1/*
2 * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "vmreg_arm.inline.hpp"
40
41#ifdef ASSERT
42#define __ gen()->lir(__FILE__, __LINE__)->
43#else
44#define __ gen()->lir()->
45#endif
46
47void LIRItem::load_byte_item() {
48  load_item();
49}
50
51void LIRItem::load_nonconstant() {
52  LIR_Opr r = value()->operand();
53  if (_gen->can_inline_as_constant(value())) {
54    if (!r->is_constant()) {
55      r = LIR_OprFact::value_type(value()->type());
56    }
57    _result = r;
58  } else {
59    load_item();
60  }
61}
62
63//--------------------------------------------------------------
64//               LIRGenerator
65//--------------------------------------------------------------
66
67
68LIR_Opr LIRGenerator::exceptionOopOpr() {
69  return FrameMap::Exception_oop_opr;
70}
71
72LIR_Opr LIRGenerator::exceptionPcOpr()  {
73  return FrameMap::Exception_pc_opr;
74}
75
76LIR_Opr LIRGenerator::syncLockOpr()     {
77  return new_register(T_INT);
78}
79
80LIR_Opr LIRGenerator::syncTempOpr()     {
81  return new_register(T_OBJECT);
82}
83
84LIR_Opr LIRGenerator::getThreadTemp()   {
85  return LIR_OprFact::illegalOpr;
86}
87
88LIR_Opr LIRGenerator::atomicLockOpr() {
89  return LIR_OprFact::illegalOpr;
90}
91
92LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
93  LIR_Opr opr;
94  switch (type->tag()) {
95    case intTag:     opr = FrameMap::Int_result_opr;    break;
96    case objectTag:  opr = FrameMap::Object_result_opr; break;
97    case longTag:    opr = FrameMap::Long_result_opr;   break;
98    case floatTag:   opr = FrameMap::Float_result_opr;  break;
99    case doubleTag:  opr = FrameMap::Double_result_opr; break;
100    case addressTag:
101    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
102  }
103  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
104  return opr;
105}
106
107
108LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
109  return new_register(T_INT);
110}
111
112
113//--------- loading items into registers --------------------------------
114
115
116bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
117#ifdef AARCH64
118  if (v->type()->as_IntConstant() != NULL) {
119    return v->type()->as_IntConstant()->value() == 0;
120  } else if (v->type()->as_LongConstant() != NULL) {
121    return v->type()->as_LongConstant()->value() == 0;
122  } else if (v->type()->as_ObjectConstant() != NULL) {
123    return v->type()->as_ObjectConstant()->value()->is_null_object();
124  } else if (v->type()->as_FloatConstant() != NULL) {
125    return jint_cast(v->type()->as_FloatConstant()->value()) == 0;
126  } else if (v->type()->as_DoubleConstant() != NULL) {
127    return jlong_cast(v->type()->as_DoubleConstant()->value()) == 0;
128  }
129#endif // AARCH64
130  return false;
131}
132
133
134bool LIRGenerator::can_inline_as_constant(Value v) const {
135  if (v->type()->as_IntConstant() != NULL) {
136    return Assembler::is_arith_imm_in_range(v->type()->as_IntConstant()->value());
137  } else if (v->type()->as_ObjectConstant() != NULL) {
138    return v->type()->as_ObjectConstant()->value()->is_null_object();
139#ifdef AARCH64
140  } else if (v->type()->as_LongConstant() != NULL) {
141    return Assembler::is_arith_imm_in_range(v->type()->as_LongConstant()->value());
142#else
143  } else if (v->type()->as_FloatConstant() != NULL) {
144    return v->type()->as_FloatConstant()->value() == 0.0f;
145  } else if (v->type()->as_DoubleConstant() != NULL) {
146    return v->type()->as_DoubleConstant()->value() == 0.0;
147#endif // AARCH64
148  }
149  return false;
150}
151
152
153bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
154  ShouldNotCallThis(); // Not used on ARM
155  return false;
156}
157
158
159#ifdef AARCH64
160
161static bool can_inline_as_constant_in_cmp(Value v) {
162  jlong constant;
163  if (v->type()->as_IntConstant() != NULL) {
164    constant = v->type()->as_IntConstant()->value();
165  } else if (v->type()->as_LongConstant() != NULL) {
166    constant = v->type()->as_LongConstant()->value();
167  } else if (v->type()->as_ObjectConstant() != NULL) {
168    return v->type()->as_ObjectConstant()->value()->is_null_object();
169  } else if (v->type()->as_FloatConstant() != NULL) {
170    return v->type()->as_FloatConstant()->value() == 0.0f;
171  } else if (v->type()->as_DoubleConstant() != NULL) {
172    return v->type()->as_DoubleConstant()->value() == 0.0;
173  } else {
174    return false;
175  }
176
177  return Assembler::is_arith_imm_in_range(constant) || Assembler::is_arith_imm_in_range(-constant);
178}
179
180
181static bool can_inline_as_constant_in_logic(Value v) {
182  if (v->type()->as_IntConstant() != NULL) {
183    return Assembler::LogicalImmediate(v->type()->as_IntConstant()->value(), true).is_encoded();
184  } else if (v->type()->as_LongConstant() != NULL) {
185    return Assembler::LogicalImmediate(v->type()->as_LongConstant()->value(), false).is_encoded();
186  }
187  return false;
188}
189
190
191#endif // AARCH64
192
193
194LIR_Opr LIRGenerator::safepoint_poll_register() {
195  return LIR_OprFact::illegalOpr;
196}
197
198
199static LIR_Opr make_constant(BasicType type, jlong c) {
200  switch (type) {
201    case T_ADDRESS:
202    case T_OBJECT:  return LIR_OprFact::intptrConst(c);
203    case T_LONG:    return LIR_OprFact::longConst(c);
204    case T_INT:     return LIR_OprFact::intConst(c);
205    default: ShouldNotReachHere();
206    return LIR_OprFact::intConst(-1);
207  }
208}
209
210#ifdef AARCH64
211
212void LIRGenerator::add_constant(LIR_Opr src, jlong c, LIR_Opr dest) {
213  if (c == 0) {
214    __ move(src, dest);
215    return;
216  }
217
218  BasicType type = src->type();
219  bool is_neg = (c < 0);
220  c = ABS(c);
221
222  if ((c >> 24) == 0) {
223    for (int shift = 0; shift <= 12; shift += 12) {
224      int part = ((int)c) & (right_n_bits(12) << shift);
225      if (part != 0) {
226        if (is_neg) {
227          __ sub(src, make_constant(type, part), dest);
228        } else {
229          __ add(src, make_constant(type, part), dest);
230        }
231        src = dest;
232      }
233    }
234  } else {
235    __ move(make_constant(type, c), dest);
236    if (is_neg) {
237      __ sub(src, dest, dest);
238    } else {
239      __ add(src, dest, dest);
240    }
241  }
242}
243
244#endif // AARCH64
245
246
247void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
248  assert(c != 0, "must be");
249#ifdef AARCH64
250  add_constant(src, c, dest);
251#else
252  // Find first non-zero bit
253  int shift = 0;
254  while ((c & (3 << shift)) == 0) {
255    shift += 2;
256  }
257  // Add the least significant part of the constant
258  int mask = 0xff << shift;
259  __ add(src, LIR_OprFact::intConst(c & mask), dest);
260  // Add up to 3 other parts of the constant;
261  // each of them can be represented as rotated_imm
262  if (c & (mask << 8)) {
263    __ add(dest, LIR_OprFact::intConst(c & (mask << 8)), dest);
264  }
265  if (c & (mask << 16)) {
266    __ add(dest, LIR_OprFact::intConst(c & (mask << 16)), dest);
267  }
268  if (c & (mask << 24)) {
269    __ add(dest, LIR_OprFact::intConst(c & (mask << 24)), dest);
270  }
271#endif // AARCH64
272}
273
274static LIR_Address* make_address(LIR_Opr base, LIR_Opr index, LIR_Address::Scale scale, BasicType type) {
275  return new LIR_Address(base, index, scale, 0, type);
276}
277
278LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
279                                            int shift, int disp, BasicType type) {
280  assert(base->is_register(), "must be");
281
282  if (index->is_constant()) {
283    disp += index->as_constant_ptr()->as_jint() << shift;
284    index = LIR_OprFact::illegalOpr;
285  }
286
287#ifndef AARCH64
288  if (base->type() == T_LONG) {
289    LIR_Opr tmp = new_register(T_INT);
290    __ convert(Bytecodes::_l2i, base, tmp);
291    base = tmp;
292  }
293  if (index != LIR_OprFact::illegalOpr && index->type() == T_LONG) {
294    LIR_Opr tmp = new_register(T_INT);
295    __ convert(Bytecodes::_l2i, index, tmp);
296    index = tmp;
297  }
298  // At this point base and index should be all ints and not constants
299  assert(base->is_single_cpu() && !base->is_constant(), "base should be an non-constant int");
300  assert(index->is_illegal() || (index->type() == T_INT && !index->is_constant()), "index should be an non-constant int");
301#endif
302
303  int max_disp;
304  bool disp_is_in_range;
305  bool embedded_shift;
306
307#ifdef AARCH64
308  int align = exact_log2(type2aelembytes(type, true));
309  assert((disp & right_n_bits(align)) == 0, "displacement is not aligned");
310  assert(shift == 0 || shift == align, "shift should be zero or equal to embedded align");
311  max_disp = (1 << 12) << align;
312
313  if (disp >= 0) {
314    disp_is_in_range = Assembler::is_unsigned_imm_in_range(disp, 12, align);
315  } else {
316    disp_is_in_range = Assembler::is_imm_in_range(disp, 9, 0);
317  }
318
319  embedded_shift = true;
320#else
321  switch (type) {
322    case T_BYTE:
323    case T_SHORT:
324    case T_CHAR:
325      max_disp = 256;          // ldrh, ldrsb encoding has 8-bit offset
326      embedded_shift = false;
327      break;
328    case T_FLOAT:
329    case T_DOUBLE:
330      max_disp = 1024;         // flds, fldd have 8-bit offset multiplied by 4
331      embedded_shift = false;
332      break;
333    case T_LONG:
334      max_disp = 4096;
335      embedded_shift = false;
336      break;
337    default:
338      max_disp = 4096;         // ldr, ldrb allow 12-bit offset
339      embedded_shift = true;
340  }
341
342  disp_is_in_range = (-max_disp < disp && disp < max_disp);
343#endif // !AARCH64
344
345  if (index->is_register()) {
346    LIR_Opr tmp = new_pointer_register();
347    if (!disp_is_in_range) {
348      add_large_constant(base, disp, tmp);
349      base = tmp;
350      disp = 0;
351    }
352    LIR_Address* addr = make_address(base, index, (LIR_Address::Scale)shift, type);
353    if (disp == 0 && embedded_shift) {
354      // can use ldr/str instruction with register index
355      return addr;
356    } else {
357      LIR_Opr tmp = new_pointer_register();
358      __ add(base, LIR_OprFact::address(addr), tmp); // add with shifted/extended register
359      return new LIR_Address(tmp, disp, type);
360    }
361  }
362
363  // If the displacement is too large to be inlined into LDR instruction,
364  // generate large constant with additional sequence of ADD instructions
365  int excess_disp = disp & ~(max_disp - 1);
366  if (excess_disp != 0) {
367    LIR_Opr tmp = new_pointer_register();
368    add_large_constant(base, excess_disp, tmp);
369    base = tmp;
370  }
371  return new LIR_Address(base, disp & (max_disp - 1), type);
372}
373
374
375LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
376                                              BasicType type, bool needs_card_mark) {
377  int base_offset = arrayOopDesc::base_offset_in_bytes(type);
378  int elem_size = type2aelembytes(type);
379
380  if (index_opr->is_constant()) {
381    int offset = base_offset + index_opr->as_constant_ptr()->as_jint() * elem_size;
382    if (needs_card_mark) {
383      LIR_Opr base_opr = new_pointer_register();
384      add_large_constant(array_opr, offset, base_opr);
385      return new LIR_Address(base_opr, (intx)0, type);
386    } else {
387      return generate_address(array_opr, offset, type);
388    }
389  } else {
390    assert(index_opr->is_register(), "must be");
391    int scale = exact_log2(elem_size);
392    if (needs_card_mark) {
393      LIR_Opr base_opr = new_pointer_register();
394      LIR_Address* addr = make_address(base_opr, index_opr, (LIR_Address::Scale)scale, type);
395      __ add(array_opr, LIR_OprFact::intptrConst(base_offset), base_opr);
396      __ add(base_opr, LIR_OprFact::address(addr), base_opr); // add with shifted/extended register
397      return new LIR_Address(base_opr, type);
398    } else {
399      return generate_address(array_opr, index_opr, scale, base_offset, type);
400    }
401  }
402}
403
404
405LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
406  assert(type == T_LONG || type == T_INT, "should be");
407  LIR_Opr r = make_constant(type, x);
408#ifdef AARCH64
409  bool imm_in_range = Assembler::LogicalImmediate(x, type == T_INT).is_encoded();
410#else
411  bool imm_in_range = AsmOperand::is_rotated_imm(x);
412#endif // AARCH64
413  if (!imm_in_range) {
414    LIR_Opr tmp = new_register(type);
415    __ move(r, tmp);
416    return tmp;
417  }
418  return r;
419}
420
421
422void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
423  LIR_Opr pointer = new_pointer_register();
424  __ move(LIR_OprFact::intptrConst(counter), pointer);
425  LIR_Address* addr = new LIR_Address(pointer, type);
426  increment_counter(addr, step);
427}
428
429
430void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
431  LIR_Opr temp = new_register(addr->type());
432  __ move(addr, temp);
433  __ add(temp, make_constant(addr->type(), step), temp);
434  __ move(temp, addr);
435}
436
437
438void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
439  __ load(new LIR_Address(base, disp, T_INT), FrameMap::LR_opr, info);
440  __ cmp(condition, FrameMap::LR_opr, c);
441}
442
443
444void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
445  __ load(new LIR_Address(base, disp, type), FrameMap::LR_opr, info);
446  __ cmp(condition, reg, FrameMap::LR_opr);
447}
448
449
450bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
451  assert(left != result, "should be different registers");
452  if (is_power_of_2(c + 1)) {
453#ifdef AARCH64
454    __ shift_left(left, log2_intptr(c + 1), result);
455    __ sub(result, left, result);
456#else
457    LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c + 1);
458    LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
459    __ sub(LIR_OprFact::address(addr), left, result); // rsb with shifted register
460#endif // AARCH64
461    return true;
462  } else if (is_power_of_2(c - 1)) {
463    LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c - 1);
464    LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
465    __ add(left, LIR_OprFact::address(addr), result); // add with shifted register
466    return true;
467  }
468  return false;
469}
470
471
472void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
473  assert(item->type() == T_INT, "other types are not expected");
474  __ store(item, new LIR_Address(FrameMap::SP_opr, in_bytes(offset_from_sp), item->type()));
475}
476
477void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
478  assert(CardTableModRefBS::dirty_card_val() == 0,
479    "Cannot use ZR register (aarch64) or the register containing the card table base address directly (aarch32) otherwise");
480#ifdef AARCH64
481  // AARCH64 has a register that is constant zero. We can use that one to set the
482  // value in the card table to dirty.
483  __ move(FrameMap::ZR_opr, card_addr);
484#else // AARCH64
485  CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
486  if(((intx)ct->byte_map_base & 0xff) == 0) {
487    // If the card table base address is aligned to 256 bytes, we can use the register
488    // that contains the card_table_base_address.
489    __ move(value, card_addr);
490  } else {
491    // Otherwise we need to create a register containing that value.
492    LIR_Opr tmp_zero = new_register(T_INT);
493    __ move(LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val()), tmp_zero);
494    __ move(tmp_zero, card_addr);
495  }
496#endif // AARCH64
497}
498
499void LIRGenerator::CardTableModRef_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base) {
500  assert(addr->is_register(), "must be a register at this point");
501
502  LIR_Opr tmp = FrameMap::LR_ptr_opr;
503
504  // TODO-AARCH64: check performance
505  bool load_card_table_base_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw());
506  if (load_card_table_base_const) {
507    __ move((LIR_Opr)card_table_base, tmp);
508  } else {
509    __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
510  }
511
512#ifdef AARCH64
513  LIR_Address* shifted_reg_operand = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
514  LIR_Opr tmp2 = tmp;
515  __ add(tmp, LIR_OprFact::address(shifted_reg_operand), tmp2); // tmp2 = tmp + (addr >> CardTableModRefBS::card_shift)
516  LIR_Address* card_addr = new LIR_Address(tmp2, T_BYTE);
517#else
518  // Use unsigned type T_BOOLEAN here rather than (signed) T_BYTE since signed load
519  // byte instruction does not support the addressing mode we need.
520  LIR_Address* card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BOOLEAN);
521#endif
522  if (UseCondCardMark) {
523    if (UseConcMarkSweepGC) {
524      __ membar_storeload();
525    }
526    LIR_Opr cur_value = new_register(T_INT);
527    __ move(card_addr, cur_value);
528
529    LabelObj* L_already_dirty = new LabelObj();
530    __ cmp(lir_cond_equal, cur_value, LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val()));
531    __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
532    set_card(tmp, card_addr);
533    __ branch_destination(L_already_dirty->label());
534  } else {
535    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
536      __ membar_storestore();
537    }
538    set_card(tmp, card_addr);
539  }
540}
541
542//----------------------------------------------------------------------
543//             visitor functions
544//----------------------------------------------------------------------
545
546
547void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
548  assert(x->is_pinned(),"");
549  bool needs_range_check = x->compute_needs_range_check();
550  bool use_length = x->length() != NULL;
551  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
552  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
553                                         !get_jobject_constant(x->value())->is_null_object() ||
554                                         x->should_profile());
555
556  LIRItem array(x->array(), this);
557  LIRItem index(x->index(), this);
558  LIRItem value(x->value(), this);
559  LIRItem length(this);
560
561  array.load_item();
562  index.load_nonconstant();
563
564  if (use_length && needs_range_check) {
565    length.set_instruction(x->length());
566    length.load_item();
567  }
568  if (needs_store_check || x->check_boolean()) {
569    value.load_item();
570  } else {
571    value.load_for_store(x->elt_type());
572  }
573
574  set_no_result(x);
575
576  // the CodeEmitInfo must be duplicated for each different
577  // LIR-instruction because spilling can occur anywhere between two
578  // instructions and so the debug information must be different
579  CodeEmitInfo* range_check_info = state_for(x);
580  CodeEmitInfo* null_check_info = NULL;
581  if (x->needs_null_check()) {
582    null_check_info = new CodeEmitInfo(range_check_info);
583  }
584
585  // emit array address setup early so it schedules better
586  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
587
588  if (GenerateRangeChecks && needs_range_check) {
589    if (use_length) {
590      __ cmp(lir_cond_belowEqual, length.result(), index.result());
591      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
592    } else {
593      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
594      // range_check also does the null check
595      null_check_info = NULL;
596    }
597  }
598
599  if (GenerateArrayStoreCheck && needs_store_check) {
600    LIR_Opr tmp1 = FrameMap::R0_oop_opr;
601    LIR_Opr tmp2 = FrameMap::R1_oop_opr;
602    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
603    __ store_check(value.result(), array.result(), tmp1, tmp2,
604                   LIR_OprFact::illegalOpr, store_check_info,
605                   x->profiled_method(), x->profiled_bci());
606  }
607
608#if INCLUDE_ALL_GCS
609  if (obj_store) {
610    // Needs GC write barriers.
611    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
612                true /* do_load */, false /* patch */, NULL);
613  }
614#endif // INCLUDE_ALL_GCS
615
616  LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
617  __ move(result, array_addr, null_check_info);
618  if (obj_store) {
619    post_barrier(LIR_OprFact::address(array_addr), value.result());
620  }
621}
622
623
624void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
625  assert(x->is_pinned(),"");
626  LIRItem obj(x->obj(), this);
627  obj.load_item();
628  set_no_result(x);
629
630  LIR_Opr lock = new_pointer_register();
631  LIR_Opr hdr  = new_pointer_register();
632
633  // Need a scratch register for biased locking on arm
634  LIR_Opr scratch = LIR_OprFact::illegalOpr;
635  if(UseBiasedLocking) {
636    scratch = new_pointer_register();
637  } else {
638    scratch = atomicLockOpr();
639  }
640
641  CodeEmitInfo* info_for_exception = NULL;
642  if (x->needs_null_check()) {
643    info_for_exception = state_for(x);
644  }
645
646  CodeEmitInfo* info = state_for(x, x->state(), true);
647  monitor_enter(obj.result(), lock, hdr, scratch,
648                x->monitor_no(), info_for_exception, info);
649}
650
651
652void LIRGenerator::do_MonitorExit(MonitorExit* x) {
653  assert(x->is_pinned(),"");
654  LIRItem obj(x->obj(), this);
655  obj.dont_load_item();
656  set_no_result(x);
657
658  LIR_Opr obj_temp = new_pointer_register();
659  LIR_Opr lock     = new_pointer_register();
660  LIR_Opr hdr      = new_pointer_register();
661
662  monitor_exit(obj_temp, lock, hdr, atomicLockOpr(), x->monitor_no());
663}
664
665
666// _ineg, _lneg, _fneg, _dneg
667void LIRGenerator::do_NegateOp(NegateOp* x) {
668#ifdef __SOFTFP__
669  address runtime_func = NULL;
670  ValueTag tag = x->type()->tag();
671  if (tag == floatTag) {
672    runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fneg);
673  } else if (tag == doubleTag) {
674    runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dneg);
675  }
676  if (runtime_func != NULL) {
677    set_result(x, call_runtime(x->x(), runtime_func, x->type(), NULL));
678    return;
679  }
680#endif // __SOFTFP__
681  LIRItem value(x->x(), this);
682  value.load_item();
683  LIR_Opr reg = rlock_result(x);
684  __ negate(value.result(), reg);
685}
686
687
688// for  _fadd, _fmul, _fsub, _fdiv, _frem
689//      _dadd, _dmul, _dsub, _ddiv, _drem
690void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
691  address runtime_func;
692  switch (x->op()) {
693    case Bytecodes::_frem:
694      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
695      break;
696    case Bytecodes::_drem:
697      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
698      break;
699#ifdef __SOFTFP__
700    // Call function compiled with -msoft-float.
701
702      // __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
703
704    case Bytecodes::_fadd:
705      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc);
706      break;
707    case Bytecodes::_fmul:
708      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fmul);
709      break;
710    case Bytecodes::_fsub:
711      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc);
712      break;
713    case Bytecodes::_fdiv:
714      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fdiv);
715      break;
716    case Bytecodes::_dadd:
717      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc);
718      break;
719    case Bytecodes::_dmul:
720      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dmul);
721      break;
722    case Bytecodes::_dsub:
723      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc);
724      break;
725    case Bytecodes::_ddiv:
726      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_ddiv);
727      break;
728    default:
729      ShouldNotReachHere();
730#else // __SOFTFP__
731    default: {
732      LIRItem left(x->x(), this);
733      LIRItem right(x->y(), this);
734      left.load_item();
735      right.load_item();
736      rlock_result(x);
737      arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
738      return;
739    }
740#endif // __SOFTFP__
741  }
742
743  LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
744  set_result(x, result);
745}
746
747
748void LIRGenerator::make_div_by_zero_check(LIR_Opr right_arg, BasicType type, CodeEmitInfo* info) {
749  assert(right_arg->is_register(), "must be");
750  __ cmp(lir_cond_equal, right_arg, make_constant(type, 0));
751  __ branch(lir_cond_equal, type, new DivByZeroStub(info));
752}
753
754
755// for  _ladd, _lmul, _lsub, _ldiv, _lrem
756void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
757  CodeEmitInfo* info = NULL;
758  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
759    info = state_for(x);
760  }
761
762#ifdef AARCH64
763  LIRItem left(x->x(), this);
764  LIRItem right(x->y(), this);
765  LIRItem* left_arg = &left;
766  LIRItem* right_arg = &right;
767
768  // Test if instr is commutative and if we should swap
769  if (x->is_commutative() && left.is_constant()) {
770    left_arg = &right;
771    right_arg = &left;
772  }
773
774  left_arg->load_item();
775  switch (x->op()) {
776    case Bytecodes::_ldiv:
777      right_arg->load_item();
778      make_div_by_zero_check(right_arg->result(), T_LONG, info);
779      __ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
780      break;
781
782    case Bytecodes::_lrem: {
783      right_arg->load_item();
784      make_div_by_zero_check(right_arg->result(), T_LONG, info);
785      // a % b is implemented with 2 instructions:
786      // tmp = a/b       (sdiv)
787      // res = a - b*tmp (msub)
788      LIR_Opr tmp = FrameMap::as_long_opr(Rtemp);
789      __ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
790      break;
791    }
792
793    case Bytecodes::_lmul:
794      if (right_arg->is_constant() && is_power_of_2_long(right_arg->get_jlong_constant())) {
795        right_arg->dont_load_item();
796        __ shift_left(left_arg->result(), exact_log2_long(right_arg->get_jlong_constant()), rlock_result(x));
797      } else {
798        right_arg->load_item();
799        __ mul(left_arg->result(), right_arg->result(), rlock_result(x));
800      }
801      break;
802
803    case Bytecodes::_ladd:
804    case Bytecodes::_lsub:
805      if (right_arg->is_constant()) {
806        jlong c = right_arg->get_jlong_constant();
807        add_constant(left_arg->result(), (x->op() == Bytecodes::_ladd) ? c : -c, rlock_result(x));
808      } else {
809        right_arg->load_item();
810        arithmetic_op_long(x->op(), rlock_result(x), left_arg->result(), right_arg->result(), NULL);
811      }
812      break;
813
814    default:
815      ShouldNotReachHere();
816  }
817#else
818  switch (x->op()) {
819    case Bytecodes::_ldiv:
820    case Bytecodes::_lrem: {
821      LIRItem right(x->y(), this);
822      right.load_item();
823      make_div_by_zero_check(right.result(), T_LONG, info);
824    }
825    // Fall through
826    case Bytecodes::_lmul: {
827      address entry;
828      switch (x->op()) {
829      case Bytecodes::_lrem:
830        entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
831        break;
832      case Bytecodes::_ldiv:
833        entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
834        break;
835      case Bytecodes::_lmul:
836        entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
837        break;
838      default:
839        ShouldNotReachHere();
840      }
841      LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
842      set_result(x, result);
843      break;
844    }
845    case Bytecodes::_ladd:
846    case Bytecodes::_lsub: {
847      LIRItem left(x->x(), this);
848      LIRItem right(x->y(), this);
849      left.load_item();
850      right.load_item();
851      rlock_result(x);
852      arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
853      break;
854    }
855    default:
856      ShouldNotReachHere();
857  }
858#endif // AARCH64
859}
860
861
862// for: _iadd, _imul, _isub, _idiv, _irem
863void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
864  bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
865  LIRItem left(x->x(), this);
866  LIRItem right(x->y(), this);
867  LIRItem* left_arg = &left;
868  LIRItem* right_arg = &right;
869
870  // Test if instr is commutative and if we should swap
871  if (x->is_commutative() && left.is_constant()) {
872    left_arg = &right;
873    right_arg = &left;
874  }
875
876  if (is_div_rem) {
877    CodeEmitInfo* info = state_for(x);
878    if (x->op() == Bytecodes::_idiv && right_arg->is_constant() && is_power_of_2(right_arg->get_jint_constant())) {
879      left_arg->load_item();
880      right_arg->dont_load_item();
881      LIR_Opr tmp = LIR_OprFact::illegalOpr;
882      LIR_Opr result = rlock_result(x);
883      __ idiv(left_arg->result(), right_arg->result(), result, tmp, info);
884    } else {
885#ifdef AARCH64
886      left_arg->load_item();
887      right_arg->load_item();
888      make_div_by_zero_check(right_arg->result(), T_INT, info);
889      if (x->op() == Bytecodes::_idiv) {
890        __ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
891      } else {
892        // a % b is implemented with 2 instructions:
893        // tmp = a/b       (sdiv)
894        // res = a - b*tmp (msub)
895        LIR_Opr tmp = FrameMap::as_opr(Rtemp);
896        __ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
897      }
898#else
899      left_arg->load_item_force(FrameMap::R0_opr);
900      right_arg->load_item_force(FrameMap::R2_opr);
901      LIR_Opr tmp = FrameMap::R1_opr;
902      LIR_Opr result = rlock_result(x);
903      LIR_Opr out_reg;
904      if (x->op() == Bytecodes::_irem) {
905        out_reg = FrameMap::R0_opr;
906        __ irem(left_arg->result(), right_arg->result(), out_reg, tmp, info);
907      } else if (x->op() == Bytecodes::_idiv) {
908        out_reg = FrameMap::R1_opr;
909        __ idiv(left_arg->result(), right_arg->result(), out_reg, tmp, info);
910      }
911      __ move(out_reg, result);
912#endif // AARCH64
913    }
914
915#ifdef AARCH64
916  } else if (((x->op() == Bytecodes::_iadd) || (x->op() == Bytecodes::_isub)) && right_arg->is_constant()) {
917    left_arg->load_item();
918    jint c = right_arg->get_jint_constant();
919    right_arg->dont_load_item();
920    add_constant(left_arg->result(), (x->op() == Bytecodes::_iadd) ? c : -c, rlock_result(x));
921#endif // AARCH64
922
923  } else {
924    left_arg->load_item();
925    if (x->op() == Bytecodes::_imul && right_arg->is_constant()) {
926      jint c = right_arg->get_jint_constant();
927      if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
928        right_arg->dont_load_item();
929      } else {
930        right_arg->load_item();
931      }
932    } else {
933      AARCH64_ONLY(assert(!right_arg->is_constant(), "constant right_arg is already handled by this moment");)
934      right_arg->load_nonconstant();
935    }
936    rlock_result(x);
937    assert(right_arg->is_constant() || right_arg->is_register(), "wrong state of right");
938    arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), NULL);
939  }
940}
941
942
943void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
944  ValueTag tag = x->type()->tag();
945  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
946  switch (tag) {
947    case floatTag:
948    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
949    case longTag:    do_ArithmeticOp_Long(x); return;
950    case intTag:     do_ArithmeticOp_Int(x);  return;
951  }
952  ShouldNotReachHere();
953}
954
955
956// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
957void LIRGenerator::do_ShiftOp(ShiftOp* x) {
958  LIRItem value(x->x(), this);
959  LIRItem count(x->y(), this);
960
961#ifndef AARCH64
962  if (value.type()->is_long()) {
963    count.set_destroys_register();
964  }
965#endif // !AARCH64
966
967  if (count.is_constant()) {
968    assert(count.type()->as_IntConstant() != NULL, "should be");
969    count.dont_load_item();
970  } else {
971    count.load_item();
972  }
973  value.load_item();
974
975  LIR_Opr res = rlock_result(x);
976  shift_op(x->op(), res, value.result(), count.result(), LIR_OprFact::illegalOpr);
977}
978
979
980// _iand, _land, _ior, _lor, _ixor, _lxor
981void LIRGenerator::do_LogicOp(LogicOp* x) {
982  LIRItem left(x->x(), this);
983  LIRItem right(x->y(), this);
984
985  left.load_item();
986
987#ifdef AARCH64
988  if (right.is_constant() && can_inline_as_constant_in_logic(right.value())) {
989    right.dont_load_item();
990  } else {
991    right.load_item();
992  }
993#else
994  right.load_nonconstant();
995#endif // AARCH64
996
997  logic_op(x->op(), rlock_result(x), left.result(), right.result());
998}
999
1000
1001// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
1002void LIRGenerator::do_CompareOp(CompareOp* x) {
1003#ifdef __SOFTFP__
1004  address runtime_func;
1005  switch (x->op()) {
1006    case Bytecodes::_fcmpl:
1007      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl);
1008      break;
1009    case Bytecodes::_fcmpg:
1010      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg);
1011      break;
1012    case Bytecodes::_dcmpl:
1013      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl);
1014      break;
1015    case Bytecodes::_dcmpg:
1016      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg);
1017      break;
1018    case Bytecodes::_lcmp: {
1019        LIRItem left(x->x(), this);
1020        LIRItem right(x->y(), this);
1021        left.load_item();
1022        right.load_nonconstant();
1023        LIR_Opr reg = rlock_result(x);
1024         __ lcmp2int(left.result(), right.result(), reg);
1025        return;
1026      }
1027    default:
1028      ShouldNotReachHere();
1029  }
1030  LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
1031  set_result(x, result);
1032#else // __SOFTFP__
1033  LIRItem left(x->x(), this);
1034  LIRItem right(x->y(), this);
1035  left.load_item();
1036
1037#ifdef AARCH64
1038  if (right.is_constant() && can_inline_as_constant_in_cmp(right.value())) {
1039    right.dont_load_item();
1040  } else {
1041    right.load_item();
1042  }
1043#else
1044  right.load_nonconstant();
1045#endif // AARCH64
1046
1047  LIR_Opr reg = rlock_result(x);
1048
1049  if (x->x()->type()->is_float_kind()) {
1050    Bytecodes::Code code = x->op();
1051    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
1052  } else if (x->x()->type()->tag() == longTag) {
1053    __ lcmp2int(left.result(), right.result(), reg);
1054  } else {
1055    ShouldNotReachHere();
1056  }
1057#endif // __SOFTFP__
1058}
1059
1060
1061void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1062  assert(x->number_of_arguments() == 4, "wrong type");
1063  LIRItem obj   (x->argument_at(0), this);  // object
1064  LIRItem offset(x->argument_at(1), this);  // offset of field
1065  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1066  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1067
1068  LIR_Opr addr = new_pointer_register();
1069  LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
1070  LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
1071
1072  // get address of field
1073  obj.load_item();
1074  offset.load_item();
1075  cmp.load_item();
1076  val.load_item();
1077
1078  __ add(obj.result(), offset.result(), addr);
1079  LIR_Opr result = rlock_result(x);
1080
1081  if (type == objectType) {
1082#if INCLUDE_ALL_GCS
1083    // Do the pre-write barrier, if any.
1084    pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
1085                true /* do_load */, false /* patch */, NULL);
1086#endif // INCLUDE_ALL_GCS
1087#ifdef AARCH64
1088    if (UseCompressedOops) {
1089      tmp1 = new_pointer_register();
1090      tmp2 = new_pointer_register();
1091    }
1092#endif // AARCH64
1093    __ cas_obj(addr, cmp.result(), val.result(), tmp1, tmp2, result);
1094    post_barrier(addr, val.result());
1095  }
1096  else if (type == intType) {
1097    __ cas_int(addr, cmp.result(), val.result(), tmp1, tmp1, result);
1098  }
1099  else if (type == longType) {
1100#ifndef AARCH64
1101    tmp1 = new_register(T_LONG);
1102#endif // !AARCH64
1103    __ cas_long(addr, cmp.result(), val.result(), tmp1, tmp2, result);
1104  }
1105  else {
1106    ShouldNotReachHere();
1107  }
1108}
1109
1110
1111void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
1112  address runtime_func;
1113  switch (x->id()) {
1114    case vmIntrinsics::_dabs: {
1115#ifdef __SOFTFP__
1116      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dabs);
1117      break;
1118#else
1119      assert(x->number_of_arguments() == 1, "wrong type");
1120      LIRItem value(x->argument_at(0), this);
1121      value.load_item();
1122      __ abs(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
1123      return;
1124#endif // __SOFTFP__
1125    }
1126    case vmIntrinsics::_dsqrt: {
1127#ifdef __SOFTFP__
1128      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
1129      break;
1130#else
1131      assert(x->number_of_arguments() == 1, "wrong type");
1132      LIRItem value(x->argument_at(0), this);
1133      value.load_item();
1134      __ sqrt(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
1135      return;
1136#endif // __SOFTFP__
1137    }
1138    case vmIntrinsics::_dsin:
1139      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
1140      break;
1141    case vmIntrinsics::_dcos:
1142      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
1143      break;
1144    case vmIntrinsics::_dtan:
1145      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
1146      break;
1147    case vmIntrinsics::_dlog:
1148      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
1149      break;
1150    case vmIntrinsics::_dlog10:
1151      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
1152      break;
1153    case vmIntrinsics::_dexp:
1154      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
1155      break;
1156    case vmIntrinsics::_dpow:
1157      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1158      break;
1159    default:
1160      ShouldNotReachHere();
1161      return;
1162  }
1163
1164  LIR_Opr result;
1165  if (x->number_of_arguments() == 1) {
1166    result = call_runtime(x->argument_at(0), runtime_func, x->type(), NULL);
1167  } else {
1168    assert(x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow, "unexpected intrinsic");
1169    result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_func, x->type(), NULL);
1170  }
1171  set_result(x, result);
1172}
1173
1174void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1175  fatal("FMA intrinsic is not implemented on this platform");
1176}
1177
1178void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1179  fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1180}
1181
1182void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
1183  CodeEmitInfo* info = state_for(x, x->state());
1184  assert(x->number_of_arguments() == 5, "wrong type");
1185  LIRItem src(x->argument_at(0), this);
1186  LIRItem src_pos(x->argument_at(1), this);
1187  LIRItem dst(x->argument_at(2), this);
1188  LIRItem dst_pos(x->argument_at(3), this);
1189  LIRItem length(x->argument_at(4), this);
1190
1191  // We put arguments into the same registers which are used for a Java call.
1192  // Note: we used fixed registers for all arguments because all registers
1193  // are caller-saved, so register allocator treats them all as used.
1194  src.load_item_force    (FrameMap::R0_oop_opr);
1195  src_pos.load_item_force(FrameMap::R1_opr);
1196  dst.load_item_force    (FrameMap::R2_oop_opr);
1197  dst_pos.load_item_force(FrameMap::R3_opr);
1198  length.load_item_force (FrameMap::R4_opr);
1199  LIR_Opr tmp =          (FrameMap::R5_opr);
1200  set_no_result(x);
1201
1202  int flags;
1203  ciArrayKlass* expected_type;
1204  arraycopy_helper(x, &flags, &expected_type);
1205  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(),
1206               tmp, expected_type, flags, info);
1207}
1208
1209void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1210  fatal("CRC32 intrinsic is not implemented on this platform");
1211}
1212
1213void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1214  Unimplemented();
1215}
1216
1217void LIRGenerator::do_Convert(Convert* x) {
1218  address runtime_func;
1219  switch (x->op()) {
1220#ifndef AARCH64
1221    case Bytecodes::_l2f:
1222      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
1223      break;
1224    case Bytecodes::_l2d:
1225      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
1226      break;
1227    case Bytecodes::_f2l:
1228      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
1229      break;
1230    case Bytecodes::_d2l:
1231      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
1232      break;
1233#ifdef __SOFTFP__
1234    case Bytecodes::_f2d:
1235      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2d);
1236      break;
1237    case Bytecodes::_d2f:
1238      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_d2f);
1239      break;
1240    case Bytecodes::_i2f:
1241      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2f);
1242      break;
1243    case Bytecodes::_i2d:
1244      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2d);
1245      break;
1246    case Bytecodes::_f2i:
1247      runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2iz);
1248      break;
1249    case Bytecodes::_d2i:
1250      // This is implemented in hard float in assembler on arm but a call
1251      // on other platforms.
1252      runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
1253      break;
1254#endif // __SOFTFP__
1255#endif // !AARCH64
1256    default: {
1257      LIRItem value(x->value(), this);
1258      value.load_item();
1259      LIR_Opr reg = rlock_result(x);
1260      __ convert(x->op(), value.result(), reg, NULL);
1261      return;
1262    }
1263  }
1264
1265  LIR_Opr result = call_runtime(x->value(), runtime_func, x->type(), NULL);
1266  set_result(x, result);
1267}
1268
1269
1270void LIRGenerator::do_NewInstance(NewInstance* x) {
1271  print_if_not_loaded(x);
1272
1273  CodeEmitInfo* info = state_for(x, x->state());
1274  LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewInstanceStub::emit_code
1275  LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewInstanceStub::emit_code
1276  LIR_Opr tmp1 = new_register(objectType);
1277  LIR_Opr tmp2 = new_register(objectType);
1278  LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1279
1280  new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3,
1281               LIR_OprFact::illegalOpr, klass_reg, info);
1282
1283  LIR_Opr result = rlock_result(x);
1284  __ move(reg, result);
1285}
1286
1287
1288void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1289  // Evaluate state_for() first, because it can emit code
1290  // with the same fixed registers that are used here (R1, R2)
1291  CodeEmitInfo* info = state_for(x, x->state());
1292  LIRItem length(x->length(), this);
1293
1294  length.load_item_force(FrameMap::R2_opr);      // R2 is required by runtime call in NewTypeArrayStub::emit_code
1295  LIR_Opr len = length.result();
1296
1297  LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewTypeArrayStub::emit_code
1298  LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewTypeArrayStub::emit_code
1299
1300  LIR_Opr tmp1 = new_register(objectType);
1301  LIR_Opr tmp2 = new_register(objectType);
1302  LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1303  LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
1304
1305  BasicType elem_type = x->elt_type();
1306  __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1307
1308  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1309  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1310
1311  LIR_Opr result = rlock_result(x);
1312  __ move(reg, result);
1313}
1314
1315
1316void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1317  // Evaluate state_for() first, because it can emit code
1318  // with the same fixed registers that are used here (R1, R2)
1319  CodeEmitInfo* info = state_for(x, x->state());
1320  LIRItem length(x->length(), this);
1321
1322  length.load_item_force(FrameMap::R2_opr);           // R2 is required by runtime call in NewObjectArrayStub::emit_code
1323  LIR_Opr len = length.result();
1324
1325  CodeEmitInfo* patching_info = NULL;
1326  if (!x->klass()->is_loaded() || PatchALot) {
1327    patching_info = state_for(x, x->state_before());
1328  }
1329
1330  LIR_Opr reg = result_register_for(x->type());       // R0 is required by runtime call in NewObjectArrayStub::emit_code
1331  LIR_Opr klass_reg = FrameMap::R1_metadata_opr;      // R1 is required by runtime call in NewObjectArrayStub::emit_code
1332
1333  LIR_Opr tmp1 = new_register(objectType);
1334  LIR_Opr tmp2 = new_register(objectType);
1335  LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1336  LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
1337
1338  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1339  ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1340  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1341    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1342  }
1343  klass2reg_with_patching(klass_reg, obj, patching_info);
1344  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1345
1346  LIR_Opr result = rlock_result(x);
1347  __ move(reg, result);
1348}
1349
1350
1351void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1352  Values* dims = x->dims();
1353  int i = dims->length();
1354  LIRItemList* items = new LIRItemList(i, i, NULL);
1355  while (i-- > 0) {
1356    LIRItem* size = new LIRItem(dims->at(i), this);
1357    items->at_put(i, size);
1358  }
1359
1360  // Need to get the info before, as the items may become invalid through item_free
1361  CodeEmitInfo* patching_info = NULL;
1362  if (!x->klass()->is_loaded() || PatchALot) {
1363    patching_info = state_for(x, x->state_before());
1364
1365    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1366    // clone all handlers (NOTE: Usually this is handled transparently
1367    // by the CodeEmitInfo cloning logic in CodeStub constructors but
1368    // is done explicitly here because a stub isn't being used).
1369    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1370  }
1371
1372  i = dims->length();
1373  while (i-- > 0) {
1374    LIRItem* size = items->at(i);
1375    size->load_item();
1376    LIR_Opr sz = size->result();
1377    assert(sz->type() == T_INT, "should be");
1378    store_stack_parameter(sz, in_ByteSize(i * BytesPerInt));
1379  }
1380
1381  CodeEmitInfo* info = state_for(x, x->state());
1382  LIR_Opr klass_reg = FrameMap::R0_metadata_opr;
1383  klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1384
1385  LIR_Opr rank = FrameMap::R2_opr;
1386  __ move(LIR_OprFact::intConst(x->rank()), rank);
1387  LIR_Opr varargs = FrameMap::SP_opr;
1388  LIR_OprList* args = new LIR_OprList(3);
1389  args->append(klass_reg);
1390  args->append(rank);
1391  args->append(varargs);
1392  LIR_Opr reg = result_register_for(x->type());
1393  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1394                  LIR_OprFact::illegalOpr, reg, args, info);
1395
1396  LIR_Opr result = rlock_result(x);
1397  __ move(reg, result);
1398}
1399
1400
1401void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1402  // nothing to do for now
1403}
1404
1405
1406void LIRGenerator::do_CheckCast(CheckCast* x) {
1407  LIRItem obj(x->obj(), this);
1408  CodeEmitInfo* patching_info = NULL;
1409  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1410    patching_info = state_for(x, x->state_before());
1411  }
1412
1413  obj.load_item();
1414
1415  CodeEmitInfo* info_for_exception =
1416    (x->needs_exception_state() ? state_for(x) :
1417                                  state_for(x, x->state_before(), true /*ignore_xhandler*/));
1418
1419  CodeStub* stub;
1420  if (x->is_incompatible_class_change_check()) {
1421    assert(patching_info == NULL, "can't patch this");
1422    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
1423                                   LIR_OprFact::illegalOpr, info_for_exception);
1424  } else if (x->is_invokespecial_receiver_check()) {
1425    assert(patching_info == NULL, "can't patch this");
1426    stub = new DeoptimizeStub(info_for_exception,
1427                              Deoptimization::Reason_class_check,
1428                              Deoptimization::Action_none);
1429  } else {
1430    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id,
1431                                   LIR_OprFact::illegalOpr, info_for_exception);
1432  }
1433
1434  LIR_Opr out_reg = rlock_result(x);
1435  LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1436  LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1437  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1438
1439  __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(),
1440               info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci());
1441}
1442
1443
1444void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1445  LIRItem obj(x->obj(), this);
1446  CodeEmitInfo* patching_info = NULL;
1447  if (!x->klass()->is_loaded() || PatchALot) {
1448    patching_info = state_for(x, x->state_before());
1449  }
1450
1451  obj.load_item();
1452  LIR_Opr out_reg = rlock_result(x);
1453  LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1454  LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1455  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1456
1457  __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1458                x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1459}
1460
1461
1462#ifdef __SOFTFP__
1463// Turn operator if (f <op> g) into runtime call:
1464//     call _aeabi_fcmp<op>(f, g)
1465//     cmp(eq, 1)
1466//     branch(eq, true path).
1467void LIRGenerator::do_soft_float_compare(If* x) {
1468  assert(x->number_of_sux() == 2, "inconsistency");
1469  ValueTag tag = x->x()->type()->tag();
1470  If::Condition cond = x->cond();
1471  address runtime_func;
1472  // unordered comparison gets the wrong answer because aeabi functions
1473  //  return false.
1474  bool unordered_is_true = x->unordered_is_true();
1475  // reverse of condition for ne
1476  bool compare_to_zero = false;
1477  switch (lir_cond(cond)) {
1478    case lir_cond_notEqual:
1479      compare_to_zero = true;  // fall through
1480    case lir_cond_equal:
1481      runtime_func = tag == floatTag ?
1482          CAST_FROM_FN_PTR(address, __aeabi_fcmpeq):
1483          CAST_FROM_FN_PTR(address, __aeabi_dcmpeq);
1484      break;
1485    case lir_cond_less:
1486      if (unordered_is_true) {
1487        runtime_func = tag == floatTag ?
1488          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmplt):
1489          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmplt);
1490      } else {
1491        runtime_func = tag == floatTag ?
1492          CAST_FROM_FN_PTR(address, __aeabi_fcmplt):
1493          CAST_FROM_FN_PTR(address, __aeabi_dcmplt);
1494      }
1495      break;
1496    case lir_cond_lessEqual:
1497      if (unordered_is_true) {
1498        runtime_func = tag == floatTag ?
1499          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmple):
1500          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmple);
1501      } else {
1502        runtime_func = tag == floatTag ?
1503          CAST_FROM_FN_PTR(address, __aeabi_fcmple):
1504          CAST_FROM_FN_PTR(address, __aeabi_dcmple);
1505      }
1506      break;
1507    case lir_cond_greaterEqual:
1508      if (unordered_is_true) {
1509        runtime_func = tag == floatTag ?
1510          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpge):
1511          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpge);
1512      } else {
1513        runtime_func = tag == floatTag ?
1514          CAST_FROM_FN_PTR(address, __aeabi_fcmpge):
1515          CAST_FROM_FN_PTR(address, __aeabi_dcmpge);
1516      }
1517      break;
1518    case lir_cond_greater:
1519      if (unordered_is_true) {
1520        runtime_func = tag == floatTag ?
1521          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpgt):
1522          CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpgt);
1523      } else {
1524        runtime_func = tag == floatTag ?
1525          CAST_FROM_FN_PTR(address, __aeabi_fcmpgt):
1526          CAST_FROM_FN_PTR(address, __aeabi_dcmpgt);
1527      }
1528      break;
1529    case lir_cond_aboveEqual:
1530    case lir_cond_belowEqual:
1531      ShouldNotReachHere();  // We're not going to get these.
1532    default:
1533      assert(lir_cond(cond) == lir_cond_always, "must be");
1534      ShouldNotReachHere();
1535  }
1536  set_no_result(x);
1537
1538  // add safepoint before generating condition code so it can be recomputed
1539  if (x->is_safepoint()) {
1540    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1541    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1542  }
1543  // Call float compare function, returns (1,0) if true or false.
1544  LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, intType, NULL);
1545  __ cmp(lir_cond_equal, result,
1546         compare_to_zero ?
1547           LIR_OprFact::intConst(0) : LIR_OprFact::intConst(1));
1548  profile_branch(x, cond);
1549  move_to_phi(x->state());
1550  __ branch(lir_cond_equal, T_INT, x->tsux());
1551}
1552#endif // __SOFTFP__
1553
1554void LIRGenerator::do_If(If* x) {
1555  assert(x->number_of_sux() == 2, "inconsistency");
1556  ValueTag tag = x->x()->type()->tag();
1557
1558#ifdef __SOFTFP__
1559  if (tag == floatTag || tag == doubleTag) {
1560    do_soft_float_compare(x);
1561    assert(x->default_sux() == x->fsux(), "wrong destination above");
1562    __ jump(x->default_sux());
1563    return;
1564  }
1565#endif // __SOFTFP__
1566
1567  LIRItem xitem(x->x(), this);
1568  LIRItem yitem(x->y(), this);
1569  LIRItem* xin = &xitem;
1570  LIRItem* yin = &yitem;
1571  If::Condition cond = x->cond();
1572
1573#ifndef AARCH64
1574  if (tag == longTag) {
1575    if (cond == If::gtr || cond == If::leq) {
1576      cond = Instruction::mirror(cond);
1577      xin = &yitem;
1578      yin = &xitem;
1579    }
1580    xin->set_destroys_register();
1581  }
1582#endif // !AARCH64
1583
1584  xin->load_item();
1585  LIR_Opr left = xin->result();
1586  LIR_Opr right;
1587
1588#ifdef AARCH64
1589  if (yin->is_constant() && can_inline_as_constant_in_cmp(yin->value())) {
1590    yin->dont_load_item();
1591  } else {
1592    yin->load_item();
1593  }
1594  right = yin->result();
1595#else
1596  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1597      (cond == If::eql || cond == If::neq)) {
1598    // inline long zero
1599    right = LIR_OprFact::value_type(yin->value()->type());
1600  } else {
1601    yin->load_nonconstant();
1602    right = yin->result();
1603  }
1604#endif // AARCH64
1605
1606  set_no_result(x);
1607
1608  // add safepoint before generating condition code so it can be recomputed
1609  if (x->is_safepoint()) {
1610    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1611    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1612  }
1613
1614  __ cmp(lir_cond(cond), left, right);
1615  profile_branch(x, cond);
1616  move_to_phi(x->state());
1617  if (x->x()->type()->is_float_kind()) {
1618    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1619  } else {
1620    __ branch(lir_cond(cond), right->type(), x->tsux());
1621  }
1622  assert(x->default_sux() == x->fsux(), "wrong destination above");
1623  __ jump(x->default_sux());
1624}
1625
1626
1627LIR_Opr LIRGenerator::getThreadPointer() {
1628  return FrameMap::Rthread_opr;
1629}
1630
1631void LIRGenerator::trace_block_entry(BlockBegin* block) {
1632  __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::R0_opr);
1633  LIR_OprList* args = new LIR_OprList(1);
1634  args->append(FrameMap::R0_opr);
1635  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1636  __ call_runtime_leaf(func, getThreadTemp(), LIR_OprFact::illegalOpr, args);
1637}
1638
1639
1640void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1641                                        CodeEmitInfo* info) {
1642#ifndef AARCH64
1643  if (value->is_double_cpu()) {
1644    assert(address->index()->is_illegal(), "should have a constant displacement");
1645    LIR_Opr tmp = new_pointer_register();
1646    add_large_constant(address->base(), address->disp(), tmp);
1647    __ volatile_store_mem_reg(value, new LIR_Address(tmp, (intx)0, address->type()), info);
1648    return;
1649  }
1650#endif // !AARCH64
1651  // TODO-AARCH64 implement with stlr instruction
1652  __ store(value, address, info, lir_patch_none);
1653}
1654
1655void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1656                                       CodeEmitInfo* info) {
1657#ifndef AARCH64
1658  if (result->is_double_cpu()) {
1659    assert(address->index()->is_illegal(), "should have a constant displacement");
1660    LIR_Opr tmp = new_pointer_register();
1661    add_large_constant(address->base(), address->disp(), tmp);
1662    __ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, address->type()), result, info);
1663    return;
1664  }
1665#endif // !AARCH64
1666  // TODO-AARCH64 implement with ldar instruction
1667  __ load(address, result, info, lir_patch_none);
1668}
1669
1670void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1671                                     BasicType type, bool is_volatile) {
1672#ifdef AARCH64
1673  __ load(new LIR_Address(src, offset, type), dst);
1674#else
1675  assert(offset->is_single_cpu(), "must be");
1676  if (is_volatile && dst->is_double_cpu()) {
1677    LIR_Opr tmp = new_pointer_register();
1678    __ add(src, offset, tmp);
1679    __ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, type), dst, NULL);
1680  } else if (type == T_FLOAT || type == T_DOUBLE) {
1681    // fld doesn't have indexed addressing mode
1682    LIR_Opr tmp = new_register(T_INT);
1683    __ add(src, offset, tmp);
1684    __ load(new LIR_Address(tmp, (intx)0, type), dst);
1685  } else {
1686    __ load(new LIR_Address(src, offset, type), dst);
1687  }
1688#endif // AARCH64
1689}
1690
1691void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1692                                     BasicType type, bool is_volatile) {
1693#ifdef AARCH64
1694  LIR_Address* addr = new LIR_Address(src, offset, type);
1695  if (type == T_ARRAY || type == T_OBJECT) {
1696    pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1697                true /* do_load */, false /* patch */, NULL);
1698    __ move(data, addr);
1699    assert(src->is_register(), "must be register");
1700    post_barrier(LIR_OprFact::address(addr), data);
1701  } else {
1702    __ move(data, addr);
1703  }
1704#else
1705  assert(offset->is_single_cpu(), "must be");
1706  if (is_volatile && data->is_double_cpu()) {
1707    LIR_Opr tmp = new_register(T_INT);
1708    __ add(src, offset, tmp);
1709    __ volatile_store_mem_reg(data, new LIR_Address(tmp, (intx)0, type), NULL);
1710  } else if (type == T_FLOAT || type == T_DOUBLE) {
1711    // fst doesn't have indexed addressing mode
1712    LIR_Opr tmp = new_register(T_INT);
1713    __ add(src, offset, tmp);
1714    __ move(data, new LIR_Address(tmp, (intx)0, type));
1715  } else {
1716    LIR_Address* addr = new LIR_Address(src, offset, type);
1717    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1718#if INCLUDE_ALL_GCS
1719    if (is_obj) {
1720      // Do the pre-write barrier, if any.
1721      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1722                  true /* do_load */, false /* patch */, NULL);
1723    }
1724#endif // INCLUDE_ALL_GCS
1725    __ move(data, addr);
1726    if (is_obj) {
1727      assert(src->is_register(), "must be register");
1728      post_barrier(LIR_OprFact::address(addr), data);
1729    }
1730  }
1731#endif // AARCH64
1732}
1733
1734void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1735  BasicType type = x->basic_type();
1736  LIRItem src(x->object(), this);
1737  LIRItem off(x->offset(), this);
1738  LIRItem value(x->value(), this);
1739
1740  src.load_item();
1741  if (x->is_add()) {
1742    value.load_nonconstant();
1743  } else {
1744    value.load_item();
1745  }
1746  off.load_nonconstant();
1747
1748  LIR_Opr dst = rlock_result(x, type);
1749  LIR_Opr data = value.result();
1750  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1751
1752  assert (type == T_INT || type == T_LONG || (!x->is_add() && is_obj), "unexpected type");
1753  LIR_Opr addr_ptr = new_pointer_register();
1754
1755  __ add(src.result(), off.result(), addr_ptr);
1756
1757  LIR_Address* addr = new LIR_Address(addr_ptr, (intx)0, type);
1758
1759  if (x->is_add()) {
1760    LIR_Opr tmp = new_register(type);
1761    __ xadd(addr_ptr, data, dst, tmp);
1762  } else {
1763    LIR_Opr tmp = (UseCompressedOops && is_obj) ? new_pointer_register() : LIR_OprFact::illegalOpr;
1764    if (is_obj) {
1765      // Do the pre-write barrier, if any.
1766      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1767                  true /* do_load */, false /* patch */, NULL);
1768    }
1769    __ xchg(addr_ptr, data, dst, tmp);
1770    if (is_obj) {
1771      // Seems to be a precise address
1772      post_barrier(LIR_OprFact::address(addr), data);
1773    }
1774  }
1775}
1776