Check.java revision 3031:286fc9270404
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
35import com.sun.tools.javac.jvm.*;
36import com.sun.tools.javac.resources.CompilerProperties.Errors;
37import com.sun.tools.javac.resources.CompilerProperties.Fragments;
38import com.sun.tools.javac.tree.*;
39import com.sun.tools.javac.util.*;
40import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
41import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
42import com.sun.tools.javac.util.List;
43
44import com.sun.tools.javac.code.Lint;
45import com.sun.tools.javac.code.Lint.LintCategory;
46import com.sun.tools.javac.code.Scope.WriteableScope;
47import com.sun.tools.javac.code.Type.*;
48import com.sun.tools.javac.code.Symbol.*;
49import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
50import com.sun.tools.javac.comp.Infer.FreeTypeListener;
51import com.sun.tools.javac.tree.JCTree.*;
52
53import static com.sun.tools.javac.code.Flags.*;
54import static com.sun.tools.javac.code.Flags.ANNOTATION;
55import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
56import static com.sun.tools.javac.code.Kinds.*;
57import static com.sun.tools.javac.code.Kinds.Kind.*;
58import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
59import static com.sun.tools.javac.code.TypeTag.*;
60import static com.sun.tools.javac.code.TypeTag.WILDCARD;
61
62import static com.sun.tools.javac.tree.JCTree.Tag.*;
63
64/** Type checking helper class for the attribution phase.
65 *
66 *  <p><b>This is NOT part of any supported API.
67 *  If you write code that depends on this, you do so at your own risk.
68 *  This code and its internal interfaces are subject to change or
69 *  deletion without notice.</b>
70 */
71public class Check {
72    protected static final Context.Key<Check> checkKey = new Context.Key<>();
73
74    private final Names names;
75    private final Log log;
76    private final Resolve rs;
77    private final Symtab syms;
78    private final Enter enter;
79    private final DeferredAttr deferredAttr;
80    private final Infer infer;
81    private final Types types;
82    private final TypeAnnotations typeAnnotations;
83    private final JCDiagnostic.Factory diags;
84    private boolean warnOnSyntheticConflicts;
85    private boolean suppressAbortOnBadClassFile;
86    private boolean enableSunApiLintControl;
87    private final JavaFileManager fileManager;
88    private final Source source;
89    private final Profile profile;
90    private final boolean warnOnAccessToSensitiveMembers;
91
92    // The set of lint options currently in effect. It is initialized
93    // from the context, and then is set/reset as needed by Attr as it
94    // visits all the various parts of the trees during attribution.
95    private Lint lint;
96
97    // The method being analyzed in Attr - it is set/reset as needed by
98    // Attr as it visits new method declarations.
99    private MethodSymbol method;
100
101    public static Check instance(Context context) {
102        Check instance = context.get(checkKey);
103        if (instance == null)
104            instance = new Check(context);
105        return instance;
106    }
107
108    protected Check(Context context) {
109        context.put(checkKey, this);
110
111        names = Names.instance(context);
112        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
113            names.FIELD, names.METHOD, names.CONSTRUCTOR,
114            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
115        log = Log.instance(context);
116        rs = Resolve.instance(context);
117        syms = Symtab.instance(context);
118        enter = Enter.instance(context);
119        deferredAttr = DeferredAttr.instance(context);
120        infer = Infer.instance(context);
121        types = Types.instance(context);
122        typeAnnotations = TypeAnnotations.instance(context);
123        diags = JCDiagnostic.Factory.instance(context);
124        Options options = Options.instance(context);
125        lint = Lint.instance(context);
126        fileManager = context.get(JavaFileManager.class);
127
128        source = Source.instance(context);
129        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
130        allowDefaultMethods = source.allowDefaultMethods();
131        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
132        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
133        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
134        complexInference = options.isSet("complexinference");
135        warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
136        suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
137        enableSunApiLintControl = options.isSet("enableSunApiLintControl");
138        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
139
140        Target target = Target.instance(context);
141        syntheticNameChar = target.syntheticNameChar();
142
143        profile = Profile.instance(context);
144
145        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
146        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
147        boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
148        boolean enforceMandatoryWarnings = true;
149
150        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
151                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
152        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
153                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
154        sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
155                enforceMandatoryWarnings, "sunapi", null);
156
157        deferredLintHandler = DeferredLintHandler.instance(context);
158    }
159
160    /** Switch: simplified varargs enabled?
161     */
162    boolean allowSimplifiedVarargs;
163
164    /** Switch: default methods enabled?
165     */
166    boolean allowDefaultMethods;
167
168    /** Switch: should unrelated return types trigger a method clash?
169     */
170    boolean allowStrictMethodClashCheck;
171
172    /** Switch: can the @SafeVarargs annotation be applied to private methods?
173     */
174    boolean allowPrivateSafeVarargs;
175
176    /** Switch: can diamond inference be used in anonymous instance creation ?
177     */
178    boolean allowDiamondWithAnonymousClassCreation;
179
180    /** Switch: -complexinference option set?
181     */
182    boolean complexInference;
183
184    /** Character for synthetic names
185     */
186    char syntheticNameChar;
187
188    /** A table mapping flat names of all compiled classes in this run to their
189     *  symbols; maintained from outside.
190     */
191    public Map<Name,ClassSymbol> compiled = new HashMap<>();
192
193    /** A handler for messages about deprecated usage.
194     */
195    private MandatoryWarningHandler deprecationHandler;
196
197    /** A handler for messages about unchecked or unsafe usage.
198     */
199    private MandatoryWarningHandler uncheckedHandler;
200
201    /** A handler for messages about using proprietary API.
202     */
203    private MandatoryWarningHandler sunApiHandler;
204
205    /** A handler for deferred lint warnings.
206     */
207    private DeferredLintHandler deferredLintHandler;
208
209/* *************************************************************************
210 * Errors and Warnings
211 **************************************************************************/
212
213    Lint setLint(Lint newLint) {
214        Lint prev = lint;
215        lint = newLint;
216        return prev;
217    }
218
219    MethodSymbol setMethod(MethodSymbol newMethod) {
220        MethodSymbol prev = method;
221        method = newMethod;
222        return prev;
223    }
224
225    /** Warn about deprecated symbol.
226     *  @param pos        Position to be used for error reporting.
227     *  @param sym        The deprecated symbol.
228     */
229    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
230        if (!lint.isSuppressed(LintCategory.DEPRECATION))
231            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
232    }
233
234    /** Warn about unchecked operation.
235     *  @param pos        Position to be used for error reporting.
236     *  @param msg        A string describing the problem.
237     */
238    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
239        if (!lint.isSuppressed(LintCategory.UNCHECKED))
240            uncheckedHandler.report(pos, msg, args);
241    }
242
243    /** Warn about unsafe vararg method decl.
244     *  @param pos        Position to be used for error reporting.
245     */
246    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
247        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
248            log.warning(LintCategory.VARARGS, pos, key, args);
249    }
250
251    /** Warn about using proprietary API.
252     *  @param pos        Position to be used for error reporting.
253     *  @param msg        A string describing the problem.
254     */
255    public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
256        if (!lint.isSuppressed(LintCategory.SUNAPI))
257            sunApiHandler.report(pos, msg, args);
258    }
259
260    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
261        if (lint.isEnabled(LintCategory.STATIC))
262            log.warning(LintCategory.STATIC, pos, msg, args);
263    }
264
265    /** Warn about division by integer constant zero.
266     *  @param pos        Position to be used for error reporting.
267     */
268    void warnDivZero(DiagnosticPosition pos) {
269        if (lint.isEnabled(LintCategory.DIVZERO))
270            log.warning(LintCategory.DIVZERO, pos, "div.zero");
271    }
272
273    /**
274     * Report any deferred diagnostics.
275     */
276    public void reportDeferredDiagnostics() {
277        deprecationHandler.reportDeferredDiagnostic();
278        uncheckedHandler.reportDeferredDiagnostic();
279        sunApiHandler.reportDeferredDiagnostic();
280    }
281
282
283    /** Report a failure to complete a class.
284     *  @param pos        Position to be used for error reporting.
285     *  @param ex         The failure to report.
286     */
287    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
288        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
289        if (ex instanceof ClassFinder.BadClassFile
290                && !suppressAbortOnBadClassFile) throw new Abort();
291        else return syms.errType;
292    }
293
294    /** Report an error that wrong type tag was found.
295     *  @param pos        Position to be used for error reporting.
296     *  @param required   An internationalized string describing the type tag
297     *                    required.
298     *  @param found      The type that was found.
299     */
300    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
301        // this error used to be raised by the parser,
302        // but has been delayed to this point:
303        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
304            log.error(pos, "illegal.start.of.type");
305            return syms.errType;
306        }
307        log.error(pos, "type.found.req", found, required);
308        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
309    }
310
311    /** Report an error that symbol cannot be referenced before super
312     *  has been called.
313     *  @param pos        Position to be used for error reporting.
314     *  @param sym        The referenced symbol.
315     */
316    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
317        log.error(pos, "cant.ref.before.ctor.called", sym);
318    }
319
320    /** Report duplicate declaration error.
321     */
322    void duplicateError(DiagnosticPosition pos, Symbol sym) {
323        if (!sym.type.isErroneous()) {
324            Symbol location = sym.location();
325            if (location.kind == MTH &&
326                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
327                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
328                        kindName(sym.location()), kindName(sym.location().enclClass()),
329                        sym.location().enclClass());
330            } else {
331                log.error(pos, "already.defined", kindName(sym), sym,
332                        kindName(sym.location()), sym.location());
333            }
334        }
335    }
336
337    /** Report array/varargs duplicate declaration
338     */
339    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
340        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
341            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
342        }
343    }
344
345/* ************************************************************************
346 * duplicate declaration checking
347 *************************************************************************/
348
349    /** Check that variable does not hide variable with same name in
350     *  immediately enclosing local scope.
351     *  @param pos           Position for error reporting.
352     *  @param v             The symbol.
353     *  @param s             The scope.
354     */
355    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
356        for (Symbol sym : s.getSymbolsByName(v.name)) {
357            if (sym.owner != v.owner) break;
358            if (sym.kind == VAR &&
359                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
360                v.name != names.error) {
361                duplicateError(pos, sym);
362                return;
363            }
364        }
365    }
366
367    /** Check that a class or interface does not hide a class or
368     *  interface with same name in immediately enclosing local scope.
369     *  @param pos           Position for error reporting.
370     *  @param c             The symbol.
371     *  @param s             The scope.
372     */
373    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
374        for (Symbol sym : s.getSymbolsByName(c.name)) {
375            if (sym.owner != c.owner) break;
376            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
377                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
378                c.name != names.error) {
379                duplicateError(pos, sym);
380                return;
381            }
382        }
383    }
384
385    /** Check that class does not have the same name as one of
386     *  its enclosing classes, or as a class defined in its enclosing scope.
387     *  return true if class is unique in its enclosing scope.
388     *  @param pos           Position for error reporting.
389     *  @param name          The class name.
390     *  @param s             The enclosing scope.
391     */
392    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
393        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
394            if (sym.kind == TYP && sym.name != names.error) {
395                duplicateError(pos, sym);
396                return false;
397            }
398        }
399        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
400            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
401                duplicateError(pos, sym);
402                return true;
403            }
404        }
405        return true;
406    }
407
408/* *************************************************************************
409 * Class name generation
410 **************************************************************************/
411
412    /** Return name of local class.
413     *  This is of the form   {@code <enclClass> $ n <classname> }
414     *  where
415     *    enclClass is the flat name of the enclosing class,
416     *    classname is the simple name of the local class
417     */
418    Name localClassName(ClassSymbol c) {
419        for (int i=1; ; i++) {
420            Name flatname = names.
421                fromString("" + c.owner.enclClass().flatname +
422                           syntheticNameChar + i +
423                           c.name);
424            if (compiled.get(flatname) == null) return flatname;
425        }
426    }
427
428    public void newRound() {
429        compiled.clear();
430    }
431
432/* *************************************************************************
433 * Type Checking
434 **************************************************************************/
435
436    /**
437     * A check context is an object that can be used to perform compatibility
438     * checks - depending on the check context, meaning of 'compatibility' might
439     * vary significantly.
440     */
441    public interface CheckContext {
442        /**
443         * Is type 'found' compatible with type 'req' in given context
444         */
445        boolean compatible(Type found, Type req, Warner warn);
446        /**
447         * Report a check error
448         */
449        void report(DiagnosticPosition pos, JCDiagnostic details);
450        /**
451         * Obtain a warner for this check context
452         */
453        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
454
455        public InferenceContext inferenceContext();
456
457        public DeferredAttr.DeferredAttrContext deferredAttrContext();
458    }
459
460    /**
461     * This class represent a check context that is nested within another check
462     * context - useful to check sub-expressions. The default behavior simply
463     * redirects all method calls to the enclosing check context leveraging
464     * the forwarding pattern.
465     */
466    static class NestedCheckContext implements CheckContext {
467        CheckContext enclosingContext;
468
469        NestedCheckContext(CheckContext enclosingContext) {
470            this.enclosingContext = enclosingContext;
471        }
472
473        public boolean compatible(Type found, Type req, Warner warn) {
474            return enclosingContext.compatible(found, req, warn);
475        }
476
477        public void report(DiagnosticPosition pos, JCDiagnostic details) {
478            enclosingContext.report(pos, details);
479        }
480
481        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
482            return enclosingContext.checkWarner(pos, found, req);
483        }
484
485        public InferenceContext inferenceContext() {
486            return enclosingContext.inferenceContext();
487        }
488
489        public DeferredAttrContext deferredAttrContext() {
490            return enclosingContext.deferredAttrContext();
491        }
492    }
493
494    /**
495     * Check context to be used when evaluating assignment/return statements
496     */
497    CheckContext basicHandler = new CheckContext() {
498        public void report(DiagnosticPosition pos, JCDiagnostic details) {
499            log.error(pos, "prob.found.req", details);
500        }
501        public boolean compatible(Type found, Type req, Warner warn) {
502            return types.isAssignable(found, req, warn);
503        }
504
505        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
506            return convertWarner(pos, found, req);
507        }
508
509        public InferenceContext inferenceContext() {
510            return infer.emptyContext;
511        }
512
513        public DeferredAttrContext deferredAttrContext() {
514            return deferredAttr.emptyDeferredAttrContext;
515        }
516
517        @Override
518        public String toString() {
519            return "CheckContext: basicHandler";
520        }
521    };
522
523    /** Check that a given type is assignable to a given proto-type.
524     *  If it is, return the type, otherwise return errType.
525     *  @param pos        Position to be used for error reporting.
526     *  @param found      The type that was found.
527     *  @param req        The type that was required.
528     */
529    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
530        return checkType(pos, found, req, basicHandler);
531    }
532
533    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
534        final InferenceContext inferenceContext = checkContext.inferenceContext();
535        if (inferenceContext.free(req) || inferenceContext.free(found)) {
536            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
537                @Override
538                public void typesInferred(InferenceContext inferenceContext) {
539                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
540                }
541            });
542        }
543        if (req.hasTag(ERROR))
544            return req;
545        if (req.hasTag(NONE))
546            return found;
547        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
548            return found;
549        } else {
550            if (found.isNumeric() && req.isNumeric()) {
551                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
552                return types.createErrorType(found);
553            }
554            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
555            return types.createErrorType(found);
556        }
557    }
558
559    /** Check that a given type can be cast to a given target type.
560     *  Return the result of the cast.
561     *  @param pos        Position to be used for error reporting.
562     *  @param found      The type that is being cast.
563     *  @param req        The target type of the cast.
564     */
565    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
566        return checkCastable(pos, found, req, basicHandler);
567    }
568    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
569        if (types.isCastable(found, req, castWarner(pos, found, req))) {
570            return req;
571        } else {
572            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
573            return types.createErrorType(found);
574        }
575    }
576
577    /** Check for redundant casts (i.e. where source type is a subtype of target type)
578     * The problem should only be reported for non-292 cast
579     */
580    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
581        if (!tree.type.isErroneous()
582                && types.isSameType(tree.expr.type, tree.clazz.type)
583                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
584                && !is292targetTypeCast(tree)) {
585            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
586                @Override
587                public void report() {
588                    if (lint.isEnabled(Lint.LintCategory.CAST))
589                        log.warning(Lint.LintCategory.CAST,
590                                tree.pos(), "redundant.cast", tree.clazz.type);
591                }
592            });
593        }
594    }
595    //where
596        private boolean is292targetTypeCast(JCTypeCast tree) {
597            boolean is292targetTypeCast = false;
598            JCExpression expr = TreeInfo.skipParens(tree.expr);
599            if (expr.hasTag(APPLY)) {
600                JCMethodInvocation apply = (JCMethodInvocation)expr;
601                Symbol sym = TreeInfo.symbol(apply.meth);
602                is292targetTypeCast = sym != null &&
603                    sym.kind == MTH &&
604                    (sym.flags() & HYPOTHETICAL) != 0;
605            }
606            return is292targetTypeCast;
607        }
608
609        private static final boolean ignoreAnnotatedCasts = true;
610
611    /** Check that a type is within some bounds.
612     *
613     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
614     *  type argument.
615     *  @param a             The type that should be bounded by bs.
616     *  @param bound         The bound.
617     */
618    private boolean checkExtends(Type a, Type bound) {
619         if (a.isUnbound()) {
620             return true;
621         } else if (!a.hasTag(WILDCARD)) {
622             a = types.cvarUpperBound(a);
623             return types.isSubtype(a, bound);
624         } else if (a.isExtendsBound()) {
625             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
626         } else if (a.isSuperBound()) {
627             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
628         }
629         return true;
630     }
631
632    /** Check that type is different from 'void'.
633     *  @param pos           Position to be used for error reporting.
634     *  @param t             The type to be checked.
635     */
636    Type checkNonVoid(DiagnosticPosition pos, Type t) {
637        if (t.hasTag(VOID)) {
638            log.error(pos, "void.not.allowed.here");
639            return types.createErrorType(t);
640        } else {
641            return t;
642        }
643    }
644
645    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
646        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
647            return typeTagError(pos,
648                                diags.fragment("type.req.class.array"),
649                                asTypeParam(t));
650        } else {
651            return t;
652        }
653    }
654
655    /** Check that type is a class or interface type.
656     *  @param pos           Position to be used for error reporting.
657     *  @param t             The type to be checked.
658     */
659    Type checkClassType(DiagnosticPosition pos, Type t) {
660        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
661            return typeTagError(pos,
662                                diags.fragment("type.req.class"),
663                                asTypeParam(t));
664        } else {
665            return t;
666        }
667    }
668    //where
669        private Object asTypeParam(Type t) {
670            return (t.hasTag(TYPEVAR))
671                                    ? diags.fragment("type.parameter", t)
672                                    : t;
673        }
674
675    /** Check that type is a valid qualifier for a constructor reference expression
676     */
677    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
678        t = checkClassOrArrayType(pos, t);
679        if (t.hasTag(CLASS)) {
680            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
681                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
682                t = types.createErrorType(t);
683            } else if ((t.tsym.flags() & ENUM) != 0) {
684                log.error(pos, "enum.cant.be.instantiated");
685                t = types.createErrorType(t);
686            } else {
687                t = checkClassType(pos, t, true);
688            }
689        } else if (t.hasTag(ARRAY)) {
690            if (!types.isReifiable(((ArrayType)t).elemtype)) {
691                log.error(pos, "generic.array.creation");
692                t = types.createErrorType(t);
693            }
694        }
695        return t;
696    }
697
698    /** Check that type is a class or interface type.
699     *  @param pos           Position to be used for error reporting.
700     *  @param t             The type to be checked.
701     *  @param noBounds    True if type bounds are illegal here.
702     */
703    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
704        t = checkClassType(pos, t);
705        if (noBounds && t.isParameterized()) {
706            List<Type> args = t.getTypeArguments();
707            while (args.nonEmpty()) {
708                if (args.head.hasTag(WILDCARD))
709                    return typeTagError(pos,
710                                        diags.fragment("type.req.exact"),
711                                        args.head);
712                args = args.tail;
713            }
714        }
715        return t;
716    }
717
718    /** Check that type is a reference type, i.e. a class, interface or array type
719     *  or a type variable.
720     *  @param pos           Position to be used for error reporting.
721     *  @param t             The type to be checked.
722     */
723    Type checkRefType(DiagnosticPosition pos, Type t) {
724        if (t.isReference())
725            return t;
726        else
727            return typeTagError(pos,
728                                diags.fragment("type.req.ref"),
729                                t);
730    }
731
732    /** Check that each type is a reference type, i.e. a class, interface or array type
733     *  or a type variable.
734     *  @param trees         Original trees, used for error reporting.
735     *  @param types         The types to be checked.
736     */
737    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
738        List<JCExpression> tl = trees;
739        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
740            l.head = checkRefType(tl.head.pos(), l.head);
741            tl = tl.tail;
742        }
743        return types;
744    }
745
746    /** Check that type is a null or reference type.
747     *  @param pos           Position to be used for error reporting.
748     *  @param t             The type to be checked.
749     */
750    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
751        if (t.isReference() || t.hasTag(BOT))
752            return t;
753        else
754            return typeTagError(pos,
755                                diags.fragment("type.req.ref"),
756                                t);
757    }
758
759    /** Check that flag set does not contain elements of two conflicting sets. s
760     *  Return true if it doesn't.
761     *  @param pos           Position to be used for error reporting.
762     *  @param flags         The set of flags to be checked.
763     *  @param set1          Conflicting flags set #1.
764     *  @param set2          Conflicting flags set #2.
765     */
766    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
767        if ((flags & set1) != 0 && (flags & set2) != 0) {
768            log.error(pos,
769                      "illegal.combination.of.modifiers",
770                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
771                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
772            return false;
773        } else
774            return true;
775    }
776
777    /** Check that usage of diamond operator is correct (i.e. diamond should not
778     * be used with non-generic classes or in anonymous class creation expressions)
779     */
780    Type checkDiamond(JCNewClass tree, Type t) {
781        if (!TreeInfo.isDiamond(tree) ||
782                t.isErroneous()) {
783            return checkClassType(tree.clazz.pos(), t, true);
784        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
785            log.error(tree.clazz.pos(),
786                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
787            return types.createErrorType(t);
788        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
789            log.error(tree.clazz.pos(),
790                "cant.apply.diamond.1",
791                t, diags.fragment("diamond.non.generic", t));
792            return types.createErrorType(t);
793        } else if (tree.typeargs != null &&
794                tree.typeargs.nonEmpty()) {
795            log.error(tree.clazz.pos(),
796                "cant.apply.diamond.1",
797                t, diags.fragment("diamond.and.explicit.params", t));
798            return types.createErrorType(t);
799        } else {
800            return t;
801        }
802    }
803
804    /** Check that the type inferred using the diamond operator does not contain
805     *  non-denotable types such as captured types or intersection types.
806     *  @param t the type inferred using the diamond operator
807     *  @return  the (possibly empty) list of non-denotable types.
808     */
809    List<Type> checkDiamondDenotable(ClassType t) {
810        ListBuffer<Type> buf = new ListBuffer<>();
811        for (Type arg : t.getTypeArguments()) {
812            if (!diamondTypeChecker.visit(arg, null)) {
813                buf.append(arg);
814            }
815        }
816        return buf.toList();
817    }
818        // where
819
820        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
821         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
822         *  otherwise.
823         */
824        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
825            @Override
826            public Boolean visitType(Type t, Void s) {
827                return true;
828            }
829            @Override
830            public Boolean visitClassType(ClassType t, Void s) {
831                if (t.isCompound()) {
832                    return false;
833                }
834                for (Type targ : t.getTypeArguments()) {
835                    if (!visit(targ, s)) {
836                        return false;
837                    }
838                }
839                return true;
840            }
841
842            @Override
843            public Boolean visitTypeVar(TypeVar t, Void s) {
844                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
845                  (i.e cannot have been produced by capture conversion (5.1.10) or by inference (18.4)
846                */
847                return t.tsym.owner.type.getTypeArguments().contains(t);
848            }
849
850            @Override
851            public Boolean visitCapturedType(CapturedType t, Void s) {
852                return false;
853            }
854
855            @Override
856            public Boolean visitArrayType(ArrayType t, Void s) {
857                return visit(t.elemtype, s);
858            }
859
860            @Override
861            public Boolean visitWildcardType(WildcardType t, Void s) {
862                return visit(t.type, s);
863            }
864        };
865
866    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
867        MethodSymbol m = tree.sym;
868        if (!allowSimplifiedVarargs) return;
869        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
870        Type varargElemType = null;
871        if (m.isVarArgs()) {
872            varargElemType = types.elemtype(tree.params.last().type);
873        }
874        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
875            if (varargElemType != null) {
876                log.error(tree,
877                        "varargs.invalid.trustme.anno",
878                          syms.trustMeType.tsym,
879                          allowPrivateSafeVarargs ?
880                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
881                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
882            } else {
883                log.error(tree,
884                            "varargs.invalid.trustme.anno",
885                            syms.trustMeType.tsym,
886                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
887            }
888        } else if (hasTrustMeAnno && varargElemType != null &&
889                            types.isReifiable(varargElemType)) {
890            warnUnsafeVararg(tree,
891                            "varargs.redundant.trustme.anno",
892                            syms.trustMeType.tsym,
893                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
894        }
895        else if (!hasTrustMeAnno && varargElemType != null &&
896                !types.isReifiable(varargElemType)) {
897            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
898        }
899    }
900    //where
901        private boolean isTrustMeAllowedOnMethod(Symbol s) {
902            return (s.flags() & VARARGS) != 0 &&
903                (s.isConstructor() ||
904                    (s.flags() & (STATIC | FINAL |
905                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
906        }
907
908    Type checkMethod(final Type mtype,
909            final Symbol sym,
910            final Env<AttrContext> env,
911            final List<JCExpression> argtrees,
912            final List<Type> argtypes,
913            final boolean useVarargs,
914            InferenceContext inferenceContext) {
915        // System.out.println("call   : " + env.tree);
916        // System.out.println("method : " + owntype);
917        // System.out.println("actuals: " + argtypes);
918        if (inferenceContext.free(mtype)) {
919            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
920                public void typesInferred(InferenceContext inferenceContext) {
921                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
922                }
923            });
924            return mtype;
925        }
926        Type owntype = mtype;
927        List<Type> formals = owntype.getParameterTypes();
928        List<Type> nonInferred = sym.type.getParameterTypes();
929        if (nonInferred.length() != formals.length()) nonInferred = formals;
930        Type last = useVarargs ? formals.last() : null;
931        if (sym.name == names.init && sym.owner == syms.enumSym) {
932            formals = formals.tail.tail;
933            nonInferred = nonInferred.tail.tail;
934        }
935        List<JCExpression> args = argtrees;
936        if (args != null) {
937            //this is null when type-checking a method reference
938            while (formals.head != last) {
939                JCTree arg = args.head;
940                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
941                assertConvertible(arg, arg.type, formals.head, warn);
942                args = args.tail;
943                formals = formals.tail;
944                nonInferred = nonInferred.tail;
945            }
946            if (useVarargs) {
947                Type varArg = types.elemtype(last);
948                while (args.tail != null) {
949                    JCTree arg = args.head;
950                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
951                    assertConvertible(arg, arg.type, varArg, warn);
952                    args = args.tail;
953                }
954            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
955                // non-varargs call to varargs method
956                Type varParam = owntype.getParameterTypes().last();
957                Type lastArg = argtypes.last();
958                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
959                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
960                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
961                                types.elemtype(varParam), varParam);
962            }
963        }
964        if (useVarargs) {
965            Type argtype = owntype.getParameterTypes().last();
966            if (!types.isReifiable(argtype) &&
967                (!allowSimplifiedVarargs ||
968                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
969                 !isTrustMeAllowedOnMethod(sym))) {
970                warnUnchecked(env.tree.pos(),
971                                  "unchecked.generic.array.creation",
972                                  argtype);
973            }
974            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
975                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
976            }
977         }
978         return owntype;
979    }
980    //where
981    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
982        if (types.isConvertible(actual, formal, warn))
983            return;
984
985        if (formal.isCompound()
986            && types.isSubtype(actual, types.supertype(formal))
987            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
988            return;
989    }
990
991    /**
992     * Check that type 't' is a valid instantiation of a generic class
993     * (see JLS 4.5)
994     *
995     * @param t class type to be checked
996     * @return true if 't' is well-formed
997     */
998    public boolean checkValidGenericType(Type t) {
999        return firstIncompatibleTypeArg(t) == null;
1000    }
1001    //WHERE
1002        private Type firstIncompatibleTypeArg(Type type) {
1003            List<Type> formals = type.tsym.type.allparams();
1004            List<Type> actuals = type.allparams();
1005            List<Type> args = type.getTypeArguments();
1006            List<Type> forms = type.tsym.type.getTypeArguments();
1007            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1008
1009            // For matching pairs of actual argument types `a' and
1010            // formal type parameters with declared bound `b' ...
1011            while (args.nonEmpty() && forms.nonEmpty()) {
1012                // exact type arguments needs to know their
1013                // bounds (for upper and lower bound
1014                // calculations).  So we create new bounds where
1015                // type-parameters are replaced with actuals argument types.
1016                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1017                args = args.tail;
1018                forms = forms.tail;
1019            }
1020
1021            args = type.getTypeArguments();
1022            List<Type> tvars_cap = types.substBounds(formals,
1023                                      formals,
1024                                      types.capture(type).allparams());
1025            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1026                // Let the actual arguments know their bound
1027                args.head.withTypeVar((TypeVar)tvars_cap.head);
1028                args = args.tail;
1029                tvars_cap = tvars_cap.tail;
1030            }
1031
1032            args = type.getTypeArguments();
1033            List<Type> bounds = bounds_buf.toList();
1034
1035            while (args.nonEmpty() && bounds.nonEmpty()) {
1036                Type actual = args.head;
1037                if (!isTypeArgErroneous(actual) &&
1038                        !bounds.head.isErroneous() &&
1039                        !checkExtends(actual, bounds.head)) {
1040                    return args.head;
1041                }
1042                args = args.tail;
1043                bounds = bounds.tail;
1044            }
1045
1046            args = type.getTypeArguments();
1047            bounds = bounds_buf.toList();
1048
1049            for (Type arg : types.capture(type).getTypeArguments()) {
1050                if (arg.hasTag(TYPEVAR) &&
1051                        arg.getUpperBound().isErroneous() &&
1052                        !bounds.head.isErroneous() &&
1053                        !isTypeArgErroneous(args.head)) {
1054                    return args.head;
1055                }
1056                bounds = bounds.tail;
1057                args = args.tail;
1058            }
1059
1060            return null;
1061        }
1062        //where
1063        boolean isTypeArgErroneous(Type t) {
1064            return isTypeArgErroneous.visit(t);
1065        }
1066
1067        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1068            public Boolean visitType(Type t, Void s) {
1069                return t.isErroneous();
1070            }
1071            @Override
1072            public Boolean visitTypeVar(TypeVar t, Void s) {
1073                return visit(t.getUpperBound());
1074            }
1075            @Override
1076            public Boolean visitCapturedType(CapturedType t, Void s) {
1077                return visit(t.getUpperBound()) ||
1078                        visit(t.getLowerBound());
1079            }
1080            @Override
1081            public Boolean visitWildcardType(WildcardType t, Void s) {
1082                return visit(t.type);
1083            }
1084        };
1085
1086    /** Check that given modifiers are legal for given symbol and
1087     *  return modifiers together with any implicit modifiers for that symbol.
1088     *  Warning: we can't use flags() here since this method
1089     *  is called during class enter, when flags() would cause a premature
1090     *  completion.
1091     *  @param pos           Position to be used for error reporting.
1092     *  @param flags         The set of modifiers given in a definition.
1093     *  @param sym           The defined symbol.
1094     */
1095    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1096        long mask;
1097        long implicit = 0;
1098
1099        switch (sym.kind) {
1100        case VAR:
1101            if (TreeInfo.isReceiverParam(tree))
1102                mask = ReceiverParamFlags;
1103            else if (sym.owner.kind != TYP)
1104                mask = LocalVarFlags;
1105            else if ((sym.owner.flags_field & INTERFACE) != 0)
1106                mask = implicit = InterfaceVarFlags;
1107            else
1108                mask = VarFlags;
1109            break;
1110        case MTH:
1111            if (sym.name == names.init) {
1112                if ((sym.owner.flags_field & ENUM) != 0) {
1113                    // enum constructors cannot be declared public or
1114                    // protected and must be implicitly or explicitly
1115                    // private
1116                    implicit = PRIVATE;
1117                    mask = PRIVATE;
1118                } else
1119                    mask = ConstructorFlags;
1120            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1121                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1122                    mask = AnnotationTypeElementMask;
1123                    implicit = PUBLIC | ABSTRACT;
1124                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1125                    mask = InterfaceMethodMask;
1126                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1127                    if ((flags & DEFAULT) != 0) {
1128                        implicit |= ABSTRACT;
1129                    }
1130                } else {
1131                    mask = implicit = InterfaceMethodFlags;
1132                }
1133            } else {
1134                mask = MethodFlags;
1135            }
1136            // Imply STRICTFP if owner has STRICTFP set.
1137            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1138                ((flags) & Flags.DEFAULT) != 0)
1139                implicit |= sym.owner.flags_field & STRICTFP;
1140            break;
1141        case TYP:
1142            if (sym.isLocal()) {
1143                mask = LocalClassFlags;
1144                if (sym.name.isEmpty()) { // Anonymous class
1145                    // JLS: Anonymous classes are final.
1146                    implicit |= FINAL;
1147                }
1148                if ((sym.owner.flags_field & STATIC) == 0 &&
1149                    (flags & ENUM) != 0)
1150                    log.error(pos, "enums.must.be.static");
1151            } else if (sym.owner.kind == TYP) {
1152                mask = MemberClassFlags;
1153                if (sym.owner.owner.kind == PCK ||
1154                    (sym.owner.flags_field & STATIC) != 0)
1155                    mask |= STATIC;
1156                else if ((flags & ENUM) != 0)
1157                    log.error(pos, "enums.must.be.static");
1158                // Nested interfaces and enums are always STATIC (Spec ???)
1159                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1160            } else {
1161                mask = ClassFlags;
1162            }
1163            // Interfaces are always ABSTRACT
1164            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1165
1166            if ((flags & ENUM) != 0) {
1167                // enums can't be declared abstract or final
1168                mask &= ~(ABSTRACT | FINAL);
1169                implicit |= implicitEnumFinalFlag(tree);
1170            }
1171            // Imply STRICTFP if owner has STRICTFP set.
1172            implicit |= sym.owner.flags_field & STRICTFP;
1173            break;
1174        default:
1175            throw new AssertionError();
1176        }
1177        long illegal = flags & ExtendedStandardFlags & ~mask;
1178        if (illegal != 0) {
1179            if ((illegal & INTERFACE) != 0) {
1180                log.error(pos, "intf.not.allowed.here");
1181                mask |= INTERFACE;
1182            }
1183            else {
1184                log.error(pos,
1185                          "mod.not.allowed.here", asFlagSet(illegal));
1186            }
1187        }
1188        else if ((sym.kind == TYP ||
1189                  // ISSUE: Disallowing abstract&private is no longer appropriate
1190                  // in the presence of inner classes. Should it be deleted here?
1191                  checkDisjoint(pos, flags,
1192                                ABSTRACT,
1193                                PRIVATE | STATIC | DEFAULT))
1194                 &&
1195                 checkDisjoint(pos, flags,
1196                                STATIC | PRIVATE,
1197                                DEFAULT)
1198                 &&
1199                 checkDisjoint(pos, flags,
1200                               ABSTRACT | INTERFACE,
1201                               FINAL | NATIVE | SYNCHRONIZED)
1202                 &&
1203                 checkDisjoint(pos, flags,
1204                               PUBLIC,
1205                               PRIVATE | PROTECTED)
1206                 &&
1207                 checkDisjoint(pos, flags,
1208                               PRIVATE,
1209                               PUBLIC | PROTECTED)
1210                 &&
1211                 checkDisjoint(pos, flags,
1212                               FINAL,
1213                               VOLATILE)
1214                 &&
1215                 (sym.kind == TYP ||
1216                  checkDisjoint(pos, flags,
1217                                ABSTRACT | NATIVE,
1218                                STRICTFP))) {
1219            // skip
1220        }
1221        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1222    }
1223
1224
1225    /** Determine if this enum should be implicitly final.
1226     *
1227     *  If the enum has no specialized enum contants, it is final.
1228     *
1229     *  If the enum does have specialized enum contants, it is
1230     *  <i>not</i> final.
1231     */
1232    private long implicitEnumFinalFlag(JCTree tree) {
1233        if (!tree.hasTag(CLASSDEF)) return 0;
1234        class SpecialTreeVisitor extends JCTree.Visitor {
1235            boolean specialized;
1236            SpecialTreeVisitor() {
1237                this.specialized = false;
1238            }
1239
1240            @Override
1241            public void visitTree(JCTree tree) { /* no-op */ }
1242
1243            @Override
1244            public void visitVarDef(JCVariableDecl tree) {
1245                if ((tree.mods.flags & ENUM) != 0) {
1246                    if (tree.init instanceof JCNewClass &&
1247                        ((JCNewClass) tree.init).def != null) {
1248                        specialized = true;
1249                    }
1250                }
1251            }
1252        }
1253
1254        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1255        JCClassDecl cdef = (JCClassDecl) tree;
1256        for (JCTree defs: cdef.defs) {
1257            defs.accept(sts);
1258            if (sts.specialized) return 0;
1259        }
1260        return FINAL;
1261    }
1262
1263/* *************************************************************************
1264 * Type Validation
1265 **************************************************************************/
1266
1267    /** Validate a type expression. That is,
1268     *  check that all type arguments of a parametric type are within
1269     *  their bounds. This must be done in a second phase after type attribution
1270     *  since a class might have a subclass as type parameter bound. E.g:
1271     *
1272     *  <pre>{@code
1273     *  class B<A extends C> { ... }
1274     *  class C extends B<C> { ... }
1275     *  }</pre>
1276     *
1277     *  and we can't make sure that the bound is already attributed because
1278     *  of possible cycles.
1279     *
1280     * Visitor method: Validate a type expression, if it is not null, catching
1281     *  and reporting any completion failures.
1282     */
1283    void validate(JCTree tree, Env<AttrContext> env) {
1284        validate(tree, env, true);
1285    }
1286    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1287        new Validator(env).validateTree(tree, checkRaw, true);
1288    }
1289
1290    /** Visitor method: Validate a list of type expressions.
1291     */
1292    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1293        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1294            validate(l.head, env);
1295    }
1296
1297    /** A visitor class for type validation.
1298     */
1299    class Validator extends JCTree.Visitor {
1300
1301        boolean checkRaw;
1302        boolean isOuter;
1303        Env<AttrContext> env;
1304
1305        Validator(Env<AttrContext> env) {
1306            this.env = env;
1307        }
1308
1309        @Override
1310        public void visitTypeArray(JCArrayTypeTree tree) {
1311            validateTree(tree.elemtype, checkRaw, isOuter);
1312        }
1313
1314        @Override
1315        public void visitTypeApply(JCTypeApply tree) {
1316            if (tree.type.hasTag(CLASS)) {
1317                List<JCExpression> args = tree.arguments;
1318                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1319
1320                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1321                if (incompatibleArg != null) {
1322                    for (JCTree arg : tree.arguments) {
1323                        if (arg.type == incompatibleArg) {
1324                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1325                        }
1326                        forms = forms.tail;
1327                     }
1328                 }
1329
1330                forms = tree.type.tsym.type.getTypeArguments();
1331
1332                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1333
1334                // For matching pairs of actual argument types `a' and
1335                // formal type parameters with declared bound `b' ...
1336                while (args.nonEmpty() && forms.nonEmpty()) {
1337                    validateTree(args.head,
1338                            !(isOuter && is_java_lang_Class),
1339                            false);
1340                    args = args.tail;
1341                    forms = forms.tail;
1342                }
1343
1344                // Check that this type is either fully parameterized, or
1345                // not parameterized at all.
1346                if (tree.type.getEnclosingType().isRaw())
1347                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1348                if (tree.clazz.hasTag(SELECT))
1349                    visitSelectInternal((JCFieldAccess)tree.clazz);
1350            }
1351        }
1352
1353        @Override
1354        public void visitTypeParameter(JCTypeParameter tree) {
1355            validateTrees(tree.bounds, true, isOuter);
1356            checkClassBounds(tree.pos(), tree.type);
1357        }
1358
1359        @Override
1360        public void visitWildcard(JCWildcard tree) {
1361            if (tree.inner != null)
1362                validateTree(tree.inner, true, isOuter);
1363        }
1364
1365        @Override
1366        public void visitSelect(JCFieldAccess tree) {
1367            if (tree.type.hasTag(CLASS)) {
1368                visitSelectInternal(tree);
1369
1370                // Check that this type is either fully parameterized, or
1371                // not parameterized at all.
1372                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1373                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1374            }
1375        }
1376
1377        public void visitSelectInternal(JCFieldAccess tree) {
1378            if (tree.type.tsym.isStatic() &&
1379                tree.selected.type.isParameterized()) {
1380                // The enclosing type is not a class, so we are
1381                // looking at a static member type.  However, the
1382                // qualifying expression is parameterized.
1383                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1384            } else {
1385                // otherwise validate the rest of the expression
1386                tree.selected.accept(this);
1387            }
1388        }
1389
1390        @Override
1391        public void visitAnnotatedType(JCAnnotatedType tree) {
1392            tree.underlyingType.accept(this);
1393        }
1394
1395        @Override
1396        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1397            if (that.type.hasTag(TypeTag.VOID)) {
1398                log.error(that.pos(), "void.not.allowed.here");
1399            }
1400            super.visitTypeIdent(that);
1401        }
1402
1403        /** Default visitor method: do nothing.
1404         */
1405        @Override
1406        public void visitTree(JCTree tree) {
1407        }
1408
1409        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1410            if (tree != null) {
1411                boolean prevCheckRaw = this.checkRaw;
1412                this.checkRaw = checkRaw;
1413                this.isOuter = isOuter;
1414
1415                try {
1416                    tree.accept(this);
1417                    if (checkRaw)
1418                        checkRaw(tree, env);
1419                } catch (CompletionFailure ex) {
1420                    completionError(tree.pos(), ex);
1421                } finally {
1422                    this.checkRaw = prevCheckRaw;
1423                }
1424            }
1425        }
1426
1427        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1428            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1429                validateTree(l.head, checkRaw, isOuter);
1430        }
1431    }
1432
1433    void checkRaw(JCTree tree, Env<AttrContext> env) {
1434        if (lint.isEnabled(LintCategory.RAW) &&
1435            tree.type.hasTag(CLASS) &&
1436            !TreeInfo.isDiamond(tree) &&
1437            !withinAnonConstr(env) &&
1438            tree.type.isRaw()) {
1439            log.warning(LintCategory.RAW,
1440                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1441        }
1442    }
1443    //where
1444        private boolean withinAnonConstr(Env<AttrContext> env) {
1445            return env.enclClass.name.isEmpty() &&
1446                    env.enclMethod != null && env.enclMethod.name == names.init;
1447        }
1448
1449/* *************************************************************************
1450 * Exception checking
1451 **************************************************************************/
1452
1453    /* The following methods treat classes as sets that contain
1454     * the class itself and all their subclasses
1455     */
1456
1457    /** Is given type a subtype of some of the types in given list?
1458     */
1459    boolean subset(Type t, List<Type> ts) {
1460        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1461            if (types.isSubtype(t, l.head)) return true;
1462        return false;
1463    }
1464
1465    /** Is given type a subtype or supertype of
1466     *  some of the types in given list?
1467     */
1468    boolean intersects(Type t, List<Type> ts) {
1469        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1470            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1471        return false;
1472    }
1473
1474    /** Add type set to given type list, unless it is a subclass of some class
1475     *  in the list.
1476     */
1477    List<Type> incl(Type t, List<Type> ts) {
1478        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1479    }
1480
1481    /** Remove type set from type set list.
1482     */
1483    List<Type> excl(Type t, List<Type> ts) {
1484        if (ts.isEmpty()) {
1485            return ts;
1486        } else {
1487            List<Type> ts1 = excl(t, ts.tail);
1488            if (types.isSubtype(ts.head, t)) return ts1;
1489            else if (ts1 == ts.tail) return ts;
1490            else return ts1.prepend(ts.head);
1491        }
1492    }
1493
1494    /** Form the union of two type set lists.
1495     */
1496    List<Type> union(List<Type> ts1, List<Type> ts2) {
1497        List<Type> ts = ts1;
1498        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1499            ts = incl(l.head, ts);
1500        return ts;
1501    }
1502
1503    /** Form the difference of two type lists.
1504     */
1505    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1506        List<Type> ts = ts1;
1507        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1508            ts = excl(l.head, ts);
1509        return ts;
1510    }
1511
1512    /** Form the intersection of two type lists.
1513     */
1514    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1515        List<Type> ts = List.nil();
1516        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1517            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1518        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1519            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1520        return ts;
1521    }
1522
1523    /** Is exc an exception symbol that need not be declared?
1524     */
1525    boolean isUnchecked(ClassSymbol exc) {
1526        return
1527            exc.kind == ERR ||
1528            exc.isSubClass(syms.errorType.tsym, types) ||
1529            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1530    }
1531
1532    /** Is exc an exception type that need not be declared?
1533     */
1534    boolean isUnchecked(Type exc) {
1535        return
1536            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1537            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1538            exc.hasTag(BOT);
1539    }
1540
1541    /** Same, but handling completion failures.
1542     */
1543    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1544        try {
1545            return isUnchecked(exc);
1546        } catch (CompletionFailure ex) {
1547            completionError(pos, ex);
1548            return true;
1549        }
1550    }
1551
1552    /** Is exc handled by given exception list?
1553     */
1554    boolean isHandled(Type exc, List<Type> handled) {
1555        return isUnchecked(exc) || subset(exc, handled);
1556    }
1557
1558    /** Return all exceptions in thrown list that are not in handled list.
1559     *  @param thrown     The list of thrown exceptions.
1560     *  @param handled    The list of handled exceptions.
1561     */
1562    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1563        List<Type> unhandled = List.nil();
1564        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1565            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1566        return unhandled;
1567    }
1568
1569/* *************************************************************************
1570 * Overriding/Implementation checking
1571 **************************************************************************/
1572
1573    /** The level of access protection given by a flag set,
1574     *  where PRIVATE is highest and PUBLIC is lowest.
1575     */
1576    static int protection(long flags) {
1577        switch ((short)(flags & AccessFlags)) {
1578        case PRIVATE: return 3;
1579        case PROTECTED: return 1;
1580        default:
1581        case PUBLIC: return 0;
1582        case 0: return 2;
1583        }
1584    }
1585
1586    /** A customized "cannot override" error message.
1587     *  @param m      The overriding method.
1588     *  @param other  The overridden method.
1589     *  @return       An internationalized string.
1590     */
1591    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1592        String key;
1593        if ((other.owner.flags() & INTERFACE) == 0)
1594            key = "cant.override";
1595        else if ((m.owner.flags() & INTERFACE) == 0)
1596            key = "cant.implement";
1597        else
1598            key = "clashes.with";
1599        return diags.fragment(key, m, m.location(), other, other.location());
1600    }
1601
1602    /** A customized "override" warning message.
1603     *  @param m      The overriding method.
1604     *  @param other  The overridden method.
1605     *  @return       An internationalized string.
1606     */
1607    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1608        String key;
1609        if ((other.owner.flags() & INTERFACE) == 0)
1610            key = "unchecked.override";
1611        else if ((m.owner.flags() & INTERFACE) == 0)
1612            key = "unchecked.implement";
1613        else
1614            key = "unchecked.clash.with";
1615        return diags.fragment(key, m, m.location(), other, other.location());
1616    }
1617
1618    /** A customized "override" warning message.
1619     *  @param m      The overriding method.
1620     *  @param other  The overridden method.
1621     *  @return       An internationalized string.
1622     */
1623    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1624        String key;
1625        if ((other.owner.flags() & INTERFACE) == 0)
1626            key = "varargs.override";
1627        else  if ((m.owner.flags() & INTERFACE) == 0)
1628            key = "varargs.implement";
1629        else
1630            key = "varargs.clash.with";
1631        return diags.fragment(key, m, m.location(), other, other.location());
1632    }
1633
1634    /** Check that this method conforms with overridden method 'other'.
1635     *  where `origin' is the class where checking started.
1636     *  Complications:
1637     *  (1) Do not check overriding of synthetic methods
1638     *      (reason: they might be final).
1639     *      todo: check whether this is still necessary.
1640     *  (2) Admit the case where an interface proxy throws fewer exceptions
1641     *      than the method it implements. Augment the proxy methods with the
1642     *      undeclared exceptions in this case.
1643     *  (3) When generics are enabled, admit the case where an interface proxy
1644     *      has a result type
1645     *      extended by the result type of the method it implements.
1646     *      Change the proxies result type to the smaller type in this case.
1647     *
1648     *  @param tree         The tree from which positions
1649     *                      are extracted for errors.
1650     *  @param m            The overriding method.
1651     *  @param other        The overridden method.
1652     *  @param origin       The class of which the overriding method
1653     *                      is a member.
1654     */
1655    void checkOverride(JCTree tree,
1656                       MethodSymbol m,
1657                       MethodSymbol other,
1658                       ClassSymbol origin) {
1659        // Don't check overriding of synthetic methods or by bridge methods.
1660        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1661            return;
1662        }
1663
1664        // Error if static method overrides instance method (JLS 8.4.6.2).
1665        if ((m.flags() & STATIC) != 0 &&
1666                   (other.flags() & STATIC) == 0) {
1667            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1668                      cannotOverride(m, other));
1669            m.flags_field |= BAD_OVERRIDE;
1670            return;
1671        }
1672
1673        // Error if instance method overrides static or final
1674        // method (JLS 8.4.6.1).
1675        if ((other.flags() & FINAL) != 0 ||
1676                 (m.flags() & STATIC) == 0 &&
1677                 (other.flags() & STATIC) != 0) {
1678            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1679                      cannotOverride(m, other),
1680                      asFlagSet(other.flags() & (FINAL | STATIC)));
1681            m.flags_field |= BAD_OVERRIDE;
1682            return;
1683        }
1684
1685        if ((m.owner.flags() & ANNOTATION) != 0) {
1686            // handled in validateAnnotationMethod
1687            return;
1688        }
1689
1690        // Error if overriding method has weaker access (JLS 8.4.6.3).
1691        if (protection(m.flags()) > protection(other.flags())) {
1692            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1693                      cannotOverride(m, other),
1694                      (other.flags() & AccessFlags) == 0 ?
1695                          "package" :
1696                          asFlagSet(other.flags() & AccessFlags));
1697            m.flags_field |= BAD_OVERRIDE;
1698            return;
1699        }
1700
1701        Type mt = types.memberType(origin.type, m);
1702        Type ot = types.memberType(origin.type, other);
1703        // Error if overriding result type is different
1704        // (or, in the case of generics mode, not a subtype) of
1705        // overridden result type. We have to rename any type parameters
1706        // before comparing types.
1707        List<Type> mtvars = mt.getTypeArguments();
1708        List<Type> otvars = ot.getTypeArguments();
1709        Type mtres = mt.getReturnType();
1710        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1711
1712        overrideWarner.clear();
1713        boolean resultTypesOK =
1714            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1715        if (!resultTypesOK) {
1716            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1717                      "override.incompatible.ret",
1718                      cannotOverride(m, other),
1719                      mtres, otres);
1720            m.flags_field |= BAD_OVERRIDE;
1721            return;
1722        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1723            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1724                    "override.unchecked.ret",
1725                    uncheckedOverrides(m, other),
1726                    mtres, otres);
1727        }
1728
1729        // Error if overriding method throws an exception not reported
1730        // by overridden method.
1731        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1732        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1733        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1734        if (unhandledErased.nonEmpty()) {
1735            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1736                      "override.meth.doesnt.throw",
1737                      cannotOverride(m, other),
1738                      unhandledUnerased.head);
1739            m.flags_field |= BAD_OVERRIDE;
1740            return;
1741        }
1742        else if (unhandledUnerased.nonEmpty()) {
1743            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1744                          "override.unchecked.thrown",
1745                         cannotOverride(m, other),
1746                         unhandledUnerased.head);
1747            return;
1748        }
1749
1750        // Optional warning if varargs don't agree
1751        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1752            && lint.isEnabled(LintCategory.OVERRIDES)) {
1753            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1754                        ((m.flags() & Flags.VARARGS) != 0)
1755                        ? "override.varargs.missing"
1756                        : "override.varargs.extra",
1757                        varargsOverrides(m, other));
1758        }
1759
1760        // Warn if instance method overrides bridge method (compiler spec ??)
1761        if ((other.flags() & BRIDGE) != 0) {
1762            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1763                        uncheckedOverrides(m, other));
1764        }
1765
1766        // Warn if a deprecated method overridden by a non-deprecated one.
1767        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1768            Lint prevLint = setLint(lint.augment(m));
1769            try {
1770                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1771            } finally {
1772                setLint(prevLint);
1773            }
1774        }
1775    }
1776    // where
1777        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1778            // If the method, m, is defined in an interface, then ignore the issue if the method
1779            // is only inherited via a supertype and also implemented in the supertype,
1780            // because in that case, we will rediscover the issue when examining the method
1781            // in the supertype.
1782            // If the method, m, is not defined in an interface, then the only time we need to
1783            // address the issue is when the method is the supertype implemementation: any other
1784            // case, we will have dealt with when examining the supertype classes
1785            ClassSymbol mc = m.enclClass();
1786            Type st = types.supertype(origin.type);
1787            if (!st.hasTag(CLASS))
1788                return true;
1789            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1790
1791            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1792                List<Type> intfs = types.interfaces(origin.type);
1793                return (intfs.contains(mc.type) ? false : (stimpl != null));
1794            }
1795            else
1796                return (stimpl != m);
1797        }
1798
1799
1800    // used to check if there were any unchecked conversions
1801    Warner overrideWarner = new Warner();
1802
1803    /** Check that a class does not inherit two concrete methods
1804     *  with the same signature.
1805     *  @param pos          Position to be used for error reporting.
1806     *  @param site         The class type to be checked.
1807     */
1808    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1809        Type sup = types.supertype(site);
1810        if (!sup.hasTag(CLASS)) return;
1811
1812        for (Type t1 = sup;
1813             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1814             t1 = types.supertype(t1)) {
1815            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1816                if (s1.kind != MTH ||
1817                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1818                    !s1.isInheritedIn(site.tsym, types) ||
1819                    ((MethodSymbol)s1).implementation(site.tsym,
1820                                                      types,
1821                                                      true) != s1)
1822                    continue;
1823                Type st1 = types.memberType(t1, s1);
1824                int s1ArgsLength = st1.getParameterTypes().length();
1825                if (st1 == s1.type) continue;
1826
1827                for (Type t2 = sup;
1828                     t2.hasTag(CLASS);
1829                     t2 = types.supertype(t2)) {
1830                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1831                        if (s2 == s1 ||
1832                            s2.kind != MTH ||
1833                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1834                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1835                            !s2.isInheritedIn(site.tsym, types) ||
1836                            ((MethodSymbol)s2).implementation(site.tsym,
1837                                                              types,
1838                                                              true) != s2)
1839                            continue;
1840                        Type st2 = types.memberType(t2, s2);
1841                        if (types.overrideEquivalent(st1, st2))
1842                            log.error(pos, "concrete.inheritance.conflict",
1843                                      s1, t1, s2, t2, sup);
1844                    }
1845                }
1846            }
1847        }
1848    }
1849
1850    /** Check that classes (or interfaces) do not each define an abstract
1851     *  method with same name and arguments but incompatible return types.
1852     *  @param pos          Position to be used for error reporting.
1853     *  @param t1           The first argument type.
1854     *  @param t2           The second argument type.
1855     */
1856    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1857                                            Type t1,
1858                                            Type t2,
1859                                            Type site) {
1860        if ((site.tsym.flags() & COMPOUND) != 0) {
1861            // special case for intersections: need to eliminate wildcards in supertypes
1862            t1 = types.capture(t1);
1863            t2 = types.capture(t2);
1864        }
1865        return firstIncompatibility(pos, t1, t2, site) == null;
1866    }
1867
1868    /** Return the first method which is defined with same args
1869     *  but different return types in two given interfaces, or null if none
1870     *  exists.
1871     *  @param t1     The first type.
1872     *  @param t2     The second type.
1873     *  @param site   The most derived type.
1874     *  @returns symbol from t2 that conflicts with one in t1.
1875     */
1876    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1877        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1878        closure(t1, interfaces1);
1879        Map<TypeSymbol,Type> interfaces2;
1880        if (t1 == t2)
1881            interfaces2 = interfaces1;
1882        else
1883            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1884
1885        for (Type t3 : interfaces1.values()) {
1886            for (Type t4 : interfaces2.values()) {
1887                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1888                if (s != null) return s;
1889            }
1890        }
1891        return null;
1892    }
1893
1894    /** Compute all the supertypes of t, indexed by type symbol. */
1895    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1896        if (!t.hasTag(CLASS)) return;
1897        if (typeMap.put(t.tsym, t) == null) {
1898            closure(types.supertype(t), typeMap);
1899            for (Type i : types.interfaces(t))
1900                closure(i, typeMap);
1901        }
1902    }
1903
1904    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1905    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1906        if (!t.hasTag(CLASS)) return;
1907        if (typesSkip.get(t.tsym) != null) return;
1908        if (typeMap.put(t.tsym, t) == null) {
1909            closure(types.supertype(t), typesSkip, typeMap);
1910            for (Type i : types.interfaces(t))
1911                closure(i, typesSkip, typeMap);
1912        }
1913    }
1914
1915    /** Return the first method in t2 that conflicts with a method from t1. */
1916    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1917        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1918            Type st1 = null;
1919            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1920                    (s1.flags() & SYNTHETIC) != 0) continue;
1921            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1922            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1923            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1924                if (s1 == s2) continue;
1925                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1926                        (s2.flags() & SYNTHETIC) != 0) continue;
1927                if (st1 == null) st1 = types.memberType(t1, s1);
1928                Type st2 = types.memberType(t2, s2);
1929                if (types.overrideEquivalent(st1, st2)) {
1930                    List<Type> tvars1 = st1.getTypeArguments();
1931                    List<Type> tvars2 = st2.getTypeArguments();
1932                    Type rt1 = st1.getReturnType();
1933                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1934                    boolean compat =
1935                        types.isSameType(rt1, rt2) ||
1936                        !rt1.isPrimitiveOrVoid() &&
1937                        !rt2.isPrimitiveOrVoid() &&
1938                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1939                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1940                         checkCommonOverriderIn(s1,s2,site);
1941                    if (!compat) {
1942                        log.error(pos, "types.incompatible.diff.ret",
1943                            t1, t2, s2.name +
1944                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1945                        return s2;
1946                    }
1947                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1948                        !checkCommonOverriderIn(s1, s2, site)) {
1949                    log.error(pos,
1950                            "name.clash.same.erasure.no.override",
1951                            s1, s1.location(),
1952                            s2, s2.location());
1953                    return s2;
1954                }
1955            }
1956        }
1957        return null;
1958    }
1959    //WHERE
1960    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1961        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1962        Type st1 = types.memberType(site, s1);
1963        Type st2 = types.memberType(site, s2);
1964        closure(site, supertypes);
1965        for (Type t : supertypes.values()) {
1966            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1967                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1968                Type st3 = types.memberType(site,s3);
1969                if (types.overrideEquivalent(st3, st1) &&
1970                        types.overrideEquivalent(st3, st2) &&
1971                        types.returnTypeSubstitutable(st3, st1) &&
1972                        types.returnTypeSubstitutable(st3, st2)) {
1973                    return true;
1974                }
1975            }
1976        }
1977        return false;
1978    }
1979
1980    /** Check that a given method conforms with any method it overrides.
1981     *  @param tree         The tree from which positions are extracted
1982     *                      for errors.
1983     *  @param m            The overriding method.
1984     */
1985    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
1986        ClassSymbol origin = (ClassSymbol)m.owner;
1987        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1988            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1989                log.error(tree.pos(), "enum.no.finalize");
1990                return;
1991            }
1992        for (Type t = origin.type; t.hasTag(CLASS);
1993             t = types.supertype(t)) {
1994            if (t != origin.type) {
1995                checkOverride(tree, t, origin, m);
1996            }
1997            for (Type t2 : types.interfaces(t)) {
1998                checkOverride(tree, t2, origin, m);
1999            }
2000        }
2001
2002        // Check if this method must override a super method due to being annotated with @Override
2003        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2004        // be treated "as if as they were annotated" with @Override.
2005        boolean mustOverride = m.attribute(syms.overrideType.tsym) != null ||
2006                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2007        if (mustOverride && !isOverrider(m)) {
2008            DiagnosticPosition pos = tree.pos();
2009            for (JCAnnotation a : tree.getModifiers().annotations) {
2010                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2011                    pos = a.pos();
2012                    break;
2013                }
2014            }
2015            log.error(pos, "method.does.not.override.superclass");
2016        }
2017    }
2018
2019    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2020        TypeSymbol c = site.tsym;
2021        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2022            if (m.overrides(sym, origin, types, false)) {
2023                if ((sym.flags() & ABSTRACT) == 0) {
2024                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2025                }
2026            }
2027        }
2028    }
2029
2030    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2031        public boolean accepts(Symbol s) {
2032            return MethodSymbol.implementation_filter.accepts(s) &&
2033                    (s.flags() & BAD_OVERRIDE) == 0;
2034
2035        }
2036    };
2037
2038    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2039            ClassSymbol someClass) {
2040        /* At present, annotations cannot possibly have a method that is override
2041         * equivalent with Object.equals(Object) but in any case the condition is
2042         * fine for completeness.
2043         */
2044        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2045            someClass.isInterface() || someClass.isEnum() ||
2046            (someClass.flags() & ANNOTATION) != 0 ||
2047            (someClass.flags() & ABSTRACT) != 0) return;
2048        //anonymous inner classes implementing interfaces need especial treatment
2049        if (someClass.isAnonymous()) {
2050            List<Type> interfaces =  types.interfaces(someClass.type);
2051            if (interfaces != null && !interfaces.isEmpty() &&
2052                interfaces.head.tsym == syms.comparatorType.tsym) return;
2053        }
2054        checkClassOverrideEqualsAndHash(pos, someClass);
2055    }
2056
2057    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2058            ClassSymbol someClass) {
2059        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2060            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2061                    .tsym.members().findFirst(names.equals);
2062            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2063                    .tsym.members().findFirst(names.hashCode);
2064            boolean overridesEquals = types.implementation(equalsAtObject,
2065                someClass, false, equalsHasCodeFilter).owner == someClass;
2066            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2067                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2068
2069            if (overridesEquals && !overridesHashCode) {
2070                log.warning(LintCategory.OVERRIDES, pos,
2071                        "override.equals.but.not.hashcode", someClass);
2072            }
2073        }
2074    }
2075
2076    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2077        ClashFilter cf = new ClashFilter(origin.type);
2078        return (cf.accepts(s1) &&
2079                cf.accepts(s2) &&
2080                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2081    }
2082
2083
2084    /** Check that all abstract members of given class have definitions.
2085     *  @param pos          Position to be used for error reporting.
2086     *  @param c            The class.
2087     */
2088    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2089        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2090        if (undef != null) {
2091            MethodSymbol undef1 =
2092                new MethodSymbol(undef.flags(), undef.name,
2093                                 types.memberType(c.type, undef), undef.owner);
2094            log.error(pos, "does.not.override.abstract",
2095                      c, undef1, undef1.location());
2096        }
2097    }
2098
2099    void checkNonCyclicDecl(JCClassDecl tree) {
2100        CycleChecker cc = new CycleChecker();
2101        cc.scan(tree);
2102        if (!cc.errorFound && !cc.partialCheck) {
2103            tree.sym.flags_field |= ACYCLIC;
2104        }
2105    }
2106
2107    class CycleChecker extends TreeScanner {
2108
2109        List<Symbol> seenClasses = List.nil();
2110        boolean errorFound = false;
2111        boolean partialCheck = false;
2112
2113        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2114            if (sym != null && sym.kind == TYP) {
2115                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2116                if (classEnv != null) {
2117                    DiagnosticSource prevSource = log.currentSource();
2118                    try {
2119                        log.useSource(classEnv.toplevel.sourcefile);
2120                        scan(classEnv.tree);
2121                    }
2122                    finally {
2123                        log.useSource(prevSource.getFile());
2124                    }
2125                } else if (sym.kind == TYP) {
2126                    checkClass(pos, sym, List.<JCTree>nil());
2127                }
2128            } else {
2129                //not completed yet
2130                partialCheck = true;
2131            }
2132        }
2133
2134        @Override
2135        public void visitSelect(JCFieldAccess tree) {
2136            super.visitSelect(tree);
2137            checkSymbol(tree.pos(), tree.sym);
2138        }
2139
2140        @Override
2141        public void visitIdent(JCIdent tree) {
2142            checkSymbol(tree.pos(), tree.sym);
2143        }
2144
2145        @Override
2146        public void visitTypeApply(JCTypeApply tree) {
2147            scan(tree.clazz);
2148        }
2149
2150        @Override
2151        public void visitTypeArray(JCArrayTypeTree tree) {
2152            scan(tree.elemtype);
2153        }
2154
2155        @Override
2156        public void visitClassDef(JCClassDecl tree) {
2157            List<JCTree> supertypes = List.nil();
2158            if (tree.getExtendsClause() != null) {
2159                supertypes = supertypes.prepend(tree.getExtendsClause());
2160            }
2161            if (tree.getImplementsClause() != null) {
2162                for (JCTree intf : tree.getImplementsClause()) {
2163                    supertypes = supertypes.prepend(intf);
2164                }
2165            }
2166            checkClass(tree.pos(), tree.sym, supertypes);
2167        }
2168
2169        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2170            if ((c.flags_field & ACYCLIC) != 0)
2171                return;
2172            if (seenClasses.contains(c)) {
2173                errorFound = true;
2174                noteCyclic(pos, (ClassSymbol)c);
2175            } else if (!c.type.isErroneous()) {
2176                try {
2177                    seenClasses = seenClasses.prepend(c);
2178                    if (c.type.hasTag(CLASS)) {
2179                        if (supertypes.nonEmpty()) {
2180                            scan(supertypes);
2181                        }
2182                        else {
2183                            ClassType ct = (ClassType)c.type;
2184                            if (ct.supertype_field == null ||
2185                                    ct.interfaces_field == null) {
2186                                //not completed yet
2187                                partialCheck = true;
2188                                return;
2189                            }
2190                            checkSymbol(pos, ct.supertype_field.tsym);
2191                            for (Type intf : ct.interfaces_field) {
2192                                checkSymbol(pos, intf.tsym);
2193                            }
2194                        }
2195                        if (c.owner.kind == TYP) {
2196                            checkSymbol(pos, c.owner);
2197                        }
2198                    }
2199                } finally {
2200                    seenClasses = seenClasses.tail;
2201                }
2202            }
2203        }
2204    }
2205
2206    /** Check for cyclic references. Issue an error if the
2207     *  symbol of the type referred to has a LOCKED flag set.
2208     *
2209     *  @param pos      Position to be used for error reporting.
2210     *  @param t        The type referred to.
2211     */
2212    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2213        checkNonCyclicInternal(pos, t);
2214    }
2215
2216
2217    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2218        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2219    }
2220
2221    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2222        final TypeVar tv;
2223        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2224            return;
2225        if (seen.contains(t)) {
2226            tv = (TypeVar)t;
2227            tv.bound = types.createErrorType(t);
2228            log.error(pos, "cyclic.inheritance", t);
2229        } else if (t.hasTag(TYPEVAR)) {
2230            tv = (TypeVar)t;
2231            seen = seen.prepend(tv);
2232            for (Type b : types.getBounds(tv))
2233                checkNonCyclic1(pos, b, seen);
2234        }
2235    }
2236
2237    /** Check for cyclic references. Issue an error if the
2238     *  symbol of the type referred to has a LOCKED flag set.
2239     *
2240     *  @param pos      Position to be used for error reporting.
2241     *  @param t        The type referred to.
2242     *  @returns        True if the check completed on all attributed classes
2243     */
2244    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2245        boolean complete = true; // was the check complete?
2246        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2247        Symbol c = t.tsym;
2248        if ((c.flags_field & ACYCLIC) != 0) return true;
2249
2250        if ((c.flags_field & LOCKED) != 0) {
2251            noteCyclic(pos, (ClassSymbol)c);
2252        } else if (!c.type.isErroneous()) {
2253            try {
2254                c.flags_field |= LOCKED;
2255                if (c.type.hasTag(CLASS)) {
2256                    ClassType clazz = (ClassType)c.type;
2257                    if (clazz.interfaces_field != null)
2258                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2259                            complete &= checkNonCyclicInternal(pos, l.head);
2260                    if (clazz.supertype_field != null) {
2261                        Type st = clazz.supertype_field;
2262                        if (st != null && st.hasTag(CLASS))
2263                            complete &= checkNonCyclicInternal(pos, st);
2264                    }
2265                    if (c.owner.kind == TYP)
2266                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2267                }
2268            } finally {
2269                c.flags_field &= ~LOCKED;
2270            }
2271        }
2272        if (complete)
2273            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2274        if (complete) c.flags_field |= ACYCLIC;
2275        return complete;
2276    }
2277
2278    /** Note that we found an inheritance cycle. */
2279    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2280        log.error(pos, "cyclic.inheritance", c);
2281        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2282            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2283        Type st = types.supertype(c.type);
2284        if (st.hasTag(CLASS))
2285            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2286        c.type = types.createErrorType(c, c.type);
2287        c.flags_field |= ACYCLIC;
2288    }
2289
2290    /** Check that all methods which implement some
2291     *  method conform to the method they implement.
2292     *  @param tree         The class definition whose members are checked.
2293     */
2294    void checkImplementations(JCClassDecl tree) {
2295        checkImplementations(tree, tree.sym, tree.sym);
2296    }
2297    //where
2298        /** Check that all methods which implement some
2299         *  method in `ic' conform to the method they implement.
2300         */
2301        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2302            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2303                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2304                if ((lc.flags() & ABSTRACT) != 0) {
2305                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2306                        if (sym.kind == MTH &&
2307                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2308                            MethodSymbol absmeth = (MethodSymbol)sym;
2309                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2310                            if (implmeth != null && implmeth != absmeth &&
2311                                (implmeth.owner.flags() & INTERFACE) ==
2312                                (origin.flags() & INTERFACE)) {
2313                                // don't check if implmeth is in a class, yet
2314                                // origin is an interface. This case arises only
2315                                // if implmeth is declared in Object. The reason is
2316                                // that interfaces really don't inherit from
2317                                // Object it's just that the compiler represents
2318                                // things that way.
2319                                checkOverride(tree, implmeth, absmeth, origin);
2320                            }
2321                        }
2322                    }
2323                }
2324            }
2325        }
2326
2327    /** Check that all abstract methods implemented by a class are
2328     *  mutually compatible.
2329     *  @param pos          Position to be used for error reporting.
2330     *  @param c            The class whose interfaces are checked.
2331     */
2332    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2333        List<Type> supertypes = types.interfaces(c);
2334        Type supertype = types.supertype(c);
2335        if (supertype.hasTag(CLASS) &&
2336            (supertype.tsym.flags() & ABSTRACT) != 0)
2337            supertypes = supertypes.prepend(supertype);
2338        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2339            if (!l.head.getTypeArguments().isEmpty() &&
2340                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2341                return;
2342            for (List<Type> m = supertypes; m != l; m = m.tail)
2343                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2344                    return;
2345        }
2346        checkCompatibleConcretes(pos, c);
2347    }
2348
2349    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2350        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2351            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2352                // VM allows methods and variables with differing types
2353                if (sym.kind == sym2.kind &&
2354                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2355                    sym != sym2 &&
2356                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2357                    (sym.flags() & IPROXY) == 0 && (sym2.flags() & IPROXY) == 0 &&
2358                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2359                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2360                    return;
2361                }
2362            }
2363        }
2364    }
2365
2366    /** Check that all non-override equivalent methods accessible from 'site'
2367     *  are mutually compatible (JLS 8.4.8/9.4.1).
2368     *
2369     *  @param pos  Position to be used for error reporting.
2370     *  @param site The class whose methods are checked.
2371     *  @param sym  The method symbol to be checked.
2372     */
2373    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2374         ClashFilter cf = new ClashFilter(site);
2375        //for each method m1 that is overridden (directly or indirectly)
2376        //by method 'sym' in 'site'...
2377
2378        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2379        boolean overridesAny = false;
2380        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2381            if (!sym.overrides(m1, site.tsym, types, false)) {
2382                if (m1 == sym) {
2383                    continue;
2384                }
2385
2386                if (!overridesAny) {
2387                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2388                }
2389                continue;
2390            }
2391
2392            if (m1 != sym) {
2393                overridesAny = true;
2394                potentiallyAmbiguousList = List.nil();
2395            }
2396
2397            //...check each method m2 that is a member of 'site'
2398            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2399                if (m2 == m1) continue;
2400                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2401                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2402                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2403                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2404                    sym.flags_field |= CLASH;
2405                    String key = m1 == sym ?
2406                            "name.clash.same.erasure.no.override" :
2407                            "name.clash.same.erasure.no.override.1";
2408                    log.error(pos,
2409                            key,
2410                            sym, sym.location(),
2411                            m2, m2.location(),
2412                            m1, m1.location());
2413                    return;
2414                }
2415            }
2416        }
2417
2418        if (!overridesAny) {
2419            for (MethodSymbol m: potentiallyAmbiguousList) {
2420                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2421            }
2422        }
2423    }
2424
2425    /** Check that all static methods accessible from 'site' are
2426     *  mutually compatible (JLS 8.4.8).
2427     *
2428     *  @param pos  Position to be used for error reporting.
2429     *  @param site The class whose methods are checked.
2430     *  @param sym  The method symbol to be checked.
2431     */
2432    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2433        ClashFilter cf = new ClashFilter(site);
2434        //for each method m1 that is a member of 'site'...
2435        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2436            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2437            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2438            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2439                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2440                    log.error(pos,
2441                            "name.clash.same.erasure.no.hide",
2442                            sym, sym.location(),
2443                            s, s.location());
2444                    return;
2445                } else {
2446                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2447                }
2448            }
2449         }
2450     }
2451
2452     //where
2453     private class ClashFilter implements Filter<Symbol> {
2454
2455         Type site;
2456
2457         ClashFilter(Type site) {
2458             this.site = site;
2459         }
2460
2461         boolean shouldSkip(Symbol s) {
2462             return (s.flags() & CLASH) != 0 &&
2463                s.owner == site.tsym;
2464         }
2465
2466         public boolean accepts(Symbol s) {
2467             return s.kind == MTH &&
2468                     (s.flags() & SYNTHETIC) == 0 &&
2469                     !shouldSkip(s) &&
2470                     s.isInheritedIn(site.tsym, types) &&
2471                     !s.isConstructor();
2472         }
2473     }
2474
2475    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2476        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2477        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2478            Assert.check(m.kind == MTH);
2479            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2480            if (prov.size() > 1) {
2481                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2482                ListBuffer<Symbol> defaults = new ListBuffer<>();
2483                for (MethodSymbol provSym : prov) {
2484                    if ((provSym.flags() & DEFAULT) != 0) {
2485                        defaults = defaults.append(provSym);
2486                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2487                        abstracts = abstracts.append(provSym);
2488                    }
2489                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2490                        //strong semantics - issue an error if two sibling interfaces
2491                        //have two override-equivalent defaults - or if one is abstract
2492                        //and the other is default
2493                        String errKey;
2494                        Symbol s1 = defaults.first();
2495                        Symbol s2;
2496                        if (defaults.size() > 1) {
2497                            errKey = "types.incompatible.unrelated.defaults";
2498                            s2 = defaults.toList().tail.head;
2499                        } else {
2500                            errKey = "types.incompatible.abstract.default";
2501                            s2 = abstracts.first();
2502                        }
2503                        log.error(pos, errKey,
2504                                Kinds.kindName(site.tsym), site,
2505                                m.name, types.memberType(site, m).getParameterTypes(),
2506                                s1.location(), s2.location());
2507                        break;
2508                    }
2509                }
2510            }
2511        }
2512    }
2513
2514    //where
2515     private class DefaultMethodClashFilter implements Filter<Symbol> {
2516
2517         Type site;
2518
2519         DefaultMethodClashFilter(Type site) {
2520             this.site = site;
2521         }
2522
2523         public boolean accepts(Symbol s) {
2524             return s.kind == MTH &&
2525                     (s.flags() & DEFAULT) != 0 &&
2526                     s.isInheritedIn(site.tsym, types) &&
2527                     !s.isConstructor();
2528         }
2529     }
2530
2531    /**
2532      * Report warnings for potentially ambiguous method declarations. Two declarations
2533      * are potentially ambiguous if they feature two unrelated functional interface
2534      * in same argument position (in which case, a call site passing an implicit
2535      * lambda would be ambiguous).
2536      */
2537    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2538            MethodSymbol msym1, MethodSymbol msym2) {
2539        if (msym1 != msym2 &&
2540                allowDefaultMethods &&
2541                lint.isEnabled(LintCategory.OVERLOADS) &&
2542                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2543                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2544            Type mt1 = types.memberType(site, msym1);
2545            Type mt2 = types.memberType(site, msym2);
2546            //if both generic methods, adjust type variables
2547            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2548                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2549                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2550            }
2551            //expand varargs methods if needed
2552            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2553            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2554            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2555            //if arities don't match, exit
2556            if (args1.length() != args2.length()) return;
2557            boolean potentiallyAmbiguous = false;
2558            while (args1.nonEmpty() && args2.nonEmpty()) {
2559                Type s = args1.head;
2560                Type t = args2.head;
2561                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2562                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2563                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2564                            types.findDescriptorType(s).getParameterTypes().length() ==
2565                            types.findDescriptorType(t).getParameterTypes().length()) {
2566                        potentiallyAmbiguous = true;
2567                    } else {
2568                        break;
2569                    }
2570                }
2571                args1 = args1.tail;
2572                args2 = args2.tail;
2573            }
2574            if (potentiallyAmbiguous) {
2575                //we found two incompatible functional interfaces with same arity
2576                //this means a call site passing an implicit lambda would be ambigiuous
2577                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2578                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2579                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2580                            msym1, msym1.location(),
2581                            msym2, msym2.location());
2582                return;
2583            }
2584        }
2585    }
2586
2587    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2588        if (warnOnAccessToSensitiveMembers) {
2589            Symbol sym = TreeInfo.symbol(tree);
2590            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2591                return;
2592            }
2593
2594            if (sym.kind == VAR) {
2595                if ((sym.flags() & PARAMETER) != 0 ||
2596                    sym.isLocal() ||
2597                    sym.name == names._this ||
2598                    sym.name == names._super) {
2599                    return;
2600                }
2601            }
2602
2603            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2604                    isEffectivelyNonPublic(sym)) {
2605                log.warning(tree.pos(),
2606                        "access.to.sensitive.member.from.serializable.element", sym);
2607            }
2608        }
2609    }
2610
2611    private boolean isEffectivelyNonPublic(Symbol sym) {
2612        if (sym.packge() == syms.rootPackage) {
2613            return false;
2614        }
2615
2616        while (sym.kind != PCK) {
2617            if ((sym.flags() & PUBLIC) == 0) {
2618                return true;
2619            }
2620            sym = sym.owner;
2621        }
2622        return false;
2623    }
2624
2625    /** Report a conflict between a user symbol and a synthetic symbol.
2626     */
2627    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2628        if (!sym.type.isErroneous()) {
2629            if (warnOnSyntheticConflicts) {
2630                log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2631            }
2632            else {
2633                log.error(pos, "synthetic.name.conflict", sym, sym.location());
2634            }
2635        }
2636    }
2637
2638    /** Check that class c does not implement directly or indirectly
2639     *  the same parameterized interface with two different argument lists.
2640     *  @param pos          Position to be used for error reporting.
2641     *  @param type         The type whose interfaces are checked.
2642     */
2643    void checkClassBounds(DiagnosticPosition pos, Type type) {
2644        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2645    }
2646//where
2647        /** Enter all interfaces of type `type' into the hash table `seensofar'
2648         *  with their class symbol as key and their type as value. Make
2649         *  sure no class is entered with two different types.
2650         */
2651        void checkClassBounds(DiagnosticPosition pos,
2652                              Map<TypeSymbol,Type> seensofar,
2653                              Type type) {
2654            if (type.isErroneous()) return;
2655            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2656                Type it = l.head;
2657                Type oldit = seensofar.put(it.tsym, it);
2658                if (oldit != null) {
2659                    List<Type> oldparams = oldit.allparams();
2660                    List<Type> newparams = it.allparams();
2661                    if (!types.containsTypeEquivalent(oldparams, newparams))
2662                        log.error(pos, "cant.inherit.diff.arg",
2663                                  it.tsym, Type.toString(oldparams),
2664                                  Type.toString(newparams));
2665                }
2666                checkClassBounds(pos, seensofar, it);
2667            }
2668            Type st = types.supertype(type);
2669            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2670        }
2671
2672    /** Enter interface into into set.
2673     *  If it existed already, issue a "repeated interface" error.
2674     */
2675    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2676        if (its.contains(it))
2677            log.error(pos, "repeated.interface");
2678        else {
2679            its.add(it);
2680        }
2681    }
2682
2683/* *************************************************************************
2684 * Check annotations
2685 **************************************************************************/
2686
2687    /**
2688     * Recursively validate annotations values
2689     */
2690    void validateAnnotationTree(JCTree tree) {
2691        class AnnotationValidator extends TreeScanner {
2692            @Override
2693            public void visitAnnotation(JCAnnotation tree) {
2694                if (!tree.type.isErroneous()) {
2695                    super.visitAnnotation(tree);
2696                    validateAnnotation(tree);
2697                }
2698            }
2699        }
2700        tree.accept(new AnnotationValidator());
2701    }
2702
2703    /**
2704     *  {@literal
2705     *  Annotation types are restricted to primitives, String, an
2706     *  enum, an annotation, Class, Class<?>, Class<? extends
2707     *  Anything>, arrays of the preceding.
2708     *  }
2709     */
2710    void validateAnnotationType(JCTree restype) {
2711        // restype may be null if an error occurred, so don't bother validating it
2712        if (restype != null) {
2713            validateAnnotationType(restype.pos(), restype.type);
2714        }
2715    }
2716
2717    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2718        if (type.isPrimitive()) return;
2719        if (types.isSameType(type, syms.stringType)) return;
2720        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2721        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2722        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2723        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2724            validateAnnotationType(pos, types.elemtype(type));
2725            return;
2726        }
2727        log.error(pos, "invalid.annotation.member.type");
2728    }
2729
2730    /**
2731     * "It is also a compile-time error if any method declared in an
2732     * annotation type has a signature that is override-equivalent to
2733     * that of any public or protected method declared in class Object
2734     * or in the interface annotation.Annotation."
2735     *
2736     * @jls 9.6 Annotation Types
2737     */
2738    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2739        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2740            Scope s = sup.tsym.members();
2741            for (Symbol sym : s.getSymbolsByName(m.name)) {
2742                if (sym.kind == MTH &&
2743                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2744                    types.overrideEquivalent(m.type, sym.type))
2745                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2746            }
2747        }
2748    }
2749
2750    /** Check the annotations of a symbol.
2751     */
2752    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2753        for (JCAnnotation a : annotations)
2754            validateAnnotation(a, s);
2755    }
2756
2757    /** Check the type annotations.
2758     */
2759    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2760        for (JCAnnotation a : annotations)
2761            validateTypeAnnotation(a, isTypeParameter);
2762    }
2763
2764    /** Check an annotation of a symbol.
2765     */
2766    private void validateAnnotation(JCAnnotation a, Symbol s) {
2767        validateAnnotationTree(a);
2768
2769        if (!annotationApplicable(a, s))
2770            log.error(a.pos(), "annotation.type.not.applicable");
2771
2772        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2773            if (s.kind != TYP) {
2774                log.error(a.pos(), "bad.functional.intf.anno");
2775            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2776                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2777            }
2778        }
2779    }
2780
2781    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2782        Assert.checkNonNull(a.type);
2783        validateAnnotationTree(a);
2784
2785        if (a.hasTag(TYPE_ANNOTATION) &&
2786                !a.annotationType.type.isErroneous() &&
2787                !isTypeAnnotation(a, isTypeParameter)) {
2788            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2789        }
2790    }
2791
2792    /**
2793     * Validate the proposed container 'repeatable' on the
2794     * annotation type symbol 's'. Report errors at position
2795     * 'pos'.
2796     *
2797     * @param s The (annotation)type declaration annotated with a @Repeatable
2798     * @param repeatable the @Repeatable on 's'
2799     * @param pos where to report errors
2800     */
2801    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2802        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2803
2804        Type t = null;
2805        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2806        if (!l.isEmpty()) {
2807            Assert.check(l.head.fst.name == names.value);
2808            t = ((Attribute.Class)l.head.snd).getValue();
2809        }
2810
2811        if (t == null) {
2812            // errors should already have been reported during Annotate
2813            return;
2814        }
2815
2816        validateValue(t.tsym, s, pos);
2817        validateRetention(t.tsym, s, pos);
2818        validateDocumented(t.tsym, s, pos);
2819        validateInherited(t.tsym, s, pos);
2820        validateTarget(t.tsym, s, pos);
2821        validateDefault(t.tsym, pos);
2822    }
2823
2824    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2825        Symbol sym = container.members().findFirst(names.value);
2826        if (sym != null && sym.kind == MTH) {
2827            MethodSymbol m = (MethodSymbol) sym;
2828            Type ret = m.getReturnType();
2829            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2830                log.error(pos, "invalid.repeatable.annotation.value.return",
2831                        container, ret, types.makeArrayType(contained.type));
2832            }
2833        } else {
2834            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2835        }
2836    }
2837
2838    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2839        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2840        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2841
2842        boolean error = false;
2843        switch (containedRetention) {
2844        case RUNTIME:
2845            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2846                error = true;
2847            }
2848            break;
2849        case CLASS:
2850            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2851                error = true;
2852            }
2853        }
2854        if (error ) {
2855            log.error(pos, "invalid.repeatable.annotation.retention",
2856                      container, containerRetention,
2857                      contained, containedRetention);
2858        }
2859    }
2860
2861    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2862        if (contained.attribute(syms.documentedType.tsym) != null) {
2863            if (container.attribute(syms.documentedType.tsym) == null) {
2864                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2865            }
2866        }
2867    }
2868
2869    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2870        if (contained.attribute(syms.inheritedType.tsym) != null) {
2871            if (container.attribute(syms.inheritedType.tsym) == null) {
2872                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2873            }
2874        }
2875    }
2876
2877    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2878        // The set of targets the container is applicable to must be a subset
2879        // (with respect to annotation target semantics) of the set of targets
2880        // the contained is applicable to. The target sets may be implicit or
2881        // explicit.
2882
2883        Set<Name> containerTargets;
2884        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2885        if (containerTarget == null) {
2886            containerTargets = getDefaultTargetSet();
2887        } else {
2888            containerTargets = new HashSet<>();
2889            for (Attribute app : containerTarget.values) {
2890                if (!(app instanceof Attribute.Enum)) {
2891                    continue; // recovery
2892                }
2893                Attribute.Enum e = (Attribute.Enum)app;
2894                containerTargets.add(e.value.name);
2895            }
2896        }
2897
2898        Set<Name> containedTargets;
2899        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2900        if (containedTarget == null) {
2901            containedTargets = getDefaultTargetSet();
2902        } else {
2903            containedTargets = new HashSet<>();
2904            for (Attribute app : containedTarget.values) {
2905                if (!(app instanceof Attribute.Enum)) {
2906                    continue; // recovery
2907                }
2908                Attribute.Enum e = (Attribute.Enum)app;
2909                containedTargets.add(e.value.name);
2910            }
2911        }
2912
2913        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2914            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2915        }
2916    }
2917
2918    /* get a set of names for the default target */
2919    private Set<Name> getDefaultTargetSet() {
2920        if (defaultTargets == null) {
2921            Set<Name> targets = new HashSet<>();
2922            targets.add(names.ANNOTATION_TYPE);
2923            targets.add(names.CONSTRUCTOR);
2924            targets.add(names.FIELD);
2925            targets.add(names.LOCAL_VARIABLE);
2926            targets.add(names.METHOD);
2927            targets.add(names.PACKAGE);
2928            targets.add(names.PARAMETER);
2929            targets.add(names.TYPE);
2930
2931            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2932        }
2933
2934        return defaultTargets;
2935    }
2936    private Set<Name> defaultTargets;
2937
2938
2939    /** Checks that s is a subset of t, with respect to ElementType
2940     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2941     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2942     * TYPE_PARAMETER}.
2943     */
2944    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2945        // Check that all elements in s are present in t
2946        for (Name n2 : s) {
2947            boolean currentElementOk = false;
2948            for (Name n1 : t) {
2949                if (n1 == n2) {
2950                    currentElementOk = true;
2951                    break;
2952                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2953                    currentElementOk = true;
2954                    break;
2955                } else if (n1 == names.TYPE_USE &&
2956                        (n2 == names.TYPE ||
2957                         n2 == names.ANNOTATION_TYPE ||
2958                         n2 == names.TYPE_PARAMETER)) {
2959                    currentElementOk = true;
2960                    break;
2961                }
2962            }
2963            if (!currentElementOk)
2964                return false;
2965        }
2966        return true;
2967    }
2968
2969    private void validateDefault(Symbol container, DiagnosticPosition pos) {
2970        // validate that all other elements of containing type has defaults
2971        Scope scope = container.members();
2972        for(Symbol elm : scope.getSymbols()) {
2973            if (elm.name != names.value &&
2974                elm.kind == MTH &&
2975                ((MethodSymbol)elm).defaultValue == null) {
2976                log.error(pos,
2977                          "invalid.repeatable.annotation.elem.nondefault",
2978                          container,
2979                          elm);
2980            }
2981        }
2982    }
2983
2984    /** Is s a method symbol that overrides a method in a superclass? */
2985    boolean isOverrider(Symbol s) {
2986        if (s.kind != MTH || s.isStatic())
2987            return false;
2988        MethodSymbol m = (MethodSymbol)s;
2989        TypeSymbol owner = (TypeSymbol)m.owner;
2990        for (Type sup : types.closure(owner.type)) {
2991            if (sup == owner.type)
2992                continue; // skip "this"
2993            Scope scope = sup.tsym.members();
2994            for (Symbol sym : scope.getSymbolsByName(m.name)) {
2995                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
2996                    return true;
2997            }
2998        }
2999        return false;
3000    }
3001
3002    /** Is the annotation applicable to types? */
3003    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3004        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3005        return (targets == null) ?
3006                false :
3007                targets.stream()
3008                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3009    }
3010    //where
3011        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3012            Attribute.Enum e = (Attribute.Enum)a;
3013            return (e.value.name == names.TYPE_USE ||
3014                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3015        }
3016
3017    /** Is the annotation applicable to the symbol? */
3018    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3019        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3020        Name[] targets;
3021
3022        if (arr == null) {
3023            targets = defaultTargetMetaInfo(a, s);
3024        } else {
3025            // TODO: can we optimize this?
3026            targets = new Name[arr.values.length];
3027            for (int i=0; i<arr.values.length; ++i) {
3028                Attribute app = arr.values[i];
3029                if (!(app instanceof Attribute.Enum)) {
3030                    return true; // recovery
3031                }
3032                Attribute.Enum e = (Attribute.Enum) app;
3033                targets[i] = e.value.name;
3034            }
3035        }
3036        for (Name target : targets) {
3037            if (target == names.TYPE) {
3038                if (s.kind == TYP)
3039                    return true;
3040            } else if (target == names.FIELD) {
3041                if (s.kind == VAR && s.owner.kind != MTH)
3042                    return true;
3043            } else if (target == names.METHOD) {
3044                if (s.kind == MTH && !s.isConstructor())
3045                    return true;
3046            } else if (target == names.PARAMETER) {
3047                if (s.kind == VAR && s.owner.kind == MTH &&
3048                      (s.flags() & PARAMETER) != 0) {
3049                    return true;
3050                }
3051            } else if (target == names.CONSTRUCTOR) {
3052                if (s.kind == MTH && s.isConstructor())
3053                    return true;
3054            } else if (target == names.LOCAL_VARIABLE) {
3055                if (s.kind == VAR && s.owner.kind == MTH &&
3056                      (s.flags() & PARAMETER) == 0) {
3057                    return true;
3058                }
3059            } else if (target == names.ANNOTATION_TYPE) {
3060                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3061                    return true;
3062                }
3063            } else if (target == names.PACKAGE) {
3064                if (s.kind == PCK)
3065                    return true;
3066            } else if (target == names.TYPE_USE) {
3067                if (s.kind == TYP || s.kind == VAR ||
3068                        (s.kind == MTH && !s.isConstructor() &&
3069                                !s.type.getReturnType().hasTag(VOID)) ||
3070                        (s.kind == MTH && s.isConstructor())) {
3071                    return true;
3072                }
3073            } else if (target == names.TYPE_PARAMETER) {
3074                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3075                    return true;
3076            } else
3077                return true; // Unknown ElementType. This should be an error at declaration site,
3078                             // assume applicable.
3079        }
3080        return false;
3081    }
3082
3083
3084    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3085        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3086        if (atTarget == null) return null; // ok, is applicable
3087        Attribute atValue = atTarget.member(names.value);
3088        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3089        return (Attribute.Array) atValue;
3090    }
3091
3092    private final Name[] dfltTargetMeta;
3093    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3094        return dfltTargetMeta;
3095    }
3096
3097    /** Check an annotation value.
3098     *
3099     * @param a The annotation tree to check
3100     * @return true if this annotation tree is valid, otherwise false
3101     */
3102    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3103        boolean res = false;
3104        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3105        try {
3106            res = validateAnnotation(a);
3107        } finally {
3108            log.popDiagnosticHandler(diagHandler);
3109        }
3110        return res;
3111    }
3112
3113    private boolean validateAnnotation(JCAnnotation a) {
3114        boolean isValid = true;
3115        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3116
3117        // collect an inventory of the annotation elements
3118        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3119
3120        // remove the ones that are assigned values
3121        for (JCTree arg : a.args) {
3122            if (!arg.hasTag(ASSIGN)) continue; // recovery
3123            JCAssign assign = (JCAssign)arg;
3124            Symbol m = TreeInfo.symbol(assign.lhs);
3125            if (m == null || m.type.isErroneous()) continue;
3126            if (!elements.remove(m)) {
3127                isValid = false;
3128                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3129                        m.name, a.type);
3130            }
3131        }
3132
3133        // all the remaining ones better have default values
3134        List<Name> missingDefaults = List.nil();
3135        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3136        for (MethodSymbol m : elements) {
3137            if (m.type.isErroneous())
3138                continue;
3139
3140            if (!membersWithDefault.contains(m))
3141                missingDefaults = missingDefaults.append(m.name);
3142        }
3143        missingDefaults = missingDefaults.reverse();
3144        if (missingDefaults.nonEmpty()) {
3145            isValid = false;
3146            String key = (missingDefaults.size() > 1)
3147                    ? "annotation.missing.default.value.1"
3148                    : "annotation.missing.default.value";
3149            log.error(a.pos(), key, a.type, missingDefaults);
3150        }
3151
3152        return isValid && validateTargetAnnotationValue(a);
3153    }
3154
3155    /* Validate the special java.lang.annotation.Target annotation */
3156    boolean validateTargetAnnotationValue(JCAnnotation a) {
3157        // special case: java.lang.annotation.Target must not have
3158        // repeated values in its value member
3159        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3160                a.args.tail == null)
3161            return true;
3162
3163        boolean isValid = true;
3164        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3165        JCAssign assign = (JCAssign) a.args.head;
3166        Symbol m = TreeInfo.symbol(assign.lhs);
3167        if (m.name != names.value) return false;
3168        JCTree rhs = assign.rhs;
3169        if (!rhs.hasTag(NEWARRAY)) return false;
3170        JCNewArray na = (JCNewArray) rhs;
3171        Set<Symbol> targets = new HashSet<>();
3172        for (JCTree elem : na.elems) {
3173            if (!targets.add(TreeInfo.symbol(elem))) {
3174                isValid = false;
3175                log.error(elem.pos(), "repeated.annotation.target");
3176            }
3177        }
3178        return isValid;
3179    }
3180
3181    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3182        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3183            (s.flags() & DEPRECATED) != 0 &&
3184            !syms.deprecatedType.isErroneous() &&
3185            s.attribute(syms.deprecatedType.tsym) == null) {
3186            log.warning(LintCategory.DEP_ANN,
3187                    pos, "missing.deprecated.annotation");
3188        }
3189    }
3190
3191    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3192        if ((s.flags() & DEPRECATED) != 0 &&
3193                (other.flags() & DEPRECATED) == 0 &&
3194                s.outermostClass() != other.outermostClass()) {
3195            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3196                @Override
3197                public void report() {
3198                    warnDeprecated(pos, s);
3199                }
3200            });
3201        }
3202    }
3203
3204    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3205        if ((s.flags() & PROPRIETARY) != 0) {
3206            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3207                public void report() {
3208                    if (enableSunApiLintControl)
3209                      warnSunApi(pos, "sun.proprietary", s);
3210                    else
3211                      log.mandatoryWarning(pos, "sun.proprietary", s);
3212                }
3213            });
3214        }
3215    }
3216
3217    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3218        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3219            log.error(pos, "not.in.profile", s, profile);
3220        }
3221    }
3222
3223/* *************************************************************************
3224 * Check for recursive annotation elements.
3225 **************************************************************************/
3226
3227    /** Check for cycles in the graph of annotation elements.
3228     */
3229    void checkNonCyclicElements(JCClassDecl tree) {
3230        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3231        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3232        try {
3233            tree.sym.flags_field |= LOCKED;
3234            for (JCTree def : tree.defs) {
3235                if (!def.hasTag(METHODDEF)) continue;
3236                JCMethodDecl meth = (JCMethodDecl)def;
3237                checkAnnotationResType(meth.pos(), meth.restype.type);
3238            }
3239        } finally {
3240            tree.sym.flags_field &= ~LOCKED;
3241            tree.sym.flags_field |= ACYCLIC_ANN;
3242        }
3243    }
3244
3245    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3246        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3247            return;
3248        if ((tsym.flags_field & LOCKED) != 0) {
3249            log.error(pos, "cyclic.annotation.element");
3250            return;
3251        }
3252        try {
3253            tsym.flags_field |= LOCKED;
3254            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3255                if (s.kind != MTH)
3256                    continue;
3257                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3258            }
3259        } finally {
3260            tsym.flags_field &= ~LOCKED;
3261            tsym.flags_field |= ACYCLIC_ANN;
3262        }
3263    }
3264
3265    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3266        switch (type.getTag()) {
3267        case CLASS:
3268            if ((type.tsym.flags() & ANNOTATION) != 0)
3269                checkNonCyclicElementsInternal(pos, type.tsym);
3270            break;
3271        case ARRAY:
3272            checkAnnotationResType(pos, types.elemtype(type));
3273            break;
3274        default:
3275            break; // int etc
3276        }
3277    }
3278
3279/* *************************************************************************
3280 * Check for cycles in the constructor call graph.
3281 **************************************************************************/
3282
3283    /** Check for cycles in the graph of constructors calling other
3284     *  constructors.
3285     */
3286    void checkCyclicConstructors(JCClassDecl tree) {
3287        Map<Symbol,Symbol> callMap = new HashMap<>();
3288
3289        // enter each constructor this-call into the map
3290        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3291            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3292            if (app == null) continue;
3293            JCMethodDecl meth = (JCMethodDecl) l.head;
3294            if (TreeInfo.name(app.meth) == names._this) {
3295                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3296            } else {
3297                meth.sym.flags_field |= ACYCLIC;
3298            }
3299        }
3300
3301        // Check for cycles in the map
3302        Symbol[] ctors = new Symbol[0];
3303        ctors = callMap.keySet().toArray(ctors);
3304        for (Symbol caller : ctors) {
3305            checkCyclicConstructor(tree, caller, callMap);
3306        }
3307    }
3308
3309    /** Look in the map to see if the given constructor is part of a
3310     *  call cycle.
3311     */
3312    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3313                                        Map<Symbol,Symbol> callMap) {
3314        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3315            if ((ctor.flags_field & LOCKED) != 0) {
3316                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3317                          "recursive.ctor.invocation");
3318            } else {
3319                ctor.flags_field |= LOCKED;
3320                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3321                ctor.flags_field &= ~LOCKED;
3322            }
3323            ctor.flags_field |= ACYCLIC;
3324        }
3325    }
3326
3327/* *************************************************************************
3328 * Miscellaneous
3329 **************************************************************************/
3330
3331    /**
3332     *  Check for division by integer constant zero
3333     *  @param pos           Position for error reporting.
3334     *  @param operator      The operator for the expression
3335     *  @param operand       The right hand operand for the expression
3336     */
3337    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3338        if (operand.constValue() != null
3339            && operand.getTag().isSubRangeOf(LONG)
3340            && ((Number) (operand.constValue())).longValue() == 0) {
3341            int opc = ((OperatorSymbol)operator).opcode;
3342            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3343                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3344                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3345                    @Override
3346                    public void report() {
3347                        warnDivZero(pos);
3348                    }
3349                });
3350            }
3351        }
3352    }
3353
3354    /**
3355     * Check for empty statements after if
3356     */
3357    void checkEmptyIf(JCIf tree) {
3358        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3359                lint.isEnabled(LintCategory.EMPTY))
3360            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3361    }
3362
3363    /** Check that symbol is unique in given scope.
3364     *  @param pos           Position for error reporting.
3365     *  @param sym           The symbol.
3366     *  @param s             The scope.
3367     */
3368    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3369        if (sym.type.isErroneous())
3370            return true;
3371        if (sym.owner.name == names.any) return false;
3372        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3373            if (sym != byName &&
3374                    (byName.flags() & CLASH) == 0 &&
3375                    sym.kind == byName.kind &&
3376                    sym.name != names.error &&
3377                    (sym.kind != MTH ||
3378                     types.hasSameArgs(sym.type, byName.type) ||
3379                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3380                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3381                    varargsDuplicateError(pos, sym, byName);
3382                    return true;
3383                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3384                    duplicateErasureError(pos, sym, byName);
3385                    sym.flags_field |= CLASH;
3386                    return true;
3387                } else {
3388                    duplicateError(pos, byName);
3389                    return false;
3390                }
3391            }
3392        }
3393        return true;
3394    }
3395
3396    /** Report duplicate declaration error.
3397     */
3398    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3399        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3400            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3401        }
3402    }
3403
3404    /**Check that types imported through the ordinary imports don't clash with types imported
3405     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3406     * types without an error on the imports.
3407     * @param toplevel       The toplevel tree for which the test should be performed.
3408     */
3409    void checkImportsUnique(JCCompilationUnit toplevel) {
3410        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3411        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3412        WriteableScope topLevelScope = toplevel.toplevelScope;
3413
3414        for (JCTree def : toplevel.defs) {
3415            if (!def.hasTag(IMPORT))
3416                continue;
3417
3418            JCImport imp = (JCImport) def;
3419
3420            if (imp.importScope == null)
3421                continue;
3422
3423            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3424                if (imp.isStatic()) {
3425                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3426                    staticallyImportedSoFar.enter(sym);
3427                } else {
3428                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3429                    ordinallyImportedSoFar.enter(sym);
3430                }
3431            }
3432
3433            imp.importScope = null;
3434        }
3435    }
3436
3437    /** Check that single-type import is not already imported or top-level defined,
3438     *  but make an exception for two single-type imports which denote the same type.
3439     *  @param pos                     Position for error reporting.
3440     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3441     *                                 ordinary imports.
3442     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3443     *                                 static imports.
3444     *  @param topLevelScope           The current file's top-level Scope
3445     *  @param sym                     The symbol.
3446     *  @param staticImport            Whether or not this was a static import
3447     */
3448    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3449                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3450                                      Symbol sym, boolean staticImport) {
3451        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3452        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3453        if (clashing == null && !staticImport) {
3454            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3455        }
3456        if (clashing != null) {
3457            if (staticImport)
3458                log.error(pos, "already.defined.static.single.import", clashing);
3459            else
3460                log.error(pos, "already.defined.single.import", clashing);
3461            return false;
3462        }
3463        clashing = topLevelScope.findFirst(sym.name, duplicates);
3464        if (clashing != null) {
3465            log.error(pos, "already.defined.this.unit", clashing);
3466            return false;
3467        }
3468        return true;
3469    }
3470
3471    /** Check that a qualified name is in canonical form (for import decls).
3472     */
3473    public void checkCanonical(JCTree tree) {
3474        if (!isCanonical(tree))
3475            log.error(tree.pos(), "import.requires.canonical",
3476                      TreeInfo.symbol(tree));
3477    }
3478        // where
3479        private boolean isCanonical(JCTree tree) {
3480            while (tree.hasTag(SELECT)) {
3481                JCFieldAccess s = (JCFieldAccess) tree;
3482                if (s.sym.owner != TreeInfo.symbol(s.selected))
3483                    return false;
3484                tree = s.selected;
3485            }
3486            return true;
3487        }
3488
3489    /** Check that an auxiliary class is not accessed from any other file than its own.
3490     */
3491    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3492        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3493            (c.flags() & AUXILIARY) != 0 &&
3494            rs.isAccessible(env, c) &&
3495            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3496        {
3497            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3498                        c, c.sourcefile);
3499        }
3500    }
3501
3502    private class ConversionWarner extends Warner {
3503        final String uncheckedKey;
3504        final Type found;
3505        final Type expected;
3506        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3507            super(pos);
3508            this.uncheckedKey = uncheckedKey;
3509            this.found = found;
3510            this.expected = expected;
3511        }
3512
3513        @Override
3514        public void warn(LintCategory lint) {
3515            boolean warned = this.warned;
3516            super.warn(lint);
3517            if (warned) return; // suppress redundant diagnostics
3518            switch (lint) {
3519                case UNCHECKED:
3520                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3521                    break;
3522                case VARARGS:
3523                    if (method != null &&
3524                            method.attribute(syms.trustMeType.tsym) != null &&
3525                            isTrustMeAllowedOnMethod(method) &&
3526                            !types.isReifiable(method.type.getParameterTypes().last())) {
3527                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3528                    }
3529                    break;
3530                default:
3531                    throw new AssertionError("Unexpected lint: " + lint);
3532            }
3533        }
3534    }
3535
3536    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3537        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3538    }
3539
3540    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3541        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3542    }
3543
3544    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3545        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3546
3547        if (functionalType != null) {
3548            try {
3549                types.findDescriptorSymbol((TypeSymbol)cs);
3550            } catch (Types.FunctionDescriptorLookupError ex) {
3551                DiagnosticPosition pos = tree.pos();
3552                for (JCAnnotation a : tree.getModifiers().annotations) {
3553                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3554                        pos = a.pos();
3555                        break;
3556                    }
3557                }
3558                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3559            }
3560        }
3561    }
3562
3563    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3564        for (final JCImport imp : toplevel.getImports()) {
3565            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3566                continue;
3567            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3568            final Symbol origin;
3569            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3570                continue;
3571
3572            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3573            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3574                log.error(imp.pos(), "cant.resolve.location",
3575                          KindName.STATIC,
3576                          select.name, List.<Type>nil(), List.<Type>nil(),
3577                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3578                          TreeInfo.symbol(select.selected).type);
3579            }
3580        }
3581    }
3582
3583    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3584    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3585        for (JCImport imp : toplevel.getImports()) {
3586            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3587                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3588                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3589                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3590                }
3591            }
3592        }
3593    }
3594
3595    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3596        if (tsym == null || !processed.add(tsym))
3597            return false;
3598
3599            // also search through inherited names
3600        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3601            return true;
3602
3603        for (Type t : types.interfaces(tsym.type))
3604            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3605                return true;
3606
3607        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3608            if (sym.isStatic() &&
3609                importAccessible(sym, packge) &&
3610                sym.isMemberOf(origin, types)) {
3611                return true;
3612            }
3613        }
3614
3615        return false;
3616    }
3617
3618    // is the sym accessible everywhere in packge?
3619    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3620        try {
3621            int flags = (int)(sym.flags() & AccessFlags);
3622            switch (flags) {
3623            default:
3624            case PUBLIC:
3625                return true;
3626            case PRIVATE:
3627                return false;
3628            case 0:
3629            case PROTECTED:
3630                return sym.packge() == packge;
3631            }
3632        } catch (ClassFinder.BadClassFile err) {
3633            throw err;
3634        } catch (CompletionFailure ex) {
3635            return false;
3636        }
3637    }
3638
3639}
3640