Check.java revision 3638:192d58e5d899
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
35import com.sun.tools.javac.jvm.*;
36import com.sun.tools.javac.resources.CompilerProperties.Errors;
37import com.sun.tools.javac.resources.CompilerProperties.Fragments;
38import com.sun.tools.javac.tree.*;
39import com.sun.tools.javac.util.*;
40import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
41import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
42import com.sun.tools.javac.util.List;
43
44import com.sun.tools.javac.code.Lint;
45import com.sun.tools.javac.code.Lint.LintCategory;
46import com.sun.tools.javac.code.Scope.WriteableScope;
47import com.sun.tools.javac.code.Type.*;
48import com.sun.tools.javac.code.Symbol.*;
49import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
50import com.sun.tools.javac.comp.Infer.FreeTypeListener;
51import com.sun.tools.javac.tree.JCTree.*;
52
53import static com.sun.tools.javac.code.Flags.*;
54import static com.sun.tools.javac.code.Flags.ANNOTATION;
55import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
56import static com.sun.tools.javac.code.Kinds.*;
57import static com.sun.tools.javac.code.Kinds.Kind.*;
58import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
59import static com.sun.tools.javac.code.TypeTag.*;
60import static com.sun.tools.javac.code.TypeTag.WILDCARD;
61
62import static com.sun.tools.javac.tree.JCTree.Tag.*;
63
64/** Type checking helper class for the attribution phase.
65 *
66 *  <p><b>This is NOT part of any supported API.
67 *  If you write code that depends on this, you do so at your own risk.
68 *  This code and its internal interfaces are subject to change or
69 *  deletion without notice.</b>
70 */
71public class Check {
72    protected static final Context.Key<Check> checkKey = new Context.Key<>();
73
74    private final Names names;
75    private final Log log;
76    private final Resolve rs;
77    private final Symtab syms;
78    private final Enter enter;
79    private final DeferredAttr deferredAttr;
80    private final Infer infer;
81    private final Types types;
82    private final TypeAnnotations typeAnnotations;
83    private final JCDiagnostic.Factory diags;
84    private final JavaFileManager fileManager;
85    private final Source source;
86    private final Profile profile;
87    private final boolean warnOnAccessToSensitiveMembers;
88
89    // The set of lint options currently in effect. It is initialized
90    // from the context, and then is set/reset as needed by Attr as it
91    // visits all the various parts of the trees during attribution.
92    private Lint lint;
93
94    // The method being analyzed in Attr - it is set/reset as needed by
95    // Attr as it visits new method declarations.
96    private MethodSymbol method;
97
98    public static Check instance(Context context) {
99        Check instance = context.get(checkKey);
100        if (instance == null)
101            instance = new Check(context);
102        return instance;
103    }
104
105    protected Check(Context context) {
106        context.put(checkKey, this);
107
108        names = Names.instance(context);
109        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
110            names.FIELD, names.METHOD, names.CONSTRUCTOR,
111            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
112        log = Log.instance(context);
113        rs = Resolve.instance(context);
114        syms = Symtab.instance(context);
115        enter = Enter.instance(context);
116        deferredAttr = DeferredAttr.instance(context);
117        infer = Infer.instance(context);
118        types = Types.instance(context);
119        typeAnnotations = TypeAnnotations.instance(context);
120        diags = JCDiagnostic.Factory.instance(context);
121        Options options = Options.instance(context);
122        lint = Lint.instance(context);
123        fileManager = context.get(JavaFileManager.class);
124
125        source = Source.instance(context);
126        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
127        allowDefaultMethods = source.allowDefaultMethods();
128        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
129        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
130        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
131        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
132
133        Target target = Target.instance(context);
134        syntheticNameChar = target.syntheticNameChar();
135
136        profile = Profile.instance(context);
137
138        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
139        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
140        boolean enforceMandatoryWarnings = true;
141
142        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
143                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
144        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
145                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
146        sunApiHandler = new MandatoryWarningHandler(log, false,
147                enforceMandatoryWarnings, "sunapi", null);
148
149        deferredLintHandler = DeferredLintHandler.instance(context);
150    }
151
152    /** Switch: simplified varargs enabled?
153     */
154    boolean allowSimplifiedVarargs;
155
156    /** Switch: default methods enabled?
157     */
158    boolean allowDefaultMethods;
159
160    /** Switch: should unrelated return types trigger a method clash?
161     */
162    boolean allowStrictMethodClashCheck;
163
164    /** Switch: can the @SafeVarargs annotation be applied to private methods?
165     */
166    boolean allowPrivateSafeVarargs;
167
168    /** Switch: can diamond inference be used in anonymous instance creation ?
169     */
170    boolean allowDiamondWithAnonymousClassCreation;
171
172    /** Character for synthetic names
173     */
174    char syntheticNameChar;
175
176    /** A table mapping flat names of all compiled classes for each module in this run
177     *  to their symbols; maintained from outside.
178     */
179    private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
180
181    /** A handler for messages about deprecated usage.
182     */
183    private MandatoryWarningHandler deprecationHandler;
184
185    /** A handler for messages about unchecked or unsafe usage.
186     */
187    private MandatoryWarningHandler uncheckedHandler;
188
189    /** A handler for messages about using proprietary API.
190     */
191    private MandatoryWarningHandler sunApiHandler;
192
193    /** A handler for deferred lint warnings.
194     */
195    private DeferredLintHandler deferredLintHandler;
196
197/* *************************************************************************
198 * Errors and Warnings
199 **************************************************************************/
200
201    Lint setLint(Lint newLint) {
202        Lint prev = lint;
203        lint = newLint;
204        return prev;
205    }
206
207    MethodSymbol setMethod(MethodSymbol newMethod) {
208        MethodSymbol prev = method;
209        method = newMethod;
210        return prev;
211    }
212
213    /** Warn about deprecated symbol.
214     *  @param pos        Position to be used for error reporting.
215     *  @param sym        The deprecated symbol.
216     */
217    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
218        if (!lint.isSuppressed(LintCategory.DEPRECATION))
219            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
220    }
221
222    /** Warn about unchecked operation.
223     *  @param pos        Position to be used for error reporting.
224     *  @param msg        A string describing the problem.
225     */
226    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
227        if (!lint.isSuppressed(LintCategory.UNCHECKED))
228            uncheckedHandler.report(pos, msg, args);
229    }
230
231    /** Warn about unsafe vararg method decl.
232     *  @param pos        Position to be used for error reporting.
233     */
234    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
235        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
236            log.warning(LintCategory.VARARGS, pos, key, args);
237    }
238
239    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
240        if (lint.isEnabled(LintCategory.STATIC))
241            log.warning(LintCategory.STATIC, pos, msg, args);
242    }
243
244    /** Warn about division by integer constant zero.
245     *  @param pos        Position to be used for error reporting.
246     */
247    void warnDivZero(DiagnosticPosition pos) {
248        if (lint.isEnabled(LintCategory.DIVZERO))
249            log.warning(LintCategory.DIVZERO, pos, "div.zero");
250    }
251
252    /**
253     * Report any deferred diagnostics.
254     */
255    public void reportDeferredDiagnostics() {
256        deprecationHandler.reportDeferredDiagnostic();
257        uncheckedHandler.reportDeferredDiagnostic();
258        sunApiHandler.reportDeferredDiagnostic();
259    }
260
261
262    /** Report a failure to complete a class.
263     *  @param pos        Position to be used for error reporting.
264     *  @param ex         The failure to report.
265     */
266    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
267        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
268        if (ex instanceof ClassFinder.BadClassFile) throw new Abort();
269        else return syms.errType;
270    }
271
272    /** Report an error that wrong type tag was found.
273     *  @param pos        Position to be used for error reporting.
274     *  @param required   An internationalized string describing the type tag
275     *                    required.
276     *  @param found      The type that was found.
277     */
278    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
279        // this error used to be raised by the parser,
280        // but has been delayed to this point:
281        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
282            log.error(pos, "illegal.start.of.type");
283            return syms.errType;
284        }
285        log.error(pos, "type.found.req", found, required);
286        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
287    }
288
289    /** Report an error that symbol cannot be referenced before super
290     *  has been called.
291     *  @param pos        Position to be used for error reporting.
292     *  @param sym        The referenced symbol.
293     */
294    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
295        log.error(pos, "cant.ref.before.ctor.called", sym);
296    }
297
298    /** Report duplicate declaration error.
299     */
300    void duplicateError(DiagnosticPosition pos, Symbol sym) {
301        if (!sym.type.isErroneous()) {
302            Symbol location = sym.location();
303            if (location.kind == MTH &&
304                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
305                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
306                        kindName(sym.location()), kindName(sym.location().enclClass()),
307                        sym.location().enclClass());
308            } else {
309                log.error(pos, "already.defined", kindName(sym), sym,
310                        kindName(sym.location()), sym.location());
311            }
312        }
313    }
314
315    /** Report array/varargs duplicate declaration
316     */
317    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
318        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
319            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
320        }
321    }
322
323/* ************************************************************************
324 * duplicate declaration checking
325 *************************************************************************/
326
327    /** Check that variable does not hide variable with same name in
328     *  immediately enclosing local scope.
329     *  @param pos           Position for error reporting.
330     *  @param v             The symbol.
331     *  @param s             The scope.
332     */
333    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
334        for (Symbol sym : s.getSymbolsByName(v.name)) {
335            if (sym.owner != v.owner) break;
336            if (sym.kind == VAR &&
337                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
338                v.name != names.error) {
339                duplicateError(pos, sym);
340                return;
341            }
342        }
343    }
344
345    /** Check that a class or interface does not hide a class or
346     *  interface with same name in immediately enclosing local scope.
347     *  @param pos           Position for error reporting.
348     *  @param c             The symbol.
349     *  @param s             The scope.
350     */
351    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
352        for (Symbol sym : s.getSymbolsByName(c.name)) {
353            if (sym.owner != c.owner) break;
354            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
355                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
356                c.name != names.error) {
357                duplicateError(pos, sym);
358                return;
359            }
360        }
361    }
362
363    /** Check that class does not have the same name as one of
364     *  its enclosing classes, or as a class defined in its enclosing scope.
365     *  return true if class is unique in its enclosing scope.
366     *  @param pos           Position for error reporting.
367     *  @param name          The class name.
368     *  @param s             The enclosing scope.
369     */
370    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
371        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
372            if (sym.kind == TYP && sym.name != names.error) {
373                duplicateError(pos, sym);
374                return false;
375            }
376        }
377        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
378            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
379                duplicateError(pos, sym);
380                return true;
381            }
382        }
383        return true;
384    }
385
386/* *************************************************************************
387 * Class name generation
388 **************************************************************************/
389
390
391    private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
392
393    /** Return name of local class.
394     *  This is of the form   {@code <enclClass> $ n <classname> }
395     *  where
396     *    enclClass is the flat name of the enclosing class,
397     *    classname is the simple name of the local class
398     */
399    Name localClassName(ClassSymbol c) {
400        Name enclFlatname = c.owner.enclClass().flatname;
401        String enclFlatnameStr = enclFlatname.toString();
402        Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
403        Integer index = localClassNameIndexes.get(key);
404        for (int i = (index == null) ? 1 : index; ; i++) {
405            Name flatname = names.fromString(enclFlatnameStr
406                    + syntheticNameChar + i + c.name);
407            if (getCompiled(c.packge().modle, flatname) == null) {
408                localClassNameIndexes.put(key, i + 1);
409                return flatname;
410            }
411        }
412    }
413
414    void clearLocalClassNameIndexes(ClassSymbol c) {
415        localClassNameIndexes.remove(new Pair<>(
416                c.owner.enclClass().flatname, c.name));
417    }
418
419    public void newRound() {
420        compiled.clear();
421        localClassNameIndexes.clear();
422    }
423
424    public void putCompiled(ClassSymbol csym) {
425        compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
426    }
427
428    public ClassSymbol getCompiled(ClassSymbol csym) {
429        return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
430    }
431
432    public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
433        return compiled.get(Pair.of(msym, flatname));
434    }
435
436    public void removeCompiled(ClassSymbol csym) {
437        compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
438    }
439
440/* *************************************************************************
441 * Type Checking
442 **************************************************************************/
443
444    /**
445     * A check context is an object that can be used to perform compatibility
446     * checks - depending on the check context, meaning of 'compatibility' might
447     * vary significantly.
448     */
449    public interface CheckContext {
450        /**
451         * Is type 'found' compatible with type 'req' in given context
452         */
453        boolean compatible(Type found, Type req, Warner warn);
454        /**
455         * Report a check error
456         */
457        void report(DiagnosticPosition pos, JCDiagnostic details);
458        /**
459         * Obtain a warner for this check context
460         */
461        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
462
463        public InferenceContext inferenceContext();
464
465        public DeferredAttr.DeferredAttrContext deferredAttrContext();
466    }
467
468    /**
469     * This class represent a check context that is nested within another check
470     * context - useful to check sub-expressions. The default behavior simply
471     * redirects all method calls to the enclosing check context leveraging
472     * the forwarding pattern.
473     */
474    static class NestedCheckContext implements CheckContext {
475        CheckContext enclosingContext;
476
477        NestedCheckContext(CheckContext enclosingContext) {
478            this.enclosingContext = enclosingContext;
479        }
480
481        public boolean compatible(Type found, Type req, Warner warn) {
482            return enclosingContext.compatible(found, req, warn);
483        }
484
485        public void report(DiagnosticPosition pos, JCDiagnostic details) {
486            enclosingContext.report(pos, details);
487        }
488
489        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
490            return enclosingContext.checkWarner(pos, found, req);
491        }
492
493        public InferenceContext inferenceContext() {
494            return enclosingContext.inferenceContext();
495        }
496
497        public DeferredAttrContext deferredAttrContext() {
498            return enclosingContext.deferredAttrContext();
499        }
500    }
501
502    /**
503     * Check context to be used when evaluating assignment/return statements
504     */
505    CheckContext basicHandler = new CheckContext() {
506        public void report(DiagnosticPosition pos, JCDiagnostic details) {
507            log.error(pos, "prob.found.req", details);
508        }
509        public boolean compatible(Type found, Type req, Warner warn) {
510            return types.isAssignable(found, req, warn);
511        }
512
513        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
514            return convertWarner(pos, found, req);
515        }
516
517        public InferenceContext inferenceContext() {
518            return infer.emptyContext;
519        }
520
521        public DeferredAttrContext deferredAttrContext() {
522            return deferredAttr.emptyDeferredAttrContext;
523        }
524
525        @Override
526        public String toString() {
527            return "CheckContext: basicHandler";
528        }
529    };
530
531    /** Check that a given type is assignable to a given proto-type.
532     *  If it is, return the type, otherwise return errType.
533     *  @param pos        Position to be used for error reporting.
534     *  @param found      The type that was found.
535     *  @param req        The type that was required.
536     */
537    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
538        return checkType(pos, found, req, basicHandler);
539    }
540
541    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
542        final InferenceContext inferenceContext = checkContext.inferenceContext();
543        if (inferenceContext.free(req) || inferenceContext.free(found)) {
544            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
545                @Override
546                public void typesInferred(InferenceContext inferenceContext) {
547                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
548                }
549            });
550        }
551        if (req.hasTag(ERROR))
552            return req;
553        if (req.hasTag(NONE))
554            return found;
555        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
556            return found;
557        } else {
558            if (found.isNumeric() && req.isNumeric()) {
559                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
560                return types.createErrorType(found);
561            }
562            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
563            return types.createErrorType(found);
564        }
565    }
566
567    /** Check that a given type can be cast to a given target type.
568     *  Return the result of the cast.
569     *  @param pos        Position to be used for error reporting.
570     *  @param found      The type that is being cast.
571     *  @param req        The target type of the cast.
572     */
573    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
574        return checkCastable(pos, found, req, basicHandler);
575    }
576    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
577        if (types.isCastable(found, req, castWarner(pos, found, req))) {
578            return req;
579        } else {
580            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
581            return types.createErrorType(found);
582        }
583    }
584
585    /** Check for redundant casts (i.e. where source type is a subtype of target type)
586     * The problem should only be reported for non-292 cast
587     */
588    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
589        if (!tree.type.isErroneous()
590                && types.isSameType(tree.expr.type, tree.clazz.type)
591                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
592                && !is292targetTypeCast(tree)) {
593            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
594                @Override
595                public void report() {
596                    if (lint.isEnabled(Lint.LintCategory.CAST))
597                        log.warning(Lint.LintCategory.CAST,
598                                tree.pos(), "redundant.cast", tree.clazz.type);
599                }
600            });
601        }
602    }
603    //where
604        private boolean is292targetTypeCast(JCTypeCast tree) {
605            boolean is292targetTypeCast = false;
606            JCExpression expr = TreeInfo.skipParens(tree.expr);
607            if (expr.hasTag(APPLY)) {
608                JCMethodInvocation apply = (JCMethodInvocation)expr;
609                Symbol sym = TreeInfo.symbol(apply.meth);
610                is292targetTypeCast = sym != null &&
611                    sym.kind == MTH &&
612                    (sym.flags() & HYPOTHETICAL) != 0;
613            }
614            return is292targetTypeCast;
615        }
616
617        private static final boolean ignoreAnnotatedCasts = true;
618
619    /** Check that a type is within some bounds.
620     *
621     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
622     *  type argument.
623     *  @param a             The type that should be bounded by bs.
624     *  @param bound         The bound.
625     */
626    private boolean checkExtends(Type a, Type bound) {
627         if (a.isUnbound()) {
628             return true;
629         } else if (!a.hasTag(WILDCARD)) {
630             a = types.cvarUpperBound(a);
631             return types.isSubtype(a, bound);
632         } else if (a.isExtendsBound()) {
633             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
634         } else if (a.isSuperBound()) {
635             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
636         }
637         return true;
638     }
639
640    /** Check that type is different from 'void'.
641     *  @param pos           Position to be used for error reporting.
642     *  @param t             The type to be checked.
643     */
644    Type checkNonVoid(DiagnosticPosition pos, Type t) {
645        if (t.hasTag(VOID)) {
646            log.error(pos, "void.not.allowed.here");
647            return types.createErrorType(t);
648        } else {
649            return t;
650        }
651    }
652
653    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
654        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
655            return typeTagError(pos,
656                                diags.fragment("type.req.class.array"),
657                                asTypeParam(t));
658        } else {
659            return t;
660        }
661    }
662
663    /** Check that type is a class or interface type.
664     *  @param pos           Position to be used for error reporting.
665     *  @param t             The type to be checked.
666     */
667    Type checkClassType(DiagnosticPosition pos, Type t) {
668        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
669            return typeTagError(pos,
670                                diags.fragment("type.req.class"),
671                                asTypeParam(t));
672        } else {
673            return t;
674        }
675    }
676    //where
677        private Object asTypeParam(Type t) {
678            return (t.hasTag(TYPEVAR))
679                                    ? diags.fragment("type.parameter", t)
680                                    : t;
681        }
682
683    /** Check that type is a valid qualifier for a constructor reference expression
684     */
685    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
686        t = checkClassOrArrayType(pos, t);
687        if (t.hasTag(CLASS)) {
688            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
689                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
690                t = types.createErrorType(t);
691            } else if ((t.tsym.flags() & ENUM) != 0) {
692                log.error(pos, "enum.cant.be.instantiated");
693                t = types.createErrorType(t);
694            } else {
695                t = checkClassType(pos, t, true);
696            }
697        } else if (t.hasTag(ARRAY)) {
698            if (!types.isReifiable(((ArrayType)t).elemtype)) {
699                log.error(pos, "generic.array.creation");
700                t = types.createErrorType(t);
701            }
702        }
703        return t;
704    }
705
706    /** Check that type is a class or interface type.
707     *  @param pos           Position to be used for error reporting.
708     *  @param t             The type to be checked.
709     *  @param noBounds    True if type bounds are illegal here.
710     */
711    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
712        t = checkClassType(pos, t);
713        if (noBounds && t.isParameterized()) {
714            List<Type> args = t.getTypeArguments();
715            while (args.nonEmpty()) {
716                if (args.head.hasTag(WILDCARD))
717                    return typeTagError(pos,
718                                        diags.fragment("type.req.exact"),
719                                        args.head);
720                args = args.tail;
721            }
722        }
723        return t;
724    }
725
726    /** Check that type is a reference type, i.e. a class, interface or array type
727     *  or a type variable.
728     *  @param pos           Position to be used for error reporting.
729     *  @param t             The type to be checked.
730     */
731    Type checkRefType(DiagnosticPosition pos, Type t) {
732        if (t.isReference())
733            return t;
734        else
735            return typeTagError(pos,
736                                diags.fragment("type.req.ref"),
737                                t);
738    }
739
740    /** Check that each type is a reference type, i.e. a class, interface or array type
741     *  or a type variable.
742     *  @param trees         Original trees, used for error reporting.
743     *  @param types         The types to be checked.
744     */
745    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
746        List<JCExpression> tl = trees;
747        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
748            l.head = checkRefType(tl.head.pos(), l.head);
749            tl = tl.tail;
750        }
751        return types;
752    }
753
754    /** Check that type is a null or reference type.
755     *  @param pos           Position to be used for error reporting.
756     *  @param t             The type to be checked.
757     */
758    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
759        if (t.isReference() || t.hasTag(BOT))
760            return t;
761        else
762            return typeTagError(pos,
763                                diags.fragment("type.req.ref"),
764                                t);
765    }
766
767    /** Check that flag set does not contain elements of two conflicting sets. s
768     *  Return true if it doesn't.
769     *  @param pos           Position to be used for error reporting.
770     *  @param flags         The set of flags to be checked.
771     *  @param set1          Conflicting flags set #1.
772     *  @param set2          Conflicting flags set #2.
773     */
774    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
775        if ((flags & set1) != 0 && (flags & set2) != 0) {
776            log.error(pos,
777                      "illegal.combination.of.modifiers",
778                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
779                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
780            return false;
781        } else
782            return true;
783    }
784
785    /** Check that usage of diamond operator is correct (i.e. diamond should not
786     * be used with non-generic classes or in anonymous class creation expressions)
787     */
788    Type checkDiamond(JCNewClass tree, Type t) {
789        if (!TreeInfo.isDiamond(tree) ||
790                t.isErroneous()) {
791            return checkClassType(tree.clazz.pos(), t, true);
792        } else {
793            if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
794                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
795                        Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
796            }
797            if (t.tsym.type.getTypeArguments().isEmpty()) {
798                log.error(tree.clazz.pos(),
799                    "cant.apply.diamond.1",
800                    t, diags.fragment("diamond.non.generic", t));
801                return types.createErrorType(t);
802            } else if (tree.typeargs != null &&
803                    tree.typeargs.nonEmpty()) {
804                log.error(tree.clazz.pos(),
805                    "cant.apply.diamond.1",
806                    t, diags.fragment("diamond.and.explicit.params", t));
807                return types.createErrorType(t);
808            } else {
809                return t;
810            }
811        }
812    }
813
814    /** Check that the type inferred using the diamond operator does not contain
815     *  non-denotable types such as captured types or intersection types.
816     *  @param t the type inferred using the diamond operator
817     *  @return  the (possibly empty) list of non-denotable types.
818     */
819    List<Type> checkDiamondDenotable(ClassType t) {
820        ListBuffer<Type> buf = new ListBuffer<>();
821        for (Type arg : t.allparams()) {
822            if (!diamondTypeChecker.visit(arg, null)) {
823                buf.append(arg);
824            }
825        }
826        return buf.toList();
827    }
828        // where
829
830        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
831         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
832         *  otherwise.
833         */
834        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
835            @Override
836            public Boolean visitType(Type t, Void s) {
837                return true;
838            }
839            @Override
840            public Boolean visitClassType(ClassType t, Void s) {
841                if (t.isCompound()) {
842                    return false;
843                }
844                for (Type targ : t.allparams()) {
845                    if (!visit(targ, s)) {
846                        return false;
847                    }
848                }
849                return true;
850            }
851
852            @Override
853            public Boolean visitTypeVar(TypeVar t, Void s) {
854                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
855                  (i.e cannot have been produced by inference (18.4))
856                */
857                return t.tsym.owner.type.getTypeArguments().contains(t);
858            }
859
860            @Override
861            public Boolean visitCapturedType(CapturedType t, Void s) {
862                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
863                  (i.e cannot have been produced by capture conversion (5.1.10))
864                */
865                return false;
866            }
867
868            @Override
869            public Boolean visitArrayType(ArrayType t, Void s) {
870                return visit(t.elemtype, s);
871            }
872
873            @Override
874            public Boolean visitWildcardType(WildcardType t, Void s) {
875                return visit(t.type, s);
876            }
877        };
878
879    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
880        MethodSymbol m = tree.sym;
881        if (!allowSimplifiedVarargs) return;
882        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
883        Type varargElemType = null;
884        if (m.isVarArgs()) {
885            varargElemType = types.elemtype(tree.params.last().type);
886        }
887        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
888            if (varargElemType != null) {
889                log.error(tree,
890                        "varargs.invalid.trustme.anno",
891                          syms.trustMeType.tsym,
892                          allowPrivateSafeVarargs ?
893                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
894                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
895            } else {
896                log.error(tree,
897                            "varargs.invalid.trustme.anno",
898                            syms.trustMeType.tsym,
899                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
900            }
901        } else if (hasTrustMeAnno && varargElemType != null &&
902                            types.isReifiable(varargElemType)) {
903            warnUnsafeVararg(tree,
904                            "varargs.redundant.trustme.anno",
905                            syms.trustMeType.tsym,
906                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
907        }
908        else if (!hasTrustMeAnno && varargElemType != null &&
909                !types.isReifiable(varargElemType)) {
910            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
911        }
912    }
913    //where
914        private boolean isTrustMeAllowedOnMethod(Symbol s) {
915            return (s.flags() & VARARGS) != 0 &&
916                (s.isConstructor() ||
917                    (s.flags() & (STATIC | FINAL |
918                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
919        }
920
921    Type checkMethod(final Type mtype,
922            final Symbol sym,
923            final Env<AttrContext> env,
924            final List<JCExpression> argtrees,
925            final List<Type> argtypes,
926            final boolean useVarargs,
927            InferenceContext inferenceContext) {
928        // System.out.println("call   : " + env.tree);
929        // System.out.println("method : " + owntype);
930        // System.out.println("actuals: " + argtypes);
931        if (inferenceContext.free(mtype)) {
932            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
933                public void typesInferred(InferenceContext inferenceContext) {
934                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
935                }
936            });
937            return mtype;
938        }
939        Type owntype = mtype;
940        List<Type> formals = owntype.getParameterTypes();
941        List<Type> nonInferred = sym.type.getParameterTypes();
942        if (nonInferred.length() != formals.length()) nonInferred = formals;
943        Type last = useVarargs ? formals.last() : null;
944        if (sym.name == names.init && sym.owner == syms.enumSym) {
945            formals = formals.tail.tail;
946            nonInferred = nonInferred.tail.tail;
947        }
948        List<JCExpression> args = argtrees;
949        if (args != null) {
950            //this is null when type-checking a method reference
951            while (formals.head != last) {
952                JCTree arg = args.head;
953                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
954                assertConvertible(arg, arg.type, formals.head, warn);
955                args = args.tail;
956                formals = formals.tail;
957                nonInferred = nonInferred.tail;
958            }
959            if (useVarargs) {
960                Type varArg = types.elemtype(last);
961                while (args.tail != null) {
962                    JCTree arg = args.head;
963                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
964                    assertConvertible(arg, arg.type, varArg, warn);
965                    args = args.tail;
966                }
967            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
968                // non-varargs call to varargs method
969                Type varParam = owntype.getParameterTypes().last();
970                Type lastArg = argtypes.last();
971                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
972                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
973                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
974                                types.elemtype(varParam), varParam);
975            }
976        }
977        if (useVarargs) {
978            Type argtype = owntype.getParameterTypes().last();
979            if (!types.isReifiable(argtype) &&
980                (!allowSimplifiedVarargs ||
981                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
982                 !isTrustMeAllowedOnMethod(sym))) {
983                warnUnchecked(env.tree.pos(),
984                                  "unchecked.generic.array.creation",
985                                  argtype);
986            }
987            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
988                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
989            }
990         }
991         return owntype;
992    }
993    //where
994    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
995        if (types.isConvertible(actual, formal, warn))
996            return;
997
998        if (formal.isCompound()
999            && types.isSubtype(actual, types.supertype(formal))
1000            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1001            return;
1002    }
1003
1004    /**
1005     * Check that type 't' is a valid instantiation of a generic class
1006     * (see JLS 4.5)
1007     *
1008     * @param t class type to be checked
1009     * @return true if 't' is well-formed
1010     */
1011    public boolean checkValidGenericType(Type t) {
1012        return firstIncompatibleTypeArg(t) == null;
1013    }
1014    //WHERE
1015        private Type firstIncompatibleTypeArg(Type type) {
1016            List<Type> formals = type.tsym.type.allparams();
1017            List<Type> actuals = type.allparams();
1018            List<Type> args = type.getTypeArguments();
1019            List<Type> forms = type.tsym.type.getTypeArguments();
1020            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1021
1022            // For matching pairs of actual argument types `a' and
1023            // formal type parameters with declared bound `b' ...
1024            while (args.nonEmpty() && forms.nonEmpty()) {
1025                // exact type arguments needs to know their
1026                // bounds (for upper and lower bound
1027                // calculations).  So we create new bounds where
1028                // type-parameters are replaced with actuals argument types.
1029                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1030                args = args.tail;
1031                forms = forms.tail;
1032            }
1033
1034            args = type.getTypeArguments();
1035            List<Type> tvars_cap = types.substBounds(formals,
1036                                      formals,
1037                                      types.capture(type).allparams());
1038            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1039                // Let the actual arguments know their bound
1040                args.head.withTypeVar((TypeVar)tvars_cap.head);
1041                args = args.tail;
1042                tvars_cap = tvars_cap.tail;
1043            }
1044
1045            args = type.getTypeArguments();
1046            List<Type> bounds = bounds_buf.toList();
1047
1048            while (args.nonEmpty() && bounds.nonEmpty()) {
1049                Type actual = args.head;
1050                if (!isTypeArgErroneous(actual) &&
1051                        !bounds.head.isErroneous() &&
1052                        !checkExtends(actual, bounds.head)) {
1053                    return args.head;
1054                }
1055                args = args.tail;
1056                bounds = bounds.tail;
1057            }
1058
1059            args = type.getTypeArguments();
1060            bounds = bounds_buf.toList();
1061
1062            for (Type arg : types.capture(type).getTypeArguments()) {
1063                if (arg.hasTag(TYPEVAR) &&
1064                        arg.getUpperBound().isErroneous() &&
1065                        !bounds.head.isErroneous() &&
1066                        !isTypeArgErroneous(args.head)) {
1067                    return args.head;
1068                }
1069                bounds = bounds.tail;
1070                args = args.tail;
1071            }
1072
1073            return null;
1074        }
1075        //where
1076        boolean isTypeArgErroneous(Type t) {
1077            return isTypeArgErroneous.visit(t);
1078        }
1079
1080        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1081            public Boolean visitType(Type t, Void s) {
1082                return t.isErroneous();
1083            }
1084            @Override
1085            public Boolean visitTypeVar(TypeVar t, Void s) {
1086                return visit(t.getUpperBound());
1087            }
1088            @Override
1089            public Boolean visitCapturedType(CapturedType t, Void s) {
1090                return visit(t.getUpperBound()) ||
1091                        visit(t.getLowerBound());
1092            }
1093            @Override
1094            public Boolean visitWildcardType(WildcardType t, Void s) {
1095                return visit(t.type);
1096            }
1097        };
1098
1099    /** Check that given modifiers are legal for given symbol and
1100     *  return modifiers together with any implicit modifiers for that symbol.
1101     *  Warning: we can't use flags() here since this method
1102     *  is called during class enter, when flags() would cause a premature
1103     *  completion.
1104     *  @param pos           Position to be used for error reporting.
1105     *  @param flags         The set of modifiers given in a definition.
1106     *  @param sym           The defined symbol.
1107     */
1108    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1109        long mask;
1110        long implicit = 0;
1111
1112        switch (sym.kind) {
1113        case VAR:
1114            if (TreeInfo.isReceiverParam(tree))
1115                mask = ReceiverParamFlags;
1116            else if (sym.owner.kind != TYP)
1117                mask = LocalVarFlags;
1118            else if ((sym.owner.flags_field & INTERFACE) != 0)
1119                mask = implicit = InterfaceVarFlags;
1120            else
1121                mask = VarFlags;
1122            break;
1123        case MTH:
1124            if (sym.name == names.init) {
1125                if ((sym.owner.flags_field & ENUM) != 0) {
1126                    // enum constructors cannot be declared public or
1127                    // protected and must be implicitly or explicitly
1128                    // private
1129                    implicit = PRIVATE;
1130                    mask = PRIVATE;
1131                } else
1132                    mask = ConstructorFlags;
1133            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1134                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1135                    mask = AnnotationTypeElementMask;
1136                    implicit = PUBLIC | ABSTRACT;
1137                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1138                    mask = InterfaceMethodMask;
1139                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1140                    if ((flags & DEFAULT) != 0) {
1141                        implicit |= ABSTRACT;
1142                    }
1143                } else {
1144                    mask = implicit = InterfaceMethodFlags;
1145                }
1146            } else {
1147                mask = MethodFlags;
1148            }
1149            // Imply STRICTFP if owner has STRICTFP set.
1150            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1151                ((flags) & Flags.DEFAULT) != 0)
1152                implicit |= sym.owner.flags_field & STRICTFP;
1153            break;
1154        case TYP:
1155            if (sym.isLocal()) {
1156                mask = LocalClassFlags;
1157                if ((sym.owner.flags_field & STATIC) == 0 &&
1158                    (flags & ENUM) != 0)
1159                    log.error(pos, "enums.must.be.static");
1160            } else if (sym.owner.kind == TYP) {
1161                mask = MemberClassFlags;
1162                if (sym.owner.owner.kind == PCK ||
1163                    (sym.owner.flags_field & STATIC) != 0)
1164                    mask |= STATIC;
1165                else if ((flags & ENUM) != 0)
1166                    log.error(pos, "enums.must.be.static");
1167                // Nested interfaces and enums are always STATIC (Spec ???)
1168                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1169            } else {
1170                mask = ClassFlags;
1171            }
1172            // Interfaces are always ABSTRACT
1173            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1174
1175            if ((flags & ENUM) != 0) {
1176                // enums can't be declared abstract or final
1177                mask &= ~(ABSTRACT | FINAL);
1178                implicit |= implicitEnumFinalFlag(tree);
1179            }
1180            // Imply STRICTFP if owner has STRICTFP set.
1181            implicit |= sym.owner.flags_field & STRICTFP;
1182            break;
1183        default:
1184            throw new AssertionError();
1185        }
1186        long illegal = flags & ExtendedStandardFlags & ~mask;
1187        if (illegal != 0) {
1188            if ((illegal & INTERFACE) != 0) {
1189                log.error(pos, "intf.not.allowed.here");
1190                mask |= INTERFACE;
1191            }
1192            else {
1193                log.error(pos,
1194                          "mod.not.allowed.here", asFlagSet(illegal));
1195            }
1196        }
1197        else if ((sym.kind == TYP ||
1198                  // ISSUE: Disallowing abstract&private is no longer appropriate
1199                  // in the presence of inner classes. Should it be deleted here?
1200                  checkDisjoint(pos, flags,
1201                                ABSTRACT,
1202                                PRIVATE | STATIC | DEFAULT))
1203                 &&
1204                 checkDisjoint(pos, flags,
1205                                STATIC | PRIVATE,
1206                                DEFAULT)
1207                 &&
1208                 checkDisjoint(pos, flags,
1209                               ABSTRACT | INTERFACE,
1210                               FINAL | NATIVE | SYNCHRONIZED)
1211                 &&
1212                 checkDisjoint(pos, flags,
1213                               PUBLIC,
1214                               PRIVATE | PROTECTED)
1215                 &&
1216                 checkDisjoint(pos, flags,
1217                               PRIVATE,
1218                               PUBLIC | PROTECTED)
1219                 &&
1220                 checkDisjoint(pos, flags,
1221                               FINAL,
1222                               VOLATILE)
1223                 &&
1224                 (sym.kind == TYP ||
1225                  checkDisjoint(pos, flags,
1226                                ABSTRACT | NATIVE,
1227                                STRICTFP))) {
1228            // skip
1229        }
1230        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1231    }
1232
1233
1234    /** Determine if this enum should be implicitly final.
1235     *
1236     *  If the enum has no specialized enum contants, it is final.
1237     *
1238     *  If the enum does have specialized enum contants, it is
1239     *  <i>not</i> final.
1240     */
1241    private long implicitEnumFinalFlag(JCTree tree) {
1242        if (!tree.hasTag(CLASSDEF)) return 0;
1243        class SpecialTreeVisitor extends JCTree.Visitor {
1244            boolean specialized;
1245            SpecialTreeVisitor() {
1246                this.specialized = false;
1247            }
1248
1249            @Override
1250            public void visitTree(JCTree tree) { /* no-op */ }
1251
1252            @Override
1253            public void visitVarDef(JCVariableDecl tree) {
1254                if ((tree.mods.flags & ENUM) != 0) {
1255                    if (tree.init instanceof JCNewClass &&
1256                        ((JCNewClass) tree.init).def != null) {
1257                        specialized = true;
1258                    }
1259                }
1260            }
1261        }
1262
1263        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1264        JCClassDecl cdef = (JCClassDecl) tree;
1265        for (JCTree defs: cdef.defs) {
1266            defs.accept(sts);
1267            if (sts.specialized) return 0;
1268        }
1269        return FINAL;
1270    }
1271
1272/* *************************************************************************
1273 * Type Validation
1274 **************************************************************************/
1275
1276    /** Validate a type expression. That is,
1277     *  check that all type arguments of a parametric type are within
1278     *  their bounds. This must be done in a second phase after type attribution
1279     *  since a class might have a subclass as type parameter bound. E.g:
1280     *
1281     *  <pre>{@code
1282     *  class B<A extends C> { ... }
1283     *  class C extends B<C> { ... }
1284     *  }</pre>
1285     *
1286     *  and we can't make sure that the bound is already attributed because
1287     *  of possible cycles.
1288     *
1289     * Visitor method: Validate a type expression, if it is not null, catching
1290     *  and reporting any completion failures.
1291     */
1292    void validate(JCTree tree, Env<AttrContext> env) {
1293        validate(tree, env, true);
1294    }
1295    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1296        new Validator(env).validateTree(tree, checkRaw, true);
1297    }
1298
1299    /** Visitor method: Validate a list of type expressions.
1300     */
1301    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1302        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1303            validate(l.head, env);
1304    }
1305
1306    /** A visitor class for type validation.
1307     */
1308    class Validator extends JCTree.Visitor {
1309
1310        boolean checkRaw;
1311        boolean isOuter;
1312        Env<AttrContext> env;
1313
1314        Validator(Env<AttrContext> env) {
1315            this.env = env;
1316        }
1317
1318        @Override
1319        public void visitTypeArray(JCArrayTypeTree tree) {
1320            validateTree(tree.elemtype, checkRaw, isOuter);
1321        }
1322
1323        @Override
1324        public void visitTypeApply(JCTypeApply tree) {
1325            if (tree.type.hasTag(CLASS)) {
1326                List<JCExpression> args = tree.arguments;
1327                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1328
1329                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1330                if (incompatibleArg != null) {
1331                    for (JCTree arg : tree.arguments) {
1332                        if (arg.type == incompatibleArg) {
1333                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1334                        }
1335                        forms = forms.tail;
1336                     }
1337                 }
1338
1339                forms = tree.type.tsym.type.getTypeArguments();
1340
1341                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1342
1343                // For matching pairs of actual argument types `a' and
1344                // formal type parameters with declared bound `b' ...
1345                while (args.nonEmpty() && forms.nonEmpty()) {
1346                    validateTree(args.head,
1347                            !(isOuter && is_java_lang_Class),
1348                            false);
1349                    args = args.tail;
1350                    forms = forms.tail;
1351                }
1352
1353                // Check that this type is either fully parameterized, or
1354                // not parameterized at all.
1355                if (tree.type.getEnclosingType().isRaw())
1356                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1357                if (tree.clazz.hasTag(SELECT))
1358                    visitSelectInternal((JCFieldAccess)tree.clazz);
1359            }
1360        }
1361
1362        @Override
1363        public void visitTypeParameter(JCTypeParameter tree) {
1364            validateTrees(tree.bounds, true, isOuter);
1365            checkClassBounds(tree.pos(), tree.type);
1366        }
1367
1368        @Override
1369        public void visitWildcard(JCWildcard tree) {
1370            if (tree.inner != null)
1371                validateTree(tree.inner, true, isOuter);
1372        }
1373
1374        @Override
1375        public void visitSelect(JCFieldAccess tree) {
1376            if (tree.type.hasTag(CLASS)) {
1377                visitSelectInternal(tree);
1378
1379                // Check that this type is either fully parameterized, or
1380                // not parameterized at all.
1381                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1382                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1383            }
1384        }
1385
1386        public void visitSelectInternal(JCFieldAccess tree) {
1387            if (tree.type.tsym.isStatic() &&
1388                tree.selected.type.isParameterized()) {
1389                // The enclosing type is not a class, so we are
1390                // looking at a static member type.  However, the
1391                // qualifying expression is parameterized.
1392                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1393            } else {
1394                // otherwise validate the rest of the expression
1395                tree.selected.accept(this);
1396            }
1397        }
1398
1399        @Override
1400        public void visitAnnotatedType(JCAnnotatedType tree) {
1401            tree.underlyingType.accept(this);
1402        }
1403
1404        @Override
1405        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1406            if (that.type.hasTag(TypeTag.VOID)) {
1407                log.error(that.pos(), "void.not.allowed.here");
1408            }
1409            super.visitTypeIdent(that);
1410        }
1411
1412        /** Default visitor method: do nothing.
1413         */
1414        @Override
1415        public void visitTree(JCTree tree) {
1416        }
1417
1418        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1419            if (tree != null) {
1420                boolean prevCheckRaw = this.checkRaw;
1421                this.checkRaw = checkRaw;
1422                this.isOuter = isOuter;
1423
1424                try {
1425                    tree.accept(this);
1426                    if (checkRaw)
1427                        checkRaw(tree, env);
1428                } catch (CompletionFailure ex) {
1429                    completionError(tree.pos(), ex);
1430                } finally {
1431                    this.checkRaw = prevCheckRaw;
1432                }
1433            }
1434        }
1435
1436        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1437            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1438                validateTree(l.head, checkRaw, isOuter);
1439        }
1440    }
1441
1442    void checkRaw(JCTree tree, Env<AttrContext> env) {
1443        if (lint.isEnabled(LintCategory.RAW) &&
1444            tree.type.hasTag(CLASS) &&
1445            !TreeInfo.isDiamond(tree) &&
1446            !withinAnonConstr(env) &&
1447            tree.type.isRaw()) {
1448            log.warning(LintCategory.RAW,
1449                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1450        }
1451    }
1452    //where
1453        private boolean withinAnonConstr(Env<AttrContext> env) {
1454            return env.enclClass.name.isEmpty() &&
1455                    env.enclMethod != null && env.enclMethod.name == names.init;
1456        }
1457
1458/* *************************************************************************
1459 * Exception checking
1460 **************************************************************************/
1461
1462    /* The following methods treat classes as sets that contain
1463     * the class itself and all their subclasses
1464     */
1465
1466    /** Is given type a subtype of some of the types in given list?
1467     */
1468    boolean subset(Type t, List<Type> ts) {
1469        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1470            if (types.isSubtype(t, l.head)) return true;
1471        return false;
1472    }
1473
1474    /** Is given type a subtype or supertype of
1475     *  some of the types in given list?
1476     */
1477    boolean intersects(Type t, List<Type> ts) {
1478        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1479            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1480        return false;
1481    }
1482
1483    /** Add type set to given type list, unless it is a subclass of some class
1484     *  in the list.
1485     */
1486    List<Type> incl(Type t, List<Type> ts) {
1487        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1488    }
1489
1490    /** Remove type set from type set list.
1491     */
1492    List<Type> excl(Type t, List<Type> ts) {
1493        if (ts.isEmpty()) {
1494            return ts;
1495        } else {
1496            List<Type> ts1 = excl(t, ts.tail);
1497            if (types.isSubtype(ts.head, t)) return ts1;
1498            else if (ts1 == ts.tail) return ts;
1499            else return ts1.prepend(ts.head);
1500        }
1501    }
1502
1503    /** Form the union of two type set lists.
1504     */
1505    List<Type> union(List<Type> ts1, List<Type> ts2) {
1506        List<Type> ts = ts1;
1507        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1508            ts = incl(l.head, ts);
1509        return ts;
1510    }
1511
1512    /** Form the difference of two type lists.
1513     */
1514    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1515        List<Type> ts = ts1;
1516        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1517            ts = excl(l.head, ts);
1518        return ts;
1519    }
1520
1521    /** Form the intersection of two type lists.
1522     */
1523    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1524        List<Type> ts = List.nil();
1525        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1526            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1527        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1528            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1529        return ts;
1530    }
1531
1532    /** Is exc an exception symbol that need not be declared?
1533     */
1534    boolean isUnchecked(ClassSymbol exc) {
1535        return
1536            exc.kind == ERR ||
1537            exc.isSubClass(syms.errorType.tsym, types) ||
1538            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1539    }
1540
1541    /** Is exc an exception type that need not be declared?
1542     */
1543    boolean isUnchecked(Type exc) {
1544        return
1545            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1546            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1547            exc.hasTag(BOT);
1548    }
1549
1550    /** Same, but handling completion failures.
1551     */
1552    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1553        try {
1554            return isUnchecked(exc);
1555        } catch (CompletionFailure ex) {
1556            completionError(pos, ex);
1557            return true;
1558        }
1559    }
1560
1561    /** Is exc handled by given exception list?
1562     */
1563    boolean isHandled(Type exc, List<Type> handled) {
1564        return isUnchecked(exc) || subset(exc, handled);
1565    }
1566
1567    /** Return all exceptions in thrown list that are not in handled list.
1568     *  @param thrown     The list of thrown exceptions.
1569     *  @param handled    The list of handled exceptions.
1570     */
1571    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1572        List<Type> unhandled = List.nil();
1573        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1574            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1575        return unhandled;
1576    }
1577
1578/* *************************************************************************
1579 * Overriding/Implementation checking
1580 **************************************************************************/
1581
1582    /** The level of access protection given by a flag set,
1583     *  where PRIVATE is highest and PUBLIC is lowest.
1584     */
1585    static int protection(long flags) {
1586        switch ((short)(flags & AccessFlags)) {
1587        case PRIVATE: return 3;
1588        case PROTECTED: return 1;
1589        default:
1590        case PUBLIC: return 0;
1591        case 0: return 2;
1592        }
1593    }
1594
1595    /** A customized "cannot override" error message.
1596     *  @param m      The overriding method.
1597     *  @param other  The overridden method.
1598     *  @return       An internationalized string.
1599     */
1600    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1601        String key;
1602        if ((other.owner.flags() & INTERFACE) == 0)
1603            key = "cant.override";
1604        else if ((m.owner.flags() & INTERFACE) == 0)
1605            key = "cant.implement";
1606        else
1607            key = "clashes.with";
1608        return diags.fragment(key, m, m.location(), other, other.location());
1609    }
1610
1611    /** A customized "override" warning message.
1612     *  @param m      The overriding method.
1613     *  @param other  The overridden method.
1614     *  @return       An internationalized string.
1615     */
1616    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1617        String key;
1618        if ((other.owner.flags() & INTERFACE) == 0)
1619            key = "unchecked.override";
1620        else if ((m.owner.flags() & INTERFACE) == 0)
1621            key = "unchecked.implement";
1622        else
1623            key = "unchecked.clash.with";
1624        return diags.fragment(key, m, m.location(), other, other.location());
1625    }
1626
1627    /** A customized "override" warning message.
1628     *  @param m      The overriding method.
1629     *  @param other  The overridden method.
1630     *  @return       An internationalized string.
1631     */
1632    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1633        String key;
1634        if ((other.owner.flags() & INTERFACE) == 0)
1635            key = "varargs.override";
1636        else  if ((m.owner.flags() & INTERFACE) == 0)
1637            key = "varargs.implement";
1638        else
1639            key = "varargs.clash.with";
1640        return diags.fragment(key, m, m.location(), other, other.location());
1641    }
1642
1643    /** Check that this method conforms with overridden method 'other'.
1644     *  where `origin' is the class where checking started.
1645     *  Complications:
1646     *  (1) Do not check overriding of synthetic methods
1647     *      (reason: they might be final).
1648     *      todo: check whether this is still necessary.
1649     *  (2) Admit the case where an interface proxy throws fewer exceptions
1650     *      than the method it implements. Augment the proxy methods with the
1651     *      undeclared exceptions in this case.
1652     *  (3) When generics are enabled, admit the case where an interface proxy
1653     *      has a result type
1654     *      extended by the result type of the method it implements.
1655     *      Change the proxies result type to the smaller type in this case.
1656     *
1657     *  @param tree         The tree from which positions
1658     *                      are extracted for errors.
1659     *  @param m            The overriding method.
1660     *  @param other        The overridden method.
1661     *  @param origin       The class of which the overriding method
1662     *                      is a member.
1663     */
1664    void checkOverride(JCTree tree,
1665                       MethodSymbol m,
1666                       MethodSymbol other,
1667                       ClassSymbol origin) {
1668        // Don't check overriding of synthetic methods or by bridge methods.
1669        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1670            return;
1671        }
1672
1673        // Error if static method overrides instance method (JLS 8.4.6.2).
1674        if ((m.flags() & STATIC) != 0 &&
1675                   (other.flags() & STATIC) == 0) {
1676            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1677                      cannotOverride(m, other));
1678            m.flags_field |= BAD_OVERRIDE;
1679            return;
1680        }
1681
1682        // Error if instance method overrides static or final
1683        // method (JLS 8.4.6.1).
1684        if ((other.flags() & FINAL) != 0 ||
1685                 (m.flags() & STATIC) == 0 &&
1686                 (other.flags() & STATIC) != 0) {
1687            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1688                      cannotOverride(m, other),
1689                      asFlagSet(other.flags() & (FINAL | STATIC)));
1690            m.flags_field |= BAD_OVERRIDE;
1691            return;
1692        }
1693
1694        if ((m.owner.flags() & ANNOTATION) != 0) {
1695            // handled in validateAnnotationMethod
1696            return;
1697        }
1698
1699        // Error if overriding method has weaker access (JLS 8.4.6.3).
1700        if (protection(m.flags()) > protection(other.flags())) {
1701            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1702                      cannotOverride(m, other),
1703                      (other.flags() & AccessFlags) == 0 ?
1704                          "package" :
1705                          asFlagSet(other.flags() & AccessFlags));
1706            m.flags_field |= BAD_OVERRIDE;
1707            return;
1708        }
1709
1710        Type mt = types.memberType(origin.type, m);
1711        Type ot = types.memberType(origin.type, other);
1712        // Error if overriding result type is different
1713        // (or, in the case of generics mode, not a subtype) of
1714        // overridden result type. We have to rename any type parameters
1715        // before comparing types.
1716        List<Type> mtvars = mt.getTypeArguments();
1717        List<Type> otvars = ot.getTypeArguments();
1718        Type mtres = mt.getReturnType();
1719        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1720
1721        overrideWarner.clear();
1722        boolean resultTypesOK =
1723            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1724        if (!resultTypesOK) {
1725            if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1726                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1727                        Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1728                                        other.location()), mtres, otres));
1729                m.flags_field |= BAD_OVERRIDE;
1730            } else {
1731                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1732                        "override.incompatible.ret",
1733                        cannotOverride(m, other),
1734                        mtres, otres);
1735                m.flags_field |= BAD_OVERRIDE;
1736            }
1737            return;
1738        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1739            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1740                    "override.unchecked.ret",
1741                    uncheckedOverrides(m, other),
1742                    mtres, otres);
1743        }
1744
1745        // Error if overriding method throws an exception not reported
1746        // by overridden method.
1747        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1748        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1749        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1750        if (unhandledErased.nonEmpty()) {
1751            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1752                      "override.meth.doesnt.throw",
1753                      cannotOverride(m, other),
1754                      unhandledUnerased.head);
1755            m.flags_field |= BAD_OVERRIDE;
1756            return;
1757        }
1758        else if (unhandledUnerased.nonEmpty()) {
1759            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1760                          "override.unchecked.thrown",
1761                         cannotOverride(m, other),
1762                         unhandledUnerased.head);
1763            return;
1764        }
1765
1766        // Optional warning if varargs don't agree
1767        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1768            && lint.isEnabled(LintCategory.OVERRIDES)) {
1769            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1770                        ((m.flags() & Flags.VARARGS) != 0)
1771                        ? "override.varargs.missing"
1772                        : "override.varargs.extra",
1773                        varargsOverrides(m, other));
1774        }
1775
1776        // Warn if instance method overrides bridge method (compiler spec ??)
1777        if ((other.flags() & BRIDGE) != 0) {
1778            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1779                        uncheckedOverrides(m, other));
1780        }
1781
1782        // Warn if a deprecated method overridden by a non-deprecated one.
1783        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1784            Lint prevLint = setLint(lint.augment(m));
1785            try {
1786                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1787            } finally {
1788                setLint(prevLint);
1789            }
1790        }
1791    }
1792    // where
1793        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1794            // If the method, m, is defined in an interface, then ignore the issue if the method
1795            // is only inherited via a supertype and also implemented in the supertype,
1796            // because in that case, we will rediscover the issue when examining the method
1797            // in the supertype.
1798            // If the method, m, is not defined in an interface, then the only time we need to
1799            // address the issue is when the method is the supertype implemementation: any other
1800            // case, we will have dealt with when examining the supertype classes
1801            ClassSymbol mc = m.enclClass();
1802            Type st = types.supertype(origin.type);
1803            if (!st.hasTag(CLASS))
1804                return true;
1805            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1806
1807            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1808                List<Type> intfs = types.interfaces(origin.type);
1809                return (intfs.contains(mc.type) ? false : (stimpl != null));
1810            }
1811            else
1812                return (stimpl != m);
1813        }
1814
1815
1816    // used to check if there were any unchecked conversions
1817    Warner overrideWarner = new Warner();
1818
1819    /** Check that a class does not inherit two concrete methods
1820     *  with the same signature.
1821     *  @param pos          Position to be used for error reporting.
1822     *  @param site         The class type to be checked.
1823     */
1824    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1825        Type sup = types.supertype(site);
1826        if (!sup.hasTag(CLASS)) return;
1827
1828        for (Type t1 = sup;
1829             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1830             t1 = types.supertype(t1)) {
1831            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1832                if (s1.kind != MTH ||
1833                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1834                    !s1.isInheritedIn(site.tsym, types) ||
1835                    ((MethodSymbol)s1).implementation(site.tsym,
1836                                                      types,
1837                                                      true) != s1)
1838                    continue;
1839                Type st1 = types.memberType(t1, s1);
1840                int s1ArgsLength = st1.getParameterTypes().length();
1841                if (st1 == s1.type) continue;
1842
1843                for (Type t2 = sup;
1844                     t2.hasTag(CLASS);
1845                     t2 = types.supertype(t2)) {
1846                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1847                        if (s2 == s1 ||
1848                            s2.kind != MTH ||
1849                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1850                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1851                            !s2.isInheritedIn(site.tsym, types) ||
1852                            ((MethodSymbol)s2).implementation(site.tsym,
1853                                                              types,
1854                                                              true) != s2)
1855                            continue;
1856                        Type st2 = types.memberType(t2, s2);
1857                        if (types.overrideEquivalent(st1, st2))
1858                            log.error(pos, "concrete.inheritance.conflict",
1859                                      s1, t1, s2, t2, sup);
1860                    }
1861                }
1862            }
1863        }
1864    }
1865
1866    /** Check that classes (or interfaces) do not each define an abstract
1867     *  method with same name and arguments but incompatible return types.
1868     *  @param pos          Position to be used for error reporting.
1869     *  @param t1           The first argument type.
1870     *  @param t2           The second argument type.
1871     */
1872    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1873                                            Type t1,
1874                                            Type t2,
1875                                            Type site) {
1876        if ((site.tsym.flags() & COMPOUND) != 0) {
1877            // special case for intersections: need to eliminate wildcards in supertypes
1878            t1 = types.capture(t1);
1879            t2 = types.capture(t2);
1880        }
1881        return firstIncompatibility(pos, t1, t2, site) == null;
1882    }
1883
1884    /** Return the first method which is defined with same args
1885     *  but different return types in two given interfaces, or null if none
1886     *  exists.
1887     *  @param t1     The first type.
1888     *  @param t2     The second type.
1889     *  @param site   The most derived type.
1890     *  @returns symbol from t2 that conflicts with one in t1.
1891     */
1892    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1893        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1894        closure(t1, interfaces1);
1895        Map<TypeSymbol,Type> interfaces2;
1896        if (t1 == t2)
1897            interfaces2 = interfaces1;
1898        else
1899            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1900
1901        for (Type t3 : interfaces1.values()) {
1902            for (Type t4 : interfaces2.values()) {
1903                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1904                if (s != null) return s;
1905            }
1906        }
1907        return null;
1908    }
1909
1910    /** Compute all the supertypes of t, indexed by type symbol. */
1911    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1912        if (!t.hasTag(CLASS)) return;
1913        if (typeMap.put(t.tsym, t) == null) {
1914            closure(types.supertype(t), typeMap);
1915            for (Type i : types.interfaces(t))
1916                closure(i, typeMap);
1917        }
1918    }
1919
1920    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1921    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1922        if (!t.hasTag(CLASS)) return;
1923        if (typesSkip.get(t.tsym) != null) return;
1924        if (typeMap.put(t.tsym, t) == null) {
1925            closure(types.supertype(t), typesSkip, typeMap);
1926            for (Type i : types.interfaces(t))
1927                closure(i, typesSkip, typeMap);
1928        }
1929    }
1930
1931    /** Return the first method in t2 that conflicts with a method from t1. */
1932    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1933        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1934            Type st1 = null;
1935            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1936                    (s1.flags() & SYNTHETIC) != 0) continue;
1937            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1938            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1939            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1940                if (s1 == s2) continue;
1941                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1942                        (s2.flags() & SYNTHETIC) != 0) continue;
1943                if (st1 == null) st1 = types.memberType(t1, s1);
1944                Type st2 = types.memberType(t2, s2);
1945                if (types.overrideEquivalent(st1, st2)) {
1946                    List<Type> tvars1 = st1.getTypeArguments();
1947                    List<Type> tvars2 = st2.getTypeArguments();
1948                    Type rt1 = st1.getReturnType();
1949                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1950                    boolean compat =
1951                        types.isSameType(rt1, rt2) ||
1952                        !rt1.isPrimitiveOrVoid() &&
1953                        !rt2.isPrimitiveOrVoid() &&
1954                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1955                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1956                         checkCommonOverriderIn(s1,s2,site);
1957                    if (!compat) {
1958                        log.error(pos, "types.incompatible.diff.ret",
1959                            t1, t2, s2.name +
1960                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1961                        return s2;
1962                    }
1963                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1964                        !checkCommonOverriderIn(s1, s2, site)) {
1965                    log.error(pos,
1966                            "name.clash.same.erasure.no.override",
1967                            s1, s1.location(),
1968                            s2, s2.location());
1969                    return s2;
1970                }
1971            }
1972        }
1973        return null;
1974    }
1975    //WHERE
1976    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1977        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1978        Type st1 = types.memberType(site, s1);
1979        Type st2 = types.memberType(site, s2);
1980        closure(site, supertypes);
1981        for (Type t : supertypes.values()) {
1982            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1983                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1984                Type st3 = types.memberType(site,s3);
1985                if (types.overrideEquivalent(st3, st1) &&
1986                        types.overrideEquivalent(st3, st2) &&
1987                        types.returnTypeSubstitutable(st3, st1) &&
1988                        types.returnTypeSubstitutable(st3, st2)) {
1989                    return true;
1990                }
1991            }
1992        }
1993        return false;
1994    }
1995
1996    /** Check that a given method conforms with any method it overrides.
1997     *  @param tree         The tree from which positions are extracted
1998     *                      for errors.
1999     *  @param m            The overriding method.
2000     */
2001    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2002        ClassSymbol origin = (ClassSymbol)m.owner;
2003        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2004            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2005                log.error(tree.pos(), "enum.no.finalize");
2006                return;
2007            }
2008        for (Type t = origin.type; t.hasTag(CLASS);
2009             t = types.supertype(t)) {
2010            if (t != origin.type) {
2011                checkOverride(tree, t, origin, m);
2012            }
2013            for (Type t2 : types.interfaces(t)) {
2014                checkOverride(tree, t2, origin, m);
2015            }
2016        }
2017
2018        final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2019        // Check if this method must override a super method due to being annotated with @Override
2020        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2021        // be treated "as if as they were annotated" with @Override.
2022        boolean mustOverride = explicitOverride ||
2023                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2024        if (mustOverride && !isOverrider(m)) {
2025            DiagnosticPosition pos = tree.pos();
2026            for (JCAnnotation a : tree.getModifiers().annotations) {
2027                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2028                    pos = a.pos();
2029                    break;
2030                }
2031            }
2032            log.error(pos,
2033                      explicitOverride ? Errors.MethodDoesNotOverrideSuperclass :
2034                                Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2035        }
2036    }
2037
2038    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2039        TypeSymbol c = site.tsym;
2040        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2041            if (m.overrides(sym, origin, types, false)) {
2042                if ((sym.flags() & ABSTRACT) == 0) {
2043                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2044                }
2045            }
2046        }
2047    }
2048
2049    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2050        public boolean accepts(Symbol s) {
2051            return MethodSymbol.implementation_filter.accepts(s) &&
2052                    (s.flags() & BAD_OVERRIDE) == 0;
2053
2054        }
2055    };
2056
2057    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2058            ClassSymbol someClass) {
2059        /* At present, annotations cannot possibly have a method that is override
2060         * equivalent with Object.equals(Object) but in any case the condition is
2061         * fine for completeness.
2062         */
2063        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2064            someClass.isInterface() || someClass.isEnum() ||
2065            (someClass.flags() & ANNOTATION) != 0 ||
2066            (someClass.flags() & ABSTRACT) != 0) return;
2067        //anonymous inner classes implementing interfaces need especial treatment
2068        if (someClass.isAnonymous()) {
2069            List<Type> interfaces =  types.interfaces(someClass.type);
2070            if (interfaces != null && !interfaces.isEmpty() &&
2071                interfaces.head.tsym == syms.comparatorType.tsym) return;
2072        }
2073        checkClassOverrideEqualsAndHash(pos, someClass);
2074    }
2075
2076    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2077            ClassSymbol someClass) {
2078        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2079            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2080                    .tsym.members().findFirst(names.equals);
2081            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2082                    .tsym.members().findFirst(names.hashCode);
2083            boolean overridesEquals = types.implementation(equalsAtObject,
2084                someClass, false, equalsHasCodeFilter).owner == someClass;
2085            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2086                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2087
2088            if (overridesEquals && !overridesHashCode) {
2089                log.warning(LintCategory.OVERRIDES, pos,
2090                        "override.equals.but.not.hashcode", someClass);
2091            }
2092        }
2093    }
2094
2095    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2096        ClashFilter cf = new ClashFilter(origin.type);
2097        return (cf.accepts(s1) &&
2098                cf.accepts(s2) &&
2099                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2100    }
2101
2102
2103    /** Check that all abstract members of given class have definitions.
2104     *  @param pos          Position to be used for error reporting.
2105     *  @param c            The class.
2106     */
2107    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2108        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2109        if (undef != null) {
2110            MethodSymbol undef1 =
2111                new MethodSymbol(undef.flags(), undef.name,
2112                                 types.memberType(c.type, undef), undef.owner);
2113            log.error(pos, "does.not.override.abstract",
2114                      c, undef1, undef1.location());
2115        }
2116    }
2117
2118    void checkNonCyclicDecl(JCClassDecl tree) {
2119        CycleChecker cc = new CycleChecker();
2120        cc.scan(tree);
2121        if (!cc.errorFound && !cc.partialCheck) {
2122            tree.sym.flags_field |= ACYCLIC;
2123        }
2124    }
2125
2126    class CycleChecker extends TreeScanner {
2127
2128        List<Symbol> seenClasses = List.nil();
2129        boolean errorFound = false;
2130        boolean partialCheck = false;
2131
2132        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2133            if (sym != null && sym.kind == TYP) {
2134                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2135                if (classEnv != null) {
2136                    DiagnosticSource prevSource = log.currentSource();
2137                    try {
2138                        log.useSource(classEnv.toplevel.sourcefile);
2139                        scan(classEnv.tree);
2140                    }
2141                    finally {
2142                        log.useSource(prevSource.getFile());
2143                    }
2144                } else if (sym.kind == TYP) {
2145                    checkClass(pos, sym, List.<JCTree>nil());
2146                }
2147            } else {
2148                //not completed yet
2149                partialCheck = true;
2150            }
2151        }
2152
2153        @Override
2154        public void visitSelect(JCFieldAccess tree) {
2155            super.visitSelect(tree);
2156            checkSymbol(tree.pos(), tree.sym);
2157        }
2158
2159        @Override
2160        public void visitIdent(JCIdent tree) {
2161            checkSymbol(tree.pos(), tree.sym);
2162        }
2163
2164        @Override
2165        public void visitTypeApply(JCTypeApply tree) {
2166            scan(tree.clazz);
2167        }
2168
2169        @Override
2170        public void visitTypeArray(JCArrayTypeTree tree) {
2171            scan(tree.elemtype);
2172        }
2173
2174        @Override
2175        public void visitClassDef(JCClassDecl tree) {
2176            List<JCTree> supertypes = List.nil();
2177            if (tree.getExtendsClause() != null) {
2178                supertypes = supertypes.prepend(tree.getExtendsClause());
2179            }
2180            if (tree.getImplementsClause() != null) {
2181                for (JCTree intf : tree.getImplementsClause()) {
2182                    supertypes = supertypes.prepend(intf);
2183                }
2184            }
2185            checkClass(tree.pos(), tree.sym, supertypes);
2186        }
2187
2188        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2189            if ((c.flags_field & ACYCLIC) != 0)
2190                return;
2191            if (seenClasses.contains(c)) {
2192                errorFound = true;
2193                noteCyclic(pos, (ClassSymbol)c);
2194            } else if (!c.type.isErroneous()) {
2195                try {
2196                    seenClasses = seenClasses.prepend(c);
2197                    if (c.type.hasTag(CLASS)) {
2198                        if (supertypes.nonEmpty()) {
2199                            scan(supertypes);
2200                        }
2201                        else {
2202                            ClassType ct = (ClassType)c.type;
2203                            if (ct.supertype_field == null ||
2204                                    ct.interfaces_field == null) {
2205                                //not completed yet
2206                                partialCheck = true;
2207                                return;
2208                            }
2209                            checkSymbol(pos, ct.supertype_field.tsym);
2210                            for (Type intf : ct.interfaces_field) {
2211                                checkSymbol(pos, intf.tsym);
2212                            }
2213                        }
2214                        if (c.owner.kind == TYP) {
2215                            checkSymbol(pos, c.owner);
2216                        }
2217                    }
2218                } finally {
2219                    seenClasses = seenClasses.tail;
2220                }
2221            }
2222        }
2223    }
2224
2225    /** Check for cyclic references. Issue an error if the
2226     *  symbol of the type referred to has a LOCKED flag set.
2227     *
2228     *  @param pos      Position to be used for error reporting.
2229     *  @param t        The type referred to.
2230     */
2231    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2232        checkNonCyclicInternal(pos, t);
2233    }
2234
2235
2236    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2237        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2238    }
2239
2240    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2241        final TypeVar tv;
2242        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2243            return;
2244        if (seen.contains(t)) {
2245            tv = (TypeVar)t;
2246            tv.bound = types.createErrorType(t);
2247            log.error(pos, "cyclic.inheritance", t);
2248        } else if (t.hasTag(TYPEVAR)) {
2249            tv = (TypeVar)t;
2250            seen = seen.prepend(tv);
2251            for (Type b : types.getBounds(tv))
2252                checkNonCyclic1(pos, b, seen);
2253        }
2254    }
2255
2256    /** Check for cyclic references. Issue an error if the
2257     *  symbol of the type referred to has a LOCKED flag set.
2258     *
2259     *  @param pos      Position to be used for error reporting.
2260     *  @param t        The type referred to.
2261     *  @returns        True if the check completed on all attributed classes
2262     */
2263    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2264        boolean complete = true; // was the check complete?
2265        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2266        Symbol c = t.tsym;
2267        if ((c.flags_field & ACYCLIC) != 0) return true;
2268
2269        if ((c.flags_field & LOCKED) != 0) {
2270            noteCyclic(pos, (ClassSymbol)c);
2271        } else if (!c.type.isErroneous()) {
2272            try {
2273                c.flags_field |= LOCKED;
2274                if (c.type.hasTag(CLASS)) {
2275                    ClassType clazz = (ClassType)c.type;
2276                    if (clazz.interfaces_field != null)
2277                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2278                            complete &= checkNonCyclicInternal(pos, l.head);
2279                    if (clazz.supertype_field != null) {
2280                        Type st = clazz.supertype_field;
2281                        if (st != null && st.hasTag(CLASS))
2282                            complete &= checkNonCyclicInternal(pos, st);
2283                    }
2284                    if (c.owner.kind == TYP)
2285                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2286                }
2287            } finally {
2288                c.flags_field &= ~LOCKED;
2289            }
2290        }
2291        if (complete)
2292            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2293        if (complete) c.flags_field |= ACYCLIC;
2294        return complete;
2295    }
2296
2297    /** Note that we found an inheritance cycle. */
2298    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2299        log.error(pos, "cyclic.inheritance", c);
2300        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2301            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2302        Type st = types.supertype(c.type);
2303        if (st.hasTag(CLASS))
2304            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2305        c.type = types.createErrorType(c, c.type);
2306        c.flags_field |= ACYCLIC;
2307    }
2308
2309    /** Check that all methods which implement some
2310     *  method conform to the method they implement.
2311     *  @param tree         The class definition whose members are checked.
2312     */
2313    void checkImplementations(JCClassDecl tree) {
2314        checkImplementations(tree, tree.sym, tree.sym);
2315    }
2316    //where
2317        /** Check that all methods which implement some
2318         *  method in `ic' conform to the method they implement.
2319         */
2320        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2321            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2322                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2323                if ((lc.flags() & ABSTRACT) != 0) {
2324                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2325                        if (sym.kind == MTH &&
2326                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2327                            MethodSymbol absmeth = (MethodSymbol)sym;
2328                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2329                            if (implmeth != null && implmeth != absmeth &&
2330                                (implmeth.owner.flags() & INTERFACE) ==
2331                                (origin.flags() & INTERFACE)) {
2332                                // don't check if implmeth is in a class, yet
2333                                // origin is an interface. This case arises only
2334                                // if implmeth is declared in Object. The reason is
2335                                // that interfaces really don't inherit from
2336                                // Object it's just that the compiler represents
2337                                // things that way.
2338                                checkOverride(tree, implmeth, absmeth, origin);
2339                            }
2340                        }
2341                    }
2342                }
2343            }
2344        }
2345
2346    /** Check that all abstract methods implemented by a class are
2347     *  mutually compatible.
2348     *  @param pos          Position to be used for error reporting.
2349     *  @param c            The class whose interfaces are checked.
2350     */
2351    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2352        List<Type> supertypes = types.interfaces(c);
2353        Type supertype = types.supertype(c);
2354        if (supertype.hasTag(CLASS) &&
2355            (supertype.tsym.flags() & ABSTRACT) != 0)
2356            supertypes = supertypes.prepend(supertype);
2357        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2358            if (!l.head.getTypeArguments().isEmpty() &&
2359                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2360                return;
2361            for (List<Type> m = supertypes; m != l; m = m.tail)
2362                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2363                    return;
2364        }
2365        checkCompatibleConcretes(pos, c);
2366    }
2367
2368    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2369        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2370            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2371                // VM allows methods and variables with differing types
2372                if (sym.kind == sym2.kind &&
2373                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2374                    sym != sym2 &&
2375                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2376                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2377                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2378                    return;
2379                }
2380            }
2381        }
2382    }
2383
2384    /** Check that all non-override equivalent methods accessible from 'site'
2385     *  are mutually compatible (JLS 8.4.8/9.4.1).
2386     *
2387     *  @param pos  Position to be used for error reporting.
2388     *  @param site The class whose methods are checked.
2389     *  @param sym  The method symbol to be checked.
2390     */
2391    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2392         ClashFilter cf = new ClashFilter(site);
2393        //for each method m1 that is overridden (directly or indirectly)
2394        //by method 'sym' in 'site'...
2395
2396        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2397        boolean overridesAny = false;
2398        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2399            if (!sym.overrides(m1, site.tsym, types, false)) {
2400                if (m1 == sym) {
2401                    continue;
2402                }
2403
2404                if (!overridesAny) {
2405                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2406                }
2407                continue;
2408            }
2409
2410            if (m1 != sym) {
2411                overridesAny = true;
2412                potentiallyAmbiguousList = List.nil();
2413            }
2414
2415            //...check each method m2 that is a member of 'site'
2416            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2417                if (m2 == m1) continue;
2418                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2419                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2420                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2421                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2422                    sym.flags_field |= CLASH;
2423                    String key = m1 == sym ?
2424                            "name.clash.same.erasure.no.override" :
2425                            "name.clash.same.erasure.no.override.1";
2426                    log.error(pos,
2427                            key,
2428                            sym, sym.location(),
2429                            m2, m2.location(),
2430                            m1, m1.location());
2431                    return;
2432                }
2433            }
2434        }
2435
2436        if (!overridesAny) {
2437            for (MethodSymbol m: potentiallyAmbiguousList) {
2438                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2439            }
2440        }
2441    }
2442
2443    /** Check that all static methods accessible from 'site' are
2444     *  mutually compatible (JLS 8.4.8).
2445     *
2446     *  @param pos  Position to be used for error reporting.
2447     *  @param site The class whose methods are checked.
2448     *  @param sym  The method symbol to be checked.
2449     */
2450    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2451        ClashFilter cf = new ClashFilter(site);
2452        //for each method m1 that is a member of 'site'...
2453        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2454            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2455            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2456            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2457                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2458                    log.error(pos,
2459                            "name.clash.same.erasure.no.hide",
2460                            sym, sym.location(),
2461                            s, s.location());
2462                    return;
2463                } else {
2464                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2465                }
2466            }
2467         }
2468     }
2469
2470     //where
2471     private class ClashFilter implements Filter<Symbol> {
2472
2473         Type site;
2474
2475         ClashFilter(Type site) {
2476             this.site = site;
2477         }
2478
2479         boolean shouldSkip(Symbol s) {
2480             return (s.flags() & CLASH) != 0 &&
2481                s.owner == site.tsym;
2482         }
2483
2484         public boolean accepts(Symbol s) {
2485             return s.kind == MTH &&
2486                     (s.flags() & SYNTHETIC) == 0 &&
2487                     !shouldSkip(s) &&
2488                     s.isInheritedIn(site.tsym, types) &&
2489                     !s.isConstructor();
2490         }
2491     }
2492
2493    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2494        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2495        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2496            Assert.check(m.kind == MTH);
2497            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2498            if (prov.size() > 1) {
2499                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2500                ListBuffer<Symbol> defaults = new ListBuffer<>();
2501                for (MethodSymbol provSym : prov) {
2502                    if ((provSym.flags() & DEFAULT) != 0) {
2503                        defaults = defaults.append(provSym);
2504                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2505                        abstracts = abstracts.append(provSym);
2506                    }
2507                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2508                        //strong semantics - issue an error if two sibling interfaces
2509                        //have two override-equivalent defaults - or if one is abstract
2510                        //and the other is default
2511                        String errKey;
2512                        Symbol s1 = defaults.first();
2513                        Symbol s2;
2514                        if (defaults.size() > 1) {
2515                            errKey = "types.incompatible.unrelated.defaults";
2516                            s2 = defaults.toList().tail.head;
2517                        } else {
2518                            errKey = "types.incompatible.abstract.default";
2519                            s2 = abstracts.first();
2520                        }
2521                        log.error(pos, errKey,
2522                                Kinds.kindName(site.tsym), site,
2523                                m.name, types.memberType(site, m).getParameterTypes(),
2524                                s1.location(), s2.location());
2525                        break;
2526                    }
2527                }
2528            }
2529        }
2530    }
2531
2532    //where
2533     private class DefaultMethodClashFilter implements Filter<Symbol> {
2534
2535         Type site;
2536
2537         DefaultMethodClashFilter(Type site) {
2538             this.site = site;
2539         }
2540
2541         public boolean accepts(Symbol s) {
2542             return s.kind == MTH &&
2543                     (s.flags() & DEFAULT) != 0 &&
2544                     s.isInheritedIn(site.tsym, types) &&
2545                     !s.isConstructor();
2546         }
2547     }
2548
2549    /**
2550      * Report warnings for potentially ambiguous method declarations. Two declarations
2551      * are potentially ambiguous if they feature two unrelated functional interface
2552      * in same argument position (in which case, a call site passing an implicit
2553      * lambda would be ambiguous).
2554      */
2555    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2556            MethodSymbol msym1, MethodSymbol msym2) {
2557        if (msym1 != msym2 &&
2558                allowDefaultMethods &&
2559                lint.isEnabled(LintCategory.OVERLOADS) &&
2560                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2561                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2562            Type mt1 = types.memberType(site, msym1);
2563            Type mt2 = types.memberType(site, msym2);
2564            //if both generic methods, adjust type variables
2565            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2566                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2567                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2568            }
2569            //expand varargs methods if needed
2570            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2571            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2572            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2573            //if arities don't match, exit
2574            if (args1.length() != args2.length()) return;
2575            boolean potentiallyAmbiguous = false;
2576            while (args1.nonEmpty() && args2.nonEmpty()) {
2577                Type s = args1.head;
2578                Type t = args2.head;
2579                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2580                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2581                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2582                            types.findDescriptorType(s).getParameterTypes().length() ==
2583                            types.findDescriptorType(t).getParameterTypes().length()) {
2584                        potentiallyAmbiguous = true;
2585                    } else {
2586                        break;
2587                    }
2588                }
2589                args1 = args1.tail;
2590                args2 = args2.tail;
2591            }
2592            if (potentiallyAmbiguous) {
2593                //we found two incompatible functional interfaces with same arity
2594                //this means a call site passing an implicit lambda would be ambigiuous
2595                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2596                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2597                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2598                            msym1, msym1.location(),
2599                            msym2, msym2.location());
2600                return;
2601            }
2602        }
2603    }
2604
2605    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2606        if (warnOnAccessToSensitiveMembers) {
2607            Symbol sym = TreeInfo.symbol(tree);
2608            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2609                return;
2610            }
2611
2612            if (sym.kind == VAR) {
2613                if ((sym.flags() & PARAMETER) != 0 ||
2614                    sym.isLocal() ||
2615                    sym.name == names._this ||
2616                    sym.name == names._super) {
2617                    return;
2618                }
2619            }
2620
2621            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2622                    isEffectivelyNonPublic(sym)) {
2623                log.warning(tree.pos(),
2624                        "access.to.sensitive.member.from.serializable.element", sym);
2625            }
2626        }
2627    }
2628
2629    private boolean isEffectivelyNonPublic(Symbol sym) {
2630        if (sym.packge() == syms.rootPackage) {
2631            return false;
2632        }
2633
2634        while (sym.kind != PCK) {
2635            if ((sym.flags() & PUBLIC) == 0) {
2636                return true;
2637            }
2638            sym = sym.owner;
2639        }
2640        return false;
2641    }
2642
2643    /** Report a conflict between a user symbol and a synthetic symbol.
2644     */
2645    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2646        if (!sym.type.isErroneous()) {
2647            log.error(pos, "synthetic.name.conflict", sym, sym.location());
2648        }
2649    }
2650
2651    /** Check that class c does not implement directly or indirectly
2652     *  the same parameterized interface with two different argument lists.
2653     *  @param pos          Position to be used for error reporting.
2654     *  @param type         The type whose interfaces are checked.
2655     */
2656    void checkClassBounds(DiagnosticPosition pos, Type type) {
2657        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2658    }
2659//where
2660        /** Enter all interfaces of type `type' into the hash table `seensofar'
2661         *  with their class symbol as key and their type as value. Make
2662         *  sure no class is entered with two different types.
2663         */
2664        void checkClassBounds(DiagnosticPosition pos,
2665                              Map<TypeSymbol,Type> seensofar,
2666                              Type type) {
2667            if (type.isErroneous()) return;
2668            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2669                Type it = l.head;
2670                Type oldit = seensofar.put(it.tsym, it);
2671                if (oldit != null) {
2672                    List<Type> oldparams = oldit.allparams();
2673                    List<Type> newparams = it.allparams();
2674                    if (!types.containsTypeEquivalent(oldparams, newparams))
2675                        log.error(pos, "cant.inherit.diff.arg",
2676                                  it.tsym, Type.toString(oldparams),
2677                                  Type.toString(newparams));
2678                }
2679                checkClassBounds(pos, seensofar, it);
2680            }
2681            Type st = types.supertype(type);
2682            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2683        }
2684
2685    /** Enter interface into into set.
2686     *  If it existed already, issue a "repeated interface" error.
2687     */
2688    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2689        if (its.contains(it))
2690            log.error(pos, "repeated.interface");
2691        else {
2692            its.add(it);
2693        }
2694    }
2695
2696/* *************************************************************************
2697 * Check annotations
2698 **************************************************************************/
2699
2700    /**
2701     * Recursively validate annotations values
2702     */
2703    void validateAnnotationTree(JCTree tree) {
2704        class AnnotationValidator extends TreeScanner {
2705            @Override
2706            public void visitAnnotation(JCAnnotation tree) {
2707                if (!tree.type.isErroneous()) {
2708                    super.visitAnnotation(tree);
2709                    validateAnnotation(tree);
2710                }
2711            }
2712        }
2713        tree.accept(new AnnotationValidator());
2714    }
2715
2716    /**
2717     *  {@literal
2718     *  Annotation types are restricted to primitives, String, an
2719     *  enum, an annotation, Class, Class<?>, Class<? extends
2720     *  Anything>, arrays of the preceding.
2721     *  }
2722     */
2723    void validateAnnotationType(JCTree restype) {
2724        // restype may be null if an error occurred, so don't bother validating it
2725        if (restype != null) {
2726            validateAnnotationType(restype.pos(), restype.type);
2727        }
2728    }
2729
2730    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2731        if (type.isPrimitive()) return;
2732        if (types.isSameType(type, syms.stringType)) return;
2733        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2734        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2735        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2736        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2737            validateAnnotationType(pos, types.elemtype(type));
2738            return;
2739        }
2740        log.error(pos, "invalid.annotation.member.type");
2741    }
2742
2743    /**
2744     * "It is also a compile-time error if any method declared in an
2745     * annotation type has a signature that is override-equivalent to
2746     * that of any public or protected method declared in class Object
2747     * or in the interface annotation.Annotation."
2748     *
2749     * @jls 9.6 Annotation Types
2750     */
2751    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2752        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2753            Scope s = sup.tsym.members();
2754            for (Symbol sym : s.getSymbolsByName(m.name)) {
2755                if (sym.kind == MTH &&
2756                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2757                    types.overrideEquivalent(m.type, sym.type))
2758                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2759            }
2760        }
2761    }
2762
2763    /** Check the annotations of a symbol.
2764     */
2765    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2766        for (JCAnnotation a : annotations)
2767            validateAnnotation(a, s);
2768    }
2769
2770    /** Check the type annotations.
2771     */
2772    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2773        for (JCAnnotation a : annotations)
2774            validateTypeAnnotation(a, isTypeParameter);
2775    }
2776
2777    /** Check an annotation of a symbol.
2778     */
2779    private void validateAnnotation(JCAnnotation a, Symbol s) {
2780        validateAnnotationTree(a);
2781
2782        if (!annotationApplicable(a, s))
2783            log.error(a.pos(), "annotation.type.not.applicable");
2784
2785        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2786            if (s.kind != TYP) {
2787                log.error(a.pos(), "bad.functional.intf.anno");
2788            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2789                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2790            }
2791        }
2792    }
2793
2794    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2795        Assert.checkNonNull(a.type);
2796        validateAnnotationTree(a);
2797
2798        if (a.hasTag(TYPE_ANNOTATION) &&
2799                !a.annotationType.type.isErroneous() &&
2800                !isTypeAnnotation(a, isTypeParameter)) {
2801            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2802        }
2803    }
2804
2805    /**
2806     * Validate the proposed container 'repeatable' on the
2807     * annotation type symbol 's'. Report errors at position
2808     * 'pos'.
2809     *
2810     * @param s The (annotation)type declaration annotated with a @Repeatable
2811     * @param repeatable the @Repeatable on 's'
2812     * @param pos where to report errors
2813     */
2814    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2815        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2816
2817        Type t = null;
2818        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2819        if (!l.isEmpty()) {
2820            Assert.check(l.head.fst.name == names.value);
2821            t = ((Attribute.Class)l.head.snd).getValue();
2822        }
2823
2824        if (t == null) {
2825            // errors should already have been reported during Annotate
2826            return;
2827        }
2828
2829        validateValue(t.tsym, s, pos);
2830        validateRetention(t.tsym, s, pos);
2831        validateDocumented(t.tsym, s, pos);
2832        validateInherited(t.tsym, s, pos);
2833        validateTarget(t.tsym, s, pos);
2834        validateDefault(t.tsym, pos);
2835    }
2836
2837    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2838        Symbol sym = container.members().findFirst(names.value);
2839        if (sym != null && sym.kind == MTH) {
2840            MethodSymbol m = (MethodSymbol) sym;
2841            Type ret = m.getReturnType();
2842            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2843                log.error(pos, "invalid.repeatable.annotation.value.return",
2844                        container, ret, types.makeArrayType(contained.type));
2845            }
2846        } else {
2847            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2848        }
2849    }
2850
2851    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2852        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2853        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2854
2855        boolean error = false;
2856        switch (containedRetention) {
2857        case RUNTIME:
2858            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2859                error = true;
2860            }
2861            break;
2862        case CLASS:
2863            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2864                error = true;
2865            }
2866        }
2867        if (error ) {
2868            log.error(pos, "invalid.repeatable.annotation.retention",
2869                      container, containerRetention,
2870                      contained, containedRetention);
2871        }
2872    }
2873
2874    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2875        if (contained.attribute(syms.documentedType.tsym) != null) {
2876            if (container.attribute(syms.documentedType.tsym) == null) {
2877                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2878            }
2879        }
2880    }
2881
2882    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2883        if (contained.attribute(syms.inheritedType.tsym) != null) {
2884            if (container.attribute(syms.inheritedType.tsym) == null) {
2885                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2886            }
2887        }
2888    }
2889
2890    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2891        // The set of targets the container is applicable to must be a subset
2892        // (with respect to annotation target semantics) of the set of targets
2893        // the contained is applicable to. The target sets may be implicit or
2894        // explicit.
2895
2896        Set<Name> containerTargets;
2897        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2898        if (containerTarget == null) {
2899            containerTargets = getDefaultTargetSet();
2900        } else {
2901            containerTargets = new HashSet<>();
2902            for (Attribute app : containerTarget.values) {
2903                if (!(app instanceof Attribute.Enum)) {
2904                    continue; // recovery
2905                }
2906                Attribute.Enum e = (Attribute.Enum)app;
2907                containerTargets.add(e.value.name);
2908            }
2909        }
2910
2911        Set<Name> containedTargets;
2912        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2913        if (containedTarget == null) {
2914            containedTargets = getDefaultTargetSet();
2915        } else {
2916            containedTargets = new HashSet<>();
2917            for (Attribute app : containedTarget.values) {
2918                if (!(app instanceof Attribute.Enum)) {
2919                    continue; // recovery
2920                }
2921                Attribute.Enum e = (Attribute.Enum)app;
2922                containedTargets.add(e.value.name);
2923            }
2924        }
2925
2926        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2927            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2928        }
2929    }
2930
2931    /* get a set of names for the default target */
2932    private Set<Name> getDefaultTargetSet() {
2933        if (defaultTargets == null) {
2934            Set<Name> targets = new HashSet<>();
2935            targets.add(names.ANNOTATION_TYPE);
2936            targets.add(names.CONSTRUCTOR);
2937            targets.add(names.FIELD);
2938            targets.add(names.LOCAL_VARIABLE);
2939            targets.add(names.METHOD);
2940            targets.add(names.PACKAGE);
2941            targets.add(names.PARAMETER);
2942            targets.add(names.TYPE);
2943
2944            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2945        }
2946
2947        return defaultTargets;
2948    }
2949    private Set<Name> defaultTargets;
2950
2951
2952    /** Checks that s is a subset of t, with respect to ElementType
2953     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2954     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2955     * TYPE_PARAMETER}.
2956     */
2957    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2958        // Check that all elements in s are present in t
2959        for (Name n2 : s) {
2960            boolean currentElementOk = false;
2961            for (Name n1 : t) {
2962                if (n1 == n2) {
2963                    currentElementOk = true;
2964                    break;
2965                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2966                    currentElementOk = true;
2967                    break;
2968                } else if (n1 == names.TYPE_USE &&
2969                        (n2 == names.TYPE ||
2970                         n2 == names.ANNOTATION_TYPE ||
2971                         n2 == names.TYPE_PARAMETER)) {
2972                    currentElementOk = true;
2973                    break;
2974                }
2975            }
2976            if (!currentElementOk)
2977                return false;
2978        }
2979        return true;
2980    }
2981
2982    private void validateDefault(Symbol container, DiagnosticPosition pos) {
2983        // validate that all other elements of containing type has defaults
2984        Scope scope = container.members();
2985        for(Symbol elm : scope.getSymbols()) {
2986            if (elm.name != names.value &&
2987                elm.kind == MTH &&
2988                ((MethodSymbol)elm).defaultValue == null) {
2989                log.error(pos,
2990                          "invalid.repeatable.annotation.elem.nondefault",
2991                          container,
2992                          elm);
2993            }
2994        }
2995    }
2996
2997    /** Is s a method symbol that overrides a method in a superclass? */
2998    boolean isOverrider(Symbol s) {
2999        if (s.kind != MTH || s.isStatic())
3000            return false;
3001        MethodSymbol m = (MethodSymbol)s;
3002        TypeSymbol owner = (TypeSymbol)m.owner;
3003        for (Type sup : types.closure(owner.type)) {
3004            if (sup == owner.type)
3005                continue; // skip "this"
3006            Scope scope = sup.tsym.members();
3007            for (Symbol sym : scope.getSymbolsByName(m.name)) {
3008                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3009                    return true;
3010            }
3011        }
3012        return false;
3013    }
3014
3015    /** Is the annotation applicable to types? */
3016    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3017        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3018        return (targets == null) ?
3019                false :
3020                targets.stream()
3021                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3022    }
3023    //where
3024        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3025            Attribute.Enum e = (Attribute.Enum)a;
3026            return (e.value.name == names.TYPE_USE ||
3027                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3028        }
3029
3030    /** Is the annotation applicable to the symbol? */
3031    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3032        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3033        Name[] targets;
3034
3035        if (arr == null) {
3036            targets = defaultTargetMetaInfo(a, s);
3037        } else {
3038            // TODO: can we optimize this?
3039            targets = new Name[arr.values.length];
3040            for (int i=0; i<arr.values.length; ++i) {
3041                Attribute app = arr.values[i];
3042                if (!(app instanceof Attribute.Enum)) {
3043                    return true; // recovery
3044                }
3045                Attribute.Enum e = (Attribute.Enum) app;
3046                targets[i] = e.value.name;
3047            }
3048        }
3049        for (Name target : targets) {
3050            if (target == names.TYPE) {
3051                if (s.kind == TYP)
3052                    return true;
3053            } else if (target == names.FIELD) {
3054                if (s.kind == VAR && s.owner.kind != MTH)
3055                    return true;
3056            } else if (target == names.METHOD) {
3057                if (s.kind == MTH && !s.isConstructor())
3058                    return true;
3059            } else if (target == names.PARAMETER) {
3060                if (s.kind == VAR && s.owner.kind == MTH &&
3061                      (s.flags() & PARAMETER) != 0) {
3062                    return true;
3063                }
3064            } else if (target == names.CONSTRUCTOR) {
3065                if (s.kind == MTH && s.isConstructor())
3066                    return true;
3067            } else if (target == names.LOCAL_VARIABLE) {
3068                if (s.kind == VAR && s.owner.kind == MTH &&
3069                      (s.flags() & PARAMETER) == 0) {
3070                    return true;
3071                }
3072            } else if (target == names.ANNOTATION_TYPE) {
3073                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3074                    return true;
3075                }
3076            } else if (target == names.PACKAGE) {
3077                if (s.kind == PCK)
3078                    return true;
3079            } else if (target == names.TYPE_USE) {
3080                if (s.kind == TYP || s.kind == VAR ||
3081                        (s.kind == MTH && !s.isConstructor() &&
3082                                !s.type.getReturnType().hasTag(VOID)) ||
3083                        (s.kind == MTH && s.isConstructor())) {
3084                    return true;
3085                }
3086            } else if (target == names.TYPE_PARAMETER) {
3087                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3088                    return true;
3089            } else
3090                return true; // Unknown ElementType. This should be an error at declaration site,
3091                             // assume applicable.
3092        }
3093        return false;
3094    }
3095
3096
3097    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3098        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3099        if (atTarget == null) return null; // ok, is applicable
3100        Attribute atValue = atTarget.member(names.value);
3101        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3102        return (Attribute.Array) atValue;
3103    }
3104
3105    private final Name[] dfltTargetMeta;
3106    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3107        return dfltTargetMeta;
3108    }
3109
3110    /** Check an annotation value.
3111     *
3112     * @param a The annotation tree to check
3113     * @return true if this annotation tree is valid, otherwise false
3114     */
3115    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3116        boolean res = false;
3117        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3118        try {
3119            res = validateAnnotation(a);
3120        } finally {
3121            log.popDiagnosticHandler(diagHandler);
3122        }
3123        return res;
3124    }
3125
3126    private boolean validateAnnotation(JCAnnotation a) {
3127        boolean isValid = true;
3128        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3129
3130        // collect an inventory of the annotation elements
3131        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3132
3133        // remove the ones that are assigned values
3134        for (JCTree arg : a.args) {
3135            if (!arg.hasTag(ASSIGN)) continue; // recovery
3136            JCAssign assign = (JCAssign)arg;
3137            Symbol m = TreeInfo.symbol(assign.lhs);
3138            if (m == null || m.type.isErroneous()) continue;
3139            if (!elements.remove(m)) {
3140                isValid = false;
3141                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3142                        m.name, a.type);
3143            }
3144        }
3145
3146        // all the remaining ones better have default values
3147        List<Name> missingDefaults = List.nil();
3148        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3149        for (MethodSymbol m : elements) {
3150            if (m.type.isErroneous())
3151                continue;
3152
3153            if (!membersWithDefault.contains(m))
3154                missingDefaults = missingDefaults.append(m.name);
3155        }
3156        missingDefaults = missingDefaults.reverse();
3157        if (missingDefaults.nonEmpty()) {
3158            isValid = false;
3159            String key = (missingDefaults.size() > 1)
3160                    ? "annotation.missing.default.value.1"
3161                    : "annotation.missing.default.value";
3162            log.error(a.pos(), key, a.type, missingDefaults);
3163        }
3164
3165        return isValid && validateTargetAnnotationValue(a);
3166    }
3167
3168    /* Validate the special java.lang.annotation.Target annotation */
3169    boolean validateTargetAnnotationValue(JCAnnotation a) {
3170        // special case: java.lang.annotation.Target must not have
3171        // repeated values in its value member
3172        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3173                a.args.tail == null)
3174            return true;
3175
3176        boolean isValid = true;
3177        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3178        JCAssign assign = (JCAssign) a.args.head;
3179        Symbol m = TreeInfo.symbol(assign.lhs);
3180        if (m.name != names.value) return false;
3181        JCTree rhs = assign.rhs;
3182        if (!rhs.hasTag(NEWARRAY)) return false;
3183        JCNewArray na = (JCNewArray) rhs;
3184        Set<Symbol> targets = new HashSet<>();
3185        for (JCTree elem : na.elems) {
3186            if (!targets.add(TreeInfo.symbol(elem))) {
3187                isValid = false;
3188                log.error(elem.pos(), "repeated.annotation.target");
3189            }
3190        }
3191        return isValid;
3192    }
3193
3194    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3195        if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3196            (s.flags() & DEPRECATED) != 0 &&
3197            !syms.deprecatedType.isErroneous() &&
3198            s.attribute(syms.deprecatedType.tsym) == null) {
3199            log.warning(LintCategory.DEP_ANN,
3200                    pos, "missing.deprecated.annotation");
3201        }
3202        // Note: @Deprecated has no effect on local variables, parameters and package decls.
3203        if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3204            if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3205                log.warning(LintCategory.DEPRECATION, pos,
3206                        "deprecated.annotation.has.no.effect", Kinds.kindName(s));
3207            }
3208        }
3209    }
3210
3211    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3212        if ((s.flags() & DEPRECATED) != 0 &&
3213                (other.flags() & DEPRECATED) == 0 &&
3214                s.outermostClass() != other.outermostClass()) {
3215            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3216                @Override
3217                public void report() {
3218                    warnDeprecated(pos, s);
3219                }
3220            });
3221        }
3222    }
3223
3224    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3225        if ((s.flags() & PROPRIETARY) != 0) {
3226            deferredLintHandler.report(() -> {
3227                log.mandatoryWarning(pos, "sun.proprietary", s);
3228            });
3229        }
3230    }
3231
3232    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3233        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3234            log.error(pos, "not.in.profile", s, profile);
3235        }
3236    }
3237
3238/* *************************************************************************
3239 * Check for recursive annotation elements.
3240 **************************************************************************/
3241
3242    /** Check for cycles in the graph of annotation elements.
3243     */
3244    void checkNonCyclicElements(JCClassDecl tree) {
3245        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3246        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3247        try {
3248            tree.sym.flags_field |= LOCKED;
3249            for (JCTree def : tree.defs) {
3250                if (!def.hasTag(METHODDEF)) continue;
3251                JCMethodDecl meth = (JCMethodDecl)def;
3252                checkAnnotationResType(meth.pos(), meth.restype.type);
3253            }
3254        } finally {
3255            tree.sym.flags_field &= ~LOCKED;
3256            tree.sym.flags_field |= ACYCLIC_ANN;
3257        }
3258    }
3259
3260    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3261        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3262            return;
3263        if ((tsym.flags_field & LOCKED) != 0) {
3264            log.error(pos, "cyclic.annotation.element");
3265            return;
3266        }
3267        try {
3268            tsym.flags_field |= LOCKED;
3269            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3270                if (s.kind != MTH)
3271                    continue;
3272                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3273            }
3274        } finally {
3275            tsym.flags_field &= ~LOCKED;
3276            tsym.flags_field |= ACYCLIC_ANN;
3277        }
3278    }
3279
3280    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3281        switch (type.getTag()) {
3282        case CLASS:
3283            if ((type.tsym.flags() & ANNOTATION) != 0)
3284                checkNonCyclicElementsInternal(pos, type.tsym);
3285            break;
3286        case ARRAY:
3287            checkAnnotationResType(pos, types.elemtype(type));
3288            break;
3289        default:
3290            break; // int etc
3291        }
3292    }
3293
3294/* *************************************************************************
3295 * Check for cycles in the constructor call graph.
3296 **************************************************************************/
3297
3298    /** Check for cycles in the graph of constructors calling other
3299     *  constructors.
3300     */
3301    void checkCyclicConstructors(JCClassDecl tree) {
3302        Map<Symbol,Symbol> callMap = new HashMap<>();
3303
3304        // enter each constructor this-call into the map
3305        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3306            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3307            if (app == null) continue;
3308            JCMethodDecl meth = (JCMethodDecl) l.head;
3309            if (TreeInfo.name(app.meth) == names._this) {
3310                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3311            } else {
3312                meth.sym.flags_field |= ACYCLIC;
3313            }
3314        }
3315
3316        // Check for cycles in the map
3317        Symbol[] ctors = new Symbol[0];
3318        ctors = callMap.keySet().toArray(ctors);
3319        for (Symbol caller : ctors) {
3320            checkCyclicConstructor(tree, caller, callMap);
3321        }
3322    }
3323
3324    /** Look in the map to see if the given constructor is part of a
3325     *  call cycle.
3326     */
3327    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3328                                        Map<Symbol,Symbol> callMap) {
3329        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3330            if ((ctor.flags_field & LOCKED) != 0) {
3331                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3332                          "recursive.ctor.invocation");
3333            } else {
3334                ctor.flags_field |= LOCKED;
3335                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3336                ctor.flags_field &= ~LOCKED;
3337            }
3338            ctor.flags_field |= ACYCLIC;
3339        }
3340    }
3341
3342/* *************************************************************************
3343 * Miscellaneous
3344 **************************************************************************/
3345
3346    /**
3347     *  Check for division by integer constant zero
3348     *  @param pos           Position for error reporting.
3349     *  @param operator      The operator for the expression
3350     *  @param operand       The right hand operand for the expression
3351     */
3352    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3353        if (operand.constValue() != null
3354            && operand.getTag().isSubRangeOf(LONG)
3355            && ((Number) (operand.constValue())).longValue() == 0) {
3356            int opc = ((OperatorSymbol)operator).opcode;
3357            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3358                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3359                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3360                    @Override
3361                    public void report() {
3362                        warnDivZero(pos);
3363                    }
3364                });
3365            }
3366        }
3367    }
3368
3369    /**
3370     * Check for empty statements after if
3371     */
3372    void checkEmptyIf(JCIf tree) {
3373        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3374                lint.isEnabled(LintCategory.EMPTY))
3375            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3376    }
3377
3378    /** Check that symbol is unique in given scope.
3379     *  @param pos           Position for error reporting.
3380     *  @param sym           The symbol.
3381     *  @param s             The scope.
3382     */
3383    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3384        if (sym.type.isErroneous())
3385            return true;
3386        if (sym.owner.name == names.any) return false;
3387        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3388            if (sym != byName &&
3389                    (byName.flags() & CLASH) == 0 &&
3390                    sym.kind == byName.kind &&
3391                    sym.name != names.error &&
3392                    (sym.kind != MTH ||
3393                     types.hasSameArgs(sym.type, byName.type) ||
3394                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3395                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3396                    varargsDuplicateError(pos, sym, byName);
3397                    return true;
3398                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3399                    duplicateErasureError(pos, sym, byName);
3400                    sym.flags_field |= CLASH;
3401                    return true;
3402                } else {
3403                    duplicateError(pos, byName);
3404                    return false;
3405                }
3406            }
3407        }
3408        return true;
3409    }
3410
3411    /** Report duplicate declaration error.
3412     */
3413    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3414        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3415            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3416        }
3417    }
3418
3419    /**Check that types imported through the ordinary imports don't clash with types imported
3420     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3421     * types without an error on the imports.
3422     * @param toplevel       The toplevel tree for which the test should be performed.
3423     */
3424    void checkImportsUnique(JCCompilationUnit toplevel) {
3425        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3426        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3427        WriteableScope topLevelScope = toplevel.toplevelScope;
3428
3429        for (JCTree def : toplevel.defs) {
3430            if (!def.hasTag(IMPORT))
3431                continue;
3432
3433            JCImport imp = (JCImport) def;
3434
3435            if (imp.importScope == null)
3436                continue;
3437
3438            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3439                if (imp.isStatic()) {
3440                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3441                    staticallyImportedSoFar.enter(sym);
3442                } else {
3443                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3444                    ordinallyImportedSoFar.enter(sym);
3445                }
3446            }
3447
3448            imp.importScope = null;
3449        }
3450    }
3451
3452    /** Check that single-type import is not already imported or top-level defined,
3453     *  but make an exception for two single-type imports which denote the same type.
3454     *  @param pos                     Position for error reporting.
3455     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3456     *                                 ordinary imports.
3457     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3458     *                                 static imports.
3459     *  @param topLevelScope           The current file's top-level Scope
3460     *  @param sym                     The symbol.
3461     *  @param staticImport            Whether or not this was a static import
3462     */
3463    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3464                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3465                                      Symbol sym, boolean staticImport) {
3466        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3467        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3468        if (clashing == null && !staticImport) {
3469            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3470        }
3471        if (clashing != null) {
3472            if (staticImport)
3473                log.error(pos, "already.defined.static.single.import", clashing);
3474            else
3475                log.error(pos, "already.defined.single.import", clashing);
3476            return false;
3477        }
3478        clashing = topLevelScope.findFirst(sym.name, duplicates);
3479        if (clashing != null) {
3480            log.error(pos, "already.defined.this.unit", clashing);
3481            return false;
3482        }
3483        return true;
3484    }
3485
3486    /** Check that a qualified name is in canonical form (for import decls).
3487     */
3488    public void checkCanonical(JCTree tree) {
3489        if (!isCanonical(tree))
3490            log.error(tree.pos(), "import.requires.canonical",
3491                      TreeInfo.symbol(tree));
3492    }
3493        // where
3494        private boolean isCanonical(JCTree tree) {
3495            while (tree.hasTag(SELECT)) {
3496                JCFieldAccess s = (JCFieldAccess) tree;
3497                if (s.sym.owner.name != TreeInfo.symbol(s.selected).name)
3498                    return false;
3499                tree = s.selected;
3500            }
3501            return true;
3502        }
3503
3504    /** Check that an auxiliary class is not accessed from any other file than its own.
3505     */
3506    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3507        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3508            (c.flags() & AUXILIARY) != 0 &&
3509            rs.isAccessible(env, c) &&
3510            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3511        {
3512            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3513                        c, c.sourcefile);
3514        }
3515    }
3516
3517    private class ConversionWarner extends Warner {
3518        final String uncheckedKey;
3519        final Type found;
3520        final Type expected;
3521        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3522            super(pos);
3523            this.uncheckedKey = uncheckedKey;
3524            this.found = found;
3525            this.expected = expected;
3526        }
3527
3528        @Override
3529        public void warn(LintCategory lint) {
3530            boolean warned = this.warned;
3531            super.warn(lint);
3532            if (warned) return; // suppress redundant diagnostics
3533            switch (lint) {
3534                case UNCHECKED:
3535                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3536                    break;
3537                case VARARGS:
3538                    if (method != null &&
3539                            method.attribute(syms.trustMeType.tsym) != null &&
3540                            isTrustMeAllowedOnMethod(method) &&
3541                            !types.isReifiable(method.type.getParameterTypes().last())) {
3542                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3543                    }
3544                    break;
3545                default:
3546                    throw new AssertionError("Unexpected lint: " + lint);
3547            }
3548        }
3549    }
3550
3551    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3552        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3553    }
3554
3555    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3556        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3557    }
3558
3559    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3560        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3561
3562        if (functionalType != null) {
3563            try {
3564                types.findDescriptorSymbol((TypeSymbol)cs);
3565            } catch (Types.FunctionDescriptorLookupError ex) {
3566                DiagnosticPosition pos = tree.pos();
3567                for (JCAnnotation a : tree.getModifiers().annotations) {
3568                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3569                        pos = a.pos();
3570                        break;
3571                    }
3572                }
3573                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3574            }
3575        }
3576    }
3577
3578    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3579        for (final JCImport imp : toplevel.getImports()) {
3580            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3581                continue;
3582            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3583            final Symbol origin;
3584            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3585                continue;
3586
3587            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3588            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3589                log.error(imp.pos(), "cant.resolve.location",
3590                          KindName.STATIC,
3591                          select.name, List.<Type>nil(), List.<Type>nil(),
3592                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3593                          TreeInfo.symbol(select.selected).type);
3594            }
3595        }
3596    }
3597
3598    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3599    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3600        OUTER: for (JCImport imp : toplevel.getImports()) {
3601            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3602                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3603                if (toplevel.modle.visiblePackages != null) {
3604                    //TODO - unclear: selects like javax.* will get resolved from the current module
3605                    //(as javax is not an exported package from any module). And as javax in the current
3606                    //module typically does not contain any classes or subpackages, we need to go through
3607                    //the visible packages to find a sub-package:
3608                    for (PackageSymbol known : toplevel.modle.visiblePackages.values()) {
3609                        if (Convert.packagePart(known.fullname) == tsym.flatName())
3610                            continue OUTER;
3611                    }
3612                }
3613                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3614                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3615                }
3616            }
3617        }
3618    }
3619
3620    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3621        if (tsym == null || !processed.add(tsym))
3622            return false;
3623
3624            // also search through inherited names
3625        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3626            return true;
3627
3628        for (Type t : types.interfaces(tsym.type))
3629            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3630                return true;
3631
3632        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3633            if (sym.isStatic() &&
3634                importAccessible(sym, packge) &&
3635                sym.isMemberOf(origin, types)) {
3636                return true;
3637            }
3638        }
3639
3640        return false;
3641    }
3642
3643    // is the sym accessible everywhere in packge?
3644    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3645        try {
3646            int flags = (int)(sym.flags() & AccessFlags);
3647            switch (flags) {
3648            default:
3649            case PUBLIC:
3650                return true;
3651            case PRIVATE:
3652                return false;
3653            case 0:
3654            case PROTECTED:
3655                return sym.packge() == packge;
3656            }
3657        } catch (ClassFinder.BadClassFile err) {
3658            throw err;
3659        } catch (CompletionFailure ex) {
3660            return false;
3661        }
3662    }
3663
3664}
3665