Attr.java revision 4202:2bd34895dda2
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Directive.RequiresFlag;
40import com.sun.tools.javac.code.Lint.LintCategory;
41import com.sun.tools.javac.code.Scope.WriteableScope;
42import com.sun.tools.javac.code.Symbol.*;
43import com.sun.tools.javac.code.Type.*;
44import com.sun.tools.javac.code.TypeMetadata.Annotations;
45import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
46import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
47import com.sun.tools.javac.comp.Check.CheckContext;
48import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
49import com.sun.tools.javac.comp.Infer.FreeTypeListener;
50import com.sun.tools.javac.jvm.*;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
53import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
54import com.sun.tools.javac.resources.CompilerProperties.Errors;
55import com.sun.tools.javac.resources.CompilerProperties.Fragments;
56import com.sun.tools.javac.resources.CompilerProperties.Warnings;
57import com.sun.tools.javac.tree.*;
58import com.sun.tools.javac.tree.JCTree.*;
59import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
60import com.sun.tools.javac.util.*;
61import com.sun.tools.javac.util.DefinedBy.Api;
62import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
63import com.sun.tools.javac.util.JCDiagnostic.Fragment;
64import com.sun.tools.javac.util.List;
65
66import static com.sun.tools.javac.code.Flags.*;
67import static com.sun.tools.javac.code.Flags.ANNOTATION;
68import static com.sun.tools.javac.code.Flags.BLOCK;
69import static com.sun.tools.javac.code.Kinds.*;
70import static com.sun.tools.javac.code.Kinds.Kind.*;
71import static com.sun.tools.javac.code.TypeTag.*;
72import static com.sun.tools.javac.code.TypeTag.WILDCARD;
73import static com.sun.tools.javac.tree.JCTree.Tag.*;
74import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
75
76/** This is the main context-dependent analysis phase in GJC. It
77 *  encompasses name resolution, type checking and constant folding as
78 *  subtasks. Some subtasks involve auxiliary classes.
79 *  @see Check
80 *  @see Resolve
81 *  @see ConstFold
82 *  @see Infer
83 *
84 *  <p><b>This is NOT part of any supported API.
85 *  If you write code that depends on this, you do so at your own risk.
86 *  This code and its internal interfaces are subject to change or
87 *  deletion without notice.</b>
88 */
89public class Attr extends JCTree.Visitor {
90    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
91
92    final Names names;
93    final Log log;
94    final Symtab syms;
95    final Resolve rs;
96    final Operators operators;
97    final Infer infer;
98    final Analyzer analyzer;
99    final DeferredAttr deferredAttr;
100    final Check chk;
101    final Flow flow;
102    final MemberEnter memberEnter;
103    final TypeEnter typeEnter;
104    final TreeMaker make;
105    final ConstFold cfolder;
106    final Enter enter;
107    final Target target;
108    final Types types;
109    final JCDiagnostic.Factory diags;
110    final TypeAnnotations typeAnnotations;
111    final DeferredLintHandler deferredLintHandler;
112    final TypeEnvs typeEnvs;
113    final Dependencies dependencies;
114    final Annotate annotate;
115    final ArgumentAttr argumentAttr;
116
117    public static Attr instance(Context context) {
118        Attr instance = context.get(attrKey);
119        if (instance == null)
120            instance = new Attr(context);
121        return instance;
122    }
123
124    protected Attr(Context context) {
125        context.put(attrKey, this);
126
127        names = Names.instance(context);
128        log = Log.instance(context);
129        syms = Symtab.instance(context);
130        rs = Resolve.instance(context);
131        operators = Operators.instance(context);
132        chk = Check.instance(context);
133        flow = Flow.instance(context);
134        memberEnter = MemberEnter.instance(context);
135        typeEnter = TypeEnter.instance(context);
136        make = TreeMaker.instance(context);
137        enter = Enter.instance(context);
138        infer = Infer.instance(context);
139        analyzer = Analyzer.instance(context);
140        deferredAttr = DeferredAttr.instance(context);
141        cfolder = ConstFold.instance(context);
142        target = Target.instance(context);
143        types = Types.instance(context);
144        diags = JCDiagnostic.Factory.instance(context);
145        annotate = Annotate.instance(context);
146        typeAnnotations = TypeAnnotations.instance(context);
147        deferredLintHandler = DeferredLintHandler.instance(context);
148        typeEnvs = TypeEnvs.instance(context);
149        dependencies = Dependencies.instance(context);
150        argumentAttr = ArgumentAttr.instance(context);
151
152        Options options = Options.instance(context);
153
154        Source source = Source.instance(context);
155        allowStringsInSwitch = source.allowStringsInSwitch();
156        allowPoly = source.allowPoly();
157        allowTypeAnnos = source.allowTypeAnnotations();
158        allowLambda = source.allowLambda();
159        allowDefaultMethods = source.allowDefaultMethods();
160        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
161        sourceName = source.name;
162        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
163
164        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
165        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
166        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
167        methodAttrInfo = new MethodAttrInfo();
168        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
169        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
170        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
171    }
172
173    /** Switch: support target-typing inference
174     */
175    boolean allowPoly;
176
177    /** Switch: support type annotations.
178     */
179    boolean allowTypeAnnos;
180
181    /** Switch: support lambda expressions ?
182     */
183    boolean allowLambda;
184
185    /** Switch: support default methods ?
186     */
187    boolean allowDefaultMethods;
188
189    /** Switch: static interface methods enabled?
190     */
191    boolean allowStaticInterfaceMethods;
192
193    /**
194     * Switch: warn about use of variable before declaration?
195     * RFE: 6425594
196     */
197    boolean useBeforeDeclarationWarning;
198
199    /**
200     * Switch: allow strings in switch?
201     */
202    boolean allowStringsInSwitch;
203
204    /**
205     * Switch: name of source level; used for error reporting.
206     */
207    String sourceName;
208
209    /** Check kind and type of given tree against protokind and prototype.
210     *  If check succeeds, store type in tree and return it.
211     *  If check fails, store errType in tree and return it.
212     *  No checks are performed if the prototype is a method type.
213     *  It is not necessary in this case since we know that kind and type
214     *  are correct.
215     *
216     *  @param tree     The tree whose kind and type is checked
217     *  @param found    The computed type of the tree
218     *  @param ownkind  The computed kind of the tree
219     *  @param resultInfo  The expected result of the tree
220     */
221    Type check(final JCTree tree,
222               final Type found,
223               final KindSelector ownkind,
224               final ResultInfo resultInfo) {
225        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
226        Type owntype;
227        boolean shouldCheck = !found.hasTag(ERROR) &&
228                !resultInfo.pt.hasTag(METHOD) &&
229                !resultInfo.pt.hasTag(FORALL);
230        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
231            log.error(tree.pos(),
232                      Errors.UnexpectedType(resultInfo.pkind.kindNames(),
233                                            ownkind.kindNames()));
234            owntype = types.createErrorType(found);
235        } else if (allowPoly && inferenceContext.free(found)) {
236            //delay the check if there are inference variables in the found type
237            //this means we are dealing with a partially inferred poly expression
238            owntype = shouldCheck ? resultInfo.pt : found;
239            if (resultInfo.checkMode.installPostInferenceHook()) {
240                inferenceContext.addFreeTypeListener(List.of(found),
241                        instantiatedContext -> {
242                            ResultInfo pendingResult =
243                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
244                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
245                        });
246            }
247        } else {
248            owntype = shouldCheck ?
249            resultInfo.check(tree, found) :
250            found;
251        }
252        if (resultInfo.checkMode.updateTreeType()) {
253            tree.type = owntype;
254        }
255        return owntype;
256    }
257
258    /** Is given blank final variable assignable, i.e. in a scope where it
259     *  may be assigned to even though it is final?
260     *  @param v      The blank final variable.
261     *  @param env    The current environment.
262     */
263    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
264        Symbol owner = env.info.scope.owner;
265           // owner refers to the innermost variable, method or
266           // initializer block declaration at this point.
267        return
268            v.owner == owner
269            ||
270            ((owner.name == names.init ||    // i.e. we are in a constructor
271              owner.kind == VAR ||           // i.e. we are in a variable initializer
272              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
273             &&
274             v.owner == owner.owner
275             &&
276             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
277    }
278
279    /** Check that variable can be assigned to.
280     *  @param pos    The current source code position.
281     *  @param v      The assigned variable
282     *  @param base   If the variable is referred to in a Select, the part
283     *                to the left of the `.', null otherwise.
284     *  @param env    The current environment.
285     */
286    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
287        if (v.name == names._this) {
288            log.error(pos, Errors.CantAssignValToThis);
289        } else if ((v.flags() & FINAL) != 0 &&
290            ((v.flags() & HASINIT) != 0
291             ||
292             !((base == null ||
293               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
294               isAssignableAsBlankFinal(v, env)))) {
295            if (v.isResourceVariable()) { //TWR resource
296                log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
297            } else {
298                log.error(pos, Errors.CantAssignValToFinalVar(v));
299            }
300        }
301    }
302
303    /** Does tree represent a static reference to an identifier?
304     *  It is assumed that tree is either a SELECT or an IDENT.
305     *  We have to weed out selects from non-type names here.
306     *  @param tree    The candidate tree.
307     */
308    boolean isStaticReference(JCTree tree) {
309        if (tree.hasTag(SELECT)) {
310            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
311            if (lsym == null || lsym.kind != TYP) {
312                return false;
313            }
314        }
315        return true;
316    }
317
318    /** Is this symbol a type?
319     */
320    static boolean isType(Symbol sym) {
321        return sym != null && sym.kind == TYP;
322    }
323
324    /** The current `this' symbol.
325     *  @param env    The current environment.
326     */
327    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
328        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
329    }
330
331    /** Attribute a parsed identifier.
332     * @param tree Parsed identifier name
333     * @param topLevel The toplevel to use
334     */
335    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
336        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
337        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
338                                           syms.errSymbol.name,
339                                           null, null, null, null);
340        localEnv.enclClass.sym = syms.errSymbol;
341        return attribIdent(tree, localEnv);
342    }
343
344    /** Attribute a parsed identifier.
345     * @param tree Parsed identifier name
346     * @param env The env to use
347     */
348    public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
349        return tree.accept(identAttributer, env);
350    }
351    // where
352        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
353        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
354            @Override @DefinedBy(Api.COMPILER_TREE)
355            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
356                Symbol site = visit(node.getExpression(), env);
357                if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
358                    return site;
359                Name name = (Name)node.getIdentifier();
360                if (site.kind == PCK) {
361                    env.toplevel.packge = (PackageSymbol)site;
362                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
363                            KindSelector.TYP_PCK);
364                } else {
365                    env.enclClass.sym = (ClassSymbol)site;
366                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
367                }
368            }
369
370            @Override @DefinedBy(Api.COMPILER_TREE)
371            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
372                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
373            }
374        }
375
376    public Type coerce(Type etype, Type ttype) {
377        return cfolder.coerce(etype, ttype);
378    }
379
380    public Type attribType(JCTree node, TypeSymbol sym) {
381        Env<AttrContext> env = typeEnvs.get(sym);
382        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
383        return attribTree(node, localEnv, unknownTypeInfo);
384    }
385
386    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
387        // Attribute qualifying package or class.
388        JCFieldAccess s = (JCFieldAccess)tree.qualid;
389        return attribTree(s.selected, env,
390                          new ResultInfo(tree.staticImport ?
391                                         KindSelector.TYP : KindSelector.TYP_PCK,
392                       Type.noType));
393    }
394
395    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
396        breakTree = tree;
397        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
398        try {
399            attribExpr(expr, env);
400        } catch (BreakAttr b) {
401            return b.env;
402        } catch (AssertionError ae) {
403            if (ae.getCause() instanceof BreakAttr) {
404                return ((BreakAttr)(ae.getCause())).env;
405            } else {
406                throw ae;
407            }
408        } finally {
409            breakTree = null;
410            log.useSource(prev);
411        }
412        return env;
413    }
414
415    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
416        breakTree = tree;
417        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
418        try {
419            attribStat(stmt, env);
420        } catch (BreakAttr b) {
421            return b.env;
422        } catch (AssertionError ae) {
423            if (ae.getCause() instanceof BreakAttr) {
424                return ((BreakAttr)(ae.getCause())).env;
425            } else {
426                throw ae;
427            }
428        } finally {
429            breakTree = null;
430            log.useSource(prev);
431        }
432        return env;
433    }
434
435    private JCTree breakTree = null;
436
437    private static class BreakAttr extends RuntimeException {
438        static final long serialVersionUID = -6924771130405446405L;
439        private Env<AttrContext> env;
440        private BreakAttr(Env<AttrContext> env) {
441            this.env = env;
442        }
443    }
444
445    /**
446     * Mode controlling behavior of Attr.Check
447     */
448    enum CheckMode {
449
450        NORMAL,
451
452        /**
453         * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
454         * that the captured var cache in {@code InferenceContext} will be used in read-only
455         * mode when performing inference checks.
456         */
457        NO_TREE_UPDATE {
458            @Override
459            public boolean updateTreeType() {
460                return false;
461            }
462        },
463        /**
464         * Mode signalling that caller will manage free types in tree decorations.
465         */
466        NO_INFERENCE_HOOK {
467            @Override
468            public boolean installPostInferenceHook() {
469                return false;
470            }
471        };
472
473        public boolean updateTreeType() {
474            return true;
475        }
476        public boolean installPostInferenceHook() {
477            return true;
478        }
479    }
480
481
482    class ResultInfo {
483        final KindSelector pkind;
484        final Type pt;
485        final CheckContext checkContext;
486        final CheckMode checkMode;
487
488        ResultInfo(KindSelector pkind, Type pt) {
489            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
490        }
491
492        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
493            this(pkind, pt, chk.basicHandler, checkMode);
494        }
495
496        protected ResultInfo(KindSelector pkind,
497                             Type pt, CheckContext checkContext) {
498            this(pkind, pt, checkContext, CheckMode.NORMAL);
499        }
500
501        protected ResultInfo(KindSelector pkind,
502                             Type pt, CheckContext checkContext, CheckMode checkMode) {
503            this.pkind = pkind;
504            this.pt = pt;
505            this.checkContext = checkContext;
506            this.checkMode = checkMode;
507        }
508
509        /**
510         * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
511         * @param tree The tree to be type-checked.
512         * @return true if {@ArgumentAttr} should be used.
513         */
514        protected boolean needsArgumentAttr(JCTree tree) { return false; }
515
516        protected Type check(final DiagnosticPosition pos, final Type found) {
517            return chk.checkType(pos, found, pt, checkContext);
518        }
519
520        protected ResultInfo dup(Type newPt) {
521            return new ResultInfo(pkind, newPt, checkContext, checkMode);
522        }
523
524        protected ResultInfo dup(CheckContext newContext) {
525            return new ResultInfo(pkind, pt, newContext, checkMode);
526        }
527
528        protected ResultInfo dup(Type newPt, CheckContext newContext) {
529            return new ResultInfo(pkind, newPt, newContext, checkMode);
530        }
531
532        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
533            return new ResultInfo(pkind, newPt, newContext, newMode);
534        }
535
536        protected ResultInfo dup(CheckMode newMode) {
537            return new ResultInfo(pkind, pt, checkContext, newMode);
538        }
539
540        @Override
541        public String toString() {
542            if (pt != null) {
543                return pt.toString();
544            } else {
545                return "";
546            }
547        }
548    }
549
550    class MethodAttrInfo extends ResultInfo {
551        public MethodAttrInfo() {
552            this(chk.basicHandler);
553        }
554
555        public MethodAttrInfo(CheckContext checkContext) {
556            super(KindSelector.VAL, Infer.anyPoly, checkContext);
557        }
558
559        @Override
560        protected boolean needsArgumentAttr(JCTree tree) {
561            return true;
562        }
563
564        protected ResultInfo dup(Type newPt) {
565            throw new IllegalStateException();
566        }
567
568        protected ResultInfo dup(CheckContext newContext) {
569            return new MethodAttrInfo(newContext);
570        }
571
572        protected ResultInfo dup(Type newPt, CheckContext newContext) {
573            throw new IllegalStateException();
574        }
575
576        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
577            throw new IllegalStateException();
578        }
579
580        protected ResultInfo dup(CheckMode newMode) {
581            throw new IllegalStateException();
582        }
583    }
584
585    class RecoveryInfo extends ResultInfo {
586
587        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
588            super(KindSelector.VAL, Type.recoveryType,
589                  new Check.NestedCheckContext(chk.basicHandler) {
590                @Override
591                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
592                    return deferredAttrContext;
593                }
594                @Override
595                public boolean compatible(Type found, Type req, Warner warn) {
596                    return true;
597                }
598                @Override
599                public void report(DiagnosticPosition pos, JCDiagnostic details) {
600                    chk.basicHandler.report(pos, details);
601                }
602            });
603        }
604    }
605
606    final ResultInfo statInfo;
607    final ResultInfo varAssignmentInfo;
608    final ResultInfo methodAttrInfo;
609    final ResultInfo unknownExprInfo;
610    final ResultInfo unknownTypeInfo;
611    final ResultInfo unknownTypeExprInfo;
612    final ResultInfo recoveryInfo;
613
614    Type pt() {
615        return resultInfo.pt;
616    }
617
618    KindSelector pkind() {
619        return resultInfo.pkind;
620    }
621
622/* ************************************************************************
623 * Visitor methods
624 *************************************************************************/
625
626    /** Visitor argument: the current environment.
627     */
628    Env<AttrContext> env;
629
630    /** Visitor argument: the currently expected attribution result.
631     */
632    ResultInfo resultInfo;
633
634    /** Visitor result: the computed type.
635     */
636    Type result;
637
638    /** Visitor method: attribute a tree, catching any completion failure
639     *  exceptions. Return the tree's type.
640     *
641     *  @param tree    The tree to be visited.
642     *  @param env     The environment visitor argument.
643     *  @param resultInfo   The result info visitor argument.
644     */
645    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
646        Env<AttrContext> prevEnv = this.env;
647        ResultInfo prevResult = this.resultInfo;
648        try {
649            this.env = env;
650            this.resultInfo = resultInfo;
651            if (resultInfo.needsArgumentAttr(tree)) {
652                result = argumentAttr.attribArg(tree, env);
653            } else {
654                tree.accept(this);
655            }
656            if (tree == breakTree &&
657                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
658                throw new BreakAttr(copyEnv(env));
659            }
660            return result;
661        } catch (CompletionFailure ex) {
662            tree.type = syms.errType;
663            return chk.completionError(tree.pos(), ex);
664        } finally {
665            this.env = prevEnv;
666            this.resultInfo = prevResult;
667        }
668    }
669
670    Env<AttrContext> copyEnv(Env<AttrContext> env) {
671        Env<AttrContext> newEnv =
672                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
673        if (newEnv.outer != null) {
674            newEnv.outer = copyEnv(newEnv.outer);
675        }
676        return newEnv;
677    }
678
679    WriteableScope copyScope(WriteableScope sc) {
680        WriteableScope newScope = WriteableScope.create(sc.owner);
681        List<Symbol> elemsList = List.nil();
682        for (Symbol sym : sc.getSymbols()) {
683            elemsList = elemsList.prepend(sym);
684        }
685        for (Symbol s : elemsList) {
686            newScope.enter(s);
687        }
688        return newScope;
689    }
690
691    /** Derived visitor method: attribute an expression tree.
692     */
693    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
694        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
695    }
696
697    /** Derived visitor method: attribute an expression tree with
698     *  no constraints on the computed type.
699     */
700    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
701        return attribTree(tree, env, unknownExprInfo);
702    }
703
704    /** Derived visitor method: attribute a type tree.
705     */
706    public Type attribType(JCTree tree, Env<AttrContext> env) {
707        Type result = attribType(tree, env, Type.noType);
708        return result;
709    }
710
711    /** Derived visitor method: attribute a type tree.
712     */
713    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
714        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
715        return result;
716    }
717
718    /** Derived visitor method: attribute a statement or definition tree.
719     */
720    public Type attribStat(JCTree tree, Env<AttrContext> env) {
721        Env<AttrContext> analyzeEnv =
722                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
723        try {
724            return attribTree(tree, env, statInfo);
725        } finally {
726            analyzer.analyzeIfNeeded(tree, analyzeEnv);
727        }
728    }
729
730    /** Attribute a list of expressions, returning a list of types.
731     */
732    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
733        ListBuffer<Type> ts = new ListBuffer<>();
734        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
735            ts.append(attribExpr(l.head, env, pt));
736        return ts.toList();
737    }
738
739    /** Attribute a list of statements, returning nothing.
740     */
741    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
742        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
743            attribStat(l.head, env);
744    }
745
746    /** Attribute the arguments in a method call, returning the method kind.
747     */
748    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
749        KindSelector kind = initialKind;
750        for (JCExpression arg : trees) {
751            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
752            if (argtype.hasTag(DEFERRED)) {
753                kind = KindSelector.of(KindSelector.POLY, kind);
754            }
755            argtypes.append(argtype);
756        }
757        return kind;
758    }
759
760    /** Attribute a type argument list, returning a list of types.
761     *  Caller is responsible for calling checkRefTypes.
762     */
763    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
764        ListBuffer<Type> argtypes = new ListBuffer<>();
765        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
766            argtypes.append(attribType(l.head, env));
767        return argtypes.toList();
768    }
769
770    /** Attribute a type argument list, returning a list of types.
771     *  Check that all the types are references.
772     */
773    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
774        List<Type> types = attribAnyTypes(trees, env);
775        return chk.checkRefTypes(trees, types);
776    }
777
778    /**
779     * Attribute type variables (of generic classes or methods).
780     * Compound types are attributed later in attribBounds.
781     * @param typarams the type variables to enter
782     * @param env      the current environment
783     */
784    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
785        for (JCTypeParameter tvar : typarams) {
786            TypeVar a = (TypeVar)tvar.type;
787            a.tsym.flags_field |= UNATTRIBUTED;
788            a.bound = Type.noType;
789            if (!tvar.bounds.isEmpty()) {
790                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
791                for (JCExpression bound : tvar.bounds.tail)
792                    bounds = bounds.prepend(attribType(bound, env));
793                types.setBounds(a, bounds.reverse());
794            } else {
795                // if no bounds are given, assume a single bound of
796                // java.lang.Object.
797                types.setBounds(a, List.of(syms.objectType));
798            }
799            a.tsym.flags_field &= ~UNATTRIBUTED;
800        }
801        for (JCTypeParameter tvar : typarams) {
802            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
803        }
804    }
805
806    /**
807     * Attribute the type references in a list of annotations.
808     */
809    void attribAnnotationTypes(List<JCAnnotation> annotations,
810                               Env<AttrContext> env) {
811        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
812            JCAnnotation a = al.head;
813            attribType(a.annotationType, env);
814        }
815    }
816
817    /**
818     * Attribute a "lazy constant value".
819     *  @param env         The env for the const value
820     *  @param variable    The initializer for the const value
821     *  @param type        The expected type, or null
822     *  @see VarSymbol#setLazyConstValue
823     */
824    public Object attribLazyConstantValue(Env<AttrContext> env,
825                                      JCVariableDecl variable,
826                                      Type type) {
827
828        DiagnosticPosition prevLintPos
829                = deferredLintHandler.setPos(variable.pos());
830
831        final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
832        try {
833            Type itype = attribExpr(variable.init, env, type);
834            if (itype.constValue() != null) {
835                return coerce(itype, type).constValue();
836            } else {
837                return null;
838            }
839        } finally {
840            log.useSource(prevSource);
841            deferredLintHandler.setPos(prevLintPos);
842        }
843    }
844
845    /** Attribute type reference in an `extends' or `implements' clause.
846     *  Supertypes of anonymous inner classes are usually already attributed.
847     *
848     *  @param tree              The tree making up the type reference.
849     *  @param env               The environment current at the reference.
850     *  @param classExpected     true if only a class is expected here.
851     *  @param interfaceExpected true if only an interface is expected here.
852     */
853    Type attribBase(JCTree tree,
854                    Env<AttrContext> env,
855                    boolean classExpected,
856                    boolean interfaceExpected,
857                    boolean checkExtensible) {
858        Type t = tree.type != null ?
859            tree.type :
860            attribType(tree, env);
861        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
862    }
863    Type checkBase(Type t,
864                   JCTree tree,
865                   Env<AttrContext> env,
866                   boolean classExpected,
867                   boolean interfaceExpected,
868                   boolean checkExtensible) {
869        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
870                (((JCTypeApply) tree).clazz).pos() : tree.pos();
871        if (t.tsym.isAnonymous()) {
872            log.error(pos, Errors.CantInheritFromAnon);
873            return types.createErrorType(t);
874        }
875        if (t.isErroneous())
876            return t;
877        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
878            // check that type variable is already visible
879            if (t.getUpperBound() == null) {
880                log.error(pos, Errors.IllegalForwardRef);
881                return types.createErrorType(t);
882            }
883        } else {
884            t = chk.checkClassType(pos, t, checkExtensible);
885        }
886        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
887            log.error(pos, Errors.IntfExpectedHere);
888            // return errType is necessary since otherwise there might
889            // be undetected cycles which cause attribution to loop
890            return types.createErrorType(t);
891        } else if (checkExtensible &&
892                   classExpected &&
893                   (t.tsym.flags() & INTERFACE) != 0) {
894            log.error(pos, Errors.NoIntfExpectedHere);
895            return types.createErrorType(t);
896        }
897        if (checkExtensible &&
898            ((t.tsym.flags() & FINAL) != 0)) {
899            log.error(pos,
900                      Errors.CantInheritFromFinal(t.tsym));
901        }
902        chk.checkNonCyclic(pos, t);
903        return t;
904    }
905
906    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
907        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
908        id.type = env.info.scope.owner.enclClass().type;
909        id.sym = env.info.scope.owner.enclClass();
910        return id.type;
911    }
912
913    public void visitClassDef(JCClassDecl tree) {
914        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
915                Optional.ofNullable(env.info.isSpeculative ?
916                        argumentAttr.withLocalCacheContext() : null);
917        try {
918            // Local and anonymous classes have not been entered yet, so we need to
919            // do it now.
920            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
921                enter.classEnter(tree, env);
922            } else {
923                // If this class declaration is part of a class level annotation,
924                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
925                // order to simplify later steps and allow for sensible error
926                // messages.
927                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
928                    enter.classEnter(tree, env);
929            }
930
931            ClassSymbol c = tree.sym;
932            if (c == null) {
933                // exit in case something drastic went wrong during enter.
934                result = null;
935            } else {
936                // make sure class has been completed:
937                c.complete();
938
939                // If this class appears as an anonymous class
940                // in a superclass constructor call
941                // disable implicit outer instance from being passed.
942                // (This would be an illegal access to "this before super").
943                if (env.info.isSelfCall &&
944                        env.tree.hasTag(NEWCLASS)) {
945                    c.flags_field |= NOOUTERTHIS;
946                }
947                attribClass(tree.pos(), c);
948                result = tree.type = c.type;
949            }
950        } finally {
951            localCacheContext.ifPresent(LocalCacheContext::leave);
952        }
953    }
954
955    public void visitMethodDef(JCMethodDecl tree) {
956        MethodSymbol m = tree.sym;
957        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
958
959        Lint lint = env.info.lint.augment(m);
960        Lint prevLint = chk.setLint(lint);
961        MethodSymbol prevMethod = chk.setMethod(m);
962        try {
963            deferredLintHandler.flush(tree.pos());
964            chk.checkDeprecatedAnnotation(tree.pos(), m);
965
966
967            // Create a new environment with local scope
968            // for attributing the method.
969            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
970            localEnv.info.lint = lint;
971
972            attribStats(tree.typarams, localEnv);
973
974            // If we override any other methods, check that we do so properly.
975            // JLS ???
976            if (m.isStatic()) {
977                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
978            } else {
979                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
980            }
981            chk.checkOverride(env, tree, m);
982
983            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
984                log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
985            }
986
987            // Enter all type parameters into the local method scope.
988            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
989                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
990
991            ClassSymbol owner = env.enclClass.sym;
992            if ((owner.flags() & ANNOTATION) != 0 &&
993                    (tree.params.nonEmpty() ||
994                    tree.recvparam != null))
995                log.error(tree.params.nonEmpty() ?
996                        tree.params.head.pos() :
997                        tree.recvparam.pos(),
998                        Errors.IntfAnnotationMembersCantHaveParams);
999
1000            // Attribute all value parameters.
1001            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1002                attribStat(l.head, localEnv);
1003            }
1004
1005            chk.checkVarargsMethodDecl(localEnv, tree);
1006
1007            // Check that type parameters are well-formed.
1008            chk.validate(tree.typarams, localEnv);
1009
1010            // Check that result type is well-formed.
1011            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1012                chk.validate(tree.restype, localEnv);
1013
1014            // Check that receiver type is well-formed.
1015            if (tree.recvparam != null) {
1016                // Use a new environment to check the receiver parameter.
1017                // Otherwise I get "might not have been initialized" errors.
1018                // Is there a better way?
1019                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1020                attribType(tree.recvparam, newEnv);
1021                chk.validate(tree.recvparam, newEnv);
1022            }
1023
1024            // annotation method checks
1025            if ((owner.flags() & ANNOTATION) != 0) {
1026                // annotation method cannot have throws clause
1027                if (tree.thrown.nonEmpty()) {
1028                    log.error(tree.thrown.head.pos(),
1029                              Errors.ThrowsNotAllowedInIntfAnnotation);
1030                }
1031                // annotation method cannot declare type-parameters
1032                if (tree.typarams.nonEmpty()) {
1033                    log.error(tree.typarams.head.pos(),
1034                              Errors.IntfAnnotationMembersCantHaveTypeParams);
1035                }
1036                // validate annotation method's return type (could be an annotation type)
1037                chk.validateAnnotationType(tree.restype);
1038                // ensure that annotation method does not clash with members of Object/Annotation
1039                chk.validateAnnotationMethod(tree.pos(), m);
1040            }
1041
1042            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1043                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1044
1045            if (tree.body == null) {
1046                // Empty bodies are only allowed for
1047                // abstract, native, or interface methods, or for methods
1048                // in a retrofit signature class.
1049                if (tree.defaultValue != null) {
1050                    if ((owner.flags() & ANNOTATION) == 0)
1051                        log.error(tree.pos(),
1052                                  Errors.DefaultAllowedInIntfAnnotationMember);
1053                }
1054                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1055                    log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1056            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1057                if ((owner.flags() & INTERFACE) != 0) {
1058                    log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1059                } else {
1060                    log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1061                }
1062            } else if ((tree.mods.flags & NATIVE) != 0) {
1063                log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1064            } else {
1065                // Add an implicit super() call unless an explicit call to
1066                // super(...) or this(...) is given
1067                // or we are compiling class java.lang.Object.
1068                if (tree.name == names.init && owner.type != syms.objectType) {
1069                    JCBlock body = tree.body;
1070                    if (body.stats.isEmpty() ||
1071                            !TreeInfo.isSelfCall(body.stats.head)) {
1072                        body.stats = body.stats.
1073                                prepend(typeEnter.SuperCall(make.at(body.pos),
1074                                        List.nil(),
1075                                        List.nil(),
1076                                        false));
1077                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1078                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1079                            TreeInfo.isSuperCall(body.stats.head)) {
1080                        // enum constructors are not allowed to call super
1081                        // directly, so make sure there aren't any super calls
1082                        // in enum constructors, except in the compiler
1083                        // generated one.
1084                        log.error(tree.body.stats.head.pos(),
1085                                  Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1086                    }
1087                }
1088
1089                // Attribute all type annotations in the body
1090                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1091                annotate.flush();
1092
1093                // Attribute method body.
1094                attribStat(tree.body, localEnv);
1095            }
1096
1097            localEnv.info.scope.leave();
1098            result = tree.type = m.type;
1099        } finally {
1100            chk.setLint(prevLint);
1101            chk.setMethod(prevMethod);
1102        }
1103    }
1104
1105    public void visitVarDef(JCVariableDecl tree) {
1106        // Local variables have not been entered yet, so we need to do it now:
1107        if (env.info.scope.owner.kind == MTH) {
1108            if (tree.sym != null) {
1109                // parameters have already been entered
1110                env.info.scope.enter(tree.sym);
1111            } else {
1112                try {
1113                    annotate.blockAnnotations();
1114                    memberEnter.memberEnter(tree, env);
1115                } finally {
1116                    annotate.unblockAnnotations();
1117                }
1118            }
1119        } else {
1120            if (tree.init != null) {
1121                // Field initializer expression need to be entered.
1122                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1123                annotate.flush();
1124            }
1125        }
1126
1127        VarSymbol v = tree.sym;
1128        Lint lint = env.info.lint.augment(v);
1129        Lint prevLint = chk.setLint(lint);
1130
1131        // Check that the variable's declared type is well-formed.
1132        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1133                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1134                (tree.sym.flags() & PARAMETER) != 0;
1135        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1136
1137        try {
1138            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1139            deferredLintHandler.flush(tree.pos());
1140            chk.checkDeprecatedAnnotation(tree.pos(), v);
1141
1142            if (tree.init != null) {
1143                if ((v.flags_field & FINAL) == 0 ||
1144                    !memberEnter.needsLazyConstValue(tree.init)) {
1145                    // Not a compile-time constant
1146                    // Attribute initializer in a new environment
1147                    // with the declared variable as owner.
1148                    // Check that initializer conforms to variable's declared type.
1149                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1150                    initEnv.info.lint = lint;
1151                    // In order to catch self-references, we set the variable's
1152                    // declaration position to maximal possible value, effectively
1153                    // marking the variable as undefined.
1154                    initEnv.info.enclVar = v;
1155                    attribExpr(tree.init, initEnv, v.type);
1156                }
1157            }
1158            result = tree.type = v.type;
1159        }
1160        finally {
1161            chk.setLint(prevLint);
1162        }
1163    }
1164
1165    public void visitSkip(JCSkip tree) {
1166        result = null;
1167    }
1168
1169    public void visitBlock(JCBlock tree) {
1170        if (env.info.scope.owner.kind == TYP) {
1171            // Block is a static or instance initializer;
1172            // let the owner of the environment be a freshly
1173            // created BLOCK-method.
1174            Symbol fakeOwner =
1175                new MethodSymbol(tree.flags | BLOCK |
1176                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1177                    env.info.scope.owner);
1178            final Env<AttrContext> localEnv =
1179                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1180
1181            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1182            // Attribute all type annotations in the block
1183            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1184            annotate.flush();
1185            attribStats(tree.stats, localEnv);
1186
1187            {
1188                // Store init and clinit type annotations with the ClassSymbol
1189                // to allow output in Gen.normalizeDefs.
1190                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1191                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1192                if ((tree.flags & STATIC) != 0) {
1193                    cs.appendClassInitTypeAttributes(tas);
1194                } else {
1195                    cs.appendInitTypeAttributes(tas);
1196                }
1197            }
1198        } else {
1199            // Create a new local environment with a local scope.
1200            Env<AttrContext> localEnv =
1201                env.dup(tree, env.info.dup(env.info.scope.dup()));
1202            try {
1203                attribStats(tree.stats, localEnv);
1204            } finally {
1205                localEnv.info.scope.leave();
1206            }
1207        }
1208        result = null;
1209    }
1210
1211    public void visitDoLoop(JCDoWhileLoop tree) {
1212        attribStat(tree.body, env.dup(tree));
1213        attribExpr(tree.cond, env, syms.booleanType);
1214        result = null;
1215    }
1216
1217    public void visitWhileLoop(JCWhileLoop tree) {
1218        attribExpr(tree.cond, env, syms.booleanType);
1219        attribStat(tree.body, env.dup(tree));
1220        result = null;
1221    }
1222
1223    public void visitForLoop(JCForLoop tree) {
1224        Env<AttrContext> loopEnv =
1225            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1226        try {
1227            attribStats(tree.init, loopEnv);
1228            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1229            loopEnv.tree = tree; // before, we were not in loop!
1230            attribStats(tree.step, loopEnv);
1231            attribStat(tree.body, loopEnv);
1232            result = null;
1233        }
1234        finally {
1235            loopEnv.info.scope.leave();
1236        }
1237    }
1238
1239    public void visitForeachLoop(JCEnhancedForLoop tree) {
1240        Env<AttrContext> loopEnv =
1241            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1242        try {
1243            //the Formal Parameter of a for-each loop is not in the scope when
1244            //attributing the for-each expression; we mimick this by attributing
1245            //the for-each expression first (against original scope).
1246            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1247            attribStat(tree.var, loopEnv);
1248            chk.checkNonVoid(tree.pos(), exprType);
1249            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1250            if (elemtype == null) {
1251                // or perhaps expr implements Iterable<T>?
1252                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1253                if (base == null) {
1254                    log.error(tree.expr.pos(),
1255                              Errors.ForeachNotApplicableToType(exprType,
1256                                                                Fragments.TypeReqArrayOrIterable));
1257                    elemtype = types.createErrorType(exprType);
1258                } else {
1259                    List<Type> iterableParams = base.allparams();
1260                    elemtype = iterableParams.isEmpty()
1261                        ? syms.objectType
1262                        : types.wildUpperBound(iterableParams.head);
1263                }
1264            }
1265            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1266            loopEnv.tree = tree; // before, we were not in loop!
1267            attribStat(tree.body, loopEnv);
1268            result = null;
1269        }
1270        finally {
1271            loopEnv.info.scope.leave();
1272        }
1273    }
1274
1275    public void visitLabelled(JCLabeledStatement tree) {
1276        // Check that label is not used in an enclosing statement
1277        Env<AttrContext> env1 = env;
1278        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1279            if (env1.tree.hasTag(LABELLED) &&
1280                ((JCLabeledStatement) env1.tree).label == tree.label) {
1281                log.error(tree.pos(),
1282                          Errors.LabelAlreadyInUse(tree.label));
1283                break;
1284            }
1285            env1 = env1.next;
1286        }
1287
1288        attribStat(tree.body, env.dup(tree));
1289        result = null;
1290    }
1291
1292    public void visitSwitch(JCSwitch tree) {
1293        Type seltype = attribExpr(tree.selector, env);
1294
1295        Env<AttrContext> switchEnv =
1296            env.dup(tree, env.info.dup(env.info.scope.dup()));
1297
1298        try {
1299
1300            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1301            boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1302            if (stringSwitch && !allowStringsInSwitch) {
1303                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), Errors.StringSwitchNotSupportedInSource(sourceName));
1304            }
1305            if (!enumSwitch && !stringSwitch)
1306                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1307
1308            // Attribute all cases and
1309            // check that there are no duplicate case labels or default clauses.
1310            Set<Object> labels = new HashSet<>(); // The set of case labels.
1311            boolean hasDefault = false;      // Is there a default label?
1312            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1313                JCCase c = l.head;
1314                if (c.pat != null) {
1315                    if (enumSwitch) {
1316                        Symbol sym = enumConstant(c.pat, seltype);
1317                        if (sym == null) {
1318                            log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1319                        } else if (!labels.add(sym)) {
1320                            log.error(c.pos(), Errors.DuplicateCaseLabel);
1321                        }
1322                    } else {
1323                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1324                        if (!pattype.hasTag(ERROR)) {
1325                            if (pattype.constValue() == null) {
1326                                log.error(c.pat.pos(),
1327                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1328                            } else if (!labels.add(pattype.constValue())) {
1329                                log.error(c.pos(), Errors.DuplicateCaseLabel);
1330                            }
1331                        }
1332                    }
1333                } else if (hasDefault) {
1334                    log.error(c.pos(), Errors.DuplicateDefaultLabel);
1335                } else {
1336                    hasDefault = true;
1337                }
1338                Env<AttrContext> caseEnv =
1339                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1340                try {
1341                    attribStats(c.stats, caseEnv);
1342                } finally {
1343                    caseEnv.info.scope.leave();
1344                    addVars(c.stats, switchEnv.info.scope);
1345                }
1346            }
1347
1348            result = null;
1349        }
1350        finally {
1351            switchEnv.info.scope.leave();
1352        }
1353    }
1354    // where
1355        /** Add any variables defined in stats to the switch scope. */
1356        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1357            for (;stats.nonEmpty(); stats = stats.tail) {
1358                JCTree stat = stats.head;
1359                if (stat.hasTag(VARDEF))
1360                    switchScope.enter(((JCVariableDecl) stat).sym);
1361            }
1362        }
1363    // where
1364    /** Return the selected enumeration constant symbol, or null. */
1365    private Symbol enumConstant(JCTree tree, Type enumType) {
1366        if (tree.hasTag(IDENT)) {
1367            JCIdent ident = (JCIdent)tree;
1368            Name name = ident.name;
1369            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1370                if (sym.kind == VAR) {
1371                    Symbol s = ident.sym = sym;
1372                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1373                    ident.type = s.type;
1374                    return ((s.flags_field & Flags.ENUM) == 0)
1375                        ? null : s;
1376                }
1377            }
1378        }
1379        return null;
1380    }
1381
1382    public void visitSynchronized(JCSynchronized tree) {
1383        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1384        attribStat(tree.body, env);
1385        result = null;
1386    }
1387
1388    public void visitTry(JCTry tree) {
1389        // Create a new local environment with a local
1390        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1391        try {
1392            boolean isTryWithResource = tree.resources.nonEmpty();
1393            // Create a nested environment for attributing the try block if needed
1394            Env<AttrContext> tryEnv = isTryWithResource ?
1395                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1396                localEnv;
1397            try {
1398                // Attribute resource declarations
1399                for (JCTree resource : tree.resources) {
1400                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1401                        @Override
1402                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1403                            chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1404                        }
1405                    };
1406                    ResultInfo twrResult =
1407                        new ResultInfo(KindSelector.VAR,
1408                                       syms.autoCloseableType,
1409                                       twrContext);
1410                    if (resource.hasTag(VARDEF)) {
1411                        attribStat(resource, tryEnv);
1412                        twrResult.check(resource, resource.type);
1413
1414                        //check that resource type cannot throw InterruptedException
1415                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1416
1417                        VarSymbol var = ((JCVariableDecl) resource).sym;
1418                        var.setData(ElementKind.RESOURCE_VARIABLE);
1419                    } else {
1420                        attribTree(resource, tryEnv, twrResult);
1421                    }
1422                }
1423                // Attribute body
1424                attribStat(tree.body, tryEnv);
1425            } finally {
1426                if (isTryWithResource)
1427                    tryEnv.info.scope.leave();
1428            }
1429
1430            // Attribute catch clauses
1431            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1432                JCCatch c = l.head;
1433                Env<AttrContext> catchEnv =
1434                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1435                try {
1436                    Type ctype = attribStat(c.param, catchEnv);
1437                    if (TreeInfo.isMultiCatch(c)) {
1438                        //multi-catch parameter is implicitly marked as final
1439                        c.param.sym.flags_field |= FINAL | UNION;
1440                    }
1441                    if (c.param.sym.kind == VAR) {
1442                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1443                    }
1444                    chk.checkType(c.param.vartype.pos(),
1445                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1446                                  syms.throwableType);
1447                    attribStat(c.body, catchEnv);
1448                } finally {
1449                    catchEnv.info.scope.leave();
1450                }
1451            }
1452
1453            // Attribute finalizer
1454            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1455            result = null;
1456        }
1457        finally {
1458            localEnv.info.scope.leave();
1459        }
1460    }
1461
1462    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1463        if (!resource.isErroneous() &&
1464            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1465            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1466            Symbol close = syms.noSymbol;
1467            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1468            try {
1469                close = rs.resolveQualifiedMethod(pos,
1470                        env,
1471                        types.skipTypeVars(resource, false),
1472                        names.close,
1473                        List.nil(),
1474                        List.nil());
1475            }
1476            finally {
1477                log.popDiagnosticHandler(discardHandler);
1478            }
1479            if (close.kind == MTH &&
1480                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1481                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1482                    env.info.lint.isEnabled(LintCategory.TRY)) {
1483                log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1484            }
1485        }
1486    }
1487
1488    public void visitConditional(JCConditional tree) {
1489        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1490
1491        tree.polyKind = (!allowPoly ||
1492                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1493                isBooleanOrNumeric(env, tree)) ?
1494                PolyKind.STANDALONE : PolyKind.POLY;
1495
1496        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1497            //this means we are returning a poly conditional from void-compatible lambda expression
1498            resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1499            result = tree.type = types.createErrorType(resultInfo.pt);
1500            return;
1501        }
1502
1503        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1504                unknownExprInfo :
1505                resultInfo.dup(conditionalContext(resultInfo.checkContext));
1506
1507        Type truetype = attribTree(tree.truepart, env, condInfo);
1508        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1509
1510        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1511        if (condtype.constValue() != null &&
1512                truetype.constValue() != null &&
1513                falsetype.constValue() != null &&
1514                !owntype.hasTag(NONE)) {
1515            //constant folding
1516            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1517        }
1518        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1519    }
1520    //where
1521        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1522            switch (tree.getTag()) {
1523                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1524                              ((JCLiteral)tree).typetag == BOOLEAN ||
1525                              ((JCLiteral)tree).typetag == BOT;
1526                case LAMBDA: case REFERENCE: return false;
1527                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1528                case CONDEXPR:
1529                    JCConditional condTree = (JCConditional)tree;
1530                    return isBooleanOrNumeric(env, condTree.truepart) &&
1531                            isBooleanOrNumeric(env, condTree.falsepart);
1532                case APPLY:
1533                    JCMethodInvocation speculativeMethodTree =
1534                            (JCMethodInvocation)deferredAttr.attribSpeculative(
1535                                    tree, env, unknownExprInfo,
1536                                    argumentAttr.withLocalCacheContext());
1537                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1538                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1539                            env.enclClass.type :
1540                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1541                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1542                    return primitiveOrBoxed(owntype);
1543                case NEWCLASS:
1544                    JCExpression className =
1545                            removeClassParams.translate(((JCNewClass)tree).clazz);
1546                    JCExpression speculativeNewClassTree =
1547                            (JCExpression)deferredAttr.attribSpeculative(
1548                                    className, env, unknownTypeInfo,
1549                                    argumentAttr.withLocalCacheContext());
1550                    return primitiveOrBoxed(speculativeNewClassTree.type);
1551                default:
1552                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1553                            argumentAttr.withLocalCacheContext()).type;
1554                    return primitiveOrBoxed(speculativeType);
1555            }
1556        }
1557        //where
1558            boolean primitiveOrBoxed(Type t) {
1559                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1560            }
1561
1562            TreeTranslator removeClassParams = new TreeTranslator() {
1563                @Override
1564                public void visitTypeApply(JCTypeApply tree) {
1565                    result = translate(tree.clazz);
1566                }
1567            };
1568
1569        CheckContext conditionalContext(CheckContext checkContext) {
1570            return new Check.NestedCheckContext(checkContext) {
1571                //this will use enclosing check context to check compatibility of
1572                //subexpression against target type; if we are in a method check context,
1573                //depending on whether boxing is allowed, we could have incompatibilities
1574                @Override
1575                public void report(DiagnosticPosition pos, JCDiagnostic details) {
1576                    enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1577                }
1578            };
1579        }
1580
1581        /** Compute the type of a conditional expression, after
1582         *  checking that it exists.  See JLS 15.25. Does not take into
1583         *  account the special case where condition and both arms
1584         *  are constants.
1585         *
1586         *  @param pos      The source position to be used for error
1587         *                  diagnostics.
1588         *  @param thentype The type of the expression's then-part.
1589         *  @param elsetype The type of the expression's else-part.
1590         */
1591        Type condType(DiagnosticPosition pos,
1592                               Type thentype, Type elsetype) {
1593            // If same type, that is the result
1594            if (types.isSameType(thentype, elsetype))
1595                return thentype.baseType();
1596
1597            Type thenUnboxed = (thentype.isPrimitive())
1598                ? thentype : types.unboxedType(thentype);
1599            Type elseUnboxed = (elsetype.isPrimitive())
1600                ? elsetype : types.unboxedType(elsetype);
1601
1602            // Otherwise, if both arms can be converted to a numeric
1603            // type, return the least numeric type that fits both arms
1604            // (i.e. return larger of the two, or return int if one
1605            // arm is short, the other is char).
1606            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1607                // If one arm has an integer subrange type (i.e., byte,
1608                // short, or char), and the other is an integer constant
1609                // that fits into the subrange, return the subrange type.
1610                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1611                    elseUnboxed.hasTag(INT) &&
1612                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1613                    return thenUnboxed.baseType();
1614                }
1615                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1616                    thenUnboxed.hasTag(INT) &&
1617                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1618                    return elseUnboxed.baseType();
1619                }
1620
1621                for (TypeTag tag : primitiveTags) {
1622                    Type candidate = syms.typeOfTag[tag.ordinal()];
1623                    if (types.isSubtype(thenUnboxed, candidate) &&
1624                        types.isSubtype(elseUnboxed, candidate)) {
1625                        return candidate;
1626                    }
1627                }
1628            }
1629
1630            // Those were all the cases that could result in a primitive
1631            if (thentype.isPrimitive())
1632                thentype = types.boxedClass(thentype).type;
1633            if (elsetype.isPrimitive())
1634                elsetype = types.boxedClass(elsetype).type;
1635
1636            if (types.isSubtype(thentype, elsetype))
1637                return elsetype.baseType();
1638            if (types.isSubtype(elsetype, thentype))
1639                return thentype.baseType();
1640
1641            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1642                log.error(pos,
1643                          Errors.NeitherConditionalSubtype(thentype,
1644                                                           elsetype));
1645                return thentype.baseType();
1646            }
1647
1648            // both are known to be reference types.  The result is
1649            // lub(thentype,elsetype). This cannot fail, as it will
1650            // always be possible to infer "Object" if nothing better.
1651            return types.lub(thentype.baseType(), elsetype.baseType());
1652        }
1653
1654    final static TypeTag[] primitiveTags = new TypeTag[]{
1655        BYTE,
1656        CHAR,
1657        SHORT,
1658        INT,
1659        LONG,
1660        FLOAT,
1661        DOUBLE,
1662        BOOLEAN,
1663    };
1664
1665    public void visitIf(JCIf tree) {
1666        attribExpr(tree.cond, env, syms.booleanType);
1667        attribStat(tree.thenpart, env);
1668        if (tree.elsepart != null)
1669            attribStat(tree.elsepart, env);
1670        chk.checkEmptyIf(tree);
1671        result = null;
1672    }
1673
1674    public void visitExec(JCExpressionStatement tree) {
1675        //a fresh environment is required for 292 inference to work properly ---
1676        //see Infer.instantiatePolymorphicSignatureInstance()
1677        Env<AttrContext> localEnv = env.dup(tree);
1678        attribExpr(tree.expr, localEnv);
1679        result = null;
1680    }
1681
1682    public void visitBreak(JCBreak tree) {
1683        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1684        result = null;
1685    }
1686
1687    public void visitContinue(JCContinue tree) {
1688        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1689        result = null;
1690    }
1691    //where
1692        /** Return the target of a break or continue statement, if it exists,
1693         *  report an error if not.
1694         *  Note: The target of a labelled break or continue is the
1695         *  (non-labelled) statement tree referred to by the label,
1696         *  not the tree representing the labelled statement itself.
1697         *
1698         *  @param pos     The position to be used for error diagnostics
1699         *  @param tag     The tag of the jump statement. This is either
1700         *                 Tree.BREAK or Tree.CONTINUE.
1701         *  @param label   The label of the jump statement, or null if no
1702         *                 label is given.
1703         *  @param env     The environment current at the jump statement.
1704         */
1705        private JCTree findJumpTarget(DiagnosticPosition pos,
1706                                    JCTree.Tag tag,
1707                                    Name label,
1708                                    Env<AttrContext> env) {
1709            // Search environments outwards from the point of jump.
1710            Env<AttrContext> env1 = env;
1711            LOOP:
1712            while (env1 != null) {
1713                switch (env1.tree.getTag()) {
1714                    case LABELLED:
1715                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1716                        if (label == labelled.label) {
1717                            // If jump is a continue, check that target is a loop.
1718                            if (tag == CONTINUE) {
1719                                if (!labelled.body.hasTag(DOLOOP) &&
1720                                        !labelled.body.hasTag(WHILELOOP) &&
1721                                        !labelled.body.hasTag(FORLOOP) &&
1722                                        !labelled.body.hasTag(FOREACHLOOP))
1723                                    log.error(pos, Errors.NotLoopLabel(label));
1724                                // Found labelled statement target, now go inwards
1725                                // to next non-labelled tree.
1726                                return TreeInfo.referencedStatement(labelled);
1727                            } else {
1728                                return labelled;
1729                            }
1730                        }
1731                        break;
1732                    case DOLOOP:
1733                    case WHILELOOP:
1734                    case FORLOOP:
1735                    case FOREACHLOOP:
1736                        if (label == null) return env1.tree;
1737                        break;
1738                    case SWITCH:
1739                        if (label == null && tag == BREAK) return env1.tree;
1740                        break;
1741                    case LAMBDA:
1742                    case METHODDEF:
1743                    case CLASSDEF:
1744                        break LOOP;
1745                    default:
1746                }
1747                env1 = env1.next;
1748            }
1749            if (label != null)
1750                log.error(pos, Errors.UndefLabel(label));
1751            else if (tag == CONTINUE)
1752                log.error(pos, Errors.ContOutsideLoop);
1753            else
1754                log.error(pos, Errors.BreakOutsideSwitchLoop);
1755            return null;
1756        }
1757
1758    public void visitReturn(JCReturn tree) {
1759        // Check that there is an enclosing method which is
1760        // nested within than the enclosing class.
1761        if (env.info.returnResult == null) {
1762            log.error(tree.pos(), Errors.RetOutsideMeth);
1763        } else {
1764            // Attribute return expression, if it exists, and check that
1765            // it conforms to result type of enclosing method.
1766            if (tree.expr != null) {
1767                if (env.info.returnResult.pt.hasTag(VOID)) {
1768                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1769                              diags.fragment(Fragments.UnexpectedRetVal));
1770                }
1771                attribTree(tree.expr, env, env.info.returnResult);
1772            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1773                    !env.info.returnResult.pt.hasTag(NONE)) {
1774                env.info.returnResult.checkContext.report(tree.pos(),
1775                              diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1776            }
1777        }
1778        result = null;
1779    }
1780
1781    public void visitThrow(JCThrow tree) {
1782        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1783        if (allowPoly) {
1784            chk.checkType(tree, owntype, syms.throwableType);
1785        }
1786        result = null;
1787    }
1788
1789    public void visitAssert(JCAssert tree) {
1790        attribExpr(tree.cond, env, syms.booleanType);
1791        if (tree.detail != null) {
1792            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1793        }
1794        result = null;
1795    }
1796
1797     /** Visitor method for method invocations.
1798     *  NOTE: The method part of an application will have in its type field
1799     *        the return type of the method, not the method's type itself!
1800     */
1801    public void visitApply(JCMethodInvocation tree) {
1802        // The local environment of a method application is
1803        // a new environment nested in the current one.
1804        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1805
1806        // The types of the actual method arguments.
1807        List<Type> argtypes;
1808
1809        // The types of the actual method type arguments.
1810        List<Type> typeargtypes = null;
1811
1812        Name methName = TreeInfo.name(tree.meth);
1813
1814        boolean isConstructorCall =
1815            methName == names._this || methName == names._super;
1816
1817        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1818        if (isConstructorCall) {
1819            // We are seeing a ...this(...) or ...super(...) call.
1820            // Check that this is the first statement in a constructor.
1821            if (checkFirstConstructorStat(tree, env)) {
1822
1823                // Record the fact
1824                // that this is a constructor call (using isSelfCall).
1825                localEnv.info.isSelfCall = true;
1826
1827                // Attribute arguments, yielding list of argument types.
1828                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1829                argtypes = argtypesBuf.toList();
1830                typeargtypes = attribTypes(tree.typeargs, localEnv);
1831
1832                // Variable `site' points to the class in which the called
1833                // constructor is defined.
1834                Type site = env.enclClass.sym.type;
1835                if (methName == names._super) {
1836                    if (site == syms.objectType) {
1837                        log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1838                        site = types.createErrorType(syms.objectType);
1839                    } else {
1840                        site = types.supertype(site);
1841                    }
1842                }
1843
1844                if (site.hasTag(CLASS)) {
1845                    Type encl = site.getEnclosingType();
1846                    while (encl != null && encl.hasTag(TYPEVAR))
1847                        encl = encl.getUpperBound();
1848                    if (encl.hasTag(CLASS)) {
1849                        // we are calling a nested class
1850
1851                        if (tree.meth.hasTag(SELECT)) {
1852                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1853
1854                            // We are seeing a prefixed call, of the form
1855                            //     <expr>.super(...).
1856                            // Check that the prefix expression conforms
1857                            // to the outer instance type of the class.
1858                            chk.checkRefType(qualifier.pos(),
1859                                             attribExpr(qualifier, localEnv,
1860                                                        encl));
1861                        } else if (methName == names._super) {
1862                            // qualifier omitted; check for existence
1863                            // of an appropriate implicit qualifier.
1864                            rs.resolveImplicitThis(tree.meth.pos(),
1865                                                   localEnv, site, true);
1866                        }
1867                    } else if (tree.meth.hasTag(SELECT)) {
1868                        log.error(tree.meth.pos(),
1869                                  Errors.IllegalQualNotIcls(site.tsym));
1870                    }
1871
1872                    // if we're calling a java.lang.Enum constructor,
1873                    // prefix the implicit String and int parameters
1874                    if (site.tsym == syms.enumSym)
1875                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1876
1877                    // Resolve the called constructor under the assumption
1878                    // that we are referring to a superclass instance of the
1879                    // current instance (JLS ???).
1880                    boolean selectSuperPrev = localEnv.info.selectSuper;
1881                    localEnv.info.selectSuper = true;
1882                    localEnv.info.pendingResolutionPhase = null;
1883                    Symbol sym = rs.resolveConstructor(
1884                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1885                    localEnv.info.selectSuper = selectSuperPrev;
1886
1887                    // Set method symbol to resolved constructor...
1888                    TreeInfo.setSymbol(tree.meth, sym);
1889
1890                    // ...and check that it is legal in the current context.
1891                    // (this will also set the tree's type)
1892                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1893                    checkId(tree.meth, site, sym, localEnv,
1894                            new ResultInfo(kind, mpt));
1895                }
1896                // Otherwise, `site' is an error type and we do nothing
1897            }
1898            result = tree.type = syms.voidType;
1899        } else {
1900            // Otherwise, we are seeing a regular method call.
1901            // Attribute the arguments, yielding list of argument types, ...
1902            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1903            argtypes = argtypesBuf.toList();
1904            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1905
1906            // ... and attribute the method using as a prototype a methodtype
1907            // whose formal argument types is exactly the list of actual
1908            // arguments (this will also set the method symbol).
1909            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1910            localEnv.info.pendingResolutionPhase = null;
1911            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1912
1913            // Compute the result type.
1914            Type restype = mtype.getReturnType();
1915            if (restype.hasTag(WILDCARD))
1916                throw new AssertionError(mtype);
1917
1918            Type qualifier = (tree.meth.hasTag(SELECT))
1919                    ? ((JCFieldAccess) tree.meth).selected.type
1920                    : env.enclClass.sym.type;
1921            Symbol msym = TreeInfo.symbol(tree.meth);
1922            restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
1923
1924            chk.checkRefTypes(tree.typeargs, typeargtypes);
1925
1926            // Check that value of resulting type is admissible in the
1927            // current context.  Also, capture the return type
1928            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1929            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1930        }
1931        chk.validate(tree.typeargs, localEnv);
1932    }
1933    //where
1934        Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1935            if (msym != null &&
1936                    msym.owner == syms.objectType.tsym &&
1937                    methodName == names.getClass &&
1938                    argtypes.isEmpty()) {
1939                // as a special case, x.getClass() has type Class<? extends |X|>
1940                return new ClassType(restype.getEnclosingType(),
1941                        List.of(new WildcardType(types.erasure(qualifierType),
1942                                BoundKind.EXTENDS,
1943                                syms.boundClass)),
1944                        restype.tsym,
1945                        restype.getMetadata());
1946            } else if (msym != null &&
1947                    msym.owner == syms.arrayClass &&
1948                    methodName == names.clone &&
1949                    types.isArray(qualifierType)) {
1950                // as a special case, array.clone() has a result that is
1951                // the same as static type of the array being cloned
1952                return qualifierType;
1953            } else {
1954                return restype;
1955            }
1956        }
1957
1958        /** Check that given application node appears as first statement
1959         *  in a constructor call.
1960         *  @param tree   The application node
1961         *  @param env    The environment current at the application.
1962         */
1963        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1964            JCMethodDecl enclMethod = env.enclMethod;
1965            if (enclMethod != null && enclMethod.name == names.init) {
1966                JCBlock body = enclMethod.body;
1967                if (body.stats.head.hasTag(EXEC) &&
1968                    ((JCExpressionStatement) body.stats.head).expr == tree)
1969                    return true;
1970            }
1971            log.error(tree.pos(),
1972                      Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
1973            return false;
1974        }
1975
1976        /** Obtain a method type with given argument types.
1977         */
1978        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1979            MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
1980            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1981        }
1982
1983    public void visitNewClass(final JCNewClass tree) {
1984        Type owntype = types.createErrorType(tree.type);
1985
1986        // The local environment of a class creation is
1987        // a new environment nested in the current one.
1988        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1989
1990        // The anonymous inner class definition of the new expression,
1991        // if one is defined by it.
1992        JCClassDecl cdef = tree.def;
1993
1994        // If enclosing class is given, attribute it, and
1995        // complete class name to be fully qualified
1996        JCExpression clazz = tree.clazz; // Class field following new
1997        JCExpression clazzid;            // Identifier in class field
1998        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1999        annoclazzid = null;
2000
2001        if (clazz.hasTag(TYPEAPPLY)) {
2002            clazzid = ((JCTypeApply) clazz).clazz;
2003            if (clazzid.hasTag(ANNOTATED_TYPE)) {
2004                annoclazzid = (JCAnnotatedType) clazzid;
2005                clazzid = annoclazzid.underlyingType;
2006            }
2007        } else {
2008            if (clazz.hasTag(ANNOTATED_TYPE)) {
2009                annoclazzid = (JCAnnotatedType) clazz;
2010                clazzid = annoclazzid.underlyingType;
2011            } else {
2012                clazzid = clazz;
2013            }
2014        }
2015
2016        JCExpression clazzid1 = clazzid; // The same in fully qualified form
2017
2018        if (tree.encl != null) {
2019            // We are seeing a qualified new, of the form
2020            //    <expr>.new C <...> (...) ...
2021            // In this case, we let clazz stand for the name of the
2022            // allocated class C prefixed with the type of the qualifier
2023            // expression, so that we can
2024            // resolve it with standard techniques later. I.e., if
2025            // <expr> has type T, then <expr>.new C <...> (...)
2026            // yields a clazz T.C.
2027            Type encltype = chk.checkRefType(tree.encl.pos(),
2028                                             attribExpr(tree.encl, env));
2029            // TODO 308: in <expr>.new C, do we also want to add the type annotations
2030            // from expr to the combined type, or not? Yes, do this.
2031            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2032                                                 ((JCIdent) clazzid).name);
2033
2034            EndPosTable endPosTable = this.env.toplevel.endPositions;
2035            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2036            if (clazz.hasTag(ANNOTATED_TYPE)) {
2037                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2038                List<JCAnnotation> annos = annoType.annotations;
2039
2040                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2041                    clazzid1 = make.at(tree.pos).
2042                        TypeApply(clazzid1,
2043                                  ((JCTypeApply) clazz).arguments);
2044                }
2045
2046                clazzid1 = make.at(tree.pos).
2047                    AnnotatedType(annos, clazzid1);
2048            } else if (clazz.hasTag(TYPEAPPLY)) {
2049                clazzid1 = make.at(tree.pos).
2050                    TypeApply(clazzid1,
2051                              ((JCTypeApply) clazz).arguments);
2052            }
2053
2054            clazz = clazzid1;
2055        }
2056
2057        // Attribute clazz expression and store
2058        // symbol + type back into the attributed tree.
2059        Type clazztype;
2060
2061        try {
2062            env.info.isNewClass = true;
2063            clazztype = TreeInfo.isEnumInit(env.tree) ?
2064                attribIdentAsEnumType(env, (JCIdent)clazz) :
2065                attribType(clazz, env);
2066        } finally {
2067            env.info.isNewClass = false;
2068        }
2069
2070        clazztype = chk.checkDiamond(tree, clazztype);
2071        chk.validate(clazz, localEnv);
2072        if (tree.encl != null) {
2073            // We have to work in this case to store
2074            // symbol + type back into the attributed tree.
2075            tree.clazz.type = clazztype;
2076            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2077            clazzid.type = ((JCIdent) clazzid).sym.type;
2078            if (annoclazzid != null) {
2079                annoclazzid.type = clazzid.type;
2080            }
2081            if (!clazztype.isErroneous()) {
2082                if (cdef != null && clazztype.tsym.isInterface()) {
2083                    log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2084                } else if (clazztype.tsym.isStatic()) {
2085                    log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2086                }
2087            }
2088        } else if (!clazztype.tsym.isInterface() &&
2089                   clazztype.getEnclosingType().hasTag(CLASS)) {
2090            // Check for the existence of an apropos outer instance
2091            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2092        }
2093
2094        // Attribute constructor arguments.
2095        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2096        final KindSelector pkind =
2097            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2098        List<Type> argtypes = argtypesBuf.toList();
2099        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2100
2101        // If we have made no mistakes in the class type...
2102        if (clazztype.hasTag(CLASS)) {
2103            // Enums may not be instantiated except implicitly
2104            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2105                (!env.tree.hasTag(VARDEF) ||
2106                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2107                 ((JCVariableDecl) env.tree).init != tree))
2108                log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2109
2110            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2111                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2112            boolean skipNonDiamondPath = false;
2113            // Check that class is not abstract
2114            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2115                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2116                log.error(tree.pos(),
2117                          Errors.AbstractCantBeInstantiated(clazztype.tsym));
2118                skipNonDiamondPath = true;
2119            } else if (cdef != null && clazztype.tsym.isInterface()) {
2120                // Check that no constructor arguments are given to
2121                // anonymous classes implementing an interface
2122                if (!argtypes.isEmpty())
2123                    log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2124
2125                if (!typeargtypes.isEmpty())
2126                    log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2127
2128                // Error recovery: pretend no arguments were supplied.
2129                argtypes = List.nil();
2130                typeargtypes = List.nil();
2131                skipNonDiamondPath = true;
2132            }
2133            if (TreeInfo.isDiamond(tree)) {
2134                ClassType site = new ClassType(clazztype.getEnclosingType(),
2135                            clazztype.tsym.type.getTypeArguments(),
2136                                               clazztype.tsym,
2137                                               clazztype.getMetadata());
2138
2139                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2140                diamondEnv.info.selectSuper = cdef != null;
2141                diamondEnv.info.pendingResolutionPhase = null;
2142
2143                //if the type of the instance creation expression is a class type
2144                //apply method resolution inference (JLS 15.12.2.7). The return type
2145                //of the resolved constructor will be a partially instantiated type
2146                Symbol constructor = rs.resolveDiamond(tree.pos(),
2147                            diamondEnv,
2148                            site,
2149                            argtypes,
2150                            typeargtypes);
2151                tree.constructor = constructor.baseSymbol();
2152
2153                final TypeSymbol csym = clazztype.tsym;
2154                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2155                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2156                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2157                constructorType = checkId(tree, site,
2158                        constructor,
2159                        diamondEnv,
2160                        diamondResult);
2161
2162                tree.clazz.type = types.createErrorType(clazztype);
2163                if (!constructorType.isErroneous()) {
2164                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2165                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2166                }
2167                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2168            }
2169
2170            // Resolve the called constructor under the assumption
2171            // that we are referring to a superclass instance of the
2172            // current instance (JLS ???).
2173            else if (!skipNonDiamondPath) {
2174                //the following code alters some of the fields in the current
2175                //AttrContext - hence, the current context must be dup'ed in
2176                //order to avoid downstream failures
2177                Env<AttrContext> rsEnv = localEnv.dup(tree);
2178                rsEnv.info.selectSuper = cdef != null;
2179                rsEnv.info.pendingResolutionPhase = null;
2180                tree.constructor = rs.resolveConstructor(
2181                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2182                if (cdef == null) { //do not check twice!
2183                    tree.constructorType = checkId(tree,
2184                            clazztype,
2185                            tree.constructor,
2186                            rsEnv,
2187                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2188                    if (rsEnv.info.lastResolveVarargs())
2189                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2190                }
2191            }
2192
2193            if (cdef != null) {
2194                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2195                return;
2196            }
2197
2198            if (tree.constructor != null && tree.constructor.kind == MTH)
2199                owntype = clazztype;
2200        }
2201        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2202        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2203        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2204            //we need to wait for inference to finish and then replace inference vars in the constructor type
2205            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2206                    instantiatedContext -> {
2207                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2208                    });
2209        }
2210        chk.validate(tree.typeargs, localEnv);
2211    }
2212
2213        // where
2214        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2215                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2216                                                   List<Type> argtypes, List<Type> typeargtypes,
2217                                                   KindSelector pkind) {
2218            // We are seeing an anonymous class instance creation.
2219            // In this case, the class instance creation
2220            // expression
2221            //
2222            //    E.new <typeargs1>C<typargs2>(args) { ... }
2223            //
2224            // is represented internally as
2225            //
2226            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2227            //
2228            // This expression is then *transformed* as follows:
2229            //
2230            // (1) add an extends or implements clause
2231            // (2) add a constructor.
2232            //
2233            // For instance, if C is a class, and ET is the type of E,
2234            // the expression
2235            //
2236            //    E.new <typeargs1>C<typargs2>(args) { ... }
2237            //
2238            // is translated to (where X is a fresh name and typarams is the
2239            // parameter list of the super constructor):
2240            //
2241            //   new <typeargs1>X(<*nullchk*>E, args) where
2242            //     X extends C<typargs2> {
2243            //       <typarams> X(ET e, args) {
2244            //         e.<typeargs1>super(args)
2245            //       }
2246            //       ...
2247            //     }
2248            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2249            final boolean isDiamond = TreeInfo.isDiamond(tree);
2250            if (isDiamond
2251                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2252                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2253                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2254                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2255                        instantiatedContext -> {
2256                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2257                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2258                            ResultInfo prevResult = this.resultInfo;
2259                            try {
2260                                this.resultInfo = resultInfoForClassDefinition;
2261                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2262                                                            localEnv, argtypes, typeargtypes, pkind);
2263                            } finally {
2264                                this.resultInfo = prevResult;
2265                            }
2266                        });
2267            } else {
2268                if (isDiamond && clazztype.hasTag(CLASS)) {
2269                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2270                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2271                        // One or more types inferred in the previous steps is non-denotable.
2272                        Fragment fragment = Diamond(clazztype.tsym);
2273                        log.error(tree.clazz.pos(),
2274                                Errors.CantApplyDiamond1(
2275                                        fragment,
2276                                        invalidDiamondArgs.size() > 1 ?
2277                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2278                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2279                    }
2280                    // For <>(){}, inferred types must also be accessible.
2281                    for (Type t : clazztype.getTypeArguments()) {
2282                        rs.checkAccessibleType(env, t);
2283                    }
2284                }
2285
2286                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2287                // false for isInterface call even when the original type is an interface.
2288                boolean implementing = clazztype.tsym.isInterface() ||
2289                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2290
2291                if (implementing) {
2292                    cdef.implementing = List.of(clazz);
2293                } else {
2294                    cdef.extending = clazz;
2295                }
2296
2297                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2298                    isSerializable(clazztype)) {
2299                    localEnv.info.isSerializable = true;
2300                }
2301
2302                attribStat(cdef, localEnv);
2303
2304                List<Type> finalargtypes;
2305                // If an outer instance is given,
2306                // prefix it to the constructor arguments
2307                // and delete it from the new expression
2308                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2309                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2310                    finalargtypes = argtypes.prepend(tree.encl.type);
2311                    tree.encl = null;
2312                } else {
2313                    finalargtypes = argtypes;
2314                }
2315
2316                // Reassign clazztype and recompute constructor. As this necessarily involves
2317                // another attribution pass for deferred types in the case of <>, replicate
2318                // them. Original arguments have right decorations already.
2319                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2320                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2321                }
2322
2323                clazztype = cdef.sym.type;
2324                Symbol sym = tree.constructor = rs.resolveConstructor(
2325                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2326                Assert.check(!sym.kind.isResolutionError());
2327                tree.constructor = sym;
2328                tree.constructorType = checkId(tree,
2329                        clazztype,
2330                        tree.constructor,
2331                        localEnv,
2332                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2333            }
2334            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2335                                clazztype : types.createErrorType(tree.type);
2336            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2337            chk.validate(tree.typeargs, localEnv);
2338        }
2339
2340        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2341            return new Check.NestedCheckContext(checkContext) {
2342                @Override
2343                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2344                    enclosingContext.report(clazz.clazz,
2345                            diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2346                }
2347            };
2348        }
2349
2350    /** Make an attributed null check tree.
2351     */
2352    public JCExpression makeNullCheck(JCExpression arg) {
2353        // optimization: new Outer() can never be null; skip null check
2354        if (arg.getTag() == NEWCLASS)
2355            return arg;
2356        // optimization: X.this is never null; skip null check
2357        Name name = TreeInfo.name(arg);
2358        if (name == names._this || name == names._super) return arg;
2359
2360        JCTree.Tag optag = NULLCHK;
2361        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2362        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2363        tree.type = arg.type;
2364        return tree;
2365    }
2366
2367    public void visitNewArray(JCNewArray tree) {
2368        Type owntype = types.createErrorType(tree.type);
2369        Env<AttrContext> localEnv = env.dup(tree);
2370        Type elemtype;
2371        if (tree.elemtype != null) {
2372            elemtype = attribType(tree.elemtype, localEnv);
2373            chk.validate(tree.elemtype, localEnv);
2374            owntype = elemtype;
2375            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2376                attribExpr(l.head, localEnv, syms.intType);
2377                owntype = new ArrayType(owntype, syms.arrayClass);
2378            }
2379        } else {
2380            // we are seeing an untyped aggregate { ... }
2381            // this is allowed only if the prototype is an array
2382            if (pt().hasTag(ARRAY)) {
2383                elemtype = types.elemtype(pt());
2384            } else {
2385                if (!pt().hasTag(ERROR)) {
2386                    log.error(tree.pos(),
2387                              Errors.IllegalInitializerForType(pt()));
2388                }
2389                elemtype = types.createErrorType(pt());
2390            }
2391        }
2392        if (tree.elems != null) {
2393            attribExprs(tree.elems, localEnv, elemtype);
2394            owntype = new ArrayType(elemtype, syms.arrayClass);
2395        }
2396        if (!types.isReifiable(elemtype))
2397            log.error(tree.pos(), Errors.GenericArrayCreation);
2398        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2399    }
2400
2401    /*
2402     * A lambda expression can only be attributed when a target-type is available.
2403     * In addition, if the target-type is that of a functional interface whose
2404     * descriptor contains inference variables in argument position the lambda expression
2405     * is 'stuck' (see DeferredAttr).
2406     */
2407    @Override
2408    public void visitLambda(final JCLambda that) {
2409        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2410            if (pt().hasTag(NONE)) {
2411                //lambda only allowed in assignment or method invocation/cast context
2412                log.error(that.pos(), Errors.UnexpectedLambda);
2413            }
2414            result = that.type = types.createErrorType(pt());
2415            return;
2416        }
2417        //create an environment for attribution of the lambda expression
2418        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2419        boolean needsRecovery =
2420                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2421        try {
2422            if (needsRecovery && isSerializable(pt())) {
2423                localEnv.info.isSerializable = true;
2424                localEnv.info.isLambda = true;
2425            }
2426            List<Type> explicitParamTypes = null;
2427            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2428                //attribute lambda parameters
2429                attribStats(that.params, localEnv);
2430                explicitParamTypes = TreeInfo.types(that.params);
2431            }
2432
2433            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2434            Type currentTarget = targetInfo.target;
2435            Type lambdaType = targetInfo.descriptor;
2436
2437            if (currentTarget.isErroneous()) {
2438                result = that.type = currentTarget;
2439                return;
2440            }
2441
2442            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2443
2444            if (lambdaType.hasTag(FORALL)) {
2445                //lambda expression target desc cannot be a generic method
2446                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2447                                                                    kindName(currentTarget.tsym),
2448                                                                    currentTarget.tsym);
2449                resultInfo.checkContext.report(that, diags.fragment(msg));
2450                result = that.type = types.createErrorType(pt());
2451                return;
2452            }
2453
2454            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2455                //add param type info in the AST
2456                List<Type> actuals = lambdaType.getParameterTypes();
2457                List<JCVariableDecl> params = that.params;
2458
2459                boolean arityMismatch = false;
2460
2461                while (params.nonEmpty()) {
2462                    if (actuals.isEmpty()) {
2463                        //not enough actuals to perform lambda parameter inference
2464                        arityMismatch = true;
2465                    }
2466                    //reset previously set info
2467                    Type argType = arityMismatch ?
2468                            syms.errType :
2469                            actuals.head;
2470                    params.head.vartype = make.at(params.head).Type(argType);
2471                    params.head.sym = null;
2472                    actuals = actuals.isEmpty() ?
2473                            actuals :
2474                            actuals.tail;
2475                    params = params.tail;
2476                }
2477
2478                //attribute lambda parameters
2479                attribStats(that.params, localEnv);
2480
2481                if (arityMismatch) {
2482                    resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2483                        result = that.type = types.createErrorType(currentTarget);
2484                        return;
2485                }
2486            }
2487
2488            //from this point on, no recovery is needed; if we are in assignment context
2489            //we will be able to attribute the whole lambda body, regardless of errors;
2490            //if we are in a 'check' method context, and the lambda is not compatible
2491            //with the target-type, it will be recovered anyway in Attr.checkId
2492            needsRecovery = false;
2493
2494            ResultInfo bodyResultInfo = localEnv.info.returnResult =
2495                    lambdaBodyResult(that, lambdaType, resultInfo);
2496
2497            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2498                attribTree(that.getBody(), localEnv, bodyResultInfo);
2499            } else {
2500                JCBlock body = (JCBlock)that.body;
2501                attribStats(body.stats, localEnv);
2502            }
2503
2504            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2505
2506            boolean isSpeculativeRound =
2507                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2508
2509            preFlow(that);
2510            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2511
2512            that.type = currentTarget; //avoids recovery at this stage
2513            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2514
2515            if (!isSpeculativeRound) {
2516                //add thrown types as bounds to the thrown types free variables if needed:
2517                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2518                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2519                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2520
2521                    chk.unhandled(inferredThrownTypes, thrownTypes);
2522
2523                    //18.2.5: "In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej"
2524                    thrownTypes.stream()
2525                            .filter(t -> t.hasTag(UNDETVAR))
2526                            .forEach(t -> ((UndetVar)t).setThrow());
2527                }
2528
2529                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2530            }
2531            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2532        } catch (Types.FunctionDescriptorLookupError ex) {
2533            JCDiagnostic cause = ex.getDiagnostic();
2534            resultInfo.checkContext.report(that, cause);
2535            result = that.type = types.createErrorType(pt());
2536            return;
2537        } catch (Throwable t) {
2538            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2539            //as that would likely cause the same exception again.
2540            needsRecovery = false;
2541            throw t;
2542        } finally {
2543            localEnv.info.scope.leave();
2544            if (needsRecovery) {
2545                attribTree(that, env, recoveryInfo);
2546            }
2547        }
2548    }
2549    //where
2550        class TargetInfo {
2551            Type target;
2552            Type descriptor;
2553
2554            public TargetInfo(Type target, Type descriptor) {
2555                this.target = target;
2556                this.descriptor = descriptor;
2557            }
2558        }
2559
2560        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2561            Type lambdaType;
2562            Type currentTarget = resultInfo.pt;
2563            if (resultInfo.pt != Type.recoveryType) {
2564                /* We need to adjust the target. If the target is an
2565                 * intersection type, for example: SAM & I1 & I2 ...
2566                 * the target will be updated to SAM
2567                 */
2568                currentTarget = targetChecker.visit(currentTarget, that);
2569                if (explicitParamTypes != null) {
2570                    currentTarget = infer.instantiateFunctionalInterface(that,
2571                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2572                }
2573                currentTarget = types.removeWildcards(currentTarget);
2574                lambdaType = types.findDescriptorType(currentTarget);
2575            } else {
2576                currentTarget = Type.recoveryType;
2577                lambdaType = fallbackDescriptorType(that);
2578            }
2579            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2580                //lambda expression target desc cannot be a generic method
2581                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2582                                                                    kindName(currentTarget.tsym),
2583                                                                    currentTarget.tsym);
2584                resultInfo.checkContext.report(that, diags.fragment(msg));
2585                currentTarget = types.createErrorType(pt());
2586            }
2587            return new TargetInfo(currentTarget, lambdaType);
2588        }
2589
2590        void preFlow(JCLambda tree) {
2591            new PostAttrAnalyzer() {
2592                @Override
2593                public void scan(JCTree tree) {
2594                    if (tree == null ||
2595                            (tree.type != null &&
2596                            tree.type == Type.stuckType)) {
2597                        //don't touch stuck expressions!
2598                        return;
2599                    }
2600                    super.scan(tree);
2601                }
2602            }.scan(tree);
2603        }
2604
2605        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2606
2607            @Override
2608            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2609                return t.isIntersection() ?
2610                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2611            }
2612
2613            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2614                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2615                Type target = null;
2616                for (Type bound : ict.getExplicitComponents()) {
2617                    TypeSymbol boundSym = bound.tsym;
2618                    if (types.isFunctionalInterface(boundSym) &&
2619                            types.findDescriptorSymbol(boundSym) == desc) {
2620                        target = bound;
2621                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2622                        //bound must be an interface
2623                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2624                    }
2625                }
2626                return target != null ?
2627                        target :
2628                        ict.getExplicitComponents().head; //error recovery
2629            }
2630
2631            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2632                ListBuffer<Type> targs = new ListBuffer<>();
2633                ListBuffer<Type> supertypes = new ListBuffer<>();
2634                for (Type i : ict.interfaces_field) {
2635                    if (i.isParameterized()) {
2636                        targs.appendList(i.tsym.type.allparams());
2637                    }
2638                    supertypes.append(i.tsym.type);
2639                }
2640                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2641                notionalIntf.allparams_field = targs.toList();
2642                notionalIntf.tsym.flags_field |= INTERFACE;
2643                return notionalIntf.tsym;
2644            }
2645
2646            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2647                resultInfo.checkContext.report(pos,
2648                                               diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
2649            }
2650        };
2651
2652        private Type fallbackDescriptorType(JCExpression tree) {
2653            switch (tree.getTag()) {
2654                case LAMBDA:
2655                    JCLambda lambda = (JCLambda)tree;
2656                    List<Type> argtypes = List.nil();
2657                    for (JCVariableDecl param : lambda.params) {
2658                        argtypes = param.vartype != null ?
2659                                argtypes.append(param.vartype.type) :
2660                                argtypes.append(syms.errType);
2661                    }
2662                    return new MethodType(argtypes, Type.recoveryType,
2663                            List.of(syms.throwableType), syms.methodClass);
2664                case REFERENCE:
2665                    return new MethodType(List.nil(), Type.recoveryType,
2666                            List.of(syms.throwableType), syms.methodClass);
2667                default:
2668                    Assert.error("Cannot get here!");
2669            }
2670            return null;
2671        }
2672
2673        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2674                final InferenceContext inferenceContext, final Type... ts) {
2675            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2676        }
2677
2678        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2679                final InferenceContext inferenceContext, final List<Type> ts) {
2680            if (inferenceContext.free(ts)) {
2681                inferenceContext.addFreeTypeListener(ts,
2682                        solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2683            } else {
2684                for (Type t : ts) {
2685                    rs.checkAccessibleType(env, t);
2686                }
2687            }
2688        }
2689
2690        /**
2691         * Lambda/method reference have a special check context that ensures
2692         * that i.e. a lambda return type is compatible with the expected
2693         * type according to both the inherited context and the assignment
2694         * context.
2695         */
2696        class FunctionalReturnContext extends Check.NestedCheckContext {
2697
2698            FunctionalReturnContext(CheckContext enclosingContext) {
2699                super(enclosingContext);
2700            }
2701
2702            @Override
2703            public boolean compatible(Type found, Type req, Warner warn) {
2704                //return type must be compatible in both current context and assignment context
2705                return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2706            }
2707
2708            @Override
2709            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2710                enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2711            }
2712        }
2713
2714        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2715
2716            JCExpression expr;
2717            boolean expStmtExpected;
2718
2719            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2720                super(enclosingContext);
2721                this.expr = expr;
2722            }
2723
2724            @Override
2725            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2726                if (expStmtExpected) {
2727                    enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2728                } else {
2729                    super.report(pos, details);
2730                }
2731            }
2732
2733            @Override
2734            public boolean compatible(Type found, Type req, Warner warn) {
2735                //a void return is compatible with an expression statement lambda
2736                if (req.hasTag(VOID)) {
2737                    expStmtExpected = true;
2738                    return TreeInfo.isExpressionStatement(expr);
2739                } else {
2740                    return super.compatible(found, req, warn);
2741                }
2742            }
2743        }
2744
2745        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2746            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2747                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2748                    new FunctionalReturnContext(resultInfo.checkContext);
2749
2750            return descriptor.getReturnType() == Type.recoveryType ?
2751                    recoveryInfo :
2752                    new ResultInfo(KindSelector.VAL,
2753                            descriptor.getReturnType(), funcContext);
2754        }
2755
2756        /**
2757        * Lambda compatibility. Check that given return types, thrown types, parameter types
2758        * are compatible with the expected functional interface descriptor. This means that:
2759        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2760        * types must be compatible with the return type of the expected descriptor.
2761        */
2762        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2763            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2764
2765            //return values have already been checked - but if lambda has no return
2766            //values, we must ensure that void/value compatibility is correct;
2767            //this amounts at checking that, if a lambda body can complete normally,
2768            //the descriptor's return type must be void
2769            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2770                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2771                Fragment msg =
2772                        Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2773                checkContext.report(tree,
2774                                    diags.fragment(msg));
2775            }
2776
2777            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2778            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2779                checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2780            }
2781        }
2782
2783        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2784         * static field and that lambda has type annotations, these annotations will
2785         * also be stored at these fake clinit methods.
2786         *
2787         * LambdaToMethod also use fake clinit methods so they can be reused.
2788         * Also as LTM is a phase subsequent to attribution, the methods from
2789         * clinits can be safely removed by LTM to save memory.
2790         */
2791        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2792
2793        public MethodSymbol removeClinit(ClassSymbol sym) {
2794            return clinits.remove(sym);
2795        }
2796
2797        /* This method returns an environment to be used to attribute a lambda
2798         * expression.
2799         *
2800         * The owner of this environment is a method symbol. If the current owner
2801         * is not a method, for example if the lambda is used to initialize
2802         * a field, then if the field is:
2803         *
2804         * - an instance field, we use the first constructor.
2805         * - a static field, we create a fake clinit method.
2806         */
2807        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2808            Env<AttrContext> lambdaEnv;
2809            Symbol owner = env.info.scope.owner;
2810            if (owner.kind == VAR && owner.owner.kind == TYP) {
2811                //field initializer
2812                ClassSymbol enclClass = owner.enclClass();
2813                Symbol newScopeOwner = env.info.scope.owner;
2814                /* if the field isn't static, then we can get the first constructor
2815                 * and use it as the owner of the environment. This is what
2816                 * LTM code is doing to look for type annotations so we are fine.
2817                 */
2818                if ((owner.flags() & STATIC) == 0) {
2819                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2820                        newScopeOwner = s;
2821                        break;
2822                    }
2823                } else {
2824                    /* if the field is static then we need to create a fake clinit
2825                     * method, this method can later be reused by LTM.
2826                     */
2827                    MethodSymbol clinit = clinits.get(enclClass);
2828                    if (clinit == null) {
2829                        Type clinitType = new MethodType(List.nil(),
2830                                syms.voidType, List.nil(), syms.methodClass);
2831                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2832                                names.clinit, clinitType, enclClass);
2833                        clinit.params = List.nil();
2834                        clinits.put(enclClass, clinit);
2835                    }
2836                    newScopeOwner = clinit;
2837                }
2838                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2839            } else {
2840                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2841            }
2842            return lambdaEnv;
2843        }
2844
2845    @Override
2846    public void visitReference(final JCMemberReference that) {
2847        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2848            if (pt().hasTag(NONE)) {
2849                //method reference only allowed in assignment or method invocation/cast context
2850                log.error(that.pos(), Errors.UnexpectedMref);
2851            }
2852            result = that.type = types.createErrorType(pt());
2853            return;
2854        }
2855        final Env<AttrContext> localEnv = env.dup(that);
2856        try {
2857            //attribute member reference qualifier - if this is a constructor
2858            //reference, the expected kind must be a type
2859            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2860
2861            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2862                exprType = chk.checkConstructorRefType(that.expr, exprType);
2863                if (!exprType.isErroneous() &&
2864                    exprType.isRaw() &&
2865                    that.typeargs != null) {
2866                    log.error(that.expr.pos(),
2867                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
2868                                                 Fragments.MrefInferAndExplicitParams));
2869                    exprType = types.createErrorType(exprType);
2870                }
2871            }
2872
2873            if (exprType.isErroneous()) {
2874                //if the qualifier expression contains problems,
2875                //give up attribution of method reference
2876                result = that.type = exprType;
2877                return;
2878            }
2879
2880            if (TreeInfo.isStaticSelector(that.expr, names)) {
2881                //if the qualifier is a type, validate it; raw warning check is
2882                //omitted as we don't know at this stage as to whether this is a
2883                //raw selector (because of inference)
2884                chk.validate(that.expr, env, false);
2885            } else {
2886                Symbol lhsSym = TreeInfo.symbol(that.expr);
2887                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2888            }
2889            //attrib type-arguments
2890            List<Type> typeargtypes = List.nil();
2891            if (that.typeargs != null) {
2892                typeargtypes = attribTypes(that.typeargs, localEnv);
2893            }
2894
2895            boolean isTargetSerializable =
2896                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2897                    isSerializable(pt());
2898            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2899            Type currentTarget = targetInfo.target;
2900            Type desc = targetInfo.descriptor;
2901
2902            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2903            List<Type> argtypes = desc.getParameterTypes();
2904            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2905
2906            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2907                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2908            }
2909
2910            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2911            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2912            try {
2913                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2914                        that.name, argtypes, typeargtypes, referenceCheck,
2915                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2916            } finally {
2917                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2918            }
2919
2920            Symbol refSym = refResult.fst;
2921            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2922
2923            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2924             *  JDK-8075541
2925             */
2926            if (refSym.kind != MTH) {
2927                boolean targetError;
2928                switch (refSym.kind) {
2929                    case ABSENT_MTH:
2930                    case MISSING_ENCL:
2931                        targetError = false;
2932                        break;
2933                    case WRONG_MTH:
2934                    case WRONG_MTHS:
2935                    case AMBIGUOUS:
2936                    case HIDDEN:
2937                    case STATICERR:
2938                        targetError = true;
2939                        break;
2940                    default:
2941                        Assert.error("unexpected result kind " + refSym.kind);
2942                        targetError = false;
2943                }
2944
2945                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2946                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2947
2948                JCDiagnostic.DiagnosticType diagKind = targetError ?
2949                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2950
2951                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2952                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2953
2954                if (targetError && currentTarget == Type.recoveryType) {
2955                    //a target error doesn't make sense during recovery stage
2956                    //as we don't know what actual parameter types are
2957                    result = that.type = currentTarget;
2958                    return;
2959                } else {
2960                    if (targetError) {
2961                        resultInfo.checkContext.report(that, diag);
2962                    } else {
2963                        log.report(diag);
2964                    }
2965                    result = that.type = types.createErrorType(currentTarget);
2966                    return;
2967                }
2968            }
2969
2970            that.sym = refSym.baseSymbol();
2971            that.kind = lookupHelper.referenceKind(that.sym);
2972            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2973
2974            if (desc.getReturnType() == Type.recoveryType) {
2975                // stop here
2976                result = that.type = currentTarget;
2977                return;
2978            }
2979
2980            if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2981                Type enclosingType = exprType.getEnclosingType();
2982                if (enclosingType != null && enclosingType.hasTag(CLASS)) {
2983                    // Check for the existence of an apropriate outer instance
2984                    rs.resolveImplicitThis(that.pos(), env, exprType);
2985                }
2986            }
2987
2988            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2989
2990                if (that.getMode() == ReferenceMode.INVOKE &&
2991                        TreeInfo.isStaticSelector(that.expr, names) &&
2992                        that.kind.isUnbound() &&
2993                        !desc.getParameterTypes().head.isParameterized()) {
2994                    chk.checkRaw(that.expr, localEnv);
2995                }
2996
2997                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2998                        exprType.getTypeArguments().nonEmpty()) {
2999                    //static ref with class type-args
3000                    log.error(that.expr.pos(),
3001                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
3002                                                 Fragments.StaticMrefWithTargs));
3003                    result = that.type = types.createErrorType(currentTarget);
3004                    return;
3005                }
3006
3007                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3008                    // Check that super-qualified symbols are not abstract (JLS)
3009                    rs.checkNonAbstract(that.pos(), that.sym);
3010                }
3011
3012                if (isTargetSerializable) {
3013                    chk.checkAccessFromSerializableElement(that, true);
3014                }
3015            }
3016
3017            ResultInfo checkInfo =
3018                    resultInfo.dup(newMethodTemplate(
3019                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3020                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3021                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3022
3023            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3024
3025            if (that.kind.isUnbound() &&
3026                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3027                //re-generate inference constraints for unbound receiver
3028                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3029                    //cannot happen as this has already been checked - we just need
3030                    //to regenerate the inference constraints, as that has been lost
3031                    //as a result of the call to inferenceContext.save()
3032                    Assert.error("Can't get here");
3033                }
3034            }
3035
3036            if (!refType.isErroneous()) {
3037                refType = types.createMethodTypeWithReturn(refType,
3038                        adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3039            }
3040
3041            //go ahead with standard method reference compatibility check - note that param check
3042            //is a no-op (as this has been taken care during method applicability)
3043            boolean isSpeculativeRound =
3044                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3045
3046            that.type = currentTarget; //avoids recovery at this stage
3047            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3048            if (!isSpeculativeRound) {
3049                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3050            }
3051            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3052        } catch (Types.FunctionDescriptorLookupError ex) {
3053            JCDiagnostic cause = ex.getDiagnostic();
3054            resultInfo.checkContext.report(that, cause);
3055            result = that.type = types.createErrorType(pt());
3056            return;
3057        }
3058    }
3059    //where
3060        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3061            //if this is a constructor reference, the expected kind must be a type
3062            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3063                                  KindSelector.VAL_TYP : KindSelector.TYP,
3064                                  Type.noType);
3065        }
3066
3067
3068    @SuppressWarnings("fallthrough")
3069    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3070        InferenceContext inferenceContext = checkContext.inferenceContext();
3071        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3072
3073        Type resType;
3074        switch (tree.getMode()) {
3075            case NEW:
3076                if (!tree.expr.type.isRaw()) {
3077                    resType = tree.expr.type;
3078                    break;
3079                }
3080            default:
3081                resType = refType.getReturnType();
3082        }
3083
3084        Type incompatibleReturnType = resType;
3085
3086        if (returnType.hasTag(VOID)) {
3087            incompatibleReturnType = null;
3088        }
3089
3090        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3091            if (resType.isErroneous() ||
3092                    new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3093                            checkContext.checkWarner(tree, resType, returnType))) {
3094                incompatibleReturnType = null;
3095            }
3096        }
3097
3098        if (incompatibleReturnType != null) {
3099            Fragment msg =
3100                    Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3101            checkContext.report(tree, diags.fragment(msg));
3102        } else {
3103            if (inferenceContext.free(refType)) {
3104                // we need to wait for inference to finish and then replace inference vars in the referent type
3105                inferenceContext.addFreeTypeListener(List.of(refType),
3106                        instantiatedContext -> {
3107                            tree.referentType = instantiatedContext.asInstType(refType);
3108                        });
3109            } else {
3110                tree.referentType = refType;
3111            }
3112        }
3113
3114        if (!speculativeAttr) {
3115            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3116            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3117                log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3118            }
3119            //18.2.5: "In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej"
3120            thrownTypes.stream()
3121                    .filter(t -> t.hasTag(UNDETVAR))
3122                    .forEach(t -> ((UndetVar)t).setThrow());
3123        }
3124    }
3125
3126    /**
3127     * Set functional type info on the underlying AST. Note: as the target descriptor
3128     * might contain inference variables, we might need to register an hook in the
3129     * current inference context.
3130     */
3131    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3132            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3133        if (checkContext.inferenceContext().free(descriptorType)) {
3134            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3135                    inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3136                    inferenceContext.asInstType(primaryTarget), checkContext));
3137        } else {
3138            ListBuffer<Type> targets = new ListBuffer<>();
3139            if (pt.hasTag(CLASS)) {
3140                if (pt.isCompound()) {
3141                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
3142                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3143                        if (t != primaryTarget) {
3144                            targets.append(types.removeWildcards(t));
3145                        }
3146                    }
3147                } else {
3148                    targets.append(types.removeWildcards(primaryTarget));
3149                }
3150            }
3151            fExpr.targets = targets.toList();
3152            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3153                    pt != Type.recoveryType) {
3154                //check that functional interface class is well-formed
3155                try {
3156                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3157                     * when it's executed post-inference. See the listener code
3158                     * above.
3159                     */
3160                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3161                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3162                    if (csym != null) {
3163                        chk.checkImplementations(env.tree, csym, csym);
3164                        try {
3165                            //perform an additional functional interface check on the synthetic class,
3166                            //as there may be spurious errors for raw targets - because of existing issues
3167                            //with membership and inheritance (see JDK-8074570).
3168                            csym.flags_field |= INTERFACE;
3169                            types.findDescriptorType(csym.type);
3170                        } catch (FunctionDescriptorLookupError err) {
3171                            resultInfo.checkContext.report(fExpr,
3172                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3173                        }
3174                    }
3175                } catch (Types.FunctionDescriptorLookupError ex) {
3176                    JCDiagnostic cause = ex.getDiagnostic();
3177                    resultInfo.checkContext.report(env.tree, cause);
3178                }
3179            }
3180        }
3181    }
3182
3183    public void visitParens(JCParens tree) {
3184        Type owntype = attribTree(tree.expr, env, resultInfo);
3185        result = check(tree, owntype, pkind(), resultInfo);
3186        Symbol sym = TreeInfo.symbol(tree);
3187        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3188            log.error(tree.pos(), Errors.IllegalStartOfType);
3189    }
3190
3191    public void visitAssign(JCAssign tree) {
3192        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3193        Type capturedType = capture(owntype);
3194        attribExpr(tree.rhs, env, owntype);
3195        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3196    }
3197
3198    public void visitAssignop(JCAssignOp tree) {
3199        // Attribute arguments.
3200        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3201        Type operand = attribExpr(tree.rhs, env);
3202        // Find operator.
3203        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3204        if (operator != operators.noOpSymbol &&
3205                !owntype.isErroneous() &&
3206                !operand.isErroneous()) {
3207            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3208            chk.checkCastable(tree.rhs.pos(),
3209                              operator.type.getReturnType(),
3210                              owntype);
3211        }
3212        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3213    }
3214
3215    public void visitUnary(JCUnary tree) {
3216        // Attribute arguments.
3217        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3218            ? attribTree(tree.arg, env, varAssignmentInfo)
3219            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3220
3221        // Find operator.
3222        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3223        Type owntype = types.createErrorType(tree.type);
3224        if (operator != operators.noOpSymbol &&
3225                !argtype.isErroneous()) {
3226            owntype = (tree.getTag().isIncOrDecUnaryOp())
3227                ? tree.arg.type
3228                : operator.type.getReturnType();
3229            int opc = ((OperatorSymbol)operator).opcode;
3230
3231            // If the argument is constant, fold it.
3232            if (argtype.constValue() != null) {
3233                Type ctype = cfolder.fold1(opc, argtype);
3234                if (ctype != null) {
3235                    owntype = cfolder.coerce(ctype, owntype);
3236                }
3237            }
3238        }
3239        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3240    }
3241
3242    public void visitBinary(JCBinary tree) {
3243        // Attribute arguments.
3244        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3245        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3246        // Find operator.
3247        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3248        Type owntype = types.createErrorType(tree.type);
3249        if (operator != operators.noOpSymbol &&
3250                !left.isErroneous() &&
3251                !right.isErroneous()) {
3252            owntype = operator.type.getReturnType();
3253            int opc = ((OperatorSymbol)operator).opcode;
3254            // If both arguments are constants, fold them.
3255            if (left.constValue() != null && right.constValue() != null) {
3256                Type ctype = cfolder.fold2(opc, left, right);
3257                if (ctype != null) {
3258                    owntype = cfolder.coerce(ctype, owntype);
3259                }
3260            }
3261
3262            // Check that argument types of a reference ==, != are
3263            // castable to each other, (JLS 15.21).  Note: unboxing
3264            // comparisons will not have an acmp* opc at this point.
3265            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3266                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3267                    log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3268                }
3269            }
3270
3271            chk.checkDivZero(tree.rhs.pos(), operator, right);
3272        }
3273        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3274    }
3275
3276    public void visitTypeCast(final JCTypeCast tree) {
3277        Type clazztype = attribType(tree.clazz, env);
3278        chk.validate(tree.clazz, env, false);
3279        //a fresh environment is required for 292 inference to work properly ---
3280        //see Infer.instantiatePolymorphicSignatureInstance()
3281        Env<AttrContext> localEnv = env.dup(tree);
3282        //should we propagate the target type?
3283        final ResultInfo castInfo;
3284        JCExpression expr = TreeInfo.skipParens(tree.expr);
3285        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3286        if (isPoly) {
3287            //expression is a poly - we need to propagate target type info
3288            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3289                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3290                @Override
3291                public boolean compatible(Type found, Type req, Warner warn) {
3292                    return types.isCastable(found, req, warn);
3293                }
3294            });
3295        } else {
3296            //standalone cast - target-type info is not propagated
3297            castInfo = unknownExprInfo;
3298        }
3299        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3300        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3301        if (exprtype.constValue() != null)
3302            owntype = cfolder.coerce(exprtype, owntype);
3303        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3304        if (!isPoly)
3305            chk.checkRedundantCast(localEnv, tree);
3306    }
3307
3308    public void visitTypeTest(JCInstanceOf tree) {
3309        Type exprtype = chk.checkNullOrRefType(
3310                tree.expr.pos(), attribExpr(tree.expr, env));
3311        Type clazztype = attribType(tree.clazz, env);
3312        if (!clazztype.hasTag(TYPEVAR)) {
3313            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3314        }
3315        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3316            log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3317            clazztype = types.createErrorType(clazztype);
3318        }
3319        chk.validate(tree.clazz, env, false);
3320        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3321        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3322    }
3323
3324    public void visitIndexed(JCArrayAccess tree) {
3325        Type owntype = types.createErrorType(tree.type);
3326        Type atype = attribExpr(tree.indexed, env);
3327        attribExpr(tree.index, env, syms.intType);
3328        if (types.isArray(atype))
3329            owntype = types.elemtype(atype);
3330        else if (!atype.hasTag(ERROR))
3331            log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3332        if (!pkind().contains(KindSelector.VAL))
3333            owntype = capture(owntype);
3334        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3335    }
3336
3337    public void visitIdent(JCIdent tree) {
3338        Symbol sym;
3339
3340        // Find symbol
3341        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3342            // If we are looking for a method, the prototype `pt' will be a
3343            // method type with the type of the call's arguments as parameters.
3344            env.info.pendingResolutionPhase = null;
3345            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3346        } else if (tree.sym != null && tree.sym.kind != VAR) {
3347            sym = tree.sym;
3348        } else {
3349            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3350        }
3351        tree.sym = sym;
3352
3353        // (1) Also find the environment current for the class where
3354        //     sym is defined (`symEnv').
3355        // Only for pre-tiger versions (1.4 and earlier):
3356        // (2) Also determine whether we access symbol out of an anonymous
3357        //     class in a this or super call.  This is illegal for instance
3358        //     members since such classes don't carry a this$n link.
3359        //     (`noOuterThisPath').
3360        Env<AttrContext> symEnv = env;
3361        boolean noOuterThisPath = false;
3362        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3363            sym.kind.matches(KindSelector.VAL_MTH) &&
3364            sym.owner.kind == TYP &&
3365            tree.name != names._this && tree.name != names._super) {
3366
3367            // Find environment in which identifier is defined.
3368            while (symEnv.outer != null &&
3369                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3370                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3371                    noOuterThisPath = false;
3372                symEnv = symEnv.outer;
3373            }
3374        }
3375
3376        // If symbol is a variable, ...
3377        if (sym.kind == VAR) {
3378            VarSymbol v = (VarSymbol)sym;
3379
3380            // ..., evaluate its initializer, if it has one, and check for
3381            // illegal forward reference.
3382            checkInit(tree, env, v, false);
3383
3384            // If we are expecting a variable (as opposed to a value), check
3385            // that the variable is assignable in the current environment.
3386            if (KindSelector.ASG.subset(pkind()))
3387                checkAssignable(tree.pos(), v, null, env);
3388        }
3389
3390        // In a constructor body,
3391        // if symbol is a field or instance method, check that it is
3392        // not accessed before the supertype constructor is called.
3393        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3394            sym.kind.matches(KindSelector.VAL_MTH) &&
3395            sym.owner.kind == TYP &&
3396            (sym.flags() & STATIC) == 0) {
3397            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3398                                          sym : thisSym(tree.pos(), env));
3399        }
3400        Env<AttrContext> env1 = env;
3401        if (sym.kind != ERR && sym.kind != TYP &&
3402            sym.owner != null && sym.owner != env1.enclClass.sym) {
3403            // If the found symbol is inaccessible, then it is
3404            // accessed through an enclosing instance.  Locate this
3405            // enclosing instance:
3406            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3407                env1 = env1.outer;
3408        }
3409
3410        if (env.info.isSerializable) {
3411            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3412        }
3413
3414        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3415    }
3416
3417    public void visitSelect(JCFieldAccess tree) {
3418        // Determine the expected kind of the qualifier expression.
3419        KindSelector skind = KindSelector.NIL;
3420        if (tree.name == names._this || tree.name == names._super ||
3421                tree.name == names._class)
3422        {
3423            skind = KindSelector.TYP;
3424        } else {
3425            if (pkind().contains(KindSelector.PCK))
3426                skind = KindSelector.of(skind, KindSelector.PCK);
3427            if (pkind().contains(KindSelector.TYP))
3428                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3429            if (pkind().contains(KindSelector.VAL_MTH))
3430                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3431        }
3432
3433        // Attribute the qualifier expression, and determine its symbol (if any).
3434        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3435        if (!pkind().contains(KindSelector.TYP_PCK))
3436            site = capture(site); // Capture field access
3437
3438        // don't allow T.class T[].class, etc
3439        if (skind == KindSelector.TYP) {
3440            Type elt = site;
3441            while (elt.hasTag(ARRAY))
3442                elt = ((ArrayType)elt).elemtype;
3443            if (elt.hasTag(TYPEVAR)) {
3444                log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3445                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3446                tree.sym = tree.type.tsym;
3447                return ;
3448            }
3449        }
3450
3451        // If qualifier symbol is a type or `super', assert `selectSuper'
3452        // for the selection. This is relevant for determining whether
3453        // protected symbols are accessible.
3454        Symbol sitesym = TreeInfo.symbol(tree.selected);
3455        boolean selectSuperPrev = env.info.selectSuper;
3456        env.info.selectSuper =
3457            sitesym != null &&
3458            sitesym.name == names._super;
3459
3460        // Determine the symbol represented by the selection.
3461        env.info.pendingResolutionPhase = null;
3462        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3463        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3464            log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3465            sym = syms.errSymbol;
3466        }
3467        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3468            site = capture(site);
3469            sym = selectSym(tree, sitesym, site, env, resultInfo);
3470        }
3471        boolean varArgs = env.info.lastResolveVarargs();
3472        tree.sym = sym;
3473
3474        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3475            site = types.skipTypeVars(site, true);
3476        }
3477
3478        // If that symbol is a variable, ...
3479        if (sym.kind == VAR) {
3480            VarSymbol v = (VarSymbol)sym;
3481
3482            // ..., evaluate its initializer, if it has one, and check for
3483            // illegal forward reference.
3484            checkInit(tree, env, v, true);
3485
3486            // If we are expecting a variable (as opposed to a value), check
3487            // that the variable is assignable in the current environment.
3488            if (KindSelector.ASG.subset(pkind()))
3489                checkAssignable(tree.pos(), v, tree.selected, env);
3490        }
3491
3492        if (sitesym != null &&
3493                sitesym.kind == VAR &&
3494                ((VarSymbol)sitesym).isResourceVariable() &&
3495                sym.kind == MTH &&
3496                sym.name.equals(names.close) &&
3497                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3498                env.info.lint.isEnabled(LintCategory.TRY)) {
3499            log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3500        }
3501
3502        // Disallow selecting a type from an expression
3503        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3504            tree.type = check(tree.selected, pt(),
3505                              sitesym == null ?
3506                                      KindSelector.VAL : sitesym.kind.toSelector(),
3507                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3508        }
3509
3510        if (isType(sitesym)) {
3511            if (sym.name == names._this) {
3512                // If `C' is the currently compiled class, check that
3513                // C.this' does not appear in a call to a super(...)
3514                if (env.info.isSelfCall &&
3515                    site.tsym == env.enclClass.sym) {
3516                    chk.earlyRefError(tree.pos(), sym);
3517                }
3518            } else {
3519                // Check if type-qualified fields or methods are static (JLS)
3520                if ((sym.flags() & STATIC) == 0 &&
3521                    sym.name != names._super &&
3522                    (sym.kind == VAR || sym.kind == MTH)) {
3523                    rs.accessBase(rs.new StaticError(sym),
3524                              tree.pos(), site, sym.name, true);
3525                }
3526            }
3527            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3528                    sym.isStatic() && sym.kind == MTH) {
3529                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Errors.StaticIntfMethodInvokeNotSupportedInSource(sourceName));
3530            }
3531        } else if (sym.kind != ERR &&
3532                   (sym.flags() & STATIC) != 0 &&
3533                   sym.name != names._class) {
3534            // If the qualified item is not a type and the selected item is static, report
3535            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3536            chk.warnStatic(tree, "static.not.qualified.by.type",
3537                           sym.kind.kindName(), sym.owner);
3538        }
3539
3540        // If we are selecting an instance member via a `super', ...
3541        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3542
3543            // Check that super-qualified symbols are not abstract (JLS)
3544            rs.checkNonAbstract(tree.pos(), sym);
3545
3546            if (site.isRaw()) {
3547                // Determine argument types for site.
3548                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3549                if (site1 != null) site = site1;
3550            }
3551        }
3552
3553        if (env.info.isSerializable) {
3554            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3555        }
3556
3557        env.info.selectSuper = selectSuperPrev;
3558        result = checkId(tree, site, sym, env, resultInfo);
3559    }
3560    //where
3561        /** Determine symbol referenced by a Select expression,
3562         *
3563         *  @param tree   The select tree.
3564         *  @param site   The type of the selected expression,
3565         *  @param env    The current environment.
3566         *  @param resultInfo The current result.
3567         */
3568        private Symbol selectSym(JCFieldAccess tree,
3569                                 Symbol location,
3570                                 Type site,
3571                                 Env<AttrContext> env,
3572                                 ResultInfo resultInfo) {
3573            DiagnosticPosition pos = tree.pos();
3574            Name name = tree.name;
3575            switch (site.getTag()) {
3576            case PACKAGE:
3577                return rs.accessBase(
3578                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3579                    pos, location, site, name, true);
3580            case ARRAY:
3581            case CLASS:
3582                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3583                    return rs.resolveQualifiedMethod(
3584                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3585                } else if (name == names._this || name == names._super) {
3586                    return rs.resolveSelf(pos, env, site.tsym, name);
3587                } else if (name == names._class) {
3588                    // In this case, we have already made sure in
3589                    // visitSelect that qualifier expression is a type.
3590                    Type t = syms.classType;
3591                    List<Type> typeargs = List.of(types.erasure(site));
3592                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3593                    return new VarSymbol(
3594                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3595                } else {
3596                    // We are seeing a plain identifier as selector.
3597                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3598                        sym = rs.accessBase(sym, pos, location, site, name, true);
3599                    return sym;
3600                }
3601            case WILDCARD:
3602                throw new AssertionError(tree);
3603            case TYPEVAR:
3604                // Normally, site.getUpperBound() shouldn't be null.
3605                // It should only happen during memberEnter/attribBase
3606                // when determining the super type which *must* beac
3607                // done before attributing the type variables.  In
3608                // other words, we are seeing this illegal program:
3609                // class B<T> extends A<T.foo> {}
3610                Symbol sym = (site.getUpperBound() != null)
3611                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3612                    : null;
3613                if (sym == null) {
3614                    log.error(pos, Errors.TypeVarCantBeDeref);
3615                    return syms.errSymbol;
3616                } else {
3617                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3618                        rs.new AccessError(env, site, sym) :
3619                                sym;
3620                    rs.accessBase(sym2, pos, location, site, name, true);
3621                    return sym;
3622                }
3623            case ERROR:
3624                // preserve identifier names through errors
3625                return types.createErrorType(name, site.tsym, site).tsym;
3626            default:
3627                // The qualifier expression is of a primitive type -- only
3628                // .class is allowed for these.
3629                if (name == names._class) {
3630                    // In this case, we have already made sure in Select that
3631                    // qualifier expression is a type.
3632                    Type t = syms.classType;
3633                    Type arg = types.boxedClass(site).type;
3634                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3635                    return new VarSymbol(
3636                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3637                } else {
3638                    log.error(pos, Errors.CantDeref(site));
3639                    return syms.errSymbol;
3640                }
3641            }
3642        }
3643
3644        /** Determine type of identifier or select expression and check that
3645         *  (1) the referenced symbol is not deprecated
3646         *  (2) the symbol's type is safe (@see checkSafe)
3647         *  (3) if symbol is a variable, check that its type and kind are
3648         *      compatible with the prototype and protokind.
3649         *  (4) if symbol is an instance field of a raw type,
3650         *      which is being assigned to, issue an unchecked warning if its
3651         *      type changes under erasure.
3652         *  (5) if symbol is an instance method of a raw type, issue an
3653         *      unchecked warning if its argument types change under erasure.
3654         *  If checks succeed:
3655         *    If symbol is a constant, return its constant type
3656         *    else if symbol is a method, return its result type
3657         *    otherwise return its type.
3658         *  Otherwise return errType.
3659         *
3660         *  @param tree       The syntax tree representing the identifier
3661         *  @param site       If this is a select, the type of the selected
3662         *                    expression, otherwise the type of the current class.
3663         *  @param sym        The symbol representing the identifier.
3664         *  @param env        The current environment.
3665         *  @param resultInfo    The expected result
3666         */
3667        Type checkId(JCTree tree,
3668                     Type site,
3669                     Symbol sym,
3670                     Env<AttrContext> env,
3671                     ResultInfo resultInfo) {
3672            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3673                    checkMethodId(tree, site, sym, env, resultInfo) :
3674                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3675        }
3676
3677        Type checkMethodId(JCTree tree,
3678                     Type site,
3679                     Symbol sym,
3680                     Env<AttrContext> env,
3681                     ResultInfo resultInfo) {
3682            boolean isPolymorhicSignature =
3683                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3684            return isPolymorhicSignature ?
3685                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3686                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3687        }
3688
3689        Type checkSigPolyMethodId(JCTree tree,
3690                     Type site,
3691                     Symbol sym,
3692                     Env<AttrContext> env,
3693                     ResultInfo resultInfo) {
3694            //recover original symbol for signature polymorphic methods
3695            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3696            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3697            return sym.type;
3698        }
3699
3700        Type checkMethodIdInternal(JCTree tree,
3701                     Type site,
3702                     Symbol sym,
3703                     Env<AttrContext> env,
3704                     ResultInfo resultInfo) {
3705            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3706                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3707                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3708                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3709                return owntype;
3710            } else {
3711                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3712            }
3713        }
3714
3715        Type checkIdInternal(JCTree tree,
3716                     Type site,
3717                     Symbol sym,
3718                     Type pt,
3719                     Env<AttrContext> env,
3720                     ResultInfo resultInfo) {
3721            if (pt.isErroneous()) {
3722                return types.createErrorType(site);
3723            }
3724            Type owntype; // The computed type of this identifier occurrence.
3725            switch (sym.kind) {
3726            case TYP:
3727                // For types, the computed type equals the symbol's type,
3728                // except for two situations:
3729                owntype = sym.type;
3730                if (owntype.hasTag(CLASS)) {
3731                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3732                    Type ownOuter = owntype.getEnclosingType();
3733
3734                    // (a) If the symbol's type is parameterized, erase it
3735                    // because no type parameters were given.
3736                    // We recover generic outer type later in visitTypeApply.
3737                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3738                        owntype = types.erasure(owntype);
3739                    }
3740
3741                    // (b) If the symbol's type is an inner class, then
3742                    // we have to interpret its outer type as a superclass
3743                    // of the site type. Example:
3744                    //
3745                    // class Tree<A> { class Visitor { ... } }
3746                    // class PointTree extends Tree<Point> { ... }
3747                    // ...PointTree.Visitor...
3748                    //
3749                    // Then the type of the last expression above is
3750                    // Tree<Point>.Visitor.
3751                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3752                        Type normOuter = site;
3753                        if (normOuter.hasTag(CLASS)) {
3754                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3755                        }
3756                        if (normOuter == null) // perhaps from an import
3757                            normOuter = types.erasure(ownOuter);
3758                        if (normOuter != ownOuter)
3759                            owntype = new ClassType(
3760                                normOuter, List.nil(), owntype.tsym,
3761                                owntype.getMetadata());
3762                    }
3763                }
3764                break;
3765            case VAR:
3766                VarSymbol v = (VarSymbol)sym;
3767                // Test (4): if symbol is an instance field of a raw type,
3768                // which is being assigned to, issue an unchecked warning if
3769                // its type changes under erasure.
3770                if (KindSelector.ASG.subset(pkind()) &&
3771                    v.owner.kind == TYP &&
3772                    (v.flags() & STATIC) == 0 &&
3773                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3774                    Type s = types.asOuterSuper(site, v.owner);
3775                    if (s != null &&
3776                        s.isRaw() &&
3777                        !types.isSameType(v.type, v.erasure(types))) {
3778                        chk.warnUnchecked(tree.pos(),
3779                                          "unchecked.assign.to.var",
3780                                          v, s);
3781                    }
3782                }
3783                // The computed type of a variable is the type of the
3784                // variable symbol, taken as a member of the site type.
3785                owntype = (sym.owner.kind == TYP &&
3786                           sym.name != names._this && sym.name != names._super)
3787                    ? types.memberType(site, sym)
3788                    : sym.type;
3789
3790                // If the variable is a constant, record constant value in
3791                // computed type.
3792                if (v.getConstValue() != null && isStaticReference(tree))
3793                    owntype = owntype.constType(v.getConstValue());
3794
3795                if (resultInfo.pkind == KindSelector.VAL) {
3796                    owntype = capture(owntype); // capture "names as expressions"
3797                }
3798                break;
3799            case MTH: {
3800                owntype = checkMethod(site, sym,
3801                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3802                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3803                        resultInfo.pt.getTypeArguments());
3804                break;
3805            }
3806            case PCK: case ERR:
3807                owntype = sym.type;
3808                break;
3809            default:
3810                throw new AssertionError("unexpected kind: " + sym.kind +
3811                                         " in tree " + tree);
3812            }
3813
3814            // Emit a `deprecation' warning if symbol is deprecated.
3815            // (for constructors (but not for constructor references), the error
3816            // was given when the constructor was resolved)
3817
3818            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3819                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3820                chk.checkSunAPI(tree.pos(), sym);
3821                chk.checkProfile(tree.pos(), sym);
3822            }
3823
3824            // If symbol is a variable, check that its type and
3825            // kind are compatible with the prototype and protokind.
3826            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3827        }
3828
3829        /** Check that variable is initialized and evaluate the variable's
3830         *  initializer, if not yet done. Also check that variable is not
3831         *  referenced before it is defined.
3832         *  @param tree    The tree making up the variable reference.
3833         *  @param env     The current environment.
3834         *  @param v       The variable's symbol.
3835         */
3836        private void checkInit(JCTree tree,
3837                               Env<AttrContext> env,
3838                               VarSymbol v,
3839                               boolean onlyWarning) {
3840            // A forward reference is diagnosed if the declaration position
3841            // of the variable is greater than the current tree position
3842            // and the tree and variable definition occur in the same class
3843            // definition.  Note that writes don't count as references.
3844            // This check applies only to class and instance
3845            // variables.  Local variables follow different scope rules,
3846            // and are subject to definite assignment checking.
3847            Env<AttrContext> initEnv = enclosingInitEnv(env);
3848            if (initEnv != null &&
3849                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3850                v.owner.kind == TYP &&
3851                v.owner == env.info.scope.owner.enclClass() &&
3852                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3853                (!env.tree.hasTag(ASSIGN) ||
3854                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3855                String suffix = (initEnv.info.enclVar == v) ?
3856                                "self.ref" : "forward.ref";
3857                if (!onlyWarning || isStaticEnumField(v)) {
3858                    log.error(tree.pos(), "illegal." + suffix);
3859                } else if (useBeforeDeclarationWarning) {
3860                    log.warning(tree.pos(), suffix, v);
3861                }
3862            }
3863
3864            v.getConstValue(); // ensure initializer is evaluated
3865
3866            checkEnumInitializer(tree, env, v);
3867        }
3868
3869        /**
3870         * Returns the enclosing init environment associated with this env (if any). An init env
3871         * can be either a field declaration env or a static/instance initializer env.
3872         */
3873        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3874            while (true) {
3875                switch (env.tree.getTag()) {
3876                    case VARDEF:
3877                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3878                        if (vdecl.sym.owner.kind == TYP) {
3879                            //field
3880                            return env;
3881                        }
3882                        break;
3883                    case BLOCK:
3884                        if (env.next.tree.hasTag(CLASSDEF)) {
3885                            //instance/static initializer
3886                            return env;
3887                        }
3888                        break;
3889                    case METHODDEF:
3890                    case CLASSDEF:
3891                    case TOPLEVEL:
3892                        return null;
3893                }
3894                Assert.checkNonNull(env.next);
3895                env = env.next;
3896            }
3897        }
3898
3899        /**
3900         * Check for illegal references to static members of enum.  In
3901         * an enum type, constructors and initializers may not
3902         * reference its static members unless they are constant.
3903         *
3904         * @param tree    The tree making up the variable reference.
3905         * @param env     The current environment.
3906         * @param v       The variable's symbol.
3907         * @jls  section 8.9 Enums
3908         */
3909        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3910            // JLS:
3911            //
3912            // "It is a compile-time error to reference a static field
3913            // of an enum type that is not a compile-time constant
3914            // (15.28) from constructors, instance initializer blocks,
3915            // or instance variable initializer expressions of that
3916            // type. It is a compile-time error for the constructors,
3917            // instance initializer blocks, or instance variable
3918            // initializer expressions of an enum constant e to refer
3919            // to itself or to an enum constant of the same type that
3920            // is declared to the right of e."
3921            if (isStaticEnumField(v)) {
3922                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3923
3924                if (enclClass == null || enclClass.owner == null)
3925                    return;
3926
3927                // See if the enclosing class is the enum (or a
3928                // subclass thereof) declaring v.  If not, this
3929                // reference is OK.
3930                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3931                    return;
3932
3933                // If the reference isn't from an initializer, then
3934                // the reference is OK.
3935                if (!Resolve.isInitializer(env))
3936                    return;
3937
3938                log.error(tree.pos(), Errors.IllegalEnumStaticRef);
3939            }
3940        }
3941
3942        /** Is the given symbol a static, non-constant field of an Enum?
3943         *  Note: enum literals should not be regarded as such
3944         */
3945        private boolean isStaticEnumField(VarSymbol v) {
3946            return Flags.isEnum(v.owner) &&
3947                   Flags.isStatic(v) &&
3948                   !Flags.isConstant(v) &&
3949                   v.name != names._class;
3950        }
3951
3952    /**
3953     * Check that method arguments conform to its instantiation.
3954     **/
3955    public Type checkMethod(Type site,
3956                            final Symbol sym,
3957                            ResultInfo resultInfo,
3958                            Env<AttrContext> env,
3959                            final List<JCExpression> argtrees,
3960                            List<Type> argtypes,
3961                            List<Type> typeargtypes) {
3962        // Test (5): if symbol is an instance method of a raw type, issue
3963        // an unchecked warning if its argument types change under erasure.
3964        if ((sym.flags() & STATIC) == 0 &&
3965            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3966            Type s = types.asOuterSuper(site, sym.owner);
3967            if (s != null && s.isRaw() &&
3968                !types.isSameTypes(sym.type.getParameterTypes(),
3969                                   sym.erasure(types).getParameterTypes())) {
3970                chk.warnUnchecked(env.tree.pos(),
3971                                  "unchecked.call.mbr.of.raw.type",
3972                                  sym, s);
3973            }
3974        }
3975
3976        if (env.info.defaultSuperCallSite != null) {
3977            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3978                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3979                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3980                List<MethodSymbol> icand_sup =
3981                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3982                if (icand_sup.nonEmpty() &&
3983                        icand_sup.head != sym &&
3984                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3985                    log.error(env.tree.pos(),
3986                              Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
3987                    break;
3988                }
3989            }
3990            env.info.defaultSuperCallSite = null;
3991        }
3992
3993        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3994            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3995            if (app.meth.hasTag(SELECT) &&
3996                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3997                log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
3998            }
3999        }
4000
4001        // Compute the identifier's instantiated type.
4002        // For methods, we need to compute the instance type by
4003        // Resolve.instantiate from the symbol's type as well as
4004        // any type arguments and value arguments.
4005        Warner noteWarner = new Warner();
4006        try {
4007            Type owntype = rs.checkMethod(
4008                    env,
4009                    site,
4010                    sym,
4011                    resultInfo,
4012                    argtypes,
4013                    typeargtypes,
4014                    noteWarner);
4015
4016            DeferredAttr.DeferredTypeMap checkDeferredMap =
4017                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4018
4019            argtypes = argtypes.map(checkDeferredMap);
4020
4021            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4022                chk.warnUnchecked(env.tree.pos(),
4023                        "unchecked.meth.invocation.applied",
4024                        kindName(sym),
4025                        sym.name,
4026                        rs.methodArguments(sym.type.getParameterTypes()),
4027                        rs.methodArguments(argtypes.map(checkDeferredMap)),
4028                        kindName(sym.location()),
4029                        sym.location());
4030                if (resultInfo.pt != Infer.anyPoly ||
4031                        !owntype.hasTag(METHOD) ||
4032                        !owntype.isPartial()) {
4033                    //if this is not a partially inferred method type, erase return type. Otherwise,
4034                    //erasure is carried out in PartiallyInferredMethodType.check().
4035                    owntype = new MethodType(owntype.getParameterTypes(),
4036                            types.erasure(owntype.getReturnType()),
4037                            types.erasure(owntype.getThrownTypes()),
4038                            syms.methodClass);
4039                }
4040            }
4041
4042            PolyKind pkind = (sym.type.hasTag(FORALL) &&
4043                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4044                 PolyKind.POLY : PolyKind.STANDALONE;
4045            TreeInfo.setPolyKind(env.tree, pkind);
4046
4047            return (resultInfo.pt == Infer.anyPoly) ?
4048                    owntype :
4049                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4050                            resultInfo.checkContext.inferenceContext());
4051        } catch (Infer.InferenceException ex) {
4052            //invalid target type - propagate exception outwards or report error
4053            //depending on the current check context
4054            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4055            return types.createErrorType(site);
4056        } catch (Resolve.InapplicableMethodException ex) {
4057            final JCDiagnostic diag = ex.getDiagnostic();
4058            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4059                @Override
4060                protected Pair<Symbol, JCDiagnostic> errCandidate() {
4061                    return new Pair<>(sym, diag);
4062                }
4063            };
4064            List<Type> argtypes2 = argtypes.map(
4065                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4066            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4067                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4068            log.report(errDiag);
4069            return types.createErrorType(site);
4070        }
4071    }
4072
4073    public void visitLiteral(JCLiteral tree) {
4074        result = check(tree, litType(tree.typetag).constType(tree.value),
4075                KindSelector.VAL, resultInfo);
4076    }
4077    //where
4078    /** Return the type of a literal with given type tag.
4079     */
4080    Type litType(TypeTag tag) {
4081        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4082    }
4083
4084    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4085        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4086    }
4087
4088    public void visitTypeArray(JCArrayTypeTree tree) {
4089        Type etype = attribType(tree.elemtype, env);
4090        Type type = new ArrayType(etype, syms.arrayClass);
4091        result = check(tree, type, KindSelector.TYP, resultInfo);
4092    }
4093
4094    /** Visitor method for parameterized types.
4095     *  Bound checking is left until later, since types are attributed
4096     *  before supertype structure is completely known
4097     */
4098    public void visitTypeApply(JCTypeApply tree) {
4099        Type owntype = types.createErrorType(tree.type);
4100
4101        // Attribute functor part of application and make sure it's a class.
4102        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4103
4104        // Attribute type parameters
4105        List<Type> actuals = attribTypes(tree.arguments, env);
4106
4107        if (clazztype.hasTag(CLASS)) {
4108            List<Type> formals = clazztype.tsym.type.getTypeArguments();
4109            if (actuals.isEmpty()) //diamond
4110                actuals = formals;
4111
4112            if (actuals.length() == formals.length()) {
4113                List<Type> a = actuals;
4114                List<Type> f = formals;
4115                while (a.nonEmpty()) {
4116                    a.head = a.head.withTypeVar(f.head);
4117                    a = a.tail;
4118                    f = f.tail;
4119                }
4120                // Compute the proper generic outer
4121                Type clazzOuter = clazztype.getEnclosingType();
4122                if (clazzOuter.hasTag(CLASS)) {
4123                    Type site;
4124                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4125                    if (clazz.hasTag(IDENT)) {
4126                        site = env.enclClass.sym.type;
4127                    } else if (clazz.hasTag(SELECT)) {
4128                        site = ((JCFieldAccess) clazz).selected.type;
4129                    } else throw new AssertionError(""+tree);
4130                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4131                        if (site.hasTag(CLASS))
4132                            site = types.asOuterSuper(site, clazzOuter.tsym);
4133                        if (site == null)
4134                            site = types.erasure(clazzOuter);
4135                        clazzOuter = site;
4136                    }
4137                }
4138                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4139                                        clazztype.getMetadata());
4140            } else {
4141                if (formals.length() != 0) {
4142                    log.error(tree.pos(),
4143                              Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4144                } else {
4145                    log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4146                }
4147                owntype = types.createErrorType(tree.type);
4148            }
4149        }
4150        result = check(tree, owntype, KindSelector.TYP, resultInfo);
4151    }
4152
4153    public void visitTypeUnion(JCTypeUnion tree) {
4154        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4155        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4156        for (JCExpression typeTree : tree.alternatives) {
4157            Type ctype = attribType(typeTree, env);
4158            ctype = chk.checkType(typeTree.pos(),
4159                          chk.checkClassType(typeTree.pos(), ctype),
4160                          syms.throwableType);
4161            if (!ctype.isErroneous()) {
4162                //check that alternatives of a union type are pairwise
4163                //unrelated w.r.t. subtyping
4164                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4165                    for (Type t : multicatchTypes) {
4166                        boolean sub = types.isSubtype(ctype, t);
4167                        boolean sup = types.isSubtype(t, ctype);
4168                        if (sub || sup) {
4169                            //assume 'a' <: 'b'
4170                            Type a = sub ? ctype : t;
4171                            Type b = sub ? t : ctype;
4172                            log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4173                        }
4174                    }
4175                }
4176                multicatchTypes.append(ctype);
4177                if (all_multicatchTypes != null)
4178                    all_multicatchTypes.append(ctype);
4179            } else {
4180                if (all_multicatchTypes == null) {
4181                    all_multicatchTypes = new ListBuffer<>();
4182                    all_multicatchTypes.appendList(multicatchTypes);
4183                }
4184                all_multicatchTypes.append(ctype);
4185            }
4186        }
4187        Type t = check(tree, types.lub(multicatchTypes.toList()),
4188                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4189        if (t.hasTag(CLASS)) {
4190            List<Type> alternatives =
4191                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4192            t = new UnionClassType((ClassType) t, alternatives);
4193        }
4194        tree.type = result = t;
4195    }
4196
4197    public void visitTypeIntersection(JCTypeIntersection tree) {
4198        attribTypes(tree.bounds, env);
4199        tree.type = result = checkIntersection(tree, tree.bounds);
4200    }
4201
4202    public void visitTypeParameter(JCTypeParameter tree) {
4203        TypeVar typeVar = (TypeVar) tree.type;
4204
4205        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4206            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4207        }
4208
4209        if (!typeVar.bound.isErroneous()) {
4210            //fixup type-parameter bound computed in 'attribTypeVariables'
4211            typeVar.bound = checkIntersection(tree, tree.bounds);
4212        }
4213    }
4214
4215    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4216        Set<Type> boundSet = new HashSet<>();
4217        if (bounds.nonEmpty()) {
4218            // accept class or interface or typevar as first bound.
4219            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4220            boundSet.add(types.erasure(bounds.head.type));
4221            if (bounds.head.type.isErroneous()) {
4222                return bounds.head.type;
4223            }
4224            else if (bounds.head.type.hasTag(TYPEVAR)) {
4225                // if first bound was a typevar, do not accept further bounds.
4226                if (bounds.tail.nonEmpty()) {
4227                    log.error(bounds.tail.head.pos(),
4228                              Errors.TypeVarMayNotBeFollowedByOtherBounds);
4229                    return bounds.head.type;
4230                }
4231            } else {
4232                // if first bound was a class or interface, accept only interfaces
4233                // as further bounds.
4234                for (JCExpression bound : bounds.tail) {
4235                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4236                    if (bound.type.isErroneous()) {
4237                        bounds = List.of(bound);
4238                    }
4239                    else if (bound.type.hasTag(CLASS)) {
4240                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4241                    }
4242                }
4243            }
4244        }
4245
4246        if (bounds.length() == 0) {
4247            return syms.objectType;
4248        } else if (bounds.length() == 1) {
4249            return bounds.head.type;
4250        } else {
4251            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4252            // ... the variable's bound is a class type flagged COMPOUND
4253            // (see comment for TypeVar.bound).
4254            // In this case, generate a class tree that represents the
4255            // bound class, ...
4256            JCExpression extending;
4257            List<JCExpression> implementing;
4258            if (!bounds.head.type.isInterface()) {
4259                extending = bounds.head;
4260                implementing = bounds.tail;
4261            } else {
4262                extending = null;
4263                implementing = bounds;
4264            }
4265            JCClassDecl cd = make.at(tree).ClassDef(
4266                make.Modifiers(PUBLIC | ABSTRACT),
4267                names.empty, List.nil(),
4268                extending, implementing, List.nil());
4269
4270            ClassSymbol c = (ClassSymbol)owntype.tsym;
4271            Assert.check((c.flags() & COMPOUND) != 0);
4272            cd.sym = c;
4273            c.sourcefile = env.toplevel.sourcefile;
4274
4275            // ... and attribute the bound class
4276            c.flags_field |= UNATTRIBUTED;
4277            Env<AttrContext> cenv = enter.classEnv(cd, env);
4278            typeEnvs.put(c, cenv);
4279            attribClass(c);
4280            return owntype;
4281        }
4282    }
4283
4284    public void visitWildcard(JCWildcard tree) {
4285        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4286        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4287            ? syms.objectType
4288            : attribType(tree.inner, env);
4289        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4290                                              tree.kind.kind,
4291                                              syms.boundClass),
4292                KindSelector.TYP, resultInfo);
4293    }
4294
4295    public void visitAnnotation(JCAnnotation tree) {
4296        Assert.error("should be handled in annotate");
4297    }
4298
4299    public void visitAnnotatedType(JCAnnotatedType tree) {
4300        attribAnnotationTypes(tree.annotations, env);
4301        Type underlyingType = attribType(tree.underlyingType, env);
4302        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4303
4304        if (!env.info.isNewClass)
4305            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4306        result = tree.type = annotatedType;
4307    }
4308
4309    public void visitErroneous(JCErroneous tree) {
4310        if (tree.errs != null)
4311            for (JCTree err : tree.errs)
4312                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4313        result = tree.type = syms.errType;
4314    }
4315
4316    /** Default visitor method for all other trees.
4317     */
4318    public void visitTree(JCTree tree) {
4319        throw new AssertionError();
4320    }
4321
4322    /**
4323     * Attribute an env for either a top level tree or class or module declaration.
4324     */
4325    public void attrib(Env<AttrContext> env) {
4326        switch (env.tree.getTag()) {
4327            case MODULEDEF:
4328                attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4329                break;
4330            case TOPLEVEL:
4331                attribTopLevel(env);
4332                break;
4333            case PACKAGEDEF:
4334                attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4335                break;
4336            default:
4337                attribClass(env.tree.pos(), env.enclClass.sym);
4338        }
4339    }
4340
4341    /**
4342     * Attribute a top level tree. These trees are encountered when the
4343     * package declaration has annotations.
4344     */
4345    public void attribTopLevel(Env<AttrContext> env) {
4346        JCCompilationUnit toplevel = env.toplevel;
4347        try {
4348            annotate.flush();
4349        } catch (CompletionFailure ex) {
4350            chk.completionError(toplevel.pos(), ex);
4351        }
4352    }
4353
4354    public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4355        try {
4356            annotate.flush();
4357            attribPackage(p);
4358        } catch (CompletionFailure ex) {
4359            chk.completionError(pos, ex);
4360        }
4361    }
4362
4363    void attribPackage(PackageSymbol p) {
4364        Env<AttrContext> env = typeEnvs.get(p);
4365        chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4366    }
4367
4368    public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4369        try {
4370            annotate.flush();
4371            attribModule(m);
4372        } catch (CompletionFailure ex) {
4373            chk.completionError(pos, ex);
4374        }
4375    }
4376
4377    void attribModule(ModuleSymbol m) {
4378        // Get environment current at the point of module definition.
4379        Env<AttrContext> env = enter.typeEnvs.get(m);
4380        attribStat(env.tree, env);
4381    }
4382
4383    /** Main method: attribute class definition associated with given class symbol.
4384     *  reporting completion failures at the given position.
4385     *  @param pos The source position at which completion errors are to be
4386     *             reported.
4387     *  @param c   The class symbol whose definition will be attributed.
4388     */
4389    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4390        try {
4391            annotate.flush();
4392            attribClass(c);
4393        } catch (CompletionFailure ex) {
4394            chk.completionError(pos, ex);
4395        }
4396    }
4397
4398    /** Attribute class definition associated with given class symbol.
4399     *  @param c   The class symbol whose definition will be attributed.
4400     */
4401    void attribClass(ClassSymbol c) throws CompletionFailure {
4402        if (c.type.hasTag(ERROR)) return;
4403
4404        // Check for cycles in the inheritance graph, which can arise from
4405        // ill-formed class files.
4406        chk.checkNonCyclic(null, c.type);
4407
4408        Type st = types.supertype(c.type);
4409        if ((c.flags_field & Flags.COMPOUND) == 0) {
4410            // First, attribute superclass.
4411            if (st.hasTag(CLASS))
4412                attribClass((ClassSymbol)st.tsym);
4413
4414            // Next attribute owner, if it is a class.
4415            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4416                attribClass((ClassSymbol)c.owner);
4417        }
4418
4419        // The previous operations might have attributed the current class
4420        // if there was a cycle. So we test first whether the class is still
4421        // UNATTRIBUTED.
4422        if ((c.flags_field & UNATTRIBUTED) != 0) {
4423            c.flags_field &= ~UNATTRIBUTED;
4424
4425            // Get environment current at the point of class definition.
4426            Env<AttrContext> env = typeEnvs.get(c);
4427
4428            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4429            // because the annotations were not available at the time the env was created. Therefore,
4430            // we look up the environment chain for the first enclosing environment for which the
4431            // lint value is set. Typically, this is the parent env, but might be further if there
4432            // are any envs created as a result of TypeParameter nodes.
4433            Env<AttrContext> lintEnv = env;
4434            while (lintEnv.info.lint == null)
4435                lintEnv = lintEnv.next;
4436
4437            // Having found the enclosing lint value, we can initialize the lint value for this class
4438            env.info.lint = lintEnv.info.lint.augment(c);
4439
4440            Lint prevLint = chk.setLint(env.info.lint);
4441            JavaFileObject prev = log.useSource(c.sourcefile);
4442            ResultInfo prevReturnRes = env.info.returnResult;
4443
4444            try {
4445                deferredLintHandler.flush(env.tree);
4446                env.info.returnResult = null;
4447                // java.lang.Enum may not be subclassed by a non-enum
4448                if (st.tsym == syms.enumSym &&
4449                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4450                    log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4451
4452                // Enums may not be extended by source-level classes
4453                if (st.tsym != null &&
4454                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4455                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4456                    log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4457                }
4458
4459                if (isSerializable(c.type)) {
4460                    env.info.isSerializable = true;
4461                }
4462
4463                attribClassBody(env, c);
4464
4465                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4466                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4467                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4468                chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4469            } finally {
4470                env.info.returnResult = prevReturnRes;
4471                log.useSource(prev);
4472                chk.setLint(prevLint);
4473            }
4474
4475        }
4476    }
4477
4478    public void visitImport(JCImport tree) {
4479        // nothing to do
4480    }
4481
4482    public void visitModuleDef(JCModuleDecl tree) {
4483        tree.sym.completeUsesProvides();
4484        ModuleSymbol msym = tree.sym;
4485        Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4486        Lint prevLint = chk.setLint(lint);
4487        chk.checkModuleName(tree);
4488        chk.checkDeprecatedAnnotation(tree, msym);
4489
4490        try {
4491            deferredLintHandler.flush(tree.pos());
4492        } finally {
4493            chk.setLint(prevLint);
4494        }
4495    }
4496
4497    /** Finish the attribution of a class. */
4498    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4499        JCClassDecl tree = (JCClassDecl)env.tree;
4500        Assert.check(c == tree.sym);
4501
4502        // Validate type parameters, supertype and interfaces.
4503        attribStats(tree.typarams, env);
4504        if (!c.isAnonymous()) {
4505            //already checked if anonymous
4506            chk.validate(tree.typarams, env);
4507            chk.validate(tree.extending, env);
4508            chk.validate(tree.implementing, env);
4509        }
4510
4511        c.markAbstractIfNeeded(types);
4512
4513        // If this is a non-abstract class, check that it has no abstract
4514        // methods or unimplemented methods of an implemented interface.
4515        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4516            chk.checkAllDefined(tree.pos(), c);
4517        }
4518
4519        if ((c.flags() & ANNOTATION) != 0) {
4520            if (tree.implementing.nonEmpty())
4521                log.error(tree.implementing.head.pos(),
4522                          Errors.CantExtendIntfAnnotation);
4523            if (tree.typarams.nonEmpty()) {
4524                log.error(tree.typarams.head.pos(),
4525                          Errors.IntfAnnotationCantHaveTypeParams(c));
4526            }
4527
4528            // If this annotation type has a @Repeatable, validate
4529            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4530            // If this annotation type has a @Repeatable, validate
4531            if (repeatable != null) {
4532                // get diagnostic position for error reporting
4533                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4534                Assert.checkNonNull(cbPos);
4535
4536                chk.validateRepeatable(c, repeatable, cbPos);
4537            }
4538        } else {
4539            // Check that all extended classes and interfaces
4540            // are compatible (i.e. no two define methods with same arguments
4541            // yet different return types).  (JLS 8.4.6.3)
4542            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4543            if (allowDefaultMethods) {
4544                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4545            }
4546        }
4547
4548        // Check that class does not import the same parameterized interface
4549        // with two different argument lists.
4550        chk.checkClassBounds(tree.pos(), c.type);
4551
4552        tree.type = c.type;
4553
4554        for (List<JCTypeParameter> l = tree.typarams;
4555             l.nonEmpty(); l = l.tail) {
4556             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4557        }
4558
4559        // Check that a generic class doesn't extend Throwable
4560        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4561            log.error(tree.extending.pos(), Errors.GenericThrowable);
4562
4563        // Check that all methods which implement some
4564        // method conform to the method they implement.
4565        chk.checkImplementations(tree);
4566
4567        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4568        checkAutoCloseable(tree.pos(), env, c.type);
4569
4570        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4571            // Attribute declaration
4572            attribStat(l.head, env);
4573            // Check that declarations in inner classes are not static (JLS 8.1.2)
4574            // Make an exception for static constants.
4575            if (c.owner.kind != PCK &&
4576                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4577                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4578                Symbol sym = null;
4579                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4580                if (sym == null ||
4581                    sym.kind != VAR ||
4582                    ((VarSymbol) sym).getConstValue() == null)
4583                    log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4584            }
4585        }
4586
4587        // Check for cycles among non-initial constructors.
4588        chk.checkCyclicConstructors(tree);
4589
4590        // Check for cycles among annotation elements.
4591        chk.checkNonCyclicElements(tree);
4592
4593        // Check for proper use of serialVersionUID
4594        if (env.info.lint.isEnabled(LintCategory.SERIAL)
4595                && isSerializable(c.type)
4596                && (c.flags() & Flags.ENUM) == 0
4597                && !c.isAnonymous()
4598                && checkForSerial(c)) {
4599            checkSerialVersionUID(tree, c);
4600        }
4601        if (allowTypeAnnos) {
4602            // Correctly organize the postions of the type annotations
4603            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4604
4605            // Check type annotations applicability rules
4606            validateTypeAnnotations(tree, false);
4607        }
4608    }
4609        // where
4610        boolean checkForSerial(ClassSymbol c) {
4611            if ((c.flags() & ABSTRACT) == 0) {
4612                return true;
4613            } else {
4614                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4615            }
4616        }
4617
4618        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = s ->
4619                s.kind == MTH && (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4620
4621        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4622        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4623            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4624                if (types.isSameType(al.head.annotationType.type, t))
4625                    return al.head.pos();
4626            }
4627
4628            return null;
4629        }
4630
4631        /** check if a type is a subtype of Serializable, if that is available. */
4632        boolean isSerializable(Type t) {
4633            try {
4634                syms.serializableType.complete();
4635            }
4636            catch (CompletionFailure e) {
4637                return false;
4638            }
4639            return types.isSubtype(t, syms.serializableType);
4640        }
4641
4642        /** Check that an appropriate serialVersionUID member is defined. */
4643        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4644
4645            // check for presence of serialVersionUID
4646            VarSymbol svuid = null;
4647            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4648                if (sym.kind == VAR) {
4649                    svuid = (VarSymbol)sym;
4650                    break;
4651                }
4652            }
4653
4654            if (svuid == null) {
4655                log.warning(LintCategory.SERIAL,
4656                        tree.pos(), Warnings.MissingSVUID(c));
4657                return;
4658            }
4659
4660            // check that it is static final
4661            if ((svuid.flags() & (STATIC | FINAL)) !=
4662                (STATIC | FINAL))
4663                log.warning(LintCategory.SERIAL,
4664                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4665
4666            // check that it is long
4667            else if (!svuid.type.hasTag(LONG))
4668                log.warning(LintCategory.SERIAL,
4669                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4670
4671            // check constant
4672            else if (svuid.getConstValue() == null)
4673                log.warning(LintCategory.SERIAL,
4674                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4675        }
4676
4677    private Type capture(Type type) {
4678        return types.capture(type);
4679    }
4680
4681    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4682        tree.accept(new TypeAnnotationsValidator(sigOnly));
4683    }
4684    //where
4685    private final class TypeAnnotationsValidator extends TreeScanner {
4686
4687        private final boolean sigOnly;
4688        public TypeAnnotationsValidator(boolean sigOnly) {
4689            this.sigOnly = sigOnly;
4690        }
4691
4692        public void visitAnnotation(JCAnnotation tree) {
4693            chk.validateTypeAnnotation(tree, false);
4694            super.visitAnnotation(tree);
4695        }
4696        public void visitAnnotatedType(JCAnnotatedType tree) {
4697            if (!tree.underlyingType.type.isErroneous()) {
4698                super.visitAnnotatedType(tree);
4699            }
4700        }
4701        public void visitTypeParameter(JCTypeParameter tree) {
4702            chk.validateTypeAnnotations(tree.annotations, true);
4703            scan(tree.bounds);
4704            // Don't call super.
4705            // This is needed because above we call validateTypeAnnotation with
4706            // false, which would forbid annotations on type parameters.
4707            // super.visitTypeParameter(tree);
4708        }
4709        public void visitMethodDef(JCMethodDecl tree) {
4710            if (tree.recvparam != null &&
4711                    !tree.recvparam.vartype.type.isErroneous()) {
4712                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4713                        tree.recvparam.vartype.type.tsym);
4714            }
4715            if (tree.restype != null && tree.restype.type != null) {
4716                validateAnnotatedType(tree.restype, tree.restype.type);
4717            }
4718            if (sigOnly) {
4719                scan(tree.mods);
4720                scan(tree.restype);
4721                scan(tree.typarams);
4722                scan(tree.recvparam);
4723                scan(tree.params);
4724                scan(tree.thrown);
4725            } else {
4726                scan(tree.defaultValue);
4727                scan(tree.body);
4728            }
4729        }
4730        public void visitVarDef(final JCVariableDecl tree) {
4731            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4732            if (tree.sym != null && tree.sym.type != null)
4733                validateAnnotatedType(tree.vartype, tree.sym.type);
4734            scan(tree.mods);
4735            scan(tree.vartype);
4736            if (!sigOnly) {
4737                scan(tree.init);
4738            }
4739        }
4740        public void visitTypeCast(JCTypeCast tree) {
4741            if (tree.clazz != null && tree.clazz.type != null)
4742                validateAnnotatedType(tree.clazz, tree.clazz.type);
4743            super.visitTypeCast(tree);
4744        }
4745        public void visitTypeTest(JCInstanceOf tree) {
4746            if (tree.clazz != null && tree.clazz.type != null)
4747                validateAnnotatedType(tree.clazz, tree.clazz.type);
4748            super.visitTypeTest(tree);
4749        }
4750        public void visitNewClass(JCNewClass tree) {
4751            if (tree.clazz != null && tree.clazz.type != null) {
4752                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4753                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4754                            tree.clazz.type.tsym);
4755                }
4756                if (tree.def != null) {
4757                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4758                }
4759
4760                validateAnnotatedType(tree.clazz, tree.clazz.type);
4761            }
4762            super.visitNewClass(tree);
4763        }
4764        public void visitNewArray(JCNewArray tree) {
4765            if (tree.elemtype != null && tree.elemtype.type != null) {
4766                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4767                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4768                            tree.elemtype.type.tsym);
4769                }
4770                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4771            }
4772            super.visitNewArray(tree);
4773        }
4774        public void visitClassDef(JCClassDecl tree) {
4775            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4776            if (sigOnly) {
4777                scan(tree.mods);
4778                scan(tree.typarams);
4779                scan(tree.extending);
4780                scan(tree.implementing);
4781            }
4782            for (JCTree member : tree.defs) {
4783                if (member.hasTag(Tag.CLASSDEF)) {
4784                    continue;
4785                }
4786                scan(member);
4787            }
4788        }
4789        public void visitBlock(JCBlock tree) {
4790            if (!sigOnly) {
4791                scan(tree.stats);
4792            }
4793        }
4794
4795        /* I would want to model this after
4796         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4797         * and override visitSelect and visitTypeApply.
4798         * However, we only set the annotated type in the top-level type
4799         * of the symbol.
4800         * Therefore, we need to override each individual location where a type
4801         * can occur.
4802         */
4803        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4804            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4805
4806            if (type.isPrimitiveOrVoid()) {
4807                return;
4808            }
4809
4810            JCTree enclTr = errtree;
4811            Type enclTy = type;
4812
4813            boolean repeat = true;
4814            while (repeat) {
4815                if (enclTr.hasTag(TYPEAPPLY)) {
4816                    List<Type> tyargs = enclTy.getTypeArguments();
4817                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4818                    if (trargs.length() > 0) {
4819                        // Nothing to do for diamonds
4820                        if (tyargs.length() == trargs.length()) {
4821                            for (int i = 0; i < tyargs.length(); ++i) {
4822                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4823                            }
4824                        }
4825                        // If the lengths don't match, it's either a diamond
4826                        // or some nested type that redundantly provides
4827                        // type arguments in the tree.
4828                    }
4829
4830                    // Look at the clazz part of a generic type
4831                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4832                }
4833
4834                if (enclTr.hasTag(SELECT)) {
4835                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4836                    if (enclTy != null &&
4837                            !enclTy.hasTag(NONE)) {
4838                        enclTy = enclTy.getEnclosingType();
4839                    }
4840                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4841                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4842                    if (enclTy == null || enclTy.hasTag(NONE)) {
4843                        if (at.getAnnotations().size() == 1) {
4844                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4845                        } else {
4846                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4847                            for (JCAnnotation an : at.getAnnotations()) {
4848                                comps.add(an.attribute);
4849                            }
4850                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4851                        }
4852                        repeat = false;
4853                    }
4854                    enclTr = at.underlyingType;
4855                    // enclTy doesn't need to be changed
4856                } else if (enclTr.hasTag(IDENT)) {
4857                    repeat = false;
4858                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4859                    JCWildcard wc = (JCWildcard) enclTr;
4860                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4861                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4862                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4863                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4864                    } else {
4865                        // Nothing to do for UNBOUND
4866                    }
4867                    repeat = false;
4868                } else if (enclTr.hasTag(TYPEARRAY)) {
4869                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4870                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4871                    repeat = false;
4872                } else if (enclTr.hasTag(TYPEUNION)) {
4873                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4874                    for (JCTree t : ut.getTypeAlternatives()) {
4875                        validateAnnotatedType(t, t.type);
4876                    }
4877                    repeat = false;
4878                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4879                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4880                    for (JCTree t : it.getBounds()) {
4881                        validateAnnotatedType(t, t.type);
4882                    }
4883                    repeat = false;
4884                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4885                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4886                    repeat = false;
4887                } else {
4888                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4889                            " within: "+ errtree + " with kind: " + errtree.getKind());
4890                }
4891            }
4892        }
4893
4894        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4895                Symbol sym) {
4896            // Ensure that no declaration annotations are present.
4897            // Note that a tree type might be an AnnotatedType with
4898            // empty annotations, if only declaration annotations were given.
4899            // This method will raise an error for such a type.
4900            for (JCAnnotation ai : annotations) {
4901                if (!ai.type.isErroneous() &&
4902                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4903                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4904                }
4905            }
4906        }
4907    }
4908
4909    // <editor-fold desc="post-attribution visitor">
4910
4911    /**
4912     * Handle missing types/symbols in an AST. This routine is useful when
4913     * the compiler has encountered some errors (which might have ended up
4914     * terminating attribution abruptly); if the compiler is used in fail-over
4915     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4916     * prevents NPE to be progagated during subsequent compilation steps.
4917     */
4918    public void postAttr(JCTree tree) {
4919        new PostAttrAnalyzer().scan(tree);
4920    }
4921
4922    class PostAttrAnalyzer extends TreeScanner {
4923
4924        private void initTypeIfNeeded(JCTree that) {
4925            if (that.type == null) {
4926                if (that.hasTag(METHODDEF)) {
4927                    that.type = dummyMethodType((JCMethodDecl)that);
4928                } else {
4929                    that.type = syms.unknownType;
4930                }
4931            }
4932        }
4933
4934        /* Construct a dummy method type. If we have a method declaration,
4935         * and the declared return type is void, then use that return type
4936         * instead of UNKNOWN to avoid spurious error messages in lambda
4937         * bodies (see:JDK-8041704).
4938         */
4939        private Type dummyMethodType(JCMethodDecl md) {
4940            Type restype = syms.unknownType;
4941            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4942                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4943                if (prim.typetag == VOID)
4944                    restype = syms.voidType;
4945            }
4946            return new MethodType(List.nil(), restype,
4947                                  List.nil(), syms.methodClass);
4948        }
4949        private Type dummyMethodType() {
4950            return dummyMethodType(null);
4951        }
4952
4953        @Override
4954        public void scan(JCTree tree) {
4955            if (tree == null) return;
4956            if (tree instanceof JCExpression) {
4957                initTypeIfNeeded(tree);
4958            }
4959            super.scan(tree);
4960        }
4961
4962        @Override
4963        public void visitIdent(JCIdent that) {
4964            if (that.sym == null) {
4965                that.sym = syms.unknownSymbol;
4966            }
4967        }
4968
4969        @Override
4970        public void visitSelect(JCFieldAccess that) {
4971            if (that.sym == null) {
4972                that.sym = syms.unknownSymbol;
4973            }
4974            super.visitSelect(that);
4975        }
4976
4977        @Override
4978        public void visitClassDef(JCClassDecl that) {
4979            initTypeIfNeeded(that);
4980            if (that.sym == null) {
4981                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4982            }
4983            super.visitClassDef(that);
4984        }
4985
4986        @Override
4987        public void visitMethodDef(JCMethodDecl that) {
4988            initTypeIfNeeded(that);
4989            if (that.sym == null) {
4990                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4991            }
4992            super.visitMethodDef(that);
4993        }
4994
4995        @Override
4996        public void visitVarDef(JCVariableDecl that) {
4997            initTypeIfNeeded(that);
4998            if (that.sym == null) {
4999                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5000                that.sym.adr = 0;
5001            }
5002            if (that.vartype == null) {
5003                that.vartype = make.Erroneous();
5004            }
5005            super.visitVarDef(that);
5006        }
5007
5008        @Override
5009        public void visitNewClass(JCNewClass that) {
5010            if (that.constructor == null) {
5011                that.constructor = new MethodSymbol(0, names.init,
5012                        dummyMethodType(), syms.noSymbol);
5013            }
5014            if (that.constructorType == null) {
5015                that.constructorType = syms.unknownType;
5016            }
5017            super.visitNewClass(that);
5018        }
5019
5020        @Override
5021        public void visitAssignop(JCAssignOp that) {
5022            if (that.operator == null) {
5023                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5024                        -1, syms.noSymbol);
5025            }
5026            super.visitAssignop(that);
5027        }
5028
5029        @Override
5030        public void visitBinary(JCBinary that) {
5031            if (that.operator == null) {
5032                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5033                        -1, syms.noSymbol);
5034            }
5035            super.visitBinary(that);
5036        }
5037
5038        @Override
5039        public void visitUnary(JCUnary that) {
5040            if (that.operator == null) {
5041                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5042                        -1, syms.noSymbol);
5043            }
5044            super.visitUnary(that);
5045        }
5046
5047        @Override
5048        public void visitLambda(JCLambda that) {
5049            super.visitLambda(that);
5050            if (that.targets == null) {
5051                that.targets = List.nil();
5052            }
5053        }
5054
5055        @Override
5056        public void visitReference(JCMemberReference that) {
5057            super.visitReference(that);
5058            if (that.sym == null) {
5059                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5060                        syms.noSymbol);
5061            }
5062            if (that.targets == null) {
5063                that.targets = List.nil();
5064            }
5065        }
5066    }
5067    // </editor-fold>
5068
5069    public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5070        new TreeScanner() {
5071            Symbol packge = pkg;
5072            @Override
5073            public void visitIdent(JCIdent that) {
5074                that.sym = packge;
5075            }
5076
5077            @Override
5078            public void visitSelect(JCFieldAccess that) {
5079                that.sym = packge;
5080                packge = packge.owner;
5081                super.visitSelect(that);
5082            }
5083        }.scan(pid);
5084    }
5085
5086}
5087