Attr.java revision 4229:c342fff3c5f7
174462Salfred/*
274462Salfred * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
374462Salfred * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
474462Salfred *
574462Salfred * This code is free software; you can redistribute it and/or modify it
674462Salfred * under the terms of the GNU General Public License version 2 only, as
774462Salfred * published by the Free Software Foundation.  Oracle designates this
874462Salfred * particular file as subject to the "Classpath" exception as provided
974462Salfred * by Oracle in the LICENSE file that accompanied this code.
1074462Salfred *
1174462Salfred * This code is distributed in the hope that it will be useful, but WITHOUT
1274462Salfred * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1374462Salfred * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1474462Salfred * version 2 for more details (a copy is included in the LICENSE file that
1574462Salfred * accompanied this code).
1674462Salfred *
1774462Salfred * You should have received a copy of the GNU General Public License version
1874462Salfred * 2 along with this work; if not, write to the Free Software Foundation,
1974462Salfred * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
2074462Salfred *
2174462Salfred * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2274462Salfred * or visit www.oracle.com if you need additional information or have any
2374462Salfred * questions.
2474462Salfred */
2574462Salfred
2674462Salfredpackage com.sun.tools.javac.comp;
2774462Salfred
2874462Salfredimport java.util.*;
2974462Salfred
3074462Salfredimport javax.lang.model.element.ElementKind;
3174462Salfredimport javax.tools.JavaFileObject;
3274462Salfred
3374462Salfredimport com.sun.source.tree.IdentifierTree;
3474462Salfredimport com.sun.source.tree.MemberReferenceTree.ReferenceMode;
3574462Salfredimport com.sun.source.tree.MemberSelectTree;
3674462Salfredimport com.sun.source.tree.TreeVisitor;
3774462Salfredimport com.sun.source.util.SimpleTreeVisitor;
3874462Salfredimport com.sun.tools.javac.code.*;
3974462Salfredimport com.sun.tools.javac.code.Directive.RequiresFlag;
4074462Salfredimport com.sun.tools.javac.code.Lint.LintCategory;
4174462Salfredimport com.sun.tools.javac.code.Scope.WriteableScope;
4274462Salfredimport com.sun.tools.javac.code.Symbol.*;
4374462Salfredimport com.sun.tools.javac.code.Type.*;
4474462Salfredimport com.sun.tools.javac.code.TypeMetadata.Annotations;
4574462Salfredimport com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
4674462Salfredimport com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
4774462Salfredimport com.sun.tools.javac.comp.Check.CheckContext;
4874462Salfredimport com.sun.tools.javac.comp.DeferredAttr.AttrMode;
4974462Salfredimport com.sun.tools.javac.comp.Infer.FreeTypeListener;
5074462Salfredimport com.sun.tools.javac.jvm.*;
5174462Salfredimport static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
5274462Salfredimport static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
5374462Salfredimport static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
5474462Salfredimport com.sun.tools.javac.resources.CompilerProperties.Errors;
5574462Salfredimport com.sun.tools.javac.resources.CompilerProperties.Fragments;
5674462Salfredimport com.sun.tools.javac.resources.CompilerProperties.Warnings;
5774462Salfredimport com.sun.tools.javac.tree.*;
5874462Salfredimport com.sun.tools.javac.tree.JCTree.*;
5974462Salfredimport com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
6074462Salfredimport com.sun.tools.javac.util.*;
6174462Salfredimport com.sun.tools.javac.util.DefinedBy.Api;
6274462Salfredimport com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
6374462Salfredimport com.sun.tools.javac.util.JCDiagnostic.Fragment;
6474462Salfredimport com.sun.tools.javac.util.List;
6574462Salfred
6674462Salfredimport static com.sun.tools.javac.code.Flags.*;
6774462Salfredimport static com.sun.tools.javac.code.Flags.ANNOTATION;
6874462Salfredimport static com.sun.tools.javac.code.Flags.BLOCK;
6974462Salfredimport static com.sun.tools.javac.code.Kinds.*;
7074462Salfredimport static com.sun.tools.javac.code.Kinds.Kind.*;
7174462Salfredimport static com.sun.tools.javac.code.TypeTag.*;
7274462Salfredimport static com.sun.tools.javac.code.TypeTag.WILDCARD;
7374462Salfredimport static com.sun.tools.javac.tree.JCTree.Tag.*;
7474462Salfredimport com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
7574462Salfred
7674462Salfred/** This is the main context-dependent analysis phase in GJC. It
7774462Salfred *  encompasses name resolution, type checking and constant folding as
7874462Salfred *  subtasks. Some subtasks involve auxiliary classes.
7974462Salfred *  @see Check
8074462Salfred *  @see Resolve
8174462Salfred *  @see ConstFold
8274462Salfred *  @see Infer
8374462Salfred *
8474462Salfred *  <p><b>This is NOT part of any supported API.
8574462Salfred *  If you write code that depends on this, you do so at your own risk.
8674462Salfred *  This code and its internal interfaces are subject to change or
8774462Salfred *  deletion without notice.</b>
8874462Salfred */
8974462Salfredpublic class Attr extends JCTree.Visitor {
9074462Salfred    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
9174462Salfred
9274462Salfred    final Names names;
9374462Salfred    final Log log;
9474462Salfred    final Symtab syms;
9574462Salfred    final Resolve rs;
9674462Salfred    final Operators operators;
9774462Salfred    final Infer infer;
9874462Salfred    final Analyzer analyzer;
9974462Salfred    final DeferredAttr deferredAttr;
10074462Salfred    final Check chk;
10174462Salfred    final Flow flow;
10274462Salfred    final MemberEnter memberEnter;
10374462Salfred    final TypeEnter typeEnter;
10474462Salfred    final TreeMaker make;
10574462Salfred    final ConstFold cfolder;
10674462Salfred    final Enter enter;
10774462Salfred    final Target target;
10874462Salfred    final Types types;
10974462Salfred    final JCDiagnostic.Factory diags;
11074462Salfred    final TypeAnnotations typeAnnotations;
11174462Salfred    final DeferredLintHandler deferredLintHandler;
11274462Salfred    final TypeEnvs typeEnvs;
11374462Salfred    final Dependencies dependencies;
11474462Salfred    final Annotate annotate;
11574462Salfred    final ArgumentAttr argumentAttr;
11674462Salfred
11774462Salfred    public static Attr instance(Context context) {
11874462Salfred        Attr instance = context.get(attrKey);
11974462Salfred        if (instance == null)
12074462Salfred            instance = new Attr(context);
12174462Salfred        return instance;
12274462Salfred    }
12374462Salfred
12474462Salfred    protected Attr(Context context) {
12574462Salfred        context.put(attrKey, this);
12674462Salfred
12774462Salfred        names = Names.instance(context);
12874462Salfred        log = Log.instance(context);
12974462Salfred        syms = Symtab.instance(context);
13074462Salfred        rs = Resolve.instance(context);
13174462Salfred        operators = Operators.instance(context);
13274462Salfred        chk = Check.instance(context);
13374462Salfred        flow = Flow.instance(context);
13474462Salfred        memberEnter = MemberEnter.instance(context);
13574462Salfred        typeEnter = TypeEnter.instance(context);
13674462Salfred        make = TreeMaker.instance(context);
13774462Salfred        enter = Enter.instance(context);
13874462Salfred        infer = Infer.instance(context);
13974462Salfred        analyzer = Analyzer.instance(context);
14074462Salfred        deferredAttr = DeferredAttr.instance(context);
14174462Salfred        cfolder = ConstFold.instance(context);
14274462Salfred        target = Target.instance(context);
14374462Salfred        types = Types.instance(context);
14474462Salfred        diags = JCDiagnostic.Factory.instance(context);
14574462Salfred        annotate = Annotate.instance(context);
14674462Salfred        typeAnnotations = TypeAnnotations.instance(context);
14774462Salfred        deferredLintHandler = DeferredLintHandler.instance(context);
14874462Salfred        typeEnvs = TypeEnvs.instance(context);
14974462Salfred        dependencies = Dependencies.instance(context);
15074462Salfred        argumentAttr = ArgumentAttr.instance(context);
15174462Salfred
15274462Salfred        Options options = Options.instance(context);
15374462Salfred
15474462Salfred        Source source = Source.instance(context);
15574462Salfred        allowStringsInSwitch = source.allowStringsInSwitch();
15674462Salfred        allowPoly = source.allowPoly();
15774462Salfred        allowTypeAnnos = source.allowTypeAnnotations();
15874462Salfred        allowLambda = source.allowLambda();
15974462Salfred        allowDefaultMethods = source.allowDefaultMethods();
16074462Salfred        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
16174462Salfred        sourceName = source.name;
16274462Salfred        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
16374462Salfred
16474462Salfred        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
16574462Salfred        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
16674462Salfred        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
16774462Salfred        methodAttrInfo = new MethodAttrInfo();
16874462Salfred        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
16974462Salfred        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
17074462Salfred        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
17174462Salfred    }
17274462Salfred
17374462Salfred    /** Switch: support target-typing inference
17474462Salfred     */
17574462Salfred    boolean allowPoly;
17674462Salfred
17774462Salfred    /** Switch: support type annotations.
17874462Salfred     */
17974462Salfred    boolean allowTypeAnnos;
18074462Salfred
18174462Salfred    /** Switch: support lambda expressions ?
18274462Salfred     */
18374462Salfred    boolean allowLambda;
18474462Salfred
18574462Salfred    /** Switch: support default methods ?
18674462Salfred     */
18774462Salfred    boolean allowDefaultMethods;
18874462Salfred
18974462Salfred    /** Switch: static interface methods enabled?
19074462Salfred     */
19174462Salfred    boolean allowStaticInterfaceMethods;
19274462Salfred
19374462Salfred    /**
19474462Salfred     * Switch: warn about use of variable before declaration?
19574462Salfred     * RFE: 6425594
19674462Salfred     */
19774462Salfred    boolean useBeforeDeclarationWarning;
19874462Salfred
19974462Salfred    /**
20074462Salfred     * Switch: allow strings in switch?
20174462Salfred     */
20274462Salfred    boolean allowStringsInSwitch;
20374462Salfred
20474462Salfred    /**
20574462Salfred     * Switch: name of source level; used for error reporting.
20674462Salfred     */
20774462Salfred    String sourceName;
20874462Salfred
20974462Salfred    /** Check kind and type of given tree against protokind and prototype.
21074462Salfred     *  If check succeeds, store type in tree and return it.
21174462Salfred     *  If check fails, store errType in tree and return it.
21274462Salfred     *  No checks are performed if the prototype is a method type.
21374462Salfred     *  It is not necessary in this case since we know that kind and type
21474462Salfred     *  are correct.
21574462Salfred     *
21674462Salfred     *  @param tree     The tree whose kind and type is checked
21774462Salfred     *  @param found    The computed type of the tree
21874462Salfred     *  @param ownkind  The computed kind of the tree
21974462Salfred     *  @param resultInfo  The expected result of the tree
22074462Salfred     */
22174462Salfred    Type check(final JCTree tree,
22274462Salfred               final Type found,
22374462Salfred               final KindSelector ownkind,
22474462Salfred               final ResultInfo resultInfo) {
22574462Salfred        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
22674462Salfred        Type owntype;
22774462Salfred        boolean shouldCheck = !found.hasTag(ERROR) &&
22874462Salfred                !resultInfo.pt.hasTag(METHOD) &&
22974462Salfred                !resultInfo.pt.hasTag(FORALL);
23074462Salfred        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
23174462Salfred            log.error(tree.pos(),
23274462Salfred                      Errors.UnexpectedType(resultInfo.pkind.kindNames(),
23374462Salfred                                            ownkind.kindNames()));
23474462Salfred            owntype = types.createErrorType(found);
23574462Salfred        } else if (allowPoly && inferenceContext.free(found)) {
23674462Salfred            //delay the check if there are inference variables in the found type
23774462Salfred            //this means we are dealing with a partially inferred poly expression
23874462Salfred            owntype = shouldCheck ? resultInfo.pt : found;
23974462Salfred            if (resultInfo.checkMode.installPostInferenceHook()) {
24074462Salfred                inferenceContext.addFreeTypeListener(List.of(found),
24174462Salfred                        instantiatedContext -> {
24274462Salfred                            ResultInfo pendingResult =
24374462Salfred                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
24474462Salfred                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
24574462Salfred                        });
24674462Salfred            }
24774462Salfred        } else {
24874462Salfred            owntype = shouldCheck ?
24974462Salfred            resultInfo.check(tree, found) :
25074462Salfred            found;
25174462Salfred        }
25274462Salfred        if (resultInfo.checkMode.updateTreeType()) {
25374462Salfred            tree.type = owntype;
25474462Salfred        }
25574462Salfred        return owntype;
25674462Salfred    }
25774462Salfred
25874462Salfred    /** Is given blank final variable assignable, i.e. in a scope where it
25974462Salfred     *  may be assigned to even though it is final?
26074462Salfred     *  @param v      The blank final variable.
26174462Salfred     *  @param env    The current environment.
26274462Salfred     */
26374462Salfred    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
26474462Salfred        Symbol owner = env.info.scope.owner;
26574462Salfred           // owner refers to the innermost variable, method or
26674462Salfred           // initializer block declaration at this point.
26774462Salfred        return
26874462Salfred            v.owner == owner
26974462Salfred            ||
27074462Salfred            ((owner.name == names.init ||    // i.e. we are in a constructor
27174462Salfred              owner.kind == VAR ||           // i.e. we are in a variable initializer
27274462Salfred              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
27374462Salfred             &&
27474462Salfred             v.owner == owner.owner
27574462Salfred             &&
27674462Salfred             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
27774462Salfred    }
27874462Salfred
27974462Salfred    /** Check that variable can be assigned to.
28074462Salfred     *  @param pos    The current source code position.
28174462Salfred     *  @param v      The assigned variable
28274462Salfred     *  @param base   If the variable is referred to in a Select, the part
28374462Salfred     *                to the left of the `.', null otherwise.
28474462Salfred     *  @param env    The current environment.
28574462Salfred     */
28674462Salfred    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
28774462Salfred        if (v.name == names._this) {
28874462Salfred            log.error(pos, Errors.CantAssignValToThis);
28974462Salfred        } else if ((v.flags() & FINAL) != 0 &&
29074462Salfred            ((v.flags() & HASINIT) != 0
29174462Salfred             ||
29274462Salfred             !((base == null ||
29374462Salfred               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
29474462Salfred               isAssignableAsBlankFinal(v, env)))) {
29574462Salfred            if (v.isResourceVariable()) { //TWR resource
29674462Salfred                log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
29774462Salfred            } else {
29874462Salfred                log.error(pos, Errors.CantAssignValToFinalVar(v));
29974462Salfred            }
30074462Salfred        }
30174462Salfred    }
30274462Salfred
30374462Salfred    /** Does tree represent a static reference to an identifier?
30474462Salfred     *  It is assumed that tree is either a SELECT or an IDENT.
30574462Salfred     *  We have to weed out selects from non-type names here.
30674462Salfred     *  @param tree    The candidate tree.
30774462Salfred     */
30874462Salfred    boolean isStaticReference(JCTree tree) {
30974462Salfred        if (tree.hasTag(SELECT)) {
31074462Salfred            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
31174462Salfred            if (lsym == null || lsym.kind != TYP) {
31274462Salfred                return false;
31374462Salfred            }
31474462Salfred        }
31574462Salfred        return true;
31674462Salfred    }
31774462Salfred
31874462Salfred    /** Is this symbol a type?
31974462Salfred     */
32074462Salfred    static boolean isType(Symbol sym) {
32174462Salfred        return sym != null && sym.kind == TYP;
32274462Salfred    }
32374462Salfred
32474462Salfred    /** The current `this' symbol.
32574462Salfred     *  @param env    The current environment.
32674462Salfred     */
32774462Salfred    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
32874462Salfred        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
32974462Salfred    }
33074462Salfred
33174462Salfred    /** Attribute a parsed identifier.
33274462Salfred     * @param tree Parsed identifier name
33374462Salfred     * @param topLevel The toplevel to use
33474462Salfred     */
33574462Salfred    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
33674462Salfred        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
33774462Salfred        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
33874462Salfred                                           syms.errSymbol.name,
33974462Salfred                                           null, null, null, null);
34074462Salfred        localEnv.enclClass.sym = syms.errSymbol;
34174462Salfred        return attribIdent(tree, localEnv);
34274462Salfred    }
34374462Salfred
34474462Salfred    /** Attribute a parsed identifier.
34574462Salfred     * @param tree Parsed identifier name
34674462Salfred     * @param env The env to use
34774462Salfred     */
34874462Salfred    public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
34974462Salfred        return tree.accept(identAttributer, env);
35074462Salfred    }
35174462Salfred    // where
35274462Salfred        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
35374462Salfred        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
35474462Salfred            @Override @DefinedBy(Api.COMPILER_TREE)
35574462Salfred            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
35674462Salfred                Symbol site = visit(node.getExpression(), env);
35774462Salfred                if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
35874462Salfred                    return site;
35974462Salfred                Name name = (Name)node.getIdentifier();
36074462Salfred                if (site.kind == PCK) {
36174462Salfred                    env.toplevel.packge = (PackageSymbol)site;
36274462Salfred                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
36374462Salfred                            KindSelector.TYP_PCK);
36474462Salfred                } else {
36574462Salfred                    env.enclClass.sym = (ClassSymbol)site;
36674462Salfred                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
36774462Salfred                }
36874462Salfred            }
36974462Salfred
37074462Salfred            @Override @DefinedBy(Api.COMPILER_TREE)
37174462Salfred            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
37274462Salfred                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
37374462Salfred            }
37474462Salfred        }
37574462Salfred
37674462Salfred    public Type coerce(Type etype, Type ttype) {
37774462Salfred        return cfolder.coerce(etype, ttype);
37874462Salfred    }
37974462Salfred
38074462Salfred    public Type attribType(JCTree node, TypeSymbol sym) {
38174462Salfred        Env<AttrContext> env = typeEnvs.get(sym);
38274462Salfred        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
38374462Salfred        return attribTree(node, localEnv, unknownTypeInfo);
38474462Salfred    }
38574462Salfred
38674462Salfred    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
38774462Salfred        // Attribute qualifying package or class.
38874462Salfred        JCFieldAccess s = (JCFieldAccess)tree.qualid;
38974462Salfred        return attribTree(s.selected, env,
39074462Salfred                          new ResultInfo(tree.staticImport ?
39174462Salfred                                         KindSelector.TYP : KindSelector.TYP_PCK,
39274462Salfred                       Type.noType));
39374462Salfred    }
39474462Salfred
39574462Salfred    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
39674462Salfred        breakTree = tree;
39774462Salfred        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
39874462Salfred        try {
39974462Salfred            attribExpr(expr, env);
40074462Salfred        } catch (BreakAttr b) {
40174462Salfred            return b.env;
40274462Salfred        } catch (AssertionError ae) {
40374462Salfred            if (ae.getCause() instanceof BreakAttr) {
40474462Salfred                return ((BreakAttr)(ae.getCause())).env;
40574462Salfred            } else {
40674462Salfred                throw ae;
40774462Salfred            }
40874462Salfred        } finally {
40974462Salfred            breakTree = null;
41074462Salfred            log.useSource(prev);
41174462Salfred        }
41274462Salfred        return env;
41374462Salfred    }
41474462Salfred
41574462Salfred    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
41674462Salfred        breakTree = tree;
41774462Salfred        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
41874462Salfred        try {
41974462Salfred            attribStat(stmt, env);
42074462Salfred        } catch (BreakAttr b) {
42174462Salfred            return b.env;
42274462Salfred        } catch (AssertionError ae) {
42374462Salfred            if (ae.getCause() instanceof BreakAttr) {
42474462Salfred                return ((BreakAttr)(ae.getCause())).env;
42574462Salfred            } else {
42674462Salfred                throw ae;
42774462Salfred            }
42874462Salfred        } finally {
42974462Salfred            breakTree = null;
43074462Salfred            log.useSource(prev);
43174462Salfred        }
43274462Salfred        return env;
43374462Salfred    }
43474462Salfred
43574462Salfred    private JCTree breakTree = null;
43674462Salfred
43774462Salfred    private static class BreakAttr extends RuntimeException {
43874462Salfred        static final long serialVersionUID = -6924771130405446405L;
43974462Salfred        private Env<AttrContext> env;
44074462Salfred        private BreakAttr(Env<AttrContext> env) {
44174462Salfred            this.env = env;
44274462Salfred        }
44374462Salfred    }
44474462Salfred
44574462Salfred    /**
44674462Salfred     * Mode controlling behavior of Attr.Check
44774462Salfred     */
44874462Salfred    enum CheckMode {
44974462Salfred
45074462Salfred        NORMAL,
45174462Salfred
45274462Salfred        /**
45374462Salfred         * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
454         * that the captured var cache in {@code InferenceContext} will be used in read-only
455         * mode when performing inference checks.
456         */
457        NO_TREE_UPDATE {
458            @Override
459            public boolean updateTreeType() {
460                return false;
461            }
462        },
463        /**
464         * Mode signalling that caller will manage free types in tree decorations.
465         */
466        NO_INFERENCE_HOOK {
467            @Override
468            public boolean installPostInferenceHook() {
469                return false;
470            }
471        };
472
473        public boolean updateTreeType() {
474            return true;
475        }
476        public boolean installPostInferenceHook() {
477            return true;
478        }
479    }
480
481
482    class ResultInfo {
483        final KindSelector pkind;
484        final Type pt;
485        final CheckContext checkContext;
486        final CheckMode checkMode;
487
488        ResultInfo(KindSelector pkind, Type pt) {
489            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
490        }
491
492        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
493            this(pkind, pt, chk.basicHandler, checkMode);
494        }
495
496        protected ResultInfo(KindSelector pkind,
497                             Type pt, CheckContext checkContext) {
498            this(pkind, pt, checkContext, CheckMode.NORMAL);
499        }
500
501        protected ResultInfo(KindSelector pkind,
502                             Type pt, CheckContext checkContext, CheckMode checkMode) {
503            this.pkind = pkind;
504            this.pt = pt;
505            this.checkContext = checkContext;
506            this.checkMode = checkMode;
507        }
508
509        /**
510         * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
511         * @param tree The tree to be type-checked.
512         * @return true if {@ArgumentAttr} should be used.
513         */
514        protected boolean needsArgumentAttr(JCTree tree) { return false; }
515
516        protected Type check(final DiagnosticPosition pos, final Type found) {
517            return chk.checkType(pos, found, pt, checkContext);
518        }
519
520        protected ResultInfo dup(Type newPt) {
521            return new ResultInfo(pkind, newPt, checkContext, checkMode);
522        }
523
524        protected ResultInfo dup(CheckContext newContext) {
525            return new ResultInfo(pkind, pt, newContext, checkMode);
526        }
527
528        protected ResultInfo dup(Type newPt, CheckContext newContext) {
529            return new ResultInfo(pkind, newPt, newContext, checkMode);
530        }
531
532        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
533            return new ResultInfo(pkind, newPt, newContext, newMode);
534        }
535
536        protected ResultInfo dup(CheckMode newMode) {
537            return new ResultInfo(pkind, pt, checkContext, newMode);
538        }
539
540        @Override
541        public String toString() {
542            if (pt != null) {
543                return pt.toString();
544            } else {
545                return "";
546            }
547        }
548    }
549
550    class MethodAttrInfo extends ResultInfo {
551        public MethodAttrInfo() {
552            this(chk.basicHandler);
553        }
554
555        public MethodAttrInfo(CheckContext checkContext) {
556            super(KindSelector.VAL, Infer.anyPoly, checkContext);
557        }
558
559        @Override
560        protected boolean needsArgumentAttr(JCTree tree) {
561            return true;
562        }
563
564        protected ResultInfo dup(Type newPt) {
565            throw new IllegalStateException();
566        }
567
568        protected ResultInfo dup(CheckContext newContext) {
569            return new MethodAttrInfo(newContext);
570        }
571
572        protected ResultInfo dup(Type newPt, CheckContext newContext) {
573            throw new IllegalStateException();
574        }
575
576        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
577            throw new IllegalStateException();
578        }
579
580        protected ResultInfo dup(CheckMode newMode) {
581            throw new IllegalStateException();
582        }
583    }
584
585    class RecoveryInfo extends ResultInfo {
586
587        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
588            super(KindSelector.VAL, Type.recoveryType,
589                  new Check.NestedCheckContext(chk.basicHandler) {
590                @Override
591                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
592                    return deferredAttrContext;
593                }
594                @Override
595                public boolean compatible(Type found, Type req, Warner warn) {
596                    return true;
597                }
598                @Override
599                public void report(DiagnosticPosition pos, JCDiagnostic details) {
600                    chk.basicHandler.report(pos, details);
601                }
602            });
603        }
604    }
605
606    final ResultInfo statInfo;
607    final ResultInfo varAssignmentInfo;
608    final ResultInfo methodAttrInfo;
609    final ResultInfo unknownExprInfo;
610    final ResultInfo unknownTypeInfo;
611    final ResultInfo unknownTypeExprInfo;
612    final ResultInfo recoveryInfo;
613
614    Type pt() {
615        return resultInfo.pt;
616    }
617
618    KindSelector pkind() {
619        return resultInfo.pkind;
620    }
621
622/* ************************************************************************
623 * Visitor methods
624 *************************************************************************/
625
626    /** Visitor argument: the current environment.
627     */
628    Env<AttrContext> env;
629
630    /** Visitor argument: the currently expected attribution result.
631     */
632    ResultInfo resultInfo;
633
634    /** Visitor result: the computed type.
635     */
636    Type result;
637
638    /** Visitor method: attribute a tree, catching any completion failure
639     *  exceptions. Return the tree's type.
640     *
641     *  @param tree    The tree to be visited.
642     *  @param env     The environment visitor argument.
643     *  @param resultInfo   The result info visitor argument.
644     */
645    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
646        Env<AttrContext> prevEnv = this.env;
647        ResultInfo prevResult = this.resultInfo;
648        try {
649            this.env = env;
650            this.resultInfo = resultInfo;
651            if (resultInfo.needsArgumentAttr(tree)) {
652                result = argumentAttr.attribArg(tree, env);
653            } else {
654                tree.accept(this);
655            }
656            if (tree == breakTree &&
657                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
658                throw new BreakAttr(copyEnv(env));
659            }
660            return result;
661        } catch (CompletionFailure ex) {
662            tree.type = syms.errType;
663            return chk.completionError(tree.pos(), ex);
664        } finally {
665            this.env = prevEnv;
666            this.resultInfo = prevResult;
667        }
668    }
669
670    Env<AttrContext> copyEnv(Env<AttrContext> env) {
671        Env<AttrContext> newEnv =
672                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
673        if (newEnv.outer != null) {
674            newEnv.outer = copyEnv(newEnv.outer);
675        }
676        return newEnv;
677    }
678
679    WriteableScope copyScope(WriteableScope sc) {
680        WriteableScope newScope = WriteableScope.create(sc.owner);
681        List<Symbol> elemsList = List.nil();
682        for (Symbol sym : sc.getSymbols()) {
683            elemsList = elemsList.prepend(sym);
684        }
685        for (Symbol s : elemsList) {
686            newScope.enter(s);
687        }
688        return newScope;
689    }
690
691    /** Derived visitor method: attribute an expression tree.
692     */
693    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
694        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
695    }
696
697    /** Derived visitor method: attribute an expression tree with
698     *  no constraints on the computed type.
699     */
700    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
701        return attribTree(tree, env, unknownExprInfo);
702    }
703
704    /** Derived visitor method: attribute a type tree.
705     */
706    public Type attribType(JCTree tree, Env<AttrContext> env) {
707        Type result = attribType(tree, env, Type.noType);
708        return result;
709    }
710
711    /** Derived visitor method: attribute a type tree.
712     */
713    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
714        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
715        return result;
716    }
717
718    /** Derived visitor method: attribute a statement or definition tree.
719     */
720    public Type attribStat(JCTree tree, Env<AttrContext> env) {
721        Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
722        try {
723            return attribTree(tree, env, statInfo);
724        } finally {
725            analyzer.analyzeIfNeeded(tree, analyzeEnv);
726        }
727    }
728
729    /** Attribute a list of expressions, returning a list of types.
730     */
731    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
732        ListBuffer<Type> ts = new ListBuffer<>();
733        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
734            ts.append(attribExpr(l.head, env, pt));
735        return ts.toList();
736    }
737
738    /** Attribute a list of statements, returning nothing.
739     */
740    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
741        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
742            attribStat(l.head, env);
743    }
744
745    /** Attribute the arguments in a method call, returning the method kind.
746     */
747    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
748        KindSelector kind = initialKind;
749        for (JCExpression arg : trees) {
750            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
751            if (argtype.hasTag(DEFERRED)) {
752                kind = KindSelector.of(KindSelector.POLY, kind);
753            }
754            argtypes.append(argtype);
755        }
756        return kind;
757    }
758
759    /** Attribute a type argument list, returning a list of types.
760     *  Caller is responsible for calling checkRefTypes.
761     */
762    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
763        ListBuffer<Type> argtypes = new ListBuffer<>();
764        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
765            argtypes.append(attribType(l.head, env));
766        return argtypes.toList();
767    }
768
769    /** Attribute a type argument list, returning a list of types.
770     *  Check that all the types are references.
771     */
772    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
773        List<Type> types = attribAnyTypes(trees, env);
774        return chk.checkRefTypes(trees, types);
775    }
776
777    /**
778     * Attribute type variables (of generic classes or methods).
779     * Compound types are attributed later in attribBounds.
780     * @param typarams the type variables to enter
781     * @param env      the current environment
782     */
783    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
784        for (JCTypeParameter tvar : typarams) {
785            TypeVar a = (TypeVar)tvar.type;
786            a.tsym.flags_field |= UNATTRIBUTED;
787            a.bound = Type.noType;
788            if (!tvar.bounds.isEmpty()) {
789                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
790                for (JCExpression bound : tvar.bounds.tail)
791                    bounds = bounds.prepend(attribType(bound, env));
792                types.setBounds(a, bounds.reverse());
793            } else {
794                // if no bounds are given, assume a single bound of
795                // java.lang.Object.
796                types.setBounds(a, List.of(syms.objectType));
797            }
798            a.tsym.flags_field &= ~UNATTRIBUTED;
799        }
800        for (JCTypeParameter tvar : typarams) {
801            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
802        }
803    }
804
805    /**
806     * Attribute the type references in a list of annotations.
807     */
808    void attribAnnotationTypes(List<JCAnnotation> annotations,
809                               Env<AttrContext> env) {
810        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
811            JCAnnotation a = al.head;
812            attribType(a.annotationType, env);
813        }
814    }
815
816    /**
817     * Attribute a "lazy constant value".
818     *  @param env         The env for the const value
819     *  @param variable    The initializer for the const value
820     *  @param type        The expected type, or null
821     *  @see VarSymbol#setLazyConstValue
822     */
823    public Object attribLazyConstantValue(Env<AttrContext> env,
824                                      JCVariableDecl variable,
825                                      Type type) {
826
827        DiagnosticPosition prevLintPos
828                = deferredLintHandler.setPos(variable.pos());
829
830        final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
831        try {
832            Type itype = attribExpr(variable.init, env, type);
833            if (itype.constValue() != null) {
834                return coerce(itype, type).constValue();
835            } else {
836                return null;
837            }
838        } finally {
839            log.useSource(prevSource);
840            deferredLintHandler.setPos(prevLintPos);
841        }
842    }
843
844    /** Attribute type reference in an `extends' or `implements' clause.
845     *  Supertypes of anonymous inner classes are usually already attributed.
846     *
847     *  @param tree              The tree making up the type reference.
848     *  @param env               The environment current at the reference.
849     *  @param classExpected     true if only a class is expected here.
850     *  @param interfaceExpected true if only an interface is expected here.
851     */
852    Type attribBase(JCTree tree,
853                    Env<AttrContext> env,
854                    boolean classExpected,
855                    boolean interfaceExpected,
856                    boolean checkExtensible) {
857        Type t = tree.type != null ?
858            tree.type :
859            attribType(tree, env);
860        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
861    }
862    Type checkBase(Type t,
863                   JCTree tree,
864                   Env<AttrContext> env,
865                   boolean classExpected,
866                   boolean interfaceExpected,
867                   boolean checkExtensible) {
868        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
869                (((JCTypeApply) tree).clazz).pos() : tree.pos();
870        if (t.tsym.isAnonymous()) {
871            log.error(pos, Errors.CantInheritFromAnon);
872            return types.createErrorType(t);
873        }
874        if (t.isErroneous())
875            return t;
876        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
877            // check that type variable is already visible
878            if (t.getUpperBound() == null) {
879                log.error(pos, Errors.IllegalForwardRef);
880                return types.createErrorType(t);
881            }
882        } else {
883            t = chk.checkClassType(pos, t, checkExtensible);
884        }
885        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
886            log.error(pos, Errors.IntfExpectedHere);
887            // return errType is necessary since otherwise there might
888            // be undetected cycles which cause attribution to loop
889            return types.createErrorType(t);
890        } else if (checkExtensible &&
891                   classExpected &&
892                   (t.tsym.flags() & INTERFACE) != 0) {
893            log.error(pos, Errors.NoIntfExpectedHere);
894            return types.createErrorType(t);
895        }
896        if (checkExtensible &&
897            ((t.tsym.flags() & FINAL) != 0)) {
898            log.error(pos,
899                      Errors.CantInheritFromFinal(t.tsym));
900        }
901        chk.checkNonCyclic(pos, t);
902        return t;
903    }
904
905    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
906        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
907        id.type = env.info.scope.owner.enclClass().type;
908        id.sym = env.info.scope.owner.enclClass();
909        return id.type;
910    }
911
912    public void visitClassDef(JCClassDecl tree) {
913        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
914                Optional.ofNullable(env.info.isSpeculative ?
915                        argumentAttr.withLocalCacheContext() : null);
916        try {
917            // Local and anonymous classes have not been entered yet, so we need to
918            // do it now.
919            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
920                enter.classEnter(tree, env);
921            } else {
922                // If this class declaration is part of a class level annotation,
923                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
924                // order to simplify later steps and allow for sensible error
925                // messages.
926                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
927                    enter.classEnter(tree, env);
928            }
929
930            ClassSymbol c = tree.sym;
931            if (c == null) {
932                // exit in case something drastic went wrong during enter.
933                result = null;
934            } else {
935                // make sure class has been completed:
936                c.complete();
937
938                // If this class appears as an anonymous class
939                // in a superclass constructor call
940                // disable implicit outer instance from being passed.
941                // (This would be an illegal access to "this before super").
942                if (env.info.isSelfCall &&
943                        env.tree.hasTag(NEWCLASS)) {
944                    c.flags_field |= NOOUTERTHIS;
945                }
946                attribClass(tree.pos(), c);
947                result = tree.type = c.type;
948            }
949        } finally {
950            localCacheContext.ifPresent(LocalCacheContext::leave);
951        }
952    }
953
954    public void visitMethodDef(JCMethodDecl tree) {
955        MethodSymbol m = tree.sym;
956        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
957
958        Lint lint = env.info.lint.augment(m);
959        Lint prevLint = chk.setLint(lint);
960        MethodSymbol prevMethod = chk.setMethod(m);
961        try {
962            deferredLintHandler.flush(tree.pos());
963            chk.checkDeprecatedAnnotation(tree.pos(), m);
964
965
966            // Create a new environment with local scope
967            // for attributing the method.
968            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
969            localEnv.info.lint = lint;
970
971            attribStats(tree.typarams, localEnv);
972
973            // If we override any other methods, check that we do so properly.
974            // JLS ???
975            if (m.isStatic()) {
976                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
977            } else {
978                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
979            }
980            chk.checkOverride(env, tree, m);
981
982            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
983                log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
984            }
985
986            // Enter all type parameters into the local method scope.
987            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
988                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
989
990            ClassSymbol owner = env.enclClass.sym;
991            if ((owner.flags() & ANNOTATION) != 0 &&
992                    (tree.params.nonEmpty() ||
993                    tree.recvparam != null))
994                log.error(tree.params.nonEmpty() ?
995                        tree.params.head.pos() :
996                        tree.recvparam.pos(),
997                        Errors.IntfAnnotationMembersCantHaveParams);
998
999            // Attribute all value parameters.
1000            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1001                attribStat(l.head, localEnv);
1002            }
1003
1004            chk.checkVarargsMethodDecl(localEnv, tree);
1005
1006            // Check that type parameters are well-formed.
1007            chk.validate(tree.typarams, localEnv);
1008
1009            // Check that result type is well-formed.
1010            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1011                chk.validate(tree.restype, localEnv);
1012
1013            // Check that receiver type is well-formed.
1014            if (tree.recvparam != null) {
1015                // Use a new environment to check the receiver parameter.
1016                // Otherwise I get "might not have been initialized" errors.
1017                // Is there a better way?
1018                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1019                attribType(tree.recvparam, newEnv);
1020                chk.validate(tree.recvparam, newEnv);
1021            }
1022
1023            // annotation method checks
1024            if ((owner.flags() & ANNOTATION) != 0) {
1025                // annotation method cannot have throws clause
1026                if (tree.thrown.nonEmpty()) {
1027                    log.error(tree.thrown.head.pos(),
1028                              Errors.ThrowsNotAllowedInIntfAnnotation);
1029                }
1030                // annotation method cannot declare type-parameters
1031                if (tree.typarams.nonEmpty()) {
1032                    log.error(tree.typarams.head.pos(),
1033                              Errors.IntfAnnotationMembersCantHaveTypeParams);
1034                }
1035                // validate annotation method's return type (could be an annotation type)
1036                chk.validateAnnotationType(tree.restype);
1037                // ensure that annotation method does not clash with members of Object/Annotation
1038                chk.validateAnnotationMethod(tree.pos(), m);
1039            }
1040
1041            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1042                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1043
1044            if (tree.body == null) {
1045                // Empty bodies are only allowed for
1046                // abstract, native, or interface methods, or for methods
1047                // in a retrofit signature class.
1048                if (tree.defaultValue != null) {
1049                    if ((owner.flags() & ANNOTATION) == 0)
1050                        log.error(tree.pos(),
1051                                  Errors.DefaultAllowedInIntfAnnotationMember);
1052                }
1053                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1054                    log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1055            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1056                if ((owner.flags() & INTERFACE) != 0) {
1057                    log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1058                } else {
1059                    log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1060                }
1061            } else if ((tree.mods.flags & NATIVE) != 0) {
1062                log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1063            } else {
1064                // Add an implicit super() call unless an explicit call to
1065                // super(...) or this(...) is given
1066                // or we are compiling class java.lang.Object.
1067                if (tree.name == names.init && owner.type != syms.objectType) {
1068                    JCBlock body = tree.body;
1069                    if (body.stats.isEmpty() ||
1070                            !TreeInfo.isSelfCall(body.stats.head)) {
1071                        body.stats = body.stats.
1072                                prepend(typeEnter.SuperCall(make.at(body.pos),
1073                                        List.nil(),
1074                                        List.nil(),
1075                                        false));
1076                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1077                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1078                            TreeInfo.isSuperCall(body.stats.head)) {
1079                        // enum constructors are not allowed to call super
1080                        // directly, so make sure there aren't any super calls
1081                        // in enum constructors, except in the compiler
1082                        // generated one.
1083                        log.error(tree.body.stats.head.pos(),
1084                                  Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1085                    }
1086                }
1087
1088                // Attribute all type annotations in the body
1089                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1090                annotate.flush();
1091
1092                // Attribute method body.
1093                attribStat(tree.body, localEnv);
1094            }
1095
1096            localEnv.info.scope.leave();
1097            result = tree.type = m.type;
1098        } finally {
1099            chk.setLint(prevLint);
1100            chk.setMethod(prevMethod);
1101        }
1102    }
1103
1104    public void visitVarDef(JCVariableDecl tree) {
1105        // Local variables have not been entered yet, so we need to do it now:
1106        if (env.info.scope.owner.kind == MTH) {
1107            if (tree.sym != null) {
1108                // parameters have already been entered
1109                env.info.scope.enter(tree.sym);
1110            } else {
1111                try {
1112                    annotate.blockAnnotations();
1113                    memberEnter.memberEnter(tree, env);
1114                } finally {
1115                    annotate.unblockAnnotations();
1116                }
1117            }
1118        } else {
1119            if (tree.init != null) {
1120                // Field initializer expression need to be entered.
1121                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1122                annotate.flush();
1123            }
1124        }
1125
1126        VarSymbol v = tree.sym;
1127        Lint lint = env.info.lint.augment(v);
1128        Lint prevLint = chk.setLint(lint);
1129
1130        // Check that the variable's declared type is well-formed.
1131        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1132                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1133                (tree.sym.flags() & PARAMETER) != 0;
1134        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1135
1136        try {
1137            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1138            deferredLintHandler.flush(tree.pos());
1139            chk.checkDeprecatedAnnotation(tree.pos(), v);
1140
1141            if (tree.init != null) {
1142                if ((v.flags_field & FINAL) == 0 ||
1143                    !memberEnter.needsLazyConstValue(tree.init)) {
1144                    // Not a compile-time constant
1145                    // Attribute initializer in a new environment
1146                    // with the declared variable as owner.
1147                    // Check that initializer conforms to variable's declared type.
1148                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1149                    initEnv.info.lint = lint;
1150                    // In order to catch self-references, we set the variable's
1151                    // declaration position to maximal possible value, effectively
1152                    // marking the variable as undefined.
1153                    initEnv.info.enclVar = v;
1154                    attribExpr(tree.init, initEnv, v.type);
1155                }
1156            }
1157            result = tree.type = v.type;
1158        }
1159        finally {
1160            chk.setLint(prevLint);
1161        }
1162    }
1163
1164    public void visitSkip(JCSkip tree) {
1165        result = null;
1166    }
1167
1168    public void visitBlock(JCBlock tree) {
1169        if (env.info.scope.owner.kind == TYP) {
1170            // Block is a static or instance initializer;
1171            // let the owner of the environment be a freshly
1172            // created BLOCK-method.
1173            Symbol fakeOwner =
1174                new MethodSymbol(tree.flags | BLOCK |
1175                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1176                    env.info.scope.owner);
1177            final Env<AttrContext> localEnv =
1178                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1179
1180            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1181            // Attribute all type annotations in the block
1182            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1183            annotate.flush();
1184            attribStats(tree.stats, localEnv);
1185
1186            {
1187                // Store init and clinit type annotations with the ClassSymbol
1188                // to allow output in Gen.normalizeDefs.
1189                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1190                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1191                if ((tree.flags & STATIC) != 0) {
1192                    cs.appendClassInitTypeAttributes(tas);
1193                } else {
1194                    cs.appendInitTypeAttributes(tas);
1195                }
1196            }
1197        } else {
1198            // Create a new local environment with a local scope.
1199            Env<AttrContext> localEnv =
1200                env.dup(tree, env.info.dup(env.info.scope.dup()));
1201            try {
1202                attribStats(tree.stats, localEnv);
1203            } finally {
1204                localEnv.info.scope.leave();
1205            }
1206        }
1207        result = null;
1208    }
1209
1210    public void visitDoLoop(JCDoWhileLoop tree) {
1211        attribStat(tree.body, env.dup(tree));
1212        attribExpr(tree.cond, env, syms.booleanType);
1213        result = null;
1214    }
1215
1216    public void visitWhileLoop(JCWhileLoop tree) {
1217        attribExpr(tree.cond, env, syms.booleanType);
1218        attribStat(tree.body, env.dup(tree));
1219        result = null;
1220    }
1221
1222    public void visitForLoop(JCForLoop tree) {
1223        Env<AttrContext> loopEnv =
1224            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1225        try {
1226            attribStats(tree.init, loopEnv);
1227            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1228            loopEnv.tree = tree; // before, we were not in loop!
1229            attribStats(tree.step, loopEnv);
1230            attribStat(tree.body, loopEnv);
1231            result = null;
1232        }
1233        finally {
1234            loopEnv.info.scope.leave();
1235        }
1236    }
1237
1238    public void visitForeachLoop(JCEnhancedForLoop tree) {
1239        Env<AttrContext> loopEnv =
1240            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1241        try {
1242            //the Formal Parameter of a for-each loop is not in the scope when
1243            //attributing the for-each expression; we mimick this by attributing
1244            //the for-each expression first (against original scope).
1245            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1246            attribStat(tree.var, loopEnv);
1247            chk.checkNonVoid(tree.pos(), exprType);
1248            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1249            if (elemtype == null) {
1250                // or perhaps expr implements Iterable<T>?
1251                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1252                if (base == null) {
1253                    log.error(tree.expr.pos(),
1254                              Errors.ForeachNotApplicableToType(exprType,
1255                                                                Fragments.TypeReqArrayOrIterable));
1256                    elemtype = types.createErrorType(exprType);
1257                } else {
1258                    List<Type> iterableParams = base.allparams();
1259                    elemtype = iterableParams.isEmpty()
1260                        ? syms.objectType
1261                        : types.wildUpperBound(iterableParams.head);
1262                }
1263            }
1264            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1265            loopEnv.tree = tree; // before, we were not in loop!
1266            attribStat(tree.body, loopEnv);
1267            result = null;
1268        }
1269        finally {
1270            loopEnv.info.scope.leave();
1271        }
1272    }
1273
1274    public void visitLabelled(JCLabeledStatement tree) {
1275        // Check that label is not used in an enclosing statement
1276        Env<AttrContext> env1 = env;
1277        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1278            if (env1.tree.hasTag(LABELLED) &&
1279                ((JCLabeledStatement) env1.tree).label == tree.label) {
1280                log.error(tree.pos(),
1281                          Errors.LabelAlreadyInUse(tree.label));
1282                break;
1283            }
1284            env1 = env1.next;
1285        }
1286
1287        attribStat(tree.body, env.dup(tree));
1288        result = null;
1289    }
1290
1291    public void visitSwitch(JCSwitch tree) {
1292        Type seltype = attribExpr(tree.selector, env);
1293
1294        Env<AttrContext> switchEnv =
1295            env.dup(tree, env.info.dup(env.info.scope.dup()));
1296
1297        try {
1298
1299            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1300            boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1301            if (stringSwitch && !allowStringsInSwitch) {
1302                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), Errors.StringSwitchNotSupportedInSource(sourceName));
1303            }
1304            if (!enumSwitch && !stringSwitch)
1305                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1306
1307            // Attribute all cases and
1308            // check that there are no duplicate case labels or default clauses.
1309            Set<Object> labels = new HashSet<>(); // The set of case labels.
1310            boolean hasDefault = false;      // Is there a default label?
1311            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1312                JCCase c = l.head;
1313                if (c.pat != null) {
1314                    if (enumSwitch) {
1315                        Symbol sym = enumConstant(c.pat, seltype);
1316                        if (sym == null) {
1317                            log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1318                        } else if (!labels.add(sym)) {
1319                            log.error(c.pos(), Errors.DuplicateCaseLabel);
1320                        }
1321                    } else {
1322                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1323                        if (!pattype.hasTag(ERROR)) {
1324                            if (pattype.constValue() == null) {
1325                                log.error(c.pat.pos(),
1326                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1327                            } else if (!labels.add(pattype.constValue())) {
1328                                log.error(c.pos(), Errors.DuplicateCaseLabel);
1329                            }
1330                        }
1331                    }
1332                } else if (hasDefault) {
1333                    log.error(c.pos(), Errors.DuplicateDefaultLabel);
1334                } else {
1335                    hasDefault = true;
1336                }
1337                Env<AttrContext> caseEnv =
1338                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1339                try {
1340                    attribStats(c.stats, caseEnv);
1341                } finally {
1342                    caseEnv.info.scope.leave();
1343                    addVars(c.stats, switchEnv.info.scope);
1344                }
1345            }
1346
1347            result = null;
1348        }
1349        finally {
1350            switchEnv.info.scope.leave();
1351        }
1352    }
1353    // where
1354        /** Add any variables defined in stats to the switch scope. */
1355        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1356            for (;stats.nonEmpty(); stats = stats.tail) {
1357                JCTree stat = stats.head;
1358                if (stat.hasTag(VARDEF))
1359                    switchScope.enter(((JCVariableDecl) stat).sym);
1360            }
1361        }
1362    // where
1363    /** Return the selected enumeration constant symbol, or null. */
1364    private Symbol enumConstant(JCTree tree, Type enumType) {
1365        if (tree.hasTag(IDENT)) {
1366            JCIdent ident = (JCIdent)tree;
1367            Name name = ident.name;
1368            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1369                if (sym.kind == VAR) {
1370                    Symbol s = ident.sym = sym;
1371                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1372                    ident.type = s.type;
1373                    return ((s.flags_field & Flags.ENUM) == 0)
1374                        ? null : s;
1375                }
1376            }
1377        }
1378        return null;
1379    }
1380
1381    public void visitSynchronized(JCSynchronized tree) {
1382        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1383        attribStat(tree.body, env);
1384        result = null;
1385    }
1386
1387    public void visitTry(JCTry tree) {
1388        // Create a new local environment with a local
1389        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1390        try {
1391            boolean isTryWithResource = tree.resources.nonEmpty();
1392            // Create a nested environment for attributing the try block if needed
1393            Env<AttrContext> tryEnv = isTryWithResource ?
1394                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1395                localEnv;
1396            try {
1397                // Attribute resource declarations
1398                for (JCTree resource : tree.resources) {
1399                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1400                        @Override
1401                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1402                            chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1403                        }
1404                    };
1405                    ResultInfo twrResult =
1406                        new ResultInfo(KindSelector.VAR,
1407                                       syms.autoCloseableType,
1408                                       twrContext);
1409                    if (resource.hasTag(VARDEF)) {
1410                        attribStat(resource, tryEnv);
1411                        twrResult.check(resource, resource.type);
1412
1413                        //check that resource type cannot throw InterruptedException
1414                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1415
1416                        VarSymbol var = ((JCVariableDecl) resource).sym;
1417                        var.setData(ElementKind.RESOURCE_VARIABLE);
1418                    } else {
1419                        attribTree(resource, tryEnv, twrResult);
1420                    }
1421                }
1422                // Attribute body
1423                attribStat(tree.body, tryEnv);
1424            } finally {
1425                if (isTryWithResource)
1426                    tryEnv.info.scope.leave();
1427            }
1428
1429            // Attribute catch clauses
1430            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1431                JCCatch c = l.head;
1432                Env<AttrContext> catchEnv =
1433                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1434                try {
1435                    Type ctype = attribStat(c.param, catchEnv);
1436                    if (TreeInfo.isMultiCatch(c)) {
1437                        //multi-catch parameter is implicitly marked as final
1438                        c.param.sym.flags_field |= FINAL | UNION;
1439                    }
1440                    if (c.param.sym.kind == VAR) {
1441                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1442                    }
1443                    chk.checkType(c.param.vartype.pos(),
1444                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1445                                  syms.throwableType);
1446                    attribStat(c.body, catchEnv);
1447                } finally {
1448                    catchEnv.info.scope.leave();
1449                }
1450            }
1451
1452            // Attribute finalizer
1453            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1454            result = null;
1455        }
1456        finally {
1457            localEnv.info.scope.leave();
1458        }
1459    }
1460
1461    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1462        if (!resource.isErroneous() &&
1463            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1464            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1465            Symbol close = syms.noSymbol;
1466            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1467            try {
1468                close = rs.resolveQualifiedMethod(pos,
1469                        env,
1470                        types.skipTypeVars(resource, false),
1471                        names.close,
1472                        List.nil(),
1473                        List.nil());
1474            }
1475            finally {
1476                log.popDiagnosticHandler(discardHandler);
1477            }
1478            if (close.kind == MTH &&
1479                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1480                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1481                    env.info.lint.isEnabled(LintCategory.TRY)) {
1482                log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1483            }
1484        }
1485    }
1486
1487    public void visitConditional(JCConditional tree) {
1488        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1489
1490        tree.polyKind = (!allowPoly ||
1491                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1492                isBooleanOrNumeric(env, tree)) ?
1493                PolyKind.STANDALONE : PolyKind.POLY;
1494
1495        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1496            //this means we are returning a poly conditional from void-compatible lambda expression
1497            resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1498            result = tree.type = types.createErrorType(resultInfo.pt);
1499            return;
1500        }
1501
1502        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1503                unknownExprInfo :
1504                resultInfo.dup(conditionalContext(resultInfo.checkContext));
1505
1506        Type truetype = attribTree(tree.truepart, env, condInfo);
1507        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1508
1509        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1510        if (condtype.constValue() != null &&
1511                truetype.constValue() != null &&
1512                falsetype.constValue() != null &&
1513                !owntype.hasTag(NONE)) {
1514            //constant folding
1515            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1516        }
1517        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1518    }
1519    //where
1520        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1521            switch (tree.getTag()) {
1522                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1523                              ((JCLiteral)tree).typetag == BOOLEAN ||
1524                              ((JCLiteral)tree).typetag == BOT;
1525                case LAMBDA: case REFERENCE: return false;
1526                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1527                case CONDEXPR:
1528                    JCConditional condTree = (JCConditional)tree;
1529                    return isBooleanOrNumeric(env, condTree.truepart) &&
1530                            isBooleanOrNumeric(env, condTree.falsepart);
1531                case APPLY:
1532                    JCMethodInvocation speculativeMethodTree =
1533                            (JCMethodInvocation)deferredAttr.attribSpeculative(
1534                                    tree, env, unknownExprInfo,
1535                                    argumentAttr.withLocalCacheContext());
1536                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1537                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1538                            env.enclClass.type :
1539                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1540                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1541                    return primitiveOrBoxed(owntype);
1542                case NEWCLASS:
1543                    JCExpression className =
1544                            removeClassParams.translate(((JCNewClass)tree).clazz);
1545                    JCExpression speculativeNewClassTree =
1546                            (JCExpression)deferredAttr.attribSpeculative(
1547                                    className, env, unknownTypeInfo,
1548                                    argumentAttr.withLocalCacheContext());
1549                    return primitiveOrBoxed(speculativeNewClassTree.type);
1550                default:
1551                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1552                            argumentAttr.withLocalCacheContext()).type;
1553                    return primitiveOrBoxed(speculativeType);
1554            }
1555        }
1556        //where
1557            boolean primitiveOrBoxed(Type t) {
1558                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1559            }
1560
1561            TreeTranslator removeClassParams = new TreeTranslator() {
1562                @Override
1563                public void visitTypeApply(JCTypeApply tree) {
1564                    result = translate(tree.clazz);
1565                }
1566            };
1567
1568        CheckContext conditionalContext(CheckContext checkContext) {
1569            return new Check.NestedCheckContext(checkContext) {
1570                //this will use enclosing check context to check compatibility of
1571                //subexpression against target type; if we are in a method check context,
1572                //depending on whether boxing is allowed, we could have incompatibilities
1573                @Override
1574                public void report(DiagnosticPosition pos, JCDiagnostic details) {
1575                    enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1576                }
1577            };
1578        }
1579
1580        /** Compute the type of a conditional expression, after
1581         *  checking that it exists.  See JLS 15.25. Does not take into
1582         *  account the special case where condition and both arms
1583         *  are constants.
1584         *
1585         *  @param pos      The source position to be used for error
1586         *                  diagnostics.
1587         *  @param thentype The type of the expression's then-part.
1588         *  @param elsetype The type of the expression's else-part.
1589         */
1590        Type condType(DiagnosticPosition pos,
1591                               Type thentype, Type elsetype) {
1592            // If same type, that is the result
1593            if (types.isSameType(thentype, elsetype))
1594                return thentype.baseType();
1595
1596            Type thenUnboxed = (thentype.isPrimitive())
1597                ? thentype : types.unboxedType(thentype);
1598            Type elseUnboxed = (elsetype.isPrimitive())
1599                ? elsetype : types.unboxedType(elsetype);
1600
1601            // Otherwise, if both arms can be converted to a numeric
1602            // type, return the least numeric type that fits both arms
1603            // (i.e. return larger of the two, or return int if one
1604            // arm is short, the other is char).
1605            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1606                // If one arm has an integer subrange type (i.e., byte,
1607                // short, or char), and the other is an integer constant
1608                // that fits into the subrange, return the subrange type.
1609                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1610                    elseUnboxed.hasTag(INT) &&
1611                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1612                    return thenUnboxed.baseType();
1613                }
1614                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1615                    thenUnboxed.hasTag(INT) &&
1616                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1617                    return elseUnboxed.baseType();
1618                }
1619
1620                for (TypeTag tag : primitiveTags) {
1621                    Type candidate = syms.typeOfTag[tag.ordinal()];
1622                    if (types.isSubtype(thenUnboxed, candidate) &&
1623                        types.isSubtype(elseUnboxed, candidate)) {
1624                        return candidate;
1625                    }
1626                }
1627            }
1628
1629            // Those were all the cases that could result in a primitive
1630            if (thentype.isPrimitive())
1631                thentype = types.boxedClass(thentype).type;
1632            if (elsetype.isPrimitive())
1633                elsetype = types.boxedClass(elsetype).type;
1634
1635            if (types.isSubtype(thentype, elsetype))
1636                return elsetype.baseType();
1637            if (types.isSubtype(elsetype, thentype))
1638                return thentype.baseType();
1639
1640            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1641                log.error(pos,
1642                          Errors.NeitherConditionalSubtype(thentype,
1643                                                           elsetype));
1644                return thentype.baseType();
1645            }
1646
1647            // both are known to be reference types.  The result is
1648            // lub(thentype,elsetype). This cannot fail, as it will
1649            // always be possible to infer "Object" if nothing better.
1650            return types.lub(thentype.baseType(), elsetype.baseType());
1651        }
1652
1653    final static TypeTag[] primitiveTags = new TypeTag[]{
1654        BYTE,
1655        CHAR,
1656        SHORT,
1657        INT,
1658        LONG,
1659        FLOAT,
1660        DOUBLE,
1661        BOOLEAN,
1662    };
1663
1664    public void visitIf(JCIf tree) {
1665        attribExpr(tree.cond, env, syms.booleanType);
1666        attribStat(tree.thenpart, env);
1667        if (tree.elsepart != null)
1668            attribStat(tree.elsepart, env);
1669        chk.checkEmptyIf(tree);
1670        result = null;
1671    }
1672
1673    public void visitExec(JCExpressionStatement tree) {
1674        //a fresh environment is required for 292 inference to work properly ---
1675        //see Infer.instantiatePolymorphicSignatureInstance()
1676        Env<AttrContext> localEnv = env.dup(tree);
1677        attribExpr(tree.expr, localEnv);
1678        result = null;
1679    }
1680
1681    public void visitBreak(JCBreak tree) {
1682        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1683        result = null;
1684    }
1685
1686    public void visitContinue(JCContinue tree) {
1687        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1688        result = null;
1689    }
1690    //where
1691        /** Return the target of a break or continue statement, if it exists,
1692         *  report an error if not.
1693         *  Note: The target of a labelled break or continue is the
1694         *  (non-labelled) statement tree referred to by the label,
1695         *  not the tree representing the labelled statement itself.
1696         *
1697         *  @param pos     The position to be used for error diagnostics
1698         *  @param tag     The tag of the jump statement. This is either
1699         *                 Tree.BREAK or Tree.CONTINUE.
1700         *  @param label   The label of the jump statement, or null if no
1701         *                 label is given.
1702         *  @param env     The environment current at the jump statement.
1703         */
1704        private JCTree findJumpTarget(DiagnosticPosition pos,
1705                                    JCTree.Tag tag,
1706                                    Name label,
1707                                    Env<AttrContext> env) {
1708            // Search environments outwards from the point of jump.
1709            Env<AttrContext> env1 = env;
1710            LOOP:
1711            while (env1 != null) {
1712                switch (env1.tree.getTag()) {
1713                    case LABELLED:
1714                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1715                        if (label == labelled.label) {
1716                            // If jump is a continue, check that target is a loop.
1717                            if (tag == CONTINUE) {
1718                                if (!labelled.body.hasTag(DOLOOP) &&
1719                                        !labelled.body.hasTag(WHILELOOP) &&
1720                                        !labelled.body.hasTag(FORLOOP) &&
1721                                        !labelled.body.hasTag(FOREACHLOOP))
1722                                    log.error(pos, Errors.NotLoopLabel(label));
1723                                // Found labelled statement target, now go inwards
1724                                // to next non-labelled tree.
1725                                return TreeInfo.referencedStatement(labelled);
1726                            } else {
1727                                return labelled;
1728                            }
1729                        }
1730                        break;
1731                    case DOLOOP:
1732                    case WHILELOOP:
1733                    case FORLOOP:
1734                    case FOREACHLOOP:
1735                        if (label == null) return env1.tree;
1736                        break;
1737                    case SWITCH:
1738                        if (label == null && tag == BREAK) return env1.tree;
1739                        break;
1740                    case LAMBDA:
1741                    case METHODDEF:
1742                    case CLASSDEF:
1743                        break LOOP;
1744                    default:
1745                }
1746                env1 = env1.next;
1747            }
1748            if (label != null)
1749                log.error(pos, Errors.UndefLabel(label));
1750            else if (tag == CONTINUE)
1751                log.error(pos, Errors.ContOutsideLoop);
1752            else
1753                log.error(pos, Errors.BreakOutsideSwitchLoop);
1754            return null;
1755        }
1756
1757    public void visitReturn(JCReturn tree) {
1758        // Check that there is an enclosing method which is
1759        // nested within than the enclosing class.
1760        if (env.info.returnResult == null) {
1761            log.error(tree.pos(), Errors.RetOutsideMeth);
1762        } else {
1763            // Attribute return expression, if it exists, and check that
1764            // it conforms to result type of enclosing method.
1765            if (tree.expr != null) {
1766                if (env.info.returnResult.pt.hasTag(VOID)) {
1767                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1768                              diags.fragment(Fragments.UnexpectedRetVal));
1769                }
1770                attribTree(tree.expr, env, env.info.returnResult);
1771            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1772                    !env.info.returnResult.pt.hasTag(NONE)) {
1773                env.info.returnResult.checkContext.report(tree.pos(),
1774                              diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1775            }
1776        }
1777        result = null;
1778    }
1779
1780    public void visitThrow(JCThrow tree) {
1781        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1782        if (allowPoly) {
1783            chk.checkType(tree, owntype, syms.throwableType);
1784        }
1785        result = null;
1786    }
1787
1788    public void visitAssert(JCAssert tree) {
1789        attribExpr(tree.cond, env, syms.booleanType);
1790        if (tree.detail != null) {
1791            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1792        }
1793        result = null;
1794    }
1795
1796     /** Visitor method for method invocations.
1797     *  NOTE: The method part of an application will have in its type field
1798     *        the return type of the method, not the method's type itself!
1799     */
1800    public void visitApply(JCMethodInvocation tree) {
1801        // The local environment of a method application is
1802        // a new environment nested in the current one.
1803        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1804
1805        // The types of the actual method arguments.
1806        List<Type> argtypes;
1807
1808        // The types of the actual method type arguments.
1809        List<Type> typeargtypes = null;
1810
1811        Name methName = TreeInfo.name(tree.meth);
1812
1813        boolean isConstructorCall =
1814            methName == names._this || methName == names._super;
1815
1816        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1817        if (isConstructorCall) {
1818            // We are seeing a ...this(...) or ...super(...) call.
1819            // Check that this is the first statement in a constructor.
1820            if (checkFirstConstructorStat(tree, env)) {
1821
1822                // Record the fact
1823                // that this is a constructor call (using isSelfCall).
1824                localEnv.info.isSelfCall = true;
1825
1826                // Attribute arguments, yielding list of argument types.
1827                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1828                argtypes = argtypesBuf.toList();
1829                typeargtypes = attribTypes(tree.typeargs, localEnv);
1830
1831                // Variable `site' points to the class in which the called
1832                // constructor is defined.
1833                Type site = env.enclClass.sym.type;
1834                if (methName == names._super) {
1835                    if (site == syms.objectType) {
1836                        log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1837                        site = types.createErrorType(syms.objectType);
1838                    } else {
1839                        site = types.supertype(site);
1840                    }
1841                }
1842
1843                if (site.hasTag(CLASS)) {
1844                    Type encl = site.getEnclosingType();
1845                    while (encl != null && encl.hasTag(TYPEVAR))
1846                        encl = encl.getUpperBound();
1847                    if (encl.hasTag(CLASS)) {
1848                        // we are calling a nested class
1849
1850                        if (tree.meth.hasTag(SELECT)) {
1851                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1852
1853                            // We are seeing a prefixed call, of the form
1854                            //     <expr>.super(...).
1855                            // Check that the prefix expression conforms
1856                            // to the outer instance type of the class.
1857                            chk.checkRefType(qualifier.pos(),
1858                                             attribExpr(qualifier, localEnv,
1859                                                        encl));
1860                        } else if (methName == names._super) {
1861                            // qualifier omitted; check for existence
1862                            // of an appropriate implicit qualifier.
1863                            rs.resolveImplicitThis(tree.meth.pos(),
1864                                                   localEnv, site, true);
1865                        }
1866                    } else if (tree.meth.hasTag(SELECT)) {
1867                        log.error(tree.meth.pos(),
1868                                  Errors.IllegalQualNotIcls(site.tsym));
1869                    }
1870
1871                    // if we're calling a java.lang.Enum constructor,
1872                    // prefix the implicit String and int parameters
1873                    if (site.tsym == syms.enumSym)
1874                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1875
1876                    // Resolve the called constructor under the assumption
1877                    // that we are referring to a superclass instance of the
1878                    // current instance (JLS ???).
1879                    boolean selectSuperPrev = localEnv.info.selectSuper;
1880                    localEnv.info.selectSuper = true;
1881                    localEnv.info.pendingResolutionPhase = null;
1882                    Symbol sym = rs.resolveConstructor(
1883                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1884                    localEnv.info.selectSuper = selectSuperPrev;
1885
1886                    // Set method symbol to resolved constructor...
1887                    TreeInfo.setSymbol(tree.meth, sym);
1888
1889                    // ...and check that it is legal in the current context.
1890                    // (this will also set the tree's type)
1891                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1892                    checkId(tree.meth, site, sym, localEnv,
1893                            new ResultInfo(kind, mpt));
1894                }
1895                // Otherwise, `site' is an error type and we do nothing
1896            }
1897            result = tree.type = syms.voidType;
1898        } else {
1899            // Otherwise, we are seeing a regular method call.
1900            // Attribute the arguments, yielding list of argument types, ...
1901            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1902            argtypes = argtypesBuf.toList();
1903            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1904
1905            // ... and attribute the method using as a prototype a methodtype
1906            // whose formal argument types is exactly the list of actual
1907            // arguments (this will also set the method symbol).
1908            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1909            localEnv.info.pendingResolutionPhase = null;
1910            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1911
1912            // Compute the result type.
1913            Type restype = mtype.getReturnType();
1914            if (restype.hasTag(WILDCARD))
1915                throw new AssertionError(mtype);
1916
1917            Type qualifier = (tree.meth.hasTag(SELECT))
1918                    ? ((JCFieldAccess) tree.meth).selected.type
1919                    : env.enclClass.sym.type;
1920            Symbol msym = TreeInfo.symbol(tree.meth);
1921            restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
1922
1923            chk.checkRefTypes(tree.typeargs, typeargtypes);
1924
1925            // Check that value of resulting type is admissible in the
1926            // current context.  Also, capture the return type
1927            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1928            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1929        }
1930        chk.validate(tree.typeargs, localEnv);
1931    }
1932    //where
1933        Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1934            if (msym != null &&
1935                    msym.owner == syms.objectType.tsym &&
1936                    methodName == names.getClass &&
1937                    argtypes.isEmpty()) {
1938                // as a special case, x.getClass() has type Class<? extends |X|>
1939                return new ClassType(restype.getEnclosingType(),
1940                        List.of(new WildcardType(types.erasure(qualifierType),
1941                                BoundKind.EXTENDS,
1942                                syms.boundClass)),
1943                        restype.tsym,
1944                        restype.getMetadata());
1945            } else if (msym != null &&
1946                    msym.owner == syms.arrayClass &&
1947                    methodName == names.clone &&
1948                    types.isArray(qualifierType)) {
1949                // as a special case, array.clone() has a result that is
1950                // the same as static type of the array being cloned
1951                return qualifierType;
1952            } else {
1953                return restype;
1954            }
1955        }
1956
1957        /** Check that given application node appears as first statement
1958         *  in a constructor call.
1959         *  @param tree   The application node
1960         *  @param env    The environment current at the application.
1961         */
1962        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1963            JCMethodDecl enclMethod = env.enclMethod;
1964            if (enclMethod != null && enclMethod.name == names.init) {
1965                JCBlock body = enclMethod.body;
1966                if (body.stats.head.hasTag(EXEC) &&
1967                    ((JCExpressionStatement) body.stats.head).expr == tree)
1968                    return true;
1969            }
1970            log.error(tree.pos(),
1971                      Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
1972            return false;
1973        }
1974
1975        /** Obtain a method type with given argument types.
1976         */
1977        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1978            MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
1979            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1980        }
1981
1982    public void visitNewClass(final JCNewClass tree) {
1983        Type owntype = types.createErrorType(tree.type);
1984
1985        // The local environment of a class creation is
1986        // a new environment nested in the current one.
1987        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1988
1989        // The anonymous inner class definition of the new expression,
1990        // if one is defined by it.
1991        JCClassDecl cdef = tree.def;
1992
1993        // If enclosing class is given, attribute it, and
1994        // complete class name to be fully qualified
1995        JCExpression clazz = tree.clazz; // Class field following new
1996        JCExpression clazzid;            // Identifier in class field
1997        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1998        annoclazzid = null;
1999
2000        if (clazz.hasTag(TYPEAPPLY)) {
2001            clazzid = ((JCTypeApply) clazz).clazz;
2002            if (clazzid.hasTag(ANNOTATED_TYPE)) {
2003                annoclazzid = (JCAnnotatedType) clazzid;
2004                clazzid = annoclazzid.underlyingType;
2005            }
2006        } else {
2007            if (clazz.hasTag(ANNOTATED_TYPE)) {
2008                annoclazzid = (JCAnnotatedType) clazz;
2009                clazzid = annoclazzid.underlyingType;
2010            } else {
2011                clazzid = clazz;
2012            }
2013        }
2014
2015        JCExpression clazzid1 = clazzid; // The same in fully qualified form
2016
2017        if (tree.encl != null) {
2018            // We are seeing a qualified new, of the form
2019            //    <expr>.new C <...> (...) ...
2020            // In this case, we let clazz stand for the name of the
2021            // allocated class C prefixed with the type of the qualifier
2022            // expression, so that we can
2023            // resolve it with standard techniques later. I.e., if
2024            // <expr> has type T, then <expr>.new C <...> (...)
2025            // yields a clazz T.C.
2026            Type encltype = chk.checkRefType(tree.encl.pos(),
2027                                             attribExpr(tree.encl, env));
2028            // TODO 308: in <expr>.new C, do we also want to add the type annotations
2029            // from expr to the combined type, or not? Yes, do this.
2030            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2031                                                 ((JCIdent) clazzid).name);
2032
2033            EndPosTable endPosTable = this.env.toplevel.endPositions;
2034            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2035            if (clazz.hasTag(ANNOTATED_TYPE)) {
2036                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2037                List<JCAnnotation> annos = annoType.annotations;
2038
2039                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2040                    clazzid1 = make.at(tree.pos).
2041                        TypeApply(clazzid1,
2042                                  ((JCTypeApply) clazz).arguments);
2043                }
2044
2045                clazzid1 = make.at(tree.pos).
2046                    AnnotatedType(annos, clazzid1);
2047            } else if (clazz.hasTag(TYPEAPPLY)) {
2048                clazzid1 = make.at(tree.pos).
2049                    TypeApply(clazzid1,
2050                              ((JCTypeApply) clazz).arguments);
2051            }
2052
2053            clazz = clazzid1;
2054        }
2055
2056        // Attribute clazz expression and store
2057        // symbol + type back into the attributed tree.
2058        Type clazztype;
2059
2060        try {
2061            env.info.isNewClass = true;
2062            clazztype = TreeInfo.isEnumInit(env.tree) ?
2063                attribIdentAsEnumType(env, (JCIdent)clazz) :
2064                attribType(clazz, env);
2065        } finally {
2066            env.info.isNewClass = false;
2067        }
2068
2069        clazztype = chk.checkDiamond(tree, clazztype);
2070        chk.validate(clazz, localEnv);
2071        if (tree.encl != null) {
2072            // We have to work in this case to store
2073            // symbol + type back into the attributed tree.
2074            tree.clazz.type = clazztype;
2075            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2076            clazzid.type = ((JCIdent) clazzid).sym.type;
2077            if (annoclazzid != null) {
2078                annoclazzid.type = clazzid.type;
2079            }
2080            if (!clazztype.isErroneous()) {
2081                if (cdef != null && clazztype.tsym.isInterface()) {
2082                    log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2083                } else if (clazztype.tsym.isStatic()) {
2084                    log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2085                }
2086            }
2087        } else if (!clazztype.tsym.isInterface() &&
2088                   clazztype.getEnclosingType().hasTag(CLASS)) {
2089            // Check for the existence of an apropos outer instance
2090            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2091        }
2092
2093        // Attribute constructor arguments.
2094        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2095        final KindSelector pkind =
2096            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2097        List<Type> argtypes = argtypesBuf.toList();
2098        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2099
2100        // If we have made no mistakes in the class type...
2101        if (clazztype.hasTag(CLASS)) {
2102            // Enums may not be instantiated except implicitly
2103            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2104                (!env.tree.hasTag(VARDEF) ||
2105                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2106                 ((JCVariableDecl) env.tree).init != tree))
2107                log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2108
2109            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2110                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2111            boolean skipNonDiamondPath = false;
2112            // Check that class is not abstract
2113            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2114                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2115                log.error(tree.pos(),
2116                          Errors.AbstractCantBeInstantiated(clazztype.tsym));
2117                skipNonDiamondPath = true;
2118            } else if (cdef != null && clazztype.tsym.isInterface()) {
2119                // Check that no constructor arguments are given to
2120                // anonymous classes implementing an interface
2121                if (!argtypes.isEmpty())
2122                    log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2123
2124                if (!typeargtypes.isEmpty())
2125                    log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2126
2127                // Error recovery: pretend no arguments were supplied.
2128                argtypes = List.nil();
2129                typeargtypes = List.nil();
2130                skipNonDiamondPath = true;
2131            }
2132            if (TreeInfo.isDiamond(tree)) {
2133                ClassType site = new ClassType(clazztype.getEnclosingType(),
2134                            clazztype.tsym.type.getTypeArguments(),
2135                                               clazztype.tsym,
2136                                               clazztype.getMetadata());
2137
2138                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2139                diamondEnv.info.selectSuper = cdef != null;
2140                diamondEnv.info.pendingResolutionPhase = null;
2141
2142                //if the type of the instance creation expression is a class type
2143                //apply method resolution inference (JLS 15.12.2.7). The return type
2144                //of the resolved constructor will be a partially instantiated type
2145                Symbol constructor = rs.resolveDiamond(tree.pos(),
2146                            diamondEnv,
2147                            site,
2148                            argtypes,
2149                            typeargtypes);
2150                tree.constructor = constructor.baseSymbol();
2151
2152                final TypeSymbol csym = clazztype.tsym;
2153                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2154                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2155                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2156                constructorType = checkId(tree, site,
2157                        constructor,
2158                        diamondEnv,
2159                        diamondResult);
2160
2161                tree.clazz.type = types.createErrorType(clazztype);
2162                if (!constructorType.isErroneous()) {
2163                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2164                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2165                }
2166                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2167            }
2168
2169            // Resolve the called constructor under the assumption
2170            // that we are referring to a superclass instance of the
2171            // current instance (JLS ???).
2172            else if (!skipNonDiamondPath) {
2173                //the following code alters some of the fields in the current
2174                //AttrContext - hence, the current context must be dup'ed in
2175                //order to avoid downstream failures
2176                Env<AttrContext> rsEnv = localEnv.dup(tree);
2177                rsEnv.info.selectSuper = cdef != null;
2178                rsEnv.info.pendingResolutionPhase = null;
2179                tree.constructor = rs.resolveConstructor(
2180                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2181                if (cdef == null) { //do not check twice!
2182                    tree.constructorType = checkId(tree,
2183                            clazztype,
2184                            tree.constructor,
2185                            rsEnv,
2186                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2187                    if (rsEnv.info.lastResolveVarargs())
2188                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2189                }
2190            }
2191
2192            if (cdef != null) {
2193                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2194                return;
2195            }
2196
2197            if (tree.constructor != null && tree.constructor.kind == MTH)
2198                owntype = clazztype;
2199        }
2200        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2201        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2202        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2203            //we need to wait for inference to finish and then replace inference vars in the constructor type
2204            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2205                    instantiatedContext -> {
2206                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2207                    });
2208        }
2209        chk.validate(tree.typeargs, localEnv);
2210    }
2211
2212        // where
2213        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2214                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2215                                                   List<Type> argtypes, List<Type> typeargtypes,
2216                                                   KindSelector pkind) {
2217            // We are seeing an anonymous class instance creation.
2218            // In this case, the class instance creation
2219            // expression
2220            //
2221            //    E.new <typeargs1>C<typargs2>(args) { ... }
2222            //
2223            // is represented internally as
2224            //
2225            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2226            //
2227            // This expression is then *transformed* as follows:
2228            //
2229            // (1) add an extends or implements clause
2230            // (2) add a constructor.
2231            //
2232            // For instance, if C is a class, and ET is the type of E,
2233            // the expression
2234            //
2235            //    E.new <typeargs1>C<typargs2>(args) { ... }
2236            //
2237            // is translated to (where X is a fresh name and typarams is the
2238            // parameter list of the super constructor):
2239            //
2240            //   new <typeargs1>X(<*nullchk*>E, args) where
2241            //     X extends C<typargs2> {
2242            //       <typarams> X(ET e, args) {
2243            //         e.<typeargs1>super(args)
2244            //       }
2245            //       ...
2246            //     }
2247            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2248            final boolean isDiamond = TreeInfo.isDiamond(tree);
2249            if (isDiamond
2250                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2251                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2252                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2253                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2254                        instantiatedContext -> {
2255                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2256                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2257                            ResultInfo prevResult = this.resultInfo;
2258                            try {
2259                                this.resultInfo = resultInfoForClassDefinition;
2260                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2261                                                            localEnv, argtypes, typeargtypes, pkind);
2262                            } finally {
2263                                this.resultInfo = prevResult;
2264                            }
2265                        });
2266            } else {
2267                if (isDiamond && clazztype.hasTag(CLASS)) {
2268                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2269                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2270                        // One or more types inferred in the previous steps is non-denotable.
2271                        Fragment fragment = Diamond(clazztype.tsym);
2272                        log.error(tree.clazz.pos(),
2273                                Errors.CantApplyDiamond1(
2274                                        fragment,
2275                                        invalidDiamondArgs.size() > 1 ?
2276                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2277                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2278                    }
2279                    // For <>(){}, inferred types must also be accessible.
2280                    for (Type t : clazztype.getTypeArguments()) {
2281                        rs.checkAccessibleType(env, t);
2282                    }
2283                }
2284
2285                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2286                // false for isInterface call even when the original type is an interface.
2287                boolean implementing = clazztype.tsym.isInterface() ||
2288                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2289
2290                if (implementing) {
2291                    cdef.implementing = List.of(clazz);
2292                } else {
2293                    cdef.extending = clazz;
2294                }
2295
2296                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2297                    isSerializable(clazztype)) {
2298                    localEnv.info.isSerializable = true;
2299                }
2300
2301                attribStat(cdef, localEnv);
2302
2303                List<Type> finalargtypes;
2304                // If an outer instance is given,
2305                // prefix it to the constructor arguments
2306                // and delete it from the new expression
2307                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2308                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2309                    finalargtypes = argtypes.prepend(tree.encl.type);
2310                    tree.encl = null;
2311                } else {
2312                    finalargtypes = argtypes;
2313                }
2314
2315                // Reassign clazztype and recompute constructor. As this necessarily involves
2316                // another attribution pass for deferred types in the case of <>, replicate
2317                // them. Original arguments have right decorations already.
2318                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2319                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2320                }
2321
2322                clazztype = cdef.sym.type;
2323                Symbol sym = tree.constructor = rs.resolveConstructor(
2324                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2325                Assert.check(!sym.kind.isResolutionError());
2326                tree.constructor = sym;
2327                tree.constructorType = checkId(tree,
2328                        clazztype,
2329                        tree.constructor,
2330                        localEnv,
2331                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2332            }
2333            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2334                                clazztype : types.createErrorType(tree.type);
2335            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2336            chk.validate(tree.typeargs, localEnv);
2337        }
2338
2339        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2340            return new Check.NestedCheckContext(checkContext) {
2341                @Override
2342                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2343                    enclosingContext.report(clazz.clazz,
2344                            diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2345                }
2346            };
2347        }
2348
2349    /** Make an attributed null check tree.
2350     */
2351    public JCExpression makeNullCheck(JCExpression arg) {
2352        // optimization: new Outer() can never be null; skip null check
2353        if (arg.getTag() == NEWCLASS)
2354            return arg;
2355        // optimization: X.this is never null; skip null check
2356        Name name = TreeInfo.name(arg);
2357        if (name == names._this || name == names._super) return arg;
2358
2359        JCTree.Tag optag = NULLCHK;
2360        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2361        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2362        tree.type = arg.type;
2363        return tree;
2364    }
2365
2366    public void visitNewArray(JCNewArray tree) {
2367        Type owntype = types.createErrorType(tree.type);
2368        Env<AttrContext> localEnv = env.dup(tree);
2369        Type elemtype;
2370        if (tree.elemtype != null) {
2371            elemtype = attribType(tree.elemtype, localEnv);
2372            chk.validate(tree.elemtype, localEnv);
2373            owntype = elemtype;
2374            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2375                attribExpr(l.head, localEnv, syms.intType);
2376                owntype = new ArrayType(owntype, syms.arrayClass);
2377            }
2378        } else {
2379            // we are seeing an untyped aggregate { ... }
2380            // this is allowed only if the prototype is an array
2381            if (pt().hasTag(ARRAY)) {
2382                elemtype = types.elemtype(pt());
2383            } else {
2384                if (!pt().hasTag(ERROR)) {
2385                    log.error(tree.pos(),
2386                              Errors.IllegalInitializerForType(pt()));
2387                }
2388                elemtype = types.createErrorType(pt());
2389            }
2390        }
2391        if (tree.elems != null) {
2392            attribExprs(tree.elems, localEnv, elemtype);
2393            owntype = new ArrayType(elemtype, syms.arrayClass);
2394        }
2395        if (!types.isReifiable(elemtype))
2396            log.error(tree.pos(), Errors.GenericArrayCreation);
2397        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2398    }
2399
2400    /*
2401     * A lambda expression can only be attributed when a target-type is available.
2402     * In addition, if the target-type is that of a functional interface whose
2403     * descriptor contains inference variables in argument position the lambda expression
2404     * is 'stuck' (see DeferredAttr).
2405     */
2406    @Override
2407    public void visitLambda(final JCLambda that) {
2408        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2409            if (pt().hasTag(NONE)) {
2410                //lambda only allowed in assignment or method invocation/cast context
2411                log.error(that.pos(), Errors.UnexpectedLambda);
2412            }
2413            result = that.type = types.createErrorType(pt());
2414            return;
2415        }
2416        //create an environment for attribution of the lambda expression
2417        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2418        boolean needsRecovery =
2419                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2420        try {
2421            if (needsRecovery && isSerializable(pt())) {
2422                localEnv.info.isSerializable = true;
2423                localEnv.info.isLambda = true;
2424            }
2425            List<Type> explicitParamTypes = null;
2426            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2427                //attribute lambda parameters
2428                attribStats(that.params, localEnv);
2429                explicitParamTypes = TreeInfo.types(that.params);
2430            }
2431
2432            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2433            Type currentTarget = targetInfo.target;
2434            Type lambdaType = targetInfo.descriptor;
2435
2436            if (currentTarget.isErroneous()) {
2437                result = that.type = currentTarget;
2438                return;
2439            }
2440
2441            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2442
2443            if (lambdaType.hasTag(FORALL)) {
2444                //lambda expression target desc cannot be a generic method
2445                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2446                                                                    kindName(currentTarget.tsym),
2447                                                                    currentTarget.tsym);
2448                resultInfo.checkContext.report(that, diags.fragment(msg));
2449                result = that.type = types.createErrorType(pt());
2450                return;
2451            }
2452
2453            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2454                //add param type info in the AST
2455                List<Type> actuals = lambdaType.getParameterTypes();
2456                List<JCVariableDecl> params = that.params;
2457
2458                boolean arityMismatch = false;
2459
2460                while (params.nonEmpty()) {
2461                    if (actuals.isEmpty()) {
2462                        //not enough actuals to perform lambda parameter inference
2463                        arityMismatch = true;
2464                    }
2465                    //reset previously set info
2466                    Type argType = arityMismatch ?
2467                            syms.errType :
2468                            actuals.head;
2469                    params.head.vartype = make.at(params.head).Type(argType);
2470                    params.head.sym = null;
2471                    actuals = actuals.isEmpty() ?
2472                            actuals :
2473                            actuals.tail;
2474                    params = params.tail;
2475                }
2476
2477                //attribute lambda parameters
2478                attribStats(that.params, localEnv);
2479
2480                if (arityMismatch) {
2481                    resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2482                        result = that.type = types.createErrorType(currentTarget);
2483                        return;
2484                }
2485            }
2486
2487            //from this point on, no recovery is needed; if we are in assignment context
2488            //we will be able to attribute the whole lambda body, regardless of errors;
2489            //if we are in a 'check' method context, and the lambda is not compatible
2490            //with the target-type, it will be recovered anyway in Attr.checkId
2491            needsRecovery = false;
2492
2493            ResultInfo bodyResultInfo = localEnv.info.returnResult =
2494                    lambdaBodyResult(that, lambdaType, resultInfo);
2495
2496            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2497                attribTree(that.getBody(), localEnv, bodyResultInfo);
2498            } else {
2499                JCBlock body = (JCBlock)that.body;
2500                attribStats(body.stats, localEnv);
2501            }
2502
2503            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2504
2505            boolean isSpeculativeRound =
2506                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2507
2508            preFlow(that);
2509            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2510
2511            that.type = currentTarget; //avoids recovery at this stage
2512            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2513
2514            if (!isSpeculativeRound) {
2515                //add thrown types as bounds to the thrown types free variables if needed:
2516                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2517                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2518                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2519
2520                    chk.unhandled(inferredThrownTypes, thrownTypes);
2521
2522                    //18.2.5: "In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej"
2523                    thrownTypes.stream()
2524                            .filter(t -> t.hasTag(UNDETVAR))
2525                            .forEach(t -> ((UndetVar)t).setThrow());
2526                }
2527
2528                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2529            }
2530            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2531        } catch (Types.FunctionDescriptorLookupError ex) {
2532            JCDiagnostic cause = ex.getDiagnostic();
2533            resultInfo.checkContext.report(that, cause);
2534            result = that.type = types.createErrorType(pt());
2535            return;
2536        } catch (Throwable t) {
2537            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2538            //as that would likely cause the same exception again.
2539            needsRecovery = false;
2540            throw t;
2541        } finally {
2542            localEnv.info.scope.leave();
2543            if (needsRecovery) {
2544                attribTree(that, env, recoveryInfo);
2545            }
2546        }
2547    }
2548    //where
2549        class TargetInfo {
2550            Type target;
2551            Type descriptor;
2552
2553            public TargetInfo(Type target, Type descriptor) {
2554                this.target = target;
2555                this.descriptor = descriptor;
2556            }
2557        }
2558
2559        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2560            Type lambdaType;
2561            Type currentTarget = resultInfo.pt;
2562            if (resultInfo.pt != Type.recoveryType) {
2563                /* We need to adjust the target. If the target is an
2564                 * intersection type, for example: SAM & I1 & I2 ...
2565                 * the target will be updated to SAM
2566                 */
2567                currentTarget = targetChecker.visit(currentTarget, that);
2568                if (explicitParamTypes != null) {
2569                    currentTarget = infer.instantiateFunctionalInterface(that,
2570                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2571                }
2572                currentTarget = types.removeWildcards(currentTarget);
2573                lambdaType = types.findDescriptorType(currentTarget);
2574            } else {
2575                currentTarget = Type.recoveryType;
2576                lambdaType = fallbackDescriptorType(that);
2577            }
2578            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2579                //lambda expression target desc cannot be a generic method
2580                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2581                                                                    kindName(currentTarget.tsym),
2582                                                                    currentTarget.tsym);
2583                resultInfo.checkContext.report(that, diags.fragment(msg));
2584                currentTarget = types.createErrorType(pt());
2585            }
2586            return new TargetInfo(currentTarget, lambdaType);
2587        }
2588
2589        void preFlow(JCLambda tree) {
2590            new PostAttrAnalyzer() {
2591                @Override
2592                public void scan(JCTree tree) {
2593                    if (tree == null ||
2594                            (tree.type != null &&
2595                            tree.type == Type.stuckType)) {
2596                        //don't touch stuck expressions!
2597                        return;
2598                    }
2599                    super.scan(tree);
2600                }
2601            }.scan(tree);
2602        }
2603
2604        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2605
2606            @Override
2607            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2608                return t.isIntersection() ?
2609                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2610            }
2611
2612            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2613                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2614                Type target = null;
2615                for (Type bound : ict.getExplicitComponents()) {
2616                    TypeSymbol boundSym = bound.tsym;
2617                    if (types.isFunctionalInterface(boundSym) &&
2618                            types.findDescriptorSymbol(boundSym) == desc) {
2619                        target = bound;
2620                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2621                        //bound must be an interface
2622                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2623                    }
2624                }
2625                return target != null ?
2626                        target :
2627                        ict.getExplicitComponents().head; //error recovery
2628            }
2629
2630            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2631                ListBuffer<Type> targs = new ListBuffer<>();
2632                ListBuffer<Type> supertypes = new ListBuffer<>();
2633                for (Type i : ict.interfaces_field) {
2634                    if (i.isParameterized()) {
2635                        targs.appendList(i.tsym.type.allparams());
2636                    }
2637                    supertypes.append(i.tsym.type);
2638                }
2639                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2640                notionalIntf.allparams_field = targs.toList();
2641                notionalIntf.tsym.flags_field |= INTERFACE;
2642                return notionalIntf.tsym;
2643            }
2644
2645            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2646                resultInfo.checkContext.report(pos,
2647                                               diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
2648            }
2649        };
2650
2651        private Type fallbackDescriptorType(JCExpression tree) {
2652            switch (tree.getTag()) {
2653                case LAMBDA:
2654                    JCLambda lambda = (JCLambda)tree;
2655                    List<Type> argtypes = List.nil();
2656                    for (JCVariableDecl param : lambda.params) {
2657                        argtypes = param.vartype != null ?
2658                                argtypes.append(param.vartype.type) :
2659                                argtypes.append(syms.errType);
2660                    }
2661                    return new MethodType(argtypes, Type.recoveryType,
2662                            List.of(syms.throwableType), syms.methodClass);
2663                case REFERENCE:
2664                    return new MethodType(List.nil(), Type.recoveryType,
2665                            List.of(syms.throwableType), syms.methodClass);
2666                default:
2667                    Assert.error("Cannot get here!");
2668            }
2669            return null;
2670        }
2671
2672        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2673                final InferenceContext inferenceContext, final Type... ts) {
2674            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2675        }
2676
2677        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2678                final InferenceContext inferenceContext, final List<Type> ts) {
2679            if (inferenceContext.free(ts)) {
2680                inferenceContext.addFreeTypeListener(ts,
2681                        solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2682            } else {
2683                for (Type t : ts) {
2684                    rs.checkAccessibleType(env, t);
2685                }
2686            }
2687        }
2688
2689        /**
2690         * Lambda/method reference have a special check context that ensures
2691         * that i.e. a lambda return type is compatible with the expected
2692         * type according to both the inherited context and the assignment
2693         * context.
2694         */
2695        class FunctionalReturnContext extends Check.NestedCheckContext {
2696
2697            FunctionalReturnContext(CheckContext enclosingContext) {
2698                super(enclosingContext);
2699            }
2700
2701            @Override
2702            public boolean compatible(Type found, Type req, Warner warn) {
2703                //return type must be compatible in both current context and assignment context
2704                return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2705            }
2706
2707            @Override
2708            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2709                enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2710            }
2711        }
2712
2713        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2714
2715            JCExpression expr;
2716            boolean expStmtExpected;
2717
2718            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2719                super(enclosingContext);
2720                this.expr = expr;
2721            }
2722
2723            @Override
2724            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2725                if (expStmtExpected) {
2726                    enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2727                } else {
2728                    super.report(pos, details);
2729                }
2730            }
2731
2732            @Override
2733            public boolean compatible(Type found, Type req, Warner warn) {
2734                //a void return is compatible with an expression statement lambda
2735                if (req.hasTag(VOID)) {
2736                    expStmtExpected = true;
2737                    return TreeInfo.isExpressionStatement(expr);
2738                } else {
2739                    return super.compatible(found, req, warn);
2740                }
2741            }
2742        }
2743
2744        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2745            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2746                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2747                    new FunctionalReturnContext(resultInfo.checkContext);
2748
2749            return descriptor.getReturnType() == Type.recoveryType ?
2750                    recoveryInfo :
2751                    new ResultInfo(KindSelector.VAL,
2752                            descriptor.getReturnType(), funcContext);
2753        }
2754
2755        /**
2756        * Lambda compatibility. Check that given return types, thrown types, parameter types
2757        * are compatible with the expected functional interface descriptor. This means that:
2758        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2759        * types must be compatible with the return type of the expected descriptor.
2760        */
2761        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2762            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2763
2764            //return values have already been checked - but if lambda has no return
2765            //values, we must ensure that void/value compatibility is correct;
2766            //this amounts at checking that, if a lambda body can complete normally,
2767            //the descriptor's return type must be void
2768            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2769                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2770                Fragment msg =
2771                        Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2772                checkContext.report(tree,
2773                                    diags.fragment(msg));
2774            }
2775
2776            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2777            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2778                checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2779            }
2780        }
2781
2782        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2783         * static field and that lambda has type annotations, these annotations will
2784         * also be stored at these fake clinit methods.
2785         *
2786         * LambdaToMethod also use fake clinit methods so they can be reused.
2787         * Also as LTM is a phase subsequent to attribution, the methods from
2788         * clinits can be safely removed by LTM to save memory.
2789         */
2790        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2791
2792        public MethodSymbol removeClinit(ClassSymbol sym) {
2793            return clinits.remove(sym);
2794        }
2795
2796        /* This method returns an environment to be used to attribute a lambda
2797         * expression.
2798         *
2799         * The owner of this environment is a method symbol. If the current owner
2800         * is not a method, for example if the lambda is used to initialize
2801         * a field, then if the field is:
2802         *
2803         * - an instance field, we use the first constructor.
2804         * - a static field, we create a fake clinit method.
2805         */
2806        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2807            Env<AttrContext> lambdaEnv;
2808            Symbol owner = env.info.scope.owner;
2809            if (owner.kind == VAR && owner.owner.kind == TYP) {
2810                //field initializer
2811                ClassSymbol enclClass = owner.enclClass();
2812                Symbol newScopeOwner = env.info.scope.owner;
2813                /* if the field isn't static, then we can get the first constructor
2814                 * and use it as the owner of the environment. This is what
2815                 * LTM code is doing to look for type annotations so we are fine.
2816                 */
2817                if ((owner.flags() & STATIC) == 0) {
2818                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2819                        newScopeOwner = s;
2820                        break;
2821                    }
2822                } else {
2823                    /* if the field is static then we need to create a fake clinit
2824                     * method, this method can later be reused by LTM.
2825                     */
2826                    MethodSymbol clinit = clinits.get(enclClass);
2827                    if (clinit == null) {
2828                        Type clinitType = new MethodType(List.nil(),
2829                                syms.voidType, List.nil(), syms.methodClass);
2830                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2831                                names.clinit, clinitType, enclClass);
2832                        clinit.params = List.nil();
2833                        clinits.put(enclClass, clinit);
2834                    }
2835                    newScopeOwner = clinit;
2836                }
2837                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2838            } else {
2839                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2840            }
2841            return lambdaEnv;
2842        }
2843
2844    @Override
2845    public void visitReference(final JCMemberReference that) {
2846        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2847            if (pt().hasTag(NONE)) {
2848                //method reference only allowed in assignment or method invocation/cast context
2849                log.error(that.pos(), Errors.UnexpectedMref);
2850            }
2851            result = that.type = types.createErrorType(pt());
2852            return;
2853        }
2854        final Env<AttrContext> localEnv = env.dup(that);
2855        try {
2856            //attribute member reference qualifier - if this is a constructor
2857            //reference, the expected kind must be a type
2858            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2859
2860            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2861                exprType = chk.checkConstructorRefType(that.expr, exprType);
2862                if (!exprType.isErroneous() &&
2863                    exprType.isRaw() &&
2864                    that.typeargs != null) {
2865                    log.error(that.expr.pos(),
2866                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
2867                                                 Fragments.MrefInferAndExplicitParams));
2868                    exprType = types.createErrorType(exprType);
2869                }
2870            }
2871
2872            if (exprType.isErroneous()) {
2873                //if the qualifier expression contains problems,
2874                //give up attribution of method reference
2875                result = that.type = exprType;
2876                return;
2877            }
2878
2879            if (TreeInfo.isStaticSelector(that.expr, names)) {
2880                //if the qualifier is a type, validate it; raw warning check is
2881                //omitted as we don't know at this stage as to whether this is a
2882                //raw selector (because of inference)
2883                chk.validate(that.expr, env, false);
2884            } else {
2885                Symbol lhsSym = TreeInfo.symbol(that.expr);
2886                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2887            }
2888            //attrib type-arguments
2889            List<Type> typeargtypes = List.nil();
2890            if (that.typeargs != null) {
2891                typeargtypes = attribTypes(that.typeargs, localEnv);
2892            }
2893
2894            boolean isTargetSerializable =
2895                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2896                    isSerializable(pt());
2897            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2898            Type currentTarget = targetInfo.target;
2899            Type desc = targetInfo.descriptor;
2900
2901            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2902            List<Type> argtypes = desc.getParameterTypes();
2903            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2904
2905            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2906                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2907            }
2908
2909            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2910            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2911            try {
2912                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2913                        that.name, argtypes, typeargtypes, referenceCheck,
2914                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2915            } finally {
2916                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2917            }
2918
2919            Symbol refSym = refResult.fst;
2920            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2921
2922            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2923             *  JDK-8075541
2924             */
2925            if (refSym.kind != MTH) {
2926                boolean targetError;
2927                switch (refSym.kind) {
2928                    case ABSENT_MTH:
2929                    case MISSING_ENCL:
2930                        targetError = false;
2931                        break;
2932                    case WRONG_MTH:
2933                    case WRONG_MTHS:
2934                    case AMBIGUOUS:
2935                    case HIDDEN:
2936                    case STATICERR:
2937                        targetError = true;
2938                        break;
2939                    default:
2940                        Assert.error("unexpected result kind " + refSym.kind);
2941                        targetError = false;
2942                }
2943
2944                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2945                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2946
2947                JCDiagnostic.DiagnosticType diagKind = targetError ?
2948                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2949
2950                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2951                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2952
2953                if (targetError && currentTarget == Type.recoveryType) {
2954                    //a target error doesn't make sense during recovery stage
2955                    //as we don't know what actual parameter types are
2956                    result = that.type = currentTarget;
2957                    return;
2958                } else {
2959                    if (targetError) {
2960                        resultInfo.checkContext.report(that, diag);
2961                    } else {
2962                        log.report(diag);
2963                    }
2964                    result = that.type = types.createErrorType(currentTarget);
2965                    return;
2966                }
2967            }
2968
2969            that.sym = refSym.baseSymbol();
2970            that.kind = lookupHelper.referenceKind(that.sym);
2971            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2972
2973            if (desc.getReturnType() == Type.recoveryType) {
2974                // stop here
2975                result = that.type = currentTarget;
2976                return;
2977            }
2978
2979            if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2980                Type enclosingType = exprType.getEnclosingType();
2981                if (enclosingType != null && enclosingType.hasTag(CLASS)) {
2982                    // Check for the existence of an apropriate outer instance
2983                    rs.resolveImplicitThis(that.pos(), env, exprType);
2984                }
2985            }
2986
2987            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2988
2989                if (that.getMode() == ReferenceMode.INVOKE &&
2990                        TreeInfo.isStaticSelector(that.expr, names) &&
2991                        that.kind.isUnbound() &&
2992                        !desc.getParameterTypes().head.isParameterized()) {
2993                    chk.checkRaw(that.expr, localEnv);
2994                }
2995
2996                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2997                        exprType.getTypeArguments().nonEmpty()) {
2998                    //static ref with class type-args
2999                    log.error(that.expr.pos(),
3000                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
3001                                                 Fragments.StaticMrefWithTargs));
3002                    result = that.type = types.createErrorType(currentTarget);
3003                    return;
3004                }
3005
3006                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3007                    // Check that super-qualified symbols are not abstract (JLS)
3008                    rs.checkNonAbstract(that.pos(), that.sym);
3009                }
3010
3011                if (isTargetSerializable) {
3012                    chk.checkAccessFromSerializableElement(that, true);
3013                }
3014            }
3015
3016            ResultInfo checkInfo =
3017                    resultInfo.dup(newMethodTemplate(
3018                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3019                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3020                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3021
3022            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3023
3024            if (that.kind.isUnbound() &&
3025                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3026                //re-generate inference constraints for unbound receiver
3027                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3028                    //cannot happen as this has already been checked - we just need
3029                    //to regenerate the inference constraints, as that has been lost
3030                    //as a result of the call to inferenceContext.save()
3031                    Assert.error("Can't get here");
3032                }
3033            }
3034
3035            if (!refType.isErroneous()) {
3036                refType = types.createMethodTypeWithReturn(refType,
3037                        adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3038            }
3039
3040            //go ahead with standard method reference compatibility check - note that param check
3041            //is a no-op (as this has been taken care during method applicability)
3042            boolean isSpeculativeRound =
3043                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3044
3045            that.type = currentTarget; //avoids recovery at this stage
3046            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3047            if (!isSpeculativeRound) {
3048                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3049            }
3050            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3051        } catch (Types.FunctionDescriptorLookupError ex) {
3052            JCDiagnostic cause = ex.getDiagnostic();
3053            resultInfo.checkContext.report(that, cause);
3054            result = that.type = types.createErrorType(pt());
3055            return;
3056        }
3057    }
3058    //where
3059        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3060            //if this is a constructor reference, the expected kind must be a type
3061            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3062                                  KindSelector.VAL_TYP : KindSelector.TYP,
3063                                  Type.noType);
3064        }
3065
3066
3067    @SuppressWarnings("fallthrough")
3068    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3069        InferenceContext inferenceContext = checkContext.inferenceContext();
3070        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3071
3072        Type resType;
3073        switch (tree.getMode()) {
3074            case NEW:
3075                if (!tree.expr.type.isRaw()) {
3076                    resType = tree.expr.type;
3077                    break;
3078                }
3079            default:
3080                resType = refType.getReturnType();
3081        }
3082
3083        Type incompatibleReturnType = resType;
3084
3085        if (returnType.hasTag(VOID)) {
3086            incompatibleReturnType = null;
3087        }
3088
3089        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3090            if (resType.isErroneous() ||
3091                    new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3092                            checkContext.checkWarner(tree, resType, returnType))) {
3093                incompatibleReturnType = null;
3094            }
3095        }
3096
3097        if (incompatibleReturnType != null) {
3098            Fragment msg =
3099                    Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3100            checkContext.report(tree, diags.fragment(msg));
3101        } else {
3102            if (inferenceContext.free(refType)) {
3103                // we need to wait for inference to finish and then replace inference vars in the referent type
3104                inferenceContext.addFreeTypeListener(List.of(refType),
3105                        instantiatedContext -> {
3106                            tree.referentType = instantiatedContext.asInstType(refType);
3107                        });
3108            } else {
3109                tree.referentType = refType;
3110            }
3111        }
3112
3113        if (!speculativeAttr) {
3114            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3115            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3116                log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3117            }
3118            //18.2.5: "In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej"
3119            thrownTypes.stream()
3120                    .filter(t -> t.hasTag(UNDETVAR))
3121                    .forEach(t -> ((UndetVar)t).setThrow());
3122        }
3123    }
3124
3125    /**
3126     * Set functional type info on the underlying AST. Note: as the target descriptor
3127     * might contain inference variables, we might need to register an hook in the
3128     * current inference context.
3129     */
3130    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3131            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3132        if (checkContext.inferenceContext().free(descriptorType)) {
3133            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3134                    inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3135                    inferenceContext.asInstType(primaryTarget), checkContext));
3136        } else {
3137            ListBuffer<Type> targets = new ListBuffer<>();
3138            if (pt.hasTag(CLASS)) {
3139                if (pt.isCompound()) {
3140                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
3141                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3142                        if (t != primaryTarget) {
3143                            targets.append(types.removeWildcards(t));
3144                        }
3145                    }
3146                } else {
3147                    targets.append(types.removeWildcards(primaryTarget));
3148                }
3149            }
3150            fExpr.targets = targets.toList();
3151            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3152                    pt != Type.recoveryType) {
3153                //check that functional interface class is well-formed
3154                try {
3155                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3156                     * when it's executed post-inference. See the listener code
3157                     * above.
3158                     */
3159                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3160                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3161                    if (csym != null) {
3162                        chk.checkImplementations(env.tree, csym, csym);
3163                        try {
3164                            //perform an additional functional interface check on the synthetic class,
3165                            //as there may be spurious errors for raw targets - because of existing issues
3166                            //with membership and inheritance (see JDK-8074570).
3167                            csym.flags_field |= INTERFACE;
3168                            types.findDescriptorType(csym.type);
3169                        } catch (FunctionDescriptorLookupError err) {
3170                            resultInfo.checkContext.report(fExpr,
3171                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3172                        }
3173                    }
3174                } catch (Types.FunctionDescriptorLookupError ex) {
3175                    JCDiagnostic cause = ex.getDiagnostic();
3176                    resultInfo.checkContext.report(env.tree, cause);
3177                }
3178            }
3179        }
3180    }
3181
3182    public void visitParens(JCParens tree) {
3183        Type owntype = attribTree(tree.expr, env, resultInfo);
3184        result = check(tree, owntype, pkind(), resultInfo);
3185        Symbol sym = TreeInfo.symbol(tree);
3186        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3187            log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3188    }
3189
3190    public void visitAssign(JCAssign tree) {
3191        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3192        Type capturedType = capture(owntype);
3193        attribExpr(tree.rhs, env, owntype);
3194        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3195    }
3196
3197    public void visitAssignop(JCAssignOp tree) {
3198        // Attribute arguments.
3199        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3200        Type operand = attribExpr(tree.rhs, env);
3201        // Find operator.
3202        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3203        if (operator != operators.noOpSymbol &&
3204                !owntype.isErroneous() &&
3205                !operand.isErroneous()) {
3206            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3207            chk.checkCastable(tree.rhs.pos(),
3208                              operator.type.getReturnType(),
3209                              owntype);
3210        }
3211        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3212    }
3213
3214    public void visitUnary(JCUnary tree) {
3215        // Attribute arguments.
3216        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3217            ? attribTree(tree.arg, env, varAssignmentInfo)
3218            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3219
3220        // Find operator.
3221        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3222        Type owntype = types.createErrorType(tree.type);
3223        if (operator != operators.noOpSymbol &&
3224                !argtype.isErroneous()) {
3225            owntype = (tree.getTag().isIncOrDecUnaryOp())
3226                ? tree.arg.type
3227                : operator.type.getReturnType();
3228            int opc = ((OperatorSymbol)operator).opcode;
3229
3230            // If the argument is constant, fold it.
3231            if (argtype.constValue() != null) {
3232                Type ctype = cfolder.fold1(opc, argtype);
3233                if (ctype != null) {
3234                    owntype = cfolder.coerce(ctype, owntype);
3235                }
3236            }
3237        }
3238        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3239    }
3240
3241    public void visitBinary(JCBinary tree) {
3242        // Attribute arguments.
3243        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3244        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3245        // Find operator.
3246        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3247        Type owntype = types.createErrorType(tree.type);
3248        if (operator != operators.noOpSymbol &&
3249                !left.isErroneous() &&
3250                !right.isErroneous()) {
3251            owntype = operator.type.getReturnType();
3252            int opc = ((OperatorSymbol)operator).opcode;
3253            // If both arguments are constants, fold them.
3254            if (left.constValue() != null && right.constValue() != null) {
3255                Type ctype = cfolder.fold2(opc, left, right);
3256                if (ctype != null) {
3257                    owntype = cfolder.coerce(ctype, owntype);
3258                }
3259            }
3260
3261            // Check that argument types of a reference ==, != are
3262            // castable to each other, (JLS 15.21).  Note: unboxing
3263            // comparisons will not have an acmp* opc at this point.
3264            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3265                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3266                    log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3267                }
3268            }
3269
3270            chk.checkDivZero(tree.rhs.pos(), operator, right);
3271        }
3272        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3273    }
3274
3275    public void visitTypeCast(final JCTypeCast tree) {
3276        Type clazztype = attribType(tree.clazz, env);
3277        chk.validate(tree.clazz, env, false);
3278        //a fresh environment is required for 292 inference to work properly ---
3279        //see Infer.instantiatePolymorphicSignatureInstance()
3280        Env<AttrContext> localEnv = env.dup(tree);
3281        //should we propagate the target type?
3282        final ResultInfo castInfo;
3283        JCExpression expr = TreeInfo.skipParens(tree.expr);
3284        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3285        if (isPoly) {
3286            //expression is a poly - we need to propagate target type info
3287            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3288                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3289                @Override
3290                public boolean compatible(Type found, Type req, Warner warn) {
3291                    return types.isCastable(found, req, warn);
3292                }
3293            });
3294        } else {
3295            //standalone cast - target-type info is not propagated
3296            castInfo = unknownExprInfo;
3297        }
3298        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3299        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3300        if (exprtype.constValue() != null)
3301            owntype = cfolder.coerce(exprtype, owntype);
3302        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3303        if (!isPoly)
3304            chk.checkRedundantCast(localEnv, tree);
3305    }
3306
3307    public void visitTypeTest(JCInstanceOf tree) {
3308        Type exprtype = chk.checkNullOrRefType(
3309                tree.expr.pos(), attribExpr(tree.expr, env));
3310        Type clazztype = attribType(tree.clazz, env);
3311        if (!clazztype.hasTag(TYPEVAR)) {
3312            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3313        }
3314        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3315            log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3316            clazztype = types.createErrorType(clazztype);
3317        }
3318        chk.validate(tree.clazz, env, false);
3319        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3320        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3321    }
3322
3323    public void visitIndexed(JCArrayAccess tree) {
3324        Type owntype = types.createErrorType(tree.type);
3325        Type atype = attribExpr(tree.indexed, env);
3326        attribExpr(tree.index, env, syms.intType);
3327        if (types.isArray(atype))
3328            owntype = types.elemtype(atype);
3329        else if (!atype.hasTag(ERROR))
3330            log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3331        if (!pkind().contains(KindSelector.VAL))
3332            owntype = capture(owntype);
3333        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3334    }
3335
3336    public void visitIdent(JCIdent tree) {
3337        Symbol sym;
3338
3339        // Find symbol
3340        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3341            // If we are looking for a method, the prototype `pt' will be a
3342            // method type with the type of the call's arguments as parameters.
3343            env.info.pendingResolutionPhase = null;
3344            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3345        } else if (tree.sym != null && tree.sym.kind != VAR) {
3346            sym = tree.sym;
3347        } else {
3348            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3349        }
3350        tree.sym = sym;
3351
3352        // (1) Also find the environment current for the class where
3353        //     sym is defined (`symEnv').
3354        // Only for pre-tiger versions (1.4 and earlier):
3355        // (2) Also determine whether we access symbol out of an anonymous
3356        //     class in a this or super call.  This is illegal for instance
3357        //     members since such classes don't carry a this$n link.
3358        //     (`noOuterThisPath').
3359        Env<AttrContext> symEnv = env;
3360        boolean noOuterThisPath = false;
3361        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3362            sym.kind.matches(KindSelector.VAL_MTH) &&
3363            sym.owner.kind == TYP &&
3364            tree.name != names._this && tree.name != names._super) {
3365
3366            // Find environment in which identifier is defined.
3367            while (symEnv.outer != null &&
3368                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3369                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3370                    noOuterThisPath = false;
3371                symEnv = symEnv.outer;
3372            }
3373        }
3374
3375        // If symbol is a variable, ...
3376        if (sym.kind == VAR) {
3377            VarSymbol v = (VarSymbol)sym;
3378
3379            // ..., evaluate its initializer, if it has one, and check for
3380            // illegal forward reference.
3381            checkInit(tree, env, v, false);
3382
3383            // If we are expecting a variable (as opposed to a value), check
3384            // that the variable is assignable in the current environment.
3385            if (KindSelector.ASG.subset(pkind()))
3386                checkAssignable(tree.pos(), v, null, env);
3387        }
3388
3389        // In a constructor body,
3390        // if symbol is a field or instance method, check that it is
3391        // not accessed before the supertype constructor is called.
3392        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3393            sym.kind.matches(KindSelector.VAL_MTH) &&
3394            sym.owner.kind == TYP &&
3395            (sym.flags() & STATIC) == 0) {
3396            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3397                                          sym : thisSym(tree.pos(), env));
3398        }
3399        Env<AttrContext> env1 = env;
3400        if (sym.kind != ERR && sym.kind != TYP &&
3401            sym.owner != null && sym.owner != env1.enclClass.sym) {
3402            // If the found symbol is inaccessible, then it is
3403            // accessed through an enclosing instance.  Locate this
3404            // enclosing instance:
3405            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3406                env1 = env1.outer;
3407        }
3408
3409        if (env.info.isSerializable) {
3410            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3411        }
3412
3413        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3414    }
3415
3416    public void visitSelect(JCFieldAccess tree) {
3417        // Determine the expected kind of the qualifier expression.
3418        KindSelector skind = KindSelector.NIL;
3419        if (tree.name == names._this || tree.name == names._super ||
3420                tree.name == names._class)
3421        {
3422            skind = KindSelector.TYP;
3423        } else {
3424            if (pkind().contains(KindSelector.PCK))
3425                skind = KindSelector.of(skind, KindSelector.PCK);
3426            if (pkind().contains(KindSelector.TYP))
3427                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3428            if (pkind().contains(KindSelector.VAL_MTH))
3429                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3430        }
3431
3432        // Attribute the qualifier expression, and determine its symbol (if any).
3433        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3434        if (!pkind().contains(KindSelector.TYP_PCK))
3435            site = capture(site); // Capture field access
3436
3437        // don't allow T.class T[].class, etc
3438        if (skind == KindSelector.TYP) {
3439            Type elt = site;
3440            while (elt.hasTag(ARRAY))
3441                elt = ((ArrayType)elt).elemtype;
3442            if (elt.hasTag(TYPEVAR)) {
3443                log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3444                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3445                tree.sym = tree.type.tsym;
3446                return ;
3447            }
3448        }
3449
3450        // If qualifier symbol is a type or `super', assert `selectSuper'
3451        // for the selection. This is relevant for determining whether
3452        // protected symbols are accessible.
3453        Symbol sitesym = TreeInfo.symbol(tree.selected);
3454        boolean selectSuperPrev = env.info.selectSuper;
3455        env.info.selectSuper =
3456            sitesym != null &&
3457            sitesym.name == names._super;
3458
3459        // Determine the symbol represented by the selection.
3460        env.info.pendingResolutionPhase = null;
3461        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3462        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3463            log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3464            sym = syms.errSymbol;
3465        }
3466        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3467            site = capture(site);
3468            sym = selectSym(tree, sitesym, site, env, resultInfo);
3469        }
3470        boolean varArgs = env.info.lastResolveVarargs();
3471        tree.sym = sym;
3472
3473        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3474            site = types.skipTypeVars(site, true);
3475        }
3476
3477        // If that symbol is a variable, ...
3478        if (sym.kind == VAR) {
3479            VarSymbol v = (VarSymbol)sym;
3480
3481            // ..., evaluate its initializer, if it has one, and check for
3482            // illegal forward reference.
3483            checkInit(tree, env, v, true);
3484
3485            // If we are expecting a variable (as opposed to a value), check
3486            // that the variable is assignable in the current environment.
3487            if (KindSelector.ASG.subset(pkind()))
3488                checkAssignable(tree.pos(), v, tree.selected, env);
3489        }
3490
3491        if (sitesym != null &&
3492                sitesym.kind == VAR &&
3493                ((VarSymbol)sitesym).isResourceVariable() &&
3494                sym.kind == MTH &&
3495                sym.name.equals(names.close) &&
3496                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3497                env.info.lint.isEnabled(LintCategory.TRY)) {
3498            log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3499        }
3500
3501        // Disallow selecting a type from an expression
3502        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3503            tree.type = check(tree.selected, pt(),
3504                              sitesym == null ?
3505                                      KindSelector.VAL : sitesym.kind.toSelector(),
3506                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3507        }
3508
3509        if (isType(sitesym)) {
3510            if (sym.name == names._this) {
3511                // If `C' is the currently compiled class, check that
3512                // C.this' does not appear in a call to a super(...)
3513                if (env.info.isSelfCall &&
3514                    site.tsym == env.enclClass.sym) {
3515                    chk.earlyRefError(tree.pos(), sym);
3516                }
3517            } else {
3518                // Check if type-qualified fields or methods are static (JLS)
3519                if ((sym.flags() & STATIC) == 0 &&
3520                    sym.name != names._super &&
3521                    (sym.kind == VAR || sym.kind == MTH)) {
3522                    rs.accessBase(rs.new StaticError(sym),
3523                              tree.pos(), site, sym.name, true);
3524                }
3525            }
3526            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3527                    sym.isStatic() && sym.kind == MTH) {
3528                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Errors.StaticIntfMethodInvokeNotSupportedInSource(sourceName));
3529            }
3530        } else if (sym.kind != ERR &&
3531                   (sym.flags() & STATIC) != 0 &&
3532                   sym.name != names._class) {
3533            // If the qualified item is not a type and the selected item is static, report
3534            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3535            chk.warnStatic(tree, "static.not.qualified.by.type",
3536                           sym.kind.kindName(), sym.owner);
3537        }
3538
3539        // If we are selecting an instance member via a `super', ...
3540        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3541
3542            // Check that super-qualified symbols are not abstract (JLS)
3543            rs.checkNonAbstract(tree.pos(), sym);
3544
3545            if (site.isRaw()) {
3546                // Determine argument types for site.
3547                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3548                if (site1 != null) site = site1;
3549            }
3550        }
3551
3552        if (env.info.isSerializable) {
3553            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3554        }
3555
3556        env.info.selectSuper = selectSuperPrev;
3557        result = checkId(tree, site, sym, env, resultInfo);
3558    }
3559    //where
3560        /** Determine symbol referenced by a Select expression,
3561         *
3562         *  @param tree   The select tree.
3563         *  @param site   The type of the selected expression,
3564         *  @param env    The current environment.
3565         *  @param resultInfo The current result.
3566         */
3567        private Symbol selectSym(JCFieldAccess tree,
3568                                 Symbol location,
3569                                 Type site,
3570                                 Env<AttrContext> env,
3571                                 ResultInfo resultInfo) {
3572            DiagnosticPosition pos = tree.pos();
3573            Name name = tree.name;
3574            switch (site.getTag()) {
3575            case PACKAGE:
3576                return rs.accessBase(
3577                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3578                    pos, location, site, name, true);
3579            case ARRAY:
3580            case CLASS:
3581                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3582                    return rs.resolveQualifiedMethod(
3583                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3584                } else if (name == names._this || name == names._super) {
3585                    return rs.resolveSelf(pos, env, site.tsym, name);
3586                } else if (name == names._class) {
3587                    // In this case, we have already made sure in
3588                    // visitSelect that qualifier expression is a type.
3589                    Type t = syms.classType;
3590                    List<Type> typeargs = List.of(types.erasure(site));
3591                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3592                    return new VarSymbol(
3593                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3594                } else {
3595                    // We are seeing a plain identifier as selector.
3596                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3597                        sym = rs.accessBase(sym, pos, location, site, name, true);
3598                    return sym;
3599                }
3600            case WILDCARD:
3601                throw new AssertionError(tree);
3602            case TYPEVAR:
3603                // Normally, site.getUpperBound() shouldn't be null.
3604                // It should only happen during memberEnter/attribBase
3605                // when determining the super type which *must* beac
3606                // done before attributing the type variables.  In
3607                // other words, we are seeing this illegal program:
3608                // class B<T> extends A<T.foo> {}
3609                Symbol sym = (site.getUpperBound() != null)
3610                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3611                    : null;
3612                if (sym == null) {
3613                    log.error(pos, Errors.TypeVarCantBeDeref);
3614                    return syms.errSymbol;
3615                } else {
3616                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3617                        rs.new AccessError(env, site, sym) :
3618                                sym;
3619                    rs.accessBase(sym2, pos, location, site, name, true);
3620                    return sym;
3621                }
3622            case ERROR:
3623                // preserve identifier names through errors
3624                return types.createErrorType(name, site.tsym, site).tsym;
3625            default:
3626                // The qualifier expression is of a primitive type -- only
3627                // .class is allowed for these.
3628                if (name == names._class) {
3629                    // In this case, we have already made sure in Select that
3630                    // qualifier expression is a type.
3631                    Type t = syms.classType;
3632                    Type arg = types.boxedClass(site).type;
3633                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3634                    return new VarSymbol(
3635                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3636                } else {
3637                    log.error(pos, Errors.CantDeref(site));
3638                    return syms.errSymbol;
3639                }
3640            }
3641        }
3642
3643        /** Determine type of identifier or select expression and check that
3644         *  (1) the referenced symbol is not deprecated
3645         *  (2) the symbol's type is safe (@see checkSafe)
3646         *  (3) if symbol is a variable, check that its type and kind are
3647         *      compatible with the prototype and protokind.
3648         *  (4) if symbol is an instance field of a raw type,
3649         *      which is being assigned to, issue an unchecked warning if its
3650         *      type changes under erasure.
3651         *  (5) if symbol is an instance method of a raw type, issue an
3652         *      unchecked warning if its argument types change under erasure.
3653         *  If checks succeed:
3654         *    If symbol is a constant, return its constant type
3655         *    else if symbol is a method, return its result type
3656         *    otherwise return its type.
3657         *  Otherwise return errType.
3658         *
3659         *  @param tree       The syntax tree representing the identifier
3660         *  @param site       If this is a select, the type of the selected
3661         *                    expression, otherwise the type of the current class.
3662         *  @param sym        The symbol representing the identifier.
3663         *  @param env        The current environment.
3664         *  @param resultInfo    The expected result
3665         */
3666        Type checkId(JCTree tree,
3667                     Type site,
3668                     Symbol sym,
3669                     Env<AttrContext> env,
3670                     ResultInfo resultInfo) {
3671            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3672                    checkMethodId(tree, site, sym, env, resultInfo) :
3673                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3674        }
3675
3676        Type checkMethodId(JCTree tree,
3677                     Type site,
3678                     Symbol sym,
3679                     Env<AttrContext> env,
3680                     ResultInfo resultInfo) {
3681            boolean isPolymorhicSignature =
3682                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3683            return isPolymorhicSignature ?
3684                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3685                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3686        }
3687
3688        Type checkSigPolyMethodId(JCTree tree,
3689                     Type site,
3690                     Symbol sym,
3691                     Env<AttrContext> env,
3692                     ResultInfo resultInfo) {
3693            //recover original symbol for signature polymorphic methods
3694            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3695            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3696            return sym.type;
3697        }
3698
3699        Type checkMethodIdInternal(JCTree tree,
3700                     Type site,
3701                     Symbol sym,
3702                     Env<AttrContext> env,
3703                     ResultInfo resultInfo) {
3704            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3705                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3706                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3707                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3708                return owntype;
3709            } else {
3710                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3711            }
3712        }
3713
3714        Type checkIdInternal(JCTree tree,
3715                     Type site,
3716                     Symbol sym,
3717                     Type pt,
3718                     Env<AttrContext> env,
3719                     ResultInfo resultInfo) {
3720            if (pt.isErroneous()) {
3721                return types.createErrorType(site);
3722            }
3723            Type owntype; // The computed type of this identifier occurrence.
3724            switch (sym.kind) {
3725            case TYP:
3726                // For types, the computed type equals the symbol's type,
3727                // except for two situations:
3728                owntype = sym.type;
3729                if (owntype.hasTag(CLASS)) {
3730                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3731                    Type ownOuter = owntype.getEnclosingType();
3732
3733                    // (a) If the symbol's type is parameterized, erase it
3734                    // because no type parameters were given.
3735                    // We recover generic outer type later in visitTypeApply.
3736                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3737                        owntype = types.erasure(owntype);
3738                    }
3739
3740                    // (b) If the symbol's type is an inner class, then
3741                    // we have to interpret its outer type as a superclass
3742                    // of the site type. Example:
3743                    //
3744                    // class Tree<A> { class Visitor { ... } }
3745                    // class PointTree extends Tree<Point> { ... }
3746                    // ...PointTree.Visitor...
3747                    //
3748                    // Then the type of the last expression above is
3749                    // Tree<Point>.Visitor.
3750                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3751                        Type normOuter = site;
3752                        if (normOuter.hasTag(CLASS)) {
3753                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3754                        }
3755                        if (normOuter == null) // perhaps from an import
3756                            normOuter = types.erasure(ownOuter);
3757                        if (normOuter != ownOuter)
3758                            owntype = new ClassType(
3759                                normOuter, List.nil(), owntype.tsym,
3760                                owntype.getMetadata());
3761                    }
3762                }
3763                break;
3764            case VAR:
3765                VarSymbol v = (VarSymbol)sym;
3766                // Test (4): if symbol is an instance field of a raw type,
3767                // which is being assigned to, issue an unchecked warning if
3768                // its type changes under erasure.
3769                if (KindSelector.ASG.subset(pkind()) &&
3770                    v.owner.kind == TYP &&
3771                    (v.flags() & STATIC) == 0 &&
3772                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3773                    Type s = types.asOuterSuper(site, v.owner);
3774                    if (s != null &&
3775                        s.isRaw() &&
3776                        !types.isSameType(v.type, v.erasure(types))) {
3777                        chk.warnUnchecked(tree.pos(),
3778                                          "unchecked.assign.to.var",
3779                                          v, s);
3780                    }
3781                }
3782                // The computed type of a variable is the type of the
3783                // variable symbol, taken as a member of the site type.
3784                owntype = (sym.owner.kind == TYP &&
3785                           sym.name != names._this && sym.name != names._super)
3786                    ? types.memberType(site, sym)
3787                    : sym.type;
3788
3789                // If the variable is a constant, record constant value in
3790                // computed type.
3791                if (v.getConstValue() != null && isStaticReference(tree))
3792                    owntype = owntype.constType(v.getConstValue());
3793
3794                if (resultInfo.pkind == KindSelector.VAL) {
3795                    owntype = capture(owntype); // capture "names as expressions"
3796                }
3797                break;
3798            case MTH: {
3799                owntype = checkMethod(site, sym,
3800                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3801                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3802                        resultInfo.pt.getTypeArguments());
3803                break;
3804            }
3805            case PCK: case ERR:
3806                owntype = sym.type;
3807                break;
3808            default:
3809                throw new AssertionError("unexpected kind: " + sym.kind +
3810                                         " in tree " + tree);
3811            }
3812
3813            // Emit a `deprecation' warning if symbol is deprecated.
3814            // (for constructors (but not for constructor references), the error
3815            // was given when the constructor was resolved)
3816
3817            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3818                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3819                chk.checkSunAPI(tree.pos(), sym);
3820                chk.checkProfile(tree.pos(), sym);
3821            }
3822
3823            // If symbol is a variable, check that its type and
3824            // kind are compatible with the prototype and protokind.
3825            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3826        }
3827
3828        /** Check that variable is initialized and evaluate the variable's
3829         *  initializer, if not yet done. Also check that variable is not
3830         *  referenced before it is defined.
3831         *  @param tree    The tree making up the variable reference.
3832         *  @param env     The current environment.
3833         *  @param v       The variable's symbol.
3834         */
3835        private void checkInit(JCTree tree,
3836                               Env<AttrContext> env,
3837                               VarSymbol v,
3838                               boolean onlyWarning) {
3839            // A forward reference is diagnosed if the declaration position
3840            // of the variable is greater than the current tree position
3841            // and the tree and variable definition occur in the same class
3842            // definition.  Note that writes don't count as references.
3843            // This check applies only to class and instance
3844            // variables.  Local variables follow different scope rules,
3845            // and are subject to definite assignment checking.
3846            Env<AttrContext> initEnv = enclosingInitEnv(env);
3847            if (initEnv != null &&
3848                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3849                v.owner.kind == TYP &&
3850                v.owner == env.info.scope.owner.enclClass() &&
3851                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3852                (!env.tree.hasTag(ASSIGN) ||
3853                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3854                String suffix = (initEnv.info.enclVar == v) ?
3855                                "self.ref" : "forward.ref";
3856                if (!onlyWarning || isStaticEnumField(v)) {
3857                    log.error(tree.pos(), "illegal." + suffix);
3858                } else if (useBeforeDeclarationWarning) {
3859                    log.warning(tree.pos(), suffix, v);
3860                }
3861            }
3862
3863            v.getConstValue(); // ensure initializer is evaluated
3864
3865            checkEnumInitializer(tree, env, v);
3866        }
3867
3868        /**
3869         * Returns the enclosing init environment associated with this env (if any). An init env
3870         * can be either a field declaration env or a static/instance initializer env.
3871         */
3872        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3873            while (true) {
3874                switch (env.tree.getTag()) {
3875                    case VARDEF:
3876                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3877                        if (vdecl.sym.owner.kind == TYP) {
3878                            //field
3879                            return env;
3880                        }
3881                        break;
3882                    case BLOCK:
3883                        if (env.next.tree.hasTag(CLASSDEF)) {
3884                            //instance/static initializer
3885                            return env;
3886                        }
3887                        break;
3888                    case METHODDEF:
3889                    case CLASSDEF:
3890                    case TOPLEVEL:
3891                        return null;
3892                }
3893                Assert.checkNonNull(env.next);
3894                env = env.next;
3895            }
3896        }
3897
3898        /**
3899         * Check for illegal references to static members of enum.  In
3900         * an enum type, constructors and initializers may not
3901         * reference its static members unless they are constant.
3902         *
3903         * @param tree    The tree making up the variable reference.
3904         * @param env     The current environment.
3905         * @param v       The variable's symbol.
3906         * @jls  section 8.9 Enums
3907         */
3908        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3909            // JLS:
3910            //
3911            // "It is a compile-time error to reference a static field
3912            // of an enum type that is not a compile-time constant
3913            // (15.28) from constructors, instance initializer blocks,
3914            // or instance variable initializer expressions of that
3915            // type. It is a compile-time error for the constructors,
3916            // instance initializer blocks, or instance variable
3917            // initializer expressions of an enum constant e to refer
3918            // to itself or to an enum constant of the same type that
3919            // is declared to the right of e."
3920            if (isStaticEnumField(v)) {
3921                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3922
3923                if (enclClass == null || enclClass.owner == null)
3924                    return;
3925
3926                // See if the enclosing class is the enum (or a
3927                // subclass thereof) declaring v.  If not, this
3928                // reference is OK.
3929                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3930                    return;
3931
3932                // If the reference isn't from an initializer, then
3933                // the reference is OK.
3934                if (!Resolve.isInitializer(env))
3935                    return;
3936
3937                log.error(tree.pos(), Errors.IllegalEnumStaticRef);
3938            }
3939        }
3940
3941        /** Is the given symbol a static, non-constant field of an Enum?
3942         *  Note: enum literals should not be regarded as such
3943         */
3944        private boolean isStaticEnumField(VarSymbol v) {
3945            return Flags.isEnum(v.owner) &&
3946                   Flags.isStatic(v) &&
3947                   !Flags.isConstant(v) &&
3948                   v.name != names._class;
3949        }
3950
3951    /**
3952     * Check that method arguments conform to its instantiation.
3953     **/
3954    public Type checkMethod(Type site,
3955                            final Symbol sym,
3956                            ResultInfo resultInfo,
3957                            Env<AttrContext> env,
3958                            final List<JCExpression> argtrees,
3959                            List<Type> argtypes,
3960                            List<Type> typeargtypes) {
3961        // Test (5): if symbol is an instance method of a raw type, issue
3962        // an unchecked warning if its argument types change under erasure.
3963        if ((sym.flags() & STATIC) == 0 &&
3964            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3965            Type s = types.asOuterSuper(site, sym.owner);
3966            if (s != null && s.isRaw() &&
3967                !types.isSameTypes(sym.type.getParameterTypes(),
3968                                   sym.erasure(types).getParameterTypes())) {
3969                chk.warnUnchecked(env.tree.pos(),
3970                                  "unchecked.call.mbr.of.raw.type",
3971                                  sym, s);
3972            }
3973        }
3974
3975        if (env.info.defaultSuperCallSite != null) {
3976            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3977                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3978                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3979                List<MethodSymbol> icand_sup =
3980                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3981                if (icand_sup.nonEmpty() &&
3982                        icand_sup.head != sym &&
3983                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3984                    log.error(env.tree.pos(),
3985                              Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
3986                    break;
3987                }
3988            }
3989            env.info.defaultSuperCallSite = null;
3990        }
3991
3992        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3993            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3994            if (app.meth.hasTag(SELECT) &&
3995                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3996                log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
3997            }
3998        }
3999
4000        // Compute the identifier's instantiated type.
4001        // For methods, we need to compute the instance type by
4002        // Resolve.instantiate from the symbol's type as well as
4003        // any type arguments and value arguments.
4004        Warner noteWarner = new Warner();
4005        try {
4006            Type owntype = rs.checkMethod(
4007                    env,
4008                    site,
4009                    sym,
4010                    resultInfo,
4011                    argtypes,
4012                    typeargtypes,
4013                    noteWarner);
4014
4015            DeferredAttr.DeferredTypeMap checkDeferredMap =
4016                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4017
4018            argtypes = argtypes.map(checkDeferredMap);
4019
4020            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4021                chk.warnUnchecked(env.tree.pos(),
4022                        "unchecked.meth.invocation.applied",
4023                        kindName(sym),
4024                        sym.name,
4025                        rs.methodArguments(sym.type.getParameterTypes()),
4026                        rs.methodArguments(argtypes.map(checkDeferredMap)),
4027                        kindName(sym.location()),
4028                        sym.location());
4029                if (resultInfo.pt != Infer.anyPoly ||
4030                        !owntype.hasTag(METHOD) ||
4031                        !owntype.isPartial()) {
4032                    //if this is not a partially inferred method type, erase return type. Otherwise,
4033                    //erasure is carried out in PartiallyInferredMethodType.check().
4034                    owntype = new MethodType(owntype.getParameterTypes(),
4035                            types.erasure(owntype.getReturnType()),
4036                            types.erasure(owntype.getThrownTypes()),
4037                            syms.methodClass);
4038                }
4039            }
4040
4041            PolyKind pkind = (sym.type.hasTag(FORALL) &&
4042                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4043                 PolyKind.POLY : PolyKind.STANDALONE;
4044            TreeInfo.setPolyKind(env.tree, pkind);
4045
4046            return (resultInfo.pt == Infer.anyPoly) ?
4047                    owntype :
4048                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4049                            resultInfo.checkContext.inferenceContext());
4050        } catch (Infer.InferenceException ex) {
4051            //invalid target type - propagate exception outwards or report error
4052            //depending on the current check context
4053            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4054            return types.createErrorType(site);
4055        } catch (Resolve.InapplicableMethodException ex) {
4056            final JCDiagnostic diag = ex.getDiagnostic();
4057            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4058                @Override
4059                protected Pair<Symbol, JCDiagnostic> errCandidate() {
4060                    return new Pair<>(sym, diag);
4061                }
4062            };
4063            List<Type> argtypes2 = argtypes.map(
4064                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4065            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4066                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4067            log.report(errDiag);
4068            return types.createErrorType(site);
4069        }
4070    }
4071
4072    public void visitLiteral(JCLiteral tree) {
4073        result = check(tree, litType(tree.typetag).constType(tree.value),
4074                KindSelector.VAL, resultInfo);
4075    }
4076    //where
4077    /** Return the type of a literal with given type tag.
4078     */
4079    Type litType(TypeTag tag) {
4080        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4081    }
4082
4083    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4084        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4085    }
4086
4087    public void visitTypeArray(JCArrayTypeTree tree) {
4088        Type etype = attribType(tree.elemtype, env);
4089        Type type = new ArrayType(etype, syms.arrayClass);
4090        result = check(tree, type, KindSelector.TYP, resultInfo);
4091    }
4092
4093    /** Visitor method for parameterized types.
4094     *  Bound checking is left until later, since types are attributed
4095     *  before supertype structure is completely known
4096     */
4097    public void visitTypeApply(JCTypeApply tree) {
4098        Type owntype = types.createErrorType(tree.type);
4099
4100        // Attribute functor part of application and make sure it's a class.
4101        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4102
4103        // Attribute type parameters
4104        List<Type> actuals = attribTypes(tree.arguments, env);
4105
4106        if (clazztype.hasTag(CLASS)) {
4107            List<Type> formals = clazztype.tsym.type.getTypeArguments();
4108            if (actuals.isEmpty()) //diamond
4109                actuals = formals;
4110
4111            if (actuals.length() == formals.length()) {
4112                List<Type> a = actuals;
4113                List<Type> f = formals;
4114                while (a.nonEmpty()) {
4115                    a.head = a.head.withTypeVar(f.head);
4116                    a = a.tail;
4117                    f = f.tail;
4118                }
4119                // Compute the proper generic outer
4120                Type clazzOuter = clazztype.getEnclosingType();
4121                if (clazzOuter.hasTag(CLASS)) {
4122                    Type site;
4123                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4124                    if (clazz.hasTag(IDENT)) {
4125                        site = env.enclClass.sym.type;
4126                    } else if (clazz.hasTag(SELECT)) {
4127                        site = ((JCFieldAccess) clazz).selected.type;
4128                    } else throw new AssertionError(""+tree);
4129                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4130                        if (site.hasTag(CLASS))
4131                            site = types.asOuterSuper(site, clazzOuter.tsym);
4132                        if (site == null)
4133                            site = types.erasure(clazzOuter);
4134                        clazzOuter = site;
4135                    }
4136                }
4137                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4138                                        clazztype.getMetadata());
4139            } else {
4140                if (formals.length() != 0) {
4141                    log.error(tree.pos(),
4142                              Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4143                } else {
4144                    log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4145                }
4146                owntype = types.createErrorType(tree.type);
4147            }
4148        }
4149        result = check(tree, owntype, KindSelector.TYP, resultInfo);
4150    }
4151
4152    public void visitTypeUnion(JCTypeUnion tree) {
4153        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4154        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4155        for (JCExpression typeTree : tree.alternatives) {
4156            Type ctype = attribType(typeTree, env);
4157            ctype = chk.checkType(typeTree.pos(),
4158                          chk.checkClassType(typeTree.pos(), ctype),
4159                          syms.throwableType);
4160            if (!ctype.isErroneous()) {
4161                //check that alternatives of a union type are pairwise
4162                //unrelated w.r.t. subtyping
4163                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4164                    for (Type t : multicatchTypes) {
4165                        boolean sub = types.isSubtype(ctype, t);
4166                        boolean sup = types.isSubtype(t, ctype);
4167                        if (sub || sup) {
4168                            //assume 'a' <: 'b'
4169                            Type a = sub ? ctype : t;
4170                            Type b = sub ? t : ctype;
4171                            log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4172                        }
4173                    }
4174                }
4175                multicatchTypes.append(ctype);
4176                if (all_multicatchTypes != null)
4177                    all_multicatchTypes.append(ctype);
4178            } else {
4179                if (all_multicatchTypes == null) {
4180                    all_multicatchTypes = new ListBuffer<>();
4181                    all_multicatchTypes.appendList(multicatchTypes);
4182                }
4183                all_multicatchTypes.append(ctype);
4184            }
4185        }
4186        Type t = check(tree, types.lub(multicatchTypes.toList()),
4187                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4188        if (t.hasTag(CLASS)) {
4189            List<Type> alternatives =
4190                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4191            t = new UnionClassType((ClassType) t, alternatives);
4192        }
4193        tree.type = result = t;
4194    }
4195
4196    public void visitTypeIntersection(JCTypeIntersection tree) {
4197        attribTypes(tree.bounds, env);
4198        tree.type = result = checkIntersection(tree, tree.bounds);
4199    }
4200
4201    public void visitTypeParameter(JCTypeParameter tree) {
4202        TypeVar typeVar = (TypeVar) tree.type;
4203
4204        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4205            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4206        }
4207
4208        if (!typeVar.bound.isErroneous()) {
4209            //fixup type-parameter bound computed in 'attribTypeVariables'
4210            typeVar.bound = checkIntersection(tree, tree.bounds);
4211        }
4212    }
4213
4214    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4215        Set<Type> boundSet = new HashSet<>();
4216        if (bounds.nonEmpty()) {
4217            // accept class or interface or typevar as first bound.
4218            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4219            boundSet.add(types.erasure(bounds.head.type));
4220            if (bounds.head.type.isErroneous()) {
4221                return bounds.head.type;
4222            }
4223            else if (bounds.head.type.hasTag(TYPEVAR)) {
4224                // if first bound was a typevar, do not accept further bounds.
4225                if (bounds.tail.nonEmpty()) {
4226                    log.error(bounds.tail.head.pos(),
4227                              Errors.TypeVarMayNotBeFollowedByOtherBounds);
4228                    return bounds.head.type;
4229                }
4230            } else {
4231                // if first bound was a class or interface, accept only interfaces
4232                // as further bounds.
4233                for (JCExpression bound : bounds.tail) {
4234                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4235                    if (bound.type.isErroneous()) {
4236                        bounds = List.of(bound);
4237                    }
4238                    else if (bound.type.hasTag(CLASS)) {
4239                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4240                    }
4241                }
4242            }
4243        }
4244
4245        if (bounds.length() == 0) {
4246            return syms.objectType;
4247        } else if (bounds.length() == 1) {
4248            return bounds.head.type;
4249        } else {
4250            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4251            // ... the variable's bound is a class type flagged COMPOUND
4252            // (see comment for TypeVar.bound).
4253            // In this case, generate a class tree that represents the
4254            // bound class, ...
4255            JCExpression extending;
4256            List<JCExpression> implementing;
4257            if (!bounds.head.type.isInterface()) {
4258                extending = bounds.head;
4259                implementing = bounds.tail;
4260            } else {
4261                extending = null;
4262                implementing = bounds;
4263            }
4264            JCClassDecl cd = make.at(tree).ClassDef(
4265                make.Modifiers(PUBLIC | ABSTRACT),
4266                names.empty, List.nil(),
4267                extending, implementing, List.nil());
4268
4269            ClassSymbol c = (ClassSymbol)owntype.tsym;
4270            Assert.check((c.flags() & COMPOUND) != 0);
4271            cd.sym = c;
4272            c.sourcefile = env.toplevel.sourcefile;
4273
4274            // ... and attribute the bound class
4275            c.flags_field |= UNATTRIBUTED;
4276            Env<AttrContext> cenv = enter.classEnv(cd, env);
4277            typeEnvs.put(c, cenv);
4278            attribClass(c);
4279            return owntype;
4280        }
4281    }
4282
4283    public void visitWildcard(JCWildcard tree) {
4284        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4285        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4286            ? syms.objectType
4287            : attribType(tree.inner, env);
4288        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4289                                              tree.kind.kind,
4290                                              syms.boundClass),
4291                KindSelector.TYP, resultInfo);
4292    }
4293
4294    public void visitAnnotation(JCAnnotation tree) {
4295        Assert.error("should be handled in annotate");
4296    }
4297
4298    public void visitAnnotatedType(JCAnnotatedType tree) {
4299        attribAnnotationTypes(tree.annotations, env);
4300        Type underlyingType = attribType(tree.underlyingType, env);
4301        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4302
4303        if (!env.info.isNewClass)
4304            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4305        result = tree.type = annotatedType;
4306    }
4307
4308    public void visitErroneous(JCErroneous tree) {
4309        if (tree.errs != null)
4310            for (JCTree err : tree.errs)
4311                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4312        result = tree.type = syms.errType;
4313    }
4314
4315    /** Default visitor method for all other trees.
4316     */
4317    public void visitTree(JCTree tree) {
4318        throw new AssertionError();
4319    }
4320
4321    /**
4322     * Attribute an env for either a top level tree or class or module declaration.
4323     */
4324    public void attrib(Env<AttrContext> env) {
4325        switch (env.tree.getTag()) {
4326            case MODULEDEF:
4327                attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4328                break;
4329            case TOPLEVEL:
4330                attribTopLevel(env);
4331                break;
4332            case PACKAGEDEF:
4333                attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4334                break;
4335            default:
4336                attribClass(env.tree.pos(), env.enclClass.sym);
4337        }
4338    }
4339
4340    /**
4341     * Attribute a top level tree. These trees are encountered when the
4342     * package declaration has annotations.
4343     */
4344    public void attribTopLevel(Env<AttrContext> env) {
4345        JCCompilationUnit toplevel = env.toplevel;
4346        try {
4347            annotate.flush();
4348        } catch (CompletionFailure ex) {
4349            chk.completionError(toplevel.pos(), ex);
4350        }
4351    }
4352
4353    public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4354        try {
4355            annotate.flush();
4356            attribPackage(p);
4357        } catch (CompletionFailure ex) {
4358            chk.completionError(pos, ex);
4359        }
4360    }
4361
4362    void attribPackage(PackageSymbol p) {
4363        Env<AttrContext> env = typeEnvs.get(p);
4364        chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4365    }
4366
4367    public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4368        try {
4369            annotate.flush();
4370            attribModule(m);
4371        } catch (CompletionFailure ex) {
4372            chk.completionError(pos, ex);
4373        }
4374    }
4375
4376    void attribModule(ModuleSymbol m) {
4377        // Get environment current at the point of module definition.
4378        Env<AttrContext> env = enter.typeEnvs.get(m);
4379        attribStat(env.tree, env);
4380    }
4381
4382    /** Main method: attribute class definition associated with given class symbol.
4383     *  reporting completion failures at the given position.
4384     *  @param pos The source position at which completion errors are to be
4385     *             reported.
4386     *  @param c   The class symbol whose definition will be attributed.
4387     */
4388    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4389        try {
4390            annotate.flush();
4391            attribClass(c);
4392        } catch (CompletionFailure ex) {
4393            chk.completionError(pos, ex);
4394        }
4395    }
4396
4397    /** Attribute class definition associated with given class symbol.
4398     *  @param c   The class symbol whose definition will be attributed.
4399     */
4400    void attribClass(ClassSymbol c) throws CompletionFailure {
4401        if (c.type.hasTag(ERROR)) return;
4402
4403        // Check for cycles in the inheritance graph, which can arise from
4404        // ill-formed class files.
4405        chk.checkNonCyclic(null, c.type);
4406
4407        Type st = types.supertype(c.type);
4408        if ((c.flags_field & Flags.COMPOUND) == 0) {
4409            // First, attribute superclass.
4410            if (st.hasTag(CLASS))
4411                attribClass((ClassSymbol)st.tsym);
4412
4413            // Next attribute owner, if it is a class.
4414            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4415                attribClass((ClassSymbol)c.owner);
4416        }
4417
4418        // The previous operations might have attributed the current class
4419        // if there was a cycle. So we test first whether the class is still
4420        // UNATTRIBUTED.
4421        if ((c.flags_field & UNATTRIBUTED) != 0) {
4422            c.flags_field &= ~UNATTRIBUTED;
4423
4424            // Get environment current at the point of class definition.
4425            Env<AttrContext> env = typeEnvs.get(c);
4426
4427            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4428            // because the annotations were not available at the time the env was created. Therefore,
4429            // we look up the environment chain for the first enclosing environment for which the
4430            // lint value is set. Typically, this is the parent env, but might be further if there
4431            // are any envs created as a result of TypeParameter nodes.
4432            Env<AttrContext> lintEnv = env;
4433            while (lintEnv.info.lint == null)
4434                lintEnv = lintEnv.next;
4435
4436            // Having found the enclosing lint value, we can initialize the lint value for this class
4437            env.info.lint = lintEnv.info.lint.augment(c);
4438
4439            Lint prevLint = chk.setLint(env.info.lint);
4440            JavaFileObject prev = log.useSource(c.sourcefile);
4441            ResultInfo prevReturnRes = env.info.returnResult;
4442
4443            try {
4444                deferredLintHandler.flush(env.tree);
4445                env.info.returnResult = null;
4446                // java.lang.Enum may not be subclassed by a non-enum
4447                if (st.tsym == syms.enumSym &&
4448                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4449                    log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4450
4451                // Enums may not be extended by source-level classes
4452                if (st.tsym != null &&
4453                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4454                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4455                    log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4456                }
4457
4458                if (isSerializable(c.type)) {
4459                    env.info.isSerializable = true;
4460                }
4461
4462                attribClassBody(env, c);
4463
4464                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4465                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4466                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4467                chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4468            } finally {
4469                env.info.returnResult = prevReturnRes;
4470                log.useSource(prev);
4471                chk.setLint(prevLint);
4472            }
4473
4474        }
4475    }
4476
4477    public void visitImport(JCImport tree) {
4478        // nothing to do
4479    }
4480
4481    public void visitModuleDef(JCModuleDecl tree) {
4482        tree.sym.completeUsesProvides();
4483        ModuleSymbol msym = tree.sym;
4484        Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4485        Lint prevLint = chk.setLint(lint);
4486        chk.checkModuleName(tree);
4487        chk.checkDeprecatedAnnotation(tree, msym);
4488
4489        try {
4490            deferredLintHandler.flush(tree.pos());
4491        } finally {
4492            chk.setLint(prevLint);
4493        }
4494    }
4495
4496    /** Finish the attribution of a class. */
4497    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4498        JCClassDecl tree = (JCClassDecl)env.tree;
4499        Assert.check(c == tree.sym);
4500
4501        // Validate type parameters, supertype and interfaces.
4502        attribStats(tree.typarams, env);
4503        if (!c.isAnonymous()) {
4504            //already checked if anonymous
4505            chk.validate(tree.typarams, env);
4506            chk.validate(tree.extending, env);
4507            chk.validate(tree.implementing, env);
4508        }
4509
4510        c.markAbstractIfNeeded(types);
4511
4512        // If this is a non-abstract class, check that it has no abstract
4513        // methods or unimplemented methods of an implemented interface.
4514        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4515            chk.checkAllDefined(tree.pos(), c);
4516        }
4517
4518        if ((c.flags() & ANNOTATION) != 0) {
4519            if (tree.implementing.nonEmpty())
4520                log.error(tree.implementing.head.pos(),
4521                          Errors.CantExtendIntfAnnotation);
4522            if (tree.typarams.nonEmpty()) {
4523                log.error(tree.typarams.head.pos(),
4524                          Errors.IntfAnnotationCantHaveTypeParams(c));
4525            }
4526
4527            // If this annotation type has a @Repeatable, validate
4528            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4529            // If this annotation type has a @Repeatable, validate
4530            if (repeatable != null) {
4531                // get diagnostic position for error reporting
4532                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4533                Assert.checkNonNull(cbPos);
4534
4535                chk.validateRepeatable(c, repeatable, cbPos);
4536            }
4537        } else {
4538            // Check that all extended classes and interfaces
4539            // are compatible (i.e. no two define methods with same arguments
4540            // yet different return types).  (JLS 8.4.6.3)
4541            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4542            if (allowDefaultMethods) {
4543                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4544            }
4545        }
4546
4547        // Check that class does not import the same parameterized interface
4548        // with two different argument lists.
4549        chk.checkClassBounds(tree.pos(), c.type);
4550
4551        tree.type = c.type;
4552
4553        for (List<JCTypeParameter> l = tree.typarams;
4554             l.nonEmpty(); l = l.tail) {
4555             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4556        }
4557
4558        // Check that a generic class doesn't extend Throwable
4559        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4560            log.error(tree.extending.pos(), Errors.GenericThrowable);
4561
4562        // Check that all methods which implement some
4563        // method conform to the method they implement.
4564        chk.checkImplementations(tree);
4565
4566        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4567        checkAutoCloseable(tree.pos(), env, c.type);
4568
4569        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4570            // Attribute declaration
4571            attribStat(l.head, env);
4572            // Check that declarations in inner classes are not static (JLS 8.1.2)
4573            // Make an exception for static constants.
4574            if (c.owner.kind != PCK &&
4575                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4576                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4577                Symbol sym = null;
4578                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4579                if (sym == null ||
4580                    sym.kind != VAR ||
4581                    ((VarSymbol) sym).getConstValue() == null)
4582                    log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4583            }
4584        }
4585
4586        // Check for cycles among non-initial constructors.
4587        chk.checkCyclicConstructors(tree);
4588
4589        // Check for cycles among annotation elements.
4590        chk.checkNonCyclicElements(tree);
4591
4592        // Check for proper use of serialVersionUID
4593        if (env.info.lint.isEnabled(LintCategory.SERIAL)
4594                && isSerializable(c.type)
4595                && (c.flags() & Flags.ENUM) == 0
4596                && !c.isAnonymous()
4597                && checkForSerial(c)) {
4598            checkSerialVersionUID(tree, c);
4599        }
4600        if (allowTypeAnnos) {
4601            // Correctly organize the postions of the type annotations
4602            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4603
4604            // Check type annotations applicability rules
4605            validateTypeAnnotations(tree, false);
4606        }
4607    }
4608        // where
4609        boolean checkForSerial(ClassSymbol c) {
4610            if ((c.flags() & ABSTRACT) == 0) {
4611                return true;
4612            } else {
4613                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4614            }
4615        }
4616
4617        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = s ->
4618                s.kind == MTH && (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4619
4620        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4621        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4622            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4623                if (types.isSameType(al.head.annotationType.type, t))
4624                    return al.head.pos();
4625            }
4626
4627            return null;
4628        }
4629
4630        /** check if a type is a subtype of Serializable, if that is available. */
4631        boolean isSerializable(Type t) {
4632            try {
4633                syms.serializableType.complete();
4634            }
4635            catch (CompletionFailure e) {
4636                return false;
4637            }
4638            return types.isSubtype(t, syms.serializableType);
4639        }
4640
4641        /** Check that an appropriate serialVersionUID member is defined. */
4642        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4643
4644            // check for presence of serialVersionUID
4645            VarSymbol svuid = null;
4646            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4647                if (sym.kind == VAR) {
4648                    svuid = (VarSymbol)sym;
4649                    break;
4650                }
4651            }
4652
4653            if (svuid == null) {
4654                log.warning(LintCategory.SERIAL,
4655                        tree.pos(), Warnings.MissingSVUID(c));
4656                return;
4657            }
4658
4659            // check that it is static final
4660            if ((svuid.flags() & (STATIC | FINAL)) !=
4661                (STATIC | FINAL))
4662                log.warning(LintCategory.SERIAL,
4663                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4664
4665            // check that it is long
4666            else if (!svuid.type.hasTag(LONG))
4667                log.warning(LintCategory.SERIAL,
4668                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4669
4670            // check constant
4671            else if (svuid.getConstValue() == null)
4672                log.warning(LintCategory.SERIAL,
4673                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4674        }
4675
4676    private Type capture(Type type) {
4677        return types.capture(type);
4678    }
4679
4680    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4681        tree.accept(new TypeAnnotationsValidator(sigOnly));
4682    }
4683    //where
4684    private final class TypeAnnotationsValidator extends TreeScanner {
4685
4686        private final boolean sigOnly;
4687        public TypeAnnotationsValidator(boolean sigOnly) {
4688            this.sigOnly = sigOnly;
4689        }
4690
4691        public void visitAnnotation(JCAnnotation tree) {
4692            chk.validateTypeAnnotation(tree, false);
4693            super.visitAnnotation(tree);
4694        }
4695        public void visitAnnotatedType(JCAnnotatedType tree) {
4696            if (!tree.underlyingType.type.isErroneous()) {
4697                super.visitAnnotatedType(tree);
4698            }
4699        }
4700        public void visitTypeParameter(JCTypeParameter tree) {
4701            chk.validateTypeAnnotations(tree.annotations, true);
4702            scan(tree.bounds);
4703            // Don't call super.
4704            // This is needed because above we call validateTypeAnnotation with
4705            // false, which would forbid annotations on type parameters.
4706            // super.visitTypeParameter(tree);
4707        }
4708        public void visitMethodDef(JCMethodDecl tree) {
4709            if (tree.recvparam != null &&
4710                    !tree.recvparam.vartype.type.isErroneous()) {
4711                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4712                        tree.recvparam.vartype.type.tsym);
4713            }
4714            if (tree.restype != null && tree.restype.type != null) {
4715                validateAnnotatedType(tree.restype, tree.restype.type);
4716            }
4717            if (sigOnly) {
4718                scan(tree.mods);
4719                scan(tree.restype);
4720                scan(tree.typarams);
4721                scan(tree.recvparam);
4722                scan(tree.params);
4723                scan(tree.thrown);
4724            } else {
4725                scan(tree.defaultValue);
4726                scan(tree.body);
4727            }
4728        }
4729        public void visitVarDef(final JCVariableDecl tree) {
4730            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4731            if (tree.sym != null && tree.sym.type != null)
4732                validateAnnotatedType(tree.vartype, tree.sym.type);
4733            scan(tree.mods);
4734            scan(tree.vartype);
4735            if (!sigOnly) {
4736                scan(tree.init);
4737            }
4738        }
4739        public void visitTypeCast(JCTypeCast tree) {
4740            if (tree.clazz != null && tree.clazz.type != null)
4741                validateAnnotatedType(tree.clazz, tree.clazz.type);
4742            super.visitTypeCast(tree);
4743        }
4744        public void visitTypeTest(JCInstanceOf tree) {
4745            if (tree.clazz != null && tree.clazz.type != null)
4746                validateAnnotatedType(tree.clazz, tree.clazz.type);
4747            super.visitTypeTest(tree);
4748        }
4749        public void visitNewClass(JCNewClass tree) {
4750            if (tree.clazz != null && tree.clazz.type != null) {
4751                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4752                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4753                            tree.clazz.type.tsym);
4754                }
4755                if (tree.def != null) {
4756                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4757                }
4758
4759                validateAnnotatedType(tree.clazz, tree.clazz.type);
4760            }
4761            super.visitNewClass(tree);
4762        }
4763        public void visitNewArray(JCNewArray tree) {
4764            if (tree.elemtype != null && tree.elemtype.type != null) {
4765                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4766                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4767                            tree.elemtype.type.tsym);
4768                }
4769                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4770            }
4771            super.visitNewArray(tree);
4772        }
4773        public void visitClassDef(JCClassDecl tree) {
4774            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4775            if (sigOnly) {
4776                scan(tree.mods);
4777                scan(tree.typarams);
4778                scan(tree.extending);
4779                scan(tree.implementing);
4780            }
4781            for (JCTree member : tree.defs) {
4782                if (member.hasTag(Tag.CLASSDEF)) {
4783                    continue;
4784                }
4785                scan(member);
4786            }
4787        }
4788        public void visitBlock(JCBlock tree) {
4789            if (!sigOnly) {
4790                scan(tree.stats);
4791            }
4792        }
4793
4794        /* I would want to model this after
4795         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4796         * and override visitSelect and visitTypeApply.
4797         * However, we only set the annotated type in the top-level type
4798         * of the symbol.
4799         * Therefore, we need to override each individual location where a type
4800         * can occur.
4801         */
4802        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4803            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4804
4805            if (type.isPrimitiveOrVoid()) {
4806                return;
4807            }
4808
4809            JCTree enclTr = errtree;
4810            Type enclTy = type;
4811
4812            boolean repeat = true;
4813            while (repeat) {
4814                if (enclTr.hasTag(TYPEAPPLY)) {
4815                    List<Type> tyargs = enclTy.getTypeArguments();
4816                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4817                    if (trargs.length() > 0) {
4818                        // Nothing to do for diamonds
4819                        if (tyargs.length() == trargs.length()) {
4820                            for (int i = 0; i < tyargs.length(); ++i) {
4821                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4822                            }
4823                        }
4824                        // If the lengths don't match, it's either a diamond
4825                        // or some nested type that redundantly provides
4826                        // type arguments in the tree.
4827                    }
4828
4829                    // Look at the clazz part of a generic type
4830                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4831                }
4832
4833                if (enclTr.hasTag(SELECT)) {
4834                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4835                    if (enclTy != null &&
4836                            !enclTy.hasTag(NONE)) {
4837                        enclTy = enclTy.getEnclosingType();
4838                    }
4839                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4840                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4841                    if (enclTy == null || enclTy.hasTag(NONE)) {
4842                        if (at.getAnnotations().size() == 1) {
4843                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4844                        } else {
4845                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4846                            for (JCAnnotation an : at.getAnnotations()) {
4847                                comps.add(an.attribute);
4848                            }
4849                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4850                        }
4851                        repeat = false;
4852                    }
4853                    enclTr = at.underlyingType;
4854                    // enclTy doesn't need to be changed
4855                } else if (enclTr.hasTag(IDENT)) {
4856                    repeat = false;
4857                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4858                    JCWildcard wc = (JCWildcard) enclTr;
4859                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4860                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4861                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4862                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4863                    } else {
4864                        // Nothing to do for UNBOUND
4865                    }
4866                    repeat = false;
4867                } else if (enclTr.hasTag(TYPEARRAY)) {
4868                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4869                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4870                    repeat = false;
4871                } else if (enclTr.hasTag(TYPEUNION)) {
4872                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4873                    for (JCTree t : ut.getTypeAlternatives()) {
4874                        validateAnnotatedType(t, t.type);
4875                    }
4876                    repeat = false;
4877                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4878                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4879                    for (JCTree t : it.getBounds()) {
4880                        validateAnnotatedType(t, t.type);
4881                    }
4882                    repeat = false;
4883                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4884                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4885                    repeat = false;
4886                } else {
4887                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4888                            " within: "+ errtree + " with kind: " + errtree.getKind());
4889                }
4890            }
4891        }
4892
4893        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4894                Symbol sym) {
4895            // Ensure that no declaration annotations are present.
4896            // Note that a tree type might be an AnnotatedType with
4897            // empty annotations, if only declaration annotations were given.
4898            // This method will raise an error for such a type.
4899            for (JCAnnotation ai : annotations) {
4900                if (!ai.type.isErroneous() &&
4901                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4902                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4903                }
4904            }
4905        }
4906    }
4907
4908    // <editor-fold desc="post-attribution visitor">
4909
4910    /**
4911     * Handle missing types/symbols in an AST. This routine is useful when
4912     * the compiler has encountered some errors (which might have ended up
4913     * terminating attribution abruptly); if the compiler is used in fail-over
4914     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4915     * prevents NPE to be progagated during subsequent compilation steps.
4916     */
4917    public void postAttr(JCTree tree) {
4918        new PostAttrAnalyzer().scan(tree);
4919    }
4920
4921    class PostAttrAnalyzer extends TreeScanner {
4922
4923        private void initTypeIfNeeded(JCTree that) {
4924            if (that.type == null) {
4925                if (that.hasTag(METHODDEF)) {
4926                    that.type = dummyMethodType((JCMethodDecl)that);
4927                } else {
4928                    that.type = syms.unknownType;
4929                }
4930            }
4931        }
4932
4933        /* Construct a dummy method type. If we have a method declaration,
4934         * and the declared return type is void, then use that return type
4935         * instead of UNKNOWN to avoid spurious error messages in lambda
4936         * bodies (see:JDK-8041704).
4937         */
4938        private Type dummyMethodType(JCMethodDecl md) {
4939            Type restype = syms.unknownType;
4940            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4941                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4942                if (prim.typetag == VOID)
4943                    restype = syms.voidType;
4944            }
4945            return new MethodType(List.nil(), restype,
4946                                  List.nil(), syms.methodClass);
4947        }
4948        private Type dummyMethodType() {
4949            return dummyMethodType(null);
4950        }
4951
4952        @Override
4953        public void scan(JCTree tree) {
4954            if (tree == null) return;
4955            if (tree instanceof JCExpression) {
4956                initTypeIfNeeded(tree);
4957            }
4958            super.scan(tree);
4959        }
4960
4961        @Override
4962        public void visitIdent(JCIdent that) {
4963            if (that.sym == null) {
4964                that.sym = syms.unknownSymbol;
4965            }
4966        }
4967
4968        @Override
4969        public void visitSelect(JCFieldAccess that) {
4970            if (that.sym == null) {
4971                that.sym = syms.unknownSymbol;
4972            }
4973            super.visitSelect(that);
4974        }
4975
4976        @Override
4977        public void visitClassDef(JCClassDecl that) {
4978            initTypeIfNeeded(that);
4979            if (that.sym == null) {
4980                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4981            }
4982            super.visitClassDef(that);
4983        }
4984
4985        @Override
4986        public void visitMethodDef(JCMethodDecl that) {
4987            initTypeIfNeeded(that);
4988            if (that.sym == null) {
4989                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4990            }
4991            super.visitMethodDef(that);
4992        }
4993
4994        @Override
4995        public void visitVarDef(JCVariableDecl that) {
4996            initTypeIfNeeded(that);
4997            if (that.sym == null) {
4998                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4999                that.sym.adr = 0;
5000            }
5001            if (that.vartype == null) {
5002                that.vartype = make.Erroneous();
5003            }
5004            super.visitVarDef(that);
5005        }
5006
5007        @Override
5008        public void visitNewClass(JCNewClass that) {
5009            if (that.constructor == null) {
5010                that.constructor = new MethodSymbol(0, names.init,
5011                        dummyMethodType(), syms.noSymbol);
5012            }
5013            if (that.constructorType == null) {
5014                that.constructorType = syms.unknownType;
5015            }
5016            super.visitNewClass(that);
5017        }
5018
5019        @Override
5020        public void visitAssignop(JCAssignOp that) {
5021            if (that.operator == null) {
5022                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5023                        -1, syms.noSymbol);
5024            }
5025            super.visitAssignop(that);
5026        }
5027
5028        @Override
5029        public void visitBinary(JCBinary that) {
5030            if (that.operator == null) {
5031                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5032                        -1, syms.noSymbol);
5033            }
5034            super.visitBinary(that);
5035        }
5036
5037        @Override
5038        public void visitUnary(JCUnary that) {
5039            if (that.operator == null) {
5040                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5041                        -1, syms.noSymbol);
5042            }
5043            super.visitUnary(that);
5044        }
5045
5046        @Override
5047        public void visitLambda(JCLambda that) {
5048            super.visitLambda(that);
5049            if (that.targets == null) {
5050                that.targets = List.nil();
5051            }
5052        }
5053
5054        @Override
5055        public void visitReference(JCMemberReference that) {
5056            super.visitReference(that);
5057            if (that.sym == null) {
5058                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5059                        syms.noSymbol);
5060            }
5061            if (that.targets == null) {
5062                that.targets = List.nil();
5063            }
5064        }
5065    }
5066    // </editor-fold>
5067
5068    public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5069        new TreeScanner() {
5070            Symbol packge = pkg;
5071            @Override
5072            public void visitIdent(JCIdent that) {
5073                that.sym = packge;
5074            }
5075
5076            @Override
5077            public void visitSelect(JCFieldAccess that) {
5078                that.sym = packge;
5079                packge = packge.owner;
5080                super.visitSelect(that);
5081            }
5082        }.scan(pid);
5083    }
5084
5085}
5086