Check.java revision 3257:3cdfbbdb6f61
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
35import com.sun.tools.javac.jvm.*;
36import com.sun.tools.javac.resources.CompilerProperties.Errors;
37import com.sun.tools.javac.resources.CompilerProperties.Fragments;
38import com.sun.tools.javac.tree.*;
39import com.sun.tools.javac.util.*;
40import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
41import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
42import com.sun.tools.javac.util.List;
43
44import com.sun.tools.javac.code.Lint;
45import com.sun.tools.javac.code.Lint.LintCategory;
46import com.sun.tools.javac.code.Scope.WriteableScope;
47import com.sun.tools.javac.code.Type.*;
48import com.sun.tools.javac.code.Symbol.*;
49import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
50import com.sun.tools.javac.comp.Infer.FreeTypeListener;
51import com.sun.tools.javac.tree.JCTree.*;
52
53import static com.sun.tools.javac.code.Flags.*;
54import static com.sun.tools.javac.code.Flags.ANNOTATION;
55import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
56import static com.sun.tools.javac.code.Kinds.*;
57import static com.sun.tools.javac.code.Kinds.Kind.*;
58import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
59import static com.sun.tools.javac.code.TypeTag.*;
60import static com.sun.tools.javac.code.TypeTag.WILDCARD;
61
62import static com.sun.tools.javac.tree.JCTree.Tag.*;
63
64/** Type checking helper class for the attribution phase.
65 *
66 *  <p><b>This is NOT part of any supported API.
67 *  If you write code that depends on this, you do so at your own risk.
68 *  This code and its internal interfaces are subject to change or
69 *  deletion without notice.</b>
70 */
71public class Check {
72    protected static final Context.Key<Check> checkKey = new Context.Key<>();
73
74    private final Names names;
75    private final Log log;
76    private final Resolve rs;
77    private final Symtab syms;
78    private final Enter enter;
79    private final DeferredAttr deferredAttr;
80    private final Infer infer;
81    private final Types types;
82    private final TypeAnnotations typeAnnotations;
83    private final JCDiagnostic.Factory diags;
84    private final JavaFileManager fileManager;
85    private final Source source;
86    private final Profile profile;
87    private final boolean warnOnAccessToSensitiveMembers;
88
89    // The set of lint options currently in effect. It is initialized
90    // from the context, and then is set/reset as needed by Attr as it
91    // visits all the various parts of the trees during attribution.
92    private Lint lint;
93
94    // The method being analyzed in Attr - it is set/reset as needed by
95    // Attr as it visits new method declarations.
96    private MethodSymbol method;
97
98    public static Check instance(Context context) {
99        Check instance = context.get(checkKey);
100        if (instance == null)
101            instance = new Check(context);
102        return instance;
103    }
104
105    protected Check(Context context) {
106        context.put(checkKey, this);
107
108        names = Names.instance(context);
109        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
110            names.FIELD, names.METHOD, names.CONSTRUCTOR,
111            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
112        log = Log.instance(context);
113        rs = Resolve.instance(context);
114        syms = Symtab.instance(context);
115        enter = Enter.instance(context);
116        deferredAttr = DeferredAttr.instance(context);
117        infer = Infer.instance(context);
118        types = Types.instance(context);
119        typeAnnotations = TypeAnnotations.instance(context);
120        diags = JCDiagnostic.Factory.instance(context);
121        Options options = Options.instance(context);
122        lint = Lint.instance(context);
123        fileManager = context.get(JavaFileManager.class);
124
125        source = Source.instance(context);
126        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
127        allowDefaultMethods = source.allowDefaultMethods();
128        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
129        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
130        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
131        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
132
133        Target target = Target.instance(context);
134        syntheticNameChar = target.syntheticNameChar();
135
136        profile = Profile.instance(context);
137
138        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
139        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
140        boolean enforceMandatoryWarnings = true;
141
142        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
143                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
144        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
145                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
146        sunApiHandler = new MandatoryWarningHandler(log, false,
147                enforceMandatoryWarnings, "sunapi", null);
148
149        deferredLintHandler = DeferredLintHandler.instance(context);
150    }
151
152    /** Switch: simplified varargs enabled?
153     */
154    boolean allowSimplifiedVarargs;
155
156    /** Switch: default methods enabled?
157     */
158    boolean allowDefaultMethods;
159
160    /** Switch: should unrelated return types trigger a method clash?
161     */
162    boolean allowStrictMethodClashCheck;
163
164    /** Switch: can the @SafeVarargs annotation be applied to private methods?
165     */
166    boolean allowPrivateSafeVarargs;
167
168    /** Switch: can diamond inference be used in anonymous instance creation ?
169     */
170    boolean allowDiamondWithAnonymousClassCreation;
171
172    /** Character for synthetic names
173     */
174    char syntheticNameChar;
175
176    /** A table mapping flat names of all compiled classes in this run to their
177     *  symbols; maintained from outside.
178     */
179    public Map<Name,ClassSymbol> compiled = new HashMap<>();
180
181    /** A handler for messages about deprecated usage.
182     */
183    private MandatoryWarningHandler deprecationHandler;
184
185    /** A handler for messages about unchecked or unsafe usage.
186     */
187    private MandatoryWarningHandler uncheckedHandler;
188
189    /** A handler for messages about using proprietary API.
190     */
191    private MandatoryWarningHandler sunApiHandler;
192
193    /** A handler for deferred lint warnings.
194     */
195    private DeferredLintHandler deferredLintHandler;
196
197/* *************************************************************************
198 * Errors and Warnings
199 **************************************************************************/
200
201    Lint setLint(Lint newLint) {
202        Lint prev = lint;
203        lint = newLint;
204        return prev;
205    }
206
207    MethodSymbol setMethod(MethodSymbol newMethod) {
208        MethodSymbol prev = method;
209        method = newMethod;
210        return prev;
211    }
212
213    /** Warn about deprecated symbol.
214     *  @param pos        Position to be used for error reporting.
215     *  @param sym        The deprecated symbol.
216     */
217    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
218        if (!lint.isSuppressed(LintCategory.DEPRECATION))
219            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
220    }
221
222    /** Warn about unchecked operation.
223     *  @param pos        Position to be used for error reporting.
224     *  @param msg        A string describing the problem.
225     */
226    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
227        if (!lint.isSuppressed(LintCategory.UNCHECKED))
228            uncheckedHandler.report(pos, msg, args);
229    }
230
231    /** Warn about unsafe vararg method decl.
232     *  @param pos        Position to be used for error reporting.
233     */
234    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
235        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
236            log.warning(LintCategory.VARARGS, pos, key, args);
237    }
238
239    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
240        if (lint.isEnabled(LintCategory.STATIC))
241            log.warning(LintCategory.STATIC, pos, msg, args);
242    }
243
244    /** Warn about division by integer constant zero.
245     *  @param pos        Position to be used for error reporting.
246     */
247    void warnDivZero(DiagnosticPosition pos) {
248        if (lint.isEnabled(LintCategory.DIVZERO))
249            log.warning(LintCategory.DIVZERO, pos, "div.zero");
250    }
251
252    /**
253     * Report any deferred diagnostics.
254     */
255    public void reportDeferredDiagnostics() {
256        deprecationHandler.reportDeferredDiagnostic();
257        uncheckedHandler.reportDeferredDiagnostic();
258        sunApiHandler.reportDeferredDiagnostic();
259    }
260
261
262    /** Report a failure to complete a class.
263     *  @param pos        Position to be used for error reporting.
264     *  @param ex         The failure to report.
265     */
266    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
267        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
268        if (ex instanceof ClassFinder.BadClassFile) throw new Abort();
269        else return syms.errType;
270    }
271
272    /** Report an error that wrong type tag was found.
273     *  @param pos        Position to be used for error reporting.
274     *  @param required   An internationalized string describing the type tag
275     *                    required.
276     *  @param found      The type that was found.
277     */
278    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
279        // this error used to be raised by the parser,
280        // but has been delayed to this point:
281        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
282            log.error(pos, "illegal.start.of.type");
283            return syms.errType;
284        }
285        log.error(pos, "type.found.req", found, required);
286        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
287    }
288
289    /** Report an error that symbol cannot be referenced before super
290     *  has been called.
291     *  @param pos        Position to be used for error reporting.
292     *  @param sym        The referenced symbol.
293     */
294    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
295        log.error(pos, "cant.ref.before.ctor.called", sym);
296    }
297
298    /** Report duplicate declaration error.
299     */
300    void duplicateError(DiagnosticPosition pos, Symbol sym) {
301        if (!sym.type.isErroneous()) {
302            Symbol location = sym.location();
303            if (location.kind == MTH &&
304                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
305                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
306                        kindName(sym.location()), kindName(sym.location().enclClass()),
307                        sym.location().enclClass());
308            } else {
309                log.error(pos, "already.defined", kindName(sym), sym,
310                        kindName(sym.location()), sym.location());
311            }
312        }
313    }
314
315    /** Report array/varargs duplicate declaration
316     */
317    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
318        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
319            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
320        }
321    }
322
323/* ************************************************************************
324 * duplicate declaration checking
325 *************************************************************************/
326
327    /** Check that variable does not hide variable with same name in
328     *  immediately enclosing local scope.
329     *  @param pos           Position for error reporting.
330     *  @param v             The symbol.
331     *  @param s             The scope.
332     */
333    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
334        for (Symbol sym : s.getSymbolsByName(v.name)) {
335            if (sym.owner != v.owner) break;
336            if (sym.kind == VAR &&
337                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
338                v.name != names.error) {
339                duplicateError(pos, sym);
340                return;
341            }
342        }
343    }
344
345    /** Check that a class or interface does not hide a class or
346     *  interface with same name in immediately enclosing local scope.
347     *  @param pos           Position for error reporting.
348     *  @param c             The symbol.
349     *  @param s             The scope.
350     */
351    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
352        for (Symbol sym : s.getSymbolsByName(c.name)) {
353            if (sym.owner != c.owner) break;
354            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
355                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
356                c.name != names.error) {
357                duplicateError(pos, sym);
358                return;
359            }
360        }
361    }
362
363    /** Check that class does not have the same name as one of
364     *  its enclosing classes, or as a class defined in its enclosing scope.
365     *  return true if class is unique in its enclosing scope.
366     *  @param pos           Position for error reporting.
367     *  @param name          The class name.
368     *  @param s             The enclosing scope.
369     */
370    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
371        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
372            if (sym.kind == TYP && sym.name != names.error) {
373                duplicateError(pos, sym);
374                return false;
375            }
376        }
377        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
378            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
379                duplicateError(pos, sym);
380                return true;
381            }
382        }
383        return true;
384    }
385
386/* *************************************************************************
387 * Class name generation
388 **************************************************************************/
389
390
391    private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
392
393    /** Return name of local class.
394     *  This is of the form   {@code <enclClass> $ n <classname> }
395     *  where
396     *    enclClass is the flat name of the enclosing class,
397     *    classname is the simple name of the local class
398     */
399    Name localClassName(ClassSymbol c) {
400        Name enclFlatname = c.owner.enclClass().flatname;
401        String enclFlatnameStr = enclFlatname.toString();
402        Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
403        Integer index = localClassNameIndexes.get(key);
404        for (int i = (index == null) ? 1 : index; ; i++) {
405            Name flatname = names.fromString(enclFlatnameStr
406                    + syntheticNameChar + i + c.name);
407            if (compiled.get(flatname) == null) {
408                localClassNameIndexes.put(key, i + 1);
409                return flatname;
410            }
411        }
412    }
413
414    void clearLocalClassNameIndexes(ClassSymbol c) {
415        localClassNameIndexes.remove(new Pair<>(
416                c.owner.enclClass().flatname, c.name));
417    }
418
419    public void newRound() {
420        compiled.clear();
421        localClassNameIndexes.clear();
422    }
423
424/* *************************************************************************
425 * Type Checking
426 **************************************************************************/
427
428    /**
429     * A check context is an object that can be used to perform compatibility
430     * checks - depending on the check context, meaning of 'compatibility' might
431     * vary significantly.
432     */
433    public interface CheckContext {
434        /**
435         * Is type 'found' compatible with type 'req' in given context
436         */
437        boolean compatible(Type found, Type req, Warner warn);
438        /**
439         * Report a check error
440         */
441        void report(DiagnosticPosition pos, JCDiagnostic details);
442        /**
443         * Obtain a warner for this check context
444         */
445        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
446
447        public InferenceContext inferenceContext();
448
449        public DeferredAttr.DeferredAttrContext deferredAttrContext();
450    }
451
452    /**
453     * This class represent a check context that is nested within another check
454     * context - useful to check sub-expressions. The default behavior simply
455     * redirects all method calls to the enclosing check context leveraging
456     * the forwarding pattern.
457     */
458    static class NestedCheckContext implements CheckContext {
459        CheckContext enclosingContext;
460
461        NestedCheckContext(CheckContext enclosingContext) {
462            this.enclosingContext = enclosingContext;
463        }
464
465        public boolean compatible(Type found, Type req, Warner warn) {
466            return enclosingContext.compatible(found, req, warn);
467        }
468
469        public void report(DiagnosticPosition pos, JCDiagnostic details) {
470            enclosingContext.report(pos, details);
471        }
472
473        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
474            return enclosingContext.checkWarner(pos, found, req);
475        }
476
477        public InferenceContext inferenceContext() {
478            return enclosingContext.inferenceContext();
479        }
480
481        public DeferredAttrContext deferredAttrContext() {
482            return enclosingContext.deferredAttrContext();
483        }
484    }
485
486    /**
487     * Check context to be used when evaluating assignment/return statements
488     */
489    CheckContext basicHandler = new CheckContext() {
490        public void report(DiagnosticPosition pos, JCDiagnostic details) {
491            log.error(pos, "prob.found.req", details);
492        }
493        public boolean compatible(Type found, Type req, Warner warn) {
494            return types.isAssignable(found, req, warn);
495        }
496
497        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
498            return convertWarner(pos, found, req);
499        }
500
501        public InferenceContext inferenceContext() {
502            return infer.emptyContext;
503        }
504
505        public DeferredAttrContext deferredAttrContext() {
506            return deferredAttr.emptyDeferredAttrContext;
507        }
508
509        @Override
510        public String toString() {
511            return "CheckContext: basicHandler";
512        }
513    };
514
515    /** Check that a given type is assignable to a given proto-type.
516     *  If it is, return the type, otherwise return errType.
517     *  @param pos        Position to be used for error reporting.
518     *  @param found      The type that was found.
519     *  @param req        The type that was required.
520     */
521    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
522        return checkType(pos, found, req, basicHandler);
523    }
524
525    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
526        final InferenceContext inferenceContext = checkContext.inferenceContext();
527        if (inferenceContext.free(req) || inferenceContext.free(found)) {
528            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
529                @Override
530                public void typesInferred(InferenceContext inferenceContext) {
531                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
532                }
533            });
534        }
535        if (req.hasTag(ERROR))
536            return req;
537        if (req.hasTag(NONE))
538            return found;
539        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
540            return found;
541        } else {
542            if (found.isNumeric() && req.isNumeric()) {
543                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
544                return types.createErrorType(found);
545            }
546            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
547            return types.createErrorType(found);
548        }
549    }
550
551    /** Check that a given type can be cast to a given target type.
552     *  Return the result of the cast.
553     *  @param pos        Position to be used for error reporting.
554     *  @param found      The type that is being cast.
555     *  @param req        The target type of the cast.
556     */
557    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
558        return checkCastable(pos, found, req, basicHandler);
559    }
560    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
561        if (types.isCastable(found, req, castWarner(pos, found, req))) {
562            return req;
563        } else {
564            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
565            return types.createErrorType(found);
566        }
567    }
568
569    /** Check for redundant casts (i.e. where source type is a subtype of target type)
570     * The problem should only be reported for non-292 cast
571     */
572    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
573        if (!tree.type.isErroneous()
574                && types.isSameType(tree.expr.type, tree.clazz.type)
575                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
576                && !is292targetTypeCast(tree)) {
577            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
578                @Override
579                public void report() {
580                    if (lint.isEnabled(Lint.LintCategory.CAST))
581                        log.warning(Lint.LintCategory.CAST,
582                                tree.pos(), "redundant.cast", tree.clazz.type);
583                }
584            });
585        }
586    }
587    //where
588        private boolean is292targetTypeCast(JCTypeCast tree) {
589            boolean is292targetTypeCast = false;
590            JCExpression expr = TreeInfo.skipParens(tree.expr);
591            if (expr.hasTag(APPLY)) {
592                JCMethodInvocation apply = (JCMethodInvocation)expr;
593                Symbol sym = TreeInfo.symbol(apply.meth);
594                is292targetTypeCast = sym != null &&
595                    sym.kind == MTH &&
596                    (sym.flags() & HYPOTHETICAL) != 0;
597            }
598            return is292targetTypeCast;
599        }
600
601        private static final boolean ignoreAnnotatedCasts = true;
602
603    /** Check that a type is within some bounds.
604     *
605     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
606     *  type argument.
607     *  @param a             The type that should be bounded by bs.
608     *  @param bound         The bound.
609     */
610    private boolean checkExtends(Type a, Type bound) {
611         if (a.isUnbound()) {
612             return true;
613         } else if (!a.hasTag(WILDCARD)) {
614             a = types.cvarUpperBound(a);
615             return types.isSubtype(a, bound);
616         } else if (a.isExtendsBound()) {
617             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
618         } else if (a.isSuperBound()) {
619             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
620         }
621         return true;
622     }
623
624    /** Check that type is different from 'void'.
625     *  @param pos           Position to be used for error reporting.
626     *  @param t             The type to be checked.
627     */
628    Type checkNonVoid(DiagnosticPosition pos, Type t) {
629        if (t.hasTag(VOID)) {
630            log.error(pos, "void.not.allowed.here");
631            return types.createErrorType(t);
632        } else {
633            return t;
634        }
635    }
636
637    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
638        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
639            return typeTagError(pos,
640                                diags.fragment("type.req.class.array"),
641                                asTypeParam(t));
642        } else {
643            return t;
644        }
645    }
646
647    /** Check that type is a class or interface type.
648     *  @param pos           Position to be used for error reporting.
649     *  @param t             The type to be checked.
650     */
651    Type checkClassType(DiagnosticPosition pos, Type t) {
652        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
653            return typeTagError(pos,
654                                diags.fragment("type.req.class"),
655                                asTypeParam(t));
656        } else {
657            return t;
658        }
659    }
660    //where
661        private Object asTypeParam(Type t) {
662            return (t.hasTag(TYPEVAR))
663                                    ? diags.fragment("type.parameter", t)
664                                    : t;
665        }
666
667    /** Check that type is a valid qualifier for a constructor reference expression
668     */
669    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
670        t = checkClassOrArrayType(pos, t);
671        if (t.hasTag(CLASS)) {
672            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
673                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
674                t = types.createErrorType(t);
675            } else if ((t.tsym.flags() & ENUM) != 0) {
676                log.error(pos, "enum.cant.be.instantiated");
677                t = types.createErrorType(t);
678            } else {
679                t = checkClassType(pos, t, true);
680            }
681        } else if (t.hasTag(ARRAY)) {
682            if (!types.isReifiable(((ArrayType)t).elemtype)) {
683                log.error(pos, "generic.array.creation");
684                t = types.createErrorType(t);
685            }
686        }
687        return t;
688    }
689
690    /** Check that type is a class or interface type.
691     *  @param pos           Position to be used for error reporting.
692     *  @param t             The type to be checked.
693     *  @param noBounds    True if type bounds are illegal here.
694     */
695    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
696        t = checkClassType(pos, t);
697        if (noBounds && t.isParameterized()) {
698            List<Type> args = t.getTypeArguments();
699            while (args.nonEmpty()) {
700                if (args.head.hasTag(WILDCARD))
701                    return typeTagError(pos,
702                                        diags.fragment("type.req.exact"),
703                                        args.head);
704                args = args.tail;
705            }
706        }
707        return t;
708    }
709
710    /** Check that type is a reference type, i.e. a class, interface or array type
711     *  or a type variable.
712     *  @param pos           Position to be used for error reporting.
713     *  @param t             The type to be checked.
714     */
715    Type checkRefType(DiagnosticPosition pos, Type t) {
716        if (t.isReference())
717            return t;
718        else
719            return typeTagError(pos,
720                                diags.fragment("type.req.ref"),
721                                t);
722    }
723
724    /** Check that each type is a reference type, i.e. a class, interface or array type
725     *  or a type variable.
726     *  @param trees         Original trees, used for error reporting.
727     *  @param types         The types to be checked.
728     */
729    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
730        List<JCExpression> tl = trees;
731        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
732            l.head = checkRefType(tl.head.pos(), l.head);
733            tl = tl.tail;
734        }
735        return types;
736    }
737
738    /** Check that type is a null or reference type.
739     *  @param pos           Position to be used for error reporting.
740     *  @param t             The type to be checked.
741     */
742    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
743        if (t.isReference() || t.hasTag(BOT))
744            return t;
745        else
746            return typeTagError(pos,
747                                diags.fragment("type.req.ref"),
748                                t);
749    }
750
751    /** Check that flag set does not contain elements of two conflicting sets. s
752     *  Return true if it doesn't.
753     *  @param pos           Position to be used for error reporting.
754     *  @param flags         The set of flags to be checked.
755     *  @param set1          Conflicting flags set #1.
756     *  @param set2          Conflicting flags set #2.
757     */
758    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
759        if ((flags & set1) != 0 && (flags & set2) != 0) {
760            log.error(pos,
761                      "illegal.combination.of.modifiers",
762                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
763                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
764            return false;
765        } else
766            return true;
767    }
768
769    /** Check that usage of diamond operator is correct (i.e. diamond should not
770     * be used with non-generic classes or in anonymous class creation expressions)
771     */
772    Type checkDiamond(JCNewClass tree, Type t) {
773        if (!TreeInfo.isDiamond(tree) ||
774                t.isErroneous()) {
775            return checkClassType(tree.clazz.pos(), t, true);
776        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
777            log.error(tree.clazz.pos(),
778                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
779            return types.createErrorType(t);
780        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
781            log.error(tree.clazz.pos(),
782                "cant.apply.diamond.1",
783                t, diags.fragment("diamond.non.generic", t));
784            return types.createErrorType(t);
785        } else if (tree.typeargs != null &&
786                tree.typeargs.nonEmpty()) {
787            log.error(tree.clazz.pos(),
788                "cant.apply.diamond.1",
789                t, diags.fragment("diamond.and.explicit.params", t));
790            return types.createErrorType(t);
791        } else {
792            return t;
793        }
794    }
795
796    /** Check that the type inferred using the diamond operator does not contain
797     *  non-denotable types such as captured types or intersection types.
798     *  @param t the type inferred using the diamond operator
799     *  @return  the (possibly empty) list of non-denotable types.
800     */
801    List<Type> checkDiamondDenotable(ClassType t) {
802        ListBuffer<Type> buf = new ListBuffer<>();
803        for (Type arg : t.allparams()) {
804            if (!diamondTypeChecker.visit(arg, null)) {
805                buf.append(arg);
806            }
807        }
808        return buf.toList();
809    }
810        // where
811
812        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
813         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
814         *  otherwise.
815         */
816        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
817            @Override
818            public Boolean visitType(Type t, Void s) {
819                return true;
820            }
821            @Override
822            public Boolean visitClassType(ClassType t, Void s) {
823                if (t.isCompound()) {
824                    return false;
825                }
826                for (Type targ : t.allparams()) {
827                    if (!visit(targ, s)) {
828                        return false;
829                    }
830                }
831                return true;
832            }
833
834            @Override
835            public Boolean visitTypeVar(TypeVar t, Void s) {
836                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
837                  (i.e cannot have been produced by inference (18.4))
838                */
839                return t.tsym.owner.type.getTypeArguments().contains(t);
840            }
841
842            @Override
843            public Boolean visitCapturedType(CapturedType t, Void s) {
844                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
845                  (i.e cannot have been produced by capture conversion (5.1.10))
846                */
847                return false;
848            }
849
850            @Override
851            public Boolean visitArrayType(ArrayType t, Void s) {
852                return visit(t.elemtype, s);
853            }
854
855            @Override
856            public Boolean visitWildcardType(WildcardType t, Void s) {
857                return visit(t.type, s);
858            }
859        };
860
861    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
862        MethodSymbol m = tree.sym;
863        if (!allowSimplifiedVarargs) return;
864        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
865        Type varargElemType = null;
866        if (m.isVarArgs()) {
867            varargElemType = types.elemtype(tree.params.last().type);
868        }
869        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
870            if (varargElemType != null) {
871                log.error(tree,
872                        "varargs.invalid.trustme.anno",
873                          syms.trustMeType.tsym,
874                          allowPrivateSafeVarargs ?
875                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
876                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
877            } else {
878                log.error(tree,
879                            "varargs.invalid.trustme.anno",
880                            syms.trustMeType.tsym,
881                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
882            }
883        } else if (hasTrustMeAnno && varargElemType != null &&
884                            types.isReifiable(varargElemType)) {
885            warnUnsafeVararg(tree,
886                            "varargs.redundant.trustme.anno",
887                            syms.trustMeType.tsym,
888                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
889        }
890        else if (!hasTrustMeAnno && varargElemType != null &&
891                !types.isReifiable(varargElemType)) {
892            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
893        }
894    }
895    //where
896        private boolean isTrustMeAllowedOnMethod(Symbol s) {
897            return (s.flags() & VARARGS) != 0 &&
898                (s.isConstructor() ||
899                    (s.flags() & (STATIC | FINAL |
900                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
901        }
902
903    Type checkMethod(final Type mtype,
904            final Symbol sym,
905            final Env<AttrContext> env,
906            final List<JCExpression> argtrees,
907            final List<Type> argtypes,
908            final boolean useVarargs,
909            InferenceContext inferenceContext) {
910        // System.out.println("call   : " + env.tree);
911        // System.out.println("method : " + owntype);
912        // System.out.println("actuals: " + argtypes);
913        if (inferenceContext.free(mtype)) {
914            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
915                public void typesInferred(InferenceContext inferenceContext) {
916                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
917                }
918            });
919            return mtype;
920        }
921        Type owntype = mtype;
922        List<Type> formals = owntype.getParameterTypes();
923        List<Type> nonInferred = sym.type.getParameterTypes();
924        if (nonInferred.length() != formals.length()) nonInferred = formals;
925        Type last = useVarargs ? formals.last() : null;
926        if (sym.name == names.init && sym.owner == syms.enumSym) {
927            formals = formals.tail.tail;
928            nonInferred = nonInferred.tail.tail;
929        }
930        List<JCExpression> args = argtrees;
931        if (args != null) {
932            //this is null when type-checking a method reference
933            while (formals.head != last) {
934                JCTree arg = args.head;
935                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
936                assertConvertible(arg, arg.type, formals.head, warn);
937                args = args.tail;
938                formals = formals.tail;
939                nonInferred = nonInferred.tail;
940            }
941            if (useVarargs) {
942                Type varArg = types.elemtype(last);
943                while (args.tail != null) {
944                    JCTree arg = args.head;
945                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
946                    assertConvertible(arg, arg.type, varArg, warn);
947                    args = args.tail;
948                }
949            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
950                // non-varargs call to varargs method
951                Type varParam = owntype.getParameterTypes().last();
952                Type lastArg = argtypes.last();
953                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
954                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
955                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
956                                types.elemtype(varParam), varParam);
957            }
958        }
959        if (useVarargs) {
960            Type argtype = owntype.getParameterTypes().last();
961            if (!types.isReifiable(argtype) &&
962                (!allowSimplifiedVarargs ||
963                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
964                 !isTrustMeAllowedOnMethod(sym))) {
965                warnUnchecked(env.tree.pos(),
966                                  "unchecked.generic.array.creation",
967                                  argtype);
968            }
969            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
970                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
971            }
972         }
973         return owntype;
974    }
975    //where
976    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
977        if (types.isConvertible(actual, formal, warn))
978            return;
979
980        if (formal.isCompound()
981            && types.isSubtype(actual, types.supertype(formal))
982            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
983            return;
984    }
985
986    /**
987     * Check that type 't' is a valid instantiation of a generic class
988     * (see JLS 4.5)
989     *
990     * @param t class type to be checked
991     * @return true if 't' is well-formed
992     */
993    public boolean checkValidGenericType(Type t) {
994        return firstIncompatibleTypeArg(t) == null;
995    }
996    //WHERE
997        private Type firstIncompatibleTypeArg(Type type) {
998            List<Type> formals = type.tsym.type.allparams();
999            List<Type> actuals = type.allparams();
1000            List<Type> args = type.getTypeArguments();
1001            List<Type> forms = type.tsym.type.getTypeArguments();
1002            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1003
1004            // For matching pairs of actual argument types `a' and
1005            // formal type parameters with declared bound `b' ...
1006            while (args.nonEmpty() && forms.nonEmpty()) {
1007                // exact type arguments needs to know their
1008                // bounds (for upper and lower bound
1009                // calculations).  So we create new bounds where
1010                // type-parameters are replaced with actuals argument types.
1011                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1012                args = args.tail;
1013                forms = forms.tail;
1014            }
1015
1016            args = type.getTypeArguments();
1017            List<Type> tvars_cap = types.substBounds(formals,
1018                                      formals,
1019                                      types.capture(type).allparams());
1020            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1021                // Let the actual arguments know their bound
1022                args.head.withTypeVar((TypeVar)tvars_cap.head);
1023                args = args.tail;
1024                tvars_cap = tvars_cap.tail;
1025            }
1026
1027            args = type.getTypeArguments();
1028            List<Type> bounds = bounds_buf.toList();
1029
1030            while (args.nonEmpty() && bounds.nonEmpty()) {
1031                Type actual = args.head;
1032                if (!isTypeArgErroneous(actual) &&
1033                        !bounds.head.isErroneous() &&
1034                        !checkExtends(actual, bounds.head)) {
1035                    return args.head;
1036                }
1037                args = args.tail;
1038                bounds = bounds.tail;
1039            }
1040
1041            args = type.getTypeArguments();
1042            bounds = bounds_buf.toList();
1043
1044            for (Type arg : types.capture(type).getTypeArguments()) {
1045                if (arg.hasTag(TYPEVAR) &&
1046                        arg.getUpperBound().isErroneous() &&
1047                        !bounds.head.isErroneous() &&
1048                        !isTypeArgErroneous(args.head)) {
1049                    return args.head;
1050                }
1051                bounds = bounds.tail;
1052                args = args.tail;
1053            }
1054
1055            return null;
1056        }
1057        //where
1058        boolean isTypeArgErroneous(Type t) {
1059            return isTypeArgErroneous.visit(t);
1060        }
1061
1062        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1063            public Boolean visitType(Type t, Void s) {
1064                return t.isErroneous();
1065            }
1066            @Override
1067            public Boolean visitTypeVar(TypeVar t, Void s) {
1068                return visit(t.getUpperBound());
1069            }
1070            @Override
1071            public Boolean visitCapturedType(CapturedType t, Void s) {
1072                return visit(t.getUpperBound()) ||
1073                        visit(t.getLowerBound());
1074            }
1075            @Override
1076            public Boolean visitWildcardType(WildcardType t, Void s) {
1077                return visit(t.type);
1078            }
1079        };
1080
1081    /** Check that given modifiers are legal for given symbol and
1082     *  return modifiers together with any implicit modifiers for that symbol.
1083     *  Warning: we can't use flags() here since this method
1084     *  is called during class enter, when flags() would cause a premature
1085     *  completion.
1086     *  @param pos           Position to be used for error reporting.
1087     *  @param flags         The set of modifiers given in a definition.
1088     *  @param sym           The defined symbol.
1089     */
1090    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1091        long mask;
1092        long implicit = 0;
1093
1094        switch (sym.kind) {
1095        case VAR:
1096            if (TreeInfo.isReceiverParam(tree))
1097                mask = ReceiverParamFlags;
1098            else if (sym.owner.kind != TYP)
1099                mask = LocalVarFlags;
1100            else if ((sym.owner.flags_field & INTERFACE) != 0)
1101                mask = implicit = InterfaceVarFlags;
1102            else
1103                mask = VarFlags;
1104            break;
1105        case MTH:
1106            if (sym.name == names.init) {
1107                if ((sym.owner.flags_field & ENUM) != 0) {
1108                    // enum constructors cannot be declared public or
1109                    // protected and must be implicitly or explicitly
1110                    // private
1111                    implicit = PRIVATE;
1112                    mask = PRIVATE;
1113                } else
1114                    mask = ConstructorFlags;
1115            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1116                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1117                    mask = AnnotationTypeElementMask;
1118                    implicit = PUBLIC | ABSTRACT;
1119                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1120                    mask = InterfaceMethodMask;
1121                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1122                    if ((flags & DEFAULT) != 0) {
1123                        implicit |= ABSTRACT;
1124                    }
1125                } else {
1126                    mask = implicit = InterfaceMethodFlags;
1127                }
1128            } else {
1129                mask = MethodFlags;
1130            }
1131            // Imply STRICTFP if owner has STRICTFP set.
1132            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1133                ((flags) & Flags.DEFAULT) != 0)
1134                implicit |= sym.owner.flags_field & STRICTFP;
1135            break;
1136        case TYP:
1137            if (sym.isLocal()) {
1138                mask = LocalClassFlags;
1139                if (sym.name.isEmpty()) { // Anonymous class
1140                    // JLS: Anonymous classes are final.
1141                    implicit |= FINAL;
1142                }
1143                if ((sym.owner.flags_field & STATIC) == 0 &&
1144                    (flags & ENUM) != 0)
1145                    log.error(pos, "enums.must.be.static");
1146            } else if (sym.owner.kind == TYP) {
1147                mask = MemberClassFlags;
1148                if (sym.owner.owner.kind == PCK ||
1149                    (sym.owner.flags_field & STATIC) != 0)
1150                    mask |= STATIC;
1151                else if ((flags & ENUM) != 0)
1152                    log.error(pos, "enums.must.be.static");
1153                // Nested interfaces and enums are always STATIC (Spec ???)
1154                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1155            } else {
1156                mask = ClassFlags;
1157            }
1158            // Interfaces are always ABSTRACT
1159            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1160
1161            if ((flags & ENUM) != 0) {
1162                // enums can't be declared abstract or final
1163                mask &= ~(ABSTRACT | FINAL);
1164                implicit |= implicitEnumFinalFlag(tree);
1165            }
1166            // Imply STRICTFP if owner has STRICTFP set.
1167            implicit |= sym.owner.flags_field & STRICTFP;
1168            break;
1169        default:
1170            throw new AssertionError();
1171        }
1172        long illegal = flags & ExtendedStandardFlags & ~mask;
1173        if (illegal != 0) {
1174            if ((illegal & INTERFACE) != 0) {
1175                log.error(pos, "intf.not.allowed.here");
1176                mask |= INTERFACE;
1177            }
1178            else {
1179                log.error(pos,
1180                          "mod.not.allowed.here", asFlagSet(illegal));
1181            }
1182        }
1183        else if ((sym.kind == TYP ||
1184                  // ISSUE: Disallowing abstract&private is no longer appropriate
1185                  // in the presence of inner classes. Should it be deleted here?
1186                  checkDisjoint(pos, flags,
1187                                ABSTRACT,
1188                                PRIVATE | STATIC | DEFAULT))
1189                 &&
1190                 checkDisjoint(pos, flags,
1191                                STATIC | PRIVATE,
1192                                DEFAULT)
1193                 &&
1194                 checkDisjoint(pos, flags,
1195                               ABSTRACT | INTERFACE,
1196                               FINAL | NATIVE | SYNCHRONIZED)
1197                 &&
1198                 checkDisjoint(pos, flags,
1199                               PUBLIC,
1200                               PRIVATE | PROTECTED)
1201                 &&
1202                 checkDisjoint(pos, flags,
1203                               PRIVATE,
1204                               PUBLIC | PROTECTED)
1205                 &&
1206                 checkDisjoint(pos, flags,
1207                               FINAL,
1208                               VOLATILE)
1209                 &&
1210                 (sym.kind == TYP ||
1211                  checkDisjoint(pos, flags,
1212                                ABSTRACT | NATIVE,
1213                                STRICTFP))) {
1214            // skip
1215        }
1216        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1217    }
1218
1219
1220    /** Determine if this enum should be implicitly final.
1221     *
1222     *  If the enum has no specialized enum contants, it is final.
1223     *
1224     *  If the enum does have specialized enum contants, it is
1225     *  <i>not</i> final.
1226     */
1227    private long implicitEnumFinalFlag(JCTree tree) {
1228        if (!tree.hasTag(CLASSDEF)) return 0;
1229        class SpecialTreeVisitor extends JCTree.Visitor {
1230            boolean specialized;
1231            SpecialTreeVisitor() {
1232                this.specialized = false;
1233            }
1234
1235            @Override
1236            public void visitTree(JCTree tree) { /* no-op */ }
1237
1238            @Override
1239            public void visitVarDef(JCVariableDecl tree) {
1240                if ((tree.mods.flags & ENUM) != 0) {
1241                    if (tree.init instanceof JCNewClass &&
1242                        ((JCNewClass) tree.init).def != null) {
1243                        specialized = true;
1244                    }
1245                }
1246            }
1247        }
1248
1249        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1250        JCClassDecl cdef = (JCClassDecl) tree;
1251        for (JCTree defs: cdef.defs) {
1252            defs.accept(sts);
1253            if (sts.specialized) return 0;
1254        }
1255        return FINAL;
1256    }
1257
1258/* *************************************************************************
1259 * Type Validation
1260 **************************************************************************/
1261
1262    /** Validate a type expression. That is,
1263     *  check that all type arguments of a parametric type are within
1264     *  their bounds. This must be done in a second phase after type attribution
1265     *  since a class might have a subclass as type parameter bound. E.g:
1266     *
1267     *  <pre>{@code
1268     *  class B<A extends C> { ... }
1269     *  class C extends B<C> { ... }
1270     *  }</pre>
1271     *
1272     *  and we can't make sure that the bound is already attributed because
1273     *  of possible cycles.
1274     *
1275     * Visitor method: Validate a type expression, if it is not null, catching
1276     *  and reporting any completion failures.
1277     */
1278    void validate(JCTree tree, Env<AttrContext> env) {
1279        validate(tree, env, true);
1280    }
1281    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1282        new Validator(env).validateTree(tree, checkRaw, true);
1283    }
1284
1285    /** Visitor method: Validate a list of type expressions.
1286     */
1287    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1288        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1289            validate(l.head, env);
1290    }
1291
1292    /** A visitor class for type validation.
1293     */
1294    class Validator extends JCTree.Visitor {
1295
1296        boolean checkRaw;
1297        boolean isOuter;
1298        Env<AttrContext> env;
1299
1300        Validator(Env<AttrContext> env) {
1301            this.env = env;
1302        }
1303
1304        @Override
1305        public void visitTypeArray(JCArrayTypeTree tree) {
1306            validateTree(tree.elemtype, checkRaw, isOuter);
1307        }
1308
1309        @Override
1310        public void visitTypeApply(JCTypeApply tree) {
1311            if (tree.type.hasTag(CLASS)) {
1312                List<JCExpression> args = tree.arguments;
1313                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1314
1315                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1316                if (incompatibleArg != null) {
1317                    for (JCTree arg : tree.arguments) {
1318                        if (arg.type == incompatibleArg) {
1319                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1320                        }
1321                        forms = forms.tail;
1322                     }
1323                 }
1324
1325                forms = tree.type.tsym.type.getTypeArguments();
1326
1327                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1328
1329                // For matching pairs of actual argument types `a' and
1330                // formal type parameters with declared bound `b' ...
1331                while (args.nonEmpty() && forms.nonEmpty()) {
1332                    validateTree(args.head,
1333                            !(isOuter && is_java_lang_Class),
1334                            false);
1335                    args = args.tail;
1336                    forms = forms.tail;
1337                }
1338
1339                // Check that this type is either fully parameterized, or
1340                // not parameterized at all.
1341                if (tree.type.getEnclosingType().isRaw())
1342                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1343                if (tree.clazz.hasTag(SELECT))
1344                    visitSelectInternal((JCFieldAccess)tree.clazz);
1345            }
1346        }
1347
1348        @Override
1349        public void visitTypeParameter(JCTypeParameter tree) {
1350            validateTrees(tree.bounds, true, isOuter);
1351            checkClassBounds(tree.pos(), tree.type);
1352        }
1353
1354        @Override
1355        public void visitWildcard(JCWildcard tree) {
1356            if (tree.inner != null)
1357                validateTree(tree.inner, true, isOuter);
1358        }
1359
1360        @Override
1361        public void visitSelect(JCFieldAccess tree) {
1362            if (tree.type.hasTag(CLASS)) {
1363                visitSelectInternal(tree);
1364
1365                // Check that this type is either fully parameterized, or
1366                // not parameterized at all.
1367                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1368                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1369            }
1370        }
1371
1372        public void visitSelectInternal(JCFieldAccess tree) {
1373            if (tree.type.tsym.isStatic() &&
1374                tree.selected.type.isParameterized()) {
1375                // The enclosing type is not a class, so we are
1376                // looking at a static member type.  However, the
1377                // qualifying expression is parameterized.
1378                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1379            } else {
1380                // otherwise validate the rest of the expression
1381                tree.selected.accept(this);
1382            }
1383        }
1384
1385        @Override
1386        public void visitAnnotatedType(JCAnnotatedType tree) {
1387            tree.underlyingType.accept(this);
1388        }
1389
1390        @Override
1391        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1392            if (that.type.hasTag(TypeTag.VOID)) {
1393                log.error(that.pos(), "void.not.allowed.here");
1394            }
1395            super.visitTypeIdent(that);
1396        }
1397
1398        /** Default visitor method: do nothing.
1399         */
1400        @Override
1401        public void visitTree(JCTree tree) {
1402        }
1403
1404        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1405            if (tree != null) {
1406                boolean prevCheckRaw = this.checkRaw;
1407                this.checkRaw = checkRaw;
1408                this.isOuter = isOuter;
1409
1410                try {
1411                    tree.accept(this);
1412                    if (checkRaw)
1413                        checkRaw(tree, env);
1414                } catch (CompletionFailure ex) {
1415                    completionError(tree.pos(), ex);
1416                } finally {
1417                    this.checkRaw = prevCheckRaw;
1418                }
1419            }
1420        }
1421
1422        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1423            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1424                validateTree(l.head, checkRaw, isOuter);
1425        }
1426    }
1427
1428    void checkRaw(JCTree tree, Env<AttrContext> env) {
1429        if (lint.isEnabled(LintCategory.RAW) &&
1430            tree.type.hasTag(CLASS) &&
1431            !TreeInfo.isDiamond(tree) &&
1432            !withinAnonConstr(env) &&
1433            tree.type.isRaw()) {
1434            log.warning(LintCategory.RAW,
1435                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1436        }
1437    }
1438    //where
1439        private boolean withinAnonConstr(Env<AttrContext> env) {
1440            return env.enclClass.name.isEmpty() &&
1441                    env.enclMethod != null && env.enclMethod.name == names.init;
1442        }
1443
1444/* *************************************************************************
1445 * Exception checking
1446 **************************************************************************/
1447
1448    /* The following methods treat classes as sets that contain
1449     * the class itself and all their subclasses
1450     */
1451
1452    /** Is given type a subtype of some of the types in given list?
1453     */
1454    boolean subset(Type t, List<Type> ts) {
1455        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1456            if (types.isSubtype(t, l.head)) return true;
1457        return false;
1458    }
1459
1460    /** Is given type a subtype or supertype of
1461     *  some of the types in given list?
1462     */
1463    boolean intersects(Type t, List<Type> ts) {
1464        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1465            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1466        return false;
1467    }
1468
1469    /** Add type set to given type list, unless it is a subclass of some class
1470     *  in the list.
1471     */
1472    List<Type> incl(Type t, List<Type> ts) {
1473        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1474    }
1475
1476    /** Remove type set from type set list.
1477     */
1478    List<Type> excl(Type t, List<Type> ts) {
1479        if (ts.isEmpty()) {
1480            return ts;
1481        } else {
1482            List<Type> ts1 = excl(t, ts.tail);
1483            if (types.isSubtype(ts.head, t)) return ts1;
1484            else if (ts1 == ts.tail) return ts;
1485            else return ts1.prepend(ts.head);
1486        }
1487    }
1488
1489    /** Form the union of two type set lists.
1490     */
1491    List<Type> union(List<Type> ts1, List<Type> ts2) {
1492        List<Type> ts = ts1;
1493        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1494            ts = incl(l.head, ts);
1495        return ts;
1496    }
1497
1498    /** Form the difference of two type lists.
1499     */
1500    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1501        List<Type> ts = ts1;
1502        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1503            ts = excl(l.head, ts);
1504        return ts;
1505    }
1506
1507    /** Form the intersection of two type lists.
1508     */
1509    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1510        List<Type> ts = List.nil();
1511        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1512            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1513        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1514            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1515        return ts;
1516    }
1517
1518    /** Is exc an exception symbol that need not be declared?
1519     */
1520    boolean isUnchecked(ClassSymbol exc) {
1521        return
1522            exc.kind == ERR ||
1523            exc.isSubClass(syms.errorType.tsym, types) ||
1524            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1525    }
1526
1527    /** Is exc an exception type that need not be declared?
1528     */
1529    boolean isUnchecked(Type exc) {
1530        return
1531            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1532            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1533            exc.hasTag(BOT);
1534    }
1535
1536    /** Same, but handling completion failures.
1537     */
1538    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1539        try {
1540            return isUnchecked(exc);
1541        } catch (CompletionFailure ex) {
1542            completionError(pos, ex);
1543            return true;
1544        }
1545    }
1546
1547    /** Is exc handled by given exception list?
1548     */
1549    boolean isHandled(Type exc, List<Type> handled) {
1550        return isUnchecked(exc) || subset(exc, handled);
1551    }
1552
1553    /** Return all exceptions in thrown list that are not in handled list.
1554     *  @param thrown     The list of thrown exceptions.
1555     *  @param handled    The list of handled exceptions.
1556     */
1557    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1558        List<Type> unhandled = List.nil();
1559        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1560            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1561        return unhandled;
1562    }
1563
1564/* *************************************************************************
1565 * Overriding/Implementation checking
1566 **************************************************************************/
1567
1568    /** The level of access protection given by a flag set,
1569     *  where PRIVATE is highest and PUBLIC is lowest.
1570     */
1571    static int protection(long flags) {
1572        switch ((short)(flags & AccessFlags)) {
1573        case PRIVATE: return 3;
1574        case PROTECTED: return 1;
1575        default:
1576        case PUBLIC: return 0;
1577        case 0: return 2;
1578        }
1579    }
1580
1581    /** A customized "cannot override" error message.
1582     *  @param m      The overriding method.
1583     *  @param other  The overridden method.
1584     *  @return       An internationalized string.
1585     */
1586    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1587        String key;
1588        if ((other.owner.flags() & INTERFACE) == 0)
1589            key = "cant.override";
1590        else if ((m.owner.flags() & INTERFACE) == 0)
1591            key = "cant.implement";
1592        else
1593            key = "clashes.with";
1594        return diags.fragment(key, m, m.location(), other, other.location());
1595    }
1596
1597    /** A customized "override" warning message.
1598     *  @param m      The overriding method.
1599     *  @param other  The overridden method.
1600     *  @return       An internationalized string.
1601     */
1602    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1603        String key;
1604        if ((other.owner.flags() & INTERFACE) == 0)
1605            key = "unchecked.override";
1606        else if ((m.owner.flags() & INTERFACE) == 0)
1607            key = "unchecked.implement";
1608        else
1609            key = "unchecked.clash.with";
1610        return diags.fragment(key, m, m.location(), other, other.location());
1611    }
1612
1613    /** A customized "override" warning message.
1614     *  @param m      The overriding method.
1615     *  @param other  The overridden method.
1616     *  @return       An internationalized string.
1617     */
1618    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1619        String key;
1620        if ((other.owner.flags() & INTERFACE) == 0)
1621            key = "varargs.override";
1622        else  if ((m.owner.flags() & INTERFACE) == 0)
1623            key = "varargs.implement";
1624        else
1625            key = "varargs.clash.with";
1626        return diags.fragment(key, m, m.location(), other, other.location());
1627    }
1628
1629    /** Check that this method conforms with overridden method 'other'.
1630     *  where `origin' is the class where checking started.
1631     *  Complications:
1632     *  (1) Do not check overriding of synthetic methods
1633     *      (reason: they might be final).
1634     *      todo: check whether this is still necessary.
1635     *  (2) Admit the case where an interface proxy throws fewer exceptions
1636     *      than the method it implements. Augment the proxy methods with the
1637     *      undeclared exceptions in this case.
1638     *  (3) When generics are enabled, admit the case where an interface proxy
1639     *      has a result type
1640     *      extended by the result type of the method it implements.
1641     *      Change the proxies result type to the smaller type in this case.
1642     *
1643     *  @param tree         The tree from which positions
1644     *                      are extracted for errors.
1645     *  @param m            The overriding method.
1646     *  @param other        The overridden method.
1647     *  @param origin       The class of which the overriding method
1648     *                      is a member.
1649     */
1650    void checkOverride(JCTree tree,
1651                       MethodSymbol m,
1652                       MethodSymbol other,
1653                       ClassSymbol origin) {
1654        // Don't check overriding of synthetic methods or by bridge methods.
1655        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1656            return;
1657        }
1658
1659        // Error if static method overrides instance method (JLS 8.4.6.2).
1660        if ((m.flags() & STATIC) != 0 &&
1661                   (other.flags() & STATIC) == 0) {
1662            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1663                      cannotOverride(m, other));
1664            m.flags_field |= BAD_OVERRIDE;
1665            return;
1666        }
1667
1668        // Error if instance method overrides static or final
1669        // method (JLS 8.4.6.1).
1670        if ((other.flags() & FINAL) != 0 ||
1671                 (m.flags() & STATIC) == 0 &&
1672                 (other.flags() & STATIC) != 0) {
1673            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1674                      cannotOverride(m, other),
1675                      asFlagSet(other.flags() & (FINAL | STATIC)));
1676            m.flags_field |= BAD_OVERRIDE;
1677            return;
1678        }
1679
1680        if ((m.owner.flags() & ANNOTATION) != 0) {
1681            // handled in validateAnnotationMethod
1682            return;
1683        }
1684
1685        // Error if overriding method has weaker access (JLS 8.4.6.3).
1686        if (protection(m.flags()) > protection(other.flags())) {
1687            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1688                      cannotOverride(m, other),
1689                      (other.flags() & AccessFlags) == 0 ?
1690                          "package" :
1691                          asFlagSet(other.flags() & AccessFlags));
1692            m.flags_field |= BAD_OVERRIDE;
1693            return;
1694        }
1695
1696        Type mt = types.memberType(origin.type, m);
1697        Type ot = types.memberType(origin.type, other);
1698        // Error if overriding result type is different
1699        // (or, in the case of generics mode, not a subtype) of
1700        // overridden result type. We have to rename any type parameters
1701        // before comparing types.
1702        List<Type> mtvars = mt.getTypeArguments();
1703        List<Type> otvars = ot.getTypeArguments();
1704        Type mtres = mt.getReturnType();
1705        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1706
1707        overrideWarner.clear();
1708        boolean resultTypesOK =
1709            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1710        if (!resultTypesOK) {
1711            if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1712                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1713                        Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1714                                        other.location()), mtres, otres));
1715                m.flags_field |= BAD_OVERRIDE;
1716            } else {
1717                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1718                        "override.incompatible.ret",
1719                        cannotOverride(m, other),
1720                        mtres, otres);
1721                m.flags_field |= BAD_OVERRIDE;
1722            }
1723            return;
1724        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1725            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1726                    "override.unchecked.ret",
1727                    uncheckedOverrides(m, other),
1728                    mtres, otres);
1729        }
1730
1731        // Error if overriding method throws an exception not reported
1732        // by overridden method.
1733        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1734        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1735        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1736        if (unhandledErased.nonEmpty()) {
1737            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1738                      "override.meth.doesnt.throw",
1739                      cannotOverride(m, other),
1740                      unhandledUnerased.head);
1741            m.flags_field |= BAD_OVERRIDE;
1742            return;
1743        }
1744        else if (unhandledUnerased.nonEmpty()) {
1745            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1746                          "override.unchecked.thrown",
1747                         cannotOverride(m, other),
1748                         unhandledUnerased.head);
1749            return;
1750        }
1751
1752        // Optional warning if varargs don't agree
1753        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1754            && lint.isEnabled(LintCategory.OVERRIDES)) {
1755            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1756                        ((m.flags() & Flags.VARARGS) != 0)
1757                        ? "override.varargs.missing"
1758                        : "override.varargs.extra",
1759                        varargsOverrides(m, other));
1760        }
1761
1762        // Warn if instance method overrides bridge method (compiler spec ??)
1763        if ((other.flags() & BRIDGE) != 0) {
1764            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1765                        uncheckedOverrides(m, other));
1766        }
1767
1768        // Warn if a deprecated method overridden by a non-deprecated one.
1769        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1770            Lint prevLint = setLint(lint.augment(m));
1771            try {
1772                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1773            } finally {
1774                setLint(prevLint);
1775            }
1776        }
1777    }
1778    // where
1779        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1780            // If the method, m, is defined in an interface, then ignore the issue if the method
1781            // is only inherited via a supertype and also implemented in the supertype,
1782            // because in that case, we will rediscover the issue when examining the method
1783            // in the supertype.
1784            // If the method, m, is not defined in an interface, then the only time we need to
1785            // address the issue is when the method is the supertype implemementation: any other
1786            // case, we will have dealt with when examining the supertype classes
1787            ClassSymbol mc = m.enclClass();
1788            Type st = types.supertype(origin.type);
1789            if (!st.hasTag(CLASS))
1790                return true;
1791            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1792
1793            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1794                List<Type> intfs = types.interfaces(origin.type);
1795                return (intfs.contains(mc.type) ? false : (stimpl != null));
1796            }
1797            else
1798                return (stimpl != m);
1799        }
1800
1801
1802    // used to check if there were any unchecked conversions
1803    Warner overrideWarner = new Warner();
1804
1805    /** Check that a class does not inherit two concrete methods
1806     *  with the same signature.
1807     *  @param pos          Position to be used for error reporting.
1808     *  @param site         The class type to be checked.
1809     */
1810    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1811        Type sup = types.supertype(site);
1812        if (!sup.hasTag(CLASS)) return;
1813
1814        for (Type t1 = sup;
1815             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1816             t1 = types.supertype(t1)) {
1817            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1818                if (s1.kind != MTH ||
1819                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1820                    !s1.isInheritedIn(site.tsym, types) ||
1821                    ((MethodSymbol)s1).implementation(site.tsym,
1822                                                      types,
1823                                                      true) != s1)
1824                    continue;
1825                Type st1 = types.memberType(t1, s1);
1826                int s1ArgsLength = st1.getParameterTypes().length();
1827                if (st1 == s1.type) continue;
1828
1829                for (Type t2 = sup;
1830                     t2.hasTag(CLASS);
1831                     t2 = types.supertype(t2)) {
1832                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1833                        if (s2 == s1 ||
1834                            s2.kind != MTH ||
1835                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1836                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1837                            !s2.isInheritedIn(site.tsym, types) ||
1838                            ((MethodSymbol)s2).implementation(site.tsym,
1839                                                              types,
1840                                                              true) != s2)
1841                            continue;
1842                        Type st2 = types.memberType(t2, s2);
1843                        if (types.overrideEquivalent(st1, st2))
1844                            log.error(pos, "concrete.inheritance.conflict",
1845                                      s1, t1, s2, t2, sup);
1846                    }
1847                }
1848            }
1849        }
1850    }
1851
1852    /** Check that classes (or interfaces) do not each define an abstract
1853     *  method with same name and arguments but incompatible return types.
1854     *  @param pos          Position to be used for error reporting.
1855     *  @param t1           The first argument type.
1856     *  @param t2           The second argument type.
1857     */
1858    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1859                                            Type t1,
1860                                            Type t2,
1861                                            Type site) {
1862        if ((site.tsym.flags() & COMPOUND) != 0) {
1863            // special case for intersections: need to eliminate wildcards in supertypes
1864            t1 = types.capture(t1);
1865            t2 = types.capture(t2);
1866        }
1867        return firstIncompatibility(pos, t1, t2, site) == null;
1868    }
1869
1870    /** Return the first method which is defined with same args
1871     *  but different return types in two given interfaces, or null if none
1872     *  exists.
1873     *  @param t1     The first type.
1874     *  @param t2     The second type.
1875     *  @param site   The most derived type.
1876     *  @returns symbol from t2 that conflicts with one in t1.
1877     */
1878    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1879        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1880        closure(t1, interfaces1);
1881        Map<TypeSymbol,Type> interfaces2;
1882        if (t1 == t2)
1883            interfaces2 = interfaces1;
1884        else
1885            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1886
1887        for (Type t3 : interfaces1.values()) {
1888            for (Type t4 : interfaces2.values()) {
1889                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1890                if (s != null) return s;
1891            }
1892        }
1893        return null;
1894    }
1895
1896    /** Compute all the supertypes of t, indexed by type symbol. */
1897    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1898        if (!t.hasTag(CLASS)) return;
1899        if (typeMap.put(t.tsym, t) == null) {
1900            closure(types.supertype(t), typeMap);
1901            for (Type i : types.interfaces(t))
1902                closure(i, typeMap);
1903        }
1904    }
1905
1906    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1907    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1908        if (!t.hasTag(CLASS)) return;
1909        if (typesSkip.get(t.tsym) != null) return;
1910        if (typeMap.put(t.tsym, t) == null) {
1911            closure(types.supertype(t), typesSkip, typeMap);
1912            for (Type i : types.interfaces(t))
1913                closure(i, typesSkip, typeMap);
1914        }
1915    }
1916
1917    /** Return the first method in t2 that conflicts with a method from t1. */
1918    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1919        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1920            Type st1 = null;
1921            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1922                    (s1.flags() & SYNTHETIC) != 0) continue;
1923            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1924            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1925            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1926                if (s1 == s2) continue;
1927                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1928                        (s2.flags() & SYNTHETIC) != 0) continue;
1929                if (st1 == null) st1 = types.memberType(t1, s1);
1930                Type st2 = types.memberType(t2, s2);
1931                if (types.overrideEquivalent(st1, st2)) {
1932                    List<Type> tvars1 = st1.getTypeArguments();
1933                    List<Type> tvars2 = st2.getTypeArguments();
1934                    Type rt1 = st1.getReturnType();
1935                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1936                    boolean compat =
1937                        types.isSameType(rt1, rt2) ||
1938                        !rt1.isPrimitiveOrVoid() &&
1939                        !rt2.isPrimitiveOrVoid() &&
1940                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1941                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1942                         checkCommonOverriderIn(s1,s2,site);
1943                    if (!compat) {
1944                        log.error(pos, "types.incompatible.diff.ret",
1945                            t1, t2, s2.name +
1946                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1947                        return s2;
1948                    }
1949                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1950                        !checkCommonOverriderIn(s1, s2, site)) {
1951                    log.error(pos,
1952                            "name.clash.same.erasure.no.override",
1953                            s1, s1.location(),
1954                            s2, s2.location());
1955                    return s2;
1956                }
1957            }
1958        }
1959        return null;
1960    }
1961    //WHERE
1962    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1963        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1964        Type st1 = types.memberType(site, s1);
1965        Type st2 = types.memberType(site, s2);
1966        closure(site, supertypes);
1967        for (Type t : supertypes.values()) {
1968            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1969                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1970                Type st3 = types.memberType(site,s3);
1971                if (types.overrideEquivalent(st3, st1) &&
1972                        types.overrideEquivalent(st3, st2) &&
1973                        types.returnTypeSubstitutable(st3, st1) &&
1974                        types.returnTypeSubstitutable(st3, st2)) {
1975                    return true;
1976                }
1977            }
1978        }
1979        return false;
1980    }
1981
1982    /** Check that a given method conforms with any method it overrides.
1983     *  @param tree         The tree from which positions are extracted
1984     *                      for errors.
1985     *  @param m            The overriding method.
1986     */
1987    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
1988        ClassSymbol origin = (ClassSymbol)m.owner;
1989        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1990            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1991                log.error(tree.pos(), "enum.no.finalize");
1992                return;
1993            }
1994        for (Type t = origin.type; t.hasTag(CLASS);
1995             t = types.supertype(t)) {
1996            if (t != origin.type) {
1997                checkOverride(tree, t, origin, m);
1998            }
1999            for (Type t2 : types.interfaces(t)) {
2000                checkOverride(tree, t2, origin, m);
2001            }
2002        }
2003
2004        // Check if this method must override a super method due to being annotated with @Override
2005        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2006        // be treated "as if as they were annotated" with @Override.
2007        boolean mustOverride = m.attribute(syms.overrideType.tsym) != null ||
2008                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2009        if (mustOverride && !isOverrider(m)) {
2010            DiagnosticPosition pos = tree.pos();
2011            for (JCAnnotation a : tree.getModifiers().annotations) {
2012                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2013                    pos = a.pos();
2014                    break;
2015                }
2016            }
2017            log.error(pos, "method.does.not.override.superclass");
2018        }
2019    }
2020
2021    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2022        TypeSymbol c = site.tsym;
2023        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2024            if (m.overrides(sym, origin, types, false)) {
2025                if ((sym.flags() & ABSTRACT) == 0) {
2026                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2027                }
2028            }
2029        }
2030    }
2031
2032    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2033        public boolean accepts(Symbol s) {
2034            return MethodSymbol.implementation_filter.accepts(s) &&
2035                    (s.flags() & BAD_OVERRIDE) == 0;
2036
2037        }
2038    };
2039
2040    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2041            ClassSymbol someClass) {
2042        /* At present, annotations cannot possibly have a method that is override
2043         * equivalent with Object.equals(Object) but in any case the condition is
2044         * fine for completeness.
2045         */
2046        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2047            someClass.isInterface() || someClass.isEnum() ||
2048            (someClass.flags() & ANNOTATION) != 0 ||
2049            (someClass.flags() & ABSTRACT) != 0) return;
2050        //anonymous inner classes implementing interfaces need especial treatment
2051        if (someClass.isAnonymous()) {
2052            List<Type> interfaces =  types.interfaces(someClass.type);
2053            if (interfaces != null && !interfaces.isEmpty() &&
2054                interfaces.head.tsym == syms.comparatorType.tsym) return;
2055        }
2056        checkClassOverrideEqualsAndHash(pos, someClass);
2057    }
2058
2059    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2060            ClassSymbol someClass) {
2061        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2062            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2063                    .tsym.members().findFirst(names.equals);
2064            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2065                    .tsym.members().findFirst(names.hashCode);
2066            boolean overridesEquals = types.implementation(equalsAtObject,
2067                someClass, false, equalsHasCodeFilter).owner == someClass;
2068            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2069                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2070
2071            if (overridesEquals && !overridesHashCode) {
2072                log.warning(LintCategory.OVERRIDES, pos,
2073                        "override.equals.but.not.hashcode", someClass);
2074            }
2075        }
2076    }
2077
2078    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2079        ClashFilter cf = new ClashFilter(origin.type);
2080        return (cf.accepts(s1) &&
2081                cf.accepts(s2) &&
2082                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2083    }
2084
2085
2086    /** Check that all abstract members of given class have definitions.
2087     *  @param pos          Position to be used for error reporting.
2088     *  @param c            The class.
2089     */
2090    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2091        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2092        if (undef != null) {
2093            MethodSymbol undef1 =
2094                new MethodSymbol(undef.flags(), undef.name,
2095                                 types.memberType(c.type, undef), undef.owner);
2096            log.error(pos, "does.not.override.abstract",
2097                      c, undef1, undef1.location());
2098        }
2099    }
2100
2101    void checkNonCyclicDecl(JCClassDecl tree) {
2102        CycleChecker cc = new CycleChecker();
2103        cc.scan(tree);
2104        if (!cc.errorFound && !cc.partialCheck) {
2105            tree.sym.flags_field |= ACYCLIC;
2106        }
2107    }
2108
2109    class CycleChecker extends TreeScanner {
2110
2111        List<Symbol> seenClasses = List.nil();
2112        boolean errorFound = false;
2113        boolean partialCheck = false;
2114
2115        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2116            if (sym != null && sym.kind == TYP) {
2117                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2118                if (classEnv != null) {
2119                    DiagnosticSource prevSource = log.currentSource();
2120                    try {
2121                        log.useSource(classEnv.toplevel.sourcefile);
2122                        scan(classEnv.tree);
2123                    }
2124                    finally {
2125                        log.useSource(prevSource.getFile());
2126                    }
2127                } else if (sym.kind == TYP) {
2128                    checkClass(pos, sym, List.<JCTree>nil());
2129                }
2130            } else {
2131                //not completed yet
2132                partialCheck = true;
2133            }
2134        }
2135
2136        @Override
2137        public void visitSelect(JCFieldAccess tree) {
2138            super.visitSelect(tree);
2139            checkSymbol(tree.pos(), tree.sym);
2140        }
2141
2142        @Override
2143        public void visitIdent(JCIdent tree) {
2144            checkSymbol(tree.pos(), tree.sym);
2145        }
2146
2147        @Override
2148        public void visitTypeApply(JCTypeApply tree) {
2149            scan(tree.clazz);
2150        }
2151
2152        @Override
2153        public void visitTypeArray(JCArrayTypeTree tree) {
2154            scan(tree.elemtype);
2155        }
2156
2157        @Override
2158        public void visitClassDef(JCClassDecl tree) {
2159            List<JCTree> supertypes = List.nil();
2160            if (tree.getExtendsClause() != null) {
2161                supertypes = supertypes.prepend(tree.getExtendsClause());
2162            }
2163            if (tree.getImplementsClause() != null) {
2164                for (JCTree intf : tree.getImplementsClause()) {
2165                    supertypes = supertypes.prepend(intf);
2166                }
2167            }
2168            checkClass(tree.pos(), tree.sym, supertypes);
2169        }
2170
2171        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2172            if ((c.flags_field & ACYCLIC) != 0)
2173                return;
2174            if (seenClasses.contains(c)) {
2175                errorFound = true;
2176                noteCyclic(pos, (ClassSymbol)c);
2177            } else if (!c.type.isErroneous()) {
2178                try {
2179                    seenClasses = seenClasses.prepend(c);
2180                    if (c.type.hasTag(CLASS)) {
2181                        if (supertypes.nonEmpty()) {
2182                            scan(supertypes);
2183                        }
2184                        else {
2185                            ClassType ct = (ClassType)c.type;
2186                            if (ct.supertype_field == null ||
2187                                    ct.interfaces_field == null) {
2188                                //not completed yet
2189                                partialCheck = true;
2190                                return;
2191                            }
2192                            checkSymbol(pos, ct.supertype_field.tsym);
2193                            for (Type intf : ct.interfaces_field) {
2194                                checkSymbol(pos, intf.tsym);
2195                            }
2196                        }
2197                        if (c.owner.kind == TYP) {
2198                            checkSymbol(pos, c.owner);
2199                        }
2200                    }
2201                } finally {
2202                    seenClasses = seenClasses.tail;
2203                }
2204            }
2205        }
2206    }
2207
2208    /** Check for cyclic references. Issue an error if the
2209     *  symbol of the type referred to has a LOCKED flag set.
2210     *
2211     *  @param pos      Position to be used for error reporting.
2212     *  @param t        The type referred to.
2213     */
2214    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2215        checkNonCyclicInternal(pos, t);
2216    }
2217
2218
2219    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2220        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2221    }
2222
2223    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2224        final TypeVar tv;
2225        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2226            return;
2227        if (seen.contains(t)) {
2228            tv = (TypeVar)t;
2229            tv.bound = types.createErrorType(t);
2230            log.error(pos, "cyclic.inheritance", t);
2231        } else if (t.hasTag(TYPEVAR)) {
2232            tv = (TypeVar)t;
2233            seen = seen.prepend(tv);
2234            for (Type b : types.getBounds(tv))
2235                checkNonCyclic1(pos, b, seen);
2236        }
2237    }
2238
2239    /** Check for cyclic references. Issue an error if the
2240     *  symbol of the type referred to has a LOCKED flag set.
2241     *
2242     *  @param pos      Position to be used for error reporting.
2243     *  @param t        The type referred to.
2244     *  @returns        True if the check completed on all attributed classes
2245     */
2246    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2247        boolean complete = true; // was the check complete?
2248        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2249        Symbol c = t.tsym;
2250        if ((c.flags_field & ACYCLIC) != 0) return true;
2251
2252        if ((c.flags_field & LOCKED) != 0) {
2253            noteCyclic(pos, (ClassSymbol)c);
2254        } else if (!c.type.isErroneous()) {
2255            try {
2256                c.flags_field |= LOCKED;
2257                if (c.type.hasTag(CLASS)) {
2258                    ClassType clazz = (ClassType)c.type;
2259                    if (clazz.interfaces_field != null)
2260                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2261                            complete &= checkNonCyclicInternal(pos, l.head);
2262                    if (clazz.supertype_field != null) {
2263                        Type st = clazz.supertype_field;
2264                        if (st != null && st.hasTag(CLASS))
2265                            complete &= checkNonCyclicInternal(pos, st);
2266                    }
2267                    if (c.owner.kind == TYP)
2268                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2269                }
2270            } finally {
2271                c.flags_field &= ~LOCKED;
2272            }
2273        }
2274        if (complete)
2275            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2276        if (complete) c.flags_field |= ACYCLIC;
2277        return complete;
2278    }
2279
2280    /** Note that we found an inheritance cycle. */
2281    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2282        log.error(pos, "cyclic.inheritance", c);
2283        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2284            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2285        Type st = types.supertype(c.type);
2286        if (st.hasTag(CLASS))
2287            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2288        c.type = types.createErrorType(c, c.type);
2289        c.flags_field |= ACYCLIC;
2290    }
2291
2292    /** Check that all methods which implement some
2293     *  method conform to the method they implement.
2294     *  @param tree         The class definition whose members are checked.
2295     */
2296    void checkImplementations(JCClassDecl tree) {
2297        checkImplementations(tree, tree.sym, tree.sym);
2298    }
2299    //where
2300        /** Check that all methods which implement some
2301         *  method in `ic' conform to the method they implement.
2302         */
2303        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2304            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2305                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2306                if ((lc.flags() & ABSTRACT) != 0) {
2307                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2308                        if (sym.kind == MTH &&
2309                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2310                            MethodSymbol absmeth = (MethodSymbol)sym;
2311                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2312                            if (implmeth != null && implmeth != absmeth &&
2313                                (implmeth.owner.flags() & INTERFACE) ==
2314                                (origin.flags() & INTERFACE)) {
2315                                // don't check if implmeth is in a class, yet
2316                                // origin is an interface. This case arises only
2317                                // if implmeth is declared in Object. The reason is
2318                                // that interfaces really don't inherit from
2319                                // Object it's just that the compiler represents
2320                                // things that way.
2321                                checkOverride(tree, implmeth, absmeth, origin);
2322                            }
2323                        }
2324                    }
2325                }
2326            }
2327        }
2328
2329    /** Check that all abstract methods implemented by a class are
2330     *  mutually compatible.
2331     *  @param pos          Position to be used for error reporting.
2332     *  @param c            The class whose interfaces are checked.
2333     */
2334    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2335        List<Type> supertypes = types.interfaces(c);
2336        Type supertype = types.supertype(c);
2337        if (supertype.hasTag(CLASS) &&
2338            (supertype.tsym.flags() & ABSTRACT) != 0)
2339            supertypes = supertypes.prepend(supertype);
2340        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2341            if (!l.head.getTypeArguments().isEmpty() &&
2342                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2343                return;
2344            for (List<Type> m = supertypes; m != l; m = m.tail)
2345                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2346                    return;
2347        }
2348        checkCompatibleConcretes(pos, c);
2349    }
2350
2351    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2352        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2353            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2354                // VM allows methods and variables with differing types
2355                if (sym.kind == sym2.kind &&
2356                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2357                    sym != sym2 &&
2358                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2359                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2360                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2361                    return;
2362                }
2363            }
2364        }
2365    }
2366
2367    /** Check that all non-override equivalent methods accessible from 'site'
2368     *  are mutually compatible (JLS 8.4.8/9.4.1).
2369     *
2370     *  @param pos  Position to be used for error reporting.
2371     *  @param site The class whose methods are checked.
2372     *  @param sym  The method symbol to be checked.
2373     */
2374    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2375         ClashFilter cf = new ClashFilter(site);
2376        //for each method m1 that is overridden (directly or indirectly)
2377        //by method 'sym' in 'site'...
2378
2379        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2380        boolean overridesAny = false;
2381        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2382            if (!sym.overrides(m1, site.tsym, types, false)) {
2383                if (m1 == sym) {
2384                    continue;
2385                }
2386
2387                if (!overridesAny) {
2388                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2389                }
2390                continue;
2391            }
2392
2393            if (m1 != sym) {
2394                overridesAny = true;
2395                potentiallyAmbiguousList = List.nil();
2396            }
2397
2398            //...check each method m2 that is a member of 'site'
2399            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2400                if (m2 == m1) continue;
2401                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2402                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2403                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2404                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2405                    sym.flags_field |= CLASH;
2406                    String key = m1 == sym ?
2407                            "name.clash.same.erasure.no.override" :
2408                            "name.clash.same.erasure.no.override.1";
2409                    log.error(pos,
2410                            key,
2411                            sym, sym.location(),
2412                            m2, m2.location(),
2413                            m1, m1.location());
2414                    return;
2415                }
2416            }
2417        }
2418
2419        if (!overridesAny) {
2420            for (MethodSymbol m: potentiallyAmbiguousList) {
2421                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2422            }
2423        }
2424    }
2425
2426    /** Check that all static methods accessible from 'site' are
2427     *  mutually compatible (JLS 8.4.8).
2428     *
2429     *  @param pos  Position to be used for error reporting.
2430     *  @param site The class whose methods are checked.
2431     *  @param sym  The method symbol to be checked.
2432     */
2433    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2434        ClashFilter cf = new ClashFilter(site);
2435        //for each method m1 that is a member of 'site'...
2436        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2437            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2438            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2439            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2440                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2441                    log.error(pos,
2442                            "name.clash.same.erasure.no.hide",
2443                            sym, sym.location(),
2444                            s, s.location());
2445                    return;
2446                } else {
2447                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2448                }
2449            }
2450         }
2451     }
2452
2453     //where
2454     private class ClashFilter implements Filter<Symbol> {
2455
2456         Type site;
2457
2458         ClashFilter(Type site) {
2459             this.site = site;
2460         }
2461
2462         boolean shouldSkip(Symbol s) {
2463             return (s.flags() & CLASH) != 0 &&
2464                s.owner == site.tsym;
2465         }
2466
2467         public boolean accepts(Symbol s) {
2468             return s.kind == MTH &&
2469                     (s.flags() & SYNTHETIC) == 0 &&
2470                     !shouldSkip(s) &&
2471                     s.isInheritedIn(site.tsym, types) &&
2472                     !s.isConstructor();
2473         }
2474     }
2475
2476    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2477        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2478        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2479            Assert.check(m.kind == MTH);
2480            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2481            if (prov.size() > 1) {
2482                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2483                ListBuffer<Symbol> defaults = new ListBuffer<>();
2484                for (MethodSymbol provSym : prov) {
2485                    if ((provSym.flags() & DEFAULT) != 0) {
2486                        defaults = defaults.append(provSym);
2487                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2488                        abstracts = abstracts.append(provSym);
2489                    }
2490                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2491                        //strong semantics - issue an error if two sibling interfaces
2492                        //have two override-equivalent defaults - or if one is abstract
2493                        //and the other is default
2494                        String errKey;
2495                        Symbol s1 = defaults.first();
2496                        Symbol s2;
2497                        if (defaults.size() > 1) {
2498                            errKey = "types.incompatible.unrelated.defaults";
2499                            s2 = defaults.toList().tail.head;
2500                        } else {
2501                            errKey = "types.incompatible.abstract.default";
2502                            s2 = abstracts.first();
2503                        }
2504                        log.error(pos, errKey,
2505                                Kinds.kindName(site.tsym), site,
2506                                m.name, types.memberType(site, m).getParameterTypes(),
2507                                s1.location(), s2.location());
2508                        break;
2509                    }
2510                }
2511            }
2512        }
2513    }
2514
2515    //where
2516     private class DefaultMethodClashFilter implements Filter<Symbol> {
2517
2518         Type site;
2519
2520         DefaultMethodClashFilter(Type site) {
2521             this.site = site;
2522         }
2523
2524         public boolean accepts(Symbol s) {
2525             return s.kind == MTH &&
2526                     (s.flags() & DEFAULT) != 0 &&
2527                     s.isInheritedIn(site.tsym, types) &&
2528                     !s.isConstructor();
2529         }
2530     }
2531
2532    /**
2533      * Report warnings for potentially ambiguous method declarations. Two declarations
2534      * are potentially ambiguous if they feature two unrelated functional interface
2535      * in same argument position (in which case, a call site passing an implicit
2536      * lambda would be ambiguous).
2537      */
2538    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2539            MethodSymbol msym1, MethodSymbol msym2) {
2540        if (msym1 != msym2 &&
2541                allowDefaultMethods &&
2542                lint.isEnabled(LintCategory.OVERLOADS) &&
2543                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2544                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2545            Type mt1 = types.memberType(site, msym1);
2546            Type mt2 = types.memberType(site, msym2);
2547            //if both generic methods, adjust type variables
2548            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2549                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2550                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2551            }
2552            //expand varargs methods if needed
2553            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2554            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2555            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2556            //if arities don't match, exit
2557            if (args1.length() != args2.length()) return;
2558            boolean potentiallyAmbiguous = false;
2559            while (args1.nonEmpty() && args2.nonEmpty()) {
2560                Type s = args1.head;
2561                Type t = args2.head;
2562                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2563                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2564                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2565                            types.findDescriptorType(s).getParameterTypes().length() ==
2566                            types.findDescriptorType(t).getParameterTypes().length()) {
2567                        potentiallyAmbiguous = true;
2568                    } else {
2569                        break;
2570                    }
2571                }
2572                args1 = args1.tail;
2573                args2 = args2.tail;
2574            }
2575            if (potentiallyAmbiguous) {
2576                //we found two incompatible functional interfaces with same arity
2577                //this means a call site passing an implicit lambda would be ambigiuous
2578                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2579                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2580                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2581                            msym1, msym1.location(),
2582                            msym2, msym2.location());
2583                return;
2584            }
2585        }
2586    }
2587
2588    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2589        if (warnOnAccessToSensitiveMembers) {
2590            Symbol sym = TreeInfo.symbol(tree);
2591            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2592                return;
2593            }
2594
2595            if (sym.kind == VAR) {
2596                if ((sym.flags() & PARAMETER) != 0 ||
2597                    sym.isLocal() ||
2598                    sym.name == names._this ||
2599                    sym.name == names._super) {
2600                    return;
2601                }
2602            }
2603
2604            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2605                    isEffectivelyNonPublic(sym)) {
2606                log.warning(tree.pos(),
2607                        "access.to.sensitive.member.from.serializable.element", sym);
2608            }
2609        }
2610    }
2611
2612    private boolean isEffectivelyNonPublic(Symbol sym) {
2613        if (sym.packge() == syms.rootPackage) {
2614            return false;
2615        }
2616
2617        while (sym.kind != PCK) {
2618            if ((sym.flags() & PUBLIC) == 0) {
2619                return true;
2620            }
2621            sym = sym.owner;
2622        }
2623        return false;
2624    }
2625
2626    /** Report a conflict between a user symbol and a synthetic symbol.
2627     */
2628    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2629        if (!sym.type.isErroneous()) {
2630            log.error(pos, "synthetic.name.conflict", sym, sym.location());
2631        }
2632    }
2633
2634    /** Check that class c does not implement directly or indirectly
2635     *  the same parameterized interface with two different argument lists.
2636     *  @param pos          Position to be used for error reporting.
2637     *  @param type         The type whose interfaces are checked.
2638     */
2639    void checkClassBounds(DiagnosticPosition pos, Type type) {
2640        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2641    }
2642//where
2643        /** Enter all interfaces of type `type' into the hash table `seensofar'
2644         *  with their class symbol as key and their type as value. Make
2645         *  sure no class is entered with two different types.
2646         */
2647        void checkClassBounds(DiagnosticPosition pos,
2648                              Map<TypeSymbol,Type> seensofar,
2649                              Type type) {
2650            if (type.isErroneous()) return;
2651            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2652                Type it = l.head;
2653                Type oldit = seensofar.put(it.tsym, it);
2654                if (oldit != null) {
2655                    List<Type> oldparams = oldit.allparams();
2656                    List<Type> newparams = it.allparams();
2657                    if (!types.containsTypeEquivalent(oldparams, newparams))
2658                        log.error(pos, "cant.inherit.diff.arg",
2659                                  it.tsym, Type.toString(oldparams),
2660                                  Type.toString(newparams));
2661                }
2662                checkClassBounds(pos, seensofar, it);
2663            }
2664            Type st = types.supertype(type);
2665            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2666        }
2667
2668    /** Enter interface into into set.
2669     *  If it existed already, issue a "repeated interface" error.
2670     */
2671    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2672        if (its.contains(it))
2673            log.error(pos, "repeated.interface");
2674        else {
2675            its.add(it);
2676        }
2677    }
2678
2679/* *************************************************************************
2680 * Check annotations
2681 **************************************************************************/
2682
2683    /**
2684     * Recursively validate annotations values
2685     */
2686    void validateAnnotationTree(JCTree tree) {
2687        class AnnotationValidator extends TreeScanner {
2688            @Override
2689            public void visitAnnotation(JCAnnotation tree) {
2690                if (!tree.type.isErroneous()) {
2691                    super.visitAnnotation(tree);
2692                    validateAnnotation(tree);
2693                }
2694            }
2695        }
2696        tree.accept(new AnnotationValidator());
2697    }
2698
2699    /**
2700     *  {@literal
2701     *  Annotation types are restricted to primitives, String, an
2702     *  enum, an annotation, Class, Class<?>, Class<? extends
2703     *  Anything>, arrays of the preceding.
2704     *  }
2705     */
2706    void validateAnnotationType(JCTree restype) {
2707        // restype may be null if an error occurred, so don't bother validating it
2708        if (restype != null) {
2709            validateAnnotationType(restype.pos(), restype.type);
2710        }
2711    }
2712
2713    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2714        if (type.isPrimitive()) return;
2715        if (types.isSameType(type, syms.stringType)) return;
2716        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2717        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2718        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2719        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2720            validateAnnotationType(pos, types.elemtype(type));
2721            return;
2722        }
2723        log.error(pos, "invalid.annotation.member.type");
2724    }
2725
2726    /**
2727     * "It is also a compile-time error if any method declared in an
2728     * annotation type has a signature that is override-equivalent to
2729     * that of any public or protected method declared in class Object
2730     * or in the interface annotation.Annotation."
2731     *
2732     * @jls 9.6 Annotation Types
2733     */
2734    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2735        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2736            Scope s = sup.tsym.members();
2737            for (Symbol sym : s.getSymbolsByName(m.name)) {
2738                if (sym.kind == MTH &&
2739                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2740                    types.overrideEquivalent(m.type, sym.type))
2741                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2742            }
2743        }
2744    }
2745
2746    /** Check the annotations of a symbol.
2747     */
2748    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2749        for (JCAnnotation a : annotations)
2750            validateAnnotation(a, s);
2751    }
2752
2753    /** Check the type annotations.
2754     */
2755    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2756        for (JCAnnotation a : annotations)
2757            validateTypeAnnotation(a, isTypeParameter);
2758    }
2759
2760    /** Check an annotation of a symbol.
2761     */
2762    private void validateAnnotation(JCAnnotation a, Symbol s) {
2763        validateAnnotationTree(a);
2764
2765        if (!annotationApplicable(a, s))
2766            log.error(a.pos(), "annotation.type.not.applicable");
2767
2768        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2769            if (s.kind != TYP) {
2770                log.error(a.pos(), "bad.functional.intf.anno");
2771            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2772                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2773            }
2774        }
2775    }
2776
2777    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2778        Assert.checkNonNull(a.type);
2779        validateAnnotationTree(a);
2780
2781        if (a.hasTag(TYPE_ANNOTATION) &&
2782                !a.annotationType.type.isErroneous() &&
2783                !isTypeAnnotation(a, isTypeParameter)) {
2784            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2785        }
2786    }
2787
2788    /**
2789     * Validate the proposed container 'repeatable' on the
2790     * annotation type symbol 's'. Report errors at position
2791     * 'pos'.
2792     *
2793     * @param s The (annotation)type declaration annotated with a @Repeatable
2794     * @param repeatable the @Repeatable on 's'
2795     * @param pos where to report errors
2796     */
2797    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2798        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2799
2800        Type t = null;
2801        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2802        if (!l.isEmpty()) {
2803            Assert.check(l.head.fst.name == names.value);
2804            t = ((Attribute.Class)l.head.snd).getValue();
2805        }
2806
2807        if (t == null) {
2808            // errors should already have been reported during Annotate
2809            return;
2810        }
2811
2812        validateValue(t.tsym, s, pos);
2813        validateRetention(t.tsym, s, pos);
2814        validateDocumented(t.tsym, s, pos);
2815        validateInherited(t.tsym, s, pos);
2816        validateTarget(t.tsym, s, pos);
2817        validateDefault(t.tsym, pos);
2818    }
2819
2820    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2821        Symbol sym = container.members().findFirst(names.value);
2822        if (sym != null && sym.kind == MTH) {
2823            MethodSymbol m = (MethodSymbol) sym;
2824            Type ret = m.getReturnType();
2825            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2826                log.error(pos, "invalid.repeatable.annotation.value.return",
2827                        container, ret, types.makeArrayType(contained.type));
2828            }
2829        } else {
2830            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2831        }
2832    }
2833
2834    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2835        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2836        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2837
2838        boolean error = false;
2839        switch (containedRetention) {
2840        case RUNTIME:
2841            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2842                error = true;
2843            }
2844            break;
2845        case CLASS:
2846            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2847                error = true;
2848            }
2849        }
2850        if (error ) {
2851            log.error(pos, "invalid.repeatable.annotation.retention",
2852                      container, containerRetention,
2853                      contained, containedRetention);
2854        }
2855    }
2856
2857    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2858        if (contained.attribute(syms.documentedType.tsym) != null) {
2859            if (container.attribute(syms.documentedType.tsym) == null) {
2860                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2861            }
2862        }
2863    }
2864
2865    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2866        if (contained.attribute(syms.inheritedType.tsym) != null) {
2867            if (container.attribute(syms.inheritedType.tsym) == null) {
2868                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2869            }
2870        }
2871    }
2872
2873    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2874        // The set of targets the container is applicable to must be a subset
2875        // (with respect to annotation target semantics) of the set of targets
2876        // the contained is applicable to. The target sets may be implicit or
2877        // explicit.
2878
2879        Set<Name> containerTargets;
2880        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2881        if (containerTarget == null) {
2882            containerTargets = getDefaultTargetSet();
2883        } else {
2884            containerTargets = new HashSet<>();
2885            for (Attribute app : containerTarget.values) {
2886                if (!(app instanceof Attribute.Enum)) {
2887                    continue; // recovery
2888                }
2889                Attribute.Enum e = (Attribute.Enum)app;
2890                containerTargets.add(e.value.name);
2891            }
2892        }
2893
2894        Set<Name> containedTargets;
2895        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2896        if (containedTarget == null) {
2897            containedTargets = getDefaultTargetSet();
2898        } else {
2899            containedTargets = new HashSet<>();
2900            for (Attribute app : containedTarget.values) {
2901                if (!(app instanceof Attribute.Enum)) {
2902                    continue; // recovery
2903                }
2904                Attribute.Enum e = (Attribute.Enum)app;
2905                containedTargets.add(e.value.name);
2906            }
2907        }
2908
2909        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2910            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2911        }
2912    }
2913
2914    /* get a set of names for the default target */
2915    private Set<Name> getDefaultTargetSet() {
2916        if (defaultTargets == null) {
2917            Set<Name> targets = new HashSet<>();
2918            targets.add(names.ANNOTATION_TYPE);
2919            targets.add(names.CONSTRUCTOR);
2920            targets.add(names.FIELD);
2921            targets.add(names.LOCAL_VARIABLE);
2922            targets.add(names.METHOD);
2923            targets.add(names.PACKAGE);
2924            targets.add(names.PARAMETER);
2925            targets.add(names.TYPE);
2926
2927            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2928        }
2929
2930        return defaultTargets;
2931    }
2932    private Set<Name> defaultTargets;
2933
2934
2935    /** Checks that s is a subset of t, with respect to ElementType
2936     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2937     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2938     * TYPE_PARAMETER}.
2939     */
2940    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2941        // Check that all elements in s are present in t
2942        for (Name n2 : s) {
2943            boolean currentElementOk = false;
2944            for (Name n1 : t) {
2945                if (n1 == n2) {
2946                    currentElementOk = true;
2947                    break;
2948                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2949                    currentElementOk = true;
2950                    break;
2951                } else if (n1 == names.TYPE_USE &&
2952                        (n2 == names.TYPE ||
2953                         n2 == names.ANNOTATION_TYPE ||
2954                         n2 == names.TYPE_PARAMETER)) {
2955                    currentElementOk = true;
2956                    break;
2957                }
2958            }
2959            if (!currentElementOk)
2960                return false;
2961        }
2962        return true;
2963    }
2964
2965    private void validateDefault(Symbol container, DiagnosticPosition pos) {
2966        // validate that all other elements of containing type has defaults
2967        Scope scope = container.members();
2968        for(Symbol elm : scope.getSymbols()) {
2969            if (elm.name != names.value &&
2970                elm.kind == MTH &&
2971                ((MethodSymbol)elm).defaultValue == null) {
2972                log.error(pos,
2973                          "invalid.repeatable.annotation.elem.nondefault",
2974                          container,
2975                          elm);
2976            }
2977        }
2978    }
2979
2980    /** Is s a method symbol that overrides a method in a superclass? */
2981    boolean isOverrider(Symbol s) {
2982        if (s.kind != MTH || s.isStatic())
2983            return false;
2984        MethodSymbol m = (MethodSymbol)s;
2985        TypeSymbol owner = (TypeSymbol)m.owner;
2986        for (Type sup : types.closure(owner.type)) {
2987            if (sup == owner.type)
2988                continue; // skip "this"
2989            Scope scope = sup.tsym.members();
2990            for (Symbol sym : scope.getSymbolsByName(m.name)) {
2991                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
2992                    return true;
2993            }
2994        }
2995        return false;
2996    }
2997
2998    /** Is the annotation applicable to types? */
2999    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3000        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3001        return (targets == null) ?
3002                false :
3003                targets.stream()
3004                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3005    }
3006    //where
3007        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3008            Attribute.Enum e = (Attribute.Enum)a;
3009            return (e.value.name == names.TYPE_USE ||
3010                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3011        }
3012
3013    /** Is the annotation applicable to the symbol? */
3014    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3015        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3016        Name[] targets;
3017
3018        if (arr == null) {
3019            targets = defaultTargetMetaInfo(a, s);
3020        } else {
3021            // TODO: can we optimize this?
3022            targets = new Name[arr.values.length];
3023            for (int i=0; i<arr.values.length; ++i) {
3024                Attribute app = arr.values[i];
3025                if (!(app instanceof Attribute.Enum)) {
3026                    return true; // recovery
3027                }
3028                Attribute.Enum e = (Attribute.Enum) app;
3029                targets[i] = e.value.name;
3030            }
3031        }
3032        for (Name target : targets) {
3033            if (target == names.TYPE) {
3034                if (s.kind == TYP)
3035                    return true;
3036            } else if (target == names.FIELD) {
3037                if (s.kind == VAR && s.owner.kind != MTH)
3038                    return true;
3039            } else if (target == names.METHOD) {
3040                if (s.kind == MTH && !s.isConstructor())
3041                    return true;
3042            } else if (target == names.PARAMETER) {
3043                if (s.kind == VAR && s.owner.kind == MTH &&
3044                      (s.flags() & PARAMETER) != 0) {
3045                    return true;
3046                }
3047            } else if (target == names.CONSTRUCTOR) {
3048                if (s.kind == MTH && s.isConstructor())
3049                    return true;
3050            } else if (target == names.LOCAL_VARIABLE) {
3051                if (s.kind == VAR && s.owner.kind == MTH &&
3052                      (s.flags() & PARAMETER) == 0) {
3053                    return true;
3054                }
3055            } else if (target == names.ANNOTATION_TYPE) {
3056                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3057                    return true;
3058                }
3059            } else if (target == names.PACKAGE) {
3060                if (s.kind == PCK)
3061                    return true;
3062            } else if (target == names.TYPE_USE) {
3063                if (s.kind == TYP || s.kind == VAR ||
3064                        (s.kind == MTH && !s.isConstructor() &&
3065                                !s.type.getReturnType().hasTag(VOID)) ||
3066                        (s.kind == MTH && s.isConstructor())) {
3067                    return true;
3068                }
3069            } else if (target == names.TYPE_PARAMETER) {
3070                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3071                    return true;
3072            } else
3073                return true; // Unknown ElementType. This should be an error at declaration site,
3074                             // assume applicable.
3075        }
3076        return false;
3077    }
3078
3079
3080    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3081        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3082        if (atTarget == null) return null; // ok, is applicable
3083        Attribute atValue = atTarget.member(names.value);
3084        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3085        return (Attribute.Array) atValue;
3086    }
3087
3088    private final Name[] dfltTargetMeta;
3089    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3090        return dfltTargetMeta;
3091    }
3092
3093    /** Check an annotation value.
3094     *
3095     * @param a The annotation tree to check
3096     * @return true if this annotation tree is valid, otherwise false
3097     */
3098    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3099        boolean res = false;
3100        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3101        try {
3102            res = validateAnnotation(a);
3103        } finally {
3104            log.popDiagnosticHandler(diagHandler);
3105        }
3106        return res;
3107    }
3108
3109    private boolean validateAnnotation(JCAnnotation a) {
3110        boolean isValid = true;
3111        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3112
3113        // collect an inventory of the annotation elements
3114        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3115
3116        // remove the ones that are assigned values
3117        for (JCTree arg : a.args) {
3118            if (!arg.hasTag(ASSIGN)) continue; // recovery
3119            JCAssign assign = (JCAssign)arg;
3120            Symbol m = TreeInfo.symbol(assign.lhs);
3121            if (m == null || m.type.isErroneous()) continue;
3122            if (!elements.remove(m)) {
3123                isValid = false;
3124                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3125                        m.name, a.type);
3126            }
3127        }
3128
3129        // all the remaining ones better have default values
3130        List<Name> missingDefaults = List.nil();
3131        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3132        for (MethodSymbol m : elements) {
3133            if (m.type.isErroneous())
3134                continue;
3135
3136            if (!membersWithDefault.contains(m))
3137                missingDefaults = missingDefaults.append(m.name);
3138        }
3139        missingDefaults = missingDefaults.reverse();
3140        if (missingDefaults.nonEmpty()) {
3141            isValid = false;
3142            String key = (missingDefaults.size() > 1)
3143                    ? "annotation.missing.default.value.1"
3144                    : "annotation.missing.default.value";
3145            log.error(a.pos(), key, a.type, missingDefaults);
3146        }
3147
3148        return isValid && validateTargetAnnotationValue(a);
3149    }
3150
3151    /* Validate the special java.lang.annotation.Target annotation */
3152    boolean validateTargetAnnotationValue(JCAnnotation a) {
3153        // special case: java.lang.annotation.Target must not have
3154        // repeated values in its value member
3155        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3156                a.args.tail == null)
3157            return true;
3158
3159        boolean isValid = true;
3160        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3161        JCAssign assign = (JCAssign) a.args.head;
3162        Symbol m = TreeInfo.symbol(assign.lhs);
3163        if (m.name != names.value) return false;
3164        JCTree rhs = assign.rhs;
3165        if (!rhs.hasTag(NEWARRAY)) return false;
3166        JCNewArray na = (JCNewArray) rhs;
3167        Set<Symbol> targets = new HashSet<>();
3168        for (JCTree elem : na.elems) {
3169            if (!targets.add(TreeInfo.symbol(elem))) {
3170                isValid = false;
3171                log.error(elem.pos(), "repeated.annotation.target");
3172            }
3173        }
3174        return isValid;
3175    }
3176
3177    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3178        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3179            (s.flags() & DEPRECATED) != 0 &&
3180            !syms.deprecatedType.isErroneous() &&
3181            s.attribute(syms.deprecatedType.tsym) == null) {
3182            log.warning(LintCategory.DEP_ANN,
3183                    pos, "missing.deprecated.annotation");
3184        }
3185    }
3186
3187    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3188        if ((s.flags() & DEPRECATED) != 0 &&
3189                (other.flags() & DEPRECATED) == 0 &&
3190                s.outermostClass() != other.outermostClass()) {
3191            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3192                @Override
3193                public void report() {
3194                    warnDeprecated(pos, s);
3195                }
3196            });
3197        }
3198    }
3199
3200    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3201        if ((s.flags() & PROPRIETARY) != 0) {
3202            deferredLintHandler.report(() -> {
3203                log.mandatoryWarning(pos, "sun.proprietary", s);
3204            });
3205        }
3206    }
3207
3208    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3209        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3210            log.error(pos, "not.in.profile", s, profile);
3211        }
3212    }
3213
3214/* *************************************************************************
3215 * Check for recursive annotation elements.
3216 **************************************************************************/
3217
3218    /** Check for cycles in the graph of annotation elements.
3219     */
3220    void checkNonCyclicElements(JCClassDecl tree) {
3221        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3222        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3223        try {
3224            tree.sym.flags_field |= LOCKED;
3225            for (JCTree def : tree.defs) {
3226                if (!def.hasTag(METHODDEF)) continue;
3227                JCMethodDecl meth = (JCMethodDecl)def;
3228                checkAnnotationResType(meth.pos(), meth.restype.type);
3229            }
3230        } finally {
3231            tree.sym.flags_field &= ~LOCKED;
3232            tree.sym.flags_field |= ACYCLIC_ANN;
3233        }
3234    }
3235
3236    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3237        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3238            return;
3239        if ((tsym.flags_field & LOCKED) != 0) {
3240            log.error(pos, "cyclic.annotation.element");
3241            return;
3242        }
3243        try {
3244            tsym.flags_field |= LOCKED;
3245            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3246                if (s.kind != MTH)
3247                    continue;
3248                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3249            }
3250        } finally {
3251            tsym.flags_field &= ~LOCKED;
3252            tsym.flags_field |= ACYCLIC_ANN;
3253        }
3254    }
3255
3256    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3257        switch (type.getTag()) {
3258        case CLASS:
3259            if ((type.tsym.flags() & ANNOTATION) != 0)
3260                checkNonCyclicElementsInternal(pos, type.tsym);
3261            break;
3262        case ARRAY:
3263            checkAnnotationResType(pos, types.elemtype(type));
3264            break;
3265        default:
3266            break; // int etc
3267        }
3268    }
3269
3270/* *************************************************************************
3271 * Check for cycles in the constructor call graph.
3272 **************************************************************************/
3273
3274    /** Check for cycles in the graph of constructors calling other
3275     *  constructors.
3276     */
3277    void checkCyclicConstructors(JCClassDecl tree) {
3278        Map<Symbol,Symbol> callMap = new HashMap<>();
3279
3280        // enter each constructor this-call into the map
3281        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3282            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3283            if (app == null) continue;
3284            JCMethodDecl meth = (JCMethodDecl) l.head;
3285            if (TreeInfo.name(app.meth) == names._this) {
3286                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3287            } else {
3288                meth.sym.flags_field |= ACYCLIC;
3289            }
3290        }
3291
3292        // Check for cycles in the map
3293        Symbol[] ctors = new Symbol[0];
3294        ctors = callMap.keySet().toArray(ctors);
3295        for (Symbol caller : ctors) {
3296            checkCyclicConstructor(tree, caller, callMap);
3297        }
3298    }
3299
3300    /** Look in the map to see if the given constructor is part of a
3301     *  call cycle.
3302     */
3303    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3304                                        Map<Symbol,Symbol> callMap) {
3305        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3306            if ((ctor.flags_field & LOCKED) != 0) {
3307                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3308                          "recursive.ctor.invocation");
3309            } else {
3310                ctor.flags_field |= LOCKED;
3311                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3312                ctor.flags_field &= ~LOCKED;
3313            }
3314            ctor.flags_field |= ACYCLIC;
3315        }
3316    }
3317
3318/* *************************************************************************
3319 * Miscellaneous
3320 **************************************************************************/
3321
3322    /**
3323     *  Check for division by integer constant zero
3324     *  @param pos           Position for error reporting.
3325     *  @param operator      The operator for the expression
3326     *  @param operand       The right hand operand for the expression
3327     */
3328    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3329        if (operand.constValue() != null
3330            && operand.getTag().isSubRangeOf(LONG)
3331            && ((Number) (operand.constValue())).longValue() == 0) {
3332            int opc = ((OperatorSymbol)operator).opcode;
3333            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3334                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3335                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3336                    @Override
3337                    public void report() {
3338                        warnDivZero(pos);
3339                    }
3340                });
3341            }
3342        }
3343    }
3344
3345    /**
3346     * Check for empty statements after if
3347     */
3348    void checkEmptyIf(JCIf tree) {
3349        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3350                lint.isEnabled(LintCategory.EMPTY))
3351            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3352    }
3353
3354    /** Check that symbol is unique in given scope.
3355     *  @param pos           Position for error reporting.
3356     *  @param sym           The symbol.
3357     *  @param s             The scope.
3358     */
3359    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3360        if (sym.type.isErroneous())
3361            return true;
3362        if (sym.owner.name == names.any) return false;
3363        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3364            if (sym != byName &&
3365                    (byName.flags() & CLASH) == 0 &&
3366                    sym.kind == byName.kind &&
3367                    sym.name != names.error &&
3368                    (sym.kind != MTH ||
3369                     types.hasSameArgs(sym.type, byName.type) ||
3370                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3371                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3372                    varargsDuplicateError(pos, sym, byName);
3373                    return true;
3374                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3375                    duplicateErasureError(pos, sym, byName);
3376                    sym.flags_field |= CLASH;
3377                    return true;
3378                } else {
3379                    duplicateError(pos, byName);
3380                    return false;
3381                }
3382            }
3383        }
3384        return true;
3385    }
3386
3387    /** Report duplicate declaration error.
3388     */
3389    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3390        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3391            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3392        }
3393    }
3394
3395    /**Check that types imported through the ordinary imports don't clash with types imported
3396     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3397     * types without an error on the imports.
3398     * @param toplevel       The toplevel tree for which the test should be performed.
3399     */
3400    void checkImportsUnique(JCCompilationUnit toplevel) {
3401        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3402        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3403        WriteableScope topLevelScope = toplevel.toplevelScope;
3404
3405        for (JCTree def : toplevel.defs) {
3406            if (!def.hasTag(IMPORT))
3407                continue;
3408
3409            JCImport imp = (JCImport) def;
3410
3411            if (imp.importScope == null)
3412                continue;
3413
3414            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3415                if (imp.isStatic()) {
3416                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3417                    staticallyImportedSoFar.enter(sym);
3418                } else {
3419                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3420                    ordinallyImportedSoFar.enter(sym);
3421                }
3422            }
3423
3424            imp.importScope = null;
3425        }
3426    }
3427
3428    /** Check that single-type import is not already imported or top-level defined,
3429     *  but make an exception for two single-type imports which denote the same type.
3430     *  @param pos                     Position for error reporting.
3431     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3432     *                                 ordinary imports.
3433     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3434     *                                 static imports.
3435     *  @param topLevelScope           The current file's top-level Scope
3436     *  @param sym                     The symbol.
3437     *  @param staticImport            Whether or not this was a static import
3438     */
3439    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3440                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3441                                      Symbol sym, boolean staticImport) {
3442        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3443        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3444        if (clashing == null && !staticImport) {
3445            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3446        }
3447        if (clashing != null) {
3448            if (staticImport)
3449                log.error(pos, "already.defined.static.single.import", clashing);
3450            else
3451                log.error(pos, "already.defined.single.import", clashing);
3452            return false;
3453        }
3454        clashing = topLevelScope.findFirst(sym.name, duplicates);
3455        if (clashing != null) {
3456            log.error(pos, "already.defined.this.unit", clashing);
3457            return false;
3458        }
3459        return true;
3460    }
3461
3462    /** Check that a qualified name is in canonical form (for import decls).
3463     */
3464    public void checkCanonical(JCTree tree) {
3465        if (!isCanonical(tree))
3466            log.error(tree.pos(), "import.requires.canonical",
3467                      TreeInfo.symbol(tree));
3468    }
3469        // where
3470        private boolean isCanonical(JCTree tree) {
3471            while (tree.hasTag(SELECT)) {
3472                JCFieldAccess s = (JCFieldAccess) tree;
3473                if (s.sym.owner != TreeInfo.symbol(s.selected))
3474                    return false;
3475                tree = s.selected;
3476            }
3477            return true;
3478        }
3479
3480    /** Check that an auxiliary class is not accessed from any other file than its own.
3481     */
3482    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3483        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3484            (c.flags() & AUXILIARY) != 0 &&
3485            rs.isAccessible(env, c) &&
3486            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3487        {
3488            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3489                        c, c.sourcefile);
3490        }
3491    }
3492
3493    private class ConversionWarner extends Warner {
3494        final String uncheckedKey;
3495        final Type found;
3496        final Type expected;
3497        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3498            super(pos);
3499            this.uncheckedKey = uncheckedKey;
3500            this.found = found;
3501            this.expected = expected;
3502        }
3503
3504        @Override
3505        public void warn(LintCategory lint) {
3506            boolean warned = this.warned;
3507            super.warn(lint);
3508            if (warned) return; // suppress redundant diagnostics
3509            switch (lint) {
3510                case UNCHECKED:
3511                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3512                    break;
3513                case VARARGS:
3514                    if (method != null &&
3515                            method.attribute(syms.trustMeType.tsym) != null &&
3516                            isTrustMeAllowedOnMethod(method) &&
3517                            !types.isReifiable(method.type.getParameterTypes().last())) {
3518                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3519                    }
3520                    break;
3521                default:
3522                    throw new AssertionError("Unexpected lint: " + lint);
3523            }
3524        }
3525    }
3526
3527    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3528        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3529    }
3530
3531    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3532        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3533    }
3534
3535    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3536        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3537
3538        if (functionalType != null) {
3539            try {
3540                types.findDescriptorSymbol((TypeSymbol)cs);
3541            } catch (Types.FunctionDescriptorLookupError ex) {
3542                DiagnosticPosition pos = tree.pos();
3543                for (JCAnnotation a : tree.getModifiers().annotations) {
3544                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3545                        pos = a.pos();
3546                        break;
3547                    }
3548                }
3549                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3550            }
3551        }
3552    }
3553
3554    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3555        for (final JCImport imp : toplevel.getImports()) {
3556            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3557                continue;
3558            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3559            final Symbol origin;
3560            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3561                continue;
3562
3563            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3564            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3565                log.error(imp.pos(), "cant.resolve.location",
3566                          KindName.STATIC,
3567                          select.name, List.<Type>nil(), List.<Type>nil(),
3568                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3569                          TreeInfo.symbol(select.selected).type);
3570            }
3571        }
3572    }
3573
3574    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3575    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3576        for (JCImport imp : toplevel.getImports()) {
3577            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3578                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3579                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3580                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3581                }
3582            }
3583        }
3584    }
3585
3586    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3587        if (tsym == null || !processed.add(tsym))
3588            return false;
3589
3590            // also search through inherited names
3591        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3592            return true;
3593
3594        for (Type t : types.interfaces(tsym.type))
3595            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3596                return true;
3597
3598        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3599            if (sym.isStatic() &&
3600                importAccessible(sym, packge) &&
3601                sym.isMemberOf(origin, types)) {
3602                return true;
3603            }
3604        }
3605
3606        return false;
3607    }
3608
3609    // is the sym accessible everywhere in packge?
3610    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3611        try {
3612            int flags = (int)(sym.flags() & AccessFlags);
3613            switch (flags) {
3614            default:
3615            case PUBLIC:
3616                return true;
3617            case PRIVATE:
3618                return false;
3619            case 0:
3620            case PROTECTED:
3621                return sym.packge() == packge;
3622            }
3623        } catch (ClassFinder.BadClassFile err) {
3624            throw err;
3625        } catch (CompletionFailure ex) {
3626            return false;
3627        }
3628    }
3629
3630}
3631