetch_before) {
1658      // do it early if there might be register locking issues
1659      prefetch(from, to, bytes_per_loop + pld_offset);
1660      __ BIND(L_skip_pld);
1661    } else {
1662      __ cmp_32(count, count_per_loop);
1663      __ b(L_last_read, lt);
1664    }
1665
1666#ifdef AARCH64
1667    const Register data_regs[9] = {R3, R4, R5, R6, R7, R8, R9, R10, R12};
1668    __ logical_shift_right(R3, R12, lsr_shift); // part of R12 not yet written
1669    __ subs_32(count, count, count_per_loop);
1670    bulk_load_forward(from, &data_regs[1], 8);
1671#else
1672    // read 32 bytes
1673    if (split_read) {
1674      // if write is not split, use less registers in first set to reduce locking
1675      RegisterSet set1 = split_write ? RegisterSet(R4, R7) : RegisterSet(R4, R5);
1676      RegisterSet set2 = (split_write ? RegisterSet(R8, R10) : RegisterSet(R6, R10)) | R12;
1677      __ ldmia(from, set1, writeback);
1678      __ mov(R3, AsmOperand(R12, lsr, lsr_shift)); // part of R12 not yet written
1679      __ ldmia(from, set2, writeback);
1680      __ subs(count, count, count_per_loop); // XXX: should it be before the 2nd LDM ? (latency vs locking)
1681    } else {
1682      __ mov(R3, AsmOperand(R12, lsr, lsr_shift)); // part of R12 not yet written
1683      __ ldmia(from, RegisterSet(R4, R10) | R12, writeback); // Note: small latency on R4
1684      __ subs(count, count, count_per_loop);
1685    }
1686#endif // AARCH64
1687
1688    if (prefetch_after) {
1689      // do it after the 1st ldm/ldp anyway  (no locking issues with early STM/STP)
1690      prefetch(from, to, pld_offset, bytes_per_loop);
1691    }
1692
1693    // prepare (shift) the values in R3..R10
1694    __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift)); // merged below low bytes of next val
1695    __ logical_shift_right(R4, R4, lsr_shift); // unused part of next val
1696    __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift)); // ...
1697    __ logical_shift_right(R5, R5, lsr_shift);
1698    __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift));
1699    __ logical_shift_right(R6, R6, lsr_shift);
1700    __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift));
1701#ifndef AARCH64
1702    if (split_write) {
1703      // write the first half as soon as possible to reduce stm locking
1704      __ stmia(to, RegisterSet(R3, R6), writeback, prefetch_before ? gt : ge);
1705    }
1706#endif // !AARCH64
1707    __ logical_shift_right(R7, R7, lsr_shift);
1708    __ orr(R7, R7, AsmOperand(R8, lsl, lsl_shift));
1709    __ logical_shift_right(R8, R8, lsr_shift);
1710    __ orr(R8, R8, AsmOperand(R9, lsl, lsl_shift));
1711    __ logical_shift_right(R9, R9, lsr_shift);
1712    __ orr(R9, R9, AsmOperand(R10, lsl, lsl_shift));
1713    __ logical_shift_right(R10, R10, lsr_shift);
1714    __ orr(R10, R10, AsmOperand(R12, lsl, lsl_shift));
1715
1716#ifdef AARCH64
1717    bulk_store_forward(to, data_regs, 8);
1718#else
1719    if (split_write) {
1720      __ stmia(to, RegisterSet(R7, R10), writeback, prefetch_before ? gt : ge);
1721    } else {
1722      __ stmia(to, RegisterSet(R3, R10), writeback, prefetch_before ? gt : ge);
1723    }
1724#endif // AARCH64
1725    __ b(L_shifted_loop, gt); // no need to loop if 0 (when count need not be precise modulo bytes_per_loop)
1726
1727    if (prefetch_before) {
1728      // the first loop may end earlier, allowing to skip pld at the end
1729      __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1730#ifndef AARCH64
1731      __ stmia(to, RegisterSet(R3, R10), writeback); // stmia was skipped
1732#endif // !AARCH64
1733      __ b(L_skip_pld, ge);
1734      __ adds_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
1735    }
1736
1737    __ BIND(L_last_read);
1738    __ b(L_done, eq);
1739
1740#ifdef AARCH64
1741    assert(bytes_per_count < 8, "adjust the code below");
1742
1743    __ logical_shift_right(R3, R12, lsr_shift);
1744
1745    {
1746      Label L;
1747      __ tbz(count, exact_log2(32/bytes_per_count), L);
1748      bulk_load_forward(from, &data_regs[1], 4);
1749      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift));
1750      __ logical_shift_right(R4, R4, lsr_shift);
1751      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift));
1752      __ logical_shift_right(R5, R5, lsr_shift);
1753      __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift));
1754      __ logical_shift_right(R6, R6, lsr_shift);
1755      __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift));
1756      bulk_store_forward(to, data_regs, 4);
1757      __ logical_shift_right(R3, R7, lsr_shift);
1758      __ bind(L);
1759    }
1760
1761    {
1762      Label L;
1763      __ tbz(count, exact_log2(16/bytes_per_count), L);
1764      bulk_load_forward(from, &data_regs[1], 2);
1765      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift));
1766      __ logical_shift_right(R4, R4, lsr_shift);
1767      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift));
1768      bulk_store_forward(to, data_regs, 2);
1769      __ logical_shift_right(R3, R5, lsr_shift);
1770      __ bind(L);
1771    }
1772
1773    {
1774      Label L;
1775      __ tbz(count, exact_log2(8/bytes_per_count), L);
1776      __ ldr(R4, Address(from, 8, post_indexed));
1777      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift));
1778      __ str(R3, Address(to, 8, post_indexed));
1779      __ logical_shift_right(R3, R4, lsr_shift);
1780      __ bind(L);
1781    }
1782
1783    const int have_bytes = lsl_shift/BitsPerByte; // number of already read bytes in R3
1784
1785    // It remains less than wordSize to write.
1786    // Do not check count if R3 already has maximal number of loaded elements (one less than wordSize).
1787    if (have_bytes < wordSize - bytes_per_count) {
1788      Label L;
1789      __ andr(count, count, (uintx)(8/bytes_per_count-1)); // make count exact
1790      __ cmp_32(count, have_bytes/bytes_per_count); // do we have enough bytes to store?
1791      __ b(L, le);
1792      __ ldr(R4, Address(from, 8, post_indexed));
1793      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift));
1794      __ bind(L);
1795    }
1796
1797    {
1798      Label L;
1799      __ tbz(count, exact_log2(4/bytes_per_count), L);
1800      __ str_w(R3, Address(to, 4, post_indexed));
1801      if (bytes_per_count < 4) {
1802        __ logical_shift_right(R3, R3, 4*BitsPerByte);
1803      }
1804      __ bind(L);
1805    }
1806
1807    if (bytes_per_count <= 2) {
1808      Label L;
1809      __ tbz(count, exact_log2(2/bytes_per_count), L);
1810      __ strh(R3, Address(to, 2, post_indexed));
1811      if (bytes_per_count < 2) {
1812        __ logical_shift_right(R3, R3, 2*BitsPerByte);
1813      }
1814      __ bind(L);
1815    }
1816
1817    if (bytes_per_count <= 1) {
1818      Label L;
1819      __ tbz(count, exact_log2(1/bytes_per_count), L);
1820      __ strb(R3, Address(to, 1, post_indexed));
1821      __ bind(L);
1822    }
1823#else
1824    switch (bytes_per_count) {
1825    case 2:
1826      __ mov(R3, AsmOperand(R12, lsr, lsr_shift));
1827      __ tst(count, 8);
1828      __ ldmia(from, RegisterSet(R4, R7), writeback, ne);
1829      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1830      __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1831      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1832      __ mov(R5, AsmOperand(R5, lsr, lsr_shift), ne);
1833      __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift), ne);
1834      __ mov(R6, AsmOperand(R6, lsr, lsr_shift), ne);
1835      __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift), ne);
1836      __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1837      __ mov(R3, AsmOperand(R7, lsr, lsr_shift), ne);
1838
1839      __ tst(count, 4);
1840      __ ldmia(from, RegisterSet(R4, R5), writeback, ne);
1841      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1842      __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1843      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1844      __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1845      __ mov(R3, AsmOperand(R5, lsr, lsr_shift), ne);
1846
1847      __ tst(count, 2);
1848      __ ldr(R4, Address(from, 4, post_indexed), ne);
1849      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne);
1850      __ str(R3, Address(to, 4, post_indexed), ne);
1851      __ mov(R3, AsmOperand(R4, lsr, lsr_shift), ne);
1852
1853      __ tst(count, 1);
1854      __ strh(R3, Address(to, 2, post_indexed), ne); // one last short
1855      break;
1856
1857    case 1:
1858      __ mov(R3, AsmOperand(R12, lsr, lsr_shift));
1859      __ tst(count, 16);
1860      __ ldmia(from, RegisterSet(R4, R7), writeback, ne);
1861      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1862      __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1863      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1864      __ mov(R5, AsmOperand(R5, lsr, lsr_shift), ne);
1865      __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift), ne);
1866      __ mov(R6, AsmOperand(R6, lsr, lsr_shift), ne);
1867      __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift), ne);
1868      __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1869      __ mov(R3, AsmOperand(R7, lsr, lsr_shift), ne);
1870
1871      __ tst(count, 8);
1872      __ ldmia(from, RegisterSet(R4, R5), writeback, ne);
1873      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1874      __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1875      __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1876      __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1877      __ mov(R3, AsmOperand(R5, lsr, lsr_shift), ne);
1878
1879      __ tst(count, 4);
1880      __ ldr(R4, Address(from, 4, post_indexed), ne);
1881      __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne);
1882      __ str(R3, Address(to, 4, post_indexed), ne);
1883      __ mov(R3, AsmOperand(R4, lsr, lsr_shift), ne);
1884
1885      __ andr(count, count, 3);
1886      __ cmp(count, 2);
1887
1888      // Note: R3 might contain enough bytes ready to write (3 needed at most),
1889      // thus load on lsl_shift==24 is not needed (in fact forces reading
1890      // beyond source buffer end boundary)
1891      if (lsl_shift == 8) {
1892        __ ldr(R4, Address(from, 4, post_indexed), ge);
1893        __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ge);
1894      } else if (lsl_shift == 16) {
1895        __ ldr(R4, Address(from, 4, post_indexed), gt);
1896        __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), gt);
1897      }
1898
1899      __ strh(R3, Address(to, 2, post_indexed), ge); // two last bytes
1900      __ mov(R3, AsmOperand(R3, lsr, 16), gt);
1901
1902      __ tst(count, 1);
1903      __ strb(R3, Address(to, 1, post_indexed), ne); // one last byte
1904      break;
1905    }
1906#endif // AARCH64
1907
1908    __ BIND(L_done);
1909    return 0; // no minimum
1910  }
1911
1912  // Generate the inner loop for shifted backward array copy (unaligned copy).
1913  // It can be used when bytes_per_count < wordSize, i.e.
1914  //  byte/short copy on 32-bit ARM, byte/short/int/compressed-oop copy on AArch64.
1915  //
1916  // Arguments
1917  //      end_from:  end src address, 64 bits aligned
1918  //      end_to:    end dst address, (now) wordSize aligned
1919  //      count:     number of elements (32-bit int)
1920  //      bytes_per_count: number of bytes for each unit of 'count'
1921  //      lsl_shift: shift applied to 'old' value to skipped already written bytes
1922  //      lsr_shift: shift applied to 'new' value to set the low bytes of the next write
1923  //
1924  // Return the minimum initial value for count
1925  //
1926  // Notes:
1927  // - 'end_from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA, required for AArch64)
1928  // - 'end_to' aligned on wordSize
1929  // - 'count' must be greater or equal than the returned value
1930  // - 'lsr_shift' + 'lsl_shift' = 'BitsPerWord'
1931  // - 'bytes_per_count' is 1 or 2 on 32-bit ARM; 1, 2 or 4 on AArch64
1932  //
1933  // Decreases 'end_to' by count*bytes_per_count.
1934  //
1935  // Scratches 'end_from', 'count', R3-R10, R12
1936  //
1937  // On entry:
1938  // - R3 is preloaded with the first 'BitsPerWord' bits read just after 'from'
1939  // - (R3 << lsl_shift) is the part not yet written
1940  // --> (*--to) = (R3 << lsl_shift) | (*--from) >> lsr_shift); ...
1941  //
1942  // This implementation may read more bytes than required.
1943  // Actually, it always reads exactly all data from the copied region with beginning aligned down by wordSize,
1944  // so excessive read do not cross a word bound and is thus harmless.
1945  //
1946  int generate_backward_shifted_copy_loop(Register end_from, Register end_to, Register count, int bytes_per_count, int lsr_shift, int lsl_shift) {
1947    assert (end_from == R0 && end_to == R1 && count == R2, "adjust the implementation below");
1948
1949    const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iter
1950    const int count_per_loop = bytes_per_loop / bytes_per_count;
1951
1952    arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].backward_shifted;
1953    int pld_offset = config->pld_distance;
1954
1955#ifndef AARCH64
1956    bool split_read= config->split_ldm;
1957    bool split_write= config->split_stm;
1958#endif // !AARCH64
1959
1960
1961    const bool prefetch_before = pld_offset < 0;
1962    const bool prefetch_after = pld_offset > 0;
1963
1964    Label L_skip_pld, L_done, L_last_read;
1965    if (pld_offset != 0) {
1966
1967      pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1968
1969      prefetch(end_from, end_to, -wordSize);
1970
1971      if (prefetch_before) {
1972        __ cmp_32(count, count_per_loop);
1973        __ b(L_last_read, lt);
1974
1975        // skip prefetch for small copies
1976        // warning: count is predecreased by the prefetch distance to optimize the inner loop
1977        __ subs_32(count, count, ((bytes_per_loop + pld_offset)/bytes_per_count) + count_per_loop);
1978        __ b(L_skip_pld, lt);
1979      }
1980
1981      int offset = ArmCopyCacheLineSize;
1982      while (offset <= pld_offset) {
1983        prefetch(end_from, end_to, -(wordSize + offset));
1984        offset += ArmCopyCacheLineSize;
1985      };
1986    }
1987
1988    Label L_shifted_loop;
1989    __ align(OptoLoopAlignment);
1990    __ BIND(L_shifted_loop);
1991
1992    if (prefetch_before) {
1993      // do the 1st ldm/ldp first anyway (no locking issues with early STM/STP)
1994      prefetch(end_from, end_to, -(wordSize + bytes_per_loop + pld_offset));
1995      __ BIND(L_skip_pld);
1996    } else {
1997      __ cmp_32(count, count_per_loop);
1998      __ b(L_last_read, lt);
1999    }
2000
2001#ifdef AARCH64
2002    __ logical_shift_left(R12, R3, lsl_shift);
2003    const Register data_regs[9] = {R3, R4, R5, R6, R7, R8, R9, R10, R12};
2004    bulk_load_backward(end_from, data_regs, 8);
2005#else
2006    if (split_read) {
2007      __ ldmdb(end_from, RegisterSet(R7, R10), writeback);
2008      __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
2009      __ ldmdb(end_from, RegisterSet(R3, R6), writeback);
2010    } else {
2011      __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
2012      __ ldmdb(end_from, RegisterSet(R3, R10), writeback);
2013    }
2014#endif // AARCH64
2015
2016    __ subs_32(count, count, count_per_loop);
2017
2018    if (prefetch_after) { // do prefetch during ldm/ldp latency
2019      prefetch(end_from, end_to, -(wordSize + pld_offset), -bytes_per_loop);
2020    }
2021
2022    // prepare the values in R4..R10,R12
2023    __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift)); // merged above high  bytes of prev val
2024    __ logical_shift_left(R10, R10, lsl_shift); // unused part of prev val
2025    __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift)); // ...
2026    __ logical_shift_left(R9, R9, lsl_shift);
2027    __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift));
2028    __ logical_shift_left(R8, R8, lsl_shift);
2029    __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift));
2030    __ logical_shift_left(R7, R7, lsl_shift);
2031    __ orr(R7, R7, AsmOperand(R6, lsr, lsr_shift));
2032    __ logical_shift_left(R6, R6, lsl_shift);
2033    __ orr(R6, R6, AsmOperand(R5, lsr, lsr_shift));
2034#ifndef AARCH64
2035    if (split_write) {
2036      // store early to reduce locking issues
2037      __ stmdb(end_to, RegisterSet(R6, R10) | R12, writeback, prefetch_before ? gt : ge);
2038    }
2039#endif // !AARCH64
2040    __ logical_shift_left(R5, R5, lsl_shift);
2041    __ orr(R5, R5, AsmOperand(R4, lsr, lsr_shift));
2042    __ logical_shift_left(R4, R4, lsl_shift);
2043    __ orr(R4, R4, AsmOperand(R3, lsr, lsr_shift));
2044
2045#ifdef AARCH64
2046    bulk_store_backward(end_to, &data_regs[1], 8);
2047#else
2048    if (split_write) {
2049      __ stmdb(end_to, RegisterSet(R4, R5), writeback, prefetch_before ? gt : ge);
2050    } else {
2051      __ stmdb(end_to, RegisterSet(R4, R10) | R12, writeback, prefetch_before ? gt : ge);
2052    }
2053#endif // AARCH64
2054
2055    __ b(L_shifted_loop, gt); // no need to loop if 0 (when count need not be precise modulo bytes_per_loop)
2056
2057    if (prefetch_before) {
2058      // the first loop may end earlier, allowing to skip pld at the end
2059      __ cmn_32(count, ((bytes_per_loop + pld_offset)/bytes_per_count));
2060#ifndef AARCH64
2061      __ stmdb(end_to, RegisterSet(R4, R10) | R12, writeback); // stmdb was skipped
2062#endif // !AARCH64
2063      __ b(L_skip_pld, ge);
2064      __ adds_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
2065    }
2066
2067    __ BIND(L_last_read);
2068    __ b(L_done, eq);
2069
2070#ifdef AARCH64
2071    assert(bytes_per_count < 8, "adjust the code below");
2072
2073    __ logical_shift_left(R12, R3, lsl_shift);
2074
2075    {
2076      Label L;
2077      __ tbz(count, exact_log2(32/bytes_per_count), L);
2078      bulk_load_backward(end_from, &data_regs[4], 4);
2079
2080      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift));
2081      __ logical_shift_left(R10, R10, lsl_shift);
2082      __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift));
2083      __ logical_shift_left(R9, R9, lsl_shift);
2084      __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift));
2085      __ logical_shift_left(R8, R8, lsl_shift);
2086      __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift));
2087
2088      bulk_store_backward(end_to, &data_regs[5], 4);
2089      __ logical_shift_left(R12, R7, lsl_shift);
2090      __ bind(L);
2091    }
2092
2093    {
2094      Label L;
2095      __ tbz(count, exact_log2(16/bytes_per_count), L);
2096      bulk_load_backward(end_from, &data_regs[6], 2);
2097
2098      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift));
2099      __ logical_shift_left(R10, R10, lsl_shift);
2100      __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift));
2101
2102      bulk_store_backward(end_to, &data_regs[7], 2);
2103      __ logical_shift_left(R12, R9, lsl_shift);
2104      __ bind(L);
2105    }
2106
2107    {
2108      Label L;
2109      __ tbz(count, exact_log2(8/bytes_per_count), L);
2110      __ ldr(R10, Address(end_from, -8, pre_indexed));
2111      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift));
2112      __ str(R12, Address(end_to, -8, pre_indexed));
2113      __ logical_shift_left(R12, R10, lsl_shift);
2114      __ bind(L);
2115    }
2116
2117    const int have_bytes = lsr_shift/BitsPerByte; // number of already read bytes in R12
2118
2119    // It remains less than wordSize to write.
2120    // Do not check count if R12 already has maximal number of loaded elements (one less than wordSize).
2121    if (have_bytes < wordSize - bytes_per_count) {
2122      Label L;
2123      __ andr(count, count, (uintx)(8/bytes_per_count-1)); // make count exact
2124      __ cmp_32(count, have_bytes/bytes_per_count); // do we have enough bytes to store?
2125      __ b(L, le);
2126      __ ldr(R10, Address(end_from, -8, pre_indexed));
2127      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift));
2128      __ bind(L);
2129    }
2130
2131    assert (bytes_per_count <= 4, "must be");
2132
2133    {
2134      Label L;
2135      __ tbz(count, exact_log2(4/bytes_per_count), L);
2136      __ logical_shift_right(R9, R12, (wordSize-4)*BitsPerByte);
2137      __ str_w(R9, Address(end_to, -4, pre_indexed)); // Write 4 MSB
2138      if (bytes_per_count < 4) {
2139        __ logical_shift_left(R12, R12, 4*BitsPerByte); // Promote remaining bytes to MSB
2140      }
2141      __ bind(L);
2142    }
2143
2144    if (bytes_per_count <= 2) {
2145      Label L;
2146      __ tbz(count, exact_log2(2/bytes_per_count), L);
2147      __ logical_shift_right(R9, R12, (wordSize-2)*BitsPerByte);
2148      __ strh(R9, Address(end_to, -2, pre_indexed)); // Write 2 MSB
2149      if (bytes_per_count < 2) {
2150        __ logical_shift_left(R12, R12, 2*BitsPerByte); // Promote remaining bytes to MSB
2151      }
2152      __ bind(L);
2153    }
2154
2155    if (bytes_per_count <= 1) {
2156      Label L;
2157      __ tbz(count, exact_log2(1/bytes_per_count), L);
2158      __ logical_shift_right(R9, R12, (wordSize-1)*BitsPerByte);
2159      __ strb(R9, Address(end_to, -1, pre_indexed)); // Write 1 MSB
2160      __ bind(L);
2161    }
2162#else
2163      switch(bytes_per_count) {
2164      case 2:
2165      __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
2166      __ tst(count, 8);
2167      __ ldmdb(end_from, RegisterSet(R7,R10), writeback, ne);
2168      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2169      __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
2170      __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
2171      __ mov(R9, AsmOperand(R9, lsl, lsl_shift),ne);
2172      __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift),ne);
2173      __ mov(R8, AsmOperand(R8, lsl, lsl_shift),ne);
2174      __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift),ne);
2175      __ stmdb(end_to, RegisterSet(R8,R10)|R12, writeback, ne);
2176      __ mov(R12, AsmOperand(R7, lsl, lsl_shift), ne);
2177
2178      __ tst(count, 4);
2179      __ ldmdb(end_from, RegisterSet(R9, R10), writeback, ne);
2180      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2181      __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
2182      __ orr(R10, R10, AsmOperand(R9, lsr,lsr_shift),ne); // ...
2183      __ stmdb(end_to, RegisterSet(R10)|R12, writeback, ne);
2184      __ mov(R12, AsmOperand(R9, lsl, lsl_shift), ne);
2185
2186      __ tst(count, 2);
2187      __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
2188      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2189      __ str(R12, Address(end_to, -4, pre_indexed), ne);
2190      __ mov(R12, AsmOperand(R10, lsl, lsl_shift), ne);
2191
2192      __ tst(count, 1);
2193      __ mov(R12, AsmOperand(R12, lsr, lsr_shift),ne);
2194      __ strh(R12, Address(end_to, -2, pre_indexed), ne); // one last short
2195      break;
2196
2197      case 1:
2198      __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
2199      __ tst(count, 16);
2200      __ ldmdb(end_from, RegisterSet(R7,R10), writeback, ne);
2201      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2202      __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
2203      __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
2204      __ mov(R9, AsmOperand(R9, lsl, lsl_shift),ne);
2205      __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift),ne);
2206      __ mov(R8, AsmOperand(R8, lsl, lsl_shift),ne);
2207      __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift),ne);
2208      __ stmdb(end_to, RegisterSet(R8,R10)|R12, writeback, ne);
2209      __ mov(R12, AsmOperand(R7, lsl, lsl_shift), ne);
2210
2211      __ tst(count, 8);
2212      __ ldmdb(end_from, RegisterSet(R9,R10), writeback, ne);
2213      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2214      __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
2215      __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
2216      __ stmdb(end_to, RegisterSet(R10)|R12, writeback, ne);
2217      __ mov(R12, AsmOperand(R9, lsl, lsl_shift), ne);
2218
2219      __ tst(count, 4);
2220      __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
2221      __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
2222      __ str(R12, Address(end_to, -4, pre_indexed), ne);
2223      __ mov(R12, AsmOperand(R10, lsl, lsl_shift), ne);
2224
2225      __ tst(count, 2);
2226      if (lsr_shift != 24) {
2227        // avoid useless reading R10 when we already have 3 bytes ready in R12
2228        __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
2229        __ orr(R12, R12, AsmOperand(R10, lsr,lsr_shift), ne);
2230      }
2231
2232      // Note: R12 contains enough bytes ready to write (3 needed at most)
2233      // write the 2 MSBs
2234      __ mov(R9, AsmOperand(R12, lsr, 16), ne);
2235      __ strh(R9, Address(end_to, -2, pre_indexed), ne);
2236      // promote remaining to MSB
2237      __ mov(R12, AsmOperand(R12, lsl, 16), ne);
2238
2239      __ tst(count, 1);
2240      // write the MSB of R12
2241      __ mov(R12, AsmOperand(R12, lsr, 24), ne);
2242      __ strb(R12, Address(end_to, -1, pre_indexed), ne);
2243
2244      break;
2245      }
2246#endif // AARCH64
2247
2248    __ BIND(L_done);
2249    return 0; // no minimum
2250  }
2251
2252  // This method is very useful for merging forward/backward implementations
2253  Address get_addr_with_indexing(Register base, int delta, bool forward) {
2254    if (forward) {
2255      return Address(base, delta, post_indexed);
2256    } else {
2257      return Address(base, -delta, pre_indexed);
2258    }
2259  }
2260
2261#ifdef AARCH64
2262  // Loads one 'size_in_bytes'-sized value from 'from' in given direction, i.e.
2263  //   if forward:  loads value at from and increases from by size
2264  //   if !forward: loads value at from-size_in_bytes and decreases from by size
2265  void load_one(Register rd, Register from, int size_in_bytes, bool forward) {
2266    assert_different_registers(from, rd);
2267    Address addr = get_addr_with_indexing(from, size_in_bytes, forward);
2268    __ load_sized_value(rd, addr, size_in_bytes, false);
2269  }
2270
2271  // Stores one 'size_in_bytes'-sized value to 'to' in given direction (see load_one)
2272  void store_one(Register rd, Register to, int size_in_bytes, bool forward) {
2273    assert_different_registers(to, rd);
2274    Address addr = get_addr_with_indexing(to, size_in_bytes, forward);
2275    __ store_sized_value(rd, addr, size_in_bytes);
2276  }
2277#else
2278  // load_one and store_one are the same as for AArch64 except for
2279  //   *) Support for condition execution
2280  //   *) Second value register argument for 8-byte values
2281
2282  void load_one(Register rd, Register from, int size_in_bytes, bool forward, AsmCondition cond = al, Register rd2 = noreg) {
2283    assert_different_registers(from, rd, rd2);
2284    if (size_in_bytes < 8) {
2285      Address addr = get_addr_with_indexing(from, size_in_bytes, forward);
2286      __ load_sized_value(rd, addr, size_in_bytes, false, cond);
2287    } else {
2288      assert (rd2 != noreg, "second value register must be specified");
2289      assert (rd->encoding() < rd2->encoding(), "wrong value register set");
2290
2291      if (forward) {
2292        __ ldmia(from, RegisterSet(rd) | rd2, writeback, cond);
2293      } else {
2294        __ ldmdb(from, RegisterSet(rd) | rd2, writeback, cond);
2295      }
2296    }
2297  }
2298
2299  void store_one(Register rd, Register to, int size_in_bytes, bool forward, AsmCondition cond = al, Register rd2 = noreg) {
2300    assert_different_registers(to, rd, rd2);
2301    if (size_in_bytes < 8) {
2302      Address addr = get_addr_with_indexing(to, size_in_bytes, forward);
2303      __ store_sized_value(rd, addr, size_in_bytes, cond);
2304    } else {
2305      assert (rd2 != noreg, "second value register must be specified");
2306      assert (rd->encoding() < rd2->encoding(), "wrong value register set");
2307
2308      if (forward) {
2309        __ stmia(to, RegisterSet(rd) | rd2, writeback, cond);
2310      } else {
2311        __ stmdb(to, RegisterSet(rd) | rd2, writeback, cond);
2312      }
2313    }
2314  }
2315#endif // AARCH64
2316
2317  // Copies data from 'from' to 'to' in specified direction to align 'from' by 64 bits.
2318  // (on 32-bit ARM 64-bit alignment is better for LDM).
2319  //
2320  // Arguments:
2321  //     from:              beginning (if forward) or upper bound (if !forward) of the region to be read
2322  //     to:                beginning (if forward) or upper bound (if !forward) of the region to be written
2323  //     count:             32-bit int, maximum number of elements which can be copied
2324  //     bytes_per_count:   size of an element
2325  //     forward:           specifies copy direction
2326  //
2327  // Notes:
2328  //   'from' and 'to' must be aligned by 'bytes_per_count'
2329  //   'count' must not be less than the returned value
2330  //   shifts 'from' and 'to' by the number of copied bytes in corresponding direction
2331  //   decreases 'count' by the number of elements copied
2332  //
2333  // Returns maximum number of bytes which may be copied.
2334  int align_src(Register from, Register to, Register count, Register tmp, int bytes_per_count, bool forward) {
2335    assert_different_registers(from, to, count, tmp);
2336#ifdef AARCH64
2337    // TODO-AARCH64: replace by simple loop?
2338    Label Laligned_by_2, Laligned_by_4, Laligned_by_8;
2339
2340    if (bytes_per_count == 1) {
2341      __ tbz(from, 0, Laligned_by_2);
2342      __ sub_32(count, count, 1);
2343      load_one(tmp, from, 1, forward);
2344      store_one(tmp, to, 1, forward);
2345    }
2346
2347    __ BIND(Laligned_by_2);
2348
2349    if (bytes_per_count <= 2) {
2350      __ tbz(from, 1, Laligned_by_4);
2351      __ sub_32(count, count, 2/bytes_per_count);
2352      load_one(tmp, from, 2, forward);
2353      store_one(tmp, to, 2, forward);
2354    }
2355
2356    __ BIND(Laligned_by_4);
2357
2358    if (bytes_per_count <= 4) {
2359      __ tbz(from, 2, Laligned_by_8);
2360      __ sub_32(count, count, 4/bytes_per_count);
2361      load_one(tmp, from, 4, forward);
2362      store_one(tmp, to, 4, forward);
2363    }
2364    __ BIND(Laligned_by_8);
2365#else // AARCH64
2366    if (bytes_per_count < 8) {
2367      Label L_align_src;
2368      __ BIND(L_align_src);
2369      __ tst(from, 7);
2370      // ne => not aligned: copy one element and (if bytes_per_count < 4) loop
2371      __ sub(count, count, 1, ne);
2372      load_one(tmp, from, bytes_per_count, forward, ne);
2373      store_one(tmp, to, bytes_per_count, forward, ne);
2374      if (bytes_per_count < 4) {
2375        __ b(L_align_src, ne); // if bytes_per_count == 4, then 0 or 1 loop iterations are enough
2376      }
2377    }
2378#endif // AARCH64
2379    return 7/bytes_per_count;
2380  }
2381
2382  // Copies 'count' of 'bytes_per_count'-sized elements in the specified direction.
2383  //
2384  // Arguments:
2385  //     from:              beginning (if forward) or upper bound (if !forward) of the region to be read
2386  //     to:                beginning (if forward) or upper bound (if !forward) of the region to be written
2387  //     count:             32-bit int, number of elements to be copied
2388  //     entry:             copy loop entry point
2389  //     bytes_per_count:   size of an element
2390  //     forward:           specifies copy direction
2391  //
2392  // Notes:
2393  //     shifts 'from' and 'to'
2394  void copy_small_array(Register from, Register to, Register count, Register tmp, Register tmp2, int bytes_per_count, bool forward, Label & entry) {
2395    assert_different_registers(from, to, count, tmp);
2396
2397    __ align(OptoLoopAlignment);
2398#ifdef AARCH64
2399    Label L_small_array_done, L_small_array_loop;
2400    __ BIND(entry);
2401    __ cbz_32(count, L_small_array_done);
2402
2403    __ BIND(L_small_array_loop);
2404    __ subs_32(count, count, 1);
2405    load_one(tmp, from, bytes_per_count, forward);
2406    store_one(tmp, to, bytes_per_count, forward);
2407    __ b(L_small_array_loop, gt);
2408
2409    __ BIND(L_small_array_done);
2410#else
2411    Label L_small_loop;
2412    __ BIND(L_small_loop);
2413    store_one(tmp, to, bytes_per_count, forward, al, tmp2);
2414    __ BIND(entry); // entry point
2415    __ subs(count, count, 1);
2416    load_one(tmp, from, bytes_per_count, forward, ge, tmp2);
2417    __ b(L_small_loop, ge);
2418#endif // AARCH64
2419  }
2420
2421  // Aligns 'to' by reading one word from 'from' and writting its part to 'to'.
2422  //
2423  // Arguments:
2424  //     to:                beginning (if forward) or upper bound (if !forward) of the region to be written
2425  //     count:             32-bit int, number of elements allowed to be copied
2426  //     to_remainder:      remainder of dividing 'to' by wordSize
2427  //     bytes_per_count:   size of an element
2428  //     forward:           specifies copy direction
2429  //     Rval:              contains an already read but not yet written word;
2430  //                        its' LSBs (if forward) or MSBs (if !forward) are to be written to align 'to'.
2431  //
2432  // Notes:
2433  //     'count' must not be less then the returned value
2434  //     'to' must be aligned by bytes_per_count but must not be aligned by wordSize
2435  //     shifts 'to' by the number of written bytes (so that it becomes the bound of memory to be written)
2436  //     decreases 'count' by the the number of elements written
2437  //     Rval's MSBs or LSBs remain to be written further by generate_{forward,backward}_shifted_copy_loop
2438  int align_dst(Register to, Register count, Register Rval, Register tmp,
2439                                        int to_remainder, int bytes_per_count, bool forward) {
2440    assert_different_registers(to, count, tmp, Rval);
2441
2442    assert (0 < to_remainder && to_remainder < wordSize, "to_remainder is not valid");
2443    assert (to_remainder % bytes_per_count == 0, "to must be aligned by bytes_per_count");
2444
2445    int bytes_to_write = forward ? (wordSize - to_remainder) : to_remainder;
2446
2447    int offset = 0;
2448
2449    for (int l = 0; l < LogBytesPerWord; ++l) {
2450      int s = (1 << l);
2451      if (bytes_to_write & s) {
2452        int new_offset = offset + s*BitsPerByte;
2453        if (forward) {
2454          if (offset == 0) {
2455            store_one(Rval, to, s, forward);
2456          } else {
2457            __ logical_shift_right(tmp, Rval, offset);
2458            store_one(tmp, to, s, forward);
2459          }
2460        } else {
2461          __ logical_shift_right(tmp, Rval, BitsPerWord - new_offset);
2462          store_one(tmp, to, s, forward);
2463        }
2464
2465        offset = new_offset;
2466      }
2467    }
2468
2469    assert (offset == bytes_to_write * BitsPerByte, "all bytes must be copied");
2470
2471    __ sub_32(count, count, bytes_to_write/bytes_per_count);
2472
2473    return bytes_to_write / bytes_per_count;
2474  }
2475
2476  // Copies 'count' of elements using shifted copy loop
2477  //
2478  // Arguments:
2479  //     from:              beginning (if forward) or upper bound (if !forward) of the region to be read
2480  //     to:                beginning (if forward) or upper bound (if !forward) of the region to be written
2481  //     count:             32-bit int, number of elements to be copied
2482  //     to_remainder:      remainder of dividing 'to' by wordSize
2483  //     bytes_per_count:   size of an element
2484  //     forward:           specifies copy direction
2485  //     Rval:              contains an already read but not yet written word
2486  //
2487  //
2488  // Notes:
2489  //     'count' must not be less then the returned value
2490  //     'from' must be aligned by wordSize
2491  //     'to' must be aligned by bytes_per_count but must not be aligned by wordSize
2492  //     shifts 'to' by the number of copied bytes
2493  //
2494  // Scratches R3-R10, R12
2495  int align_dst_and_generate_shifted_copy_loop(Register from, Register to, Register count, Register Rval,
2496                                                        int to_remainder, int bytes_per_count, bool forward) {
2497
2498    assert (0 < to_remainder && to_remainder < wordSize, "to_remainder is invalid");
2499
2500    const Register tmp  = forward ? R3 : R12; // TODO-AARCH64: on cojoint_short R4 was used for tmp
2501    assert_different_registers(from, to, count, Rval, tmp);
2502
2503    int required_to_align = align_dst(to, count, Rval, tmp, to_remainder, bytes_per_count, forward);
2504
2505    int lsr_shift = (wordSize - to_remainder) * BitsPerByte;
2506    int lsl_shift = to_remainder * BitsPerByte;
2507
2508    int min_copy;
2509    if (forward) {
2510      min_copy = generate_forward_shifted_copy_loop(from, to, count, bytes_per_count, lsr_shift, lsl_shift);
2511    } else {
2512      min_copy = generate_backward_shifted_copy_loop(from, to, count, bytes_per_count, lsr_shift, lsl_shift);
2513    }
2514
2515    return min_copy + required_to_align;
2516  }
2517
2518  // Copies 'count' of elements using shifted copy loop
2519  //
2520  // Arguments:
2521  //     from:              beginning (if forward) or upper bound (if !forward) of the region to be read
2522  //     to:                beginning (if forward) or upper bound (if !forward) of the region to be written
2523  //     count:             32-bit int, number of elements to be copied
2524  //     bytes_per_count:   size of an element
2525  //     forward:           specifies copy direction
2526  //
2527  // Notes:
2528  //     'count' must not be less then the returned value
2529  //     'from' must be aligned by wordSize
2530  //     'to' must be aligned by bytes_per_count but must not be aligned by wordSize
2531  //     shifts 'to' by the number of copied bytes
2532  //
2533  // Scratches 'from', 'count', R3 and R12.
2534  // On AArch64 also scratches R4-R10, on 32-bit ARM saves them to use.
2535  int align_dst_and_generate_shifted_copy_loop(Register from, Register to, Register count, int bytes_per_count, bool forward) {
2536
2537    const Register Rval = forward ? R12 : R3; // as generate_{forward,backward}_shifted_copy_loop expect
2538
2539    int min_copy = 0;
2540
2541    // Note: if {seq} is a sequence of numbers, L{seq} means that if the execution reaches this point,
2542    // then the remainder of 'to' divided by wordSize is one of elements of {seq}.
2543
2544#ifdef AARCH64
2545    // TODO-AARCH64: simplify, tune
2546
2547    load_one(Rval, from, wordSize, forward);
2548
2549    Label L_loop_finished;
2550
2551    switch (bytes_per_count) {
2552      case 4:
2553        min_copy = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 4, bytes_per_count, forward);
2554        break;
2555      case 2:
2556      {
2557        Label L2, L4, L6;
2558
2559        __ tbz(to, 1, L4);
2560        __ tbz(to, 2, L2);
2561
2562        __ BIND(L6);
2563        int min_copy6 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 6, bytes_per_count, forward);
2564        __ b(L_loop_finished);
2565
2566        __ BIND(L2);
2567        int min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
2568        __ b(L_loop_finished);
2569
2570        __ BIND(L4);
2571        int min_copy4 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 4, bytes_per_count, forward);
2572
2573        min_copy = MAX2(MAX2(min_copy2, min_copy4), min_copy6);
2574        break;
2575      }
2576      case 1:
2577      {
2578        Label L1, L2, L3, L4, L5, L6, L7;
2579        Label L15, L26;
2580        Label L246;
2581
2582        __ tbz(to, 0, L246);
2583        __ tbz(to, 1, L15);
2584        __ tbz(to, 2, L3);
2585
2586        __ BIND(L7);
2587        int min_copy7 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 7, bytes_per_count, forward);
2588        __ b(L_loop_finished);
2589
2590        __ BIND(L246);
2591        __ tbnz(to, 1, L26);
2592
2593        __ BIND(L4);
2594        int min_copy4 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 4, bytes_per_count, forward);
2595        __ b(L_loop_finished);
2596
2597        __ BIND(L15);
2598        __ tbz(to, 2, L1);
2599
2600        __ BIND(L5);
2601        int min_copy5 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 5, bytes_per_count, forward);
2602        __ b(L_loop_finished);
2603
2604        __ BIND(L3);
2605        int min_copy3 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 3, bytes_per_count, forward);
2606        __ b(L_loop_finished);
2607
2608        __ BIND(L26);
2609        __ tbz(to, 2, L2);
2610
2611        __ BIND(L6);
2612        int min_copy6 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 6, bytes_per_count, forward);
2613        __ b(L_loop_finished);
2614
2615        __ BIND(L1);
2616        int min_copy1 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 1, bytes_per_count, forward);
2617        __ b(L_loop_finished);
2618
2619        __ BIND(L2);
2620        int min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
2621
2622
2623        min_copy = MAX2(min_copy1, min_copy2);
2624        min_copy = MAX2(min_copy,  min_copy3);
2625        min_copy = MAX2(min_copy,  min_copy4);
2626        min_copy = MAX2(min_copy,  min_copy5);
2627        min_copy = MAX2(min_copy,  min_copy6);
2628        min_copy = MAX2(min_copy,  min_copy7);
2629        break;
2630      }
2631      default:
2632        ShouldNotReachHere();
2633        break;
2634    }
2635    __ BIND(L_loop_finished);
2636
2637#else
2638    __ push(RegisterSet(R4,R10));
2639    load_one(Rval, from, wordSize, forward);
2640
2641    switch (bytes_per_count) {
2642      case 2:
2643        min_copy = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
2644        break;
2645      case 1:
2646      {
2647        Label L1, L2, L3;
2648        int min_copy1, min_copy2, min_copy3;
2649
2650        Label L_loop_finished;
2651
2652        if (forward) {
2653            __ tbz(to, 0, L2);
2654            __ tbz(to, 1, L1);
2655
2656            __ BIND(L3);
2657            min_copy3 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 3, bytes_per_count, forward);
2658            __ b(L_loop_finished);
2659
2660            __ BIND(L1);
2661            min_copy1 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 1, bytes_per_count, forward);
2662            __ b(L_loop_finished);
2663
2664            __ BIND(L2);
2665            min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
2666        } else {
2667            __ tbz(to, 0, L2);
2668            __ tbnz(to, 1, L3);
2669
2670            __ BIND(L1);
2671            min_copy1 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 1, bytes_per_count, forward);
2672            __ b(L_loop_finished);
2673
2674             __ BIND(L3);
2675            min_copy3 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 3, bytes_per_count, forward);
2676            __ b(L_loop_finished);
2677
2678           __ BIND(L2);
2679            min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
2680        }
2681
2682        min_copy = MAX2(MAX2(min_copy1, min_copy2), min_copy3);
2683
2684        __ BIND(L_loop_finished);
2685
2686        break;
2687      }
2688      default:
2689        ShouldNotReachHere();
2690        break;
2691    }
2692
2693    __ pop(RegisterSet(R4,R10));
2694#endif // AARCH64
2695
2696    return min_copy;
2697  }
2698
2699#ifndef PRODUCT
2700  int * get_arraycopy_counter(int bytes_per_count) {
2701    switch (bytes_per_count) {
2702      case 1:
2703        return &SharedRuntime::_jbyte_array_copy_ctr;
2704      case 2:
2705        return &SharedRuntime::_jshort_array_copy_ctr;
2706      case 4:
2707        return &SharedRuntime::_jint_array_copy_ctr;
2708      case 8:
2709        return &SharedRuntime::_jlong_array_copy_ctr;
2710      default:
2711        ShouldNotReachHere();
2712        return NULL;
2713    }
2714  }
2715#endif // !PRODUCT
2716
2717  //
2718  //  Generate stub for primitive array copy.  If "aligned" is true, the
2719  //  "from" and "to" addresses are assumed to be heapword aligned.
2720  //
2721  //  If "disjoint" is true, arrays are assumed to be disjoint, otherwise they may overlap and
2722  //  "nooverlap_target" must be specified as the address to jump if they don't.
2723  //
2724  // Arguments for generated stub:
2725  //      from:  R0
2726  //      to:    R1
2727  //      count: R2 treated as signed 32-bit int
2728  //
2729  address generate_primitive_copy(bool aligned, const char * name, bool status, int bytes_per_count, bool disjoint, address nooverlap_target = NULL) {
2730    __ align(CodeEntryAlignment);
2731    StubCodeMark mark(this, "StubRoutines", name);
2732    address start = __ pc();
2733
2734    const Register from  = R0;   // source array address
2735    const Register to    = R1;   // destination array address
2736    const Register count = R2;   // elements count
2737    const Register tmp1  = R3;
2738    const Register tmp2  = R12;
2739
2740    if (!aligned)  {
2741      BLOCK_COMMENT("Entry:");
2742    }
2743
2744    __ zap_high_non_significant_bits(R2);
2745
2746    if (!disjoint) {
2747      assert (nooverlap_target != NULL, "must be specified for conjoint case");
2748      array_overlap_test(nooverlap_target, exact_log2(bytes_per_count), tmp1, tmp2);
2749    }
2750
2751    inc_counter_np(*get_arraycopy_counter(bytes_per_count), tmp1, tmp2);
2752
2753    // Conjoint case: since execution reaches this point, the arrays overlap, so performing backward copy
2754    // Disjoint case: perform forward copy
2755    bool forward = disjoint;
2756
2757
2758    if (!forward) {
2759      // Set 'from' and 'to' to upper bounds
2760      int log_bytes_per_count = exact_log2(bytes_per_count);
2761      __ add_ptr_scaled_int32(to,   to,   count, log_bytes_per_count);
2762      __ add_ptr_scaled_int32(from, from, count, log_bytes_per_count);
2763    }
2764
2765    // There are two main copy loop implementations:
2766    //  *) The huge and complex one applicable only for large enough arrays
2767    //  *) The small and simple one applicable for any array (but not efficient for large arrays).
2768    // Currently "small" implementation is used if and only if the "large" one could not be used.
2769    // XXX optim: tune the limit higher ?
2770    // Large implementation lower applicability bound is actually determined by
2771    // aligned copy loop which require <=7 bytes for src alignment, and 8 words for aligned copy loop.
2772    const int small_copy_limit = (8*wordSize + 7) / bytes_per_count;
2773
2774    Label L_small_array;
2775    __ cmp_32(count, small_copy_limit);
2776    __ b(L_small_array, le); // TODO-AARCH64: le vs lt
2777
2778    // Otherwise proceed with large implementation.
2779
2780    bool from_is_aligned = (bytes_per_count >= 8);
2781    if (aligned && forward && (HeapWordSize % 8 == 0)) {
2782        // if 'from' is heapword aligned and HeapWordSize is divisible by 8,
2783        //  then from is aligned by 8
2784        from_is_aligned = true;
2785    }
2786
2787    int count_required_to_align = from_is_aligned ? 0 : align_src(from, to, count, tmp1, bytes_per_count, forward);
2788    assert (small_copy_limit >= count_required_to_align, "alignment could exhaust count");
2789
2790    // now 'from' is aligned
2791
2792    bool to_is_aligned = false;
2793
2794    if (bytes_per_count >= wordSize) {
2795      // 'to' is aligned by bytes_per_count, so it is aligned by wordSize
2796      to_is_aligned = true;
2797    } else {
2798      if (aligned && (8 % HeapWordSize == 0) && (HeapWordSize % wordSize == 0)) {
2799        // Originally 'from' and 'to' were heapword aligned;
2800        // (from - to) has not been changed, so since now 'from' is 8-byte aligned, then it is also heapword aligned,
2801        //  so 'to' is also heapword aligned and thus aligned by wordSize.
2802        to_is_aligned = true;
2803      }
2804    }
2805
2806    Label L_unaligned_dst;
2807
2808    if (!to_is_aligned) {
2809      BLOCK_COMMENT("Check dst alignment:");
2810      __ tst(to, wordSize - 1);
2811      __ b(L_unaligned_dst, ne); // 'to' is not aligned
2812    }
2813
2814    // 'from' and 'to' are properly aligned
2815
2816    int min_copy;
2817    if (forward) {
2818      min_copy = generate_forward_aligned_copy_loop (from, to, count, bytes_per_count);
2819    } else {
2820      min_copy = generate_backward_aligned_copy_loop(from, to, count, bytes_per_count);
2821    }
2822    assert(small_copy_limit >= count_required_to_align + min_copy, "first loop might exhaust count");
2823
2824    if (status) {
2825      __ mov(R0, 0); // OK
2826    }
2827
2828    __ ret();
2829
2830    {
2831      copy_small_array(from, to, count, tmp1, tmp2, bytes_per_count, forward, L_small_array /* entry */);
2832
2833      if (status) {
2834        __ mov(R0, 0); // OK
2835      }
2836
2837      __ ret();
2838    }
2839
2840    if (! to_is_aligned) {
2841      __ BIND(L_unaligned_dst);
2842      int min_copy_shifted = align_dst_and_generate_shifted_copy_loop(from, to, count, bytes_per_count, forward);
2843      assert (small_copy_limit >= count_required_to_align + min_copy_shifted, "first loop might exhaust count");
2844
2845      if (status) {
2846        __ mov(R0, 0); // OK
2847      }
2848
2849      __ ret();
2850    }
2851
2852    return start;
2853  }
2854
2855#if INCLUDE_ALL_GCS
2856  //
2857  //  Generate pre-write barrier for array.
2858  //
2859  //  Input:
2860  //     addr     - register containing starting address
2861  //     count    - register containing element count, 32-bit int
2862  //     callee_saved_regs -
2863  //                the call must preserve this number of registers: R0, R1, ..., R[callee_saved_regs-1]
2864  //
2865  //  callee_saved_regs must include addr and count
2866  //  Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR) except for callee_saved_regs.
2867  void gen_write_ref_array_pre_barrier(Register addr, Register count, int callee_saved_regs) {
2868    BarrierSet* bs = Universe::heap()->barrier_set();
2869    if (bs->has_write_ref_pre_barrier()) {
2870      assert(bs->has_write_ref_array_pre_opt(),
2871             "Else unsupported barrier set.");
2872
2873      assert( addr->encoding() < callee_saved_regs, "addr must be saved");
2874      assert(count->encoding() < callee_saved_regs, "count must be saved");
2875
2876      BLOCK_COMMENT("PreBarrier");
2877
2878#ifdef AARCH64
2879      callee_saved_regs = round_to(callee_saved_regs, 2);
2880      for (int i = 0; i < callee_saved_regs; i += 2) {
2881        __ raw_push(as_Register(i), as_Register(i+1));
2882      }
2883#else
2884      RegisterSet saved_regs = RegisterSet(R0, as_Register(callee_saved_regs-1));
2885      __ push(saved_regs | R9ifScratched);
2886#endif // AARCH64
2887
2888      if (addr != R0) {
2889        assert_different_registers(count, R0);
2890        __ mov(R0, addr);
2891      }
2892#ifdef AARCH64
2893      __ zero_extend(R1, count, 32); // BarrierSet::static_write_ref_array_pre takes size_t
2894#else
2895      if (count != R1) {
2896        __ mov(R1, count);
2897      }
2898#endif // AARCH64
2899
2900      __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
2901
2902#ifdef AARCH64
2903      for (int i = callee_saved_regs - 2; i >= 0; i -= 2) {
2904        __ raw_pop(as_Register(i), as_Register(i+1));
2905      }
2906#else
2907      __ pop(saved_regs | R9ifScratched);
2908#endif // AARCH64
2909    }
2910  }
2911#endif // INCLUDE_ALL_GCS
2912
2913  //
2914  //  Generate post-write barrier for array.
2915  //
2916  //  Input:
2917  //     addr     - register containing starting address (can be scratched)
2918  //     count    - register containing element count, 32-bit int (can be scratched)
2919  //     tmp      - scratch register
2920  //
2921  //  Note: LR can be scratched but might be equal to addr, count or tmp
2922  //  Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
2923  void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp) {
2924    assert_different_registers(addr, count, tmp);
2925    BarrierSet* bs = Universe::heap()->barrier_set();
2926
2927    switch (bs->kind()) {
2928    case BarrierSet::G1SATBCTLogging:
2929      {
2930        BLOCK_COMMENT("G1PostBarrier");
2931        if (addr != R0) {
2932          assert_different_registers(count, R0);
2933          __ mov(R0, addr);
2934        }
2935#ifdef AARCH64
2936        __ zero_extend(R1, count, 32); // BarrierSet::static_write_ref_array_post takes size_t
2937#else
2938        if (count != R1) {
2939          __ mov(R1, count);
2940        }
2941#if R9_IS_SCRATCHED
2942        // Safer to save R9 here since callers may have been written
2943        // assuming R9 survives. This is suboptimal but is not in
2944        // general worth optimizing for the few platforms where R9
2945        // is scratched. Note that the optimization might not be to
2946        // difficult for this particular call site.
2947        __ push(R9);
2948#endif
2949#endif // !AARCH64
2950        __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
2951#ifndef AARCH64
2952#if R9_IS_SCRATCHED
2953        __ pop(R9);
2954#endif
2955#endif // !AARCH64
2956      }
2957      break;
2958    case BarrierSet::CardTableForRS:
2959    case BarrierSet::CardTableExtension:
2960      {
2961        BLOCK_COMMENT("CardTablePostBarrier");
2962        CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
2963        assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
2964
2965        Label L_cardtable_loop;
2966
2967        __ add_ptr_scaled_int32(count, addr, count, LogBytesPerHeapOop);
2968        __ sub(count, count, BytesPerHeapOop);                            // last addr
2969
2970        __ logical_shift_right(addr, addr, CardTableModRefBS::card_shift);
2971        __ logical_shift_right(count, count, CardTableModRefBS::card_shift);
2972        __ sub(count, count, addr); // nb of cards
2973
2974        // warning: Rthread has not been preserved
2975        __ mov_address(tmp, (address) ct->byte_map_base, symbolic_Relocation::card_table_reference);
2976        __ add(addr,tmp, addr);
2977
2978        Register zero = __ zero_register(tmp);
2979
2980        __ BIND(L_cardtable_loop);
2981        __ strb(zero, Address(addr, 1, post_indexed));
2982        __ subs(count, count, 1);
2983        __ b(L_cardtable_loop, ge);
2984      }
2985      break;
2986    case BarrierSet::ModRef:
2987      break;
2988    default:
2989      ShouldNotReachHere();
2990    }
2991  }
2992
2993  // Generates pattern of code to be placed after raw data copying in generate_oop_copy
2994  // Includes return from arraycopy stub.
2995  //
2996  // Arguments:
2997  //     to:       destination pointer after copying.
2998  //               if 'forward' then 'to' == upper bound, else 'to' == beginning of the modified region
2999  //     count:    total number of copied elements, 32-bit int
3000  //
3001  // Blows all volatile (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR) and 'to', 'count', 'tmp' registers.
3002  void oop_arraycopy_stub_epilogue_helper(Register to, Register count, Register tmp, bool status, bool forward) {
3003    assert_different_registers(to, count, tmp);
3004
3005    if (forward) {
3006      // 'to' is upper bound of the modified region
3007      // restore initial dst:
3008      __ sub_ptr_scaled_int32(to, to, count, LogBytesPerHeapOop);
3009    }
3010
3011    // 'to' is the beginning of the region
3012
3013    gen_write_ref_array_post_barrier(to, count, tmp);
3014
3015    if (status) {
3016      __ mov(R0, 0); // OK
3017    }
3018
3019#ifdef AARCH64
3020    __ raw_pop(LR, ZR);
3021    __ ret();
3022#else
3023    __ pop(PC);
3024#endif // AARCH64
3025  }
3026
3027
3028  //  Generate stub for assign-compatible oop copy.  If "aligned" is true, the
3029  //  "from" and "to" addresses are assumed to be heapword aligned.
3030  //
3031  //  If "disjoint" is true, arrays are assumed to be disjoint, otherwise they may overlap and
3032  //  "nooverlap_target" must be specified as the address to jump if they don't.
3033  //
3034  // Arguments for generated stub:
3035  //      from:  R0
3036  //      to:    R1
3037  //      count: R2 treated as signed 32-bit int
3038  //
3039  address generate_oop_copy(bool aligned, const char * name, bool status, bool disjoint, address nooverlap_target = NULL) {
3040    __ align(CodeEntryAlignment);
3041    StubCodeMark mark(this, "StubRoutines", name);
3042    address start = __ pc();
3043
3044    Register from  = R0;
3045    Register to    = R1;
3046    Register count = R2;
3047    Register tmp1  = R3;
3048    Register tmp2  = R12;
3049
3050
3051    if (!aligned) {
3052      BLOCK_COMMENT("Entry:");
3053    }
3054
3055    __ zap_high_non_significant_bits(R2);
3056
3057    if (!disjoint) {
3058      assert (nooverlap_target != NULL, "must be specified for conjoint case");
3059      array_overlap_test(nooverlap_target, LogBytesPerHeapOop, tmp1, tmp2);
3060    }
3061
3062    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, tmp1, tmp2);
3063
3064    // Conjoint case: since execution reaches this point, the arrays overlap, so performing backward copy
3065    // Disjoint case: perform forward copy
3066    bool forward = disjoint;
3067
3068    const int bytes_per_count = BytesPerHeapOop;
3069    const int log_bytes_per_count = LogBytesPerHeapOop;
3070
3071    const Register saved_count = LR;
3072    const int callee_saved_regs = 3; // R0-R2
3073
3074    // LR is used later to save barrier args
3075#ifdef AARCH64
3076    __ raw_push(LR, ZR);
3077#else
3078    __ push(LR);
3079#endif // AARCH64
3080
3081#if INCLUDE_ALL_GCS
3082    gen_write_ref_array_pre_barrier(to, count, callee_saved_regs);
3083#endif // INCLUDE_ALL_GCS
3084
3085    // save arguments for barrier generation (after the pre barrier)
3086    __ mov(saved_count, count);
3087
3088    if (!forward) {
3089      __ add_ptr_scaled_int32(to,   to,   count, log_bytes_per_count);
3090      __ add_ptr_scaled_int32(from, from, count, log_bytes_per_count);
3091    }
3092
3093    // for short arrays, just do single element copy
3094    Label L_small_array;
3095    const int small_copy_limit = (8*wordSize + 7)/bytes_per_count; // XXX optim: tune the limit higher ?
3096    __ cmp_32(count, small_copy_limit);
3097    __ b(L_small_array, le);
3098
3099    bool from_is_aligned = (bytes_per_count >= 8);
3100    if (aligned && forward && (HeapWordSize % 8 == 0)) {
3101        // if 'from' is heapword aligned and HeapWordSize is divisible by 8,
3102        //  then from is aligned by 8
3103        from_is_aligned = true;
3104    }
3105
3106    int count_required_to_align = from_is_aligned ? 0 : align_src(from, to, count, tmp1, bytes_per_count, forward);
3107    assert (small_copy_limit >= count_required_to_align, "alignment could exhaust count");
3108
3109    // now 'from' is aligned
3110
3111    bool to_is_aligned = false;
3112
3113    if (bytes_per_count >= wordSize) {
3114      // 'to' is aligned by bytes_per_count, so it is aligned by wordSize
3115      to_is_aligned = true;
3116    } else {
3117      if (aligned && (8 % HeapWordSize == 0) && (HeapWordSize % wordSize == 0)) {
3118        // Originally 'from' and 'to' were heapword aligned;
3119        // (from - to) has not been changed, so since now 'from' is 8-byte aligned, then it is also heapword aligned,
3120        //  so 'to' is also heapword aligned and thus aligned by wordSize.
3121        to_is_aligned = true;
3122      }
3123    }
3124
3125    Label L_unaligned_dst;
3126
3127    if (!to_is_aligned) {
3128      BLOCK_COMMENT("Check dst alignment:");
3129      __ tst(to, wordSize - 1);
3130      __ b(L_unaligned_dst, ne); // 'to' is not aligned
3131    }
3132
3133    int min_copy;
3134    if (forward) {
3135      min_copy = generate_forward_aligned_copy_loop(from, to, count, bytes_per_count);
3136    } else {
3137      min_copy = generate_backward_aligned_copy_loop(from, to, count, bytes_per_count);
3138    }
3139    assert(small_copy_limit >= count_required_to_align + min_copy, "first loop might exhaust count");
3140
3141    oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward);
3142
3143    {
3144      copy_small_array(from, to, count, tmp1, noreg, bytes_per_count, forward, L_small_array);
3145
3146      oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward);
3147    }
3148
3149    if (!to_is_aligned) {
3150      // !to_is_aligned <=> UseCompressedOops && AArch64
3151      __ BIND(L_unaligned_dst);
3152#ifdef AARCH64
3153      assert (UseCompressedOops, "unaligned oop array copy may be requested only with UseCompressedOops");
3154#else
3155      ShouldNotReachHere();
3156#endif // AARCH64
3157      int min_copy_shifted = align_dst_and_generate_shifted_copy_loop(from, to, count, bytes_per_count, forward);
3158      assert (small_copy_limit >= count_required_to_align + min_copy_shifted, "first loop might exhaust count");
3159
3160      oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward);
3161    }
3162
3163    return start;
3164  }
3165
3166  //  Generate 'unsafe' array copy stub
3167  //  Though just as safe as the other stubs, it takes an unscaled
3168  //  size_t argument instead of an element count.
3169  //
3170  // Arguments for generated stub:
3171  //      from:  R0
3172  //      to:    R1
3173  //      count: R2 byte count, treated as ssize_t, can be zero
3174  //
3175  // Examines the alignment of the operands and dispatches
3176  // to a long, int, short, or byte copy loop.
3177  //
3178  address generate_unsafe_copy(const char* name) {
3179
3180    const Register R0_from   = R0;      // source array address
3181    const Register R1_to     = R1;      // destination array address
3182    const Register R2_count  = R2;      // elements count
3183
3184    const Register R3_bits   = R3;      // test copy of low bits
3185
3186    __ align(CodeEntryAlignment);
3187    StubCodeMark mark(this, "StubRoutines", name);
3188    address start = __ pc();
3189#ifdef AARCH64
3190    __ NOT_IMPLEMENTED();
3191    start = NULL;
3192#else
3193    const Register tmp = Rtemp;
3194
3195    // bump this on entry, not on exit:
3196    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, R3, tmp);
3197
3198    __ orr(R3_bits, R0_from, R1_to);
3199    __ orr(R3_bits, R2_count, R3_bits);
3200
3201    __ tst(R3_bits, BytesPerLong-1);
3202    __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerLong), eq);
3203    __ jump(StubRoutines::_jlong_arraycopy, relocInfo::runtime_call_type, tmp, eq);
3204
3205    __ tst(R3_bits, BytesPerInt-1);
3206    __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerInt), eq);
3207    __ jump(StubRoutines::_jint_arraycopy, relocInfo::runtime_call_type, tmp, eq);
3208
3209    __ tst(R3_bits, BytesPerShort-1);
3210    __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerShort), eq);
3211    __ jump(StubRoutines::_jshort_arraycopy, relocInfo::runtime_call_type, tmp, eq);
3212
3213    __ jump(StubRoutines::_jbyte_arraycopy, relocInfo::runtime_call_type, tmp);
3214#endif
3215    return start;
3216  }
3217
3218  // Helper for generating a dynamic type check.
3219  // Smashes only the given temp registers.
3220  void generate_type_check(Register sub_klass,
3221                           Register super_check_offset,
3222                           Register super_klass,
3223                           Register tmp1,
3224                           Register tmp2,
3225                           Register tmp3,
3226                           Label& L_success) {
3227    assert_different_registers(sub_klass, super_check_offset, super_klass, tmp1, tmp2, tmp3);
3228
3229    BLOCK_COMMENT("type_check:");
3230
3231    // If the pointers are equal, we are done (e.g., String[] elements).
3232
3233    __ cmp(super_klass, sub_klass);
3234    __ b(L_success, eq); // fast success
3235
3236
3237    Label L_loop, L_fail;
3238
3239    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3240
3241    // Check the supertype display:
3242    __ ldr(tmp1, Address(sub_klass, super_check_offset));
3243    __ cmp(tmp1, super_klass);
3244    __ b(L_success, eq);
3245
3246    __ cmp(super_check_offset, sc_offset);
3247    __ b(L_fail, ne); // failure
3248
3249    BLOCK_COMMENT("type_check_slow_path:");
3250
3251    // a couple of useful fields in sub_klass:
3252    int ss_offset = in_bytes(Klass::secondary_supers_offset());
3253
3254    // Do a linear scan of the secondary super-klass chain.
3255
3256#ifndef PRODUCT
3257    int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3258    __ inc_counter((address) pst_counter, tmp1, tmp2);
3259#endif
3260
3261    Register scan_temp = tmp1;
3262    Register count_temp = tmp2;
3263
3264    // We will consult the secondary-super array.
3265    __ ldr(scan_temp, Address(sub_klass, ss_offset));
3266
3267    Register search_key = super_klass;
3268
3269    // Load the array length.
3270    __ ldr_s32(count_temp, Address(scan_temp, Array<Klass*>::length_offset_in_bytes()));
3271    __ add(scan_temp, scan_temp, Array<Klass*>::base_offset_in_bytes());
3272
3273    __ add(count_temp, count_temp, 1);
3274
3275    // Top of search loop
3276    __ bind(L_loop);
3277    // Notes:
3278    //  scan_temp starts at the array elements
3279    //  count_temp is 1+size
3280
3281    __ subs(count_temp, count_temp, 1);
3282    __ b(L_fail, eq); // not found
3283
3284    // Load next super to check
3285    // In the array of super classes elements are pointer sized.
3286    int element_size = wordSize;
3287    __ ldr(tmp3, Address(scan_temp, element_size, post_indexed));
3288
3289    // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3290    __ cmp(tmp3, search_key);
3291
3292    // A miss means we are NOT a subtype and need to keep looping
3293    __ b(L_loop, ne);
3294
3295    // Falling out the bottom means we found a hit; we ARE a subtype
3296
3297    // Success.  Cache the super we found and proceed in triumph.
3298    __ str(super_klass, Address(sub_klass, sc_offset));
3299
3300    // Jump to success
3301    __ b(L_success);
3302
3303    // Fall through on failure!
3304    __ bind(L_fail);
3305  }
3306
3307  //  Generate stub for checked oop copy.
3308  //
3309  // Arguments for generated stub:
3310  //      from:  R0
3311  //      to:    R1
3312  //      count: R2 treated as signed 32-bit int
3313  //      ckoff: R3 (super_check_offset)
3314  //      ckval: R4 (AArch64) / SP[0] (32-bit ARM) (super_klass)
3315  //      ret:   R0 zero for success; (-1^K) where K is partial transfer count (32-bit)
3316  //
3317  address generate_checkcast_copy(const char * name) {
3318    __ align(CodeEntryAlignment);
3319    StubCodeMark mark(this, "StubRoutines", name);
3320    address start = __ pc();
3321
3322    const Register from  = R0;  // source array address
3323    const Register to    = R1;  // destination array address
3324    const Register count = R2;  // elements count
3325
3326    const Register R3_ckoff  = R3;      // super_check_offset
3327    const Register R4_ckval  = R4;      // super_klass
3328
3329    const int callee_saved_regs = AARCH64_ONLY(5) NOT_AARCH64(4); // LR saved differently
3330
3331    Label load_element, store_element, do_card_marks, fail;
3332
3333    BLOCK_COMMENT("Entry:");
3334
3335    __ zap_high_non_significant_bits(R2);
3336
3337#ifdef AARCH64
3338    __ raw_push(LR, ZR);
3339    __ raw_push(R19, R20);
3340#else
3341    int pushed = 0;
3342    __ push(LR);
3343    pushed+=1;
3344#endif // AARCH64
3345
3346#if INCLUDE_ALL_GCS
3347    gen_write_ref_array_pre_barrier(to, count, callee_saved_regs);
3348#endif // INCLUDE_ALL_GCS
3349
3350#ifndef AARCH64
3351    const RegisterSet caller_saved_regs = RegisterSet(R4,R6) | RegisterSet(R8,R9) | altFP_7_11;
3352    __ push(caller_saved_regs);
3353    assert(caller_saved_regs.size() == 6, "check the count");
3354    pushed+=6;
3355
3356    __ ldr(R4_ckval,Address(SP, wordSize*pushed)); // read the argument that was on the stack
3357#endif // !AARCH64
3358
3359    // Save arguments for barrier generation (after the pre barrier):
3360    // - must be a caller saved register and not LR
3361    // - ARM32: avoid R10 in case RThread is needed
3362    const Register saved_count = AARCH64_ONLY(R19) NOT_AARCH64(altFP_7_11);
3363#ifdef AARCH64
3364    __ mov_w(saved_count, count);
3365    __ cbnz_w(count, load_element); // and test count
3366#else
3367    __ movs(saved_count, count); // and test count
3368    __ b(load_element,ne);
3369#endif // AARCH64
3370
3371    // nothing to copy
3372    __ mov(R0, 0);
3373
3374#ifdef AARCH64
3375    __ raw_pop(R19, R20);
3376    __ raw_pop(LR, ZR);
3377    __ ret();
3378#else
3379    __ pop(caller_saved_regs);
3380    __ pop(PC);
3381#endif // AARCH64
3382
3383    // ======== begin loop ========
3384    // (Loop is rotated; its entry is load_element.)
3385    __ align(OptoLoopAlignment);
3386    __ BIND(store_element);
3387    if (UseCompressedOops) {
3388      __ store_heap_oop(R5, Address(to, BytesPerHeapOop, post_indexed));  // store the oop, changes flags
3389      __ subs_32(count,count,1);
3390    } else {
3391      __ subs_32(count,count,1);
3392      __ str(R5, Address(to, BytesPerHeapOop, post_indexed));             // store the oop
3393    }
3394    __ b(do_card_marks, eq); // count exhausted
3395
3396    // ======== loop entry is here ========
3397    __ BIND(load_element);
3398    __ load_heap_oop(R5, Address(from, BytesPerHeapOop, post_indexed));  // load the oop
3399    __ cbz(R5, store_element); // NULL
3400
3401    __ load_klass(R6, R5);
3402
3403    generate_type_check(R6, R3_ckoff, R4_ckval, /*tmps*/ R12, R8, R9,
3404                        // branch to this on success:
3405                        store_element);
3406    // ======== end loop ========
3407
3408    // It was a real error; we must depend on the caller to finish the job.
3409    // Register count has number of *remaining* oops, saved_count number of *total* oops.
3410    // Emit GC store barriers for the oops we have copied
3411    // and report their number to the caller (0 or (-1^n))
3412    __ BIND(fail);
3413
3414    // Note: fail marked by the fact that count differs from saved_count
3415
3416    __ BIND(do_card_marks);
3417
3418    Register copied = AARCH64_ONLY(R20) NOT_AARCH64(R4); // saved
3419    Label L_not_copied;
3420
3421    __ subs_32(copied, saved_count, count); // copied count (in saved reg)
3422    __ b(L_not_copied, eq); // nothing was copied, skip post barrier
3423    __ sub(to, to, AsmOperand(copied, lsl, LogBytesPerHeapOop)); // initial to value
3424    __ mov(R12, copied); // count arg scratched by post barrier
3425
3426    gen_write_ref_array_post_barrier(to, R12, R3);
3427
3428    assert_different_registers(R3,R12,LR,copied,saved_count);
3429    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R3, R12);
3430
3431    __ BIND(L_not_copied);
3432    __ cmp_32(copied, saved_count); // values preserved in saved registers
3433
3434#ifdef AARCH64
3435    __ csinv(R0, ZR, copied, eq); // 0 if all copied else NOT(copied)
3436    __ raw_pop(R19, R20);
3437    __ raw_pop(LR, ZR);
3438    __ ret();
3439#else
3440    __ mov(R0, 0, eq); // 0 if all copied
3441    __ mvn(R0, copied, ne); // else NOT(copied)
3442    __ pop(caller_saved_regs);
3443    __ pop(PC);
3444#endif // AARCH64
3445
3446    return start;
3447  }
3448
3449  // Perform range checks on the proposed arraycopy.
3450  // Kills the two temps, but nothing else.
3451  void arraycopy_range_checks(Register src,     // source array oop
3452                              Register src_pos, // source position (32-bit int)
3453                              Register dst,     // destination array oop
3454                              Register dst_pos, // destination position (32-bit int)
3455                              Register length,  // length of copy (32-bit int)
3456                              Register temp1, Register temp2,
3457                              Label& L_failed) {
3458
3459    BLOCK_COMMENT("arraycopy_range_checks:");
3460
3461    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
3462
3463    const Register array_length = temp1;  // scratch
3464    const Register end_pos      = temp2;  // scratch
3465
3466    __ add_32(end_pos, length, src_pos);  // src_pos + length
3467    __ ldr_s32(array_length, Address(src, arrayOopDesc::length_offset_in_bytes()));
3468    __ cmp_32(end_pos, array_length);
3469    __ b(L_failed, hi);
3470
3471    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
3472    __ add_32(end_pos, length, dst_pos); // dst_pos + length
3473    __ ldr_s32(array_length, Address(dst, arrayOopDesc::length_offset_in_bytes()));
3474    __ cmp_32(end_pos, array_length);
3475    __ b(L_failed, hi);
3476
3477    BLOCK_COMMENT("arraycopy_range_checks done");
3478  }
3479
3480  //
3481  //  Generate generic array copy stubs
3482  //
3483  //  Input:
3484  //    R0    -  src oop
3485  //    R1    -  src_pos (32-bit int)
3486  //    R2    -  dst oop
3487  //    R3    -  dst_pos (32-bit int)
3488  //    R4 (AArch64) / SP[0] (32-bit ARM) -  element count (32-bit int)
3489  //
3490  //  Output: (32-bit int)
3491  //    R0 ==  0  -  success
3492  //    R0 <   0  -  need to call System.arraycopy
3493  //
3494  address generate_generic_copy(const char *name) {
3495    Label L_failed, L_objArray;
3496
3497    // Input registers
3498    const Register src      = R0;  // source array oop
3499    const Register src_pos  = R1;  // source position
3500    const Register dst      = R2;  // destination array oop
3501    const Register dst_pos  = R3;  // destination position
3502
3503    // registers used as temp
3504    const Register R5_src_klass = R5; // source array klass
3505    const Register R6_dst_klass = R6; // destination array klass
3506    const Register R_lh         = AARCH64_ONLY(R7) NOT_AARCH64(altFP_7_11); // layout handler
3507    const Register R8_temp      = R8;
3508
3509    __ align(CodeEntryAlignment);
3510    StubCodeMark mark(this, "StubRoutines", name);
3511    address start = __ pc();
3512
3513    __ zap_high_non_significant_bits(R1);
3514    __ zap_high_non_significant_bits(R3);
3515    __ zap_high_non_significant_bits(R4);
3516
3517#ifndef AARCH64
3518    int pushed = 0;
3519    const RegisterSet saved_regs = RegisterSet(R4,R6) | RegisterSet(R8,R9) | altFP_7_11;
3520    __ push(saved_regs);
3521    assert(saved_regs.size() == 6, "check the count");
3522    pushed+=6;
3523#endif // !AARCH64
3524
3525    // bump this on entry, not on exit:
3526    inc_counter_np(SharedRuntime::_generic_array_copy_ctr, R5, R12);
3527
3528    const Register length   = R4;  // elements count
3529#ifndef AARCH64
3530    __ ldr(length, Address(SP,4*pushed));
3531#endif // !AARCH64
3532
3533
3534    //-----------------------------------------------------------------------
3535    // Assembler stubs will be used for this call to arraycopy
3536    // if the following conditions are met:
3537    //
3538    // (1) src and dst must not be null.
3539    // (2) src_pos must not be negative.
3540    // (3) dst_pos must not be negative.
3541    // (4) length  must not be negative.
3542    // (5) src klass and dst klass should be the same and not NULL.
3543    // (6) src and dst should be arrays.
3544    // (7) src_pos + length must not exceed length of src.
3545    // (8) dst_pos + length must not exceed length of dst.
3546    BLOCK_COMMENT("arraycopy initial argument checks");
3547
3548    //  if (src == NULL) return -1;
3549    __ cbz(src, L_failed);
3550
3551    //  if (src_pos < 0) return -1;
3552    __ cmp_32(src_pos, 0);
3553    __ b(L_failed, lt);
3554
3555    //  if (dst == NULL) return -1;
3556    __ cbz(dst, L_failed);
3557
3558    //  if (dst_pos < 0) return -1;
3559    __ cmp_32(dst_pos, 0);
3560    __ b(L_failed, lt);
3561
3562    //  if (length < 0) return -1;
3563    __ cmp_32(length, 0);
3564    __ b(L_failed, lt);
3565
3566    BLOCK_COMMENT("arraycopy argument klass checks");
3567    //  get src->klass()
3568    __ load_klass(R5_src_klass, src);
3569
3570    // Load layout helper
3571    //
3572    //  |array_tag|     | header_size | element_type |     |log2_element_size|
3573    // 32        30    24            16              8     2                 0
3574    //
3575    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
3576    //
3577
3578    int lh_offset = in_bytes(Klass::layout_helper_offset());
3579    __ ldr_u32(R_lh, Address(R5_src_klass, lh_offset));
3580
3581    __ load_klass(R6_dst_klass, dst);
3582
3583    // Handle objArrays completely differently...
3584    juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3585    __ mov_slow(R8_temp, objArray_lh);
3586    __ cmp_32(R_lh, R8_temp);
3587    __ b(L_objArray,eq);
3588
3589    //  if (src->klass() != dst->klass()) return -1;
3590    __ cmp(R5_src_klass, R6_dst_klass);
3591    __ b(L_failed, ne);
3592
3593    //  if (!src->is_Array()) return -1;
3594    __ cmp_32(R_lh, Klass::_lh_neutral_value); // < 0
3595    __ b(L_failed, ge);
3596
3597    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3598                           R8_temp, R6_dst_klass, L_failed);
3599
3600    {
3601      // TypeArrayKlass
3602      //
3603      // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
3604      // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
3605      //
3606
3607      const Register R6_offset = R6_dst_klass;    // array offset
3608      const Register R12_elsize = R12;            // log2 element size
3609
3610      __ logical_shift_right(R6_offset, R_lh, Klass::_lh_header_size_shift);
3611      __ andr(R6_offset, R6_offset, (unsigned int)Klass::_lh_header_size_mask); // array_offset
3612      __ add(src, src, R6_offset);       // src array offset
3613      __ add(dst, dst, R6_offset);       // dst array offset
3614      __ andr(R12_elsize, R_lh, (unsigned int)Klass::_lh_log2_element_size_mask); // log2 element size
3615
3616      // next registers should be set before the jump to corresponding stub
3617      const Register from     = R0;  // source array address
3618      const Register to       = R1;  // destination array address
3619      const Register count    = R2;  // elements count
3620
3621      // 'from', 'to', 'count' registers should be set in this order
3622      // since they are the same as 'src', 'src_pos', 'dst'.
3623
3624#ifdef AARCH64
3625
3626      BLOCK_COMMENT("choose copy loop based on element size and scale indexes");
3627      Label Lbyte, Lshort, Lint, Llong;
3628
3629      __ cbz(R12_elsize, Lbyte);
3630
3631      assert (LogBytesPerShort < LogBytesPerInt && LogBytesPerInt < LogBytesPerLong, "must be");
3632      __ cmp(R12_elsize, LogBytesPerInt);
3633      __ b(Lint,  eq);
3634      __ b(Llong, gt);
3635
3636      __ BIND(Lshort);
3637      __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerShort);
3638      __ add_ptr_scaled_int32(to,   dst, dst_pos, LogBytesPerShort);
3639      __ mov(count, length);
3640      __ b(StubRoutines::_jshort_arraycopy);
3641
3642      __ BIND(Lint);
3643      __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerInt);
3644      __ add_ptr_scaled_int32(to,   dst, dst_pos, LogBytesPerInt);
3645      __ mov(count, length);
3646      __ b(StubRoutines::_jint_arraycopy);
3647
3648      __ BIND(Lbyte);
3649      __ add_ptr_scaled_int32(from, src, src_pos, 0);
3650      __ add_ptr_scaled_int32(to,   dst, dst_pos, 0);
3651      __ mov(count, length);
3652      __ b(StubRoutines::_jbyte_arraycopy);
3653
3654      __ BIND(Llong);
3655      __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerLong);
3656      __ add_ptr_scaled_int32(to,   dst, dst_pos, LogBytesPerLong);
3657      __ mov(count, length);
3658      __ b(StubRoutines::_jlong_arraycopy);
3659
3660#else // AARCH64
3661
3662      BLOCK_COMMENT("scale indexes to element size");
3663      __ add(from, src, AsmOperand(src_pos, lsl, R12_elsize));       // src_addr
3664      __ add(to, dst, AsmOperand(dst_pos, lsl, R12_elsize));         // dst_addr
3665
3666      __ mov(count, length);  // length
3667
3668      // XXX optim: avoid later push in arraycopy variants ?
3669
3670      __ pop(saved_regs);
3671
3672      BLOCK_COMMENT("choose copy loop based on element size");
3673      __ cmp(R12_elsize, 0);
3674      __ b(StubRoutines::_jbyte_arraycopy,eq);
3675
3676      __ cmp(R12_elsize, LogBytesPerShort);
3677      __ b(StubRoutines::_jshort_arraycopy,eq);
3678
3679      __ cmp(R12_elsize, LogBytesPerInt);
3680      __ b(StubRoutines::_jint_arraycopy,eq);
3681
3682      __ b(StubRoutines::_jlong_arraycopy);
3683
3684#endif // AARCH64
3685    }
3686
3687    // ObjArrayKlass
3688    __ BIND(L_objArray);
3689    // live at this point:  R5_src_klass, R6_dst_klass, src[_pos], dst[_pos], length
3690
3691    Label L_plain_copy, L_checkcast_copy;
3692    //  test array classes for subtyping
3693    __ cmp(R5_src_klass, R6_dst_klass);         // usual case is exact equality
3694    __ b(L_checkcast_copy, ne);
3695
3696    BLOCK_COMMENT("Identically typed arrays");
3697    {
3698      // Identically typed arrays can be copied without element-wise checks.
3699      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3700                             R8_temp, R_lh, L_failed);
3701
3702      // next registers should be set before the jump to corresponding stub
3703      const Register from     = R0;  // source array address
3704      const Register to       = R1;  // destination array address
3705      const Register count    = R2;  // elements count
3706
3707      __ add(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
3708      __ add(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
3709      __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerHeapOop);         // src_addr
3710      __ add_ptr_scaled_int32(to, dst, dst_pos, LogBytesPerHeapOop);           // dst_addr
3711      __ BIND(L_plain_copy);
3712      __ mov(count, length);
3713
3714#ifndef AARCH64
3715      __ pop(saved_regs); // XXX optim: avoid later push in oop_arraycopy ?
3716#endif // !AARCH64
3717      __ b(StubRoutines::_oop_arraycopy);
3718    }
3719
3720    {
3721      __ BIND(L_checkcast_copy);
3722      // live at this point:  R5_src_klass, R6_dst_klass
3723
3724      // Before looking at dst.length, make sure dst is also an objArray.
3725      __ ldr_u32(R8_temp, Address(R6_dst_klass, lh_offset));
3726      __ cmp_32(R_lh, R8_temp);
3727      __ b(L_failed, ne);
3728
3729      // It is safe to examine both src.length and dst.length.
3730
3731      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3732                             R8_temp, R_lh, L_failed);
3733
3734      // next registers should be set before the jump to corresponding stub
3735      const Register from     = R0;  // source array address
3736      const Register to       = R1;  // destination array address
3737      const Register count    = R2;  // elements count
3738
3739      // Marshal the base address arguments now, freeing registers.
3740      __ add(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
3741      __ add(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
3742      __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerHeapOop);         // src_addr
3743      __ add_ptr_scaled_int32(to, dst, dst_pos, LogBytesPerHeapOop);           // dst_addr
3744
3745      __ mov(count, length); // length (reloaded)
3746
3747      Register sco_temp = R3;                   // this register is free now
3748      assert_different_registers(from, to, count, sco_temp,
3749                                 R6_dst_klass, R5_src_klass);
3750
3751      // Generate the type check.
3752      int sco_offset = in_bytes(Klass::super_check_offset_offset());
3753      __ ldr_u32(sco_temp, Address(R6_dst_klass, sco_offset));
3754      generate_type_check(R5_src_klass, sco_temp, R6_dst_klass,
3755                          R8_temp, R9,
3756                          AARCH64_ONLY(R10) NOT_AARCH64(R12),
3757                          L_plain_copy);
3758
3759      // Fetch destination element klass from the ObjArrayKlass header.
3760      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
3761
3762      // the checkcast_copy loop needs two extra arguments:
3763      const Register Rdst_elem_klass = AARCH64_ONLY(R4) NOT_AARCH64(R3);
3764      __ ldr(Rdst_elem_klass, Address(R6_dst_klass, ek_offset));   // dest elem klass
3765#ifndef AARCH64
3766      __ pop(saved_regs); // XXX optim: avoid later push in oop_arraycopy ?
3767      __ str(Rdst_elem_klass, Address(SP,0));    // dest elem klass argument
3768#endif // !AARCH64
3769      __ ldr_u32(R3, Address(Rdst_elem_klass, sco_offset));  // sco of elem klass
3770      __ b(StubRoutines::_checkcast_arraycopy);
3771    }
3772
3773    __ BIND(L_failed);
3774
3775#ifndef AARCH64
3776    __ pop(saved_regs);
3777#endif // !AARCH64
3778    __ mvn(R0, 0); // failure, with 0 copied
3779    __ ret();
3780
3781    return start;
3782  }
3783
3784  // Safefetch stubs.
3785  void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
3786    // safefetch signatures:
3787    //   int      SafeFetch32(int*      adr, int      errValue);
3788    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3789    //
3790    // arguments:
3791    //   R0 = adr
3792    //   R1 = errValue
3793    //
3794    // result:
3795    //   R0  = *adr or errValue
3796
3797    StubCodeMark mark(this, "StubRoutines", name);
3798
3799    // Entry point, pc or function descriptor.
3800    *entry = __ pc();
3801
3802    // Load *adr into c_rarg2, may fault.
3803    *fault_pc = __ pc();
3804
3805    switch (size) {
3806      case 4: // int32_t
3807        __ ldr_s32(R1, Address(R0));
3808        break;
3809
3810      case 8: // int64_t
3811#ifdef AARCH64
3812        __ ldr(R1, Address(R0));
3813#else
3814        Unimplemented();
3815#endif // AARCH64
3816        break;
3817
3818      default:
3819        ShouldNotReachHere();
3820    }
3821
3822    // return errValue or *adr
3823    *continuation_pc = __ pc();
3824    __ mov(R0, R1);
3825    __ ret();
3826  }
3827
3828  void generate_arraycopy_stubs() {
3829
3830    // Note:  the disjoint stubs must be generated first, some of
3831    //        the conjoint stubs use them.
3832
3833    bool status = false; // non failing C2 stubs need not return a status in R0
3834
3835#ifdef TEST_C2_GENERIC_ARRAYCOPY /* Internal development flag */
3836    // With this flag, the C2 stubs are tested by generating calls to
3837    // generic_arraycopy instead of Runtime1::arraycopy
3838
3839    // Runtime1::arraycopy return a status in R0 (0 if OK, else ~copied)
3840    // and the result is tested to see whether the arraycopy stub should
3841    // be called.
3842
3843    // When we test arraycopy this way, we must generate extra code in the
3844    // arraycopy methods callable from C2 generic_arraycopy to set the
3845    // status to 0 for those who always succeed (calling the slow path stub might
3846    // lead to errors since the copy has already been performed).
3847
3848    status = true; // generate a status compatible with C1 calls
3849#endif
3850
3851    // these need always status in case they are called from generic_arraycopy
3852    StubRoutines::_jbyte_disjoint_arraycopy  = generate_primitive_copy(false, "jbyte_disjoint_arraycopy",  true, 1, true);
3853    StubRoutines::_jshort_disjoint_arraycopy = generate_primitive_copy(false, "jshort_disjoint_arraycopy", true, 2, true);
3854    StubRoutines::_jint_disjoint_arraycopy   = generate_primitive_copy(false, "jint_disjoint_arraycopy",   true, 4, true);
3855    StubRoutines::_jlong_disjoint_arraycopy  = generate_primitive_copy(false, "jlong_disjoint_arraycopy",  true, 8, true);
3856    StubRoutines::_oop_disjoint_arraycopy    = generate_oop_copy      (false, "oop_disjoint_arraycopy",    true,    true);
3857
3858    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_primitive_copy(true, "arrayof_jbyte_disjoint_arraycopy", status, 1, true);
3859    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_primitive_copy(true, "arrayof_jshort_disjoint_arraycopy",status, 2, true);
3860    StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_primitive_copy(true, "arrayof_jint_disjoint_arraycopy",  status, 4, true);
3861    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_primitive_copy(true, "arrayof_jlong_disjoint_arraycopy", status, 8, true);
3862    StubRoutines::_arrayof_oop_disjoint_arraycopy    = generate_oop_copy      (true, "arrayof_oop_disjoint_arraycopy",   status,    true);
3863
3864    // these need always status in case they are called from generic_arraycopy
3865    StubRoutines::_jbyte_arraycopy  = generate_primitive_copy(false, "jbyte_arraycopy",  true, 1, false, StubRoutines::_jbyte_disjoint_arraycopy);
3866    StubRoutines::_jshort_arraycopy = generate_primitive_copy(false, "jshort_arraycopy", true, 2, false, StubRoutines::_jshort_disjoint_arraycopy);
3867    StubRoutines::_jint_arraycopy   = generate_primitive_copy(false, "jint_arraycopy",   true, 4, false, StubRoutines::_jint_disjoint_arraycopy);
3868    StubRoutines::_jlong_arraycopy  = generate_primitive_copy(false, "jlong_arraycopy",  true, 8, false, StubRoutines::_jlong_disjoint_arraycopy);
3869    StubRoutines::_oop_arraycopy    = generate_oop_copy      (false, "oop_arraycopy",    true,    false, StubRoutines::_oop_disjoint_arraycopy);
3870
3871    StubRoutines::_arrayof_jbyte_arraycopy    = generate_primitive_copy(true, "arrayof_jbyte_arraycopy",  status, 1, false, StubRoutines::_arrayof_jbyte_disjoint_arraycopy);
3872    StubRoutines::_arrayof_jshort_arraycopy   = generate_primitive_copy(true, "arrayof_jshort_arraycopy", status, 2, false, StubRoutines::_arrayof_jshort_disjoint_arraycopy);
3873#ifdef _LP64
3874    // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
3875    StubRoutines::_arrayof_jint_arraycopy     = generate_primitive_copy(true, "arrayof_jint_arraycopy",   status, 4, false, StubRoutines::_arrayof_jint_disjoint_arraycopy);
3876#else
3877    StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
3878#endif
3879    if (BytesPerHeapOop < HeapWordSize) {
3880      StubRoutines::_arrayof_oop_arraycopy    = generate_oop_copy      (true, "arrayof_oop_arraycopy",    status,    false, StubRoutines::_arrayof_oop_disjoint_arraycopy);
3881    } else {
3882      StubRoutines::_arrayof_oop_arraycopy    = StubRoutines::_oop_arraycopy;
3883    }
3884    StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
3885
3886    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
3887    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
3888    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
3889
3890
3891  }
3892
3893#ifndef AARCH64
3894#define COMPILE_CRYPTO
3895#include "stubRoutinesCrypto_arm.cpp"
3896#else
3897
3898#ifdef COMPILER2
3899  // Arguments:
3900  //
3901  // Inputs:
3902  //   c_rarg0   - source byte array address
3903  //   c_rarg1   - destination byte array address
3904  //   c_rarg2   - K (key) in little endian int array
3905  //
3906  address generate_aescrypt_encryptBlock() {
3907    __ align(CodeEntryAlignment);
3908    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
3909
3910    Label L_doLast;
3911
3912    const Register from        = c_rarg0;  // source array address
3913    const Register to          = c_rarg1;  // destination array address
3914    const Register key         = c_rarg2;  // key array address
3915    const Register keylen      = R8;
3916
3917    address start = __ pc();
3918    __ stp(FP, LR, Address(SP, -2 * wordSize, pre_indexed));
3919    __ mov(FP, SP);
3920
3921    __ ldr_w(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3922
3923    __ vld1(V0, Address(from), MacroAssembler::VELEM_SIZE_8, 128); // get 16 bytes of input
3924
3925    __ vld1(V1, V2, V3, V4, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
3926
3927    int quad = 1;
3928    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3929    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
3930    __ rev32(V3, V3, MacroAssembler::VELEM_SIZE_8, quad);
3931    __ rev32(V4, V4, MacroAssembler::VELEM_SIZE_8, quad);
3932    __ aese(V0, V1);
3933    __ aesmc(V0, V0);
3934    __ aese(V0, V2);
3935    __ aesmc(V0, V0);
3936    __ aese(V0, V3);
3937    __ aesmc(V0, V0);
3938    __ aese(V0, V4);
3939    __ aesmc(V0, V0);
3940
3941    __ vld1(V1, V2, V3, V4, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
3942    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3943    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
3944    __ rev32(V3, V3, MacroAssembler::VELEM_SIZE_8, quad);
3945    __ rev32(V4, V4, MacroAssembler::VELEM_SIZE_8, quad);
3946    __ aese(V0, V1);
3947    __ aesmc(V0, V0);
3948    __ aese(V0, V2);
3949    __ aesmc(V0, V0);
3950    __ aese(V0, V3);
3951    __ aesmc(V0, V0);
3952    __ aese(V0, V4);
3953    __ aesmc(V0, V0);
3954
3955    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
3956    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3957    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
3958
3959    __ cmp_w(keylen, 44);
3960    __ b(L_doLast, eq);
3961
3962    __ aese(V0, V1);
3963    __ aesmc(V0, V0);
3964    __ aese(V0, V2);
3965    __ aesmc(V0, V0);
3966
3967    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
3968    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3969    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
3970
3971    __ cmp_w(keylen, 52);
3972    __ b(L_doLast, eq);
3973
3974    __ aese(V0, V1);
3975    __ aesmc(V0, V0);
3976    __ aese(V0, V2);
3977    __ aesmc(V0, V0);
3978
3979    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
3980    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3981    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
3982
3983    __ BIND(L_doLast);
3984
3985    __ aese(V0, V1);
3986    __ aesmc(V0, V0);
3987    __ aese(V0, V2);
3988
3989    __ vld1(V1, Address(key), MacroAssembler::VELEM_SIZE_8, 128);
3990    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
3991    __ eor(V0, V0, V1, MacroAssembler::VELEM_SIZE_8, quad);
3992
3993    __ vst1(V0, Address(to), MacroAssembler::VELEM_SIZE_8, 128);
3994
3995    __ mov(R0, 0);
3996
3997    __ mov(SP, FP);
3998    __ ldp(FP, LR, Address(SP, 2 * wordSize, post_indexed));
3999    __ ret(LR);
4000
4001    return start;
4002  }
4003
4004  // Arguments:
4005  //
4006  // Inputs:
4007  //   c_rarg0   - source byte array address
4008  //   c_rarg1   - destination byte array address
4009  //   c_rarg2   - K (key) in little endian int array
4010  //
4011  address generate_aescrypt_decryptBlock() {
4012    assert(UseAES, "need AES instructions and misaligned SSE support");
4013    __ align(CodeEntryAlignment);
4014    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
4015    Label L_doLast;
4016
4017    const Register from        = c_rarg0;  // source array address
4018    const Register to          = c_rarg1;  // destination array address
4019    const Register key         = c_rarg2;  // key array address
4020    const Register keylen      = R8;
4021
4022    address start = __ pc();
4023    __ stp(FP, LR, Address(SP, -2 * wordSize, pre_indexed));
4024    __ mov(FP, SP);
4025
4026    __ ldr_w(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
4027
4028    __ vld1(V0, Address(from), MacroAssembler::VELEM_SIZE_8, 128); // get 16 bytes of input
4029
4030    __ vld1(V5, Address(key, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4031
4032    int quad = 1;
4033    __ rev32(V5, V5, MacroAssembler::VELEM_SIZE_8, quad);
4034
4035    __ vld1(V1, V2, V3, V4, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4036    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4037    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
4038    __ rev32(V3, V3, MacroAssembler::VELEM_SIZE_8, quad);
4039    __ rev32(V4, V4, MacroAssembler::VELEM_SIZE_8, quad);
4040    __ aesd(V0, V1);
4041    __ aesimc(V0, V0);
4042    __ aesd(V0, V2);
4043    __ aesimc(V0, V0);
4044    __ aesd(V0, V3);
4045    __ aesimc(V0, V0);
4046    __ aesd(V0, V4);
4047    __ aesimc(V0, V0);
4048
4049    __ vld1(V1, V2, V3, V4, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4050    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4051    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
4052    __ rev32(V3, V3, MacroAssembler::VELEM_SIZE_8, quad);
4053    __ rev32(V4, V4, MacroAssembler::VELEM_SIZE_8, quad);
4054    __ aesd(V0, V1);
4055    __ aesimc(V0, V0);
4056    __ aesd(V0, V2);
4057    __ aesimc(V0, V0);
4058    __ aesd(V0, V3);
4059    __ aesimc(V0, V0);
4060    __ aesd(V0, V4);
4061    __ aesimc(V0, V0);
4062
4063    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4064    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4065    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
4066
4067    __ cmp_w(keylen, 44);
4068    __ b(L_doLast, eq);
4069
4070    __ aesd(V0, V1);
4071    __ aesimc(V0, V0);
4072    __ aesd(V0, V2);
4073    __ aesimc(V0, V0);
4074
4075    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4076    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4077    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
4078
4079    __ cmp_w(keylen, 52);
4080    __ b(L_doLast, eq);
4081
4082    __ aesd(V0, V1);
4083    __ aesimc(V0, V0);
4084    __ aesd(V0, V2);
4085    __ aesimc(V0, V0);
4086
4087    __ vld1(V1, V2, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4088    __ rev32(V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4089    __ rev32(V2, V2, MacroAssembler::VELEM_SIZE_8, quad);
4090
4091    __ BIND(L_doLast);
4092
4093    __ aesd(V0, V1);
4094    __ aesimc(V0, V0);
4095    __ aesd(V0, V2);
4096
4097    __ eor(V0, V0, V5, MacroAssembler::VELEM_SIZE_8, quad);
4098
4099    __ vst1(V0, Address(to), MacroAssembler::VELEM_SIZE_8, 128);
4100
4101    __ mov(R0, 0);
4102
4103    __ mov(SP, FP);
4104    __ ldp(FP, LR, Address(SP, 2 * wordSize, post_indexed));
4105    __ ret(LR);
4106
4107
4108    return start;
4109  }
4110
4111  // Arguments:
4112  //
4113  // Inputs:
4114  //   c_rarg0   - source byte array address
4115  //   c_rarg1   - destination byte array address
4116  //   c_rarg2   - K (key) in little endian int array
4117  //   c_rarg3   - r vector byte array address
4118  //   c_rarg4   - input length
4119  //
4120  // Output:
4121  //   x0        - input length
4122  //
4123  address generate_cipherBlockChaining_encryptAESCrypt() {
4124    assert(UseAES, "need AES instructions and misaligned SSE support");
4125    __ align(CodeEntryAlignment);
4126    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
4127
4128    Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
4129
4130    const Register from        = c_rarg0;  // source array address
4131    const Register to          = c_rarg1;  // destination array address
4132    const Register key         = c_rarg2;  // key array address
4133    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
4134                                           // and left with the results of the last encryption block
4135    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
4136    const Register keylen      = R8;
4137
4138    address start = __ pc();
4139    __ stp(FP, LR, Address(SP, -2 * wordSize, pre_indexed));
4140    __ mov(FP, SP);
4141
4142    __ mov(R9, len_reg);
4143    __ ldr_w(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
4144
4145    __ vld1(V0, Address(rvec), MacroAssembler::VELEM_SIZE_8, 128);
4146
4147    __ cmp_w(keylen, 52);
4148    __ b(L_loadkeys_44, cc);
4149    __ b(L_loadkeys_52, eq);
4150
4151    __ vld1(V17, V18, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4152
4153    int quad = 1;
4154    __ rev32(V17, V17, MacroAssembler::VELEM_SIZE_8, quad);
4155    __ rev32(V18, V18, MacroAssembler::VELEM_SIZE_8, quad);
4156    __ BIND(L_loadkeys_52);
4157    __ vld1(V19, V20, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4158    __ rev32(V19, V19, MacroAssembler::VELEM_SIZE_8, quad);
4159    __ rev32(V20, V20, MacroAssembler::VELEM_SIZE_8, quad);
4160    __ BIND(L_loadkeys_44);
4161    __ vld1(V21, V22, V23, V24, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4162    __ rev32(V21, V21, MacroAssembler::VELEM_SIZE_8, quad);
4163    __ rev32(V22, V22, MacroAssembler::VELEM_SIZE_8, quad);
4164    __ rev32(V23, V23, MacroAssembler::VELEM_SIZE_8, quad);
4165    __ rev32(V24, V24, MacroAssembler::VELEM_SIZE_8, quad);
4166    __ vld1(V25, V26, V27, V28, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4167    __ rev32(V25, V25, MacroAssembler::VELEM_SIZE_8, quad);
4168    __ rev32(V26, V26, MacroAssembler::VELEM_SIZE_8, quad);
4169    __ rev32(V27, V27, MacroAssembler::VELEM_SIZE_8, quad);
4170    __ rev32(V28, V28, MacroAssembler::VELEM_SIZE_8, quad);
4171    __ vld1(V29, V30, V31, Address(key), MacroAssembler::VELEM_SIZE_8, 128);
4172    __ rev32(V29, V29, MacroAssembler::VELEM_SIZE_8, quad);
4173    __ rev32(V30, V30, MacroAssembler::VELEM_SIZE_8, quad);
4174    __ rev32(V31, V31, MacroAssembler::VELEM_SIZE_8, quad);
4175
4176    __ BIND(L_aes_loop);
4177    __ vld1(V1, Address(from, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4178    __ eor(V0, V0, V1, MacroAssembler::VELEM_SIZE_8, quad);
4179
4180    __ b(L_rounds_44, cc);
4181    __ b(L_rounds_52, eq);
4182
4183    __ aese(V0, V17);
4184    __ aesmc(V0, V0);
4185    __ aese(V0, V18);
4186    __ aesmc(V0, V0);
4187    __ BIND(L_rounds_52);
4188    __ aese(V0, V19);
4189    __ aesmc(V0, V0);
4190    __ aese(V0, V20);
4191    __ aesmc(V0, V0);
4192    __ BIND(L_rounds_44);
4193    __ aese(V0, V21);
4194    __ aesmc(V0, V0);
4195    __ aese(V0, V22);
4196    __ aesmc(V0, V0);
4197    __ aese(V0, V23);
4198    __ aesmc(V0, V0);
4199    __ aese(V0, V24);
4200    __ aesmc(V0, V0);
4201    __ aese(V0, V25);
4202    __ aesmc(V0, V0);
4203    __ aese(V0, V26);
4204    __ aesmc(V0, V0);
4205    __ aese(V0, V27);
4206    __ aesmc(V0, V0);
4207    __ aese(V0, V28);
4208    __ aesmc(V0, V0);
4209    __ aese(V0, V29);
4210    __ aesmc(V0, V0);
4211    __ aese(V0, V30);
4212    __ eor(V0, V0, V31, MacroAssembler::VELEM_SIZE_8, quad);
4213
4214    __ vst1(V0, Address(to, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4215    __ sub(len_reg, len_reg, 16);
4216    __ cbnz(len_reg, L_aes_loop);
4217
4218    __ vst1(V0, Address(rvec), MacroAssembler::VELEM_SIZE_8, 128);
4219
4220    __ mov(R0, R9);
4221
4222    __ mov(SP, FP);
4223    __ ldp(FP, LR, Address(SP, 2 * wordSize, post_indexed));
4224    __ ret(LR);
4225
4226    return start;
4227  }
4228
4229  // Arguments:
4230  //
4231  // Inputs:
4232  //   c_rarg0   - source byte array address
4233  //   c_rarg1   - destination byte array address
4234  //   c_rarg2   - K (key) in little endian int array
4235  //   c_rarg3   - r vector byte array address
4236  //   c_rarg4   - input length
4237  //
4238  // Output:
4239  //   rax       - input length
4240  //
4241  address generate_cipherBlockChaining_decryptAESCrypt() {
4242    assert(UseAES, "need AES instructions and misaligned SSE support");
4243    __ align(CodeEntryAlignment);
4244    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
4245
4246    Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
4247
4248    const Register from        = c_rarg0;  // source array address
4249    const Register to          = c_rarg1;  // destination array address
4250    const Register key         = c_rarg2;  // key array address
4251    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
4252                                           // and left with the results of the last encryption block
4253    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
4254    const Register keylen      = R8;
4255
4256    address start = __ pc();
4257    __ stp(FP, LR, Address(SP, -2 * wordSize, pre_indexed));
4258    __ mov(FP, SP);
4259
4260    __ mov(R9, len_reg);
4261    __ ldr_w(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
4262
4263    __ vld1(V2, Address(rvec), MacroAssembler::VELEM_SIZE_8, 128);
4264
4265    __ vld1(V31, Address(key, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4266
4267    int quad = 1;
4268    __ rev32(V31, V31, MacroAssembler::VELEM_SIZE_8, quad);
4269
4270    __ cmp_w(keylen, 52);
4271    __ b(L_loadkeys_44, cc);
4272    __ b(L_loadkeys_52, eq);
4273
4274    __ vld1(V17, V18, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4275    __ rev32(V17, V17, MacroAssembler::VELEM_SIZE_8, quad);
4276    __ rev32(V18, V18, MacroAssembler::VELEM_SIZE_8, quad);
4277    __ BIND(L_loadkeys_52);
4278    __ vld1(V19, V20, Address(key, 32, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4279    __ rev32(V19, V19, MacroAssembler::VELEM_SIZE_8, quad);
4280    __ rev32(V20, V20, MacroAssembler::VELEM_SIZE_8, quad);
4281    __ BIND(L_loadkeys_44);
4282    __ vld1(V21, V22, V23, V24, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4283    __ rev32(V21, V21, MacroAssembler::VELEM_SIZE_8, quad);
4284    __ rev32(V22, V22, MacroAssembler::VELEM_SIZE_8, quad);
4285    __ rev32(V23, V23, MacroAssembler::VELEM_SIZE_8, quad);
4286    __ rev32(V24, V24, MacroAssembler::VELEM_SIZE_8, quad);
4287    __ vld1(V25, V26, V27, V28, Address(key, 64, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4288    __ rev32(V25, V25, MacroAssembler::VELEM_SIZE_8, quad);
4289    __ rev32(V26, V26, MacroAssembler::VELEM_SIZE_8, quad);
4290    __ rev32(V27, V27, MacroAssembler::VELEM_SIZE_8, quad);
4291    __ rev32(V28, V28, MacroAssembler::VELEM_SIZE_8, quad);
4292    __ vld1(V29, V30, Address(key), MacroAssembler::VELEM_SIZE_8, 128);
4293    __ rev32(V29, V29, MacroAssembler::VELEM_SIZE_8, quad);
4294    __ rev32(V30, V30, MacroAssembler::VELEM_SIZE_8, quad);
4295
4296    __ BIND(L_aes_loop);
4297    __ vld1(V0, Address(from, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4298    __ orr(V1, V0, V0, MacroAssembler::VELEM_SIZE_8, quad);
4299
4300    __ b(L_rounds_44, cc);
4301    __ b(L_rounds_52, eq);
4302
4303    __ aesd(V0, V17);
4304    __ aesimc(V0, V0);
4305    __ aesd(V0, V17);
4306    __ aesimc(V0, V0);
4307    __ BIND(L_rounds_52);
4308    __ aesd(V0, V19);
4309    __ aesimc(V0, V0);
4310    __ aesd(V0, V20);
4311    __ aesimc(V0, V0);
4312    __ BIND(L_rounds_44);
4313    __ aesd(V0, V21);
4314    __ aesimc(V0, V0);
4315    __ aesd(V0, V22);
4316    __ aesimc(V0, V0);
4317    __ aesd(V0, V23);
4318    __ aesimc(V0, V0);
4319    __ aesd(V0, V24);
4320    __ aesimc(V0, V0);
4321    __ aesd(V0, V25);
4322    __ aesimc(V0, V0);
4323    __ aesd(V0, V26);
4324    __ aesimc(V0, V0);
4325    __ aesd(V0, V27);
4326    __ aesimc(V0, V0);
4327    __ aesd(V0, V28);
4328    __ aesimc(V0, V0);
4329    __ aesd(V0, V29);
4330    __ aesimc(V0, V0);
4331    __ aesd(V0, V30);
4332    __ eor(V0, V0, V31, MacroAssembler::VELEM_SIZE_8, quad);
4333    __ eor(V0, V0, V2, MacroAssembler::VELEM_SIZE_8, quad);
4334
4335    __ vst1(V0, Address(to, 16, post_indexed), MacroAssembler::VELEM_SIZE_8, 128);
4336    __ orr(V2, V1, V1, MacroAssembler::VELEM_SIZE_8, quad);
4337
4338    __ sub(len_reg, len_reg, 16);
4339    __ cbnz(len_reg, L_aes_loop);
4340
4341    __ vst1(V2, Address(rvec), MacroAssembler::VELEM_SIZE_8, 128);
4342
4343    __ mov(R0, R9);
4344
4345    __ mov(SP, FP);
4346    __ ldp(FP, LR, Address(SP, 2 * wordSize, post_indexed));
4347    __ ret(LR);
4348
4349    return start;
4350  }
4351
4352#endif // COMPILER2
4353#endif // AARCH64
4354
4355 private:
4356
4357#undef  __
4358#define __ masm->
4359
4360  //------------------------------------------------------------------------------------------------------------------------
4361  // Continuation point for throwing of implicit exceptions that are not handled in
4362  // the current activation. Fabricates an exception oop and initiates normal
4363  // exception dispatching in this frame.
4364  address generate_throw_exception(const char* name, address runtime_entry) {
4365    int insts_size = 128;
4366    int locs_size  = 32;
4367    CodeBuffer code(name, insts_size, locs_size);
4368    OopMapSet* oop_maps;
4369    int frame_size;
4370    int frame_complete;
4371
4372    oop_maps = new OopMapSet();
4373    MacroAssembler* masm = new MacroAssembler(&code);
4374
4375    address start = __ pc();
4376
4377    frame_size = 2;
4378    __ mov(Rexception_pc, LR);
4379    __ raw_push(FP, LR);
4380
4381    frame_complete = __ pc() - start;
4382
4383    // Any extra arguments are already supposed to be R1 and R2
4384    __ mov(R0, Rthread);
4385
4386    int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
4387    assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
4388    __ call(runtime_entry);
4389    if (pc_offset == -1) {
4390      pc_offset = __ offset();
4391    }
4392
4393    // Generate oop map
4394    OopMap* map =  new OopMap(frame_size*VMRegImpl::slots_per_word, 0);
4395    oop_maps->add_gc_map(pc_offset, map);
4396    __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
4397
4398    __ raw_pop(FP, LR);
4399    __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
4400
4401    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete,
4402                                                      frame_size, oop_maps, false);
4403    return stub->entry_point();
4404  }
4405
4406  //---------------------------------------------------------------------------
4407  // Initialization
4408
4409  void generate_initial() {
4410    // Generates all stubs and initializes the entry points
4411
4412    //------------------------------------------------------------------------------------------------------------------------
4413    // entry points that exist in all platforms
4414    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
4415    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
4416    StubRoutines::_forward_exception_entry      = generate_forward_exception();
4417
4418    StubRoutines::_call_stub_entry              =
4419      generate_call_stub(StubRoutines::_call_stub_return_address);
4420    // is referenced by megamorphic call
4421    StubRoutines::_catch_exception_entry        = generate_catch_exception();
4422
4423    // stub for throwing stack overflow error used both by interpreter and compiler
4424    StubRoutines::_throw_StackOverflowError_entry  = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
4425
4426#ifndef AARCH64
4427    // integer division used both by interpreter and compiler
4428    StubRoutines::Arm::_idiv_irem_entry = generate_idiv_irem();
4429
4430    StubRoutines::_atomic_add_entry = generate_atomic_add();
4431    StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
4432    StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
4433    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
4434    StubRoutines::_atomic_load_long_entry = generate_atomic_load_long();
4435    StubRoutines::_atomic_store_long_entry = generate_atomic_store_long();
4436#endif // !AARCH64
4437  }
4438
4439  void generate_all() {
4440    // Generates all stubs and initializes the entry points
4441
4442#ifdef COMPILER2
4443    // Generate partial_subtype_check first here since its code depends on
4444    // UseZeroBaseCompressedOops which is defined after heap initialization.
4445    StubRoutines::Arm::_partial_subtype_check                = generate_partial_subtype_check();
4446#endif
4447    // These entry points require SharedInfo::stack0 to be set up in non-core builds
4448    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
4449    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
4450    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
4451    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
4452
4453    //------------------------------------------------------------------------------------------------------------------------
4454    // entry points that are platform specific
4455
4456    // support for verify_oop (must happen after universe_init)
4457    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
4458
4459    // arraycopy stubs used by compilers
4460    generate_arraycopy_stubs();
4461
4462    // Safefetch stubs.
4463    generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
4464                                                   &StubRoutines::_safefetch32_fault_pc,
4465                                                   &StubRoutines::_safefetch32_continuation_pc);
4466#ifdef AARCH64
4467    generate_safefetch("SafeFetchN", wordSize, &StubRoutines::_safefetchN_entry,
4468                                               &StubRoutines::_safefetchN_fault_pc,
4469                                               &StubRoutines::_safefetchN_continuation_pc);
4470#ifdef COMPILER2
4471    if (UseAESIntrinsics) {
4472      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
4473      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
4474      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
4475      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
4476    }
4477#endif
4478#else
4479    assert (sizeof(int) == wordSize, "32-bit architecture");
4480    StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
4481    StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
4482    StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
4483#endif // AARCH64
4484
4485#ifdef COMPILE_CRYPTO
4486    // generate AES intrinsics code
4487    if (UseAESIntrinsics) {
4488      aes_init();
4489      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
4490      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
4491      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
4492      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
4493    }
4494#endif // COMPILE_CRYPTO
4495  }
4496
4497
4498 public:
4499  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
4500    if (all) {
4501      generate_all();
4502    } else {
4503      generate_initial();
4504    }
4505  }
4506}; // end class declaration
4507
4508void StubGenerator_generate(CodeBuffer* code, bool all) {
4509  StubGenerator g(code, all);
4510}
4511