Check.java revision 2962:c6f2ffcc44b9
11573Srgrimes/*
21573Srgrimes * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
31573Srgrimes * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
41573Srgrimes *
51573Srgrimes * This code is free software; you can redistribute it and/or modify it
61573Srgrimes * under the terms of the GNU General Public License version 2 only, as
71573Srgrimes * published by the Free Software Foundation.  Oracle designates this
81573Srgrimes * particular file as subject to the "Classpath" exception as provided
91573Srgrimes * by Oracle in the LICENSE file that accompanied this code.
101573Srgrimes *
111573Srgrimes * This code is distributed in the hope that it will be useful, but WITHOUT
121573Srgrimes * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
131573Srgrimes * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
141573Srgrimes * version 2 for more details (a copy is included in the LICENSE file that
151573Srgrimes * accompanied this code).
161573Srgrimes *
171573Srgrimes * You should have received a copy of the GNU General Public License version
181573Srgrimes * 2 along with this work; if not, write to the Free Software Foundation,
191573Srgrimes * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
201573Srgrimes *
211573Srgrimes * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
221573Srgrimes * or visit www.oracle.com if you need additional information or have any
231573Srgrimes * questions.
241573Srgrimes */
251573Srgrimes
261573Srgrimespackage com.sun.tools.javac.comp;
271573Srgrimes
281573Srgrimesimport java.util.*;
291573Srgrimes
301573Srgrimesimport javax.tools.JavaFileManager;
311573Srgrimes
321573Srgrimesimport com.sun.tools.javac.code.*;
331573Srgrimesimport com.sun.tools.javac.code.Attribute.Compound;
341573Srgrimesimport com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
351573Srgrimesimport com.sun.tools.javac.jvm.*;
361573Srgrimesimport com.sun.tools.javac.resources.CompilerProperties.Errors;
371573Srgrimesimport com.sun.tools.javac.resources.CompilerProperties.Fragments;
381573Srgrimesimport com.sun.tools.javac.tree.*;
391573Srgrimesimport com.sun.tools.javac.util.*;
401573Srgrimesimport com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
411573Srgrimesimport com.sun.tools.javac.util.List;
421573Srgrimes
431573Srgrimesimport com.sun.tools.javac.code.Lint;
441573Srgrimesimport com.sun.tools.javac.code.Lint.LintCategory;
451573Srgrimesimport com.sun.tools.javac.code.Scope.CompoundScope;
461573Srgrimesimport com.sun.tools.javac.code.Scope.NamedImportScope;
471573Srgrimesimport com.sun.tools.javac.code.Scope.WriteableScope;
481573Srgrimesimport com.sun.tools.javac.code.Type.*;
491573Srgrimesimport com.sun.tools.javac.code.Symbol.*;
501573Srgrimesimport com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
511573Srgrimesimport com.sun.tools.javac.comp.Infer.InferenceContext;
521573Srgrimesimport com.sun.tools.javac.comp.Infer.FreeTypeListener;
531573Srgrimesimport com.sun.tools.javac.tree.JCTree.*;
541573Srgrimesimport com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
551573Srgrimes
561573Srgrimesimport static com.sun.tools.javac.code.Flags.*;
571573Srgrimesimport static com.sun.tools.javac.code.Flags.ANNOTATION;
581573Srgrimesimport static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
591573Srgrimesimport static com.sun.tools.javac.code.Kinds.*;
601573Srgrimesimport static com.sun.tools.javac.code.Kinds.Kind.*;
611573Srgrimesimport static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
621573Srgrimesimport static com.sun.tools.javac.code.TypeTag.*;
631573Srgrimesimport static com.sun.tools.javac.code.TypeTag.WILDCARD;
641573Srgrimes
651573Srgrimesimport static com.sun.tools.javac.resources.CompilerProperties.Errors.CantTypeAnnotateScoping;
66import static com.sun.tools.javac.resources.CompilerProperties.Errors.CantTypeAnnotateScoping1;
67import static com.sun.tools.javac.tree.JCTree.Tag.*;
68
69/** Type checking helper class for the attribution phase.
70 *
71 *  <p><b>This is NOT part of any supported API.
72 *  If you write code that depends on this, you do so at your own risk.
73 *  This code and its internal interfaces are subject to change or
74 *  deletion without notice.</b>
75 */
76public class Check {
77    protected static final Context.Key<Check> checkKey = new Context.Key<>();
78
79    private final Names names;
80    private final Log log;
81    private final Resolve rs;
82    private final Symtab syms;
83    private final Enter enter;
84    private final DeferredAttr deferredAttr;
85    private final Infer infer;
86    private final Types types;
87    private final TypeAnnotations typeAnnotations;
88    private final JCDiagnostic.Factory diags;
89    private boolean warnOnSyntheticConflicts;
90    private boolean suppressAbortOnBadClassFile;
91    private boolean enableSunApiLintControl;
92    private final JavaFileManager fileManager;
93    private final Source source;
94    private final Profile profile;
95    private final boolean warnOnAccessToSensitiveMembers;
96
97    // The set of lint options currently in effect. It is initialized
98    // from the context, and then is set/reset as needed by Attr as it
99    // visits all the various parts of the trees during attribution.
100    private Lint lint;
101
102    // The method being analyzed in Attr - it is set/reset as needed by
103    // Attr as it visits new method declarations.
104    private MethodSymbol method;
105
106    public static Check instance(Context context) {
107        Check instance = context.get(checkKey);
108        if (instance == null)
109            instance = new Check(context);
110        return instance;
111    }
112
113    protected Check(Context context) {
114        context.put(checkKey, this);
115
116        names = Names.instance(context);
117        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
118            names.FIELD, names.METHOD, names.CONSTRUCTOR,
119            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
120        log = Log.instance(context);
121        rs = Resolve.instance(context);
122        syms = Symtab.instance(context);
123        enter = Enter.instance(context);
124        deferredAttr = DeferredAttr.instance(context);
125        infer = Infer.instance(context);
126        types = Types.instance(context);
127        typeAnnotations = TypeAnnotations.instance(context);
128        diags = JCDiagnostic.Factory.instance(context);
129        Options options = Options.instance(context);
130        lint = Lint.instance(context);
131        fileManager = context.get(JavaFileManager.class);
132
133        source = Source.instance(context);
134        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
135        allowDefaultMethods = source.allowDefaultMethods();
136        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
137        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
138        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
139        complexInference = options.isSet("complexinference");
140        warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
141        suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
142        enableSunApiLintControl = options.isSet("enableSunApiLintControl");
143        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
144
145        Target target = Target.instance(context);
146        syntheticNameChar = target.syntheticNameChar();
147
148        profile = Profile.instance(context);
149
150        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
151        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
152        boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
153        boolean enforceMandatoryWarnings = true;
154
155        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
156                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
157        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
158                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
159        sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
160                enforceMandatoryWarnings, "sunapi", null);
161
162        deferredLintHandler = DeferredLintHandler.instance(context);
163    }
164
165    /** Switch: simplified varargs enabled?
166     */
167    boolean allowSimplifiedVarargs;
168
169    /** Switch: default methods enabled?
170     */
171    boolean allowDefaultMethods;
172
173    /** Switch: should unrelated return types trigger a method clash?
174     */
175    boolean allowStrictMethodClashCheck;
176
177    /** Switch: can the @SafeVarargs annotation be applied to private methods?
178     */
179    boolean allowPrivateSafeVarargs;
180
181    /** Switch: can diamond inference be used in anonymous instance creation ?
182     */
183    boolean allowDiamondWithAnonymousClassCreation;
184
185    /** Switch: -complexinference option set?
186     */
187    boolean complexInference;
188
189    /** Character for synthetic names
190     */
191    char syntheticNameChar;
192
193    /** A table mapping flat names of all compiled classes in this run to their
194     *  symbols; maintained from outside.
195     */
196    public Map<Name,ClassSymbol> compiled = new HashMap<>();
197
198    /** A handler for messages about deprecated usage.
199     */
200    private MandatoryWarningHandler deprecationHandler;
201
202    /** A handler for messages about unchecked or unsafe usage.
203     */
204    private MandatoryWarningHandler uncheckedHandler;
205
206    /** A handler for messages about using proprietary API.
207     */
208    private MandatoryWarningHandler sunApiHandler;
209
210    /** A handler for deferred lint warnings.
211     */
212    private DeferredLintHandler deferredLintHandler;
213
214/* *************************************************************************
215 * Errors and Warnings
216 **************************************************************************/
217
218    Lint setLint(Lint newLint) {
219        Lint prev = lint;
220        lint = newLint;
221        return prev;
222    }
223
224    MethodSymbol setMethod(MethodSymbol newMethod) {
225        MethodSymbol prev = method;
226        method = newMethod;
227        return prev;
228    }
229
230    /** Warn about deprecated symbol.
231     *  @param pos        Position to be used for error reporting.
232     *  @param sym        The deprecated symbol.
233     */
234    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
235        if (!lint.isSuppressed(LintCategory.DEPRECATION))
236            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
237    }
238
239    /** Warn about unchecked operation.
240     *  @param pos        Position to be used for error reporting.
241     *  @param msg        A string describing the problem.
242     */
243    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
244        if (!lint.isSuppressed(LintCategory.UNCHECKED))
245            uncheckedHandler.report(pos, msg, args);
246    }
247
248    /** Warn about unsafe vararg method decl.
249     *  @param pos        Position to be used for error reporting.
250     */
251    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
252        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
253            log.warning(LintCategory.VARARGS, pos, key, args);
254    }
255
256    /** Warn about using proprietary API.
257     *  @param pos        Position to be used for error reporting.
258     *  @param msg        A string describing the problem.
259     */
260    public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
261        if (!lint.isSuppressed(LintCategory.SUNAPI))
262            sunApiHandler.report(pos, msg, args);
263    }
264
265    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
266        if (lint.isEnabled(LintCategory.STATIC))
267            log.warning(LintCategory.STATIC, pos, msg, args);
268    }
269
270    /** Warn about division by integer constant zero.
271     *  @param pos        Position to be used for error reporting.
272     */
273    void warnDivZero(DiagnosticPosition pos) {
274        if (lint.isEnabled(LintCategory.DIVZERO))
275            log.warning(LintCategory.DIVZERO, pos, "div.zero");
276    }
277
278    /**
279     * Report any deferred diagnostics.
280     */
281    public void reportDeferredDiagnostics() {
282        deprecationHandler.reportDeferredDiagnostic();
283        uncheckedHandler.reportDeferredDiagnostic();
284        sunApiHandler.reportDeferredDiagnostic();
285    }
286
287
288    /** Report a failure to complete a class.
289     *  @param pos        Position to be used for error reporting.
290     *  @param ex         The failure to report.
291     */
292    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
293        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
294        if (ex instanceof ClassFinder.BadClassFile
295                && !suppressAbortOnBadClassFile) throw new Abort();
296        else return syms.errType;
297    }
298
299    /** Report an error that wrong type tag was found.
300     *  @param pos        Position to be used for error reporting.
301     *  @param required   An internationalized string describing the type tag
302     *                    required.
303     *  @param found      The type that was found.
304     */
305    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
306        // this error used to be raised by the parser,
307        // but has been delayed to this point:
308        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
309            log.error(pos, "illegal.start.of.type");
310            return syms.errType;
311        }
312        log.error(pos, "type.found.req", found, required);
313        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
314    }
315
316    /** Report an error that symbol cannot be referenced before super
317     *  has been called.
318     *  @param pos        Position to be used for error reporting.
319     *  @param sym        The referenced symbol.
320     */
321    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
322        log.error(pos, "cant.ref.before.ctor.called", sym);
323    }
324
325    /** Report duplicate declaration error.
326     */
327    void duplicateError(DiagnosticPosition pos, Symbol sym) {
328        if (!sym.type.isErroneous()) {
329            Symbol location = sym.location();
330            if (location.kind == MTH &&
331                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
332                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
333                        kindName(sym.location()), kindName(sym.location().enclClass()),
334                        sym.location().enclClass());
335            } else {
336                log.error(pos, "already.defined", kindName(sym), sym,
337                        kindName(sym.location()), sym.location());
338            }
339        }
340    }
341
342    /** Report array/varargs duplicate declaration
343     */
344    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
345        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
346            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
347        }
348    }
349
350/* ************************************************************************
351 * duplicate declaration checking
352 *************************************************************************/
353
354    /** Check that variable does not hide variable with same name in
355     *  immediately enclosing local scope.
356     *  @param pos           Position for error reporting.
357     *  @param v             The symbol.
358     *  @param s             The scope.
359     */
360    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
361        for (Symbol sym : s.getSymbolsByName(v.name)) {
362            if (sym.owner != v.owner) break;
363            if (sym.kind == VAR &&
364                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
365                v.name != names.error) {
366                duplicateError(pos, sym);
367                return;
368            }
369        }
370    }
371
372    /** Check that a class or interface does not hide a class or
373     *  interface with same name in immediately enclosing local scope.
374     *  @param pos           Position for error reporting.
375     *  @param c             The symbol.
376     *  @param s             The scope.
377     */
378    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
379        for (Symbol sym : s.getSymbolsByName(c.name)) {
380            if (sym.owner != c.owner) break;
381            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
382                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
383                c.name != names.error) {
384                duplicateError(pos, sym);
385                return;
386            }
387        }
388    }
389
390    /** Check that class does not have the same name as one of
391     *  its enclosing classes, or as a class defined in its enclosing scope.
392     *  return true if class is unique in its enclosing scope.
393     *  @param pos           Position for error reporting.
394     *  @param name          The class name.
395     *  @param s             The enclosing scope.
396     */
397    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
398        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
399            if (sym.kind == TYP && sym.name != names.error) {
400                duplicateError(pos, sym);
401                return false;
402            }
403        }
404        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
405            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
406                duplicateError(pos, sym);
407                return true;
408            }
409        }
410        return true;
411    }
412
413/* *************************************************************************
414 * Class name generation
415 **************************************************************************/
416
417    /** Return name of local class.
418     *  This is of the form   {@code <enclClass> $ n <classname> }
419     *  where
420     *    enclClass is the flat name of the enclosing class,
421     *    classname is the simple name of the local class
422     */
423    Name localClassName(ClassSymbol c) {
424        for (int i=1; ; i++) {
425            Name flatname = names.
426                fromString("" + c.owner.enclClass().flatname +
427                           syntheticNameChar + i +
428                           c.name);
429            if (compiled.get(flatname) == null) return flatname;
430        }
431    }
432
433    public void newRound() {
434        compiled.clear();
435    }
436
437/* *************************************************************************
438 * Type Checking
439 **************************************************************************/
440
441    /**
442     * A check context is an object that can be used to perform compatibility
443     * checks - depending on the check context, meaning of 'compatibility' might
444     * vary significantly.
445     */
446    public interface CheckContext {
447        /**
448         * Is type 'found' compatible with type 'req' in given context
449         */
450        boolean compatible(Type found, Type req, Warner warn);
451        /**
452         * Report a check error
453         */
454        void report(DiagnosticPosition pos, JCDiagnostic details);
455        /**
456         * Obtain a warner for this check context
457         */
458        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
459
460        public Infer.InferenceContext inferenceContext();
461
462        public DeferredAttr.DeferredAttrContext deferredAttrContext();
463    }
464
465    /**
466     * This class represent a check context that is nested within another check
467     * context - useful to check sub-expressions. The default behavior simply
468     * redirects all method calls to the enclosing check context leveraging
469     * the forwarding pattern.
470     */
471    static class NestedCheckContext implements CheckContext {
472        CheckContext enclosingContext;
473
474        NestedCheckContext(CheckContext enclosingContext) {
475            this.enclosingContext = enclosingContext;
476        }
477
478        public boolean compatible(Type found, Type req, Warner warn) {
479            return enclosingContext.compatible(found, req, warn);
480        }
481
482        public void report(DiagnosticPosition pos, JCDiagnostic details) {
483            enclosingContext.report(pos, details);
484        }
485
486        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
487            return enclosingContext.checkWarner(pos, found, req);
488        }
489
490        public Infer.InferenceContext inferenceContext() {
491            return enclosingContext.inferenceContext();
492        }
493
494        public DeferredAttrContext deferredAttrContext() {
495            return enclosingContext.deferredAttrContext();
496        }
497    }
498
499    /**
500     * Check context to be used when evaluating assignment/return statements
501     */
502    CheckContext basicHandler = new CheckContext() {
503        public void report(DiagnosticPosition pos, JCDiagnostic details) {
504            log.error(pos, "prob.found.req", details);
505        }
506        public boolean compatible(Type found, Type req, Warner warn) {
507            return types.isAssignable(found, req, warn);
508        }
509
510        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
511            return convertWarner(pos, found, req);
512        }
513
514        public InferenceContext inferenceContext() {
515            return infer.emptyContext;
516        }
517
518        public DeferredAttrContext deferredAttrContext() {
519            return deferredAttr.emptyDeferredAttrContext;
520        }
521
522        @Override
523        public String toString() {
524            return "CheckContext: basicHandler";
525        }
526    };
527
528    /** Check that a given type is assignable to a given proto-type.
529     *  If it is, return the type, otherwise return errType.
530     *  @param pos        Position to be used for error reporting.
531     *  @param found      The type that was found.
532     *  @param req        The type that was required.
533     */
534    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
535        return checkType(pos, found, req, basicHandler);
536    }
537
538    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
539        final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
540        if (inferenceContext.free(req) || inferenceContext.free(found)) {
541            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
542                @Override
543                public void typesInferred(InferenceContext inferenceContext) {
544                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
545                }
546            });
547        }
548        if (req.hasTag(ERROR))
549            return req;
550        if (req.hasTag(NONE))
551            return found;
552        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
553            return found;
554        } else {
555            if (found.isNumeric() && req.isNumeric()) {
556                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
557                return types.createErrorType(found);
558            }
559            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
560            return types.createErrorType(found);
561        }
562    }
563
564    /** Check that a given type can be cast to a given target type.
565     *  Return the result of the cast.
566     *  @param pos        Position to be used for error reporting.
567     *  @param found      The type that is being cast.
568     *  @param req        The target type of the cast.
569     */
570    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
571        return checkCastable(pos, found, req, basicHandler);
572    }
573    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
574        if (types.isCastable(found, req, castWarner(pos, found, req))) {
575            return req;
576        } else {
577            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
578            return types.createErrorType(found);
579        }
580    }
581
582    /** Check for redundant casts (i.e. where source type is a subtype of target type)
583     * The problem should only be reported for non-292 cast
584     */
585    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
586        if (!tree.type.isErroneous()
587                && types.isSameType(tree.expr.type, tree.clazz.type)
588                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
589                && !is292targetTypeCast(tree)) {
590            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
591                @Override
592                public void report() {
593                    if (lint.isEnabled(Lint.LintCategory.CAST))
594                        log.warning(Lint.LintCategory.CAST,
595                                tree.pos(), "redundant.cast", tree.clazz.type);
596                }
597            });
598        }
599    }
600    //where
601        private boolean is292targetTypeCast(JCTypeCast tree) {
602            boolean is292targetTypeCast = false;
603            JCExpression expr = TreeInfo.skipParens(tree.expr);
604            if (expr.hasTag(APPLY)) {
605                JCMethodInvocation apply = (JCMethodInvocation)expr;
606                Symbol sym = TreeInfo.symbol(apply.meth);
607                is292targetTypeCast = sym != null &&
608                    sym.kind == MTH &&
609                    (sym.flags() & HYPOTHETICAL) != 0;
610            }
611            return is292targetTypeCast;
612        }
613
614        private static final boolean ignoreAnnotatedCasts = true;
615
616    /** Check that a type is within some bounds.
617     *
618     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
619     *  type argument.
620     *  @param a             The type that should be bounded by bs.
621     *  @param bound         The bound.
622     */
623    private boolean checkExtends(Type a, Type bound) {
624         if (a.isUnbound()) {
625             return true;
626         } else if (!a.hasTag(WILDCARD)) {
627             a = types.cvarUpperBound(a);
628             return types.isSubtype(a, bound);
629         } else if (a.isExtendsBound()) {
630             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
631         } else if (a.isSuperBound()) {
632             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
633         }
634         return true;
635     }
636
637    /** Check that type is different from 'void'.
638     *  @param pos           Position to be used for error reporting.
639     *  @param t             The type to be checked.
640     */
641    Type checkNonVoid(DiagnosticPosition pos, Type t) {
642        if (t.hasTag(VOID)) {
643            log.error(pos, "void.not.allowed.here");
644            return types.createErrorType(t);
645        } else {
646            return t;
647        }
648    }
649
650    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
651        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
652            return typeTagError(pos,
653                                diags.fragment("type.req.class.array"),
654                                asTypeParam(t));
655        } else {
656            return t;
657        }
658    }
659
660    /** Check that type is a class or interface type.
661     *  @param pos           Position to be used for error reporting.
662     *  @param t             The type to be checked.
663     */
664    Type checkClassType(DiagnosticPosition pos, Type t) {
665        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
666            return typeTagError(pos,
667                                diags.fragment("type.req.class"),
668                                asTypeParam(t));
669        } else {
670            return t;
671        }
672    }
673    //where
674        private Object asTypeParam(Type t) {
675            return (t.hasTag(TYPEVAR))
676                                    ? diags.fragment("type.parameter", t)
677                                    : t;
678        }
679
680    /** Check that type is a valid qualifier for a constructor reference expression
681     */
682    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
683        t = checkClassOrArrayType(pos, t);
684        if (t.hasTag(CLASS)) {
685            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
686                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
687                t = types.createErrorType(t);
688            } else if ((t.tsym.flags() & ENUM) != 0) {
689                log.error(pos, "enum.cant.be.instantiated");
690                t = types.createErrorType(t);
691            } else {
692                t = checkClassType(pos, t, true);
693            }
694        } else if (t.hasTag(ARRAY)) {
695            if (!types.isReifiable(((ArrayType)t).elemtype)) {
696                log.error(pos, "generic.array.creation");
697                t = types.createErrorType(t);
698            }
699        }
700        return t;
701    }
702
703    /** Check that type is a class or interface type.
704     *  @param pos           Position to be used for error reporting.
705     *  @param t             The type to be checked.
706     *  @param noBounds    True if type bounds are illegal here.
707     */
708    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
709        t = checkClassType(pos, t);
710        if (noBounds && t.isParameterized()) {
711            List<Type> args = t.getTypeArguments();
712            while (args.nonEmpty()) {
713                if (args.head.hasTag(WILDCARD))
714                    return typeTagError(pos,
715                                        diags.fragment("type.req.exact"),
716                                        args.head);
717                args = args.tail;
718            }
719        }
720        return t;
721    }
722
723    /** Check that type is a reference type, i.e. a class, interface or array type
724     *  or a type variable.
725     *  @param pos           Position to be used for error reporting.
726     *  @param t             The type to be checked.
727     */
728    Type checkRefType(DiagnosticPosition pos, Type t) {
729        if (t.isReference())
730            return t;
731        else
732            return typeTagError(pos,
733                                diags.fragment("type.req.ref"),
734                                t);
735    }
736
737    /** Check that each type is a reference type, i.e. a class, interface or array type
738     *  or a type variable.
739     *  @param trees         Original trees, used for error reporting.
740     *  @param types         The types to be checked.
741     */
742    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
743        List<JCExpression> tl = trees;
744        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
745            l.head = checkRefType(tl.head.pos(), l.head);
746            tl = tl.tail;
747        }
748        return types;
749    }
750
751    /** Check that type is a null or reference type.
752     *  @param pos           Position to be used for error reporting.
753     *  @param t             The type to be checked.
754     */
755    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
756        if (t.isReference() || t.hasTag(BOT))
757            return t;
758        else
759            return typeTagError(pos,
760                                diags.fragment("type.req.ref"),
761                                t);
762    }
763
764    /** Check that flag set does not contain elements of two conflicting sets. s
765     *  Return true if it doesn't.
766     *  @param pos           Position to be used for error reporting.
767     *  @param flags         The set of flags to be checked.
768     *  @param set1          Conflicting flags set #1.
769     *  @param set2          Conflicting flags set #2.
770     */
771    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
772        if ((flags & set1) != 0 && (flags & set2) != 0) {
773            log.error(pos,
774                      "illegal.combination.of.modifiers",
775                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
776                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
777            return false;
778        } else
779            return true;
780    }
781
782    /** Check that usage of diamond operator is correct (i.e. diamond should not
783     * be used with non-generic classes or in anonymous class creation expressions)
784     */
785    Type checkDiamond(JCNewClass tree, Type t) {
786        if (!TreeInfo.isDiamond(tree) ||
787                t.isErroneous()) {
788            return checkClassType(tree.clazz.pos(), t, true);
789        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
790            log.error(tree.clazz.pos(),
791                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
792            return types.createErrorType(t);
793        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
794            log.error(tree.clazz.pos(),
795                "cant.apply.diamond.1",
796                t, diags.fragment("diamond.non.generic", t));
797            return types.createErrorType(t);
798        } else if (tree.typeargs != null &&
799                tree.typeargs.nonEmpty()) {
800            log.error(tree.clazz.pos(),
801                "cant.apply.diamond.1",
802                t, diags.fragment("diamond.and.explicit.params", t));
803            return types.createErrorType(t);
804        } else {
805            return t;
806        }
807    }
808
809    /** Check that the type inferred using the diamond operator does not contain
810     *  non-denotable types such as captured types or intersection types.
811     *  @param t the type inferred using the diamond operator
812     *  @return  the (possibly empty) list of non-denotable types.
813     */
814    List<Type> checkDiamondDenotable(ClassType t) {
815        ListBuffer<Type> buf = new ListBuffer<>();
816        for (Type arg : t.getTypeArguments()) {
817            if (!diamondTypeChecker.visit(arg, null)) {
818                buf.append(arg);
819            }
820        }
821        return buf.toList();
822    }
823        // where
824
825        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
826         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
827         *  otherwise.
828         */
829        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
830            @Override
831            public Boolean visitType(Type t, Void s) {
832                return true;
833            }
834            @Override
835            public Boolean visitClassType(ClassType t, Void s) {
836                if (t.isCompound()) {
837                    return false;
838                }
839                for (Type targ : t.getTypeArguments()) {
840                    if (!visit(targ, s)) {
841                        return false;
842                    }
843                }
844                return true;
845            }
846
847            @Override
848            public Boolean visitTypeVar(TypeVar t, Void s) {
849                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
850                  (i.e cannot have been produced by capture conversion (5.1.10) or by inference (18.4)
851                */
852                return t.tsym.owner.type.getTypeArguments().contains(t);
853            }
854
855            @Override
856            public Boolean visitCapturedType(CapturedType t, Void s) {
857                return false;
858            }
859
860            @Override
861            public Boolean visitArrayType(ArrayType t, Void s) {
862                return visit(t.elemtype, s);
863            }
864
865            @Override
866            public Boolean visitWildcardType(WildcardType t, Void s) {
867                return visit(t.type, s);
868            }
869        };
870
871    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
872        MethodSymbol m = tree.sym;
873        if (!allowSimplifiedVarargs) return;
874        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
875        Type varargElemType = null;
876        if (m.isVarArgs()) {
877            varargElemType = types.elemtype(tree.params.last().type);
878        }
879        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
880            if (varargElemType != null) {
881                log.error(tree,
882                        "varargs.invalid.trustme.anno",
883                          syms.trustMeType.tsym,
884                          allowPrivateSafeVarargs ?
885                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
886                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
887            } else {
888                log.error(tree,
889                            "varargs.invalid.trustme.anno",
890                            syms.trustMeType.tsym,
891                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
892            }
893        } else if (hasTrustMeAnno && varargElemType != null &&
894                            types.isReifiable(varargElemType)) {
895            warnUnsafeVararg(tree,
896                            "varargs.redundant.trustme.anno",
897                            syms.trustMeType.tsym,
898                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
899        }
900        else if (!hasTrustMeAnno && varargElemType != null &&
901                !types.isReifiable(varargElemType)) {
902            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
903        }
904    }
905    //where
906        private boolean isTrustMeAllowedOnMethod(Symbol s) {
907            return (s.flags() & VARARGS) != 0 &&
908                (s.isConstructor() ||
909                    (s.flags() & (STATIC | FINAL |
910                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
911        }
912
913    Type checkMethod(final Type mtype,
914            final Symbol sym,
915            final Env<AttrContext> env,
916            final List<JCExpression> argtrees,
917            final List<Type> argtypes,
918            final boolean useVarargs,
919            InferenceContext inferenceContext) {
920        // System.out.println("call   : " + env.tree);
921        // System.out.println("method : " + owntype);
922        // System.out.println("actuals: " + argtypes);
923        if (inferenceContext.free(mtype)) {
924            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
925                public void typesInferred(InferenceContext inferenceContext) {
926                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
927                }
928            });
929            return mtype;
930        }
931        Type owntype = mtype;
932        List<Type> formals = owntype.getParameterTypes();
933        List<Type> nonInferred = sym.type.getParameterTypes();
934        if (nonInferred.length() != formals.length()) nonInferred = formals;
935        Type last = useVarargs ? formals.last() : null;
936        if (sym.name == names.init && sym.owner == syms.enumSym) {
937            formals = formals.tail.tail;
938            nonInferred = nonInferred.tail.tail;
939        }
940        List<JCExpression> args = argtrees;
941        if (args != null) {
942            //this is null when type-checking a method reference
943            while (formals.head != last) {
944                JCTree arg = args.head;
945                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
946                assertConvertible(arg, arg.type, formals.head, warn);
947                args = args.tail;
948                formals = formals.tail;
949                nonInferred = nonInferred.tail;
950            }
951            if (useVarargs) {
952                Type varArg = types.elemtype(last);
953                while (args.tail != null) {
954                    JCTree arg = args.head;
955                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
956                    assertConvertible(arg, arg.type, varArg, warn);
957                    args = args.tail;
958                }
959            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
960                // non-varargs call to varargs method
961                Type varParam = owntype.getParameterTypes().last();
962                Type lastArg = argtypes.last();
963                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
964                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
965                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
966                                types.elemtype(varParam), varParam);
967            }
968        }
969        if (useVarargs) {
970            Type argtype = owntype.getParameterTypes().last();
971            if (!types.isReifiable(argtype) &&
972                (!allowSimplifiedVarargs ||
973                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
974                 !isTrustMeAllowedOnMethod(sym))) {
975                warnUnchecked(env.tree.pos(),
976                                  "unchecked.generic.array.creation",
977                                  argtype);
978            }
979            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
980                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
981            }
982         }
983         PolyKind pkind = (sym.type.hasTag(FORALL) &&
984                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
985                 PolyKind.POLY : PolyKind.STANDALONE;
986         TreeInfo.setPolyKind(env.tree, pkind);
987         return owntype;
988    }
989    //where
990    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
991        if (types.isConvertible(actual, formal, warn))
992            return;
993
994        if (formal.isCompound()
995            && types.isSubtype(actual, types.supertype(formal))
996            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
997            return;
998    }
999
1000    /**
1001     * Check that type 't' is a valid instantiation of a generic class
1002     * (see JLS 4.5)
1003     *
1004     * @param t class type to be checked
1005     * @return true if 't' is well-formed
1006     */
1007    public boolean checkValidGenericType(Type t) {
1008        return firstIncompatibleTypeArg(t) == null;
1009    }
1010    //WHERE
1011        private Type firstIncompatibleTypeArg(Type type) {
1012            List<Type> formals = type.tsym.type.allparams();
1013            List<Type> actuals = type.allparams();
1014            List<Type> args = type.getTypeArguments();
1015            List<Type> forms = type.tsym.type.getTypeArguments();
1016            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1017
1018            // For matching pairs of actual argument types `a' and
1019            // formal type parameters with declared bound `b' ...
1020            while (args.nonEmpty() && forms.nonEmpty()) {
1021                // exact type arguments needs to know their
1022                // bounds (for upper and lower bound
1023                // calculations).  So we create new bounds where
1024                // type-parameters are replaced with actuals argument types.
1025                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1026                args = args.tail;
1027                forms = forms.tail;
1028            }
1029
1030            args = type.getTypeArguments();
1031            List<Type> tvars_cap = types.substBounds(formals,
1032                                      formals,
1033                                      types.capture(type).allparams());
1034            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1035                // Let the actual arguments know their bound
1036                args.head.withTypeVar((TypeVar)tvars_cap.head);
1037                args = args.tail;
1038                tvars_cap = tvars_cap.tail;
1039            }
1040
1041            args = type.getTypeArguments();
1042            List<Type> bounds = bounds_buf.toList();
1043
1044            while (args.nonEmpty() && bounds.nonEmpty()) {
1045                Type actual = args.head;
1046                if (!isTypeArgErroneous(actual) &&
1047                        !bounds.head.isErroneous() &&
1048                        !checkExtends(actual, bounds.head)) {
1049                    return args.head;
1050                }
1051                args = args.tail;
1052                bounds = bounds.tail;
1053            }
1054
1055            args = type.getTypeArguments();
1056            bounds = bounds_buf.toList();
1057
1058            for (Type arg : types.capture(type).getTypeArguments()) {
1059                if (arg.hasTag(TYPEVAR) &&
1060                        arg.getUpperBound().isErroneous() &&
1061                        !bounds.head.isErroneous() &&
1062                        !isTypeArgErroneous(args.head)) {
1063                    return args.head;
1064                }
1065                bounds = bounds.tail;
1066                args = args.tail;
1067            }
1068
1069            return null;
1070        }
1071        //where
1072        boolean isTypeArgErroneous(Type t) {
1073            return isTypeArgErroneous.visit(t);
1074        }
1075
1076        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1077            public Boolean visitType(Type t, Void s) {
1078                return t.isErroneous();
1079            }
1080            @Override
1081            public Boolean visitTypeVar(TypeVar t, Void s) {
1082                return visit(t.getUpperBound());
1083            }
1084            @Override
1085            public Boolean visitCapturedType(CapturedType t, Void s) {
1086                return visit(t.getUpperBound()) ||
1087                        visit(t.getLowerBound());
1088            }
1089            @Override
1090            public Boolean visitWildcardType(WildcardType t, Void s) {
1091                return visit(t.type);
1092            }
1093        };
1094
1095    /** Check that given modifiers are legal for given symbol and
1096     *  return modifiers together with any implicit modifiers for that symbol.
1097     *  Warning: we can't use flags() here since this method
1098     *  is called during class enter, when flags() would cause a premature
1099     *  completion.
1100     *  @param pos           Position to be used for error reporting.
1101     *  @param flags         The set of modifiers given in a definition.
1102     *  @param sym           The defined symbol.
1103     */
1104    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1105        long mask;
1106        long implicit = 0;
1107
1108        switch (sym.kind) {
1109        case VAR:
1110            if (TreeInfo.isReceiverParam(tree))
1111                mask = ReceiverParamFlags;
1112            else if (sym.owner.kind != TYP)
1113                mask = LocalVarFlags;
1114            else if ((sym.owner.flags_field & INTERFACE) != 0)
1115                mask = implicit = InterfaceVarFlags;
1116            else
1117                mask = VarFlags;
1118            break;
1119        case MTH:
1120            if (sym.name == names.init) {
1121                if ((sym.owner.flags_field & ENUM) != 0) {
1122                    // enum constructors cannot be declared public or
1123                    // protected and must be implicitly or explicitly
1124                    // private
1125                    implicit = PRIVATE;
1126                    mask = PRIVATE;
1127                } else
1128                    mask = ConstructorFlags;
1129            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1130                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1131                    mask = AnnotationTypeElementMask;
1132                    implicit = PUBLIC | ABSTRACT;
1133                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1134                    mask = InterfaceMethodMask;
1135                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1136                    if ((flags & DEFAULT) != 0) {
1137                        implicit |= ABSTRACT;
1138                    }
1139                } else {
1140                    mask = implicit = InterfaceMethodFlags;
1141                }
1142            } else {
1143                mask = MethodFlags;
1144            }
1145            // Imply STRICTFP if owner has STRICTFP set.
1146            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1147                ((flags) & Flags.DEFAULT) != 0)
1148                implicit |= sym.owner.flags_field & STRICTFP;
1149            break;
1150        case TYP:
1151            if (sym.isLocal()) {
1152                mask = LocalClassFlags;
1153                if (sym.name.isEmpty()) { // Anonymous class
1154                    // JLS: Anonymous classes are final.
1155                    implicit |= FINAL;
1156                }
1157                if ((sym.owner.flags_field & STATIC) == 0 &&
1158                    (flags & ENUM) != 0)
1159                    log.error(pos, "enums.must.be.static");
1160            } else if (sym.owner.kind == TYP) {
1161                mask = MemberClassFlags;
1162                if (sym.owner.owner.kind == PCK ||
1163                    (sym.owner.flags_field & STATIC) != 0)
1164                    mask |= STATIC;
1165                else if ((flags & ENUM) != 0)
1166                    log.error(pos, "enums.must.be.static");
1167                // Nested interfaces and enums are always STATIC (Spec ???)
1168                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1169            } else {
1170                mask = ClassFlags;
1171            }
1172            // Interfaces are always ABSTRACT
1173            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1174
1175            if ((flags & ENUM) != 0) {
1176                // enums can't be declared abstract or final
1177                mask &= ~(ABSTRACT | FINAL);
1178                implicit |= implicitEnumFinalFlag(tree);
1179            }
1180            // Imply STRICTFP if owner has STRICTFP set.
1181            implicit |= sym.owner.flags_field & STRICTFP;
1182            break;
1183        default:
1184            throw new AssertionError();
1185        }
1186        long illegal = flags & ExtendedStandardFlags & ~mask;
1187        if (illegal != 0) {
1188            if ((illegal & INTERFACE) != 0) {
1189                log.error(pos, "intf.not.allowed.here");
1190                mask |= INTERFACE;
1191            }
1192            else {
1193                log.error(pos,
1194                          "mod.not.allowed.here", asFlagSet(illegal));
1195            }
1196        }
1197        else if ((sym.kind == TYP ||
1198                  // ISSUE: Disallowing abstract&private is no longer appropriate
1199                  // in the presence of inner classes. Should it be deleted here?
1200                  checkDisjoint(pos, flags,
1201                                ABSTRACT,
1202                                PRIVATE | STATIC | DEFAULT))
1203                 &&
1204                 checkDisjoint(pos, flags,
1205                                STATIC | PRIVATE,
1206                                DEFAULT)
1207                 &&
1208                 checkDisjoint(pos, flags,
1209                               ABSTRACT | INTERFACE,
1210                               FINAL | NATIVE | SYNCHRONIZED)
1211                 &&
1212                 checkDisjoint(pos, flags,
1213                               PUBLIC,
1214                               PRIVATE | PROTECTED)
1215                 &&
1216                 checkDisjoint(pos, flags,
1217                               PRIVATE,
1218                               PUBLIC | PROTECTED)
1219                 &&
1220                 checkDisjoint(pos, flags,
1221                               FINAL,
1222                               VOLATILE)
1223                 &&
1224                 (sym.kind == TYP ||
1225                  checkDisjoint(pos, flags,
1226                                ABSTRACT | NATIVE,
1227                                STRICTFP))) {
1228            // skip
1229        }
1230        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1231    }
1232
1233
1234    /** Determine if this enum should be implicitly final.
1235     *
1236     *  If the enum has no specialized enum contants, it is final.
1237     *
1238     *  If the enum does have specialized enum contants, it is
1239     *  <i>not</i> final.
1240     */
1241    private long implicitEnumFinalFlag(JCTree tree) {
1242        if (!tree.hasTag(CLASSDEF)) return 0;
1243        class SpecialTreeVisitor extends JCTree.Visitor {
1244            boolean specialized;
1245            SpecialTreeVisitor() {
1246                this.specialized = false;
1247            }
1248
1249            @Override
1250            public void visitTree(JCTree tree) { /* no-op */ }
1251
1252            @Override
1253            public void visitVarDef(JCVariableDecl tree) {
1254                if ((tree.mods.flags & ENUM) != 0) {
1255                    if (tree.init instanceof JCNewClass &&
1256                        ((JCNewClass) tree.init).def != null) {
1257                        specialized = true;
1258                    }
1259                }
1260            }
1261        }
1262
1263        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1264        JCClassDecl cdef = (JCClassDecl) tree;
1265        for (JCTree defs: cdef.defs) {
1266            defs.accept(sts);
1267            if (sts.specialized) return 0;
1268        }
1269        return FINAL;
1270    }
1271
1272/* *************************************************************************
1273 * Type Validation
1274 **************************************************************************/
1275
1276    /** Validate a type expression. That is,
1277     *  check that all type arguments of a parametric type are within
1278     *  their bounds. This must be done in a second phase after type attribution
1279     *  since a class might have a subclass as type parameter bound. E.g:
1280     *
1281     *  <pre>{@code
1282     *  class B<A extends C> { ... }
1283     *  class C extends B<C> { ... }
1284     *  }</pre>
1285     *
1286     *  and we can't make sure that the bound is already attributed because
1287     *  of possible cycles.
1288     *
1289     * Visitor method: Validate a type expression, if it is not null, catching
1290     *  and reporting any completion failures.
1291     */
1292    void validate(JCTree tree, Env<AttrContext> env) {
1293        validate(tree, env, true);
1294    }
1295    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1296        new Validator(env).validateTree(tree, checkRaw, true);
1297    }
1298
1299    /** Visitor method: Validate a list of type expressions.
1300     */
1301    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1302        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1303            validate(l.head, env);
1304    }
1305
1306    /** A visitor class for type validation.
1307     */
1308    class Validator extends JCTree.Visitor {
1309
1310        boolean checkRaw;
1311        boolean isOuter;
1312        Env<AttrContext> env;
1313
1314        Validator(Env<AttrContext> env) {
1315            this.env = env;
1316        }
1317
1318        @Override
1319        public void visitTypeArray(JCArrayTypeTree tree) {
1320            validateTree(tree.elemtype, checkRaw, isOuter);
1321        }
1322
1323        @Override
1324        public void visitTypeApply(JCTypeApply tree) {
1325            if (tree.type.hasTag(CLASS)) {
1326                List<JCExpression> args = tree.arguments;
1327                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1328
1329                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1330                if (incompatibleArg != null) {
1331                    for (JCTree arg : tree.arguments) {
1332                        if (arg.type == incompatibleArg) {
1333                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1334                        }
1335                        forms = forms.tail;
1336                     }
1337                 }
1338
1339                forms = tree.type.tsym.type.getTypeArguments();
1340
1341                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1342
1343                // For matching pairs of actual argument types `a' and
1344                // formal type parameters with declared bound `b' ...
1345                while (args.nonEmpty() && forms.nonEmpty()) {
1346                    validateTree(args.head,
1347                            !(isOuter && is_java_lang_Class),
1348                            false);
1349                    args = args.tail;
1350                    forms = forms.tail;
1351                }
1352
1353                // Check that this type is either fully parameterized, or
1354                // not parameterized at all.
1355                if (tree.type.getEnclosingType().isRaw())
1356                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1357                if (tree.clazz.hasTag(SELECT))
1358                    visitSelectInternal((JCFieldAccess)tree.clazz);
1359            }
1360        }
1361
1362        @Override
1363        public void visitTypeParameter(JCTypeParameter tree) {
1364            validateTrees(tree.bounds, true, isOuter);
1365            checkClassBounds(tree.pos(), tree.type);
1366        }
1367
1368        @Override
1369        public void visitWildcard(JCWildcard tree) {
1370            if (tree.inner != null)
1371                validateTree(tree.inner, true, isOuter);
1372        }
1373
1374        @Override
1375        public void visitSelect(JCFieldAccess tree) {
1376            if (tree.type.hasTag(CLASS)) {
1377                visitSelectInternal(tree);
1378
1379                // Check that this type is either fully parameterized, or
1380                // not parameterized at all.
1381                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1382                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1383            }
1384        }
1385
1386        public void visitSelectInternal(JCFieldAccess tree) {
1387            if (tree.type.tsym.isStatic() &&
1388                tree.selected.type.isParameterized()) {
1389                // The enclosing type is not a class, so we are
1390                // looking at a static member type.  However, the
1391                // qualifying expression is parameterized.
1392                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1393            } else {
1394                // otherwise validate the rest of the expression
1395                tree.selected.accept(this);
1396            }
1397        }
1398
1399        @Override
1400        public void visitAnnotatedType(JCAnnotatedType tree) {
1401            tree.underlyingType.accept(this);
1402        }
1403
1404        @Override
1405        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1406            if (that.type.hasTag(TypeTag.VOID)) {
1407                log.error(that.pos(), "void.not.allowed.here");
1408            }
1409            super.visitTypeIdent(that);
1410        }
1411
1412        /** Default visitor method: do nothing.
1413         */
1414        @Override
1415        public void visitTree(JCTree tree) {
1416        }
1417
1418        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1419            if (tree != null) {
1420                boolean prevCheckRaw = this.checkRaw;
1421                this.checkRaw = checkRaw;
1422                this.isOuter = isOuter;
1423
1424                try {
1425                    tree.accept(this);
1426                    if (checkRaw)
1427                        checkRaw(tree, env);
1428                } catch (CompletionFailure ex) {
1429                    completionError(tree.pos(), ex);
1430                } finally {
1431                    this.checkRaw = prevCheckRaw;
1432                }
1433            }
1434        }
1435
1436        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1437            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1438                validateTree(l.head, checkRaw, isOuter);
1439        }
1440    }
1441
1442    void checkRaw(JCTree tree, Env<AttrContext> env) {
1443        if (lint.isEnabled(LintCategory.RAW) &&
1444            tree.type.hasTag(CLASS) &&
1445            !TreeInfo.isDiamond(tree) &&
1446            !withinAnonConstr(env) &&
1447            tree.type.isRaw()) {
1448            log.warning(LintCategory.RAW,
1449                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1450        }
1451    }
1452    //where
1453        private boolean withinAnonConstr(Env<AttrContext> env) {
1454            return env.enclClass.name.isEmpty() &&
1455                    env.enclMethod != null && env.enclMethod.name == names.init;
1456        }
1457
1458/* *************************************************************************
1459 * Exception checking
1460 **************************************************************************/
1461
1462    /* The following methods treat classes as sets that contain
1463     * the class itself and all their subclasses
1464     */
1465
1466    /** Is given type a subtype of some of the types in given list?
1467     */
1468    boolean subset(Type t, List<Type> ts) {
1469        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1470            if (types.isSubtype(t, l.head)) return true;
1471        return false;
1472    }
1473
1474    /** Is given type a subtype or supertype of
1475     *  some of the types in given list?
1476     */
1477    boolean intersects(Type t, List<Type> ts) {
1478        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1479            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1480        return false;
1481    }
1482
1483    /** Add type set to given type list, unless it is a subclass of some class
1484     *  in the list.
1485     */
1486    List<Type> incl(Type t, List<Type> ts) {
1487        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1488    }
1489
1490    /** Remove type set from type set list.
1491     */
1492    List<Type> excl(Type t, List<Type> ts) {
1493        if (ts.isEmpty()) {
1494            return ts;
1495        } else {
1496            List<Type> ts1 = excl(t, ts.tail);
1497            if (types.isSubtype(ts.head, t)) return ts1;
1498            else if (ts1 == ts.tail) return ts;
1499            else return ts1.prepend(ts.head);
1500        }
1501    }
1502
1503    /** Form the union of two type set lists.
1504     */
1505    List<Type> union(List<Type> ts1, List<Type> ts2) {
1506        List<Type> ts = ts1;
1507        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1508            ts = incl(l.head, ts);
1509        return ts;
1510    }
1511
1512    /** Form the difference of two type lists.
1513     */
1514    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1515        List<Type> ts = ts1;
1516        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1517            ts = excl(l.head, ts);
1518        return ts;
1519    }
1520
1521    /** Form the intersection of two type lists.
1522     */
1523    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1524        List<Type> ts = List.nil();
1525        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1526            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1527        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1528            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1529        return ts;
1530    }
1531
1532    /** Is exc an exception symbol that need not be declared?
1533     */
1534    boolean isUnchecked(ClassSymbol exc) {
1535        return
1536            exc.kind == ERR ||
1537            exc.isSubClass(syms.errorType.tsym, types) ||
1538            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1539    }
1540
1541    /** Is exc an exception type that need not be declared?
1542     */
1543    boolean isUnchecked(Type exc) {
1544        return
1545            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1546            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1547            exc.hasTag(BOT);
1548    }
1549
1550    /** Same, but handling completion failures.
1551     */
1552    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1553        try {
1554            return isUnchecked(exc);
1555        } catch (CompletionFailure ex) {
1556            completionError(pos, ex);
1557            return true;
1558        }
1559    }
1560
1561    /** Is exc handled by given exception list?
1562     */
1563    boolean isHandled(Type exc, List<Type> handled) {
1564        return isUnchecked(exc) || subset(exc, handled);
1565    }
1566
1567    /** Return all exceptions in thrown list that are not in handled list.
1568     *  @param thrown     The list of thrown exceptions.
1569     *  @param handled    The list of handled exceptions.
1570     */
1571    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1572        List<Type> unhandled = List.nil();
1573        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1574            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1575        return unhandled;
1576    }
1577
1578/* *************************************************************************
1579 * Overriding/Implementation checking
1580 **************************************************************************/
1581
1582    /** The level of access protection given by a flag set,
1583     *  where PRIVATE is highest and PUBLIC is lowest.
1584     */
1585    static int protection(long flags) {
1586        switch ((short)(flags & AccessFlags)) {
1587        case PRIVATE: return 3;
1588        case PROTECTED: return 1;
1589        default:
1590        case PUBLIC: return 0;
1591        case 0: return 2;
1592        }
1593    }
1594
1595    /** A customized "cannot override" error message.
1596     *  @param m      The overriding method.
1597     *  @param other  The overridden method.
1598     *  @return       An internationalized string.
1599     */
1600    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1601        String key;
1602        if ((other.owner.flags() & INTERFACE) == 0)
1603            key = "cant.override";
1604        else if ((m.owner.flags() & INTERFACE) == 0)
1605            key = "cant.implement";
1606        else
1607            key = "clashes.with";
1608        return diags.fragment(key, m, m.location(), other, other.location());
1609    }
1610
1611    /** A customized "override" warning message.
1612     *  @param m      The overriding method.
1613     *  @param other  The overridden method.
1614     *  @return       An internationalized string.
1615     */
1616    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1617        String key;
1618        if ((other.owner.flags() & INTERFACE) == 0)
1619            key = "unchecked.override";
1620        else if ((m.owner.flags() & INTERFACE) == 0)
1621            key = "unchecked.implement";
1622        else
1623            key = "unchecked.clash.with";
1624        return diags.fragment(key, m, m.location(), other, other.location());
1625    }
1626
1627    /** A customized "override" warning message.
1628     *  @param m      The overriding method.
1629     *  @param other  The overridden method.
1630     *  @return       An internationalized string.
1631     */
1632    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1633        String key;
1634        if ((other.owner.flags() & INTERFACE) == 0)
1635            key = "varargs.override";
1636        else  if ((m.owner.flags() & INTERFACE) == 0)
1637            key = "varargs.implement";
1638        else
1639            key = "varargs.clash.with";
1640        return diags.fragment(key, m, m.location(), other, other.location());
1641    }
1642
1643    /** Check that this method conforms with overridden method 'other'.
1644     *  where `origin' is the class where checking started.
1645     *  Complications:
1646     *  (1) Do not check overriding of synthetic methods
1647     *      (reason: they might be final).
1648     *      todo: check whether this is still necessary.
1649     *  (2) Admit the case where an interface proxy throws fewer exceptions
1650     *      than the method it implements. Augment the proxy methods with the
1651     *      undeclared exceptions in this case.
1652     *  (3) When generics are enabled, admit the case where an interface proxy
1653     *      has a result type
1654     *      extended by the result type of the method it implements.
1655     *      Change the proxies result type to the smaller type in this case.
1656     *
1657     *  @param tree         The tree from which positions
1658     *                      are extracted for errors.
1659     *  @param m            The overriding method.
1660     *  @param other        The overridden method.
1661     *  @param origin       The class of which the overriding method
1662     *                      is a member.
1663     */
1664    void checkOverride(JCTree tree,
1665                       MethodSymbol m,
1666                       MethodSymbol other,
1667                       ClassSymbol origin) {
1668        // Don't check overriding of synthetic methods or by bridge methods.
1669        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1670            return;
1671        }
1672
1673        // Error if static method overrides instance method (JLS 8.4.6.2).
1674        if ((m.flags() & STATIC) != 0 &&
1675                   (other.flags() & STATIC) == 0) {
1676            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1677                      cannotOverride(m, other));
1678            m.flags_field |= BAD_OVERRIDE;
1679            return;
1680        }
1681
1682        // Error if instance method overrides static or final
1683        // method (JLS 8.4.6.1).
1684        if ((other.flags() & FINAL) != 0 ||
1685                 (m.flags() & STATIC) == 0 &&
1686                 (other.flags() & STATIC) != 0) {
1687            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1688                      cannotOverride(m, other),
1689                      asFlagSet(other.flags() & (FINAL | STATIC)));
1690            m.flags_field |= BAD_OVERRIDE;
1691            return;
1692        }
1693
1694        if ((m.owner.flags() & ANNOTATION) != 0) {
1695            // handled in validateAnnotationMethod
1696            return;
1697        }
1698
1699        // Error if overriding method has weaker access (JLS 8.4.6.3).
1700        if (protection(m.flags()) > protection(other.flags())) {
1701            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1702                      cannotOverride(m, other),
1703                      (other.flags() & AccessFlags) == 0 ?
1704                          "package" :
1705                          asFlagSet(other.flags() & AccessFlags));
1706            m.flags_field |= BAD_OVERRIDE;
1707            return;
1708        }
1709
1710        Type mt = types.memberType(origin.type, m);
1711        Type ot = types.memberType(origin.type, other);
1712        // Error if overriding result type is different
1713        // (or, in the case of generics mode, not a subtype) of
1714        // overridden result type. We have to rename any type parameters
1715        // before comparing types.
1716        List<Type> mtvars = mt.getTypeArguments();
1717        List<Type> otvars = ot.getTypeArguments();
1718        Type mtres = mt.getReturnType();
1719        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1720
1721        overrideWarner.clear();
1722        boolean resultTypesOK =
1723            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1724        if (!resultTypesOK) {
1725            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1726                      "override.incompatible.ret",
1727                      cannotOverride(m, other),
1728                      mtres, otres);
1729            m.flags_field |= BAD_OVERRIDE;
1730            return;
1731        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1732            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1733                    "override.unchecked.ret",
1734                    uncheckedOverrides(m, other),
1735                    mtres, otres);
1736        }
1737
1738        // Error if overriding method throws an exception not reported
1739        // by overridden method.
1740        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1741        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1742        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1743        if (unhandledErased.nonEmpty()) {
1744            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1745                      "override.meth.doesnt.throw",
1746                      cannotOverride(m, other),
1747                      unhandledUnerased.head);
1748            m.flags_field |= BAD_OVERRIDE;
1749            return;
1750        }
1751        else if (unhandledUnerased.nonEmpty()) {
1752            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1753                          "override.unchecked.thrown",
1754                         cannotOverride(m, other),
1755                         unhandledUnerased.head);
1756            return;
1757        }
1758
1759        // Optional warning if varargs don't agree
1760        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1761            && lint.isEnabled(LintCategory.OVERRIDES)) {
1762            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1763                        ((m.flags() & Flags.VARARGS) != 0)
1764                        ? "override.varargs.missing"
1765                        : "override.varargs.extra",
1766                        varargsOverrides(m, other));
1767        }
1768
1769        // Warn if instance method overrides bridge method (compiler spec ??)
1770        if ((other.flags() & BRIDGE) != 0) {
1771            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1772                        uncheckedOverrides(m, other));
1773        }
1774
1775        // Warn if a deprecated method overridden by a non-deprecated one.
1776        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1777            Lint prevLint = setLint(lint.augment(m));
1778            try {
1779                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1780            } finally {
1781                setLint(prevLint);
1782            }
1783        }
1784    }
1785    // where
1786        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1787            // If the method, m, is defined in an interface, then ignore the issue if the method
1788            // is only inherited via a supertype and also implemented in the supertype,
1789            // because in that case, we will rediscover the issue when examining the method
1790            // in the supertype.
1791            // If the method, m, is not defined in an interface, then the only time we need to
1792            // address the issue is when the method is the supertype implemementation: any other
1793            // case, we will have dealt with when examining the supertype classes
1794            ClassSymbol mc = m.enclClass();
1795            Type st = types.supertype(origin.type);
1796            if (!st.hasTag(CLASS))
1797                return true;
1798            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1799
1800            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1801                List<Type> intfs = types.interfaces(origin.type);
1802                return (intfs.contains(mc.type) ? false : (stimpl != null));
1803            }
1804            else
1805                return (stimpl != m);
1806        }
1807
1808
1809    // used to check if there were any unchecked conversions
1810    Warner overrideWarner = new Warner();
1811
1812    /** Check that a class does not inherit two concrete methods
1813     *  with the same signature.
1814     *  @param pos          Position to be used for error reporting.
1815     *  @param site         The class type to be checked.
1816     */
1817    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1818        Type sup = types.supertype(site);
1819        if (!sup.hasTag(CLASS)) return;
1820
1821        for (Type t1 = sup;
1822             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1823             t1 = types.supertype(t1)) {
1824            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1825                if (s1.kind != MTH ||
1826                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1827                    !s1.isInheritedIn(site.tsym, types) ||
1828                    ((MethodSymbol)s1).implementation(site.tsym,
1829                                                      types,
1830                                                      true) != s1)
1831                    continue;
1832                Type st1 = types.memberType(t1, s1);
1833                int s1ArgsLength = st1.getParameterTypes().length();
1834                if (st1 == s1.type) continue;
1835
1836                for (Type t2 = sup;
1837                     t2.hasTag(CLASS);
1838                     t2 = types.supertype(t2)) {
1839                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1840                        if (s2 == s1 ||
1841                            s2.kind != MTH ||
1842                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1843                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1844                            !s2.isInheritedIn(site.tsym, types) ||
1845                            ((MethodSymbol)s2).implementation(site.tsym,
1846                                                              types,
1847                                                              true) != s2)
1848                            continue;
1849                        Type st2 = types.memberType(t2, s2);
1850                        if (types.overrideEquivalent(st1, st2))
1851                            log.error(pos, "concrete.inheritance.conflict",
1852                                      s1, t1, s2, t2, sup);
1853                    }
1854                }
1855            }
1856        }
1857    }
1858
1859    /** Check that classes (or interfaces) do not each define an abstract
1860     *  method with same name and arguments but incompatible return types.
1861     *  @param pos          Position to be used for error reporting.
1862     *  @param t1           The first argument type.
1863     *  @param t2           The second argument type.
1864     */
1865    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1866                                            Type t1,
1867                                            Type t2,
1868                                            Type site) {
1869        if ((site.tsym.flags() & COMPOUND) != 0) {
1870            // special case for intersections: need to eliminate wildcards in supertypes
1871            t1 = types.capture(t1);
1872            t2 = types.capture(t2);
1873        }
1874        return firstIncompatibility(pos, t1, t2, site) == null;
1875    }
1876
1877    /** Return the first method which is defined with same args
1878     *  but different return types in two given interfaces, or null if none
1879     *  exists.
1880     *  @param t1     The first type.
1881     *  @param t2     The second type.
1882     *  @param site   The most derived type.
1883     *  @returns symbol from t2 that conflicts with one in t1.
1884     */
1885    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1886        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1887        closure(t1, interfaces1);
1888        Map<TypeSymbol,Type> interfaces2;
1889        if (t1 == t2)
1890            interfaces2 = interfaces1;
1891        else
1892            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1893
1894        for (Type t3 : interfaces1.values()) {
1895            for (Type t4 : interfaces2.values()) {
1896                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1897                if (s != null) return s;
1898            }
1899        }
1900        return null;
1901    }
1902
1903    /** Compute all the supertypes of t, indexed by type symbol. */
1904    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1905        if (!t.hasTag(CLASS)) return;
1906        if (typeMap.put(t.tsym, t) == null) {
1907            closure(types.supertype(t), typeMap);
1908            for (Type i : types.interfaces(t))
1909                closure(i, typeMap);
1910        }
1911    }
1912
1913    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1914    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1915        if (!t.hasTag(CLASS)) return;
1916        if (typesSkip.get(t.tsym) != null) return;
1917        if (typeMap.put(t.tsym, t) == null) {
1918            closure(types.supertype(t), typesSkip, typeMap);
1919            for (Type i : types.interfaces(t))
1920                closure(i, typesSkip, typeMap);
1921        }
1922    }
1923
1924    /** Return the first method in t2 that conflicts with a method from t1. */
1925    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1926        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1927            Type st1 = null;
1928            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1929                    (s1.flags() & SYNTHETIC) != 0) continue;
1930            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1931            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1932            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1933                if (s1 == s2) continue;
1934                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1935                        (s2.flags() & SYNTHETIC) != 0) continue;
1936                if (st1 == null) st1 = types.memberType(t1, s1);
1937                Type st2 = types.memberType(t2, s2);
1938                if (types.overrideEquivalent(st1, st2)) {
1939                    List<Type> tvars1 = st1.getTypeArguments();
1940                    List<Type> tvars2 = st2.getTypeArguments();
1941                    Type rt1 = st1.getReturnType();
1942                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1943                    boolean compat =
1944                        types.isSameType(rt1, rt2) ||
1945                        !rt1.isPrimitiveOrVoid() &&
1946                        !rt2.isPrimitiveOrVoid() &&
1947                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1948                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1949                         checkCommonOverriderIn(s1,s2,site);
1950                    if (!compat) {
1951                        log.error(pos, "types.incompatible.diff.ret",
1952                            t1, t2, s2.name +
1953                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1954                        return s2;
1955                    }
1956                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1957                        !checkCommonOverriderIn(s1, s2, site)) {
1958                    log.error(pos,
1959                            "name.clash.same.erasure.no.override",
1960                            s1, s1.location(),
1961                            s2, s2.location());
1962                    return s2;
1963                }
1964            }
1965        }
1966        return null;
1967    }
1968    //WHERE
1969    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1970        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1971        Type st1 = types.memberType(site, s1);
1972        Type st2 = types.memberType(site, s2);
1973        closure(site, supertypes);
1974        for (Type t : supertypes.values()) {
1975            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1976                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1977                Type st3 = types.memberType(site,s3);
1978                if (types.overrideEquivalent(st3, st1) &&
1979                        types.overrideEquivalent(st3, st2) &&
1980                        types.returnTypeSubstitutable(st3, st1) &&
1981                        types.returnTypeSubstitutable(st3, st2)) {
1982                    return true;
1983                }
1984            }
1985        }
1986        return false;
1987    }
1988
1989    /** Check that a given method conforms with any method it overrides.
1990     *  @param tree         The tree from which positions are extracted
1991     *                      for errors.
1992     *  @param m            The overriding method.
1993     */
1994    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
1995        ClassSymbol origin = (ClassSymbol)m.owner;
1996        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1997            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1998                log.error(tree.pos(), "enum.no.finalize");
1999                return;
2000            }
2001        for (Type t = origin.type; t.hasTag(CLASS);
2002             t = types.supertype(t)) {
2003            if (t != origin.type) {
2004                checkOverride(tree, t, origin, m);
2005            }
2006            for (Type t2 : types.interfaces(t)) {
2007                checkOverride(tree, t2, origin, m);
2008            }
2009        }
2010
2011        // Check if this method must override a super method due to being annotated with @Override
2012        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2013        // be treated "as if as they were annotated" with @Override.
2014        boolean mustOverride = m.attribute(syms.overrideType.tsym) != null ||
2015                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2016        if (mustOverride && !isOverrider(m)) {
2017            DiagnosticPosition pos = tree.pos();
2018            for (JCAnnotation a : tree.getModifiers().annotations) {
2019                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2020                    pos = a.pos();
2021                    break;
2022                }
2023            }
2024            log.error(pos, "method.does.not.override.superclass");
2025        }
2026    }
2027
2028    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2029        TypeSymbol c = site.tsym;
2030        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2031            if (m.overrides(sym, origin, types, false)) {
2032                if ((sym.flags() & ABSTRACT) == 0) {
2033                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2034                }
2035            }
2036        }
2037    }
2038
2039    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2040        public boolean accepts(Symbol s) {
2041            return MethodSymbol.implementation_filter.accepts(s) &&
2042                    (s.flags() & BAD_OVERRIDE) == 0;
2043
2044        }
2045    };
2046
2047    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2048            ClassSymbol someClass) {
2049        /* At present, annotations cannot possibly have a method that is override
2050         * equivalent with Object.equals(Object) but in any case the condition is
2051         * fine for completeness.
2052         */
2053        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2054            someClass.isInterface() || someClass.isEnum() ||
2055            (someClass.flags() & ANNOTATION) != 0 ||
2056            (someClass.flags() & ABSTRACT) != 0) return;
2057        //anonymous inner classes implementing interfaces need especial treatment
2058        if (someClass.isAnonymous()) {
2059            List<Type> interfaces =  types.interfaces(someClass.type);
2060            if (interfaces != null && !interfaces.isEmpty() &&
2061                interfaces.head.tsym == syms.comparatorType.tsym) return;
2062        }
2063        checkClassOverrideEqualsAndHash(pos, someClass);
2064    }
2065
2066    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2067            ClassSymbol someClass) {
2068        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2069            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2070                    .tsym.members().findFirst(names.equals);
2071            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2072                    .tsym.members().findFirst(names.hashCode);
2073            boolean overridesEquals = types.implementation(equalsAtObject,
2074                someClass, false, equalsHasCodeFilter).owner == someClass;
2075            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2076                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2077
2078            if (overridesEquals && !overridesHashCode) {
2079                log.warning(LintCategory.OVERRIDES, pos,
2080                        "override.equals.but.not.hashcode", someClass);
2081            }
2082        }
2083    }
2084
2085    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2086        ClashFilter cf = new ClashFilter(origin.type);
2087        return (cf.accepts(s1) &&
2088                cf.accepts(s2) &&
2089                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2090    }
2091
2092
2093    /** Check that all abstract members of given class have definitions.
2094     *  @param pos          Position to be used for error reporting.
2095     *  @param c            The class.
2096     */
2097    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2098        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2099        if (undef != null) {
2100            MethodSymbol undef1 =
2101                new MethodSymbol(undef.flags(), undef.name,
2102                                 types.memberType(c.type, undef), undef.owner);
2103            log.error(pos, "does.not.override.abstract",
2104                      c, undef1, undef1.location());
2105        }
2106    }
2107
2108    void checkNonCyclicDecl(JCClassDecl tree) {
2109        CycleChecker cc = new CycleChecker();
2110        cc.scan(tree);
2111        if (!cc.errorFound && !cc.partialCheck) {
2112            tree.sym.flags_field |= ACYCLIC;
2113        }
2114    }
2115
2116    class CycleChecker extends TreeScanner {
2117
2118        List<Symbol> seenClasses = List.nil();
2119        boolean errorFound = false;
2120        boolean partialCheck = false;
2121
2122        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2123            if (sym != null && sym.kind == TYP) {
2124                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2125                if (classEnv != null) {
2126                    DiagnosticSource prevSource = log.currentSource();
2127                    try {
2128                        log.useSource(classEnv.toplevel.sourcefile);
2129                        scan(classEnv.tree);
2130                    }
2131                    finally {
2132                        log.useSource(prevSource.getFile());
2133                    }
2134                } else if (sym.kind == TYP) {
2135                    checkClass(pos, sym, List.<JCTree>nil());
2136                }
2137            } else {
2138                //not completed yet
2139                partialCheck = true;
2140            }
2141        }
2142
2143        @Override
2144        public void visitSelect(JCFieldAccess tree) {
2145            super.visitSelect(tree);
2146            checkSymbol(tree.pos(), tree.sym);
2147        }
2148
2149        @Override
2150        public void visitIdent(JCIdent tree) {
2151            checkSymbol(tree.pos(), tree.sym);
2152        }
2153
2154        @Override
2155        public void visitTypeApply(JCTypeApply tree) {
2156            scan(tree.clazz);
2157        }
2158
2159        @Override
2160        public void visitTypeArray(JCArrayTypeTree tree) {
2161            scan(tree.elemtype);
2162        }
2163
2164        @Override
2165        public void visitClassDef(JCClassDecl tree) {
2166            List<JCTree> supertypes = List.nil();
2167            if (tree.getExtendsClause() != null) {
2168                supertypes = supertypes.prepend(tree.getExtendsClause());
2169            }
2170            if (tree.getImplementsClause() != null) {
2171                for (JCTree intf : tree.getImplementsClause()) {
2172                    supertypes = supertypes.prepend(intf);
2173                }
2174            }
2175            checkClass(tree.pos(), tree.sym, supertypes);
2176        }
2177
2178        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2179            if ((c.flags_field & ACYCLIC) != 0)
2180                return;
2181            if (seenClasses.contains(c)) {
2182                errorFound = true;
2183                noteCyclic(pos, (ClassSymbol)c);
2184            } else if (!c.type.isErroneous()) {
2185                try {
2186                    seenClasses = seenClasses.prepend(c);
2187                    if (c.type.hasTag(CLASS)) {
2188                        if (supertypes.nonEmpty()) {
2189                            scan(supertypes);
2190                        }
2191                        else {
2192                            ClassType ct = (ClassType)c.type;
2193                            if (ct.supertype_field == null ||
2194                                    ct.interfaces_field == null) {
2195                                //not completed yet
2196                                partialCheck = true;
2197                                return;
2198                            }
2199                            checkSymbol(pos, ct.supertype_field.tsym);
2200                            for (Type intf : ct.interfaces_field) {
2201                                checkSymbol(pos, intf.tsym);
2202                            }
2203                        }
2204                        if (c.owner.kind == TYP) {
2205                            checkSymbol(pos, c.owner);
2206                        }
2207                    }
2208                } finally {
2209                    seenClasses = seenClasses.tail;
2210                }
2211            }
2212        }
2213    }
2214
2215    /** Check for cyclic references. Issue an error if the
2216     *  symbol of the type referred to has a LOCKED flag set.
2217     *
2218     *  @param pos      Position to be used for error reporting.
2219     *  @param t        The type referred to.
2220     */
2221    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2222        checkNonCyclicInternal(pos, t);
2223    }
2224
2225
2226    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2227        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2228    }
2229
2230    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2231        final TypeVar tv;
2232        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2233            return;
2234        if (seen.contains(t)) {
2235            tv = (TypeVar)t;
2236            tv.bound = types.createErrorType(t);
2237            log.error(pos, "cyclic.inheritance", t);
2238        } else if (t.hasTag(TYPEVAR)) {
2239            tv = (TypeVar)t;
2240            seen = seen.prepend(tv);
2241            for (Type b : types.getBounds(tv))
2242                checkNonCyclic1(pos, b, seen);
2243        }
2244    }
2245
2246    /** Check for cyclic references. Issue an error if the
2247     *  symbol of the type referred to has a LOCKED flag set.
2248     *
2249     *  @param pos      Position to be used for error reporting.
2250     *  @param t        The type referred to.
2251     *  @returns        True if the check completed on all attributed classes
2252     */
2253    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2254        boolean complete = true; // was the check complete?
2255        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2256        Symbol c = t.tsym;
2257        if ((c.flags_field & ACYCLIC) != 0) return true;
2258
2259        if ((c.flags_field & LOCKED) != 0) {
2260            noteCyclic(pos, (ClassSymbol)c);
2261        } else if (!c.type.isErroneous()) {
2262            try {
2263                c.flags_field |= LOCKED;
2264                if (c.type.hasTag(CLASS)) {
2265                    ClassType clazz = (ClassType)c.type;
2266                    if (clazz.interfaces_field != null)
2267                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2268                            complete &= checkNonCyclicInternal(pos, l.head);
2269                    if (clazz.supertype_field != null) {
2270                        Type st = clazz.supertype_field;
2271                        if (st != null && st.hasTag(CLASS))
2272                            complete &= checkNonCyclicInternal(pos, st);
2273                    }
2274                    if (c.owner.kind == TYP)
2275                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2276                }
2277            } finally {
2278                c.flags_field &= ~LOCKED;
2279            }
2280        }
2281        if (complete)
2282            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2283        if (complete) c.flags_field |= ACYCLIC;
2284        return complete;
2285    }
2286
2287    /** Note that we found an inheritance cycle. */
2288    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2289        log.error(pos, "cyclic.inheritance", c);
2290        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2291            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2292        Type st = types.supertype(c.type);
2293        if (st.hasTag(CLASS))
2294            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2295        c.type = types.createErrorType(c, c.type);
2296        c.flags_field |= ACYCLIC;
2297    }
2298
2299    /** Check that all methods which implement some
2300     *  method conform to the method they implement.
2301     *  @param tree         The class definition whose members are checked.
2302     */
2303    void checkImplementations(JCClassDecl tree) {
2304        checkImplementations(tree, tree.sym, tree.sym);
2305    }
2306    //where
2307        /** Check that all methods which implement some
2308         *  method in `ic' conform to the method they implement.
2309         */
2310        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2311            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2312                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2313                if ((lc.flags() & ABSTRACT) != 0) {
2314                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2315                        if (sym.kind == MTH &&
2316                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2317                            MethodSymbol absmeth = (MethodSymbol)sym;
2318                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2319                            if (implmeth != null && implmeth != absmeth &&
2320                                (implmeth.owner.flags() & INTERFACE) ==
2321                                (origin.flags() & INTERFACE)) {
2322                                // don't check if implmeth is in a class, yet
2323                                // origin is an interface. This case arises only
2324                                // if implmeth is declared in Object. The reason is
2325                                // that interfaces really don't inherit from
2326                                // Object it's just that the compiler represents
2327                                // things that way.
2328                                checkOverride(tree, implmeth, absmeth, origin);
2329                            }
2330                        }
2331                    }
2332                }
2333            }
2334        }
2335
2336    /** Check that all abstract methods implemented by a class are
2337     *  mutually compatible.
2338     *  @param pos          Position to be used for error reporting.
2339     *  @param c            The class whose interfaces are checked.
2340     */
2341    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2342        List<Type> supertypes = types.interfaces(c);
2343        Type supertype = types.supertype(c);
2344        if (supertype.hasTag(CLASS) &&
2345            (supertype.tsym.flags() & ABSTRACT) != 0)
2346            supertypes = supertypes.prepend(supertype);
2347        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2348            if (!l.head.getTypeArguments().isEmpty() &&
2349                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2350                return;
2351            for (List<Type> m = supertypes; m != l; m = m.tail)
2352                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2353                    return;
2354        }
2355        checkCompatibleConcretes(pos, c);
2356    }
2357
2358    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2359        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2360            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2361                // VM allows methods and variables with differing types
2362                if (sym.kind == sym2.kind &&
2363                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2364                    sym != sym2 &&
2365                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2366                    (sym.flags() & IPROXY) == 0 && (sym2.flags() & IPROXY) == 0 &&
2367                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2368                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2369                    return;
2370                }
2371            }
2372        }
2373    }
2374
2375    /** Check that all non-override equivalent methods accessible from 'site'
2376     *  are mutually compatible (JLS 8.4.8/9.4.1).
2377     *
2378     *  @param pos  Position to be used for error reporting.
2379     *  @param site The class whose methods are checked.
2380     *  @param sym  The method symbol to be checked.
2381     */
2382    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2383         ClashFilter cf = new ClashFilter(site);
2384        //for each method m1 that is overridden (directly or indirectly)
2385        //by method 'sym' in 'site'...
2386
2387        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2388        boolean overridesAny = false;
2389        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2390            if (!sym.overrides(m1, site.tsym, types, false)) {
2391                if (m1 == sym) {
2392                    continue;
2393                }
2394
2395                if (!overridesAny) {
2396                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2397                }
2398                continue;
2399            }
2400
2401            if (m1 != sym) {
2402                overridesAny = true;
2403                potentiallyAmbiguousList = List.nil();
2404            }
2405
2406            //...check each method m2 that is a member of 'site'
2407            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2408                if (m2 == m1) continue;
2409                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2410                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2411                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2412                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2413                    sym.flags_field |= CLASH;
2414                    String key = m1 == sym ?
2415                            "name.clash.same.erasure.no.override" :
2416                            "name.clash.same.erasure.no.override.1";
2417                    log.error(pos,
2418                            key,
2419                            sym, sym.location(),
2420                            m2, m2.location(),
2421                            m1, m1.location());
2422                    return;
2423                }
2424            }
2425        }
2426
2427        if (!overridesAny) {
2428            for (MethodSymbol m: potentiallyAmbiguousList) {
2429                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2430            }
2431        }
2432    }
2433
2434    /** Check that all static methods accessible from 'site' are
2435     *  mutually compatible (JLS 8.4.8).
2436     *
2437     *  @param pos  Position to be used for error reporting.
2438     *  @param site The class whose methods are checked.
2439     *  @param sym  The method symbol to be checked.
2440     */
2441    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2442        ClashFilter cf = new ClashFilter(site);
2443        //for each method m1 that is a member of 'site'...
2444        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2445            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2446            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2447            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2448                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2449                    log.error(pos,
2450                            "name.clash.same.erasure.no.hide",
2451                            sym, sym.location(),
2452                            s, s.location());
2453                    return;
2454                } else {
2455                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2456                }
2457            }
2458         }
2459     }
2460
2461     //where
2462     private class ClashFilter implements Filter<Symbol> {
2463
2464         Type site;
2465
2466         ClashFilter(Type site) {
2467             this.site = site;
2468         }
2469
2470         boolean shouldSkip(Symbol s) {
2471             return (s.flags() & CLASH) != 0 &&
2472                s.owner == site.tsym;
2473         }
2474
2475         public boolean accepts(Symbol s) {
2476             return s.kind == MTH &&
2477                     (s.flags() & SYNTHETIC) == 0 &&
2478                     !shouldSkip(s) &&
2479                     s.isInheritedIn(site.tsym, types) &&
2480                     !s.isConstructor();
2481         }
2482     }
2483
2484    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2485        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2486        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2487            Assert.check(m.kind == MTH);
2488            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2489            if (prov.size() > 1) {
2490                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2491                ListBuffer<Symbol> defaults = new ListBuffer<>();
2492                for (MethodSymbol provSym : prov) {
2493                    if ((provSym.flags() & DEFAULT) != 0) {
2494                        defaults = defaults.append(provSym);
2495                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2496                        abstracts = abstracts.append(provSym);
2497                    }
2498                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2499                        //strong semantics - issue an error if two sibling interfaces
2500                        //have two override-equivalent defaults - or if one is abstract
2501                        //and the other is default
2502                        String errKey;
2503                        Symbol s1 = defaults.first();
2504                        Symbol s2;
2505                        if (defaults.size() > 1) {
2506                            errKey = "types.incompatible.unrelated.defaults";
2507                            s2 = defaults.toList().tail.head;
2508                        } else {
2509                            errKey = "types.incompatible.abstract.default";
2510                            s2 = abstracts.first();
2511                        }
2512                        log.error(pos, errKey,
2513                                Kinds.kindName(site.tsym), site,
2514                                m.name, types.memberType(site, m).getParameterTypes(),
2515                                s1.location(), s2.location());
2516                        break;
2517                    }
2518                }
2519            }
2520        }
2521    }
2522
2523    //where
2524     private class DefaultMethodClashFilter implements Filter<Symbol> {
2525
2526         Type site;
2527
2528         DefaultMethodClashFilter(Type site) {
2529             this.site = site;
2530         }
2531
2532         public boolean accepts(Symbol s) {
2533             return s.kind == MTH &&
2534                     (s.flags() & DEFAULT) != 0 &&
2535                     s.isInheritedIn(site.tsym, types) &&
2536                     !s.isConstructor();
2537         }
2538     }
2539
2540    /**
2541      * Report warnings for potentially ambiguous method declarations. Two declarations
2542      * are potentially ambiguous if they feature two unrelated functional interface
2543      * in same argument position (in which case, a call site passing an implicit
2544      * lambda would be ambiguous).
2545      */
2546    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2547            MethodSymbol msym1, MethodSymbol msym2) {
2548        if (msym1 != msym2 &&
2549                allowDefaultMethods &&
2550                lint.isEnabled(LintCategory.OVERLOADS) &&
2551                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2552                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2553            Type mt1 = types.memberType(site, msym1);
2554            Type mt2 = types.memberType(site, msym2);
2555            //if both generic methods, adjust type variables
2556            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2557                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2558                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2559            }
2560            //expand varargs methods if needed
2561            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2562            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2563            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2564            //if arities don't match, exit
2565            if (args1.length() != args2.length()) return;
2566            boolean potentiallyAmbiguous = false;
2567            while (args1.nonEmpty() && args2.nonEmpty()) {
2568                Type s = args1.head;
2569                Type t = args2.head;
2570                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2571                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2572                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2573                            types.findDescriptorType(s).getParameterTypes().length() ==
2574                            types.findDescriptorType(t).getParameterTypes().length()) {
2575                        potentiallyAmbiguous = true;
2576                    } else {
2577                        break;
2578                    }
2579                }
2580                args1 = args1.tail;
2581                args2 = args2.tail;
2582            }
2583            if (potentiallyAmbiguous) {
2584                //we found two incompatible functional interfaces with same arity
2585                //this means a call site passing an implicit lambda would be ambigiuous
2586                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2587                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2588                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2589                            msym1, msym1.location(),
2590                            msym2, msym2.location());
2591                return;
2592            }
2593        }
2594    }
2595
2596    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2597        if (warnOnAccessToSensitiveMembers) {
2598            Symbol sym = TreeInfo.symbol(tree);
2599            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2600                return;
2601            }
2602
2603            if (sym.kind == VAR) {
2604                if ((sym.flags() & PARAMETER) != 0 ||
2605                    sym.isLocal() ||
2606                    sym.name == names._this ||
2607                    sym.name == names._super) {
2608                    return;
2609                }
2610            }
2611
2612            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2613                    isEffectivelyNonPublic(sym)) {
2614                log.warning(tree.pos(),
2615                        "access.to.sensitive.member.from.serializable.element", sym);
2616            }
2617        }
2618    }
2619
2620    private boolean isEffectivelyNonPublic(Symbol sym) {
2621        if (sym.packge() == syms.rootPackage) {
2622            return false;
2623        }
2624
2625        while (sym.kind != PCK) {
2626            if ((sym.flags() & PUBLIC) == 0) {
2627                return true;
2628            }
2629            sym = sym.owner;
2630        }
2631        return false;
2632    }
2633
2634    /** Report a conflict between a user symbol and a synthetic symbol.
2635     */
2636    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2637        if (!sym.type.isErroneous()) {
2638            if (warnOnSyntheticConflicts) {
2639                log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2640            }
2641            else {
2642                log.error(pos, "synthetic.name.conflict", sym, sym.location());
2643            }
2644        }
2645    }
2646
2647    /** Check that class c does not implement directly or indirectly
2648     *  the same parameterized interface with two different argument lists.
2649     *  @param pos          Position to be used for error reporting.
2650     *  @param type         The type whose interfaces are checked.
2651     */
2652    void checkClassBounds(DiagnosticPosition pos, Type type) {
2653        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2654    }
2655//where
2656        /** Enter all interfaces of type `type' into the hash table `seensofar'
2657         *  with their class symbol as key and their type as value. Make
2658         *  sure no class is entered with two different types.
2659         */
2660        void checkClassBounds(DiagnosticPosition pos,
2661                              Map<TypeSymbol,Type> seensofar,
2662                              Type type) {
2663            if (type.isErroneous()) return;
2664            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2665                Type it = l.head;
2666                Type oldit = seensofar.put(it.tsym, it);
2667                if (oldit != null) {
2668                    List<Type> oldparams = oldit.allparams();
2669                    List<Type> newparams = it.allparams();
2670                    if (!types.containsTypeEquivalent(oldparams, newparams))
2671                        log.error(pos, "cant.inherit.diff.arg",
2672                                  it.tsym, Type.toString(oldparams),
2673                                  Type.toString(newparams));
2674                }
2675                checkClassBounds(pos, seensofar, it);
2676            }
2677            Type st = types.supertype(type);
2678            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2679        }
2680
2681    /** Enter interface into into set.
2682     *  If it existed already, issue a "repeated interface" error.
2683     */
2684    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2685        if (its.contains(it))
2686            log.error(pos, "repeated.interface");
2687        else {
2688            its.add(it);
2689        }
2690    }
2691
2692/* *************************************************************************
2693 * Check annotations
2694 **************************************************************************/
2695
2696    /** Verify that a component of a qualified type name being type annotated
2697     * can indeed be legally be annotated. For example, package names and type
2698     * names used to access static members cannot be annotated.
2699     *
2700     * @param typeComponent the component of the qualified name being annotated
2701     * @param annotations the annotations
2702     * @param pos diagnostic position
2703     * @return true if all is swell, false otherwise.
2704     */
2705    boolean checkAnnotableType(Type typeComponent, List<JCAnnotation> annotations, DiagnosticPosition pos) {
2706        if (typeComponent == null || typeComponent.hasTag(PACKAGE) || typeComponent.hasTag(NONE)) {
2707            ListBuffer<Symbol> lb = new ListBuffer<>();
2708            for (JCAnnotation annotation : annotations) {
2709                lb.append(annotation.annotationType.type.tsym);
2710            }
2711            List<Symbol> symbols = lb.toList();
2712            log.error(pos,
2713                    symbols.size() > 1 ? CantTypeAnnotateScoping(symbols)
2714                            : CantTypeAnnotateScoping1(symbols.get(0)));
2715            return false;
2716        }
2717        return true;
2718    }
2719    /**
2720     * Recursively validate annotations values
2721     */
2722    void validateAnnotationTree(JCTree tree) {
2723        class AnnotationValidator extends TreeScanner {
2724            @Override
2725            public void visitAnnotation(JCAnnotation tree) {
2726                if (!tree.type.isErroneous()) {
2727                    super.visitAnnotation(tree);
2728                    validateAnnotation(tree);
2729                }
2730            }
2731        }
2732        tree.accept(new AnnotationValidator());
2733    }
2734
2735    /**
2736     *  {@literal
2737     *  Annotation types are restricted to primitives, String, an
2738     *  enum, an annotation, Class, Class<?>, Class<? extends
2739     *  Anything>, arrays of the preceding.
2740     *  }
2741     */
2742    void validateAnnotationType(JCTree restype) {
2743        // restype may be null if an error occurred, so don't bother validating it
2744        if (restype != null) {
2745            validateAnnotationType(restype.pos(), restype.type);
2746        }
2747    }
2748
2749    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2750        if (type.isPrimitive()) return;
2751        if (types.isSameType(type, syms.stringType)) return;
2752        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2753        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2754        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2755        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2756            validateAnnotationType(pos, types.elemtype(type));
2757            return;
2758        }
2759        log.error(pos, "invalid.annotation.member.type");
2760    }
2761
2762    /**
2763     * "It is also a compile-time error if any method declared in an
2764     * annotation type has a signature that is override-equivalent to
2765     * that of any public or protected method declared in class Object
2766     * or in the interface annotation.Annotation."
2767     *
2768     * @jls 9.6 Annotation Types
2769     */
2770    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2771        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2772            Scope s = sup.tsym.members();
2773            for (Symbol sym : s.getSymbolsByName(m.name)) {
2774                if (sym.kind == MTH &&
2775                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2776                    types.overrideEquivalent(m.type, sym.type))
2777                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2778            }
2779        }
2780    }
2781
2782    /** Check the annotations of a symbol.
2783     */
2784    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2785        for (JCAnnotation a : annotations)
2786            validateAnnotation(a, s);
2787    }
2788
2789    /** Check the type annotations.
2790     */
2791    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2792        for (JCAnnotation a : annotations)
2793            validateTypeAnnotation(a, isTypeParameter);
2794    }
2795
2796    /** Check an annotation of a symbol.
2797     */
2798    private void validateAnnotation(JCAnnotation a, Symbol s) {
2799        validateAnnotationTree(a);
2800
2801        if (!annotationApplicable(a, s))
2802            log.error(a.pos(), "annotation.type.not.applicable");
2803
2804        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2805            if (s.kind != TYP) {
2806                log.error(a.pos(), "bad.functional.intf.anno");
2807            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2808                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2809            }
2810        }
2811    }
2812
2813    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2814        Assert.checkNonNull(a.type);
2815        validateAnnotationTree(a);
2816
2817        if (a.hasTag(TYPE_ANNOTATION) &&
2818                !a.annotationType.type.isErroneous() &&
2819                !isTypeAnnotation(a, isTypeParameter)) {
2820            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2821        }
2822    }
2823
2824    /**
2825     * Validate the proposed container 'repeatable' on the
2826     * annotation type symbol 's'. Report errors at position
2827     * 'pos'.
2828     *
2829     * @param s The (annotation)type declaration annotated with a @Repeatable
2830     * @param repeatable the @Repeatable on 's'
2831     * @param pos where to report errors
2832     */
2833    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2834        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2835
2836        Type t = null;
2837        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2838        if (!l.isEmpty()) {
2839            Assert.check(l.head.fst.name == names.value);
2840            t = ((Attribute.Class)l.head.snd).getValue();
2841        }
2842
2843        if (t == null) {
2844            // errors should already have been reported during Annotate
2845            return;
2846        }
2847
2848        validateValue(t.tsym, s, pos);
2849        validateRetention(t.tsym, s, pos);
2850        validateDocumented(t.tsym, s, pos);
2851        validateInherited(t.tsym, s, pos);
2852        validateTarget(t.tsym, s, pos);
2853        validateDefault(t.tsym, pos);
2854    }
2855
2856    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2857        Symbol sym = container.members().findFirst(names.value);
2858        if (sym != null && sym.kind == MTH) {
2859            MethodSymbol m = (MethodSymbol) sym;
2860            Type ret = m.getReturnType();
2861            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2862                log.error(pos, "invalid.repeatable.annotation.value.return",
2863                        container, ret, types.makeArrayType(contained.type));
2864            }
2865        } else {
2866            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2867        }
2868    }
2869
2870    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2871        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2872        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2873
2874        boolean error = false;
2875        switch (containedRetention) {
2876        case RUNTIME:
2877            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2878                error = true;
2879            }
2880            break;
2881        case CLASS:
2882            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2883                error = true;
2884            }
2885        }
2886        if (error ) {
2887            log.error(pos, "invalid.repeatable.annotation.retention",
2888                      container, containerRetention,
2889                      contained, containedRetention);
2890        }
2891    }
2892
2893    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2894        if (contained.attribute(syms.documentedType.tsym) != null) {
2895            if (container.attribute(syms.documentedType.tsym) == null) {
2896                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2897            }
2898        }
2899    }
2900
2901    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2902        if (contained.attribute(syms.inheritedType.tsym) != null) {
2903            if (container.attribute(syms.inheritedType.tsym) == null) {
2904                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2905            }
2906        }
2907    }
2908
2909    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2910        // The set of targets the container is applicable to must be a subset
2911        // (with respect to annotation target semantics) of the set of targets
2912        // the contained is applicable to. The target sets may be implicit or
2913        // explicit.
2914
2915        Set<Name> containerTargets;
2916        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2917        if (containerTarget == null) {
2918            containerTargets = getDefaultTargetSet();
2919        } else {
2920            containerTargets = new HashSet<>();
2921            for (Attribute app : containerTarget.values) {
2922                if (!(app instanceof Attribute.Enum)) {
2923                    continue; // recovery
2924                }
2925                Attribute.Enum e = (Attribute.Enum)app;
2926                containerTargets.add(e.value.name);
2927            }
2928        }
2929
2930        Set<Name> containedTargets;
2931        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2932        if (containedTarget == null) {
2933            containedTargets = getDefaultTargetSet();
2934        } else {
2935            containedTargets = new HashSet<>();
2936            for (Attribute app : containedTarget.values) {
2937                if (!(app instanceof Attribute.Enum)) {
2938                    continue; // recovery
2939                }
2940                Attribute.Enum e = (Attribute.Enum)app;
2941                containedTargets.add(e.value.name);
2942            }
2943        }
2944
2945        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2946            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2947        }
2948    }
2949
2950    /* get a set of names for the default target */
2951    private Set<Name> getDefaultTargetSet() {
2952        if (defaultTargets == null) {
2953            Set<Name> targets = new HashSet<>();
2954            targets.add(names.ANNOTATION_TYPE);
2955            targets.add(names.CONSTRUCTOR);
2956            targets.add(names.FIELD);
2957            targets.add(names.LOCAL_VARIABLE);
2958            targets.add(names.METHOD);
2959            targets.add(names.PACKAGE);
2960            targets.add(names.PARAMETER);
2961            targets.add(names.TYPE);
2962
2963            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2964        }
2965
2966        return defaultTargets;
2967    }
2968    private Set<Name> defaultTargets;
2969
2970
2971    /** Checks that s is a subset of t, with respect to ElementType
2972     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2973     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2974     * TYPE_PARAMETER}.
2975     */
2976    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2977        // Check that all elements in s are present in t
2978        for (Name n2 : s) {
2979            boolean currentElementOk = false;
2980            for (Name n1 : t) {
2981                if (n1 == n2) {
2982                    currentElementOk = true;
2983                    break;
2984                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2985                    currentElementOk = true;
2986                    break;
2987                } else if (n1 == names.TYPE_USE &&
2988                        (n2 == names.TYPE ||
2989                         n2 == names.ANNOTATION_TYPE ||
2990                         n2 == names.TYPE_PARAMETER)) {
2991                    currentElementOk = true;
2992                    break;
2993                }
2994            }
2995            if (!currentElementOk)
2996                return false;
2997        }
2998        return true;
2999    }
3000
3001    private void validateDefault(Symbol container, DiagnosticPosition pos) {
3002        // validate that all other elements of containing type has defaults
3003        Scope scope = container.members();
3004        for(Symbol elm : scope.getSymbols()) {
3005            if (elm.name != names.value &&
3006                elm.kind == MTH &&
3007                ((MethodSymbol)elm).defaultValue == null) {
3008                log.error(pos,
3009                          "invalid.repeatable.annotation.elem.nondefault",
3010                          container,
3011                          elm);
3012            }
3013        }
3014    }
3015
3016    /** Is s a method symbol that overrides a method in a superclass? */
3017    boolean isOverrider(Symbol s) {
3018        if (s.kind != MTH || s.isStatic())
3019            return false;
3020        MethodSymbol m = (MethodSymbol)s;
3021        TypeSymbol owner = (TypeSymbol)m.owner;
3022        for (Type sup : types.closure(owner.type)) {
3023            if (sup == owner.type)
3024                continue; // skip "this"
3025            Scope scope = sup.tsym.members();
3026            for (Symbol sym : scope.getSymbolsByName(m.name)) {
3027                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3028                    return true;
3029            }
3030        }
3031        return false;
3032    }
3033
3034    /** Is the annotation applicable to types? */
3035    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3036        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3037        return (targets == null) ?
3038                false :
3039                targets.stream()
3040                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3041    }
3042    //where
3043        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3044            Attribute.Enum e = (Attribute.Enum)a;
3045            return (e.value.name == names.TYPE_USE ||
3046                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3047        }
3048
3049    /** Is the annotation applicable to the symbol? */
3050    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3051        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3052        Name[] targets;
3053
3054        if (arr == null) {
3055            targets = defaultTargetMetaInfo(a, s);
3056        } else {
3057            // TODO: can we optimize this?
3058            targets = new Name[arr.values.length];
3059            for (int i=0; i<arr.values.length; ++i) {
3060                Attribute app = arr.values[i];
3061                if (!(app instanceof Attribute.Enum)) {
3062                    return true; // recovery
3063                }
3064                Attribute.Enum e = (Attribute.Enum) app;
3065                targets[i] = e.value.name;
3066            }
3067        }
3068        for (Name target : targets) {
3069            if (target == names.TYPE) {
3070                if (s.kind == TYP)
3071                    return true;
3072            } else if (target == names.FIELD) {
3073                if (s.kind == VAR && s.owner.kind != MTH)
3074                    return true;
3075            } else if (target == names.METHOD) {
3076                if (s.kind == MTH && !s.isConstructor())
3077                    return true;
3078            } else if (target == names.PARAMETER) {
3079                if (s.kind == VAR && s.owner.kind == MTH &&
3080                      (s.flags() & PARAMETER) != 0) {
3081                    return true;
3082                }
3083            } else if (target == names.CONSTRUCTOR) {
3084                if (s.kind == MTH && s.isConstructor())
3085                    return true;
3086            } else if (target == names.LOCAL_VARIABLE) {
3087                if (s.kind == VAR && s.owner.kind == MTH &&
3088                      (s.flags() & PARAMETER) == 0) {
3089                    return true;
3090                }
3091            } else if (target == names.ANNOTATION_TYPE) {
3092                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3093                    return true;
3094                }
3095            } else if (target == names.PACKAGE) {
3096                if (s.kind == PCK)
3097                    return true;
3098            } else if (target == names.TYPE_USE) {
3099                if (s.kind == TYP || s.kind == VAR ||
3100                        (s.kind == MTH && !s.isConstructor() &&
3101                                !s.type.getReturnType().hasTag(VOID)) ||
3102                        (s.kind == MTH && s.isConstructor())) {
3103                    return true;
3104                }
3105            } else if (target == names.TYPE_PARAMETER) {
3106                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3107                    return true;
3108            } else
3109                return true; // Unknown ElementType. This should be an error at declaration site,
3110                             // assume applicable.
3111        }
3112        return false;
3113    }
3114
3115
3116    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3117        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3118        if (atTarget == null) return null; // ok, is applicable
3119        Attribute atValue = atTarget.member(names.value);
3120        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3121        return (Attribute.Array) atValue;
3122    }
3123
3124    private final Name[] dfltTargetMeta;
3125    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3126        return dfltTargetMeta;
3127    }
3128
3129    /** Check an annotation value.
3130     *
3131     * @param a The annotation tree to check
3132     * @return true if this annotation tree is valid, otherwise false
3133     */
3134    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3135        boolean res = false;
3136        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3137        try {
3138            res = validateAnnotation(a);
3139        } finally {
3140            log.popDiagnosticHandler(diagHandler);
3141        }
3142        return res;
3143    }
3144
3145    private boolean validateAnnotation(JCAnnotation a) {
3146        boolean isValid = true;
3147        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3148
3149        // collect an inventory of the annotation elements
3150        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3151
3152        // remove the ones that are assigned values
3153        for (JCTree arg : a.args) {
3154            if (!arg.hasTag(ASSIGN)) continue; // recovery
3155            JCAssign assign = (JCAssign)arg;
3156            Symbol m = TreeInfo.symbol(assign.lhs);
3157            if (m == null || m.type.isErroneous()) continue;
3158            if (!elements.remove(m)) {
3159                isValid = false;
3160                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3161                        m.name, a.type);
3162            }
3163        }
3164
3165        // all the remaining ones better have default values
3166        List<Name> missingDefaults = List.nil();
3167        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3168        for (MethodSymbol m : elements) {
3169            if (m.type.isErroneous())
3170                continue;
3171
3172            if (!membersWithDefault.contains(m))
3173                missingDefaults = missingDefaults.append(m.name);
3174        }
3175        missingDefaults = missingDefaults.reverse();
3176        if (missingDefaults.nonEmpty()) {
3177            isValid = false;
3178            String key = (missingDefaults.size() > 1)
3179                    ? "annotation.missing.default.value.1"
3180                    : "annotation.missing.default.value";
3181            log.error(a.pos(), key, a.type, missingDefaults);
3182        }
3183
3184        return isValid && validateTargetAnnotationValue(a);
3185    }
3186
3187    /* Validate the special java.lang.annotation.Target annotation */
3188    boolean validateTargetAnnotationValue(JCAnnotation a) {
3189        // special case: java.lang.annotation.Target must not have
3190        // repeated values in its value member
3191        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3192                a.args.tail == null)
3193            return true;
3194
3195        boolean isValid = true;
3196        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3197        JCAssign assign = (JCAssign) a.args.head;
3198        Symbol m = TreeInfo.symbol(assign.lhs);
3199        if (m.name != names.value) return false;
3200        JCTree rhs = assign.rhs;
3201        if (!rhs.hasTag(NEWARRAY)) return false;
3202        JCNewArray na = (JCNewArray) rhs;
3203        Set<Symbol> targets = new HashSet<>();
3204        for (JCTree elem : na.elems) {
3205            if (!targets.add(TreeInfo.symbol(elem))) {
3206                isValid = false;
3207                log.error(elem.pos(), "repeated.annotation.target");
3208            }
3209        }
3210        return isValid;
3211    }
3212
3213    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3214        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3215            (s.flags() & DEPRECATED) != 0 &&
3216            !syms.deprecatedType.isErroneous() &&
3217            s.attribute(syms.deprecatedType.tsym) == null) {
3218            log.warning(LintCategory.DEP_ANN,
3219                    pos, "missing.deprecated.annotation");
3220        }
3221    }
3222
3223    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3224        if ((s.flags() & DEPRECATED) != 0 &&
3225                (other.flags() & DEPRECATED) == 0 &&
3226                s.outermostClass() != other.outermostClass()) {
3227            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3228                @Override
3229                public void report() {
3230                    warnDeprecated(pos, s);
3231                }
3232            });
3233        }
3234    }
3235
3236    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3237        if ((s.flags() & PROPRIETARY) != 0) {
3238            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3239                public void report() {
3240                    if (enableSunApiLintControl)
3241                      warnSunApi(pos, "sun.proprietary", s);
3242                    else
3243                      log.mandatoryWarning(pos, "sun.proprietary", s);
3244                }
3245            });
3246        }
3247    }
3248
3249    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3250        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3251            log.error(pos, "not.in.profile", s, profile);
3252        }
3253    }
3254
3255/* *************************************************************************
3256 * Check for recursive annotation elements.
3257 **************************************************************************/
3258
3259    /** Check for cycles in the graph of annotation elements.
3260     */
3261    void checkNonCyclicElements(JCClassDecl tree) {
3262        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3263        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3264        try {
3265            tree.sym.flags_field |= LOCKED;
3266            for (JCTree def : tree.defs) {
3267                if (!def.hasTag(METHODDEF)) continue;
3268                JCMethodDecl meth = (JCMethodDecl)def;
3269                checkAnnotationResType(meth.pos(), meth.restype.type);
3270            }
3271        } finally {
3272            tree.sym.flags_field &= ~LOCKED;
3273            tree.sym.flags_field |= ACYCLIC_ANN;
3274        }
3275    }
3276
3277    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3278        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3279            return;
3280        if ((tsym.flags_field & LOCKED) != 0) {
3281            log.error(pos, "cyclic.annotation.element");
3282            return;
3283        }
3284        try {
3285            tsym.flags_field |= LOCKED;
3286            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3287                if (s.kind != MTH)
3288                    continue;
3289                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3290            }
3291        } finally {
3292            tsym.flags_field &= ~LOCKED;
3293            tsym.flags_field |= ACYCLIC_ANN;
3294        }
3295    }
3296
3297    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3298        switch (type.getTag()) {
3299        case CLASS:
3300            if ((type.tsym.flags() & ANNOTATION) != 0)
3301                checkNonCyclicElementsInternal(pos, type.tsym);
3302            break;
3303        case ARRAY:
3304            checkAnnotationResType(pos, types.elemtype(type));
3305            break;
3306        default:
3307            break; // int etc
3308        }
3309    }
3310
3311/* *************************************************************************
3312 * Check for cycles in the constructor call graph.
3313 **************************************************************************/
3314
3315    /** Check for cycles in the graph of constructors calling other
3316     *  constructors.
3317     */
3318    void checkCyclicConstructors(JCClassDecl tree) {
3319        Map<Symbol,Symbol> callMap = new HashMap<>();
3320
3321        // enter each constructor this-call into the map
3322        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3323            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3324            if (app == null) continue;
3325            JCMethodDecl meth = (JCMethodDecl) l.head;
3326            if (TreeInfo.name(app.meth) == names._this) {
3327                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3328            } else {
3329                meth.sym.flags_field |= ACYCLIC;
3330            }
3331        }
3332
3333        // Check for cycles in the map
3334        Symbol[] ctors = new Symbol[0];
3335        ctors = callMap.keySet().toArray(ctors);
3336        for (Symbol caller : ctors) {
3337            checkCyclicConstructor(tree, caller, callMap);
3338        }
3339    }
3340
3341    /** Look in the map to see if the given constructor is part of a
3342     *  call cycle.
3343     */
3344    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3345                                        Map<Symbol,Symbol> callMap) {
3346        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3347            if ((ctor.flags_field & LOCKED) != 0) {
3348                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3349                          "recursive.ctor.invocation");
3350            } else {
3351                ctor.flags_field |= LOCKED;
3352                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3353                ctor.flags_field &= ~LOCKED;
3354            }
3355            ctor.flags_field |= ACYCLIC;
3356        }
3357    }
3358
3359/* *************************************************************************
3360 * Miscellaneous
3361 **************************************************************************/
3362
3363    /**
3364     *  Check for division by integer constant zero
3365     *  @param pos           Position for error reporting.
3366     *  @param operator      The operator for the expression
3367     *  @param operand       The right hand operand for the expression
3368     */
3369    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3370        if (operand.constValue() != null
3371            && operand.getTag().isSubRangeOf(LONG)
3372            && ((Number) (operand.constValue())).longValue() == 0) {
3373            int opc = ((OperatorSymbol)operator).opcode;
3374            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3375                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3376                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3377                    @Override
3378                    public void report() {
3379                        warnDivZero(pos);
3380                    }
3381                });
3382            }
3383        }
3384    }
3385
3386    /**
3387     * Check for empty statements after if
3388     */
3389    void checkEmptyIf(JCIf tree) {
3390        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3391                lint.isEnabled(LintCategory.EMPTY))
3392            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3393    }
3394
3395    /** Check that symbol is unique in given scope.
3396     *  @param pos           Position for error reporting.
3397     *  @param sym           The symbol.
3398     *  @param s             The scope.
3399     */
3400    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3401        if (sym.type.isErroneous())
3402            return true;
3403        if (sym.owner.name == names.any) return false;
3404        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3405            if (sym != byName &&
3406                    (byName.flags() & CLASH) == 0 &&
3407                    sym.kind == byName.kind &&
3408                    sym.name != names.error &&
3409                    (sym.kind != MTH ||
3410                     types.hasSameArgs(sym.type, byName.type) ||
3411                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3412                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3413                    varargsDuplicateError(pos, sym, byName);
3414                    return true;
3415                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3416                    duplicateErasureError(pos, sym, byName);
3417                    sym.flags_field |= CLASH;
3418                    return true;
3419                } else {
3420                    duplicateError(pos, byName);
3421                    return false;
3422                }
3423            }
3424        }
3425        return true;
3426    }
3427
3428    /** Report duplicate declaration error.
3429     */
3430    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3431        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3432            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3433        }
3434    }
3435
3436    /**Check that types imported through the ordinary imports don't clash with types imported
3437     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3438     * types without an error on the imports.
3439     * @param toplevel       The toplevel tree for which the test should be performed.
3440     */
3441    void checkImportsUnique(JCCompilationUnit toplevel) {
3442        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3443        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3444        WriteableScope topLevelScope = toplevel.toplevelScope;
3445
3446        for (JCTree def : toplevel.defs) {
3447            if (!def.hasTag(IMPORT))
3448                continue;
3449
3450            JCImport imp = (JCImport) def;
3451
3452            if (imp.importScope == null)
3453                continue;
3454
3455            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3456                if (imp.isStatic()) {
3457                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3458                    staticallyImportedSoFar.enter(sym);
3459                } else {
3460                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3461                    ordinallyImportedSoFar.enter(sym);
3462                }
3463            }
3464
3465            imp.importScope = null;
3466        }
3467    }
3468
3469    /** Check that single-type import is not already imported or top-level defined,
3470     *  but make an exception for two single-type imports which denote the same type.
3471     *  @param pos                     Position for error reporting.
3472     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3473     *                                 ordinary imports.
3474     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3475     *                                 static imports.
3476     *  @param topLevelScope           The current file's top-level Scope
3477     *  @param sym                     The symbol.
3478     *  @param staticImport            Whether or not this was a static import
3479     */
3480    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3481                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3482                                      Symbol sym, boolean staticImport) {
3483        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3484        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3485        if (clashing == null && !staticImport) {
3486            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3487        }
3488        if (clashing != null) {
3489            if (staticImport)
3490                log.error(pos, "already.defined.static.single.import", clashing);
3491            else
3492                log.error(pos, "already.defined.single.import", clashing);
3493            return false;
3494        }
3495        clashing = topLevelScope.findFirst(sym.name, duplicates);
3496        if (clashing != null) {
3497            log.error(pos, "already.defined.this.unit", clashing);
3498            return false;
3499        }
3500        return true;
3501    }
3502
3503    /** Check that a qualified name is in canonical form (for import decls).
3504     */
3505    public void checkCanonical(JCTree tree) {
3506        if (!isCanonical(tree))
3507            log.error(tree.pos(), "import.requires.canonical",
3508                      TreeInfo.symbol(tree));
3509    }
3510        // where
3511        private boolean isCanonical(JCTree tree) {
3512            while (tree.hasTag(SELECT)) {
3513                JCFieldAccess s = (JCFieldAccess) tree;
3514                if (s.sym.owner != TreeInfo.symbol(s.selected))
3515                    return false;
3516                tree = s.selected;
3517            }
3518            return true;
3519        }
3520
3521    /** Check that an auxiliary class is not accessed from any other file than its own.
3522     */
3523    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3524        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3525            (c.flags() & AUXILIARY) != 0 &&
3526            rs.isAccessible(env, c) &&
3527            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3528        {
3529            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3530                        c, c.sourcefile);
3531        }
3532    }
3533
3534    private class ConversionWarner extends Warner {
3535        final String uncheckedKey;
3536        final Type found;
3537        final Type expected;
3538        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3539            super(pos);
3540            this.uncheckedKey = uncheckedKey;
3541            this.found = found;
3542            this.expected = expected;
3543        }
3544
3545        @Override
3546        public void warn(LintCategory lint) {
3547            boolean warned = this.warned;
3548            super.warn(lint);
3549            if (warned) return; // suppress redundant diagnostics
3550            switch (lint) {
3551                case UNCHECKED:
3552                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3553                    break;
3554                case VARARGS:
3555                    if (method != null &&
3556                            method.attribute(syms.trustMeType.tsym) != null &&
3557                            isTrustMeAllowedOnMethod(method) &&
3558                            !types.isReifiable(method.type.getParameterTypes().last())) {
3559                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3560                    }
3561                    break;
3562                default:
3563                    throw new AssertionError("Unexpected lint: " + lint);
3564            }
3565        }
3566    }
3567
3568    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3569        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3570    }
3571
3572    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3573        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3574    }
3575
3576    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3577        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3578
3579        if (functionalType != null) {
3580            try {
3581                types.findDescriptorSymbol((TypeSymbol)cs);
3582            } catch (Types.FunctionDescriptorLookupError ex) {
3583                DiagnosticPosition pos = tree.pos();
3584                for (JCAnnotation a : tree.getModifiers().annotations) {
3585                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3586                        pos = a.pos();
3587                        break;
3588                    }
3589                }
3590                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3591            }
3592        }
3593    }
3594
3595    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3596        for (final JCImport imp : toplevel.getImports()) {
3597            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3598                continue;
3599            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3600            final Symbol origin;
3601            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3602                continue;
3603
3604            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3605            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3606                log.error(imp.pos(), "cant.resolve.location",
3607                          KindName.STATIC,
3608                          select.name, List.<Type>nil(), List.<Type>nil(),
3609                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3610                          TreeInfo.symbol(select.selected).type);
3611            }
3612        }
3613    }
3614
3615    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3616        if (tsym == null || !processed.add(tsym))
3617            return false;
3618
3619            // also search through inherited names
3620        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3621            return true;
3622
3623        for (Type t : types.interfaces(tsym.type))
3624            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3625                return true;
3626
3627        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3628            if (sym.isStatic() &&
3629                importAccessible(sym, packge) &&
3630                sym.isMemberOf(origin, types)) {
3631                return true;
3632            }
3633        }
3634
3635        return false;
3636    }
3637
3638    // is the sym accessible everywhere in packge?
3639    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3640        try {
3641            int flags = (int)(sym.flags() & AccessFlags);
3642            switch (flags) {
3643            default:
3644            case PUBLIC:
3645                return true;
3646            case PRIVATE:
3647                return false;
3648            case 0:
3649            case PROTECTED:
3650                return sym.packge() == packge;
3651            }
3652        } catch (ClassFinder.BadClassFile err) {
3653            throw err;
3654        } catch (CompletionFailure ex) {
3655            return false;
3656        }
3657    }
3658
3659}
3660