Check.java revision 2868:816bd88d33a8
127837Sdavidn/*
266830Sobrien * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
366830Sobrien * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
466830Sobrien *
566830Sobrien * This code is free software; you can redistribute it and/or modify it
666830Sobrien * under the terms of the GNU General Public License version 2 only, as
766830Sobrien * published by the Free Software Foundation.  Oracle designates this
866830Sobrien * particular file as subject to the "Classpath" exception as provided
966830Sobrien * by Oracle in the LICENSE file that accompanied this code.
1066830Sobrien *
1166830Sobrien * This code is distributed in the hope that it will be useful, but WITHOUT
1266830Sobrien * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1366830Sobrien * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1466830Sobrien * version 2 for more details (a copy is included in the LICENSE file that
1566830Sobrien * accompanied this code).
1666830Sobrien *
1766830Sobrien * You should have received a copy of the GNU General Public License version
1866830Sobrien * 2 along with this work; if not, write to the Free Software Foundation,
1966830Sobrien * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
2066830Sobrien *
2166830Sobrien * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2266830Sobrien * or visit www.oracle.com if you need additional information or have any
2366830Sobrien * questions.
2466830Sobrien */
2566830Sobrien
2666830Sobrienpackage com.sun.tools.javac.comp;
2750472Speter
2866830Sobrienimport java.util.*;
2927837Sdavidn
3051231Ssheldonhimport javax.tools.JavaFileManager;
3127837Sdavidn
3227837Sdavidnimport com.sun.tools.javac.code.*;
3327837Sdavidnimport com.sun.tools.javac.code.Attribute.Compound;
3427837Sdavidnimport com.sun.tools.javac.jvm.*;
3527837Sdavidnimport com.sun.tools.javac.resources.CompilerProperties.Errors;
3627837Sdavidnimport com.sun.tools.javac.resources.CompilerProperties.Fragments;
3727837Sdavidnimport com.sun.tools.javac.tree.*;
3827837Sdavidnimport com.sun.tools.javac.util.*;
3927837Sdavidnimport com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
4027837Sdavidnimport com.sun.tools.javac.util.List;
4127837Sdavidn
4251231Ssheldonhimport com.sun.tools.javac.code.Lint;
4327837Sdavidnimport com.sun.tools.javac.code.Lint.LintCategory;
4451231Ssheldonhimport com.sun.tools.javac.code.Scope.CompoundScope;
4527837Sdavidnimport com.sun.tools.javac.code.Scope.NamedImportScope;
4662640Stgimport com.sun.tools.javac.code.Scope.WriteableScope;
4762640Stgimport com.sun.tools.javac.code.Type.*;
4862640Stgimport com.sun.tools.javac.code.Symbol.*;
4962640Stgimport com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
5062640Stgimport com.sun.tools.javac.comp.Infer.InferenceContext;
5162640Stgimport com.sun.tools.javac.comp.Infer.FreeTypeListener;
5262640Stgimport com.sun.tools.javac.tree.JCTree.*;
5362640Stgimport com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
5462640Stg
5563307Smarkmimport static com.sun.tools.javac.code.Flags.*;
5663307Smarkmimport static com.sun.tools.javac.code.Flags.ANNOTATION;
5763307Smarkmimport static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
5863307Smarkmimport static com.sun.tools.javac.code.Kinds.*;
5963307Smarkmimport static com.sun.tools.javac.code.Kinds.Kind.*;
6063307Smarkmimport static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
6170108Sdougbimport static com.sun.tools.javac.code.TypeTag.*;
6263311Ssheldonhimport static com.sun.tools.javac.code.TypeTag.WILDCARD;
6363801Ssheldonh
6463801Ssheldonhimport static com.sun.tools.javac.tree.JCTree.Tag.*;
6567179Sjwd
6667179Sjwd/** Type checking helper class for the attribution phase.
6767179Sjwd *
6867179Sjwd *  <p><b>This is NOT part of any supported API.
6967179Sjwd *  If you write code that depends on this, you do so at your own risk.
7067179Sjwd *  This code and its internal interfaces are subject to change or
7167179Sjwd *  deletion without notice.</b>
7267179Sjwd */
7367179Sjwdpublic class Check {
7467179Sjwd    protected static final Context.Key<Check> checkKey = new Context.Key<>();
7567179Sjwd
7667179Sjwd    private final Names names;
7770108Sdougb    private final Log log;
7867179Sjwd    private final Resolve rs;
7967179Sjwd    private final Symtab syms;
8067179Sjwd    private final Enter enter;
8167397Sache    private final DeferredAttr deferredAttr;
8270108Sdougb    private final Infer infer;
8367179Sjwd    private final Types types;
8467179Sjwd    private final JCDiagnostic.Factory diags;
8563801Ssheldonh    private boolean warnOnSyntheticConflicts;
8663307Smarkm    private boolean suppressAbortOnBadClassFile;
8763307Smarkm    private boolean enableSunApiLintControl;
8863307Smarkm    private final JavaFileManager fileManager;
8953550Sdillon    private final Source source;
9053550Sdillon    private final Profile profile;
9153550Sdillon    private final boolean warnOnAccessToSensitiveMembers;
9253550Sdillon
9353550Sdillon    // The set of lint options currently in effect. It is initialized
9453550Sdillon    // from the context, and then is set/reset as needed by Attr as it
9553550Sdillon    // visits all the various parts of the trees during attribution.
9653550Sdillon    private Lint lint;
9753550Sdillon
9870108Sdougb    // The method being analyzed in Attr - it is set/reset as needed by
9927837Sdavidn    // Attr as it visits new method declarations.
10062640Stg    private MethodSymbol method;
10162640Stg
10262640Stg    public static Check instance(Context context) {
10362640Stg        Check instance = context.get(checkKey);
10462640Stg        if (instance == null)
10579825Sroam            instance = new Check(context);
10662640Stg        return instance;
10762640Stg    }
10862640Stg
10979825Sroam    protected Check(Context context) {
11062640Stg        context.put(checkKey, this);
11162640Stg
11262640Stg        names = Names.instance(context);
11379825Sroam        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
11479825Sroam            names.FIELD, names.METHOD, names.CONSTRUCTOR,
11579825Sroam            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
11679825Sroam        log = Log.instance(context);
11779825Sroam        rs = Resolve.instance(context);
11879825Sroam        syms = Symtab.instance(context);
11979825Sroam        enter = Enter.instance(context);
12079825Sroam        deferredAttr = DeferredAttr.instance(context);
12179825Sroam        infer = Infer.instance(context);
12279825Sroam        types = Types.instance(context);
12370108Sdougb        diags = JCDiagnostic.Factory.instance(context);
12462640Stg        Options options = Options.instance(context);
12562640Stg        lint = Lint.instance(context);
12627837Sdavidn        fileManager = context.get(JavaFileManager.class);
12785219Sdarrenr
12885219Sdarrenr        source = Source.instance(context);
12985219Sdarrenr        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
13085219Sdarrenr        allowDefaultMethods = source.allowDefaultMethods();
13185219Sdarrenr        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
13285219Sdarrenr        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
13385219Sdarrenr        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
13485219Sdarrenr        complexInference = options.isSet("complexinference");
13585219Sdarrenr        warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
13685219Sdarrenr        suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
13785219Sdarrenr        enableSunApiLintControl = options.isSet("enableSunApiLintControl");
13862640Stg        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
13927837Sdavidn
14027837Sdavidn        Target target = Target.instance(context);
14127837Sdavidn        syntheticNameChar = target.syntheticNameChar();
142
143        profile = Profile.instance(context);
144
145        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
146        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
147        boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
148        boolean enforceMandatoryWarnings = true;
149
150        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
151                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
152        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
153                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
154        sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
155                enforceMandatoryWarnings, "sunapi", null);
156
157        deferredLintHandler = DeferredLintHandler.instance(context);
158    }
159
160    /** Switch: simplified varargs enabled?
161     */
162    boolean allowSimplifiedVarargs;
163
164    /** Switch: default methods enabled?
165     */
166    boolean allowDefaultMethods;
167
168    /** Switch: should unrelated return types trigger a method clash?
169     */
170    boolean allowStrictMethodClashCheck;
171
172    /** Switch: can the @SafeVarargs annotation be applied to private methods?
173     */
174    boolean allowPrivateSafeVarargs;
175
176    /** Switch: can diamond inference be used in anonymous instance creation ?
177     */
178    boolean allowDiamondWithAnonymousClassCreation;
179
180    /** Switch: -complexinference option set?
181     */
182    boolean complexInference;
183
184    /** Character for synthetic names
185     */
186    char syntheticNameChar;
187
188    /** A table mapping flat names of all compiled classes in this run to their
189     *  symbols; maintained from outside.
190     */
191    public Map<Name,ClassSymbol> compiled = new HashMap<>();
192
193    /** A handler for messages about deprecated usage.
194     */
195    private MandatoryWarningHandler deprecationHandler;
196
197    /** A handler for messages about unchecked or unsafe usage.
198     */
199    private MandatoryWarningHandler uncheckedHandler;
200
201    /** A handler for messages about using proprietary API.
202     */
203    private MandatoryWarningHandler sunApiHandler;
204
205    /** A handler for deferred lint warnings.
206     */
207    private DeferredLintHandler deferredLintHandler;
208
209/* *************************************************************************
210 * Errors and Warnings
211 **************************************************************************/
212
213    Lint setLint(Lint newLint) {
214        Lint prev = lint;
215        lint = newLint;
216        return prev;
217    }
218
219    MethodSymbol setMethod(MethodSymbol newMethod) {
220        MethodSymbol prev = method;
221        method = newMethod;
222        return prev;
223    }
224
225    /** Warn about deprecated symbol.
226     *  @param pos        Position to be used for error reporting.
227     *  @param sym        The deprecated symbol.
228     */
229    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
230        if (!lint.isSuppressed(LintCategory.DEPRECATION))
231            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
232    }
233
234    /** Warn about unchecked operation.
235     *  @param pos        Position to be used for error reporting.
236     *  @param msg        A string describing the problem.
237     */
238    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
239        if (!lint.isSuppressed(LintCategory.UNCHECKED))
240            uncheckedHandler.report(pos, msg, args);
241    }
242
243    /** Warn about unsafe vararg method decl.
244     *  @param pos        Position to be used for error reporting.
245     */
246    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
247        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
248            log.warning(LintCategory.VARARGS, pos, key, args);
249    }
250
251    /** Warn about using proprietary API.
252     *  @param pos        Position to be used for error reporting.
253     *  @param msg        A string describing the problem.
254     */
255    public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
256        if (!lint.isSuppressed(LintCategory.SUNAPI))
257            sunApiHandler.report(pos, msg, args);
258    }
259
260    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
261        if (lint.isEnabled(LintCategory.STATIC))
262            log.warning(LintCategory.STATIC, pos, msg, args);
263    }
264
265    /** Warn about division by integer constant zero.
266     *  @param pos        Position to be used for error reporting.
267     */
268    void warnDivZero(DiagnosticPosition pos) {
269        if (lint.isEnabled(LintCategory.DIVZERO))
270            log.warning(LintCategory.DIVZERO, pos, "div.zero");
271    }
272
273    /**
274     * Report any deferred diagnostics.
275     */
276    public void reportDeferredDiagnostics() {
277        deprecationHandler.reportDeferredDiagnostic();
278        uncheckedHandler.reportDeferredDiagnostic();
279        sunApiHandler.reportDeferredDiagnostic();
280    }
281
282
283    /** Report a failure to complete a class.
284     *  @param pos        Position to be used for error reporting.
285     *  @param ex         The failure to report.
286     */
287    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
288        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
289        if (ex instanceof ClassFinder.BadClassFile
290                && !suppressAbortOnBadClassFile) throw new Abort();
291        else return syms.errType;
292    }
293
294    /** Report an error that wrong type tag was found.
295     *  @param pos        Position to be used for error reporting.
296     *  @param required   An internationalized string describing the type tag
297     *                    required.
298     *  @param found      The type that was found.
299     */
300    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
301        // this error used to be raised by the parser,
302        // but has been delayed to this point:
303        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
304            log.error(pos, "illegal.start.of.type");
305            return syms.errType;
306        }
307        log.error(pos, "type.found.req", found, required);
308        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
309    }
310
311    /** Report an error that symbol cannot be referenced before super
312     *  has been called.
313     *  @param pos        Position to be used for error reporting.
314     *  @param sym        The referenced symbol.
315     */
316    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
317        log.error(pos, "cant.ref.before.ctor.called", sym);
318    }
319
320    /** Report duplicate declaration error.
321     */
322    void duplicateError(DiagnosticPosition pos, Symbol sym) {
323        if (!sym.type.isErroneous()) {
324            Symbol location = sym.location();
325            if (location.kind == MTH &&
326                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
327                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
328                        kindName(sym.location()), kindName(sym.location().enclClass()),
329                        sym.location().enclClass());
330            } else {
331                log.error(pos, "already.defined", kindName(sym), sym,
332                        kindName(sym.location()), sym.location());
333            }
334        }
335    }
336
337    /** Report array/varargs duplicate declaration
338     */
339    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
340        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
341            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
342        }
343    }
344
345/* ************************************************************************
346 * duplicate declaration checking
347 *************************************************************************/
348
349    /** Check that variable does not hide variable with same name in
350     *  immediately enclosing local scope.
351     *  @param pos           Position for error reporting.
352     *  @param v             The symbol.
353     *  @param s             The scope.
354     */
355    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
356        for (Symbol sym : s.getSymbolsByName(v.name)) {
357            if (sym.owner != v.owner) break;
358            if (sym.kind == VAR &&
359                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
360                v.name != names.error) {
361                duplicateError(pos, sym);
362                return;
363            }
364        }
365    }
366
367    /** Check that a class or interface does not hide a class or
368     *  interface with same name in immediately enclosing local scope.
369     *  @param pos           Position for error reporting.
370     *  @param c             The symbol.
371     *  @param s             The scope.
372     */
373    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
374        for (Symbol sym : s.getSymbolsByName(c.name)) {
375            if (sym.owner != c.owner) break;
376            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
377                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
378                c.name != names.error) {
379                duplicateError(pos, sym);
380                return;
381            }
382        }
383    }
384
385    /** Check that class does not have the same name as one of
386     *  its enclosing classes, or as a class defined in its enclosing scope.
387     *  return true if class is unique in its enclosing scope.
388     *  @param pos           Position for error reporting.
389     *  @param name          The class name.
390     *  @param s             The enclosing scope.
391     */
392    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
393        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
394            if (sym.kind == TYP && sym.name != names.error) {
395                duplicateError(pos, sym);
396                return false;
397            }
398        }
399        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
400            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
401                duplicateError(pos, sym);
402                return true;
403            }
404        }
405        return true;
406    }
407
408/* *************************************************************************
409 * Class name generation
410 **************************************************************************/
411
412    /** Return name of local class.
413     *  This is of the form   {@code <enclClass> $ n <classname> }
414     *  where
415     *    enclClass is the flat name of the enclosing class,
416     *    classname is the simple name of the local class
417     */
418    Name localClassName(ClassSymbol c) {
419        for (int i=1; ; i++) {
420            Name flatname = names.
421                fromString("" + c.owner.enclClass().flatname +
422                           syntheticNameChar + i +
423                           c.name);
424            if (compiled.get(flatname) == null) return flatname;
425        }
426    }
427
428    public void newRound() {
429        compiled.clear();
430    }
431
432/* *************************************************************************
433 * Type Checking
434 **************************************************************************/
435
436    /**
437     * A check context is an object that can be used to perform compatibility
438     * checks - depending on the check context, meaning of 'compatibility' might
439     * vary significantly.
440     */
441    public interface CheckContext {
442        /**
443         * Is type 'found' compatible with type 'req' in given context
444         */
445        boolean compatible(Type found, Type req, Warner warn);
446        /**
447         * Report a check error
448         */
449        void report(DiagnosticPosition pos, JCDiagnostic details);
450        /**
451         * Obtain a warner for this check context
452         */
453        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
454
455        public Infer.InferenceContext inferenceContext();
456
457        public DeferredAttr.DeferredAttrContext deferredAttrContext();
458    }
459
460    /**
461     * This class represent a check context that is nested within another check
462     * context - useful to check sub-expressions. The default behavior simply
463     * redirects all method calls to the enclosing check context leveraging
464     * the forwarding pattern.
465     */
466    static class NestedCheckContext implements CheckContext {
467        CheckContext enclosingContext;
468
469        NestedCheckContext(CheckContext enclosingContext) {
470            this.enclosingContext = enclosingContext;
471        }
472
473        public boolean compatible(Type found, Type req, Warner warn) {
474            return enclosingContext.compatible(found, req, warn);
475        }
476
477        public void report(DiagnosticPosition pos, JCDiagnostic details) {
478            enclosingContext.report(pos, details);
479        }
480
481        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
482            return enclosingContext.checkWarner(pos, found, req);
483        }
484
485        public Infer.InferenceContext inferenceContext() {
486            return enclosingContext.inferenceContext();
487        }
488
489        public DeferredAttrContext deferredAttrContext() {
490            return enclosingContext.deferredAttrContext();
491        }
492    }
493
494    /**
495     * Check context to be used when evaluating assignment/return statements
496     */
497    CheckContext basicHandler = new CheckContext() {
498        public void report(DiagnosticPosition pos, JCDiagnostic details) {
499            log.error(pos, "prob.found.req", details);
500        }
501        public boolean compatible(Type found, Type req, Warner warn) {
502            return types.isAssignable(found, req, warn);
503        }
504
505        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
506            return convertWarner(pos, found, req);
507        }
508
509        public InferenceContext inferenceContext() {
510            return infer.emptyContext;
511        }
512
513        public DeferredAttrContext deferredAttrContext() {
514            return deferredAttr.emptyDeferredAttrContext;
515        }
516
517        @Override
518        public String toString() {
519            return "CheckContext: basicHandler";
520        }
521    };
522
523    /** Check that a given type is assignable to a given proto-type.
524     *  If it is, return the type, otherwise return errType.
525     *  @param pos        Position to be used for error reporting.
526     *  @param found      The type that was found.
527     *  @param req        The type that was required.
528     */
529    Type checkType(DiagnosticPosition pos, Type found, Type req) {
530        return checkType(pos, found, req, basicHandler);
531    }
532
533    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
534        final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
535        if (inferenceContext.free(req) || inferenceContext.free(found)) {
536            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
537                @Override
538                public void typesInferred(InferenceContext inferenceContext) {
539                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
540                }
541            });
542        }
543        if (req.hasTag(ERROR))
544            return req;
545        if (req.hasTag(NONE))
546            return found;
547        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
548            return found;
549        } else {
550            if (found.isNumeric() && req.isNumeric()) {
551                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
552                return types.createErrorType(found);
553            }
554            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
555            return types.createErrorType(found);
556        }
557    }
558
559    /** Check that a given type can be cast to a given target type.
560     *  Return the result of the cast.
561     *  @param pos        Position to be used for error reporting.
562     *  @param found      The type that is being cast.
563     *  @param req        The target type of the cast.
564     */
565    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
566        return checkCastable(pos, found, req, basicHandler);
567    }
568    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
569        if (types.isCastable(found, req, castWarner(pos, found, req))) {
570            return req;
571        } else {
572            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
573            return types.createErrorType(found);
574        }
575    }
576
577    /** Check for redundant casts (i.e. where source type is a subtype of target type)
578     * The problem should only be reported for non-292 cast
579     */
580    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
581        if (!tree.type.isErroneous()
582                && types.isSameType(tree.expr.type, tree.clazz.type)
583                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
584                && !is292targetTypeCast(tree)) {
585            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
586                @Override
587                public void report() {
588                    if (lint.isEnabled(Lint.LintCategory.CAST))
589                        log.warning(Lint.LintCategory.CAST,
590                                tree.pos(), "redundant.cast", tree.expr.type);
591                }
592            });
593        }
594    }
595    //where
596        private boolean is292targetTypeCast(JCTypeCast tree) {
597            boolean is292targetTypeCast = false;
598            JCExpression expr = TreeInfo.skipParens(tree.expr);
599            if (expr.hasTag(APPLY)) {
600                JCMethodInvocation apply = (JCMethodInvocation)expr;
601                Symbol sym = TreeInfo.symbol(apply.meth);
602                is292targetTypeCast = sym != null &&
603                    sym.kind == MTH &&
604                    (sym.flags() & HYPOTHETICAL) != 0;
605            }
606            return is292targetTypeCast;
607        }
608
609        private static final boolean ignoreAnnotatedCasts = true;
610
611    /** Check that a type is within some bounds.
612     *
613     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
614     *  type argument.
615     *  @param a             The type that should be bounded by bs.
616     *  @param bound         The bound.
617     */
618    private boolean checkExtends(Type a, Type bound) {
619         if (a.isUnbound()) {
620             return true;
621         } else if (!a.hasTag(WILDCARD)) {
622             a = types.cvarUpperBound(a);
623             return types.isSubtype(a, bound);
624         } else if (a.isExtendsBound()) {
625             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
626         } else if (a.isSuperBound()) {
627             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
628         }
629         return true;
630     }
631
632    /** Check that type is different from 'void'.
633     *  @param pos           Position to be used for error reporting.
634     *  @param t             The type to be checked.
635     */
636    Type checkNonVoid(DiagnosticPosition pos, Type t) {
637        if (t.hasTag(VOID)) {
638            log.error(pos, "void.not.allowed.here");
639            return types.createErrorType(t);
640        } else {
641            return t;
642        }
643    }
644
645    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
646        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
647            return typeTagError(pos,
648                                diags.fragment("type.req.class.array"),
649                                asTypeParam(t));
650        } else {
651            return t;
652        }
653    }
654
655    /** Check that type is a class or interface type.
656     *  @param pos           Position to be used for error reporting.
657     *  @param t             The type to be checked.
658     */
659    Type checkClassType(DiagnosticPosition pos, Type t) {
660        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
661            return typeTagError(pos,
662                                diags.fragment("type.req.class"),
663                                asTypeParam(t));
664        } else {
665            return t;
666        }
667    }
668    //where
669        private Object asTypeParam(Type t) {
670            return (t.hasTag(TYPEVAR))
671                                    ? diags.fragment("type.parameter", t)
672                                    : t;
673        }
674
675    /** Check that type is a valid qualifier for a constructor reference expression
676     */
677    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
678        t = checkClassOrArrayType(pos, t);
679        if (t.hasTag(CLASS)) {
680            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
681                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
682                t = types.createErrorType(t);
683            } else if ((t.tsym.flags() & ENUM) != 0) {
684                log.error(pos, "enum.cant.be.instantiated");
685                t = types.createErrorType(t);
686            } else {
687                t = checkClassType(pos, t, true);
688            }
689        } else if (t.hasTag(ARRAY)) {
690            if (!types.isReifiable(((ArrayType)t).elemtype)) {
691                log.error(pos, "generic.array.creation");
692                t = types.createErrorType(t);
693            }
694        }
695        return t;
696    }
697
698    /** Check that type is a class or interface type.
699     *  @param pos           Position to be used for error reporting.
700     *  @param t             The type to be checked.
701     *  @param noBounds    True if type bounds are illegal here.
702     */
703    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
704        t = checkClassType(pos, t);
705        if (noBounds && t.isParameterized()) {
706            List<Type> args = t.getTypeArguments();
707            while (args.nonEmpty()) {
708                if (args.head.hasTag(WILDCARD))
709                    return typeTagError(pos,
710                                        diags.fragment("type.req.exact"),
711                                        args.head);
712                args = args.tail;
713            }
714        }
715        return t;
716    }
717
718    /** Check that type is a reference type, i.e. a class, interface or array type
719     *  or a type variable.
720     *  @param pos           Position to be used for error reporting.
721     *  @param t             The type to be checked.
722     */
723    Type checkRefType(DiagnosticPosition pos, Type t) {
724        if (t.isReference())
725            return t;
726        else
727            return typeTagError(pos,
728                                diags.fragment("type.req.ref"),
729                                t);
730    }
731
732    /** Check that each type is a reference type, i.e. a class, interface or array type
733     *  or a type variable.
734     *  @param trees         Original trees, used for error reporting.
735     *  @param types         The types to be checked.
736     */
737    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
738        List<JCExpression> tl = trees;
739        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
740            l.head = checkRefType(tl.head.pos(), l.head);
741            tl = tl.tail;
742        }
743        return types;
744    }
745
746    /** Check that type is a null or reference type.
747     *  @param pos           Position to be used for error reporting.
748     *  @param t             The type to be checked.
749     */
750    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
751        if (t.isReference() || t.hasTag(BOT))
752            return t;
753        else
754            return typeTagError(pos,
755                                diags.fragment("type.req.ref"),
756                                t);
757    }
758
759    /** Check that flag set does not contain elements of two conflicting sets. s
760     *  Return true if it doesn't.
761     *  @param pos           Position to be used for error reporting.
762     *  @param flags         The set of flags to be checked.
763     *  @param set1          Conflicting flags set #1.
764     *  @param set2          Conflicting flags set #2.
765     */
766    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
767        if ((flags & set1) != 0 && (flags & set2) != 0) {
768            log.error(pos,
769                      "illegal.combination.of.modifiers",
770                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
771                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
772            return false;
773        } else
774            return true;
775    }
776
777    /** Check that usage of diamond operator is correct (i.e. diamond should not
778     * be used with non-generic classes or in anonymous class creation expressions)
779     */
780    Type checkDiamond(JCNewClass tree, Type t) {
781        if (!TreeInfo.isDiamond(tree) ||
782                t.isErroneous()) {
783            return checkClassType(tree.clazz.pos(), t, true);
784        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
785            log.error(tree.clazz.pos(),
786                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
787            return types.createErrorType(t);
788        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
789            log.error(tree.clazz.pos(),
790                "cant.apply.diamond.1",
791                t, diags.fragment("diamond.non.generic", t));
792            return types.createErrorType(t);
793        } else if (tree.typeargs != null &&
794                tree.typeargs.nonEmpty()) {
795            log.error(tree.clazz.pos(),
796                "cant.apply.diamond.1",
797                t, diags.fragment("diamond.and.explicit.params", t));
798            return types.createErrorType(t);
799        } else {
800            return t;
801        }
802    }
803
804    /** Check that the type inferred using the diamond operator does not contain
805     *  non-denotable types such as captured types or intersection types.
806     *  @param t the type inferred using the diamond operator
807     *  @return  the (possibly empty) list of non-denotable types.
808     */
809    List<Type> checkDiamondDenotable(ClassType t) {
810        ListBuffer<Type> buf = new ListBuffer<>();
811        for (Type arg : t.getTypeArguments()) {
812            if (!diamondTypeChecker.visit(arg, null)) {
813                buf.append(arg);
814            }
815        }
816        return buf.toList();
817    }
818        // where
819
820        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
821         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
822         *  otherwise.
823         */
824        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
825            @Override
826            public Boolean visitType(Type t, Void s) {
827                return true;
828            }
829            @Override
830            public Boolean visitClassType(ClassType t, Void s) {
831                if (t.isCompound()) {
832                    return false;
833                }
834                for (Type targ : t.getTypeArguments()) {
835                    if (!visit(targ, s)) {
836                        return false;
837                    }
838                }
839                return true;
840            }
841            @Override
842            public Boolean visitCapturedType(CapturedType t, Void s) {
843                return false;
844            }
845
846            @Override
847            public Boolean visitArrayType(ArrayType t, Void s) {
848                return visit(t.elemtype, s);
849            }
850
851            @Override
852            public Boolean visitWildcardType(WildcardType t, Void s) {
853                return visit(t.type, s);
854            }
855        };
856
857    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
858        MethodSymbol m = tree.sym;
859        if (!allowSimplifiedVarargs) return;
860        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
861        Type varargElemType = null;
862        if (m.isVarArgs()) {
863            varargElemType = types.elemtype(tree.params.last().type);
864        }
865        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
866            if (varargElemType != null) {
867                log.error(tree,
868                        "varargs.invalid.trustme.anno",
869                          syms.trustMeType.tsym,
870                          allowPrivateSafeVarargs ?
871                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
872                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
873            } else {
874                log.error(tree,
875                            "varargs.invalid.trustme.anno",
876                            syms.trustMeType.tsym,
877                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
878            }
879        } else if (hasTrustMeAnno && varargElemType != null &&
880                            types.isReifiable(varargElemType)) {
881            warnUnsafeVararg(tree,
882                            "varargs.redundant.trustme.anno",
883                            syms.trustMeType.tsym,
884                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
885        }
886        else if (!hasTrustMeAnno && varargElemType != null &&
887                !types.isReifiable(varargElemType)) {
888            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
889        }
890    }
891    //where
892        private boolean isTrustMeAllowedOnMethod(Symbol s) {
893            return (s.flags() & VARARGS) != 0 &&
894                (s.isConstructor() ||
895                    (s.flags() & (STATIC | FINAL |
896                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
897        }
898
899    Type checkMethod(final Type mtype,
900            final Symbol sym,
901            final Env<AttrContext> env,
902            final List<JCExpression> argtrees,
903            final List<Type> argtypes,
904            final boolean useVarargs,
905            InferenceContext inferenceContext) {
906        // System.out.println("call   : " + env.tree);
907        // System.out.println("method : " + owntype);
908        // System.out.println("actuals: " + argtypes);
909        if (inferenceContext.free(mtype)) {
910            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
911                public void typesInferred(InferenceContext inferenceContext) {
912                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
913                }
914            });
915            return mtype;
916        }
917        Type owntype = mtype;
918        List<Type> formals = owntype.getParameterTypes();
919        List<Type> nonInferred = sym.type.getParameterTypes();
920        if (nonInferred.length() != formals.length()) nonInferred = formals;
921        Type last = useVarargs ? formals.last() : null;
922        if (sym.name == names.init && sym.owner == syms.enumSym) {
923            formals = formals.tail.tail;
924            nonInferred = nonInferred.tail.tail;
925        }
926        List<JCExpression> args = argtrees;
927        if (args != null) {
928            //this is null when type-checking a method reference
929            while (formals.head != last) {
930                JCTree arg = args.head;
931                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
932                assertConvertible(arg, arg.type, formals.head, warn);
933                args = args.tail;
934                formals = formals.tail;
935                nonInferred = nonInferred.tail;
936            }
937            if (useVarargs) {
938                Type varArg = types.elemtype(last);
939                while (args.tail != null) {
940                    JCTree arg = args.head;
941                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
942                    assertConvertible(arg, arg.type, varArg, warn);
943                    args = args.tail;
944                }
945            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
946                // non-varargs call to varargs method
947                Type varParam = owntype.getParameterTypes().last();
948                Type lastArg = argtypes.last();
949                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
950                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
951                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
952                                types.elemtype(varParam), varParam);
953            }
954        }
955        if (useVarargs) {
956            Type argtype = owntype.getParameterTypes().last();
957            if (!types.isReifiable(argtype) &&
958                (!allowSimplifiedVarargs ||
959                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
960                 !isTrustMeAllowedOnMethod(sym))) {
961                warnUnchecked(env.tree.pos(),
962                                  "unchecked.generic.array.creation",
963                                  argtype);
964            }
965            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
966                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
967            }
968         }
969         PolyKind pkind = (sym.type.hasTag(FORALL) &&
970                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
971                 PolyKind.POLY : PolyKind.STANDALONE;
972         TreeInfo.setPolyKind(env.tree, pkind);
973         return owntype;
974    }
975    //where
976    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
977        if (types.isConvertible(actual, formal, warn))
978            return;
979
980        if (formal.isCompound()
981            && types.isSubtype(actual, types.supertype(formal))
982            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
983            return;
984    }
985
986    /**
987     * Check that type 't' is a valid instantiation of a generic class
988     * (see JLS 4.5)
989     *
990     * @param t class type to be checked
991     * @return true if 't' is well-formed
992     */
993    public boolean checkValidGenericType(Type t) {
994        return firstIncompatibleTypeArg(t) == null;
995    }
996    //WHERE
997        private Type firstIncompatibleTypeArg(Type type) {
998            List<Type> formals = type.tsym.type.allparams();
999            List<Type> actuals = type.allparams();
1000            List<Type> args = type.getTypeArguments();
1001            List<Type> forms = type.tsym.type.getTypeArguments();
1002            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1003
1004            // For matching pairs of actual argument types `a' and
1005            // formal type parameters with declared bound `b' ...
1006            while (args.nonEmpty() && forms.nonEmpty()) {
1007                // exact type arguments needs to know their
1008                // bounds (for upper and lower bound
1009                // calculations).  So we create new bounds where
1010                // type-parameters are replaced with actuals argument types.
1011                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1012                args = args.tail;
1013                forms = forms.tail;
1014            }
1015
1016            args = type.getTypeArguments();
1017            List<Type> tvars_cap = types.substBounds(formals,
1018                                      formals,
1019                                      types.capture(type).allparams());
1020            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1021                // Let the actual arguments know their bound
1022                args.head.withTypeVar((TypeVar)tvars_cap.head);
1023                args = args.tail;
1024                tvars_cap = tvars_cap.tail;
1025            }
1026
1027            args = type.getTypeArguments();
1028            List<Type> bounds = bounds_buf.toList();
1029
1030            while (args.nonEmpty() && bounds.nonEmpty()) {
1031                Type actual = args.head;
1032                if (!isTypeArgErroneous(actual) &&
1033                        !bounds.head.isErroneous() &&
1034                        !checkExtends(actual, bounds.head)) {
1035                    return args.head;
1036                }
1037                args = args.tail;
1038                bounds = bounds.tail;
1039            }
1040
1041            args = type.getTypeArguments();
1042            bounds = bounds_buf.toList();
1043
1044            for (Type arg : types.capture(type).getTypeArguments()) {
1045                if (arg.hasTag(TYPEVAR) &&
1046                        arg.getUpperBound().isErroneous() &&
1047                        !bounds.head.isErroneous() &&
1048                        !isTypeArgErroneous(args.head)) {
1049                    return args.head;
1050                }
1051                bounds = bounds.tail;
1052                args = args.tail;
1053            }
1054
1055            return null;
1056        }
1057        //where
1058        boolean isTypeArgErroneous(Type t) {
1059            return isTypeArgErroneous.visit(t);
1060        }
1061
1062        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1063            public Boolean visitType(Type t, Void s) {
1064                return t.isErroneous();
1065            }
1066            @Override
1067            public Boolean visitTypeVar(TypeVar t, Void s) {
1068                return visit(t.getUpperBound());
1069            }
1070            @Override
1071            public Boolean visitCapturedType(CapturedType t, Void s) {
1072                return visit(t.getUpperBound()) ||
1073                        visit(t.getLowerBound());
1074            }
1075            @Override
1076            public Boolean visitWildcardType(WildcardType t, Void s) {
1077                return visit(t.type);
1078            }
1079        };
1080
1081    /** Check that given modifiers are legal for given symbol and
1082     *  return modifiers together with any implicit modifiers for that symbol.
1083     *  Warning: we can't use flags() here since this method
1084     *  is called during class enter, when flags() would cause a premature
1085     *  completion.
1086     *  @param pos           Position to be used for error reporting.
1087     *  @param flags         The set of modifiers given in a definition.
1088     *  @param sym           The defined symbol.
1089     */
1090    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1091        long mask;
1092        long implicit = 0;
1093
1094        switch (sym.kind) {
1095        case VAR:
1096            if (TreeInfo.isReceiverParam(tree))
1097                mask = ReceiverParamFlags;
1098            else if (sym.owner.kind != TYP)
1099                mask = LocalVarFlags;
1100            else if ((sym.owner.flags_field & INTERFACE) != 0)
1101                mask = implicit = InterfaceVarFlags;
1102            else
1103                mask = VarFlags;
1104            break;
1105        case MTH:
1106            if (sym.name == names.init) {
1107                if ((sym.owner.flags_field & ENUM) != 0) {
1108                    // enum constructors cannot be declared public or
1109                    // protected and must be implicitly or explicitly
1110                    // private
1111                    implicit = PRIVATE;
1112                    mask = PRIVATE;
1113                } else
1114                    mask = ConstructorFlags;
1115            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1116                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1117                    mask = AnnotationTypeElementMask;
1118                    implicit = PUBLIC | ABSTRACT;
1119                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1120                    mask = InterfaceMethodMask;
1121                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1122                    if ((flags & DEFAULT) != 0) {
1123                        implicit |= ABSTRACT;
1124                    }
1125                } else {
1126                    mask = implicit = InterfaceMethodFlags;
1127                }
1128            } else {
1129                mask = MethodFlags;
1130            }
1131            // Imply STRICTFP if owner has STRICTFP set.
1132            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1133                ((flags) & Flags.DEFAULT) != 0)
1134                implicit |= sym.owner.flags_field & STRICTFP;
1135            break;
1136        case TYP:
1137            if (sym.isLocal()) {
1138                mask = LocalClassFlags;
1139                if (sym.name.isEmpty()) { // Anonymous class
1140                    // JLS: Anonymous classes are final.
1141                    implicit |= FINAL;
1142                }
1143                if ((sym.owner.flags_field & STATIC) == 0 &&
1144                    (flags & ENUM) != 0)
1145                    log.error(pos, "enums.must.be.static");
1146            } else if (sym.owner.kind == TYP) {
1147                mask = MemberClassFlags;
1148                if (sym.owner.owner.kind == PCK ||
1149                    (sym.owner.flags_field & STATIC) != 0)
1150                    mask |= STATIC;
1151                else if ((flags & ENUM) != 0)
1152                    log.error(pos, "enums.must.be.static");
1153                // Nested interfaces and enums are always STATIC (Spec ???)
1154                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1155            } else {
1156                mask = ClassFlags;
1157            }
1158            // Interfaces are always ABSTRACT
1159            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1160
1161            if ((flags & ENUM) != 0) {
1162                // enums can't be declared abstract or final
1163                mask &= ~(ABSTRACT | FINAL);
1164                implicit |= implicitEnumFinalFlag(tree);
1165            }
1166            // Imply STRICTFP if owner has STRICTFP set.
1167            implicit |= sym.owner.flags_field & STRICTFP;
1168            break;
1169        default:
1170            throw new AssertionError();
1171        }
1172        long illegal = flags & ExtendedStandardFlags & ~mask;
1173        if (illegal != 0) {
1174            if ((illegal & INTERFACE) != 0) {
1175                log.error(pos, "intf.not.allowed.here");
1176                mask |= INTERFACE;
1177            }
1178            else {
1179                log.error(pos,
1180                          "mod.not.allowed.here", asFlagSet(illegal));
1181            }
1182        }
1183        else if ((sym.kind == TYP ||
1184                  // ISSUE: Disallowing abstract&private is no longer appropriate
1185                  // in the presence of inner classes. Should it be deleted here?
1186                  checkDisjoint(pos, flags,
1187                                ABSTRACT,
1188                                PRIVATE | STATIC | DEFAULT))
1189                 &&
1190                 checkDisjoint(pos, flags,
1191                                STATIC | PRIVATE,
1192                                DEFAULT)
1193                 &&
1194                 checkDisjoint(pos, flags,
1195                               ABSTRACT | INTERFACE,
1196                               FINAL | NATIVE | SYNCHRONIZED)
1197                 &&
1198                 checkDisjoint(pos, flags,
1199                               PUBLIC,
1200                               PRIVATE | PROTECTED)
1201                 &&
1202                 checkDisjoint(pos, flags,
1203                               PRIVATE,
1204                               PUBLIC | PROTECTED)
1205                 &&
1206                 checkDisjoint(pos, flags,
1207                               FINAL,
1208                               VOLATILE)
1209                 &&
1210                 (sym.kind == TYP ||
1211                  checkDisjoint(pos, flags,
1212                                ABSTRACT | NATIVE,
1213                                STRICTFP))) {
1214            // skip
1215        }
1216        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1217    }
1218
1219
1220    /** Determine if this enum should be implicitly final.
1221     *
1222     *  If the enum has no specialized enum contants, it is final.
1223     *
1224     *  If the enum does have specialized enum contants, it is
1225     *  <i>not</i> final.
1226     */
1227    private long implicitEnumFinalFlag(JCTree tree) {
1228        if (!tree.hasTag(CLASSDEF)) return 0;
1229        class SpecialTreeVisitor extends JCTree.Visitor {
1230            boolean specialized;
1231            SpecialTreeVisitor() {
1232                this.specialized = false;
1233            }
1234
1235            @Override
1236            public void visitTree(JCTree tree) { /* no-op */ }
1237
1238            @Override
1239            public void visitVarDef(JCVariableDecl tree) {
1240                if ((tree.mods.flags & ENUM) != 0) {
1241                    if (tree.init instanceof JCNewClass &&
1242                        ((JCNewClass) tree.init).def != null) {
1243                        specialized = true;
1244                    }
1245                }
1246            }
1247        }
1248
1249        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1250        JCClassDecl cdef = (JCClassDecl) tree;
1251        for (JCTree defs: cdef.defs) {
1252            defs.accept(sts);
1253            if (sts.specialized) return 0;
1254        }
1255        return FINAL;
1256    }
1257
1258/* *************************************************************************
1259 * Type Validation
1260 **************************************************************************/
1261
1262    /** Validate a type expression. That is,
1263     *  check that all type arguments of a parametric type are within
1264     *  their bounds. This must be done in a second phase after type attribution
1265     *  since a class might have a subclass as type parameter bound. E.g:
1266     *
1267     *  <pre>{@code
1268     *  class B<A extends C> { ... }
1269     *  class C extends B<C> { ... }
1270     *  }</pre>
1271     *
1272     *  and we can't make sure that the bound is already attributed because
1273     *  of possible cycles.
1274     *
1275     * Visitor method: Validate a type expression, if it is not null, catching
1276     *  and reporting any completion failures.
1277     */
1278    void validate(JCTree tree, Env<AttrContext> env) {
1279        validate(tree, env, true);
1280    }
1281    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1282        new Validator(env).validateTree(tree, checkRaw, true);
1283    }
1284
1285    /** Visitor method: Validate a list of type expressions.
1286     */
1287    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1288        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1289            validate(l.head, env);
1290    }
1291
1292    /** A visitor class for type validation.
1293     */
1294    class Validator extends JCTree.Visitor {
1295
1296        boolean checkRaw;
1297        boolean isOuter;
1298        Env<AttrContext> env;
1299
1300        Validator(Env<AttrContext> env) {
1301            this.env = env;
1302        }
1303
1304        @Override
1305        public void visitTypeArray(JCArrayTypeTree tree) {
1306            validateTree(tree.elemtype, checkRaw, isOuter);
1307        }
1308
1309        @Override
1310        public void visitTypeApply(JCTypeApply tree) {
1311            if (tree.type.hasTag(CLASS)) {
1312                List<JCExpression> args = tree.arguments;
1313                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1314
1315                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1316                if (incompatibleArg != null) {
1317                    for (JCTree arg : tree.arguments) {
1318                        if (arg.type == incompatibleArg) {
1319                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1320                        }
1321                        forms = forms.tail;
1322                     }
1323                 }
1324
1325                forms = tree.type.tsym.type.getTypeArguments();
1326
1327                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1328
1329                // For matching pairs of actual argument types `a' and
1330                // formal type parameters with declared bound `b' ...
1331                while (args.nonEmpty() && forms.nonEmpty()) {
1332                    validateTree(args.head,
1333                            !(isOuter && is_java_lang_Class),
1334                            false);
1335                    args = args.tail;
1336                    forms = forms.tail;
1337                }
1338
1339                // Check that this type is either fully parameterized, or
1340                // not parameterized at all.
1341                if (tree.type.getEnclosingType().isRaw())
1342                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1343                if (tree.clazz.hasTag(SELECT))
1344                    visitSelectInternal((JCFieldAccess)tree.clazz);
1345            }
1346        }
1347
1348        @Override
1349        public void visitTypeParameter(JCTypeParameter tree) {
1350            validateTrees(tree.bounds, true, isOuter);
1351            checkClassBounds(tree.pos(), tree.type);
1352        }
1353
1354        @Override
1355        public void visitWildcard(JCWildcard tree) {
1356            if (tree.inner != null)
1357                validateTree(tree.inner, true, isOuter);
1358        }
1359
1360        @Override
1361        public void visitSelect(JCFieldAccess tree) {
1362            if (tree.type.hasTag(CLASS)) {
1363                visitSelectInternal(tree);
1364
1365                // Check that this type is either fully parameterized, or
1366                // not parameterized at all.
1367                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1368                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1369            }
1370        }
1371
1372        public void visitSelectInternal(JCFieldAccess tree) {
1373            if (tree.type.tsym.isStatic() &&
1374                tree.selected.type.isParameterized()) {
1375                // The enclosing type is not a class, so we are
1376                // looking at a static member type.  However, the
1377                // qualifying expression is parameterized.
1378                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1379            } else {
1380                // otherwise validate the rest of the expression
1381                tree.selected.accept(this);
1382            }
1383        }
1384
1385        @Override
1386        public void visitAnnotatedType(JCAnnotatedType tree) {
1387            tree.underlyingType.accept(this);
1388        }
1389
1390        @Override
1391        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1392            if (that.type.hasTag(TypeTag.VOID)) {
1393                log.error(that.pos(), "void.not.allowed.here");
1394            }
1395            super.visitTypeIdent(that);
1396        }
1397
1398        /** Default visitor method: do nothing.
1399         */
1400        @Override
1401        public void visitTree(JCTree tree) {
1402        }
1403
1404        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1405            if (tree != null) {
1406                boolean prevCheckRaw = this.checkRaw;
1407                this.checkRaw = checkRaw;
1408                this.isOuter = isOuter;
1409
1410                try {
1411                    tree.accept(this);
1412                    if (checkRaw)
1413                        checkRaw(tree, env);
1414                } catch (CompletionFailure ex) {
1415                    completionError(tree.pos(), ex);
1416                } finally {
1417                    this.checkRaw = prevCheckRaw;
1418                }
1419            }
1420        }
1421
1422        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1423            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1424                validateTree(l.head, checkRaw, isOuter);
1425        }
1426    }
1427
1428    void checkRaw(JCTree tree, Env<AttrContext> env) {
1429        if (lint.isEnabled(LintCategory.RAW) &&
1430            tree.type.hasTag(CLASS) &&
1431            !TreeInfo.isDiamond(tree) &&
1432            !withinAnonConstr(env) &&
1433            tree.type.isRaw()) {
1434            log.warning(LintCategory.RAW,
1435                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1436        }
1437    }
1438    //where
1439        private boolean withinAnonConstr(Env<AttrContext> env) {
1440            return env.enclClass.name.isEmpty() &&
1441                    env.enclMethod != null && env.enclMethod.name == names.init;
1442        }
1443
1444/* *************************************************************************
1445 * Exception checking
1446 **************************************************************************/
1447
1448    /* The following methods treat classes as sets that contain
1449     * the class itself and all their subclasses
1450     */
1451
1452    /** Is given type a subtype of some of the types in given list?
1453     */
1454    boolean subset(Type t, List<Type> ts) {
1455        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1456            if (types.isSubtype(t, l.head)) return true;
1457        return false;
1458    }
1459
1460    /** Is given type a subtype or supertype of
1461     *  some of the types in given list?
1462     */
1463    boolean intersects(Type t, List<Type> ts) {
1464        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1465            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1466        return false;
1467    }
1468
1469    /** Add type set to given type list, unless it is a subclass of some class
1470     *  in the list.
1471     */
1472    List<Type> incl(Type t, List<Type> ts) {
1473        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1474    }
1475
1476    /** Remove type set from type set list.
1477     */
1478    List<Type> excl(Type t, List<Type> ts) {
1479        if (ts.isEmpty()) {
1480            return ts;
1481        } else {
1482            List<Type> ts1 = excl(t, ts.tail);
1483            if (types.isSubtype(ts.head, t)) return ts1;
1484            else if (ts1 == ts.tail) return ts;
1485            else return ts1.prepend(ts.head);
1486        }
1487    }
1488
1489    /** Form the union of two type set lists.
1490     */
1491    List<Type> union(List<Type> ts1, List<Type> ts2) {
1492        List<Type> ts = ts1;
1493        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1494            ts = incl(l.head, ts);
1495        return ts;
1496    }
1497
1498    /** Form the difference of two type lists.
1499     */
1500    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1501        List<Type> ts = ts1;
1502        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1503            ts = excl(l.head, ts);
1504        return ts;
1505    }
1506
1507    /** Form the intersection of two type lists.
1508     */
1509    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1510        List<Type> ts = List.nil();
1511        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1512            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1513        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1514            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1515        return ts;
1516    }
1517
1518    /** Is exc an exception symbol that need not be declared?
1519     */
1520    boolean isUnchecked(ClassSymbol exc) {
1521        return
1522            exc.kind == ERR ||
1523            exc.isSubClass(syms.errorType.tsym, types) ||
1524            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1525    }
1526
1527    /** Is exc an exception type that need not be declared?
1528     */
1529    boolean isUnchecked(Type exc) {
1530        return
1531            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1532            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1533            exc.hasTag(BOT);
1534    }
1535
1536    /** Same, but handling completion failures.
1537     */
1538    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1539        try {
1540            return isUnchecked(exc);
1541        } catch (CompletionFailure ex) {
1542            completionError(pos, ex);
1543            return true;
1544        }
1545    }
1546
1547    /** Is exc handled by given exception list?
1548     */
1549    boolean isHandled(Type exc, List<Type> handled) {
1550        return isUnchecked(exc) || subset(exc, handled);
1551    }
1552
1553    /** Return all exceptions in thrown list that are not in handled list.
1554     *  @param thrown     The list of thrown exceptions.
1555     *  @param handled    The list of handled exceptions.
1556     */
1557    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1558        List<Type> unhandled = List.nil();
1559        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1560            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1561        return unhandled;
1562    }
1563
1564/* *************************************************************************
1565 * Overriding/Implementation checking
1566 **************************************************************************/
1567
1568    /** The level of access protection given by a flag set,
1569     *  where PRIVATE is highest and PUBLIC is lowest.
1570     */
1571    static int protection(long flags) {
1572        switch ((short)(flags & AccessFlags)) {
1573        case PRIVATE: return 3;
1574        case PROTECTED: return 1;
1575        default:
1576        case PUBLIC: return 0;
1577        case 0: return 2;
1578        }
1579    }
1580
1581    /** A customized "cannot override" error message.
1582     *  @param m      The overriding method.
1583     *  @param other  The overridden method.
1584     *  @return       An internationalized string.
1585     */
1586    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1587        String key;
1588        if ((other.owner.flags() & INTERFACE) == 0)
1589            key = "cant.override";
1590        else if ((m.owner.flags() & INTERFACE) == 0)
1591            key = "cant.implement";
1592        else
1593            key = "clashes.with";
1594        return diags.fragment(key, m, m.location(), other, other.location());
1595    }
1596
1597    /** A customized "override" warning message.
1598     *  @param m      The overriding method.
1599     *  @param other  The overridden method.
1600     *  @return       An internationalized string.
1601     */
1602    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1603        String key;
1604        if ((other.owner.flags() & INTERFACE) == 0)
1605            key = "unchecked.override";
1606        else if ((m.owner.flags() & INTERFACE) == 0)
1607            key = "unchecked.implement";
1608        else
1609            key = "unchecked.clash.with";
1610        return diags.fragment(key, m, m.location(), other, other.location());
1611    }
1612
1613    /** A customized "override" warning message.
1614     *  @param m      The overriding method.
1615     *  @param other  The overridden method.
1616     *  @return       An internationalized string.
1617     */
1618    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1619        String key;
1620        if ((other.owner.flags() & INTERFACE) == 0)
1621            key = "varargs.override";
1622        else  if ((m.owner.flags() & INTERFACE) == 0)
1623            key = "varargs.implement";
1624        else
1625            key = "varargs.clash.with";
1626        return diags.fragment(key, m, m.location(), other, other.location());
1627    }
1628
1629    /** Check that this method conforms with overridden method 'other'.
1630     *  where `origin' is the class where checking started.
1631     *  Complications:
1632     *  (1) Do not check overriding of synthetic methods
1633     *      (reason: they might be final).
1634     *      todo: check whether this is still necessary.
1635     *  (2) Admit the case where an interface proxy throws fewer exceptions
1636     *      than the method it implements. Augment the proxy methods with the
1637     *      undeclared exceptions in this case.
1638     *  (3) When generics are enabled, admit the case where an interface proxy
1639     *      has a result type
1640     *      extended by the result type of the method it implements.
1641     *      Change the proxies result type to the smaller type in this case.
1642     *
1643     *  @param tree         The tree from which positions
1644     *                      are extracted for errors.
1645     *  @param m            The overriding method.
1646     *  @param other        The overridden method.
1647     *  @param origin       The class of which the overriding method
1648     *                      is a member.
1649     */
1650    void checkOverride(JCTree tree,
1651                       MethodSymbol m,
1652                       MethodSymbol other,
1653                       ClassSymbol origin) {
1654        // Don't check overriding of synthetic methods or by bridge methods.
1655        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1656            return;
1657        }
1658
1659        // Error if static method overrides instance method (JLS 8.4.6.2).
1660        if ((m.flags() & STATIC) != 0 &&
1661                   (other.flags() & STATIC) == 0) {
1662            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1663                      cannotOverride(m, other));
1664            m.flags_field |= BAD_OVERRIDE;
1665            return;
1666        }
1667
1668        // Error if instance method overrides static or final
1669        // method (JLS 8.4.6.1).
1670        if ((other.flags() & FINAL) != 0 ||
1671                 (m.flags() & STATIC) == 0 &&
1672                 (other.flags() & STATIC) != 0) {
1673            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1674                      cannotOverride(m, other),
1675                      asFlagSet(other.flags() & (FINAL | STATIC)));
1676            m.flags_field |= BAD_OVERRIDE;
1677            return;
1678        }
1679
1680        if ((m.owner.flags() & ANNOTATION) != 0) {
1681            // handled in validateAnnotationMethod
1682            return;
1683        }
1684
1685        // Error if overriding method has weaker access (JLS 8.4.6.3).
1686        if (protection(m.flags()) > protection(other.flags())) {
1687            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1688                      cannotOverride(m, other),
1689                      (other.flags() & AccessFlags) == 0 ?
1690                          "package" :
1691                          asFlagSet(other.flags() & AccessFlags));
1692            m.flags_field |= BAD_OVERRIDE;
1693            return;
1694        }
1695
1696        Type mt = types.memberType(origin.type, m);
1697        Type ot = types.memberType(origin.type, other);
1698        // Error if overriding result type is different
1699        // (or, in the case of generics mode, not a subtype) of
1700        // overridden result type. We have to rename any type parameters
1701        // before comparing types.
1702        List<Type> mtvars = mt.getTypeArguments();
1703        List<Type> otvars = ot.getTypeArguments();
1704        Type mtres = mt.getReturnType();
1705        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1706
1707        overrideWarner.clear();
1708        boolean resultTypesOK =
1709            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1710        if (!resultTypesOK) {
1711            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1712                      "override.incompatible.ret",
1713                      cannotOverride(m, other),
1714                      mtres, otres);
1715            m.flags_field |= BAD_OVERRIDE;
1716            return;
1717        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1718            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1719                    "override.unchecked.ret",
1720                    uncheckedOverrides(m, other),
1721                    mtres, otres);
1722        }
1723
1724        // Error if overriding method throws an exception not reported
1725        // by overridden method.
1726        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1727        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1728        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1729        if (unhandledErased.nonEmpty()) {
1730            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1731                      "override.meth.doesnt.throw",
1732                      cannotOverride(m, other),
1733                      unhandledUnerased.head);
1734            m.flags_field |= BAD_OVERRIDE;
1735            return;
1736        }
1737        else if (unhandledUnerased.nonEmpty()) {
1738            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1739                          "override.unchecked.thrown",
1740                         cannotOverride(m, other),
1741                         unhandledUnerased.head);
1742            return;
1743        }
1744
1745        // Optional warning if varargs don't agree
1746        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1747            && lint.isEnabled(LintCategory.OVERRIDES)) {
1748            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1749                        ((m.flags() & Flags.VARARGS) != 0)
1750                        ? "override.varargs.missing"
1751                        : "override.varargs.extra",
1752                        varargsOverrides(m, other));
1753        }
1754
1755        // Warn if instance method overrides bridge method (compiler spec ??)
1756        if ((other.flags() & BRIDGE) != 0) {
1757            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1758                        uncheckedOverrides(m, other));
1759        }
1760
1761        // Warn if a deprecated method overridden by a non-deprecated one.
1762        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1763            Lint prevLint = setLint(lint.augment(m));
1764            try {
1765                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1766            } finally {
1767                setLint(prevLint);
1768            }
1769        }
1770    }
1771    // where
1772        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1773            // If the method, m, is defined in an interface, then ignore the issue if the method
1774            // is only inherited via a supertype and also implemented in the supertype,
1775            // because in that case, we will rediscover the issue when examining the method
1776            // in the supertype.
1777            // If the method, m, is not defined in an interface, then the only time we need to
1778            // address the issue is when the method is the supertype implemementation: any other
1779            // case, we will have dealt with when examining the supertype classes
1780            ClassSymbol mc = m.enclClass();
1781            Type st = types.supertype(origin.type);
1782            if (!st.hasTag(CLASS))
1783                return true;
1784            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1785
1786            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1787                List<Type> intfs = types.interfaces(origin.type);
1788                return (intfs.contains(mc.type) ? false : (stimpl != null));
1789            }
1790            else
1791                return (stimpl != m);
1792        }
1793
1794
1795    // used to check if there were any unchecked conversions
1796    Warner overrideWarner = new Warner();
1797
1798    /** Check that a class does not inherit two concrete methods
1799     *  with the same signature.
1800     *  @param pos          Position to be used for error reporting.
1801     *  @param site         The class type to be checked.
1802     */
1803    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1804        Type sup = types.supertype(site);
1805        if (!sup.hasTag(CLASS)) return;
1806
1807        for (Type t1 = sup;
1808             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1809             t1 = types.supertype(t1)) {
1810            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1811                if (s1.kind != MTH ||
1812                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1813                    !s1.isInheritedIn(site.tsym, types) ||
1814                    ((MethodSymbol)s1).implementation(site.tsym,
1815                                                      types,
1816                                                      true) != s1)
1817                    continue;
1818                Type st1 = types.memberType(t1, s1);
1819                int s1ArgsLength = st1.getParameterTypes().length();
1820                if (st1 == s1.type) continue;
1821
1822                for (Type t2 = sup;
1823                     t2.hasTag(CLASS);
1824                     t2 = types.supertype(t2)) {
1825                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1826                        if (s2 == s1 ||
1827                            s2.kind != MTH ||
1828                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1829                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1830                            !s2.isInheritedIn(site.tsym, types) ||
1831                            ((MethodSymbol)s2).implementation(site.tsym,
1832                                                              types,
1833                                                              true) != s2)
1834                            continue;
1835                        Type st2 = types.memberType(t2, s2);
1836                        if (types.overrideEquivalent(st1, st2))
1837                            log.error(pos, "concrete.inheritance.conflict",
1838                                      s1, t1, s2, t2, sup);
1839                    }
1840                }
1841            }
1842        }
1843    }
1844
1845    /** Check that classes (or interfaces) do not each define an abstract
1846     *  method with same name and arguments but incompatible return types.
1847     *  @param pos          Position to be used for error reporting.
1848     *  @param t1           The first argument type.
1849     *  @param t2           The second argument type.
1850     */
1851    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1852                                            Type t1,
1853                                            Type t2,
1854                                            Type site) {
1855        if ((site.tsym.flags() & COMPOUND) != 0) {
1856            // special case for intersections: need to eliminate wildcards in supertypes
1857            t1 = types.capture(t1);
1858            t2 = types.capture(t2);
1859        }
1860        return firstIncompatibility(pos, t1, t2, site) == null;
1861    }
1862
1863    /** Return the first method which is defined with same args
1864     *  but different return types in two given interfaces, or null if none
1865     *  exists.
1866     *  @param t1     The first type.
1867     *  @param t2     The second type.
1868     *  @param site   The most derived type.
1869     *  @returns symbol from t2 that conflicts with one in t1.
1870     */
1871    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1872        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1873        closure(t1, interfaces1);
1874        Map<TypeSymbol,Type> interfaces2;
1875        if (t1 == t2)
1876            interfaces2 = interfaces1;
1877        else
1878            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1879
1880        for (Type t3 : interfaces1.values()) {
1881            for (Type t4 : interfaces2.values()) {
1882                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1883                if (s != null) return s;
1884            }
1885        }
1886        return null;
1887    }
1888
1889    /** Compute all the supertypes of t, indexed by type symbol. */
1890    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1891        if (!t.hasTag(CLASS)) return;
1892        if (typeMap.put(t.tsym, t) == null) {
1893            closure(types.supertype(t), typeMap);
1894            for (Type i : types.interfaces(t))
1895                closure(i, typeMap);
1896        }
1897    }
1898
1899    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1900    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1901        if (!t.hasTag(CLASS)) return;
1902        if (typesSkip.get(t.tsym) != null) return;
1903        if (typeMap.put(t.tsym, t) == null) {
1904            closure(types.supertype(t), typesSkip, typeMap);
1905            for (Type i : types.interfaces(t))
1906                closure(i, typesSkip, typeMap);
1907        }
1908    }
1909
1910    /** Return the first method in t2 that conflicts with a method from t1. */
1911    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1912        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1913            Type st1 = null;
1914            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1915                    (s1.flags() & SYNTHETIC) != 0) continue;
1916            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1917            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1918            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1919                if (s1 == s2) continue;
1920                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1921                        (s2.flags() & SYNTHETIC) != 0) continue;
1922                if (st1 == null) st1 = types.memberType(t1, s1);
1923                Type st2 = types.memberType(t2, s2);
1924                if (types.overrideEquivalent(st1, st2)) {
1925                    List<Type> tvars1 = st1.getTypeArguments();
1926                    List<Type> tvars2 = st2.getTypeArguments();
1927                    Type rt1 = st1.getReturnType();
1928                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1929                    boolean compat =
1930                        types.isSameType(rt1, rt2) ||
1931                        !rt1.isPrimitiveOrVoid() &&
1932                        !rt2.isPrimitiveOrVoid() &&
1933                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1934                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1935                         checkCommonOverriderIn(s1,s2,site);
1936                    if (!compat) {
1937                        log.error(pos, "types.incompatible.diff.ret",
1938                            t1, t2, s2.name +
1939                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1940                        return s2;
1941                    }
1942                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1943                        !checkCommonOverriderIn(s1, s2, site)) {
1944                    log.error(pos,
1945                            "name.clash.same.erasure.no.override",
1946                            s1, s1.location(),
1947                            s2, s2.location());
1948                    return s2;
1949                }
1950            }
1951        }
1952        return null;
1953    }
1954    //WHERE
1955    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1956        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1957        Type st1 = types.memberType(site, s1);
1958        Type st2 = types.memberType(site, s2);
1959        closure(site, supertypes);
1960        for (Type t : supertypes.values()) {
1961            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1962                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1963                Type st3 = types.memberType(site,s3);
1964                if (types.overrideEquivalent(st3, st1) &&
1965                        types.overrideEquivalent(st3, st2) &&
1966                        types.returnTypeSubstitutable(st3, st1) &&
1967                        types.returnTypeSubstitutable(st3, st2)) {
1968                    return true;
1969                }
1970            }
1971        }
1972        return false;
1973    }
1974
1975    /** Check that a given method conforms with any method it overrides.
1976     *  @param tree         The tree from which positions are extracted
1977     *                      for errors.
1978     *  @param m            The overriding method.
1979     */
1980    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
1981        ClassSymbol origin = (ClassSymbol)m.owner;
1982        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1983            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1984                log.error(tree.pos(), "enum.no.finalize");
1985                return;
1986            }
1987        for (Type t = origin.type; t.hasTag(CLASS);
1988             t = types.supertype(t)) {
1989            if (t != origin.type) {
1990                checkOverride(tree, t, origin, m);
1991            }
1992            for (Type t2 : types.interfaces(t)) {
1993                checkOverride(tree, t2, origin, m);
1994            }
1995        }
1996
1997        // Check if this method must override a super method due to being annotated with @Override
1998        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
1999        // be treated "as if as they were annotated" with @Override.
2000        boolean mustOverride = m.attribute(syms.overrideType.tsym) != null ||
2001                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2002        if (mustOverride && !isOverrider(m)) {
2003            DiagnosticPosition pos = tree.pos();
2004            for (JCAnnotation a : tree.getModifiers().annotations) {
2005                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2006                    pos = a.pos();
2007                    break;
2008                }
2009            }
2010            log.error(pos, "method.does.not.override.superclass");
2011        }
2012    }
2013
2014    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2015        TypeSymbol c = site.tsym;
2016        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2017            if (m.overrides(sym, origin, types, false)) {
2018                if ((sym.flags() & ABSTRACT) == 0) {
2019                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2020                }
2021            }
2022        }
2023    }
2024
2025    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2026        public boolean accepts(Symbol s) {
2027            return MethodSymbol.implementation_filter.accepts(s) &&
2028                    (s.flags() & BAD_OVERRIDE) == 0;
2029
2030        }
2031    };
2032
2033    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2034            ClassSymbol someClass) {
2035        /* At present, annotations cannot possibly have a method that is override
2036         * equivalent with Object.equals(Object) but in any case the condition is
2037         * fine for completeness.
2038         */
2039        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2040            someClass.isInterface() || someClass.isEnum() ||
2041            (someClass.flags() & ANNOTATION) != 0 ||
2042            (someClass.flags() & ABSTRACT) != 0) return;
2043        //anonymous inner classes implementing interfaces need especial treatment
2044        if (someClass.isAnonymous()) {
2045            List<Type> interfaces =  types.interfaces(someClass.type);
2046            if (interfaces != null && !interfaces.isEmpty() &&
2047                interfaces.head.tsym == syms.comparatorType.tsym) return;
2048        }
2049        checkClassOverrideEqualsAndHash(pos, someClass);
2050    }
2051
2052    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2053            ClassSymbol someClass) {
2054        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2055            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2056                    .tsym.members().findFirst(names.equals);
2057            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2058                    .tsym.members().findFirst(names.hashCode);
2059            boolean overridesEquals = types.implementation(equalsAtObject,
2060                someClass, false, equalsHasCodeFilter).owner == someClass;
2061            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2062                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2063
2064            if (overridesEquals && !overridesHashCode) {
2065                log.warning(LintCategory.OVERRIDES, pos,
2066                        "override.equals.but.not.hashcode", someClass);
2067            }
2068        }
2069    }
2070
2071    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2072        ClashFilter cf = new ClashFilter(origin.type);
2073        return (cf.accepts(s1) &&
2074                cf.accepts(s2) &&
2075                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2076    }
2077
2078
2079    /** Check that all abstract members of given class have definitions.
2080     *  @param pos          Position to be used for error reporting.
2081     *  @param c            The class.
2082     */
2083    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2084        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2085        if (undef != null) {
2086            MethodSymbol undef1 =
2087                new MethodSymbol(undef.flags(), undef.name,
2088                                 types.memberType(c.type, undef), undef.owner);
2089            log.error(pos, "does.not.override.abstract",
2090                      c, undef1, undef1.location());
2091        }
2092    }
2093
2094    void checkNonCyclicDecl(JCClassDecl tree) {
2095        CycleChecker cc = new CycleChecker();
2096        cc.scan(tree);
2097        if (!cc.errorFound && !cc.partialCheck) {
2098            tree.sym.flags_field |= ACYCLIC;
2099        }
2100    }
2101
2102    class CycleChecker extends TreeScanner {
2103
2104        List<Symbol> seenClasses = List.nil();
2105        boolean errorFound = false;
2106        boolean partialCheck = false;
2107
2108        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2109            if (sym != null && sym.kind == TYP) {
2110                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2111                if (classEnv != null) {
2112                    DiagnosticSource prevSource = log.currentSource();
2113                    try {
2114                        log.useSource(classEnv.toplevel.sourcefile);
2115                        scan(classEnv.tree);
2116                    }
2117                    finally {
2118                        log.useSource(prevSource.getFile());
2119                    }
2120                } else if (sym.kind == TYP) {
2121                    checkClass(pos, sym, List.<JCTree>nil());
2122                }
2123            } else {
2124                //not completed yet
2125                partialCheck = true;
2126            }
2127        }
2128
2129        @Override
2130        public void visitSelect(JCFieldAccess tree) {
2131            super.visitSelect(tree);
2132            checkSymbol(tree.pos(), tree.sym);
2133        }
2134
2135        @Override
2136        public void visitIdent(JCIdent tree) {
2137            checkSymbol(tree.pos(), tree.sym);
2138        }
2139
2140        @Override
2141        public void visitTypeApply(JCTypeApply tree) {
2142            scan(tree.clazz);
2143        }
2144
2145        @Override
2146        public void visitTypeArray(JCArrayTypeTree tree) {
2147            scan(tree.elemtype);
2148        }
2149
2150        @Override
2151        public void visitClassDef(JCClassDecl tree) {
2152            List<JCTree> supertypes = List.nil();
2153            if (tree.getExtendsClause() != null) {
2154                supertypes = supertypes.prepend(tree.getExtendsClause());
2155            }
2156            if (tree.getImplementsClause() != null) {
2157                for (JCTree intf : tree.getImplementsClause()) {
2158                    supertypes = supertypes.prepend(intf);
2159                }
2160            }
2161            checkClass(tree.pos(), tree.sym, supertypes);
2162        }
2163
2164        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2165            if ((c.flags_field & ACYCLIC) != 0)
2166                return;
2167            if (seenClasses.contains(c)) {
2168                errorFound = true;
2169                noteCyclic(pos, (ClassSymbol)c);
2170            } else if (!c.type.isErroneous()) {
2171                try {
2172                    seenClasses = seenClasses.prepend(c);
2173                    if (c.type.hasTag(CLASS)) {
2174                        if (supertypes.nonEmpty()) {
2175                            scan(supertypes);
2176                        }
2177                        else {
2178                            ClassType ct = (ClassType)c.type;
2179                            if (ct.supertype_field == null ||
2180                                    ct.interfaces_field == null) {
2181                                //not completed yet
2182                                partialCheck = true;
2183                                return;
2184                            }
2185                            checkSymbol(pos, ct.supertype_field.tsym);
2186                            for (Type intf : ct.interfaces_field) {
2187                                checkSymbol(pos, intf.tsym);
2188                            }
2189                        }
2190                        if (c.owner.kind == TYP) {
2191                            checkSymbol(pos, c.owner);
2192                        }
2193                    }
2194                } finally {
2195                    seenClasses = seenClasses.tail;
2196                }
2197            }
2198        }
2199    }
2200
2201    /** Check for cyclic references. Issue an error if the
2202     *  symbol of the type referred to has a LOCKED flag set.
2203     *
2204     *  @param pos      Position to be used for error reporting.
2205     *  @param t        The type referred to.
2206     */
2207    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2208        checkNonCyclicInternal(pos, t);
2209    }
2210
2211
2212    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2213        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2214    }
2215
2216    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2217        final TypeVar tv;
2218        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2219            return;
2220        if (seen.contains(t)) {
2221            tv = (TypeVar)t;
2222            tv.bound = types.createErrorType(t);
2223            log.error(pos, "cyclic.inheritance", t);
2224        } else if (t.hasTag(TYPEVAR)) {
2225            tv = (TypeVar)t;
2226            seen = seen.prepend(tv);
2227            for (Type b : types.getBounds(tv))
2228                checkNonCyclic1(pos, b, seen);
2229        }
2230    }
2231
2232    /** Check for cyclic references. Issue an error if the
2233     *  symbol of the type referred to has a LOCKED flag set.
2234     *
2235     *  @param pos      Position to be used for error reporting.
2236     *  @param t        The type referred to.
2237     *  @returns        True if the check completed on all attributed classes
2238     */
2239    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2240        boolean complete = true; // was the check complete?
2241        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2242        Symbol c = t.tsym;
2243        if ((c.flags_field & ACYCLIC) != 0) return true;
2244
2245        if ((c.flags_field & LOCKED) != 0) {
2246            noteCyclic(pos, (ClassSymbol)c);
2247        } else if (!c.type.isErroneous()) {
2248            try {
2249                c.flags_field |= LOCKED;
2250                if (c.type.hasTag(CLASS)) {
2251                    ClassType clazz = (ClassType)c.type;
2252                    if (clazz.interfaces_field != null)
2253                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2254                            complete &= checkNonCyclicInternal(pos, l.head);
2255                    if (clazz.supertype_field != null) {
2256                        Type st = clazz.supertype_field;
2257                        if (st != null && st.hasTag(CLASS))
2258                            complete &= checkNonCyclicInternal(pos, st);
2259                    }
2260                    if (c.owner.kind == TYP)
2261                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2262                }
2263            } finally {
2264                c.flags_field &= ~LOCKED;
2265            }
2266        }
2267        if (complete)
2268            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
2269        if (complete) c.flags_field |= ACYCLIC;
2270        return complete;
2271    }
2272
2273    /** Note that we found an inheritance cycle. */
2274    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2275        log.error(pos, "cyclic.inheritance", c);
2276        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2277            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2278        Type st = types.supertype(c.type);
2279        if (st.hasTag(CLASS))
2280            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2281        c.type = types.createErrorType(c, c.type);
2282        c.flags_field |= ACYCLIC;
2283    }
2284
2285    /** Check that all methods which implement some
2286     *  method conform to the method they implement.
2287     *  @param tree         The class definition whose members are checked.
2288     */
2289    void checkImplementations(JCClassDecl tree) {
2290        checkImplementations(tree, tree.sym, tree.sym);
2291    }
2292    //where
2293        /** Check that all methods which implement some
2294         *  method in `ic' conform to the method they implement.
2295         */
2296        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2297            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2298                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2299                if ((lc.flags() & ABSTRACT) != 0) {
2300                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2301                        if (sym.kind == MTH &&
2302                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2303                            MethodSymbol absmeth = (MethodSymbol)sym;
2304                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2305                            if (implmeth != null && implmeth != absmeth &&
2306                                (implmeth.owner.flags() & INTERFACE) ==
2307                                (origin.flags() & INTERFACE)) {
2308                                // don't check if implmeth is in a class, yet
2309                                // origin is an interface. This case arises only
2310                                // if implmeth is declared in Object. The reason is
2311                                // that interfaces really don't inherit from
2312                                // Object it's just that the compiler represents
2313                                // things that way.
2314                                checkOverride(tree, implmeth, absmeth, origin);
2315                            }
2316                        }
2317                    }
2318                }
2319            }
2320        }
2321
2322    /** Check that all abstract methods implemented by a class are
2323     *  mutually compatible.
2324     *  @param pos          Position to be used for error reporting.
2325     *  @param c            The class whose interfaces are checked.
2326     */
2327    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2328        List<Type> supertypes = types.interfaces(c);
2329        Type supertype = types.supertype(c);
2330        if (supertype.hasTag(CLASS) &&
2331            (supertype.tsym.flags() & ABSTRACT) != 0)
2332            supertypes = supertypes.prepend(supertype);
2333        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2334            if (!l.head.getTypeArguments().isEmpty() &&
2335                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2336                return;
2337            for (List<Type> m = supertypes; m != l; m = m.tail)
2338                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2339                    return;
2340        }
2341        checkCompatibleConcretes(pos, c);
2342    }
2343
2344    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2345        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2346            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2347                // VM allows methods and variables with differing types
2348                if (sym.kind == sym2.kind &&
2349                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2350                    sym != sym2 &&
2351                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2352                    (sym.flags() & IPROXY) == 0 && (sym2.flags() & IPROXY) == 0 &&
2353                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2354                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2355                    return;
2356                }
2357            }
2358        }
2359    }
2360
2361    /** Check that all non-override equivalent methods accessible from 'site'
2362     *  are mutually compatible (JLS 8.4.8/9.4.1).
2363     *
2364     *  @param pos  Position to be used for error reporting.
2365     *  @param site The class whose methods are checked.
2366     *  @param sym  The method symbol to be checked.
2367     */
2368    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2369         ClashFilter cf = new ClashFilter(site);
2370        //for each method m1 that is overridden (directly or indirectly)
2371        //by method 'sym' in 'site'...
2372
2373        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2374        boolean overridesAny = false;
2375        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2376            if (!sym.overrides(m1, site.tsym, types, false)) {
2377                if (m1 == sym) {
2378                    continue;
2379                }
2380
2381                if (!overridesAny) {
2382                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2383                }
2384                continue;
2385            }
2386
2387            if (m1 != sym) {
2388                overridesAny = true;
2389                potentiallyAmbiguousList = List.nil();
2390            }
2391
2392            //...check each method m2 that is a member of 'site'
2393            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2394                if (m2 == m1) continue;
2395                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2396                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2397                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2398                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2399                    sym.flags_field |= CLASH;
2400                    String key = m1 == sym ?
2401                            "name.clash.same.erasure.no.override" :
2402                            "name.clash.same.erasure.no.override.1";
2403                    log.error(pos,
2404                            key,
2405                            sym, sym.location(),
2406                            m2, m2.location(),
2407                            m1, m1.location());
2408                    return;
2409                }
2410            }
2411        }
2412
2413        if (!overridesAny) {
2414            for (MethodSymbol m: potentiallyAmbiguousList) {
2415                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2416            }
2417        }
2418    }
2419
2420    /** Check that all static methods accessible from 'site' are
2421     *  mutually compatible (JLS 8.4.8).
2422     *
2423     *  @param pos  Position to be used for error reporting.
2424     *  @param site The class whose methods are checked.
2425     *  @param sym  The method symbol to be checked.
2426     */
2427    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2428        ClashFilter cf = new ClashFilter(site);
2429        //for each method m1 that is a member of 'site'...
2430        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2431            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2432            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2433            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2434                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2435                    log.error(pos,
2436                            "name.clash.same.erasure.no.hide",
2437                            sym, sym.location(),
2438                            s, s.location());
2439                    return;
2440                } else {
2441                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2442                }
2443            }
2444         }
2445     }
2446
2447     //where
2448     private class ClashFilter implements Filter<Symbol> {
2449
2450         Type site;
2451
2452         ClashFilter(Type site) {
2453             this.site = site;
2454         }
2455
2456         boolean shouldSkip(Symbol s) {
2457             return (s.flags() & CLASH) != 0 &&
2458                s.owner == site.tsym;
2459         }
2460
2461         public boolean accepts(Symbol s) {
2462             return s.kind == MTH &&
2463                     (s.flags() & SYNTHETIC) == 0 &&
2464                     !shouldSkip(s) &&
2465                     s.isInheritedIn(site.tsym, types) &&
2466                     !s.isConstructor();
2467         }
2468     }
2469
2470    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2471        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2472        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2473            Assert.check(m.kind == MTH);
2474            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2475            if (prov.size() > 1) {
2476                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2477                ListBuffer<Symbol> defaults = new ListBuffer<>();
2478                for (MethodSymbol provSym : prov) {
2479                    if ((provSym.flags() & DEFAULT) != 0) {
2480                        defaults = defaults.append(provSym);
2481                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2482                        abstracts = abstracts.append(provSym);
2483                    }
2484                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2485                        //strong semantics - issue an error if two sibling interfaces
2486                        //have two override-equivalent defaults - or if one is abstract
2487                        //and the other is default
2488                        String errKey;
2489                        Symbol s1 = defaults.first();
2490                        Symbol s2;
2491                        if (defaults.size() > 1) {
2492                            errKey = "types.incompatible.unrelated.defaults";
2493                            s2 = defaults.toList().tail.head;
2494                        } else {
2495                            errKey = "types.incompatible.abstract.default";
2496                            s2 = abstracts.first();
2497                        }
2498                        log.error(pos, errKey,
2499                                Kinds.kindName(site.tsym), site,
2500                                m.name, types.memberType(site, m).getParameterTypes(),
2501                                s1.location(), s2.location());
2502                        break;
2503                    }
2504                }
2505            }
2506        }
2507    }
2508
2509    //where
2510     private class DefaultMethodClashFilter implements Filter<Symbol> {
2511
2512         Type site;
2513
2514         DefaultMethodClashFilter(Type site) {
2515             this.site = site;
2516         }
2517
2518         public boolean accepts(Symbol s) {
2519             return s.kind == MTH &&
2520                     (s.flags() & DEFAULT) != 0 &&
2521                     s.isInheritedIn(site.tsym, types) &&
2522                     !s.isConstructor();
2523         }
2524     }
2525
2526    /**
2527      * Report warnings for potentially ambiguous method declarations. Two declarations
2528      * are potentially ambiguous if they feature two unrelated functional interface
2529      * in same argument position (in which case, a call site passing an implicit
2530      * lambda would be ambiguous).
2531      */
2532    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2533            MethodSymbol msym1, MethodSymbol msym2) {
2534        if (msym1 != msym2 &&
2535                allowDefaultMethods &&
2536                lint.isEnabled(LintCategory.OVERLOADS) &&
2537                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2538                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2539            Type mt1 = types.memberType(site, msym1);
2540            Type mt2 = types.memberType(site, msym2);
2541            //if both generic methods, adjust type variables
2542            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2543                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2544                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2545            }
2546            //expand varargs methods if needed
2547            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2548            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2549            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2550            //if arities don't match, exit
2551            if (args1.length() != args2.length()) return;
2552            boolean potentiallyAmbiguous = false;
2553            while (args1.nonEmpty() && args2.nonEmpty()) {
2554                Type s = args1.head;
2555                Type t = args2.head;
2556                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2557                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2558                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2559                            types.findDescriptorType(s).getParameterTypes().length() ==
2560                            types.findDescriptorType(t).getParameterTypes().length()) {
2561                        potentiallyAmbiguous = true;
2562                    } else {
2563                        break;
2564                    }
2565                }
2566                args1 = args1.tail;
2567                args2 = args2.tail;
2568            }
2569            if (potentiallyAmbiguous) {
2570                //we found two incompatible functional interfaces with same arity
2571                //this means a call site passing an implicit lambda would be ambigiuous
2572                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2573                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2574                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2575                            msym1, msym1.location(),
2576                            msym2, msym2.location());
2577                return;
2578            }
2579        }
2580    }
2581
2582    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2583        if (warnOnAccessToSensitiveMembers) {
2584            Symbol sym = TreeInfo.symbol(tree);
2585            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2586                return;
2587            }
2588
2589            if (sym.kind == VAR) {
2590                if ((sym.flags() & PARAMETER) != 0 ||
2591                    sym.isLocal() ||
2592                    sym.name == names._this ||
2593                    sym.name == names._super) {
2594                    return;
2595                }
2596            }
2597
2598            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2599                    isEffectivelyNonPublic(sym)) {
2600                log.warning(tree.pos(),
2601                        "access.to.sensitive.member.from.serializable.element", sym);
2602            }
2603        }
2604    }
2605
2606    private boolean isEffectivelyNonPublic(Symbol sym) {
2607        if (sym.packge() == syms.rootPackage) {
2608            return false;
2609        }
2610
2611        while (sym.kind != PCK) {
2612            if ((sym.flags() & PUBLIC) == 0) {
2613                return true;
2614            }
2615            sym = sym.owner;
2616        }
2617        return false;
2618    }
2619
2620    /** Report a conflict between a user symbol and a synthetic symbol.
2621     */
2622    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2623        if (!sym.type.isErroneous()) {
2624            if (warnOnSyntheticConflicts) {
2625                log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2626            }
2627            else {
2628                log.error(pos, "synthetic.name.conflict", sym, sym.location());
2629            }
2630        }
2631    }
2632
2633    /** Check that class c does not implement directly or indirectly
2634     *  the same parameterized interface with two different argument lists.
2635     *  @param pos          Position to be used for error reporting.
2636     *  @param type         The type whose interfaces are checked.
2637     */
2638    void checkClassBounds(DiagnosticPosition pos, Type type) {
2639        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2640    }
2641//where
2642        /** Enter all interfaces of type `type' into the hash table `seensofar'
2643         *  with their class symbol as key and their type as value. Make
2644         *  sure no class is entered with two different types.
2645         */
2646        void checkClassBounds(DiagnosticPosition pos,
2647                              Map<TypeSymbol,Type> seensofar,
2648                              Type type) {
2649            if (type.isErroneous()) return;
2650            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2651                Type it = l.head;
2652                Type oldit = seensofar.put(it.tsym, it);
2653                if (oldit != null) {
2654                    List<Type> oldparams = oldit.allparams();
2655                    List<Type> newparams = it.allparams();
2656                    if (!types.containsTypeEquivalent(oldparams, newparams))
2657                        log.error(pos, "cant.inherit.diff.arg",
2658                                  it.tsym, Type.toString(oldparams),
2659                                  Type.toString(newparams));
2660                }
2661                checkClassBounds(pos, seensofar, it);
2662            }
2663            Type st = types.supertype(type);
2664            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2665        }
2666
2667    /** Enter interface into into set.
2668     *  If it existed already, issue a "repeated interface" error.
2669     */
2670    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2671        if (its.contains(it))
2672            log.error(pos, "repeated.interface");
2673        else {
2674            its.add(it);
2675        }
2676    }
2677
2678/* *************************************************************************
2679 * Check annotations
2680 **************************************************************************/
2681
2682    /**
2683     * Recursively validate annotations values
2684     */
2685    void validateAnnotationTree(JCTree tree) {
2686        class AnnotationValidator extends TreeScanner {
2687            @Override
2688            public void visitAnnotation(JCAnnotation tree) {
2689                if (!tree.type.isErroneous()) {
2690                    super.visitAnnotation(tree);
2691                    validateAnnotation(tree);
2692                }
2693            }
2694        }
2695        tree.accept(new AnnotationValidator());
2696    }
2697
2698    /**
2699     *  {@literal
2700     *  Annotation types are restricted to primitives, String, an
2701     *  enum, an annotation, Class, Class<?>, Class<? extends
2702     *  Anything>, arrays of the preceding.
2703     *  }
2704     */
2705    void validateAnnotationType(JCTree restype) {
2706        // restype may be null if an error occurred, so don't bother validating it
2707        if (restype != null) {
2708            validateAnnotationType(restype.pos(), restype.type);
2709        }
2710    }
2711
2712    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2713        if (type.isPrimitive()) return;
2714        if (types.isSameType(type, syms.stringType)) return;
2715        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2716        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2717        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2718        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2719            validateAnnotationType(pos, types.elemtype(type));
2720            return;
2721        }
2722        log.error(pos, "invalid.annotation.member.type");
2723    }
2724
2725    /**
2726     * "It is also a compile-time error if any method declared in an
2727     * annotation type has a signature that is override-equivalent to
2728     * that of any public or protected method declared in class Object
2729     * or in the interface annotation.Annotation."
2730     *
2731     * @jls 9.6 Annotation Types
2732     */
2733    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2734        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2735            Scope s = sup.tsym.members();
2736            for (Symbol sym : s.getSymbolsByName(m.name)) {
2737                if (sym.kind == MTH &&
2738                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2739                    types.overrideEquivalent(m.type, sym.type))
2740                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2741            }
2742        }
2743    }
2744
2745    /** Check the annotations of a symbol.
2746     */
2747    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2748        for (JCAnnotation a : annotations)
2749            validateAnnotation(a, s);
2750    }
2751
2752    /** Check the type annotations.
2753     */
2754    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2755        for (JCAnnotation a : annotations)
2756            validateTypeAnnotation(a, isTypeParameter);
2757    }
2758
2759    /** Check an annotation of a symbol.
2760     */
2761    private void validateAnnotation(JCAnnotation a, Symbol s) {
2762        validateAnnotationTree(a);
2763
2764        if (!annotationApplicable(a, s))
2765            log.error(a.pos(), "annotation.type.not.applicable");
2766
2767        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2768            if (s.kind != TYP) {
2769                log.error(a.pos(), "bad.functional.intf.anno");
2770            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2771                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2772            }
2773        }
2774    }
2775
2776    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2777        Assert.checkNonNull(a.type);
2778        validateAnnotationTree(a);
2779
2780        if (a.hasTag(TYPE_ANNOTATION) &&
2781                !a.annotationType.type.isErroneous() &&
2782                !isTypeAnnotation(a, isTypeParameter)) {
2783            log.error(a.pos(), "annotation.type.not.applicable");
2784        }
2785    }
2786
2787    /**
2788     * Validate the proposed container 'repeatable' on the
2789     * annotation type symbol 's'. Report errors at position
2790     * 'pos'.
2791     *
2792     * @param s The (annotation)type declaration annotated with a @Repeatable
2793     * @param repeatable the @Repeatable on 's'
2794     * @param pos where to report errors
2795     */
2796    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2797        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2798
2799        Type t = null;
2800        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2801        if (!l.isEmpty()) {
2802            Assert.check(l.head.fst.name == names.value);
2803            t = ((Attribute.Class)l.head.snd).getValue();
2804        }
2805
2806        if (t == null) {
2807            // errors should already have been reported during Annotate
2808            return;
2809        }
2810
2811        validateValue(t.tsym, s, pos);
2812        validateRetention(t.tsym, s, pos);
2813        validateDocumented(t.tsym, s, pos);
2814        validateInherited(t.tsym, s, pos);
2815        validateTarget(t.tsym, s, pos);
2816        validateDefault(t.tsym, pos);
2817    }
2818
2819    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2820        Symbol sym = container.members().findFirst(names.value);
2821        if (sym != null && sym.kind == MTH) {
2822            MethodSymbol m = (MethodSymbol) sym;
2823            Type ret = m.getReturnType();
2824            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2825                log.error(pos, "invalid.repeatable.annotation.value.return",
2826                        container, ret, types.makeArrayType(contained.type));
2827            }
2828        } else {
2829            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2830        }
2831    }
2832
2833    private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
2834        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2835        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2836
2837        boolean error = false;
2838        switch (containedRetention) {
2839        case RUNTIME:
2840            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2841                error = true;
2842            }
2843            break;
2844        case CLASS:
2845            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2846                error = true;
2847            }
2848        }
2849        if (error ) {
2850            log.error(pos, "invalid.repeatable.annotation.retention",
2851                      container, containerRetention,
2852                      contained, containedRetention);
2853        }
2854    }
2855
2856    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2857        if (contained.attribute(syms.documentedType.tsym) != null) {
2858            if (container.attribute(syms.documentedType.tsym) == null) {
2859                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2860            }
2861        }
2862    }
2863
2864    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2865        if (contained.attribute(syms.inheritedType.tsym) != null) {
2866            if (container.attribute(syms.inheritedType.tsym) == null) {
2867                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2868            }
2869        }
2870    }
2871
2872    private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
2873        // The set of targets the container is applicable to must be a subset
2874        // (with respect to annotation target semantics) of the set of targets
2875        // the contained is applicable to. The target sets may be implicit or
2876        // explicit.
2877
2878        Set<Name> containerTargets;
2879        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2880        if (containerTarget == null) {
2881            containerTargets = getDefaultTargetSet();
2882        } else {
2883            containerTargets = new HashSet<>();
2884            for (Attribute app : containerTarget.values) {
2885                if (!(app instanceof Attribute.Enum)) {
2886                    continue; // recovery
2887                }
2888                Attribute.Enum e = (Attribute.Enum)app;
2889                containerTargets.add(e.value.name);
2890            }
2891        }
2892
2893        Set<Name> containedTargets;
2894        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2895        if (containedTarget == null) {
2896            containedTargets = getDefaultTargetSet();
2897        } else {
2898            containedTargets = new HashSet<>();
2899            for (Attribute app : containedTarget.values) {
2900                if (!(app instanceof Attribute.Enum)) {
2901                    continue; // recovery
2902                }
2903                Attribute.Enum e = (Attribute.Enum)app;
2904                containedTargets.add(e.value.name);
2905            }
2906        }
2907
2908        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2909            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2910        }
2911    }
2912
2913    /* get a set of names for the default target */
2914    private Set<Name> getDefaultTargetSet() {
2915        if (defaultTargets == null) {
2916            Set<Name> targets = new HashSet<>();
2917            targets.add(names.ANNOTATION_TYPE);
2918            targets.add(names.CONSTRUCTOR);
2919            targets.add(names.FIELD);
2920            targets.add(names.LOCAL_VARIABLE);
2921            targets.add(names.METHOD);
2922            targets.add(names.PACKAGE);
2923            targets.add(names.PARAMETER);
2924            targets.add(names.TYPE);
2925
2926            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2927        }
2928
2929        return defaultTargets;
2930    }
2931    private Set<Name> defaultTargets;
2932
2933
2934    /** Checks that s is a subset of t, with respect to ElementType
2935     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2936     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2937     * TYPE_PARAMETER}.
2938     */
2939    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2940        // Check that all elements in s are present in t
2941        for (Name n2 : s) {
2942            boolean currentElementOk = false;
2943            for (Name n1 : t) {
2944                if (n1 == n2) {
2945                    currentElementOk = true;
2946                    break;
2947                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2948                    currentElementOk = true;
2949                    break;
2950                } else if (n1 == names.TYPE_USE &&
2951                        (n2 == names.TYPE ||
2952                         n2 == names.ANNOTATION_TYPE ||
2953                         n2 == names.TYPE_PARAMETER)) {
2954                    currentElementOk = true;
2955                    break;
2956                }
2957            }
2958            if (!currentElementOk)
2959                return false;
2960        }
2961        return true;
2962    }
2963
2964    private void validateDefault(Symbol container, DiagnosticPosition pos) {
2965        // validate that all other elements of containing type has defaults
2966        Scope scope = container.members();
2967        for(Symbol elm : scope.getSymbols()) {
2968            if (elm.name != names.value &&
2969                elm.kind == MTH &&
2970                ((MethodSymbol)elm).defaultValue == null) {
2971                log.error(pos,
2972                          "invalid.repeatable.annotation.elem.nondefault",
2973                          container,
2974                          elm);
2975            }
2976        }
2977    }
2978
2979    /** Is s a method symbol that overrides a method in a superclass? */
2980    boolean isOverrider(Symbol s) {
2981        if (s.kind != MTH || s.isStatic())
2982            return false;
2983        MethodSymbol m = (MethodSymbol)s;
2984        TypeSymbol owner = (TypeSymbol)m.owner;
2985        for (Type sup : types.closure(owner.type)) {
2986            if (sup == owner.type)
2987                continue; // skip "this"
2988            Scope scope = sup.tsym.members();
2989            for (Symbol sym : scope.getSymbolsByName(m.name)) {
2990                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
2991                    return true;
2992            }
2993        }
2994        return false;
2995    }
2996
2997    /** Is the annotation applicable to types? */
2998    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2999        Attribute.Compound atTarget =
3000            a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
3001        if (atTarget == null) {
3002            // An annotation without @Target is not a type annotation.
3003            return false;
3004        }
3005
3006        Attribute atValue = atTarget.member(names.value);
3007        if (!(atValue instanceof Attribute.Array)) {
3008            return false; // error recovery
3009        }
3010
3011        Attribute.Array arr = (Attribute.Array) atValue;
3012        for (Attribute app : arr.values) {
3013            if (!(app instanceof Attribute.Enum)) {
3014                return false; // recovery
3015            }
3016            Attribute.Enum e = (Attribute.Enum) app;
3017
3018            if (e.value.name == names.TYPE_USE)
3019                return true;
3020            else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
3021                return true;
3022        }
3023        return false;
3024    }
3025
3026    /** Is the annotation applicable to the symbol? */
3027    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3028        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3029        Name[] targets;
3030
3031        if (arr == null) {
3032            targets = defaultTargetMetaInfo(a, s);
3033        } else {
3034            // TODO: can we optimize this?
3035            targets = new Name[arr.values.length];
3036            for (int i=0; i<arr.values.length; ++i) {
3037                Attribute app = arr.values[i];
3038                if (!(app instanceof Attribute.Enum)) {
3039                    return true; // recovery
3040                }
3041                Attribute.Enum e = (Attribute.Enum) app;
3042                targets[i] = e.value.name;
3043            }
3044        }
3045        for (Name target : targets) {
3046            if (target == names.TYPE)
3047                { if (s.kind == TYP) return true; }
3048            else if (target == names.FIELD)
3049                { if (s.kind == VAR && s.owner.kind != MTH) return true; }
3050            else if (target == names.METHOD)
3051                { if (s.kind == MTH && !s.isConstructor()) return true; }
3052            else if (target == names.PARAMETER)
3053                { if (s.kind == VAR && s.owner.kind == MTH &&
3054                      (s.flags() & PARAMETER) != 0)
3055                    return true;
3056                }
3057            else if (target == names.CONSTRUCTOR)
3058                { if (s.kind == MTH && s.isConstructor()) return true; }
3059            else if (target == names.LOCAL_VARIABLE)
3060                { if (s.kind == VAR && s.owner.kind == MTH &&
3061                      (s.flags() & PARAMETER) == 0)
3062                    return true;
3063                }
3064            else if (target == names.ANNOTATION_TYPE)
3065                { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
3066                    return true;
3067                }
3068            else if (target == names.PACKAGE)
3069                { if (s.kind == PCK) return true; }
3070            else if (target == names.TYPE_USE)
3071                { if (s.kind == TYP || s.kind == VAR ||
3072                      (s.kind == MTH && !s.isConstructor() &&
3073                      !s.type.getReturnType().hasTag(VOID)) ||
3074                      (s.kind == MTH && s.isConstructor()))
3075                    return true;
3076                }
3077            else if (target == names.TYPE_PARAMETER)
3078                { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3079                    return true;
3080                }
3081            else
3082                return true; // recovery
3083        }
3084        return false;
3085    }
3086
3087
3088    Attribute.Array getAttributeTargetAttribute(Symbol s) {
3089        Attribute.Compound atTarget =
3090            s.attribute(syms.annotationTargetType.tsym);
3091        if (atTarget == null) return null; // ok, is applicable
3092        Attribute atValue = atTarget.member(names.value);
3093        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3094        return (Attribute.Array) atValue;
3095    }
3096
3097    private final Name[] dfltTargetMeta;
3098    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3099        return dfltTargetMeta;
3100    }
3101
3102    /** Check an annotation value.
3103     *
3104     * @param a The annotation tree to check
3105     * @return true if this annotation tree is valid, otherwise false
3106     */
3107    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3108        boolean res = false;
3109        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3110        try {
3111            res = validateAnnotation(a);
3112        } finally {
3113            log.popDiagnosticHandler(diagHandler);
3114        }
3115        return res;
3116    }
3117
3118    private boolean validateAnnotation(JCAnnotation a) {
3119        boolean isValid = true;
3120        // collect an inventory of the annotation elements
3121        Set<MethodSymbol> members = new LinkedHashSet<>();
3122        for (Symbol sym : a.annotationType.type.tsym.members().getSymbols(NON_RECURSIVE))
3123            if (sym.kind == MTH && sym.name != names.clinit &&
3124                    (sym.flags() & SYNTHETIC) == 0)
3125                members.add((MethodSymbol) sym);
3126
3127        // remove the ones that are assigned values
3128        for (JCTree arg : a.args) {
3129            if (!arg.hasTag(ASSIGN)) continue; // recovery
3130            JCAssign assign = (JCAssign) arg;
3131            Symbol m = TreeInfo.symbol(assign.lhs);
3132            if (m == null || m.type.isErroneous()) continue;
3133            if (!members.remove(m)) {
3134                isValid = false;
3135                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3136                          m.name, a.type);
3137            }
3138        }
3139
3140        // all the remaining ones better have default values
3141        List<Name> missingDefaults = List.nil();
3142        for (MethodSymbol m : members) {
3143            if (m.defaultValue == null && !m.type.isErroneous()) {
3144                missingDefaults = missingDefaults.append(m.name);
3145            }
3146        }
3147        missingDefaults = missingDefaults.reverse();
3148        if (missingDefaults.nonEmpty()) {
3149            isValid = false;
3150            String key = (missingDefaults.size() > 1)
3151                    ? "annotation.missing.default.value.1"
3152                    : "annotation.missing.default.value";
3153            log.error(a.pos(), key, a.type, missingDefaults);
3154        }
3155
3156        // special case: java.lang.annotation.Target must not have
3157        // repeated values in its value member
3158        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3159            a.args.tail == null)
3160            return isValid;
3161
3162        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3163        JCAssign assign = (JCAssign) a.args.head;
3164        Symbol m = TreeInfo.symbol(assign.lhs);
3165        if (m.name != names.value) return false;
3166        JCTree rhs = assign.rhs;
3167        if (!rhs.hasTag(NEWARRAY)) return false;
3168        JCNewArray na = (JCNewArray) rhs;
3169        Set<Symbol> targets = new HashSet<>();
3170        for (JCTree elem : na.elems) {
3171            if (!targets.add(TreeInfo.symbol(elem))) {
3172                isValid = false;
3173                log.error(elem.pos(), "repeated.annotation.target");
3174            }
3175        }
3176        return isValid;
3177    }
3178
3179    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3180        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3181            (s.flags() & DEPRECATED) != 0 &&
3182            !syms.deprecatedType.isErroneous() &&
3183            s.attribute(syms.deprecatedType.tsym) == null) {
3184            log.warning(LintCategory.DEP_ANN,
3185                    pos, "missing.deprecated.annotation");
3186        }
3187    }
3188
3189    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3190        if ((s.flags() & DEPRECATED) != 0 &&
3191                (other.flags() & DEPRECATED) == 0 &&
3192                s.outermostClass() != other.outermostClass()) {
3193            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3194                @Override
3195                public void report() {
3196                    warnDeprecated(pos, s);
3197                }
3198            });
3199        }
3200    }
3201
3202    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3203        if ((s.flags() & PROPRIETARY) != 0) {
3204            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3205                public void report() {
3206                    if (enableSunApiLintControl)
3207                      warnSunApi(pos, "sun.proprietary", s);
3208                    else
3209                      log.mandatoryWarning(pos, "sun.proprietary", s);
3210                }
3211            });
3212        }
3213    }
3214
3215    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3216        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3217            log.error(pos, "not.in.profile", s, profile);
3218        }
3219    }
3220
3221/* *************************************************************************
3222 * Check for recursive annotation elements.
3223 **************************************************************************/
3224
3225    /** Check for cycles in the graph of annotation elements.
3226     */
3227    void checkNonCyclicElements(JCClassDecl tree) {
3228        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3229        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3230        try {
3231            tree.sym.flags_field |= LOCKED;
3232            for (JCTree def : tree.defs) {
3233                if (!def.hasTag(METHODDEF)) continue;
3234                JCMethodDecl meth = (JCMethodDecl)def;
3235                checkAnnotationResType(meth.pos(), meth.restype.type);
3236            }
3237        } finally {
3238            tree.sym.flags_field &= ~LOCKED;
3239            tree.sym.flags_field |= ACYCLIC_ANN;
3240        }
3241    }
3242
3243    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3244        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3245            return;
3246        if ((tsym.flags_field & LOCKED) != 0) {
3247            log.error(pos, "cyclic.annotation.element");
3248            return;
3249        }
3250        try {
3251            tsym.flags_field |= LOCKED;
3252            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3253                if (s.kind != MTH)
3254                    continue;
3255                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3256            }
3257        } finally {
3258            tsym.flags_field &= ~LOCKED;
3259            tsym.flags_field |= ACYCLIC_ANN;
3260        }
3261    }
3262
3263    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3264        switch (type.getTag()) {
3265        case CLASS:
3266            if ((type.tsym.flags() & ANNOTATION) != 0)
3267                checkNonCyclicElementsInternal(pos, type.tsym);
3268            break;
3269        case ARRAY:
3270            checkAnnotationResType(pos, types.elemtype(type));
3271            break;
3272        default:
3273            break; // int etc
3274        }
3275    }
3276
3277/* *************************************************************************
3278 * Check for cycles in the constructor call graph.
3279 **************************************************************************/
3280
3281    /** Check for cycles in the graph of constructors calling other
3282     *  constructors.
3283     */
3284    void checkCyclicConstructors(JCClassDecl tree) {
3285        Map<Symbol,Symbol> callMap = new HashMap<>();
3286
3287        // enter each constructor this-call into the map
3288        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3289            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3290            if (app == null) continue;
3291            JCMethodDecl meth = (JCMethodDecl) l.head;
3292            if (TreeInfo.name(app.meth) == names._this) {
3293                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3294            } else {
3295                meth.sym.flags_field |= ACYCLIC;
3296            }
3297        }
3298
3299        // Check for cycles in the map
3300        Symbol[] ctors = new Symbol[0];
3301        ctors = callMap.keySet().toArray(ctors);
3302        for (Symbol caller : ctors) {
3303            checkCyclicConstructor(tree, caller, callMap);
3304        }
3305    }
3306
3307    /** Look in the map to see if the given constructor is part of a
3308     *  call cycle.
3309     */
3310    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3311                                        Map<Symbol,Symbol> callMap) {
3312        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3313            if ((ctor.flags_field & LOCKED) != 0) {
3314                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3315                          "recursive.ctor.invocation");
3316            } else {
3317                ctor.flags_field |= LOCKED;
3318                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3319                ctor.flags_field &= ~LOCKED;
3320            }
3321            ctor.flags_field |= ACYCLIC;
3322        }
3323    }
3324
3325/* *************************************************************************
3326 * Miscellaneous
3327 **************************************************************************/
3328
3329    /**
3330     *  Check for division by integer constant zero
3331     *  @param pos           Position for error reporting.
3332     *  @param operator      The operator for the expression
3333     *  @param operand       The right hand operand for the expression
3334     */
3335    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3336        if (operand.constValue() != null
3337            && operand.getTag().isSubRangeOf(LONG)
3338            && ((Number) (operand.constValue())).longValue() == 0) {
3339            int opc = ((OperatorSymbol)operator).opcode;
3340            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3341                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3342                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3343                    @Override
3344                    public void report() {
3345                        warnDivZero(pos);
3346                    }
3347                });
3348            }
3349        }
3350    }
3351
3352    /**
3353     * Check for empty statements after if
3354     */
3355    void checkEmptyIf(JCIf tree) {
3356        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3357                lint.isEnabled(LintCategory.EMPTY))
3358            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3359    }
3360
3361    /** Check that symbol is unique in given scope.
3362     *  @param pos           Position for error reporting.
3363     *  @param sym           The symbol.
3364     *  @param s             The scope.
3365     */
3366    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3367        if (sym.type.isErroneous())
3368            return true;
3369        if (sym.owner.name == names.any) return false;
3370        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3371            if (sym != byName &&
3372                    (byName.flags() & CLASH) == 0 &&
3373                    sym.kind == byName.kind &&
3374                    sym.name != names.error &&
3375                    (sym.kind != MTH ||
3376                     types.hasSameArgs(sym.type, byName.type) ||
3377                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3378                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3379                    varargsDuplicateError(pos, sym, byName);
3380                    return true;
3381                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3382                    duplicateErasureError(pos, sym, byName);
3383                    sym.flags_field |= CLASH;
3384                    return true;
3385                } else {
3386                    duplicateError(pos, byName);
3387                    return false;
3388                }
3389            }
3390        }
3391        return true;
3392    }
3393
3394    /** Report duplicate declaration error.
3395     */
3396    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3397        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3398            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3399        }
3400    }
3401
3402    /**Check that types imported through the ordinary imports don't clash with types imported
3403     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3404     * types without an error on the imports.
3405     * @param toplevel       The toplevel tree for which the test should be performed.
3406     */
3407    void checkImportsUnique(JCCompilationUnit toplevel) {
3408        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3409        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3410        WriteableScope topLevelScope = toplevel.toplevelScope;
3411
3412        for (JCTree def : toplevel.defs) {
3413            if (!def.hasTag(IMPORT))
3414                continue;
3415
3416            JCImport imp = (JCImport) def;
3417
3418            if (imp.importScope == null)
3419                continue;
3420
3421            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3422                if (imp.isStatic()) {
3423                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3424                    staticallyImportedSoFar.enter(sym);
3425                } else {
3426                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3427                    ordinallyImportedSoFar.enter(sym);
3428                }
3429            }
3430
3431            imp.importScope = null;
3432        }
3433    }
3434
3435    /** Check that single-type import is not already imported or top-level defined,
3436     *  but make an exception for two single-type imports which denote the same type.
3437     *  @param pos                     Position for error reporting.
3438     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3439     *                                 ordinary imports.
3440     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3441     *                                 static imports.
3442     *  @param topLevelScope           The current file's top-level Scope
3443     *  @param sym                     The symbol.
3444     *  @param staticImport            Whether or not this was a static import
3445     */
3446    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3447                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3448                                      Symbol sym, boolean staticImport) {
3449        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3450        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3451        if (clashing == null && !staticImport) {
3452            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3453        }
3454        if (clashing != null) {
3455            if (staticImport)
3456                log.error(pos, "already.defined.static.single.import", clashing);
3457            else
3458                log.error(pos, "already.defined.single.import", clashing);
3459            return false;
3460        }
3461        clashing = topLevelScope.findFirst(sym.name, duplicates);
3462        if (clashing != null) {
3463            log.error(pos, "already.defined.this.unit", clashing);
3464            return false;
3465        }
3466        return true;
3467    }
3468
3469    /** Check that a qualified name is in canonical form (for import decls).
3470     */
3471    public void checkCanonical(JCTree tree) {
3472        if (!isCanonical(tree))
3473            log.error(tree.pos(), "import.requires.canonical",
3474                      TreeInfo.symbol(tree));
3475    }
3476        // where
3477        private boolean isCanonical(JCTree tree) {
3478            while (tree.hasTag(SELECT)) {
3479                JCFieldAccess s = (JCFieldAccess) tree;
3480                if (s.sym.owner != TreeInfo.symbol(s.selected))
3481                    return false;
3482                tree = s.selected;
3483            }
3484            return true;
3485        }
3486
3487    /** Check that an auxiliary class is not accessed from any other file than its own.
3488     */
3489    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3490        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3491            (c.flags() & AUXILIARY) != 0 &&
3492            rs.isAccessible(env, c) &&
3493            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3494        {
3495            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3496                        c, c.sourcefile);
3497        }
3498    }
3499
3500    private class ConversionWarner extends Warner {
3501        final String uncheckedKey;
3502        final Type found;
3503        final Type expected;
3504        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3505            super(pos);
3506            this.uncheckedKey = uncheckedKey;
3507            this.found = found;
3508            this.expected = expected;
3509        }
3510
3511        @Override
3512        public void warn(LintCategory lint) {
3513            boolean warned = this.warned;
3514            super.warn(lint);
3515            if (warned) return; // suppress redundant diagnostics
3516            switch (lint) {
3517                case UNCHECKED:
3518                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3519                    break;
3520                case VARARGS:
3521                    if (method != null &&
3522                            method.attribute(syms.trustMeType.tsym) != null &&
3523                            isTrustMeAllowedOnMethod(method) &&
3524                            !types.isReifiable(method.type.getParameterTypes().last())) {
3525                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3526                    }
3527                    break;
3528                default:
3529                    throw new AssertionError("Unexpected lint: " + lint);
3530            }
3531        }
3532    }
3533
3534    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3535        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3536    }
3537
3538    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3539        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3540    }
3541
3542    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3543        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3544
3545        if (functionalType != null) {
3546            try {
3547                types.findDescriptorSymbol((TypeSymbol)cs);
3548            } catch (Types.FunctionDescriptorLookupError ex) {
3549                DiagnosticPosition pos = tree.pos();
3550                for (JCAnnotation a : tree.getModifiers().annotations) {
3551                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3552                        pos = a.pos();
3553                        break;
3554                    }
3555                }
3556                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3557            }
3558        }
3559    }
3560
3561    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3562        for (final JCImport imp : toplevel.getImports()) {
3563            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3564                continue;
3565            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3566            final Symbol origin;
3567            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3568                continue;
3569
3570            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3571            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3572                log.error(imp.pos(), "cant.resolve.location",
3573                          KindName.STATIC,
3574                          select.name, List.<Type>nil(), List.<Type>nil(),
3575                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3576                          TreeInfo.symbol(select.selected).type);
3577            }
3578        }
3579    }
3580
3581    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3582        if (tsym == null || !processed.add(tsym))
3583            return false;
3584
3585            // also search through inherited names
3586        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3587            return true;
3588
3589        for (Type t : types.interfaces(tsym.type))
3590            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3591                return true;
3592
3593        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3594            if (sym.isStatic() &&
3595                importAccessible(sym, packge) &&
3596                sym.isMemberOf(origin, types)) {
3597                return true;
3598            }
3599        }
3600
3601        return false;
3602    }
3603
3604    // is the sym accessible everywhere in packge?
3605    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3606        try {
3607            int flags = (int)(sym.flags() & AccessFlags);
3608            switch (flags) {
3609            default:
3610            case PUBLIC:
3611                return true;
3612            case PRIVATE:
3613                return false;
3614            case 0:
3615            case PROTECTED:
3616                return sym.packge() == packge;
3617            }
3618        } catch (ClassFinder.BadClassFile err) {
3619            throw err;
3620        } catch (CompletionFailure ex) {
3621            return false;
3622        }
3623    }
3624
3625}
3626