Check.java revision 3711:3fc90eaaf922
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.code.Directive.ExportsDirective;
35import com.sun.tools.javac.code.Directive.RequiresDirective;
36import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
37import com.sun.tools.javac.jvm.*;
38import com.sun.tools.javac.resources.CompilerProperties.Errors;
39import com.sun.tools.javac.resources.CompilerProperties.Fragments;
40import com.sun.tools.javac.resources.CompilerProperties.Warnings;
41import com.sun.tools.javac.tree.*;
42import com.sun.tools.javac.util.*;
43import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
44import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
45import com.sun.tools.javac.util.List;
46
47import com.sun.tools.javac.code.Lint;
48import com.sun.tools.javac.code.Lint.LintCategory;
49import com.sun.tools.javac.code.Scope.WriteableScope;
50import com.sun.tools.javac.code.Type.*;
51import com.sun.tools.javac.code.Symbol.*;
52import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
53import com.sun.tools.javac.comp.Infer.FreeTypeListener;
54import com.sun.tools.javac.tree.JCTree.*;
55
56import static com.sun.tools.javac.code.Flags.*;
57import static com.sun.tools.javac.code.Flags.ANNOTATION;
58import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
59import static com.sun.tools.javac.code.Kinds.*;
60import static com.sun.tools.javac.code.Kinds.Kind.*;
61import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
62import static com.sun.tools.javac.code.TypeTag.*;
63import static com.sun.tools.javac.code.TypeTag.WILDCARD;
64
65import static com.sun.tools.javac.tree.JCTree.Tag.*;
66
67/** Type checking helper class for the attribution phase.
68 *
69 *  <p><b>This is NOT part of any supported API.
70 *  If you write code that depends on this, you do so at your own risk.
71 *  This code and its internal interfaces are subject to change or
72 *  deletion without notice.</b>
73 */
74public class Check {
75    protected static final Context.Key<Check> checkKey = new Context.Key<>();
76
77    private final Names names;
78    private final Log log;
79    private final Resolve rs;
80    private final Symtab syms;
81    private final Enter enter;
82    private final DeferredAttr deferredAttr;
83    private final Infer infer;
84    private final Types types;
85    private final TypeAnnotations typeAnnotations;
86    private final JCDiagnostic.Factory diags;
87    private final JavaFileManager fileManager;
88    private final Source source;
89    private final Profile profile;
90    private final boolean warnOnAnyAccessToMembers;
91
92    // The set of lint options currently in effect. It is initialized
93    // from the context, and then is set/reset as needed by Attr as it
94    // visits all the various parts of the trees during attribution.
95    private Lint lint;
96
97    // The method being analyzed in Attr - it is set/reset as needed by
98    // Attr as it visits new method declarations.
99    private MethodSymbol method;
100
101    public static Check instance(Context context) {
102        Check instance = context.get(checkKey);
103        if (instance == null)
104            instance = new Check(context);
105        return instance;
106    }
107
108    protected Check(Context context) {
109        context.put(checkKey, this);
110
111        names = Names.instance(context);
112        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
113            names.FIELD, names.METHOD, names.CONSTRUCTOR,
114            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
115        log = Log.instance(context);
116        rs = Resolve.instance(context);
117        syms = Symtab.instance(context);
118        enter = Enter.instance(context);
119        deferredAttr = DeferredAttr.instance(context);
120        infer = Infer.instance(context);
121        types = Types.instance(context);
122        typeAnnotations = TypeAnnotations.instance(context);
123        diags = JCDiagnostic.Factory.instance(context);
124        Options options = Options.instance(context);
125        lint = Lint.instance(context);
126        fileManager = context.get(JavaFileManager.class);
127
128        source = Source.instance(context);
129        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
130        allowDefaultMethods = source.allowDefaultMethods();
131        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
132        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
133        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
134        warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
135
136        Target target = Target.instance(context);
137        syntheticNameChar = target.syntheticNameChar();
138
139        profile = Profile.instance(context);
140
141        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
142        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
143        boolean enforceMandatoryWarnings = true;
144
145        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
146                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
147        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
148                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
149        sunApiHandler = new MandatoryWarningHandler(log, false,
150                enforceMandatoryWarnings, "sunapi", null);
151
152        deferredLintHandler = DeferredLintHandler.instance(context);
153    }
154
155    /** Switch: simplified varargs enabled?
156     */
157    boolean allowSimplifiedVarargs;
158
159    /** Switch: default methods enabled?
160     */
161    boolean allowDefaultMethods;
162
163    /** Switch: should unrelated return types trigger a method clash?
164     */
165    boolean allowStrictMethodClashCheck;
166
167    /** Switch: can the @SafeVarargs annotation be applied to private methods?
168     */
169    boolean allowPrivateSafeVarargs;
170
171    /** Switch: can diamond inference be used in anonymous instance creation ?
172     */
173    boolean allowDiamondWithAnonymousClassCreation;
174
175    /** Character for synthetic names
176     */
177    char syntheticNameChar;
178
179    /** A table mapping flat names of all compiled classes for each module in this run
180     *  to their symbols; maintained from outside.
181     */
182    private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
183
184    /** A handler for messages about deprecated usage.
185     */
186    private MandatoryWarningHandler deprecationHandler;
187
188    /** A handler for messages about unchecked or unsafe usage.
189     */
190    private MandatoryWarningHandler uncheckedHandler;
191
192    /** A handler for messages about using proprietary API.
193     */
194    private MandatoryWarningHandler sunApiHandler;
195
196    /** A handler for deferred lint warnings.
197     */
198    private DeferredLintHandler deferredLintHandler;
199
200/* *************************************************************************
201 * Errors and Warnings
202 **************************************************************************/
203
204    Lint setLint(Lint newLint) {
205        Lint prev = lint;
206        lint = newLint;
207        return prev;
208    }
209
210    MethodSymbol setMethod(MethodSymbol newMethod) {
211        MethodSymbol prev = method;
212        method = newMethod;
213        return prev;
214    }
215
216    /** Warn about deprecated symbol.
217     *  @param pos        Position to be used for error reporting.
218     *  @param sym        The deprecated symbol.
219     */
220    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
221        if (!lint.isSuppressed(LintCategory.DEPRECATION))
222            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
223    }
224
225    /** Warn about unchecked operation.
226     *  @param pos        Position to be used for error reporting.
227     *  @param msg        A string describing the problem.
228     */
229    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
230        if (!lint.isSuppressed(LintCategory.UNCHECKED))
231            uncheckedHandler.report(pos, msg, args);
232    }
233
234    /** Warn about unsafe vararg method decl.
235     *  @param pos        Position to be used for error reporting.
236     */
237    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
238        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
239            log.warning(LintCategory.VARARGS, pos, key, args);
240    }
241
242    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
243        if (lint.isEnabled(LintCategory.STATIC))
244            log.warning(LintCategory.STATIC, pos, msg, args);
245    }
246
247    /** Warn about division by integer constant zero.
248     *  @param pos        Position to be used for error reporting.
249     */
250    void warnDivZero(DiagnosticPosition pos) {
251        if (lint.isEnabled(LintCategory.DIVZERO))
252            log.warning(LintCategory.DIVZERO, pos, "div.zero");
253    }
254
255    /**
256     * Report any deferred diagnostics.
257     */
258    public void reportDeferredDiagnostics() {
259        deprecationHandler.reportDeferredDiagnostic();
260        uncheckedHandler.reportDeferredDiagnostic();
261        sunApiHandler.reportDeferredDiagnostic();
262    }
263
264
265    /** Report a failure to complete a class.
266     *  @param pos        Position to be used for error reporting.
267     *  @param ex         The failure to report.
268     */
269    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
270        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
271        if (ex instanceof ClassFinder.BadClassFile) throw new Abort();
272        else return syms.errType;
273    }
274
275    /** Report an error that wrong type tag was found.
276     *  @param pos        Position to be used for error reporting.
277     *  @param required   An internationalized string describing the type tag
278     *                    required.
279     *  @param found      The type that was found.
280     */
281    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
282        // this error used to be raised by the parser,
283        // but has been delayed to this point:
284        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
285            log.error(pos, "illegal.start.of.type");
286            return syms.errType;
287        }
288        log.error(pos, "type.found.req", found, required);
289        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
290    }
291
292    /** Report an error that symbol cannot be referenced before super
293     *  has been called.
294     *  @param pos        Position to be used for error reporting.
295     *  @param sym        The referenced symbol.
296     */
297    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
298        log.error(pos, "cant.ref.before.ctor.called", sym);
299    }
300
301    /** Report duplicate declaration error.
302     */
303    void duplicateError(DiagnosticPosition pos, Symbol sym) {
304        if (!sym.type.isErroneous()) {
305            Symbol location = sym.location();
306            if (location.kind == MTH &&
307                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
308                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
309                        kindName(sym.location()), kindName(sym.location().enclClass()),
310                        sym.location().enclClass());
311            } else {
312                log.error(pos, "already.defined", kindName(sym), sym,
313                        kindName(sym.location()), sym.location());
314            }
315        }
316    }
317
318    /** Report array/varargs duplicate declaration
319     */
320    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
321        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
322            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
323        }
324    }
325
326/* ************************************************************************
327 * duplicate declaration checking
328 *************************************************************************/
329
330    /** Check that variable does not hide variable with same name in
331     *  immediately enclosing local scope.
332     *  @param pos           Position for error reporting.
333     *  @param v             The symbol.
334     *  @param s             The scope.
335     */
336    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
337        for (Symbol sym : s.getSymbolsByName(v.name)) {
338            if (sym.owner != v.owner) break;
339            if (sym.kind == VAR &&
340                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
341                v.name != names.error) {
342                duplicateError(pos, sym);
343                return;
344            }
345        }
346    }
347
348    /** Check that a class or interface does not hide a class or
349     *  interface with same name in immediately enclosing local scope.
350     *  @param pos           Position for error reporting.
351     *  @param c             The symbol.
352     *  @param s             The scope.
353     */
354    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
355        for (Symbol sym : s.getSymbolsByName(c.name)) {
356            if (sym.owner != c.owner) break;
357            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
358                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
359                c.name != names.error) {
360                duplicateError(pos, sym);
361                return;
362            }
363        }
364    }
365
366    /** Check that class does not have the same name as one of
367     *  its enclosing classes, or as a class defined in its enclosing scope.
368     *  return true if class is unique in its enclosing scope.
369     *  @param pos           Position for error reporting.
370     *  @param name          The class name.
371     *  @param s             The enclosing scope.
372     */
373    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
374        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
375            if (sym.kind == TYP && sym.name != names.error) {
376                duplicateError(pos, sym);
377                return false;
378            }
379        }
380        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
381            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
382                duplicateError(pos, sym);
383                return true;
384            }
385        }
386        return true;
387    }
388
389/* *************************************************************************
390 * Class name generation
391 **************************************************************************/
392
393
394    private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
395
396    /** Return name of local class.
397     *  This is of the form   {@code <enclClass> $ n <classname> }
398     *  where
399     *    enclClass is the flat name of the enclosing class,
400     *    classname is the simple name of the local class
401     */
402    Name localClassName(ClassSymbol c) {
403        Name enclFlatname = c.owner.enclClass().flatname;
404        String enclFlatnameStr = enclFlatname.toString();
405        Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
406        Integer index = localClassNameIndexes.get(key);
407        for (int i = (index == null) ? 1 : index; ; i++) {
408            Name flatname = names.fromString(enclFlatnameStr
409                    + syntheticNameChar + i + c.name);
410            if (getCompiled(c.packge().modle, flatname) == null) {
411                localClassNameIndexes.put(key, i + 1);
412                return flatname;
413            }
414        }
415    }
416
417    void clearLocalClassNameIndexes(ClassSymbol c) {
418        localClassNameIndexes.remove(new Pair<>(
419                c.owner.enclClass().flatname, c.name));
420    }
421
422    public void newRound() {
423        compiled.clear();
424        localClassNameIndexes.clear();
425    }
426
427    public void putCompiled(ClassSymbol csym) {
428        compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
429    }
430
431    public ClassSymbol getCompiled(ClassSymbol csym) {
432        return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
433    }
434
435    public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
436        return compiled.get(Pair.of(msym, flatname));
437    }
438
439    public void removeCompiled(ClassSymbol csym) {
440        compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
441    }
442
443/* *************************************************************************
444 * Type Checking
445 **************************************************************************/
446
447    /**
448     * A check context is an object that can be used to perform compatibility
449     * checks - depending on the check context, meaning of 'compatibility' might
450     * vary significantly.
451     */
452    public interface CheckContext {
453        /**
454         * Is type 'found' compatible with type 'req' in given context
455         */
456        boolean compatible(Type found, Type req, Warner warn);
457        /**
458         * Report a check error
459         */
460        void report(DiagnosticPosition pos, JCDiagnostic details);
461        /**
462         * Obtain a warner for this check context
463         */
464        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
465
466        public InferenceContext inferenceContext();
467
468        public DeferredAttr.DeferredAttrContext deferredAttrContext();
469    }
470
471    /**
472     * This class represent a check context that is nested within another check
473     * context - useful to check sub-expressions. The default behavior simply
474     * redirects all method calls to the enclosing check context leveraging
475     * the forwarding pattern.
476     */
477    static class NestedCheckContext implements CheckContext {
478        CheckContext enclosingContext;
479
480        NestedCheckContext(CheckContext enclosingContext) {
481            this.enclosingContext = enclosingContext;
482        }
483
484        public boolean compatible(Type found, Type req, Warner warn) {
485            return enclosingContext.compatible(found, req, warn);
486        }
487
488        public void report(DiagnosticPosition pos, JCDiagnostic details) {
489            enclosingContext.report(pos, details);
490        }
491
492        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
493            return enclosingContext.checkWarner(pos, found, req);
494        }
495
496        public InferenceContext inferenceContext() {
497            return enclosingContext.inferenceContext();
498        }
499
500        public DeferredAttrContext deferredAttrContext() {
501            return enclosingContext.deferredAttrContext();
502        }
503    }
504
505    /**
506     * Check context to be used when evaluating assignment/return statements
507     */
508    CheckContext basicHandler = new CheckContext() {
509        public void report(DiagnosticPosition pos, JCDiagnostic details) {
510            log.error(pos, "prob.found.req", details);
511        }
512        public boolean compatible(Type found, Type req, Warner warn) {
513            return types.isAssignable(found, req, warn);
514        }
515
516        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
517            return convertWarner(pos, found, req);
518        }
519
520        public InferenceContext inferenceContext() {
521            return infer.emptyContext;
522        }
523
524        public DeferredAttrContext deferredAttrContext() {
525            return deferredAttr.emptyDeferredAttrContext;
526        }
527
528        @Override
529        public String toString() {
530            return "CheckContext: basicHandler";
531        }
532    };
533
534    /** Check that a given type is assignable to a given proto-type.
535     *  If it is, return the type, otherwise return errType.
536     *  @param pos        Position to be used for error reporting.
537     *  @param found      The type that was found.
538     *  @param req        The type that was required.
539     */
540    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
541        return checkType(pos, found, req, basicHandler);
542    }
543
544    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
545        final InferenceContext inferenceContext = checkContext.inferenceContext();
546        if (inferenceContext.free(req) || inferenceContext.free(found)) {
547            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
548                @Override
549                public void typesInferred(InferenceContext inferenceContext) {
550                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
551                }
552            });
553        }
554        if (req.hasTag(ERROR))
555            return req;
556        if (req.hasTag(NONE))
557            return found;
558        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
559            return found;
560        } else {
561            if (found.isNumeric() && req.isNumeric()) {
562                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
563                return types.createErrorType(found);
564            }
565            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
566            return types.createErrorType(found);
567        }
568    }
569
570    /** Check that a given type can be cast to a given target type.
571     *  Return the result of the cast.
572     *  @param pos        Position to be used for error reporting.
573     *  @param found      The type that is being cast.
574     *  @param req        The target type of the cast.
575     */
576    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
577        return checkCastable(pos, found, req, basicHandler);
578    }
579    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
580        if (types.isCastable(found, req, castWarner(pos, found, req))) {
581            return req;
582        } else {
583            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
584            return types.createErrorType(found);
585        }
586    }
587
588    /** Check for redundant casts (i.e. where source type is a subtype of target type)
589     * The problem should only be reported for non-292 cast
590     */
591    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
592        if (!tree.type.isErroneous()
593                && types.isSameType(tree.expr.type, tree.clazz.type)
594                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
595                && !is292targetTypeCast(tree)) {
596            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
597                @Override
598                public void report() {
599                    if (lint.isEnabled(Lint.LintCategory.CAST))
600                        log.warning(Lint.LintCategory.CAST,
601                                tree.pos(), "redundant.cast", tree.clazz.type);
602                }
603            });
604        }
605    }
606    //where
607        private boolean is292targetTypeCast(JCTypeCast tree) {
608            boolean is292targetTypeCast = false;
609            JCExpression expr = TreeInfo.skipParens(tree.expr);
610            if (expr.hasTag(APPLY)) {
611                JCMethodInvocation apply = (JCMethodInvocation)expr;
612                Symbol sym = TreeInfo.symbol(apply.meth);
613                is292targetTypeCast = sym != null &&
614                    sym.kind == MTH &&
615                    (sym.flags() & HYPOTHETICAL) != 0;
616            }
617            return is292targetTypeCast;
618        }
619
620        private static final boolean ignoreAnnotatedCasts = true;
621
622    /** Check that a type is within some bounds.
623     *
624     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
625     *  type argument.
626     *  @param a             The type that should be bounded by bs.
627     *  @param bound         The bound.
628     */
629    private boolean checkExtends(Type a, Type bound) {
630         if (a.isUnbound()) {
631             return true;
632         } else if (!a.hasTag(WILDCARD)) {
633             a = types.cvarUpperBound(a);
634             return types.isSubtype(a, bound);
635         } else if (a.isExtendsBound()) {
636             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
637         } else if (a.isSuperBound()) {
638             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
639         }
640         return true;
641     }
642
643    /** Check that type is different from 'void'.
644     *  @param pos           Position to be used for error reporting.
645     *  @param t             The type to be checked.
646     */
647    Type checkNonVoid(DiagnosticPosition pos, Type t) {
648        if (t.hasTag(VOID)) {
649            log.error(pos, "void.not.allowed.here");
650            return types.createErrorType(t);
651        } else {
652            return t;
653        }
654    }
655
656    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
657        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
658            return typeTagError(pos,
659                                diags.fragment("type.req.class.array"),
660                                asTypeParam(t));
661        } else {
662            return t;
663        }
664    }
665
666    /** Check that type is a class or interface type.
667     *  @param pos           Position to be used for error reporting.
668     *  @param t             The type to be checked.
669     */
670    Type checkClassType(DiagnosticPosition pos, Type t) {
671        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
672            return typeTagError(pos,
673                                diags.fragment("type.req.class"),
674                                asTypeParam(t));
675        } else {
676            return t;
677        }
678    }
679    //where
680        private Object asTypeParam(Type t) {
681            return (t.hasTag(TYPEVAR))
682                                    ? diags.fragment("type.parameter", t)
683                                    : t;
684        }
685
686    /** Check that type is a valid qualifier for a constructor reference expression
687     */
688    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
689        t = checkClassOrArrayType(pos, t);
690        if (t.hasTag(CLASS)) {
691            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
692                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
693                t = types.createErrorType(t);
694            } else if ((t.tsym.flags() & ENUM) != 0) {
695                log.error(pos, "enum.cant.be.instantiated");
696                t = types.createErrorType(t);
697            } else {
698                t = checkClassType(pos, t, true);
699            }
700        } else if (t.hasTag(ARRAY)) {
701            if (!types.isReifiable(((ArrayType)t).elemtype)) {
702                log.error(pos, "generic.array.creation");
703                t = types.createErrorType(t);
704            }
705        }
706        return t;
707    }
708
709    /** Check that type is a class or interface type.
710     *  @param pos           Position to be used for error reporting.
711     *  @param t             The type to be checked.
712     *  @param noBounds    True if type bounds are illegal here.
713     */
714    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
715        t = checkClassType(pos, t);
716        if (noBounds && t.isParameterized()) {
717            List<Type> args = t.getTypeArguments();
718            while (args.nonEmpty()) {
719                if (args.head.hasTag(WILDCARD))
720                    return typeTagError(pos,
721                                        diags.fragment("type.req.exact"),
722                                        args.head);
723                args = args.tail;
724            }
725        }
726        return t;
727    }
728
729    /** Check that type is a reference type, i.e. a class, interface or array type
730     *  or a type variable.
731     *  @param pos           Position to be used for error reporting.
732     *  @param t             The type to be checked.
733     */
734    Type checkRefType(DiagnosticPosition pos, Type t) {
735        if (t.isReference())
736            return t;
737        else
738            return typeTagError(pos,
739                                diags.fragment("type.req.ref"),
740                                t);
741    }
742
743    /** Check that each type is a reference type, i.e. a class, interface or array type
744     *  or a type variable.
745     *  @param trees         Original trees, used for error reporting.
746     *  @param types         The types to be checked.
747     */
748    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
749        List<JCExpression> tl = trees;
750        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
751            l.head = checkRefType(tl.head.pos(), l.head);
752            tl = tl.tail;
753        }
754        return types;
755    }
756
757    /** Check that type is a null or reference type.
758     *  @param pos           Position to be used for error reporting.
759     *  @param t             The type to be checked.
760     */
761    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
762        if (t.isReference() || t.hasTag(BOT))
763            return t;
764        else
765            return typeTagError(pos,
766                                diags.fragment("type.req.ref"),
767                                t);
768    }
769
770    /** Check that flag set does not contain elements of two conflicting sets. s
771     *  Return true if it doesn't.
772     *  @param pos           Position to be used for error reporting.
773     *  @param flags         The set of flags to be checked.
774     *  @param set1          Conflicting flags set #1.
775     *  @param set2          Conflicting flags set #2.
776     */
777    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
778        if ((flags & set1) != 0 && (flags & set2) != 0) {
779            log.error(pos,
780                      "illegal.combination.of.modifiers",
781                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
782                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
783            return false;
784        } else
785            return true;
786    }
787
788    /** Check that usage of diamond operator is correct (i.e. diamond should not
789     * be used with non-generic classes or in anonymous class creation expressions)
790     */
791    Type checkDiamond(JCNewClass tree, Type t) {
792        if (!TreeInfo.isDiamond(tree) ||
793                t.isErroneous()) {
794            return checkClassType(tree.clazz.pos(), t, true);
795        } else {
796            if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
797                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
798                        Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
799            }
800            if (t.tsym.type.getTypeArguments().isEmpty()) {
801                log.error(tree.clazz.pos(),
802                    "cant.apply.diamond.1",
803                    t, diags.fragment("diamond.non.generic", t));
804                return types.createErrorType(t);
805            } else if (tree.typeargs != null &&
806                    tree.typeargs.nonEmpty()) {
807                log.error(tree.clazz.pos(),
808                    "cant.apply.diamond.1",
809                    t, diags.fragment("diamond.and.explicit.params", t));
810                return types.createErrorType(t);
811            } else {
812                return t;
813            }
814        }
815    }
816
817    /** Check that the type inferred using the diamond operator does not contain
818     *  non-denotable types such as captured types or intersection types.
819     *  @param t the type inferred using the diamond operator
820     *  @return  the (possibly empty) list of non-denotable types.
821     */
822    List<Type> checkDiamondDenotable(ClassType t) {
823        ListBuffer<Type> buf = new ListBuffer<>();
824        for (Type arg : t.allparams()) {
825            if (!diamondTypeChecker.visit(arg, null)) {
826                buf.append(arg);
827            }
828        }
829        return buf.toList();
830    }
831        // where
832
833        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
834         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
835         *  otherwise.
836         */
837        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
838            @Override
839            public Boolean visitType(Type t, Void s) {
840                return true;
841            }
842            @Override
843            public Boolean visitClassType(ClassType t, Void s) {
844                if (t.isCompound()) {
845                    return false;
846                }
847                for (Type targ : t.allparams()) {
848                    if (!visit(targ, s)) {
849                        return false;
850                    }
851                }
852                return true;
853            }
854
855            @Override
856            public Boolean visitTypeVar(TypeVar t, Void s) {
857                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
858                  (i.e cannot have been produced by inference (18.4))
859                */
860                return t.tsym.owner.type.getTypeArguments().contains(t);
861            }
862
863            @Override
864            public Boolean visitCapturedType(CapturedType t, Void s) {
865                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
866                  (i.e cannot have been produced by capture conversion (5.1.10))
867                */
868                return false;
869            }
870
871            @Override
872            public Boolean visitArrayType(ArrayType t, Void s) {
873                return visit(t.elemtype, s);
874            }
875
876            @Override
877            public Boolean visitWildcardType(WildcardType t, Void s) {
878                return visit(t.type, s);
879            }
880        };
881
882    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
883        MethodSymbol m = tree.sym;
884        if (!allowSimplifiedVarargs) return;
885        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
886        Type varargElemType = null;
887        if (m.isVarArgs()) {
888            varargElemType = types.elemtype(tree.params.last().type);
889        }
890        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
891            if (varargElemType != null) {
892                log.error(tree,
893                        "varargs.invalid.trustme.anno",
894                          syms.trustMeType.tsym,
895                          allowPrivateSafeVarargs ?
896                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
897                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
898            } else {
899                log.error(tree,
900                            "varargs.invalid.trustme.anno",
901                            syms.trustMeType.tsym,
902                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
903            }
904        } else if (hasTrustMeAnno && varargElemType != null &&
905                            types.isReifiable(varargElemType)) {
906            warnUnsafeVararg(tree,
907                            "varargs.redundant.trustme.anno",
908                            syms.trustMeType.tsym,
909                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
910        }
911        else if (!hasTrustMeAnno && varargElemType != null &&
912                !types.isReifiable(varargElemType)) {
913            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
914        }
915    }
916    //where
917        private boolean isTrustMeAllowedOnMethod(Symbol s) {
918            return (s.flags() & VARARGS) != 0 &&
919                (s.isConstructor() ||
920                    (s.flags() & (STATIC | FINAL |
921                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
922        }
923
924    Type checkMethod(final Type mtype,
925            final Symbol sym,
926            final Env<AttrContext> env,
927            final List<JCExpression> argtrees,
928            final List<Type> argtypes,
929            final boolean useVarargs,
930            InferenceContext inferenceContext) {
931        // System.out.println("call   : " + env.tree);
932        // System.out.println("method : " + owntype);
933        // System.out.println("actuals: " + argtypes);
934        if (inferenceContext.free(mtype)) {
935            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
936                public void typesInferred(InferenceContext inferenceContext) {
937                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
938                }
939            });
940            return mtype;
941        }
942        Type owntype = mtype;
943        List<Type> formals = owntype.getParameterTypes();
944        List<Type> nonInferred = sym.type.getParameterTypes();
945        if (nonInferred.length() != formals.length()) nonInferred = formals;
946        Type last = useVarargs ? formals.last() : null;
947        if (sym.name == names.init && sym.owner == syms.enumSym) {
948            formals = formals.tail.tail;
949            nonInferred = nonInferred.tail.tail;
950        }
951        List<JCExpression> args = argtrees;
952        if (args != null) {
953            //this is null when type-checking a method reference
954            while (formals.head != last) {
955                JCTree arg = args.head;
956                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
957                assertConvertible(arg, arg.type, formals.head, warn);
958                args = args.tail;
959                formals = formals.tail;
960                nonInferred = nonInferred.tail;
961            }
962            if (useVarargs) {
963                Type varArg = types.elemtype(last);
964                while (args.tail != null) {
965                    JCTree arg = args.head;
966                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
967                    assertConvertible(arg, arg.type, varArg, warn);
968                    args = args.tail;
969                }
970            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
971                // non-varargs call to varargs method
972                Type varParam = owntype.getParameterTypes().last();
973                Type lastArg = argtypes.last();
974                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
975                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
976                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
977                                types.elemtype(varParam), varParam);
978            }
979        }
980        if (useVarargs) {
981            Type argtype = owntype.getParameterTypes().last();
982            if (!types.isReifiable(argtype) &&
983                (!allowSimplifiedVarargs ||
984                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
985                 !isTrustMeAllowedOnMethod(sym))) {
986                warnUnchecked(env.tree.pos(),
987                                  "unchecked.generic.array.creation",
988                                  argtype);
989            }
990            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
991                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
992            }
993         }
994         return owntype;
995    }
996    //where
997    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
998        if (types.isConvertible(actual, formal, warn))
999            return;
1000
1001        if (formal.isCompound()
1002            && types.isSubtype(actual, types.supertype(formal))
1003            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1004            return;
1005    }
1006
1007    /**
1008     * Check that type 't' is a valid instantiation of a generic class
1009     * (see JLS 4.5)
1010     *
1011     * @param t class type to be checked
1012     * @return true if 't' is well-formed
1013     */
1014    public boolean checkValidGenericType(Type t) {
1015        return firstIncompatibleTypeArg(t) == null;
1016    }
1017    //WHERE
1018        private Type firstIncompatibleTypeArg(Type type) {
1019            List<Type> formals = type.tsym.type.allparams();
1020            List<Type> actuals = type.allparams();
1021            List<Type> args = type.getTypeArguments();
1022            List<Type> forms = type.tsym.type.getTypeArguments();
1023            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1024
1025            // For matching pairs of actual argument types `a' and
1026            // formal type parameters with declared bound `b' ...
1027            while (args.nonEmpty() && forms.nonEmpty()) {
1028                // exact type arguments needs to know their
1029                // bounds (for upper and lower bound
1030                // calculations).  So we create new bounds where
1031                // type-parameters are replaced with actuals argument types.
1032                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1033                args = args.tail;
1034                forms = forms.tail;
1035            }
1036
1037            args = type.getTypeArguments();
1038            List<Type> tvars_cap = types.substBounds(formals,
1039                                      formals,
1040                                      types.capture(type).allparams());
1041            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1042                // Let the actual arguments know their bound
1043                args.head.withTypeVar((TypeVar)tvars_cap.head);
1044                args = args.tail;
1045                tvars_cap = tvars_cap.tail;
1046            }
1047
1048            args = type.getTypeArguments();
1049            List<Type> bounds = bounds_buf.toList();
1050
1051            while (args.nonEmpty() && bounds.nonEmpty()) {
1052                Type actual = args.head;
1053                if (!isTypeArgErroneous(actual) &&
1054                        !bounds.head.isErroneous() &&
1055                        !checkExtends(actual, bounds.head)) {
1056                    return args.head;
1057                }
1058                args = args.tail;
1059                bounds = bounds.tail;
1060            }
1061
1062            args = type.getTypeArguments();
1063            bounds = bounds_buf.toList();
1064
1065            for (Type arg : types.capture(type).getTypeArguments()) {
1066                if (arg.hasTag(TYPEVAR) &&
1067                        arg.getUpperBound().isErroneous() &&
1068                        !bounds.head.isErroneous() &&
1069                        !isTypeArgErroneous(args.head)) {
1070                    return args.head;
1071                }
1072                bounds = bounds.tail;
1073                args = args.tail;
1074            }
1075
1076            return null;
1077        }
1078        //where
1079        boolean isTypeArgErroneous(Type t) {
1080            return isTypeArgErroneous.visit(t);
1081        }
1082
1083        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1084            public Boolean visitType(Type t, Void s) {
1085                return t.isErroneous();
1086            }
1087            @Override
1088            public Boolean visitTypeVar(TypeVar t, Void s) {
1089                return visit(t.getUpperBound());
1090            }
1091            @Override
1092            public Boolean visitCapturedType(CapturedType t, Void s) {
1093                return visit(t.getUpperBound()) ||
1094                        visit(t.getLowerBound());
1095            }
1096            @Override
1097            public Boolean visitWildcardType(WildcardType t, Void s) {
1098                return visit(t.type);
1099            }
1100        };
1101
1102    /** Check that given modifiers are legal for given symbol and
1103     *  return modifiers together with any implicit modifiers for that symbol.
1104     *  Warning: we can't use flags() here since this method
1105     *  is called during class enter, when flags() would cause a premature
1106     *  completion.
1107     *  @param pos           Position to be used for error reporting.
1108     *  @param flags         The set of modifiers given in a definition.
1109     *  @param sym           The defined symbol.
1110     */
1111    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1112        long mask;
1113        long implicit = 0;
1114
1115        switch (sym.kind) {
1116        case VAR:
1117            if (TreeInfo.isReceiverParam(tree))
1118                mask = ReceiverParamFlags;
1119            else if (sym.owner.kind != TYP)
1120                mask = LocalVarFlags;
1121            else if ((sym.owner.flags_field & INTERFACE) != 0)
1122                mask = implicit = InterfaceVarFlags;
1123            else
1124                mask = VarFlags;
1125            break;
1126        case MTH:
1127            if (sym.name == names.init) {
1128                if ((sym.owner.flags_field & ENUM) != 0) {
1129                    // enum constructors cannot be declared public or
1130                    // protected and must be implicitly or explicitly
1131                    // private
1132                    implicit = PRIVATE;
1133                    mask = PRIVATE;
1134                } else
1135                    mask = ConstructorFlags;
1136            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1137                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1138                    mask = AnnotationTypeElementMask;
1139                    implicit = PUBLIC | ABSTRACT;
1140                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1141                    mask = InterfaceMethodMask;
1142                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1143                    if ((flags & DEFAULT) != 0) {
1144                        implicit |= ABSTRACT;
1145                    }
1146                } else {
1147                    mask = implicit = InterfaceMethodFlags;
1148                }
1149            } else {
1150                mask = MethodFlags;
1151            }
1152            // Imply STRICTFP if owner has STRICTFP set.
1153            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1154                ((flags) & Flags.DEFAULT) != 0)
1155                implicit |= sym.owner.flags_field & STRICTFP;
1156            break;
1157        case TYP:
1158            if (sym.isLocal()) {
1159                mask = LocalClassFlags;
1160                if ((sym.owner.flags_field & STATIC) == 0 &&
1161                    (flags & ENUM) != 0)
1162                    log.error(pos, "enums.must.be.static");
1163            } else if (sym.owner.kind == TYP) {
1164                mask = MemberClassFlags;
1165                if (sym.owner.owner.kind == PCK ||
1166                    (sym.owner.flags_field & STATIC) != 0)
1167                    mask |= STATIC;
1168                else if ((flags & ENUM) != 0)
1169                    log.error(pos, "enums.must.be.static");
1170                // Nested interfaces and enums are always STATIC (Spec ???)
1171                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1172            } else {
1173                mask = ClassFlags;
1174            }
1175            // Interfaces are always ABSTRACT
1176            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1177
1178            if ((flags & ENUM) != 0) {
1179                // enums can't be declared abstract or final
1180                mask &= ~(ABSTRACT | FINAL);
1181                implicit |= implicitEnumFinalFlag(tree);
1182            }
1183            // Imply STRICTFP if owner has STRICTFP set.
1184            implicit |= sym.owner.flags_field & STRICTFP;
1185            break;
1186        default:
1187            throw new AssertionError();
1188        }
1189        long illegal = flags & ExtendedStandardFlags & ~mask;
1190        if (illegal != 0) {
1191            if ((illegal & INTERFACE) != 0) {
1192                log.error(pos, "intf.not.allowed.here");
1193                mask |= INTERFACE;
1194            }
1195            else {
1196                log.error(pos,
1197                          "mod.not.allowed.here", asFlagSet(illegal));
1198            }
1199        }
1200        else if ((sym.kind == TYP ||
1201                  // ISSUE: Disallowing abstract&private is no longer appropriate
1202                  // in the presence of inner classes. Should it be deleted here?
1203                  checkDisjoint(pos, flags,
1204                                ABSTRACT,
1205                                PRIVATE | STATIC | DEFAULT))
1206                 &&
1207                 checkDisjoint(pos, flags,
1208                                STATIC | PRIVATE,
1209                                DEFAULT)
1210                 &&
1211                 checkDisjoint(pos, flags,
1212                               ABSTRACT | INTERFACE,
1213                               FINAL | NATIVE | SYNCHRONIZED)
1214                 &&
1215                 checkDisjoint(pos, flags,
1216                               PUBLIC,
1217                               PRIVATE | PROTECTED)
1218                 &&
1219                 checkDisjoint(pos, flags,
1220                               PRIVATE,
1221                               PUBLIC | PROTECTED)
1222                 &&
1223                 checkDisjoint(pos, flags,
1224                               FINAL,
1225                               VOLATILE)
1226                 &&
1227                 (sym.kind == TYP ||
1228                  checkDisjoint(pos, flags,
1229                                ABSTRACT | NATIVE,
1230                                STRICTFP))) {
1231            // skip
1232        }
1233        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1234    }
1235
1236
1237    /** Determine if this enum should be implicitly final.
1238     *
1239     *  If the enum has no specialized enum contants, it is final.
1240     *
1241     *  If the enum does have specialized enum contants, it is
1242     *  <i>not</i> final.
1243     */
1244    private long implicitEnumFinalFlag(JCTree tree) {
1245        if (!tree.hasTag(CLASSDEF)) return 0;
1246        class SpecialTreeVisitor extends JCTree.Visitor {
1247            boolean specialized;
1248            SpecialTreeVisitor() {
1249                this.specialized = false;
1250            }
1251
1252            @Override
1253            public void visitTree(JCTree tree) { /* no-op */ }
1254
1255            @Override
1256            public void visitVarDef(JCVariableDecl tree) {
1257                if ((tree.mods.flags & ENUM) != 0) {
1258                    if (tree.init instanceof JCNewClass &&
1259                        ((JCNewClass) tree.init).def != null) {
1260                        specialized = true;
1261                    }
1262                }
1263            }
1264        }
1265
1266        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1267        JCClassDecl cdef = (JCClassDecl) tree;
1268        for (JCTree defs: cdef.defs) {
1269            defs.accept(sts);
1270            if (sts.specialized) return 0;
1271        }
1272        return FINAL;
1273    }
1274
1275/* *************************************************************************
1276 * Type Validation
1277 **************************************************************************/
1278
1279    /** Validate a type expression. That is,
1280     *  check that all type arguments of a parametric type are within
1281     *  their bounds. This must be done in a second phase after type attribution
1282     *  since a class might have a subclass as type parameter bound. E.g:
1283     *
1284     *  <pre>{@code
1285     *  class B<A extends C> { ... }
1286     *  class C extends B<C> { ... }
1287     *  }</pre>
1288     *
1289     *  and we can't make sure that the bound is already attributed because
1290     *  of possible cycles.
1291     *
1292     * Visitor method: Validate a type expression, if it is not null, catching
1293     *  and reporting any completion failures.
1294     */
1295    void validate(JCTree tree, Env<AttrContext> env) {
1296        validate(tree, env, true);
1297    }
1298    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1299        new Validator(env).validateTree(tree, checkRaw, true);
1300    }
1301
1302    /** Visitor method: Validate a list of type expressions.
1303     */
1304    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1305        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1306            validate(l.head, env);
1307    }
1308
1309    /** A visitor class for type validation.
1310     */
1311    class Validator extends JCTree.Visitor {
1312
1313        boolean checkRaw;
1314        boolean isOuter;
1315        Env<AttrContext> env;
1316
1317        Validator(Env<AttrContext> env) {
1318            this.env = env;
1319        }
1320
1321        @Override
1322        public void visitTypeArray(JCArrayTypeTree tree) {
1323            validateTree(tree.elemtype, checkRaw, isOuter);
1324        }
1325
1326        @Override
1327        public void visitTypeApply(JCTypeApply tree) {
1328            if (tree.type.hasTag(CLASS)) {
1329                List<JCExpression> args = tree.arguments;
1330                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1331
1332                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1333                if (incompatibleArg != null) {
1334                    for (JCTree arg : tree.arguments) {
1335                        if (arg.type == incompatibleArg) {
1336                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1337                        }
1338                        forms = forms.tail;
1339                     }
1340                 }
1341
1342                forms = tree.type.tsym.type.getTypeArguments();
1343
1344                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1345
1346                // For matching pairs of actual argument types `a' and
1347                // formal type parameters with declared bound `b' ...
1348                while (args.nonEmpty() && forms.nonEmpty()) {
1349                    validateTree(args.head,
1350                            !(isOuter && is_java_lang_Class),
1351                            false);
1352                    args = args.tail;
1353                    forms = forms.tail;
1354                }
1355
1356                // Check that this type is either fully parameterized, or
1357                // not parameterized at all.
1358                if (tree.type.getEnclosingType().isRaw())
1359                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1360                if (tree.clazz.hasTag(SELECT))
1361                    visitSelectInternal((JCFieldAccess)tree.clazz);
1362            }
1363        }
1364
1365        @Override
1366        public void visitTypeParameter(JCTypeParameter tree) {
1367            validateTrees(tree.bounds, true, isOuter);
1368            checkClassBounds(tree.pos(), tree.type);
1369        }
1370
1371        @Override
1372        public void visitWildcard(JCWildcard tree) {
1373            if (tree.inner != null)
1374                validateTree(tree.inner, true, isOuter);
1375        }
1376
1377        @Override
1378        public void visitSelect(JCFieldAccess tree) {
1379            if (tree.type.hasTag(CLASS)) {
1380                visitSelectInternal(tree);
1381
1382                // Check that this type is either fully parameterized, or
1383                // not parameterized at all.
1384                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1385                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1386            }
1387        }
1388
1389        public void visitSelectInternal(JCFieldAccess tree) {
1390            if (tree.type.tsym.isStatic() &&
1391                tree.selected.type.isParameterized()) {
1392                // The enclosing type is not a class, so we are
1393                // looking at a static member type.  However, the
1394                // qualifying expression is parameterized.
1395                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1396            } else {
1397                // otherwise validate the rest of the expression
1398                tree.selected.accept(this);
1399            }
1400        }
1401
1402        @Override
1403        public void visitAnnotatedType(JCAnnotatedType tree) {
1404            tree.underlyingType.accept(this);
1405        }
1406
1407        @Override
1408        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1409            if (that.type.hasTag(TypeTag.VOID)) {
1410                log.error(that.pos(), "void.not.allowed.here");
1411            }
1412            super.visitTypeIdent(that);
1413        }
1414
1415        /** Default visitor method: do nothing.
1416         */
1417        @Override
1418        public void visitTree(JCTree tree) {
1419        }
1420
1421        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1422            if (tree != null) {
1423                boolean prevCheckRaw = this.checkRaw;
1424                this.checkRaw = checkRaw;
1425                this.isOuter = isOuter;
1426
1427                try {
1428                    tree.accept(this);
1429                    if (checkRaw)
1430                        checkRaw(tree, env);
1431                } catch (CompletionFailure ex) {
1432                    completionError(tree.pos(), ex);
1433                } finally {
1434                    this.checkRaw = prevCheckRaw;
1435                }
1436            }
1437        }
1438
1439        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1440            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1441                validateTree(l.head, checkRaw, isOuter);
1442        }
1443    }
1444
1445    void checkRaw(JCTree tree, Env<AttrContext> env) {
1446        if (lint.isEnabled(LintCategory.RAW) &&
1447            tree.type.hasTag(CLASS) &&
1448            !TreeInfo.isDiamond(tree) &&
1449            !withinAnonConstr(env) &&
1450            tree.type.isRaw()) {
1451            log.warning(LintCategory.RAW,
1452                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1453        }
1454    }
1455    //where
1456        private boolean withinAnonConstr(Env<AttrContext> env) {
1457            return env.enclClass.name.isEmpty() &&
1458                    env.enclMethod != null && env.enclMethod.name == names.init;
1459        }
1460
1461/* *************************************************************************
1462 * Exception checking
1463 **************************************************************************/
1464
1465    /* The following methods treat classes as sets that contain
1466     * the class itself and all their subclasses
1467     */
1468
1469    /** Is given type a subtype of some of the types in given list?
1470     */
1471    boolean subset(Type t, List<Type> ts) {
1472        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1473            if (types.isSubtype(t, l.head)) return true;
1474        return false;
1475    }
1476
1477    /** Is given type a subtype or supertype of
1478     *  some of the types in given list?
1479     */
1480    boolean intersects(Type t, List<Type> ts) {
1481        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1482            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1483        return false;
1484    }
1485
1486    /** Add type set to given type list, unless it is a subclass of some class
1487     *  in the list.
1488     */
1489    List<Type> incl(Type t, List<Type> ts) {
1490        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1491    }
1492
1493    /** Remove type set from type set list.
1494     */
1495    List<Type> excl(Type t, List<Type> ts) {
1496        if (ts.isEmpty()) {
1497            return ts;
1498        } else {
1499            List<Type> ts1 = excl(t, ts.tail);
1500            if (types.isSubtype(ts.head, t)) return ts1;
1501            else if (ts1 == ts.tail) return ts;
1502            else return ts1.prepend(ts.head);
1503        }
1504    }
1505
1506    /** Form the union of two type set lists.
1507     */
1508    List<Type> union(List<Type> ts1, List<Type> ts2) {
1509        List<Type> ts = ts1;
1510        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1511            ts = incl(l.head, ts);
1512        return ts;
1513    }
1514
1515    /** Form the difference of two type lists.
1516     */
1517    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1518        List<Type> ts = ts1;
1519        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1520            ts = excl(l.head, ts);
1521        return ts;
1522    }
1523
1524    /** Form the intersection of two type lists.
1525     */
1526    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1527        List<Type> ts = List.nil();
1528        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1529            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1530        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1531            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1532        return ts;
1533    }
1534
1535    /** Is exc an exception symbol that need not be declared?
1536     */
1537    boolean isUnchecked(ClassSymbol exc) {
1538        return
1539            exc.kind == ERR ||
1540            exc.isSubClass(syms.errorType.tsym, types) ||
1541            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1542    }
1543
1544    /** Is exc an exception type that need not be declared?
1545     */
1546    boolean isUnchecked(Type exc) {
1547        return
1548            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1549            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1550            exc.hasTag(BOT);
1551    }
1552
1553    /** Same, but handling completion failures.
1554     */
1555    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1556        try {
1557            return isUnchecked(exc);
1558        } catch (CompletionFailure ex) {
1559            completionError(pos, ex);
1560            return true;
1561        }
1562    }
1563
1564    /** Is exc handled by given exception list?
1565     */
1566    boolean isHandled(Type exc, List<Type> handled) {
1567        return isUnchecked(exc) || subset(exc, handled);
1568    }
1569
1570    /** Return all exceptions in thrown list that are not in handled list.
1571     *  @param thrown     The list of thrown exceptions.
1572     *  @param handled    The list of handled exceptions.
1573     */
1574    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1575        List<Type> unhandled = List.nil();
1576        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1577            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1578        return unhandled;
1579    }
1580
1581/* *************************************************************************
1582 * Overriding/Implementation checking
1583 **************************************************************************/
1584
1585    /** The level of access protection given by a flag set,
1586     *  where PRIVATE is highest and PUBLIC is lowest.
1587     */
1588    static int protection(long flags) {
1589        switch ((short)(flags & AccessFlags)) {
1590        case PRIVATE: return 3;
1591        case PROTECTED: return 1;
1592        default:
1593        case PUBLIC: return 0;
1594        case 0: return 2;
1595        }
1596    }
1597
1598    /** A customized "cannot override" error message.
1599     *  @param m      The overriding method.
1600     *  @param other  The overridden method.
1601     *  @return       An internationalized string.
1602     */
1603    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1604        String key;
1605        if ((other.owner.flags() & INTERFACE) == 0)
1606            key = "cant.override";
1607        else if ((m.owner.flags() & INTERFACE) == 0)
1608            key = "cant.implement";
1609        else
1610            key = "clashes.with";
1611        return diags.fragment(key, m, m.location(), other, other.location());
1612    }
1613
1614    /** A customized "override" warning message.
1615     *  @param m      The overriding method.
1616     *  @param other  The overridden method.
1617     *  @return       An internationalized string.
1618     */
1619    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1620        String key;
1621        if ((other.owner.flags() & INTERFACE) == 0)
1622            key = "unchecked.override";
1623        else if ((m.owner.flags() & INTERFACE) == 0)
1624            key = "unchecked.implement";
1625        else
1626            key = "unchecked.clash.with";
1627        return diags.fragment(key, m, m.location(), other, other.location());
1628    }
1629
1630    /** A customized "override" warning message.
1631     *  @param m      The overriding method.
1632     *  @param other  The overridden method.
1633     *  @return       An internationalized string.
1634     */
1635    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1636        String key;
1637        if ((other.owner.flags() & INTERFACE) == 0)
1638            key = "varargs.override";
1639        else  if ((m.owner.flags() & INTERFACE) == 0)
1640            key = "varargs.implement";
1641        else
1642            key = "varargs.clash.with";
1643        return diags.fragment(key, m, m.location(), other, other.location());
1644    }
1645
1646    /** Check that this method conforms with overridden method 'other'.
1647     *  where `origin' is the class where checking started.
1648     *  Complications:
1649     *  (1) Do not check overriding of synthetic methods
1650     *      (reason: they might be final).
1651     *      todo: check whether this is still necessary.
1652     *  (2) Admit the case where an interface proxy throws fewer exceptions
1653     *      than the method it implements. Augment the proxy methods with the
1654     *      undeclared exceptions in this case.
1655     *  (3) When generics are enabled, admit the case where an interface proxy
1656     *      has a result type
1657     *      extended by the result type of the method it implements.
1658     *      Change the proxies result type to the smaller type in this case.
1659     *
1660     *  @param tree         The tree from which positions
1661     *                      are extracted for errors.
1662     *  @param m            The overriding method.
1663     *  @param other        The overridden method.
1664     *  @param origin       The class of which the overriding method
1665     *                      is a member.
1666     */
1667    void checkOverride(JCTree tree,
1668                       MethodSymbol m,
1669                       MethodSymbol other,
1670                       ClassSymbol origin) {
1671        // Don't check overriding of synthetic methods or by bridge methods.
1672        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1673            return;
1674        }
1675
1676        // Error if static method overrides instance method (JLS 8.4.6.2).
1677        if ((m.flags() & STATIC) != 0 &&
1678                   (other.flags() & STATIC) == 0) {
1679            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1680                      cannotOverride(m, other));
1681            m.flags_field |= BAD_OVERRIDE;
1682            return;
1683        }
1684
1685        // Error if instance method overrides static or final
1686        // method (JLS 8.4.6.1).
1687        if ((other.flags() & FINAL) != 0 ||
1688                 (m.flags() & STATIC) == 0 &&
1689                 (other.flags() & STATIC) != 0) {
1690            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1691                      cannotOverride(m, other),
1692                      asFlagSet(other.flags() & (FINAL | STATIC)));
1693            m.flags_field |= BAD_OVERRIDE;
1694            return;
1695        }
1696
1697        if ((m.owner.flags() & ANNOTATION) != 0) {
1698            // handled in validateAnnotationMethod
1699            return;
1700        }
1701
1702        // Error if overriding method has weaker access (JLS 8.4.6.3).
1703        if (protection(m.flags()) > protection(other.flags())) {
1704            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1705                      cannotOverride(m, other),
1706                      (other.flags() & AccessFlags) == 0 ?
1707                          "package" :
1708                          asFlagSet(other.flags() & AccessFlags));
1709            m.flags_field |= BAD_OVERRIDE;
1710            return;
1711        }
1712
1713        Type mt = types.memberType(origin.type, m);
1714        Type ot = types.memberType(origin.type, other);
1715        // Error if overriding result type is different
1716        // (or, in the case of generics mode, not a subtype) of
1717        // overridden result type. We have to rename any type parameters
1718        // before comparing types.
1719        List<Type> mtvars = mt.getTypeArguments();
1720        List<Type> otvars = ot.getTypeArguments();
1721        Type mtres = mt.getReturnType();
1722        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1723
1724        overrideWarner.clear();
1725        boolean resultTypesOK =
1726            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1727        if (!resultTypesOK) {
1728            if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1729                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1730                        Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1731                                        other.location()), mtres, otres));
1732                m.flags_field |= BAD_OVERRIDE;
1733            } else {
1734                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1735                        "override.incompatible.ret",
1736                        cannotOverride(m, other),
1737                        mtres, otres);
1738                m.flags_field |= BAD_OVERRIDE;
1739            }
1740            return;
1741        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1742            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1743                    "override.unchecked.ret",
1744                    uncheckedOverrides(m, other),
1745                    mtres, otres);
1746        }
1747
1748        // Error if overriding method throws an exception not reported
1749        // by overridden method.
1750        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1751        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1752        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1753        if (unhandledErased.nonEmpty()) {
1754            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1755                      "override.meth.doesnt.throw",
1756                      cannotOverride(m, other),
1757                      unhandledUnerased.head);
1758            m.flags_field |= BAD_OVERRIDE;
1759            return;
1760        }
1761        else if (unhandledUnerased.nonEmpty()) {
1762            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1763                          "override.unchecked.thrown",
1764                         cannotOverride(m, other),
1765                         unhandledUnerased.head);
1766            return;
1767        }
1768
1769        // Optional warning if varargs don't agree
1770        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1771            && lint.isEnabled(LintCategory.OVERRIDES)) {
1772            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1773                        ((m.flags() & Flags.VARARGS) != 0)
1774                        ? "override.varargs.missing"
1775                        : "override.varargs.extra",
1776                        varargsOverrides(m, other));
1777        }
1778
1779        // Warn if instance method overrides bridge method (compiler spec ??)
1780        if ((other.flags() & BRIDGE) != 0) {
1781            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1782                        uncheckedOverrides(m, other));
1783        }
1784
1785        // Warn if a deprecated method overridden by a non-deprecated one.
1786        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1787            Lint prevLint = setLint(lint.augment(m));
1788            try {
1789                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1790            } finally {
1791                setLint(prevLint);
1792            }
1793        }
1794    }
1795    // where
1796        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1797            // If the method, m, is defined in an interface, then ignore the issue if the method
1798            // is only inherited via a supertype and also implemented in the supertype,
1799            // because in that case, we will rediscover the issue when examining the method
1800            // in the supertype.
1801            // If the method, m, is not defined in an interface, then the only time we need to
1802            // address the issue is when the method is the supertype implemementation: any other
1803            // case, we will have dealt with when examining the supertype classes
1804            ClassSymbol mc = m.enclClass();
1805            Type st = types.supertype(origin.type);
1806            if (!st.hasTag(CLASS))
1807                return true;
1808            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1809
1810            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1811                List<Type> intfs = types.interfaces(origin.type);
1812                return (intfs.contains(mc.type) ? false : (stimpl != null));
1813            }
1814            else
1815                return (stimpl != m);
1816        }
1817
1818
1819    // used to check if there were any unchecked conversions
1820    Warner overrideWarner = new Warner();
1821
1822    /** Check that a class does not inherit two concrete methods
1823     *  with the same signature.
1824     *  @param pos          Position to be used for error reporting.
1825     *  @param site         The class type to be checked.
1826     */
1827    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1828        Type sup = types.supertype(site);
1829        if (!sup.hasTag(CLASS)) return;
1830
1831        for (Type t1 = sup;
1832             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1833             t1 = types.supertype(t1)) {
1834            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1835                if (s1.kind != MTH ||
1836                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1837                    !s1.isInheritedIn(site.tsym, types) ||
1838                    ((MethodSymbol)s1).implementation(site.tsym,
1839                                                      types,
1840                                                      true) != s1)
1841                    continue;
1842                Type st1 = types.memberType(t1, s1);
1843                int s1ArgsLength = st1.getParameterTypes().length();
1844                if (st1 == s1.type) continue;
1845
1846                for (Type t2 = sup;
1847                     t2.hasTag(CLASS);
1848                     t2 = types.supertype(t2)) {
1849                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1850                        if (s2 == s1 ||
1851                            s2.kind != MTH ||
1852                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1853                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1854                            !s2.isInheritedIn(site.tsym, types) ||
1855                            ((MethodSymbol)s2).implementation(site.tsym,
1856                                                              types,
1857                                                              true) != s2)
1858                            continue;
1859                        Type st2 = types.memberType(t2, s2);
1860                        if (types.overrideEquivalent(st1, st2))
1861                            log.error(pos, "concrete.inheritance.conflict",
1862                                      s1, t1, s2, t2, sup);
1863                    }
1864                }
1865            }
1866        }
1867    }
1868
1869    /** Check that classes (or interfaces) do not each define an abstract
1870     *  method with same name and arguments but incompatible return types.
1871     *  @param pos          Position to be used for error reporting.
1872     *  @param t1           The first argument type.
1873     *  @param t2           The second argument type.
1874     */
1875    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1876                                            Type t1,
1877                                            Type t2,
1878                                            Type site) {
1879        if ((site.tsym.flags() & COMPOUND) != 0) {
1880            // special case for intersections: need to eliminate wildcards in supertypes
1881            t1 = types.capture(t1);
1882            t2 = types.capture(t2);
1883        }
1884        return firstIncompatibility(pos, t1, t2, site) == null;
1885    }
1886
1887    /** Return the first method which is defined with same args
1888     *  but different return types in two given interfaces, or null if none
1889     *  exists.
1890     *  @param t1     The first type.
1891     *  @param t2     The second type.
1892     *  @param site   The most derived type.
1893     *  @returns symbol from t2 that conflicts with one in t1.
1894     */
1895    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1896        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1897        closure(t1, interfaces1);
1898        Map<TypeSymbol,Type> interfaces2;
1899        if (t1 == t2)
1900            interfaces2 = interfaces1;
1901        else
1902            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1903
1904        for (Type t3 : interfaces1.values()) {
1905            for (Type t4 : interfaces2.values()) {
1906                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1907                if (s != null) return s;
1908            }
1909        }
1910        return null;
1911    }
1912
1913    /** Compute all the supertypes of t, indexed by type symbol. */
1914    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1915        if (!t.hasTag(CLASS)) return;
1916        if (typeMap.put(t.tsym, t) == null) {
1917            closure(types.supertype(t), typeMap);
1918            for (Type i : types.interfaces(t))
1919                closure(i, typeMap);
1920        }
1921    }
1922
1923    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1924    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1925        if (!t.hasTag(CLASS)) return;
1926        if (typesSkip.get(t.tsym) != null) return;
1927        if (typeMap.put(t.tsym, t) == null) {
1928            closure(types.supertype(t), typesSkip, typeMap);
1929            for (Type i : types.interfaces(t))
1930                closure(i, typesSkip, typeMap);
1931        }
1932    }
1933
1934    /** Return the first method in t2 that conflicts with a method from t1. */
1935    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1936        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1937            Type st1 = null;
1938            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1939                    (s1.flags() & SYNTHETIC) != 0) continue;
1940            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1941            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1942            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1943                if (s1 == s2) continue;
1944                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1945                        (s2.flags() & SYNTHETIC) != 0) continue;
1946                if (st1 == null) st1 = types.memberType(t1, s1);
1947                Type st2 = types.memberType(t2, s2);
1948                if (types.overrideEquivalent(st1, st2)) {
1949                    List<Type> tvars1 = st1.getTypeArguments();
1950                    List<Type> tvars2 = st2.getTypeArguments();
1951                    Type rt1 = st1.getReturnType();
1952                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1953                    boolean compat =
1954                        types.isSameType(rt1, rt2) ||
1955                        !rt1.isPrimitiveOrVoid() &&
1956                        !rt2.isPrimitiveOrVoid() &&
1957                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1958                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1959                         checkCommonOverriderIn(s1,s2,site);
1960                    if (!compat) {
1961                        log.error(pos, "types.incompatible.diff.ret",
1962                            t1, t2, s2.name +
1963                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1964                        return s2;
1965                    }
1966                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1967                        !checkCommonOverriderIn(s1, s2, site)) {
1968                    log.error(pos,
1969                            "name.clash.same.erasure.no.override",
1970                            s1, s1.location(),
1971                            s2, s2.location());
1972                    return s2;
1973                }
1974            }
1975        }
1976        return null;
1977    }
1978    //WHERE
1979    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1980        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1981        Type st1 = types.memberType(site, s1);
1982        Type st2 = types.memberType(site, s2);
1983        closure(site, supertypes);
1984        for (Type t : supertypes.values()) {
1985            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1986                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1987                Type st3 = types.memberType(site,s3);
1988                if (types.overrideEquivalent(st3, st1) &&
1989                        types.overrideEquivalent(st3, st2) &&
1990                        types.returnTypeSubstitutable(st3, st1) &&
1991                        types.returnTypeSubstitutable(st3, st2)) {
1992                    return true;
1993                }
1994            }
1995        }
1996        return false;
1997    }
1998
1999    /** Check that a given method conforms with any method it overrides.
2000     *  @param tree         The tree from which positions are extracted
2001     *                      for errors.
2002     *  @param m            The overriding method.
2003     */
2004    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2005        ClassSymbol origin = (ClassSymbol)m.owner;
2006        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2007            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2008                log.error(tree.pos(), "enum.no.finalize");
2009                return;
2010            }
2011        for (Type t = origin.type; t.hasTag(CLASS);
2012             t = types.supertype(t)) {
2013            if (t != origin.type) {
2014                checkOverride(tree, t, origin, m);
2015            }
2016            for (Type t2 : types.interfaces(t)) {
2017                checkOverride(tree, t2, origin, m);
2018            }
2019        }
2020
2021        final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2022        // Check if this method must override a super method due to being annotated with @Override
2023        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2024        // be treated "as if as they were annotated" with @Override.
2025        boolean mustOverride = explicitOverride ||
2026                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2027        if (mustOverride && !isOverrider(m)) {
2028            DiagnosticPosition pos = tree.pos();
2029            for (JCAnnotation a : tree.getModifiers().annotations) {
2030                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2031                    pos = a.pos();
2032                    break;
2033                }
2034            }
2035            log.error(pos,
2036                      explicitOverride ? Errors.MethodDoesNotOverrideSuperclass :
2037                                Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2038        }
2039    }
2040
2041    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2042        TypeSymbol c = site.tsym;
2043        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2044            if (m.overrides(sym, origin, types, false)) {
2045                if ((sym.flags() & ABSTRACT) == 0) {
2046                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2047                }
2048            }
2049        }
2050    }
2051
2052    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2053        public boolean accepts(Symbol s) {
2054            return MethodSymbol.implementation_filter.accepts(s) &&
2055                    (s.flags() & BAD_OVERRIDE) == 0;
2056
2057        }
2058    };
2059
2060    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2061            ClassSymbol someClass) {
2062        /* At present, annotations cannot possibly have a method that is override
2063         * equivalent with Object.equals(Object) but in any case the condition is
2064         * fine for completeness.
2065         */
2066        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2067            someClass.isInterface() || someClass.isEnum() ||
2068            (someClass.flags() & ANNOTATION) != 0 ||
2069            (someClass.flags() & ABSTRACT) != 0) return;
2070        //anonymous inner classes implementing interfaces need especial treatment
2071        if (someClass.isAnonymous()) {
2072            List<Type> interfaces =  types.interfaces(someClass.type);
2073            if (interfaces != null && !interfaces.isEmpty() &&
2074                interfaces.head.tsym == syms.comparatorType.tsym) return;
2075        }
2076        checkClassOverrideEqualsAndHash(pos, someClass);
2077    }
2078
2079    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2080            ClassSymbol someClass) {
2081        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2082            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2083                    .tsym.members().findFirst(names.equals);
2084            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2085                    .tsym.members().findFirst(names.hashCode);
2086            boolean overridesEquals = types.implementation(equalsAtObject,
2087                someClass, false, equalsHasCodeFilter).owner == someClass;
2088            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2089                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2090
2091            if (overridesEquals && !overridesHashCode) {
2092                log.warning(LintCategory.OVERRIDES, pos,
2093                        "override.equals.but.not.hashcode", someClass);
2094            }
2095        }
2096    }
2097
2098    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2099        ClashFilter cf = new ClashFilter(origin.type);
2100        return (cf.accepts(s1) &&
2101                cf.accepts(s2) &&
2102                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2103    }
2104
2105
2106    /** Check that all abstract members of given class have definitions.
2107     *  @param pos          Position to be used for error reporting.
2108     *  @param c            The class.
2109     */
2110    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2111        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2112        if (undef != null) {
2113            MethodSymbol undef1 =
2114                new MethodSymbol(undef.flags(), undef.name,
2115                                 types.memberType(c.type, undef), undef.owner);
2116            log.error(pos, "does.not.override.abstract",
2117                      c, undef1, undef1.location());
2118        }
2119    }
2120
2121    void checkNonCyclicDecl(JCClassDecl tree) {
2122        CycleChecker cc = new CycleChecker();
2123        cc.scan(tree);
2124        if (!cc.errorFound && !cc.partialCheck) {
2125            tree.sym.flags_field |= ACYCLIC;
2126        }
2127    }
2128
2129    class CycleChecker extends TreeScanner {
2130
2131        List<Symbol> seenClasses = List.nil();
2132        boolean errorFound = false;
2133        boolean partialCheck = false;
2134
2135        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2136            if (sym != null && sym.kind == TYP) {
2137                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2138                if (classEnv != null) {
2139                    DiagnosticSource prevSource = log.currentSource();
2140                    try {
2141                        log.useSource(classEnv.toplevel.sourcefile);
2142                        scan(classEnv.tree);
2143                    }
2144                    finally {
2145                        log.useSource(prevSource.getFile());
2146                    }
2147                } else if (sym.kind == TYP) {
2148                    checkClass(pos, sym, List.<JCTree>nil());
2149                }
2150            } else {
2151                //not completed yet
2152                partialCheck = true;
2153            }
2154        }
2155
2156        @Override
2157        public void visitSelect(JCFieldAccess tree) {
2158            super.visitSelect(tree);
2159            checkSymbol(tree.pos(), tree.sym);
2160        }
2161
2162        @Override
2163        public void visitIdent(JCIdent tree) {
2164            checkSymbol(tree.pos(), tree.sym);
2165        }
2166
2167        @Override
2168        public void visitTypeApply(JCTypeApply tree) {
2169            scan(tree.clazz);
2170        }
2171
2172        @Override
2173        public void visitTypeArray(JCArrayTypeTree tree) {
2174            scan(tree.elemtype);
2175        }
2176
2177        @Override
2178        public void visitClassDef(JCClassDecl tree) {
2179            List<JCTree> supertypes = List.nil();
2180            if (tree.getExtendsClause() != null) {
2181                supertypes = supertypes.prepend(tree.getExtendsClause());
2182            }
2183            if (tree.getImplementsClause() != null) {
2184                for (JCTree intf : tree.getImplementsClause()) {
2185                    supertypes = supertypes.prepend(intf);
2186                }
2187            }
2188            checkClass(tree.pos(), tree.sym, supertypes);
2189        }
2190
2191        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2192            if ((c.flags_field & ACYCLIC) != 0)
2193                return;
2194            if (seenClasses.contains(c)) {
2195                errorFound = true;
2196                noteCyclic(pos, (ClassSymbol)c);
2197            } else if (!c.type.isErroneous()) {
2198                try {
2199                    seenClasses = seenClasses.prepend(c);
2200                    if (c.type.hasTag(CLASS)) {
2201                        if (supertypes.nonEmpty()) {
2202                            scan(supertypes);
2203                        }
2204                        else {
2205                            ClassType ct = (ClassType)c.type;
2206                            if (ct.supertype_field == null ||
2207                                    ct.interfaces_field == null) {
2208                                //not completed yet
2209                                partialCheck = true;
2210                                return;
2211                            }
2212                            checkSymbol(pos, ct.supertype_field.tsym);
2213                            for (Type intf : ct.interfaces_field) {
2214                                checkSymbol(pos, intf.tsym);
2215                            }
2216                        }
2217                        if (c.owner.kind == TYP) {
2218                            checkSymbol(pos, c.owner);
2219                        }
2220                    }
2221                } finally {
2222                    seenClasses = seenClasses.tail;
2223                }
2224            }
2225        }
2226    }
2227
2228    /** Check for cyclic references. Issue an error if the
2229     *  symbol of the type referred to has a LOCKED flag set.
2230     *
2231     *  @param pos      Position to be used for error reporting.
2232     *  @param t        The type referred to.
2233     */
2234    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2235        checkNonCyclicInternal(pos, t);
2236    }
2237
2238
2239    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2240        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2241    }
2242
2243    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2244        final TypeVar tv;
2245        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2246            return;
2247        if (seen.contains(t)) {
2248            tv = (TypeVar)t;
2249            tv.bound = types.createErrorType(t);
2250            log.error(pos, "cyclic.inheritance", t);
2251        } else if (t.hasTag(TYPEVAR)) {
2252            tv = (TypeVar)t;
2253            seen = seen.prepend(tv);
2254            for (Type b : types.getBounds(tv))
2255                checkNonCyclic1(pos, b, seen);
2256        }
2257    }
2258
2259    /** Check for cyclic references. Issue an error if the
2260     *  symbol of the type referred to has a LOCKED flag set.
2261     *
2262     *  @param pos      Position to be used for error reporting.
2263     *  @param t        The type referred to.
2264     *  @returns        True if the check completed on all attributed classes
2265     */
2266    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2267        boolean complete = true; // was the check complete?
2268        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2269        Symbol c = t.tsym;
2270        if ((c.flags_field & ACYCLIC) != 0) return true;
2271
2272        if ((c.flags_field & LOCKED) != 0) {
2273            noteCyclic(pos, (ClassSymbol)c);
2274        } else if (!c.type.isErroneous()) {
2275            try {
2276                c.flags_field |= LOCKED;
2277                if (c.type.hasTag(CLASS)) {
2278                    ClassType clazz = (ClassType)c.type;
2279                    if (clazz.interfaces_field != null)
2280                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2281                            complete &= checkNonCyclicInternal(pos, l.head);
2282                    if (clazz.supertype_field != null) {
2283                        Type st = clazz.supertype_field;
2284                        if (st != null && st.hasTag(CLASS))
2285                            complete &= checkNonCyclicInternal(pos, st);
2286                    }
2287                    if (c.owner.kind == TYP)
2288                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2289                }
2290            } finally {
2291                c.flags_field &= ~LOCKED;
2292            }
2293        }
2294        if (complete)
2295            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2296        if (complete) c.flags_field |= ACYCLIC;
2297        return complete;
2298    }
2299
2300    /** Note that we found an inheritance cycle. */
2301    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2302        log.error(pos, "cyclic.inheritance", c);
2303        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2304            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2305        Type st = types.supertype(c.type);
2306        if (st.hasTag(CLASS))
2307            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2308        c.type = types.createErrorType(c, c.type);
2309        c.flags_field |= ACYCLIC;
2310    }
2311
2312    /** Check that all methods which implement some
2313     *  method conform to the method they implement.
2314     *  @param tree         The class definition whose members are checked.
2315     */
2316    void checkImplementations(JCClassDecl tree) {
2317        checkImplementations(tree, tree.sym, tree.sym);
2318    }
2319    //where
2320        /** Check that all methods which implement some
2321         *  method in `ic' conform to the method they implement.
2322         */
2323        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2324            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2325                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2326                if ((lc.flags() & ABSTRACT) != 0) {
2327                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2328                        if (sym.kind == MTH &&
2329                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2330                            MethodSymbol absmeth = (MethodSymbol)sym;
2331                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2332                            if (implmeth != null && implmeth != absmeth &&
2333                                (implmeth.owner.flags() & INTERFACE) ==
2334                                (origin.flags() & INTERFACE)) {
2335                                // don't check if implmeth is in a class, yet
2336                                // origin is an interface. This case arises only
2337                                // if implmeth is declared in Object. The reason is
2338                                // that interfaces really don't inherit from
2339                                // Object it's just that the compiler represents
2340                                // things that way.
2341                                checkOverride(tree, implmeth, absmeth, origin);
2342                            }
2343                        }
2344                    }
2345                }
2346            }
2347        }
2348
2349    /** Check that all abstract methods implemented by a class are
2350     *  mutually compatible.
2351     *  @param pos          Position to be used for error reporting.
2352     *  @param c            The class whose interfaces are checked.
2353     */
2354    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2355        List<Type> supertypes = types.interfaces(c);
2356        Type supertype = types.supertype(c);
2357        if (supertype.hasTag(CLASS) &&
2358            (supertype.tsym.flags() & ABSTRACT) != 0)
2359            supertypes = supertypes.prepend(supertype);
2360        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2361            if (!l.head.getTypeArguments().isEmpty() &&
2362                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2363                return;
2364            for (List<Type> m = supertypes; m != l; m = m.tail)
2365                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2366                    return;
2367        }
2368        checkCompatibleConcretes(pos, c);
2369    }
2370
2371    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2372        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2373            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2374                // VM allows methods and variables with differing types
2375                if (sym.kind == sym2.kind &&
2376                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2377                    sym != sym2 &&
2378                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2379                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2380                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2381                    return;
2382                }
2383            }
2384        }
2385    }
2386
2387    /** Check that all non-override equivalent methods accessible from 'site'
2388     *  are mutually compatible (JLS 8.4.8/9.4.1).
2389     *
2390     *  @param pos  Position to be used for error reporting.
2391     *  @param site The class whose methods are checked.
2392     *  @param sym  The method symbol to be checked.
2393     */
2394    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2395         ClashFilter cf = new ClashFilter(site);
2396        //for each method m1 that is overridden (directly or indirectly)
2397        //by method 'sym' in 'site'...
2398
2399        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2400        boolean overridesAny = false;
2401        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2402            if (!sym.overrides(m1, site.tsym, types, false)) {
2403                if (m1 == sym) {
2404                    continue;
2405                }
2406
2407                if (!overridesAny) {
2408                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2409                }
2410                continue;
2411            }
2412
2413            if (m1 != sym) {
2414                overridesAny = true;
2415                potentiallyAmbiguousList = List.nil();
2416            }
2417
2418            //...check each method m2 that is a member of 'site'
2419            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2420                if (m2 == m1) continue;
2421                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2422                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2423                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2424                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2425                    sym.flags_field |= CLASH;
2426                    String key = m1 == sym ?
2427                            "name.clash.same.erasure.no.override" :
2428                            "name.clash.same.erasure.no.override.1";
2429                    log.error(pos,
2430                            key,
2431                            sym, sym.location(),
2432                            m2, m2.location(),
2433                            m1, m1.location());
2434                    return;
2435                }
2436            }
2437        }
2438
2439        if (!overridesAny) {
2440            for (MethodSymbol m: potentiallyAmbiguousList) {
2441                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2442            }
2443        }
2444    }
2445
2446    /** Check that all static methods accessible from 'site' are
2447     *  mutually compatible (JLS 8.4.8).
2448     *
2449     *  @param pos  Position to be used for error reporting.
2450     *  @param site The class whose methods are checked.
2451     *  @param sym  The method symbol to be checked.
2452     */
2453    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2454        ClashFilter cf = new ClashFilter(site);
2455        //for each method m1 that is a member of 'site'...
2456        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2457            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2458            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2459            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2460                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2461                    log.error(pos,
2462                            "name.clash.same.erasure.no.hide",
2463                            sym, sym.location(),
2464                            s, s.location());
2465                    return;
2466                } else {
2467                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2468                }
2469            }
2470         }
2471     }
2472
2473     //where
2474     private class ClashFilter implements Filter<Symbol> {
2475
2476         Type site;
2477
2478         ClashFilter(Type site) {
2479             this.site = site;
2480         }
2481
2482         boolean shouldSkip(Symbol s) {
2483             return (s.flags() & CLASH) != 0 &&
2484                s.owner == site.tsym;
2485         }
2486
2487         public boolean accepts(Symbol s) {
2488             return s.kind == MTH &&
2489                     (s.flags() & SYNTHETIC) == 0 &&
2490                     !shouldSkip(s) &&
2491                     s.isInheritedIn(site.tsym, types) &&
2492                     !s.isConstructor();
2493         }
2494     }
2495
2496    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2497        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2498        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2499            Assert.check(m.kind == MTH);
2500            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2501            if (prov.size() > 1) {
2502                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2503                ListBuffer<Symbol> defaults = new ListBuffer<>();
2504                for (MethodSymbol provSym : prov) {
2505                    if ((provSym.flags() & DEFAULT) != 0) {
2506                        defaults = defaults.append(provSym);
2507                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2508                        abstracts = abstracts.append(provSym);
2509                    }
2510                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2511                        //strong semantics - issue an error if two sibling interfaces
2512                        //have two override-equivalent defaults - or if one is abstract
2513                        //and the other is default
2514                        String errKey;
2515                        Symbol s1 = defaults.first();
2516                        Symbol s2;
2517                        if (defaults.size() > 1) {
2518                            errKey = "types.incompatible.unrelated.defaults";
2519                            s2 = defaults.toList().tail.head;
2520                        } else {
2521                            errKey = "types.incompatible.abstract.default";
2522                            s2 = abstracts.first();
2523                        }
2524                        log.error(pos, errKey,
2525                                Kinds.kindName(site.tsym), site,
2526                                m.name, types.memberType(site, m).getParameterTypes(),
2527                                s1.location(), s2.location());
2528                        break;
2529                    }
2530                }
2531            }
2532        }
2533    }
2534
2535    //where
2536     private class DefaultMethodClashFilter implements Filter<Symbol> {
2537
2538         Type site;
2539
2540         DefaultMethodClashFilter(Type site) {
2541             this.site = site;
2542         }
2543
2544         public boolean accepts(Symbol s) {
2545             return s.kind == MTH &&
2546                     (s.flags() & DEFAULT) != 0 &&
2547                     s.isInheritedIn(site.tsym, types) &&
2548                     !s.isConstructor();
2549         }
2550     }
2551
2552    /**
2553      * Report warnings for potentially ambiguous method declarations. Two declarations
2554      * are potentially ambiguous if they feature two unrelated functional interface
2555      * in same argument position (in which case, a call site passing an implicit
2556      * lambda would be ambiguous).
2557      */
2558    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2559            MethodSymbol msym1, MethodSymbol msym2) {
2560        if (msym1 != msym2 &&
2561                allowDefaultMethods &&
2562                lint.isEnabled(LintCategory.OVERLOADS) &&
2563                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2564                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2565            Type mt1 = types.memberType(site, msym1);
2566            Type mt2 = types.memberType(site, msym2);
2567            //if both generic methods, adjust type variables
2568            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2569                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2570                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2571            }
2572            //expand varargs methods if needed
2573            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2574            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2575            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2576            //if arities don't match, exit
2577            if (args1.length() != args2.length()) return;
2578            boolean potentiallyAmbiguous = false;
2579            while (args1.nonEmpty() && args2.nonEmpty()) {
2580                Type s = args1.head;
2581                Type t = args2.head;
2582                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2583                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2584                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2585                            types.findDescriptorType(s).getParameterTypes().length() ==
2586                            types.findDescriptorType(t).getParameterTypes().length()) {
2587                        potentiallyAmbiguous = true;
2588                    } else {
2589                        break;
2590                    }
2591                }
2592                args1 = args1.tail;
2593                args2 = args2.tail;
2594            }
2595            if (potentiallyAmbiguous) {
2596                //we found two incompatible functional interfaces with same arity
2597                //this means a call site passing an implicit lambda would be ambigiuous
2598                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2599                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2600                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2601                            msym1, msym1.location(),
2602                            msym2, msym2.location());
2603                return;
2604            }
2605        }
2606    }
2607
2608    void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2609        if (warnOnAnyAccessToMembers ||
2610            (lint.isEnabled(LintCategory.SERIAL) &&
2611            !lint.isSuppressed(LintCategory.SERIAL) &&
2612            isLambda)) {
2613            Symbol sym = TreeInfo.symbol(tree);
2614            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2615                return;
2616            }
2617
2618            if (sym.kind == VAR) {
2619                if ((sym.flags() & PARAMETER) != 0 ||
2620                    sym.isLocal() ||
2621                    sym.name == names._this ||
2622                    sym.name == names._super) {
2623                    return;
2624                }
2625            }
2626
2627            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2628                isEffectivelyNonPublic(sym)) {
2629                if (isLambda) {
2630                    if (belongsToRestrictedPackage(sym)) {
2631                        log.warning(LintCategory.SERIAL, tree.pos(),
2632                            "access.to.member.from.serializable.lambda", sym);
2633                    }
2634                } else {
2635                    log.warning(tree.pos(),
2636                        "access.to.member.from.serializable.element", sym);
2637                }
2638            }
2639        }
2640    }
2641
2642    private boolean isEffectivelyNonPublic(Symbol sym) {
2643        if (sym.packge() == syms.rootPackage) {
2644            return false;
2645        }
2646
2647        while (sym.kind != PCK) {
2648            if ((sym.flags() & PUBLIC) == 0) {
2649                return true;
2650            }
2651            sym = sym.owner;
2652        }
2653        return false;
2654    }
2655
2656    private boolean belongsToRestrictedPackage(Symbol sym) {
2657        String fullName = sym.packge().fullname.toString();
2658        return fullName.startsWith("java.") ||
2659                fullName.startsWith("javax.") ||
2660                fullName.startsWith("sun.") ||
2661                fullName.contains(".internal.");
2662    }
2663
2664    /** Report a conflict between a user symbol and a synthetic symbol.
2665     */
2666    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2667        if (!sym.type.isErroneous()) {
2668            log.error(pos, "synthetic.name.conflict", sym, sym.location());
2669        }
2670    }
2671
2672    /** Check that class c does not implement directly or indirectly
2673     *  the same parameterized interface with two different argument lists.
2674     *  @param pos          Position to be used for error reporting.
2675     *  @param type         The type whose interfaces are checked.
2676     */
2677    void checkClassBounds(DiagnosticPosition pos, Type type) {
2678        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2679    }
2680//where
2681        /** Enter all interfaces of type `type' into the hash table `seensofar'
2682         *  with their class symbol as key and their type as value. Make
2683         *  sure no class is entered with two different types.
2684         */
2685        void checkClassBounds(DiagnosticPosition pos,
2686                              Map<TypeSymbol,Type> seensofar,
2687                              Type type) {
2688            if (type.isErroneous()) return;
2689            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2690                Type it = l.head;
2691                Type oldit = seensofar.put(it.tsym, it);
2692                if (oldit != null) {
2693                    List<Type> oldparams = oldit.allparams();
2694                    List<Type> newparams = it.allparams();
2695                    if (!types.containsTypeEquivalent(oldparams, newparams))
2696                        log.error(pos, "cant.inherit.diff.arg",
2697                                  it.tsym, Type.toString(oldparams),
2698                                  Type.toString(newparams));
2699                }
2700                checkClassBounds(pos, seensofar, it);
2701            }
2702            Type st = types.supertype(type);
2703            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2704        }
2705
2706    /** Enter interface into into set.
2707     *  If it existed already, issue a "repeated interface" error.
2708     */
2709    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2710        if (its.contains(it))
2711            log.error(pos, "repeated.interface");
2712        else {
2713            its.add(it);
2714        }
2715    }
2716
2717/* *************************************************************************
2718 * Check annotations
2719 **************************************************************************/
2720
2721    /**
2722     * Recursively validate annotations values
2723     */
2724    void validateAnnotationTree(JCTree tree) {
2725        class AnnotationValidator extends TreeScanner {
2726            @Override
2727            public void visitAnnotation(JCAnnotation tree) {
2728                if (!tree.type.isErroneous()) {
2729                    super.visitAnnotation(tree);
2730                    validateAnnotation(tree);
2731                }
2732            }
2733        }
2734        tree.accept(new AnnotationValidator());
2735    }
2736
2737    /**
2738     *  {@literal
2739     *  Annotation types are restricted to primitives, String, an
2740     *  enum, an annotation, Class, Class<?>, Class<? extends
2741     *  Anything>, arrays of the preceding.
2742     *  }
2743     */
2744    void validateAnnotationType(JCTree restype) {
2745        // restype may be null if an error occurred, so don't bother validating it
2746        if (restype != null) {
2747            validateAnnotationType(restype.pos(), restype.type);
2748        }
2749    }
2750
2751    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2752        if (type.isPrimitive()) return;
2753        if (types.isSameType(type, syms.stringType)) return;
2754        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2755        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2756        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2757        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2758            validateAnnotationType(pos, types.elemtype(type));
2759            return;
2760        }
2761        log.error(pos, "invalid.annotation.member.type");
2762    }
2763
2764    /**
2765     * "It is also a compile-time error if any method declared in an
2766     * annotation type has a signature that is override-equivalent to
2767     * that of any public or protected method declared in class Object
2768     * or in the interface annotation.Annotation."
2769     *
2770     * @jls 9.6 Annotation Types
2771     */
2772    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2773        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2774            Scope s = sup.tsym.members();
2775            for (Symbol sym : s.getSymbolsByName(m.name)) {
2776                if (sym.kind == MTH &&
2777                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2778                    types.overrideEquivalent(m.type, sym.type))
2779                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2780            }
2781        }
2782    }
2783
2784    /** Check the annotations of a symbol.
2785     */
2786    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2787        for (JCAnnotation a : annotations)
2788            validateAnnotation(a, s);
2789    }
2790
2791    /** Check the type annotations.
2792     */
2793    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2794        for (JCAnnotation a : annotations)
2795            validateTypeAnnotation(a, isTypeParameter);
2796    }
2797
2798    /** Check an annotation of a symbol.
2799     */
2800    private void validateAnnotation(JCAnnotation a, Symbol s) {
2801        validateAnnotationTree(a);
2802
2803        if (!annotationApplicable(a, s))
2804            log.error(a.pos(), "annotation.type.not.applicable");
2805
2806        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2807            if (s.kind != TYP) {
2808                log.error(a.pos(), "bad.functional.intf.anno");
2809            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2810                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2811            }
2812        }
2813    }
2814
2815    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2816        Assert.checkNonNull(a.type);
2817        validateAnnotationTree(a);
2818
2819        if (a.hasTag(TYPE_ANNOTATION) &&
2820                !a.annotationType.type.isErroneous() &&
2821                !isTypeAnnotation(a, isTypeParameter)) {
2822            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2823        }
2824    }
2825
2826    /**
2827     * Validate the proposed container 'repeatable' on the
2828     * annotation type symbol 's'. Report errors at position
2829     * 'pos'.
2830     *
2831     * @param s The (annotation)type declaration annotated with a @Repeatable
2832     * @param repeatable the @Repeatable on 's'
2833     * @param pos where to report errors
2834     */
2835    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2836        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2837
2838        Type t = null;
2839        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2840        if (!l.isEmpty()) {
2841            Assert.check(l.head.fst.name == names.value);
2842            t = ((Attribute.Class)l.head.snd).getValue();
2843        }
2844
2845        if (t == null) {
2846            // errors should already have been reported during Annotate
2847            return;
2848        }
2849
2850        validateValue(t.tsym, s, pos);
2851        validateRetention(t.tsym, s, pos);
2852        validateDocumented(t.tsym, s, pos);
2853        validateInherited(t.tsym, s, pos);
2854        validateTarget(t.tsym, s, pos);
2855        validateDefault(t.tsym, pos);
2856    }
2857
2858    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2859        Symbol sym = container.members().findFirst(names.value);
2860        if (sym != null && sym.kind == MTH) {
2861            MethodSymbol m = (MethodSymbol) sym;
2862            Type ret = m.getReturnType();
2863            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2864                log.error(pos, "invalid.repeatable.annotation.value.return",
2865                        container, ret, types.makeArrayType(contained.type));
2866            }
2867        } else {
2868            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2869        }
2870    }
2871
2872    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2873        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2874        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2875
2876        boolean error = false;
2877        switch (containedRetention) {
2878        case RUNTIME:
2879            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2880                error = true;
2881            }
2882            break;
2883        case CLASS:
2884            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2885                error = true;
2886            }
2887        }
2888        if (error ) {
2889            log.error(pos, "invalid.repeatable.annotation.retention",
2890                      container, containerRetention,
2891                      contained, containedRetention);
2892        }
2893    }
2894
2895    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2896        if (contained.attribute(syms.documentedType.tsym) != null) {
2897            if (container.attribute(syms.documentedType.tsym) == null) {
2898                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2899            }
2900        }
2901    }
2902
2903    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2904        if (contained.attribute(syms.inheritedType.tsym) != null) {
2905            if (container.attribute(syms.inheritedType.tsym) == null) {
2906                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2907            }
2908        }
2909    }
2910
2911    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2912        // The set of targets the container is applicable to must be a subset
2913        // (with respect to annotation target semantics) of the set of targets
2914        // the contained is applicable to. The target sets may be implicit or
2915        // explicit.
2916
2917        Set<Name> containerTargets;
2918        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2919        if (containerTarget == null) {
2920            containerTargets = getDefaultTargetSet();
2921        } else {
2922            containerTargets = new HashSet<>();
2923            for (Attribute app : containerTarget.values) {
2924                if (!(app instanceof Attribute.Enum)) {
2925                    continue; // recovery
2926                }
2927                Attribute.Enum e = (Attribute.Enum)app;
2928                containerTargets.add(e.value.name);
2929            }
2930        }
2931
2932        Set<Name> containedTargets;
2933        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2934        if (containedTarget == null) {
2935            containedTargets = getDefaultTargetSet();
2936        } else {
2937            containedTargets = new HashSet<>();
2938            for (Attribute app : containedTarget.values) {
2939                if (!(app instanceof Attribute.Enum)) {
2940                    continue; // recovery
2941                }
2942                Attribute.Enum e = (Attribute.Enum)app;
2943                containedTargets.add(e.value.name);
2944            }
2945        }
2946
2947        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2948            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2949        }
2950    }
2951
2952    /* get a set of names for the default target */
2953    private Set<Name> getDefaultTargetSet() {
2954        if (defaultTargets == null) {
2955            Set<Name> targets = new HashSet<>();
2956            targets.add(names.ANNOTATION_TYPE);
2957            targets.add(names.CONSTRUCTOR);
2958            targets.add(names.FIELD);
2959            targets.add(names.LOCAL_VARIABLE);
2960            targets.add(names.METHOD);
2961            targets.add(names.PACKAGE);
2962            targets.add(names.PARAMETER);
2963            targets.add(names.TYPE);
2964
2965            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2966        }
2967
2968        return defaultTargets;
2969    }
2970    private Set<Name> defaultTargets;
2971
2972
2973    /** Checks that s is a subset of t, with respect to ElementType
2974     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2975     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2976     * TYPE_PARAMETER}.
2977     */
2978    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2979        // Check that all elements in s are present in t
2980        for (Name n2 : s) {
2981            boolean currentElementOk = false;
2982            for (Name n1 : t) {
2983                if (n1 == n2) {
2984                    currentElementOk = true;
2985                    break;
2986                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2987                    currentElementOk = true;
2988                    break;
2989                } else if (n1 == names.TYPE_USE &&
2990                        (n2 == names.TYPE ||
2991                         n2 == names.ANNOTATION_TYPE ||
2992                         n2 == names.TYPE_PARAMETER)) {
2993                    currentElementOk = true;
2994                    break;
2995                }
2996            }
2997            if (!currentElementOk)
2998                return false;
2999        }
3000        return true;
3001    }
3002
3003    private void validateDefault(Symbol container, DiagnosticPosition pos) {
3004        // validate that all other elements of containing type has defaults
3005        Scope scope = container.members();
3006        for(Symbol elm : scope.getSymbols()) {
3007            if (elm.name != names.value &&
3008                elm.kind == MTH &&
3009                ((MethodSymbol)elm).defaultValue == null) {
3010                log.error(pos,
3011                          "invalid.repeatable.annotation.elem.nondefault",
3012                          container,
3013                          elm);
3014            }
3015        }
3016    }
3017
3018    /** Is s a method symbol that overrides a method in a superclass? */
3019    boolean isOverrider(Symbol s) {
3020        if (s.kind != MTH || s.isStatic())
3021            return false;
3022        MethodSymbol m = (MethodSymbol)s;
3023        TypeSymbol owner = (TypeSymbol)m.owner;
3024        for (Type sup : types.closure(owner.type)) {
3025            if (sup == owner.type)
3026                continue; // skip "this"
3027            Scope scope = sup.tsym.members();
3028            for (Symbol sym : scope.getSymbolsByName(m.name)) {
3029                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3030                    return true;
3031            }
3032        }
3033        return false;
3034    }
3035
3036    /** Is the annotation applicable to types? */
3037    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3038        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3039        return (targets == null) ?
3040                false :
3041                targets.stream()
3042                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3043    }
3044    //where
3045        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3046            Attribute.Enum e = (Attribute.Enum)a;
3047            return (e.value.name == names.TYPE_USE ||
3048                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3049        }
3050
3051    /** Is the annotation applicable to the symbol? */
3052    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3053        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3054        Name[] targets;
3055
3056        if (arr == null) {
3057            targets = defaultTargetMetaInfo(a, s);
3058        } else {
3059            // TODO: can we optimize this?
3060            targets = new Name[arr.values.length];
3061            for (int i=0; i<arr.values.length; ++i) {
3062                Attribute app = arr.values[i];
3063                if (!(app instanceof Attribute.Enum)) {
3064                    return true; // recovery
3065                }
3066                Attribute.Enum e = (Attribute.Enum) app;
3067                targets[i] = e.value.name;
3068            }
3069        }
3070        for (Name target : targets) {
3071            if (target == names.TYPE) {
3072                if (s.kind == TYP)
3073                    return true;
3074            } else if (target == names.FIELD) {
3075                if (s.kind == VAR && s.owner.kind != MTH)
3076                    return true;
3077            } else if (target == names.METHOD) {
3078                if (s.kind == MTH && !s.isConstructor())
3079                    return true;
3080            } else if (target == names.PARAMETER) {
3081                if (s.kind == VAR && s.owner.kind == MTH &&
3082                      (s.flags() & PARAMETER) != 0) {
3083                    return true;
3084                }
3085            } else if (target == names.CONSTRUCTOR) {
3086                if (s.kind == MTH && s.isConstructor())
3087                    return true;
3088            } else if (target == names.LOCAL_VARIABLE) {
3089                if (s.kind == VAR && s.owner.kind == MTH &&
3090                      (s.flags() & PARAMETER) == 0) {
3091                    return true;
3092                }
3093            } else if (target == names.ANNOTATION_TYPE) {
3094                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3095                    return true;
3096                }
3097            } else if (target == names.PACKAGE) {
3098                if (s.kind == PCK)
3099                    return true;
3100            } else if (target == names.TYPE_USE) {
3101                if (s.kind == TYP || s.kind == VAR ||
3102                        (s.kind == MTH && !s.isConstructor() &&
3103                                !s.type.getReturnType().hasTag(VOID)) ||
3104                        (s.kind == MTH && s.isConstructor())) {
3105                    return true;
3106                }
3107            } else if (target == names.TYPE_PARAMETER) {
3108                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3109                    return true;
3110            } else
3111                return true; // Unknown ElementType. This should be an error at declaration site,
3112                             // assume applicable.
3113        }
3114        return false;
3115    }
3116
3117
3118    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3119        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3120        if (atTarget == null) return null; // ok, is applicable
3121        Attribute atValue = atTarget.member(names.value);
3122        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3123        return (Attribute.Array) atValue;
3124    }
3125
3126    private final Name[] dfltTargetMeta;
3127    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3128        return dfltTargetMeta;
3129    }
3130
3131    /** Check an annotation value.
3132     *
3133     * @param a The annotation tree to check
3134     * @return true if this annotation tree is valid, otherwise false
3135     */
3136    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3137        boolean res = false;
3138        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3139        try {
3140            res = validateAnnotation(a);
3141        } finally {
3142            log.popDiagnosticHandler(diagHandler);
3143        }
3144        return res;
3145    }
3146
3147    private boolean validateAnnotation(JCAnnotation a) {
3148        boolean isValid = true;
3149        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3150
3151        // collect an inventory of the annotation elements
3152        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3153
3154        // remove the ones that are assigned values
3155        for (JCTree arg : a.args) {
3156            if (!arg.hasTag(ASSIGN)) continue; // recovery
3157            JCAssign assign = (JCAssign)arg;
3158            Symbol m = TreeInfo.symbol(assign.lhs);
3159            if (m == null || m.type.isErroneous()) continue;
3160            if (!elements.remove(m)) {
3161                isValid = false;
3162                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3163                        m.name, a.type);
3164            }
3165        }
3166
3167        // all the remaining ones better have default values
3168        List<Name> missingDefaults = List.nil();
3169        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3170        for (MethodSymbol m : elements) {
3171            if (m.type.isErroneous())
3172                continue;
3173
3174            if (!membersWithDefault.contains(m))
3175                missingDefaults = missingDefaults.append(m.name);
3176        }
3177        missingDefaults = missingDefaults.reverse();
3178        if (missingDefaults.nonEmpty()) {
3179            isValid = false;
3180            String key = (missingDefaults.size() > 1)
3181                    ? "annotation.missing.default.value.1"
3182                    : "annotation.missing.default.value";
3183            log.error(a.pos(), key, a.type, missingDefaults);
3184        }
3185
3186        return isValid && validateTargetAnnotationValue(a);
3187    }
3188
3189    /* Validate the special java.lang.annotation.Target annotation */
3190    boolean validateTargetAnnotationValue(JCAnnotation a) {
3191        // special case: java.lang.annotation.Target must not have
3192        // repeated values in its value member
3193        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3194                a.args.tail == null)
3195            return true;
3196
3197        boolean isValid = true;
3198        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3199        JCAssign assign = (JCAssign) a.args.head;
3200        Symbol m = TreeInfo.symbol(assign.lhs);
3201        if (m.name != names.value) return false;
3202        JCTree rhs = assign.rhs;
3203        if (!rhs.hasTag(NEWARRAY)) return false;
3204        JCNewArray na = (JCNewArray) rhs;
3205        Set<Symbol> targets = new HashSet<>();
3206        for (JCTree elem : na.elems) {
3207            if (!targets.add(TreeInfo.symbol(elem))) {
3208                isValid = false;
3209                log.error(elem.pos(), "repeated.annotation.target");
3210            }
3211        }
3212        return isValid;
3213    }
3214
3215    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3216        if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3217            (s.flags() & DEPRECATED) != 0 &&
3218            !syms.deprecatedType.isErroneous() &&
3219            s.attribute(syms.deprecatedType.tsym) == null) {
3220            log.warning(LintCategory.DEP_ANN,
3221                    pos, "missing.deprecated.annotation");
3222        }
3223        // Note: @Deprecated has no effect on local variables, parameters and package decls.
3224        if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3225            if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3226                log.warning(LintCategory.DEPRECATION, pos,
3227                        "deprecated.annotation.has.no.effect", Kinds.kindName(s));
3228            }
3229        }
3230    }
3231
3232    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3233        if ((s.flags() & DEPRECATED) != 0 &&
3234                (other.flags() & DEPRECATED) == 0 &&
3235                s.outermostClass() != other.outermostClass()) {
3236            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3237                @Override
3238                public void report() {
3239                    warnDeprecated(pos, s);
3240                }
3241            });
3242        }
3243    }
3244
3245    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3246        if ((s.flags() & PROPRIETARY) != 0) {
3247            deferredLintHandler.report(() -> {
3248                log.mandatoryWarning(pos, "sun.proprietary", s);
3249            });
3250        }
3251    }
3252
3253    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3254        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3255            log.error(pos, "not.in.profile", s, profile);
3256        }
3257    }
3258
3259/* *************************************************************************
3260 * Check for recursive annotation elements.
3261 **************************************************************************/
3262
3263    /** Check for cycles in the graph of annotation elements.
3264     */
3265    void checkNonCyclicElements(JCClassDecl tree) {
3266        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3267        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3268        try {
3269            tree.sym.flags_field |= LOCKED;
3270            for (JCTree def : tree.defs) {
3271                if (!def.hasTag(METHODDEF)) continue;
3272                JCMethodDecl meth = (JCMethodDecl)def;
3273                checkAnnotationResType(meth.pos(), meth.restype.type);
3274            }
3275        } finally {
3276            tree.sym.flags_field &= ~LOCKED;
3277            tree.sym.flags_field |= ACYCLIC_ANN;
3278        }
3279    }
3280
3281    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3282        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3283            return;
3284        if ((tsym.flags_field & LOCKED) != 0) {
3285            log.error(pos, "cyclic.annotation.element");
3286            return;
3287        }
3288        try {
3289            tsym.flags_field |= LOCKED;
3290            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3291                if (s.kind != MTH)
3292                    continue;
3293                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3294            }
3295        } finally {
3296            tsym.flags_field &= ~LOCKED;
3297            tsym.flags_field |= ACYCLIC_ANN;
3298        }
3299    }
3300
3301    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3302        switch (type.getTag()) {
3303        case CLASS:
3304            if ((type.tsym.flags() & ANNOTATION) != 0)
3305                checkNonCyclicElementsInternal(pos, type.tsym);
3306            break;
3307        case ARRAY:
3308            checkAnnotationResType(pos, types.elemtype(type));
3309            break;
3310        default:
3311            break; // int etc
3312        }
3313    }
3314
3315/* *************************************************************************
3316 * Check for cycles in the constructor call graph.
3317 **************************************************************************/
3318
3319    /** Check for cycles in the graph of constructors calling other
3320     *  constructors.
3321     */
3322    void checkCyclicConstructors(JCClassDecl tree) {
3323        Map<Symbol,Symbol> callMap = new HashMap<>();
3324
3325        // enter each constructor this-call into the map
3326        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3327            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3328            if (app == null) continue;
3329            JCMethodDecl meth = (JCMethodDecl) l.head;
3330            if (TreeInfo.name(app.meth) == names._this) {
3331                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3332            } else {
3333                meth.sym.flags_field |= ACYCLIC;
3334            }
3335        }
3336
3337        // Check for cycles in the map
3338        Symbol[] ctors = new Symbol[0];
3339        ctors = callMap.keySet().toArray(ctors);
3340        for (Symbol caller : ctors) {
3341            checkCyclicConstructor(tree, caller, callMap);
3342        }
3343    }
3344
3345    /** Look in the map to see if the given constructor is part of a
3346     *  call cycle.
3347     */
3348    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3349                                        Map<Symbol,Symbol> callMap) {
3350        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3351            if ((ctor.flags_field & LOCKED) != 0) {
3352                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3353                          "recursive.ctor.invocation");
3354            } else {
3355                ctor.flags_field |= LOCKED;
3356                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3357                ctor.flags_field &= ~LOCKED;
3358            }
3359            ctor.flags_field |= ACYCLIC;
3360        }
3361    }
3362
3363/* *************************************************************************
3364 * Miscellaneous
3365 **************************************************************************/
3366
3367    /**
3368     *  Check for division by integer constant zero
3369     *  @param pos           Position for error reporting.
3370     *  @param operator      The operator for the expression
3371     *  @param operand       The right hand operand for the expression
3372     */
3373    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3374        if (operand.constValue() != null
3375            && operand.getTag().isSubRangeOf(LONG)
3376            && ((Number) (operand.constValue())).longValue() == 0) {
3377            int opc = ((OperatorSymbol)operator).opcode;
3378            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3379                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3380                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3381                    @Override
3382                    public void report() {
3383                        warnDivZero(pos);
3384                    }
3385                });
3386            }
3387        }
3388    }
3389
3390    /**
3391     * Check for empty statements after if
3392     */
3393    void checkEmptyIf(JCIf tree) {
3394        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3395                lint.isEnabled(LintCategory.EMPTY))
3396            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3397    }
3398
3399    /** Check that symbol is unique in given scope.
3400     *  @param pos           Position for error reporting.
3401     *  @param sym           The symbol.
3402     *  @param s             The scope.
3403     */
3404    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3405        if (sym.type.isErroneous())
3406            return true;
3407        if (sym.owner.name == names.any) return false;
3408        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3409            if (sym != byName &&
3410                    (byName.flags() & CLASH) == 0 &&
3411                    sym.kind == byName.kind &&
3412                    sym.name != names.error &&
3413                    (sym.kind != MTH ||
3414                     types.hasSameArgs(sym.type, byName.type) ||
3415                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3416                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3417                    varargsDuplicateError(pos, sym, byName);
3418                    return true;
3419                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3420                    duplicateErasureError(pos, sym, byName);
3421                    sym.flags_field |= CLASH;
3422                    return true;
3423                } else {
3424                    duplicateError(pos, byName);
3425                    return false;
3426                }
3427            }
3428        }
3429        return true;
3430    }
3431
3432    /** Report duplicate declaration error.
3433     */
3434    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3435        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3436            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3437        }
3438    }
3439
3440    /**Check that types imported through the ordinary imports don't clash with types imported
3441     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3442     * types without an error on the imports.
3443     * @param toplevel       The toplevel tree for which the test should be performed.
3444     */
3445    void checkImportsUnique(JCCompilationUnit toplevel) {
3446        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3447        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3448        WriteableScope topLevelScope = toplevel.toplevelScope;
3449
3450        for (JCTree def : toplevel.defs) {
3451            if (!def.hasTag(IMPORT))
3452                continue;
3453
3454            JCImport imp = (JCImport) def;
3455
3456            if (imp.importScope == null)
3457                continue;
3458
3459            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3460                if (imp.isStatic()) {
3461                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3462                    staticallyImportedSoFar.enter(sym);
3463                } else {
3464                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3465                    ordinallyImportedSoFar.enter(sym);
3466                }
3467            }
3468
3469            imp.importScope = null;
3470        }
3471    }
3472
3473    /** Check that single-type import is not already imported or top-level defined,
3474     *  but make an exception for two single-type imports which denote the same type.
3475     *  @param pos                     Position for error reporting.
3476     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3477     *                                 ordinary imports.
3478     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3479     *                                 static imports.
3480     *  @param topLevelScope           The current file's top-level Scope
3481     *  @param sym                     The symbol.
3482     *  @param staticImport            Whether or not this was a static import
3483     */
3484    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3485                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3486                                      Symbol sym, boolean staticImport) {
3487        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3488        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3489        if (clashing == null && !staticImport) {
3490            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3491        }
3492        if (clashing != null) {
3493            if (staticImport)
3494                log.error(pos, "already.defined.static.single.import", clashing);
3495            else
3496                log.error(pos, "already.defined.single.import", clashing);
3497            return false;
3498        }
3499        clashing = topLevelScope.findFirst(sym.name, duplicates);
3500        if (clashing != null) {
3501            log.error(pos, "already.defined.this.unit", clashing);
3502            return false;
3503        }
3504        return true;
3505    }
3506
3507    /** Check that a qualified name is in canonical form (for import decls).
3508     */
3509    public void checkCanonical(JCTree tree) {
3510        if (!isCanonical(tree))
3511            log.error(tree.pos(), "import.requires.canonical",
3512                      TreeInfo.symbol(tree));
3513    }
3514        // where
3515        private boolean isCanonical(JCTree tree) {
3516            while (tree.hasTag(SELECT)) {
3517                JCFieldAccess s = (JCFieldAccess) tree;
3518                if (s.sym.owner.name != TreeInfo.symbol(s.selected).name)
3519                    return false;
3520                tree = s.selected;
3521            }
3522            return true;
3523        }
3524
3525    /** Check that an auxiliary class is not accessed from any other file than its own.
3526     */
3527    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3528        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3529            (c.flags() & AUXILIARY) != 0 &&
3530            rs.isAccessible(env, c) &&
3531            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3532        {
3533            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3534                        c, c.sourcefile);
3535        }
3536    }
3537
3538    private class ConversionWarner extends Warner {
3539        final String uncheckedKey;
3540        final Type found;
3541        final Type expected;
3542        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3543            super(pos);
3544            this.uncheckedKey = uncheckedKey;
3545            this.found = found;
3546            this.expected = expected;
3547        }
3548
3549        @Override
3550        public void warn(LintCategory lint) {
3551            boolean warned = this.warned;
3552            super.warn(lint);
3553            if (warned) return; // suppress redundant diagnostics
3554            switch (lint) {
3555                case UNCHECKED:
3556                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3557                    break;
3558                case VARARGS:
3559                    if (method != null &&
3560                            method.attribute(syms.trustMeType.tsym) != null &&
3561                            isTrustMeAllowedOnMethod(method) &&
3562                            !types.isReifiable(method.type.getParameterTypes().last())) {
3563                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3564                    }
3565                    break;
3566                default:
3567                    throw new AssertionError("Unexpected lint: " + lint);
3568            }
3569        }
3570    }
3571
3572    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3573        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3574    }
3575
3576    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3577        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3578    }
3579
3580    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3581        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3582
3583        if (functionalType != null) {
3584            try {
3585                types.findDescriptorSymbol((TypeSymbol)cs);
3586            } catch (Types.FunctionDescriptorLookupError ex) {
3587                DiagnosticPosition pos = tree.pos();
3588                for (JCAnnotation a : tree.getModifiers().annotations) {
3589                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3590                        pos = a.pos();
3591                        break;
3592                    }
3593                }
3594                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3595            }
3596        }
3597    }
3598
3599    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3600        for (final JCImport imp : toplevel.getImports()) {
3601            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3602                continue;
3603            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3604            final Symbol origin;
3605            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3606                continue;
3607
3608            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3609            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3610                log.error(imp.pos(), "cant.resolve.location",
3611                          KindName.STATIC,
3612                          select.name, List.<Type>nil(), List.<Type>nil(),
3613                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3614                          TreeInfo.symbol(select.selected).type);
3615            }
3616        }
3617    }
3618
3619    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3620    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3621        OUTER: for (JCImport imp : toplevel.getImports()) {
3622            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3623                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3624                if (toplevel.modle.visiblePackages != null) {
3625                    //TODO - unclear: selects like javax.* will get resolved from the current module
3626                    //(as javax is not an exported package from any module). And as javax in the current
3627                    //module typically does not contain any classes or subpackages, we need to go through
3628                    //the visible packages to find a sub-package:
3629                    for (PackageSymbol known : toplevel.modle.visiblePackages.values()) {
3630                        if (Convert.packagePart(known.fullname) == tsym.flatName())
3631                            continue OUTER;
3632                    }
3633                }
3634                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3635                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3636                }
3637            }
3638        }
3639    }
3640
3641    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3642        if (tsym == null || !processed.add(tsym))
3643            return false;
3644
3645            // also search through inherited names
3646        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3647            return true;
3648
3649        for (Type t : types.interfaces(tsym.type))
3650            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3651                return true;
3652
3653        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3654            if (sym.isStatic() &&
3655                importAccessible(sym, packge) &&
3656                sym.isMemberOf(origin, types)) {
3657                return true;
3658            }
3659        }
3660
3661        return false;
3662    }
3663
3664    // is the sym accessible everywhere in packge?
3665    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3666        try {
3667            int flags = (int)(sym.flags() & AccessFlags);
3668            switch (flags) {
3669            default:
3670            case PUBLIC:
3671                return true;
3672            case PRIVATE:
3673                return false;
3674            case 0:
3675            case PROTECTED:
3676                return sym.packge() == packge;
3677            }
3678        } catch (ClassFinder.BadClassFile err) {
3679            throw err;
3680        } catch (CompletionFailure ex) {
3681            return false;
3682        }
3683    }
3684
3685    public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
3686        JCCompilationUnit toplevel = env.toplevel;
3687
3688        if (   toplevel.modle == syms.unnamedModule
3689            || toplevel.modle == syms.noModule
3690            || (check.sym.flags() & COMPOUND) != 0) {
3691            return ;
3692        }
3693
3694        ExportsDirective currentExport = findExport(toplevel.packge);
3695
3696        if (   currentExport == null //not exported
3697            || currentExport.modules != null) //don't check classes in qualified export
3698            return ;
3699
3700        new TreeScanner() {
3701            Lint lint = env.info.lint;
3702            boolean inSuperType;
3703
3704            @Override
3705            public void visitBlock(JCBlock tree) {
3706            }
3707            @Override
3708            public void visitMethodDef(JCMethodDecl tree) {
3709                if (!isAPISymbol(tree.sym))
3710                    return;
3711                Lint prevLint = lint;
3712                try {
3713                    lint = lint.augment(tree.sym);
3714                    if (lint.isEnabled(LintCategory.EXPORTS)) {
3715                        super.visitMethodDef(tree);
3716                    }
3717                } finally {
3718                    lint = prevLint;
3719                }
3720            }
3721            @Override
3722            public void visitVarDef(JCVariableDecl tree) {
3723                if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
3724                    return;
3725                Lint prevLint = lint;
3726                try {
3727                    lint = lint.augment(tree.sym);
3728                    if (lint.isEnabled(LintCategory.EXPORTS)) {
3729                        scan(tree.mods);
3730                        scan(tree.vartype);
3731                    }
3732                } finally {
3733                    lint = prevLint;
3734                }
3735            }
3736            @Override
3737            public void visitClassDef(JCClassDecl tree) {
3738                if (tree != check)
3739                    return ;
3740
3741                if (!isAPISymbol(tree.sym))
3742                    return ;
3743
3744                Lint prevLint = lint;
3745                try {
3746                    lint = lint.augment(tree.sym);
3747                    if (lint.isEnabled(LintCategory.EXPORTS)) {
3748                        scan(tree.mods);
3749                        scan(tree.typarams);
3750                        try {
3751                            inSuperType = true;
3752                            scan(tree.extending);
3753                            scan(tree.implementing);
3754                        } finally {
3755                            inSuperType = false;
3756                        }
3757                        scan(tree.defs);
3758                    }
3759                } finally {
3760                    lint = prevLint;
3761                }
3762            }
3763            @Override
3764            public void visitTypeApply(JCTypeApply tree) {
3765                scan(tree.clazz);
3766                boolean oldInSuperType = inSuperType;
3767                try {
3768                    inSuperType = false;
3769                    scan(tree.arguments);
3770                } finally {
3771                    inSuperType = oldInSuperType;
3772                }
3773            }
3774            @Override
3775            public void visitIdent(JCIdent tree) {
3776                Symbol sym = TreeInfo.symbol(tree);
3777                if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
3778                    checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3779                }
3780            }
3781
3782            @Override
3783            public void visitSelect(JCFieldAccess tree) {
3784                Symbol sym = TreeInfo.symbol(tree);
3785                Symbol sitesym = TreeInfo.symbol(tree.selected);
3786                if (sym.kind == TYP && sitesym.kind == PCK) {
3787                    checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3788                } else {
3789                    super.visitSelect(tree);
3790                }
3791            }
3792
3793            @Override
3794            public void visitAnnotation(JCAnnotation tree) {
3795                if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
3796                    super.visitAnnotation(tree);
3797            }
3798
3799        }.scan(check);
3800    }
3801        //where:
3802        private ExportsDirective findExport(PackageSymbol pack) {
3803            for (ExportsDirective d : pack.modle.exports) {
3804                if (d.packge == pack)
3805                    return d;
3806            }
3807
3808            return null;
3809        }
3810        private boolean isAPISymbol(Symbol sym) {
3811            while (sym.kind != PCK) {
3812                if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
3813                    return false;
3814                }
3815                sym = sym.owner;
3816            }
3817            return true;
3818        }
3819        private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
3820            if (!isAPISymbol(what) && !inSuperType) { //package private/private element
3821                log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
3822                return ;
3823            }
3824
3825            PackageSymbol whatPackage = what.packge();
3826            ExportsDirective whatExport = findExport(whatPackage);
3827            ExportsDirective inExport = findExport(inPackage);
3828
3829            if (whatExport == null) { //package not exported:
3830                log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
3831                return ;
3832            }
3833
3834            if (whatExport.modules != null) {
3835                if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
3836                    log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
3837                }
3838            }
3839
3840            if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
3841                //check that relativeTo.modle requires public what.modle, somehow:
3842                List<ModuleSymbol> todo = List.of(inPackage.modle);
3843
3844                while (todo.nonEmpty()) {
3845                    ModuleSymbol current = todo.head;
3846                    todo = todo.tail;
3847                    if (current == whatPackage.modle)
3848                        return ; //OK
3849                    for (RequiresDirective req : current.requires) {
3850                        if (req.isPublic()) {
3851                            todo = todo.prepend(req.module);
3852                        }
3853                    }
3854                }
3855
3856                log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredPublic(kindName(what), what, what.packge().modle));
3857            }
3858        }
3859}
3860