Attr.java revision 3591:8382e92dd1f9
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Directive.RequiresFlag;
40import com.sun.tools.javac.code.Lint.LintCategory;
41import com.sun.tools.javac.code.Scope.WriteableScope;
42import com.sun.tools.javac.code.Symbol.*;
43import com.sun.tools.javac.code.Type.*;
44import com.sun.tools.javac.code.TypeMetadata.Annotations;
45import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
46import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
47import com.sun.tools.javac.comp.Check.CheckContext;
48import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
49import com.sun.tools.javac.comp.Infer.FreeTypeListener;
50import com.sun.tools.javac.jvm.*;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
53import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
54import com.sun.tools.javac.resources.CompilerProperties.Errors;
55import com.sun.tools.javac.resources.CompilerProperties.Fragments;
56import com.sun.tools.javac.tree.*;
57import com.sun.tools.javac.tree.JCTree.*;
58import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
59import com.sun.tools.javac.util.*;
60import com.sun.tools.javac.util.DefinedBy.Api;
61import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
62import com.sun.tools.javac.util.JCDiagnostic.Fragment;
63import com.sun.tools.javac.util.List;
64
65import static com.sun.tools.javac.code.Flags.*;
66import static com.sun.tools.javac.code.Flags.ANNOTATION;
67import static com.sun.tools.javac.code.Flags.BLOCK;
68import static com.sun.tools.javac.code.Kinds.*;
69import static com.sun.tools.javac.code.Kinds.Kind.*;
70import static com.sun.tools.javac.code.TypeTag.*;
71import static com.sun.tools.javac.code.TypeTag.WILDCARD;
72import static com.sun.tools.javac.tree.JCTree.Tag.*;
73import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
74
75/** This is the main context-dependent analysis phase in GJC. It
76 *  encompasses name resolution, type checking and constant folding as
77 *  subtasks. Some subtasks involve auxiliary classes.
78 *  @see Check
79 *  @see Resolve
80 *  @see ConstFold
81 *  @see Infer
82 *
83 *  <p><b>This is NOT part of any supported API.
84 *  If you write code that depends on this, you do so at your own risk.
85 *  This code and its internal interfaces are subject to change or
86 *  deletion without notice.</b>
87 */
88public class Attr extends JCTree.Visitor {
89    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
90
91    final Names names;
92    final Log log;
93    final Symtab syms;
94    final Resolve rs;
95    final Operators operators;
96    final Infer infer;
97    final Analyzer analyzer;
98    final DeferredAttr deferredAttr;
99    final Check chk;
100    final Flow flow;
101    final MemberEnter memberEnter;
102    final TypeEnter typeEnter;
103    final TreeMaker make;
104    final ConstFold cfolder;
105    final Enter enter;
106    final Target target;
107    final Types types;
108    final JCDiagnostic.Factory diags;
109    final TypeAnnotations typeAnnotations;
110    final DeferredLintHandler deferredLintHandler;
111    final TypeEnvs typeEnvs;
112    final Dependencies dependencies;
113    final Annotate annotate;
114    final ArgumentAttr argumentAttr;
115
116    public static Attr instance(Context context) {
117        Attr instance = context.get(attrKey);
118        if (instance == null)
119            instance = new Attr(context);
120        return instance;
121    }
122
123    protected Attr(Context context) {
124        context.put(attrKey, this);
125
126        names = Names.instance(context);
127        log = Log.instance(context);
128        syms = Symtab.instance(context);
129        rs = Resolve.instance(context);
130        operators = Operators.instance(context);
131        chk = Check.instance(context);
132        flow = Flow.instance(context);
133        memberEnter = MemberEnter.instance(context);
134        typeEnter = TypeEnter.instance(context);
135        make = TreeMaker.instance(context);
136        enter = Enter.instance(context);
137        infer = Infer.instance(context);
138        analyzer = Analyzer.instance(context);
139        deferredAttr = DeferredAttr.instance(context);
140        cfolder = ConstFold.instance(context);
141        target = Target.instance(context);
142        types = Types.instance(context);
143        diags = JCDiagnostic.Factory.instance(context);
144        annotate = Annotate.instance(context);
145        typeAnnotations = TypeAnnotations.instance(context);
146        deferredLintHandler = DeferredLintHandler.instance(context);
147        typeEnvs = TypeEnvs.instance(context);
148        dependencies = Dependencies.instance(context);
149        argumentAttr = ArgumentAttr.instance(context);
150
151        Options options = Options.instance(context);
152
153        Source source = Source.instance(context);
154        allowStringsInSwitch = source.allowStringsInSwitch();
155        allowPoly = source.allowPoly();
156        allowTypeAnnos = source.allowTypeAnnotations();
157        allowLambda = source.allowLambda();
158        allowDefaultMethods = source.allowDefaultMethods();
159        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
160        sourceName = source.name;
161        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
162
163        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
164        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
165        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
166        methodAttrInfo = new MethodAttrInfo();
167        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
168        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
169        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
170    }
171
172    /** Switch: support target-typing inference
173     */
174    boolean allowPoly;
175
176    /** Switch: support type annotations.
177     */
178    boolean allowTypeAnnos;
179
180    /** Switch: support lambda expressions ?
181     */
182    boolean allowLambda;
183
184    /** Switch: support default methods ?
185     */
186    boolean allowDefaultMethods;
187
188    /** Switch: static interface methods enabled?
189     */
190    boolean allowStaticInterfaceMethods;
191
192    /**
193     * Switch: warn about use of variable before declaration?
194     * RFE: 6425594
195     */
196    boolean useBeforeDeclarationWarning;
197
198    /**
199     * Switch: allow strings in switch?
200     */
201    boolean allowStringsInSwitch;
202
203    /**
204     * Switch: name of source level; used for error reporting.
205     */
206    String sourceName;
207
208    /** Check kind and type of given tree against protokind and prototype.
209     *  If check succeeds, store type in tree and return it.
210     *  If check fails, store errType in tree and return it.
211     *  No checks are performed if the prototype is a method type.
212     *  It is not necessary in this case since we know that kind and type
213     *  are correct.
214     *
215     *  @param tree     The tree whose kind and type is checked
216     *  @param found    The computed type of the tree
217     *  @param ownkind  The computed kind of the tree
218     *  @param resultInfo  The expected result of the tree
219     */
220    Type check(final JCTree tree,
221               final Type found,
222               final KindSelector ownkind,
223               final ResultInfo resultInfo) {
224        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
225        Type owntype;
226        boolean shouldCheck = !found.hasTag(ERROR) &&
227                !resultInfo.pt.hasTag(METHOD) &&
228                !resultInfo.pt.hasTag(FORALL);
229        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
230            log.error(tree.pos(), "unexpected.type",
231            resultInfo.pkind.kindNames(),
232            ownkind.kindNames());
233            owntype = types.createErrorType(found);
234        } else if (allowPoly && inferenceContext.free(found)) {
235            //delay the check if there are inference variables in the found type
236            //this means we are dealing with a partially inferred poly expression
237            owntype = shouldCheck ? resultInfo.pt : found;
238            if (resultInfo.checkMode.installPostInferenceHook()) {
239                inferenceContext.addFreeTypeListener(List.of(found),
240                        instantiatedContext -> {
241                            ResultInfo pendingResult =
242                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
243                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
244                        });
245            }
246        } else {
247            owntype = shouldCheck ?
248            resultInfo.check(tree, found) :
249            found;
250        }
251        if (resultInfo.checkMode.updateTreeType()) {
252            tree.type = owntype;
253        }
254        return owntype;
255    }
256
257    /** Is given blank final variable assignable, i.e. in a scope where it
258     *  may be assigned to even though it is final?
259     *  @param v      The blank final variable.
260     *  @param env    The current environment.
261     */
262    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
263        Symbol owner = env.info.scope.owner;
264           // owner refers to the innermost variable, method or
265           // initializer block declaration at this point.
266        return
267            v.owner == owner
268            ||
269            ((owner.name == names.init ||    // i.e. we are in a constructor
270              owner.kind == VAR ||           // i.e. we are in a variable initializer
271              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
272             &&
273             v.owner == owner.owner
274             &&
275             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
276    }
277
278    /** Check that variable can be assigned to.
279     *  @param pos    The current source code position.
280     *  @param v      The assigned variable
281     *  @param base   If the variable is referred to in a Select, the part
282     *                to the left of the `.', null otherwise.
283     *  @param env    The current environment.
284     */
285    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
286        if (v.name == names._this) {
287            log.error(pos, Errors.CantAssignValToThis);
288        } else if ((v.flags() & FINAL) != 0 &&
289            ((v.flags() & HASINIT) != 0
290             ||
291             !((base == null ||
292               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
293               isAssignableAsBlankFinal(v, env)))) {
294            if (v.isResourceVariable()) { //TWR resource
295                log.error(pos, "try.resource.may.not.be.assigned", v);
296            } else {
297                log.error(pos, "cant.assign.val.to.final.var", v);
298            }
299        }
300    }
301
302    /** Does tree represent a static reference to an identifier?
303     *  It is assumed that tree is either a SELECT or an IDENT.
304     *  We have to weed out selects from non-type names here.
305     *  @param tree    The candidate tree.
306     */
307    boolean isStaticReference(JCTree tree) {
308        if (tree.hasTag(SELECT)) {
309            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
310            if (lsym == null || lsym.kind != TYP) {
311                return false;
312            }
313        }
314        return true;
315    }
316
317    /** Is this symbol a type?
318     */
319    static boolean isType(Symbol sym) {
320        return sym != null && sym.kind == TYP;
321    }
322
323    /** The current `this' symbol.
324     *  @param env    The current environment.
325     */
326    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
327        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
328    }
329
330    /** Attribute a parsed identifier.
331     * @param tree Parsed identifier name
332     * @param topLevel The toplevel to use
333     */
334    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
335        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
336        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
337                                           syms.errSymbol.name,
338                                           null, null, null, null);
339        localEnv.enclClass.sym = syms.errSymbol;
340        return attribIdent(tree, localEnv);
341    }
342
343    /** Attribute a parsed identifier.
344     * @param tree Parsed identifier name
345     * @param env The env to use
346     */
347    public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
348        return tree.accept(identAttributer, env);
349    }
350    // where
351        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
352        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
353            @Override @DefinedBy(Api.COMPILER_TREE)
354            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
355                Symbol site = visit(node.getExpression(), env);
356                if (site.kind == ERR || site.kind == ABSENT_TYP)
357                    return site;
358                Name name = (Name)node.getIdentifier();
359                if (site.kind == PCK) {
360                    env.toplevel.packge = (PackageSymbol)site;
361                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
362                            KindSelector.TYP_PCK);
363                } else {
364                    env.enclClass.sym = (ClassSymbol)site;
365                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
366                }
367            }
368
369            @Override @DefinedBy(Api.COMPILER_TREE)
370            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
371                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
372            }
373        }
374
375    public Type coerce(Type etype, Type ttype) {
376        return cfolder.coerce(etype, ttype);
377    }
378
379    public Type attribType(JCTree node, TypeSymbol sym) {
380        Env<AttrContext> env = typeEnvs.get(sym);
381        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
382        return attribTree(node, localEnv, unknownTypeInfo);
383    }
384
385    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
386        // Attribute qualifying package or class.
387        JCFieldAccess s = (JCFieldAccess)tree.qualid;
388        return attribTree(s.selected, env,
389                          new ResultInfo(tree.staticImport ?
390                                         KindSelector.TYP : KindSelector.TYP_PCK,
391                       Type.noType));
392    }
393
394    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
395        breakTree = tree;
396        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
397        try {
398            attribExpr(expr, env);
399        } catch (BreakAttr b) {
400            return b.env;
401        } catch (AssertionError ae) {
402            if (ae.getCause() instanceof BreakAttr) {
403                return ((BreakAttr)(ae.getCause())).env;
404            } else {
405                throw ae;
406            }
407        } finally {
408            breakTree = null;
409            log.useSource(prev);
410        }
411        return env;
412    }
413
414    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
415        breakTree = tree;
416        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
417        try {
418            attribStat(stmt, env);
419        } catch (BreakAttr b) {
420            return b.env;
421        } catch (AssertionError ae) {
422            if (ae.getCause() instanceof BreakAttr) {
423                return ((BreakAttr)(ae.getCause())).env;
424            } else {
425                throw ae;
426            }
427        } finally {
428            breakTree = null;
429            log.useSource(prev);
430        }
431        return env;
432    }
433
434    private JCTree breakTree = null;
435
436    private static class BreakAttr extends RuntimeException {
437        static final long serialVersionUID = -6924771130405446405L;
438        private Env<AttrContext> env;
439        private BreakAttr(Env<AttrContext> env) {
440            this.env = env;
441        }
442    }
443
444    /**
445     * Mode controlling behavior of Attr.Check
446     */
447    enum CheckMode {
448
449        NORMAL,
450
451        NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
452            @Override
453            public boolean updateTreeType() {
454                return false;
455            }
456        },
457        NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
458            @Override
459            public boolean installPostInferenceHook() {
460                return false;
461            }
462        };
463
464        public boolean updateTreeType() {
465            return true;
466        }
467        public boolean installPostInferenceHook() {
468            return true;
469        }
470    }
471
472
473    class ResultInfo {
474        final KindSelector pkind;
475        final Type pt;
476        final CheckContext checkContext;
477        final CheckMode checkMode;
478
479        ResultInfo(KindSelector pkind, Type pt) {
480            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
481        }
482
483        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
484            this(pkind, pt, chk.basicHandler, checkMode);
485        }
486
487        protected ResultInfo(KindSelector pkind,
488                             Type pt, CheckContext checkContext) {
489            this(pkind, pt, checkContext, CheckMode.NORMAL);
490        }
491
492        protected ResultInfo(KindSelector pkind,
493                             Type pt, CheckContext checkContext, CheckMode checkMode) {
494            this.pkind = pkind;
495            this.pt = pt;
496            this.checkContext = checkContext;
497            this.checkMode = checkMode;
498        }
499
500        protected void attr(JCTree tree, Env<AttrContext> env) {
501            tree.accept(Attr.this);
502        }
503
504        protected Type check(final DiagnosticPosition pos, final Type found) {
505            return chk.checkType(pos, found, pt, checkContext);
506        }
507
508        protected ResultInfo dup(Type newPt) {
509            return new ResultInfo(pkind, newPt, checkContext, checkMode);
510        }
511
512        protected ResultInfo dup(CheckContext newContext) {
513            return new ResultInfo(pkind, pt, newContext, checkMode);
514        }
515
516        protected ResultInfo dup(Type newPt, CheckContext newContext) {
517            return new ResultInfo(pkind, newPt, newContext, checkMode);
518        }
519
520        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
521            return new ResultInfo(pkind, newPt, newContext, newMode);
522        }
523
524        protected ResultInfo dup(CheckMode newMode) {
525            return new ResultInfo(pkind, pt, checkContext, newMode);
526        }
527
528        @Override
529        public String toString() {
530            if (pt != null) {
531                return pt.toString();
532            } else {
533                return "";
534            }
535        }
536    }
537
538    class MethodAttrInfo extends ResultInfo {
539        public MethodAttrInfo() {
540            this(chk.basicHandler);
541        }
542
543        public MethodAttrInfo(CheckContext checkContext) {
544            super(KindSelector.VAL, Infer.anyPoly, checkContext);
545        }
546
547        @Override
548        protected void attr(JCTree tree, Env<AttrContext> env) {
549            result = argumentAttr.attribArg(tree, env);
550        }
551
552        protected ResultInfo dup(Type newPt) {
553            throw new IllegalStateException();
554        }
555
556        protected ResultInfo dup(CheckContext newContext) {
557            return new MethodAttrInfo(newContext);
558        }
559
560        protected ResultInfo dup(Type newPt, CheckContext newContext) {
561            throw new IllegalStateException();
562        }
563
564        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
565            throw new IllegalStateException();
566        }
567
568        protected ResultInfo dup(CheckMode newMode) {
569            throw new IllegalStateException();
570        }
571    }
572
573    class RecoveryInfo extends ResultInfo {
574
575        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
576            super(KindSelector.VAL, Type.recoveryType,
577                  new Check.NestedCheckContext(chk.basicHandler) {
578                @Override
579                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
580                    return deferredAttrContext;
581                }
582                @Override
583                public boolean compatible(Type found, Type req, Warner warn) {
584                    return true;
585                }
586                @Override
587                public void report(DiagnosticPosition pos, JCDiagnostic details) {
588                    chk.basicHandler.report(pos, details);
589                }
590            });
591        }
592    }
593
594    final ResultInfo statInfo;
595    final ResultInfo varAssignmentInfo;
596    final ResultInfo methodAttrInfo;
597    final ResultInfo unknownExprInfo;
598    final ResultInfo unknownTypeInfo;
599    final ResultInfo unknownTypeExprInfo;
600    final ResultInfo recoveryInfo;
601
602    Type pt() {
603        return resultInfo.pt;
604    }
605
606    KindSelector pkind() {
607        return resultInfo.pkind;
608    }
609
610/* ************************************************************************
611 * Visitor methods
612 *************************************************************************/
613
614    /** Visitor argument: the current environment.
615     */
616    Env<AttrContext> env;
617
618    /** Visitor argument: the currently expected attribution result.
619     */
620    ResultInfo resultInfo;
621
622    /** Visitor result: the computed type.
623     */
624    Type result;
625
626    /** Visitor method: attribute a tree, catching any completion failure
627     *  exceptions. Return the tree's type.
628     *
629     *  @param tree    The tree to be visited.
630     *  @param env     The environment visitor argument.
631     *  @param resultInfo   The result info visitor argument.
632     */
633    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
634        Env<AttrContext> prevEnv = this.env;
635        ResultInfo prevResult = this.resultInfo;
636        try {
637            this.env = env;
638            this.resultInfo = resultInfo;
639            resultInfo.attr(tree, env);
640            if (tree == breakTree &&
641                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
642                throw new BreakAttr(copyEnv(env));
643            }
644            return result;
645        } catch (CompletionFailure ex) {
646            tree.type = syms.errType;
647            return chk.completionError(tree.pos(), ex);
648        } finally {
649            this.env = prevEnv;
650            this.resultInfo = prevResult;
651        }
652    }
653
654    Env<AttrContext> copyEnv(Env<AttrContext> env) {
655        Env<AttrContext> newEnv =
656                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
657        if (newEnv.outer != null) {
658            newEnv.outer = copyEnv(newEnv.outer);
659        }
660        return newEnv;
661    }
662
663    WriteableScope copyScope(WriteableScope sc) {
664        WriteableScope newScope = WriteableScope.create(sc.owner);
665        List<Symbol> elemsList = List.nil();
666        for (Symbol sym : sc.getSymbols()) {
667            elemsList = elemsList.prepend(sym);
668        }
669        for (Symbol s : elemsList) {
670            newScope.enter(s);
671        }
672        return newScope;
673    }
674
675    /** Derived visitor method: attribute an expression tree.
676     */
677    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
678        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
679    }
680
681    /** Derived visitor method: attribute an expression tree with
682     *  no constraints on the computed type.
683     */
684    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
685        return attribTree(tree, env, unknownExprInfo);
686    }
687
688    /** Derived visitor method: attribute a type tree.
689     */
690    public Type attribType(JCTree tree, Env<AttrContext> env) {
691        Type result = attribType(tree, env, Type.noType);
692        return result;
693    }
694
695    /** Derived visitor method: attribute a type tree.
696     */
697    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
698        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
699        return result;
700    }
701
702    /** Derived visitor method: attribute a statement or definition tree.
703     */
704    public Type attribStat(JCTree tree, Env<AttrContext> env) {
705        Env<AttrContext> analyzeEnv =
706                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
707        try {
708            return attribTree(tree, env, statInfo);
709        } finally {
710            analyzer.analyzeIfNeeded(tree, analyzeEnv);
711        }
712    }
713
714    /** Attribute a list of expressions, returning a list of types.
715     */
716    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
717        ListBuffer<Type> ts = new ListBuffer<>();
718        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
719            ts.append(attribExpr(l.head, env, pt));
720        return ts.toList();
721    }
722
723    /** Attribute a list of statements, returning nothing.
724     */
725    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
726        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
727            attribStat(l.head, env);
728    }
729
730    /** Attribute the arguments in a method call, returning the method kind.
731     */
732    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
733        KindSelector kind = initialKind;
734        for (JCExpression arg : trees) {
735            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
736            if (argtype.hasTag(DEFERRED)) {
737                kind = KindSelector.of(KindSelector.POLY, kind);
738            }
739            argtypes.append(argtype);
740        }
741        return kind;
742    }
743
744    /** Attribute a type argument list, returning a list of types.
745     *  Caller is responsible for calling checkRefTypes.
746     */
747    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
748        ListBuffer<Type> argtypes = new ListBuffer<>();
749        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
750            argtypes.append(attribType(l.head, env));
751        return argtypes.toList();
752    }
753
754    /** Attribute a type argument list, returning a list of types.
755     *  Check that all the types are references.
756     */
757    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
758        List<Type> types = attribAnyTypes(trees, env);
759        return chk.checkRefTypes(trees, types);
760    }
761
762    /**
763     * Attribute type variables (of generic classes or methods).
764     * Compound types are attributed later in attribBounds.
765     * @param typarams the type variables to enter
766     * @param env      the current environment
767     */
768    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
769        for (JCTypeParameter tvar : typarams) {
770            TypeVar a = (TypeVar)tvar.type;
771            a.tsym.flags_field |= UNATTRIBUTED;
772            a.bound = Type.noType;
773            if (!tvar.bounds.isEmpty()) {
774                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
775                for (JCExpression bound : tvar.bounds.tail)
776                    bounds = bounds.prepend(attribType(bound, env));
777                types.setBounds(a, bounds.reverse());
778            } else {
779                // if no bounds are given, assume a single bound of
780                // java.lang.Object.
781                types.setBounds(a, List.of(syms.objectType));
782            }
783            a.tsym.flags_field &= ~UNATTRIBUTED;
784        }
785        for (JCTypeParameter tvar : typarams) {
786            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
787        }
788    }
789
790    /**
791     * Attribute the type references in a list of annotations.
792     */
793    void attribAnnotationTypes(List<JCAnnotation> annotations,
794                               Env<AttrContext> env) {
795        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
796            JCAnnotation a = al.head;
797            attribType(a.annotationType, env);
798        }
799    }
800
801    /**
802     * Attribute a "lazy constant value".
803     *  @param env         The env for the const value
804     *  @param variable    The initializer for the const value
805     *  @param type        The expected type, or null
806     *  @see VarSymbol#setLazyConstValue
807     */
808    public Object attribLazyConstantValue(Env<AttrContext> env,
809                                      JCVariableDecl variable,
810                                      Type type) {
811
812        DiagnosticPosition prevLintPos
813                = deferredLintHandler.setPos(variable.pos());
814
815        final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
816        try {
817            Type itype = attribExpr(variable.init, env, type);
818            if (itype.constValue() != null) {
819                return coerce(itype, type).constValue();
820            } else {
821                return null;
822            }
823        } finally {
824            log.useSource(prevSource);
825            deferredLintHandler.setPos(prevLintPos);
826        }
827    }
828
829    /** Attribute type reference in an `extends' or `implements' clause.
830     *  Supertypes of anonymous inner classes are usually already attributed.
831     *
832     *  @param tree              The tree making up the type reference.
833     *  @param env               The environment current at the reference.
834     *  @param classExpected     true if only a class is expected here.
835     *  @param interfaceExpected true if only an interface is expected here.
836     */
837    Type attribBase(JCTree tree,
838                    Env<AttrContext> env,
839                    boolean classExpected,
840                    boolean interfaceExpected,
841                    boolean checkExtensible) {
842        Type t = tree.type != null ?
843            tree.type :
844            attribType(tree, env);
845        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
846    }
847    Type checkBase(Type t,
848                   JCTree tree,
849                   Env<AttrContext> env,
850                   boolean classExpected,
851                   boolean interfaceExpected,
852                   boolean checkExtensible) {
853        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
854                (((JCTypeApply) tree).clazz).pos() : tree.pos();
855        if (t.tsym.isAnonymous()) {
856            log.error(pos, "cant.inherit.from.anon");
857            return types.createErrorType(t);
858        }
859        if (t.isErroneous())
860            return t;
861        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
862            // check that type variable is already visible
863            if (t.getUpperBound() == null) {
864                log.error(pos, "illegal.forward.ref");
865                return types.createErrorType(t);
866            }
867        } else {
868            t = chk.checkClassType(pos, t, checkExtensible);
869        }
870        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
871            log.error(pos, "intf.expected.here");
872            // return errType is necessary since otherwise there might
873            // be undetected cycles which cause attribution to loop
874            return types.createErrorType(t);
875        } else if (checkExtensible &&
876                   classExpected &&
877                   (t.tsym.flags() & INTERFACE) != 0) {
878            log.error(pos, "no.intf.expected.here");
879            return types.createErrorType(t);
880        }
881        if (checkExtensible &&
882            ((t.tsym.flags() & FINAL) != 0)) {
883            log.error(pos,
884                      "cant.inherit.from.final", t.tsym);
885        }
886        chk.checkNonCyclic(pos, t);
887        return t;
888    }
889
890    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
891        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
892        id.type = env.info.scope.owner.enclClass().type;
893        id.sym = env.info.scope.owner.enclClass();
894        return id.type;
895    }
896
897    public void visitClassDef(JCClassDecl tree) {
898        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
899                Optional.ofNullable(env.info.isSpeculative ?
900                        argumentAttr.withLocalCacheContext() : null);
901        try {
902            // Local and anonymous classes have not been entered yet, so we need to
903            // do it now.
904            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
905                enter.classEnter(tree, env);
906            } else {
907                // If this class declaration is part of a class level annotation,
908                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
909                // order to simplify later steps and allow for sensible error
910                // messages.
911                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
912                    enter.classEnter(tree, env);
913            }
914
915            ClassSymbol c = tree.sym;
916            if (c == null) {
917                // exit in case something drastic went wrong during enter.
918                result = null;
919            } else {
920                // make sure class has been completed:
921                c.complete();
922
923                // If this class appears as an anonymous class
924                // in a superclass constructor call where
925                // no explicit outer instance is given,
926                // disable implicit outer instance from being passed.
927                // (This would be an illegal access to "this before super").
928                if (env.info.isSelfCall &&
929                        env.tree.hasTag(NEWCLASS) &&
930                        ((JCNewClass)env.tree).encl == null) {
931                    c.flags_field |= NOOUTERTHIS;
932                }
933                attribClass(tree.pos(), c);
934                result = tree.type = c.type;
935            }
936        } finally {
937            localCacheContext.ifPresent(LocalCacheContext::leave);
938        }
939    }
940
941    public void visitMethodDef(JCMethodDecl tree) {
942        MethodSymbol m = tree.sym;
943        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
944
945        Lint lint = env.info.lint.augment(m);
946        Lint prevLint = chk.setLint(lint);
947        MethodSymbol prevMethod = chk.setMethod(m);
948        try {
949            deferredLintHandler.flush(tree.pos());
950            chk.checkDeprecatedAnnotation(tree.pos(), m);
951
952
953            // Create a new environment with local scope
954            // for attributing the method.
955            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
956            localEnv.info.lint = lint;
957
958            attribStats(tree.typarams, localEnv);
959
960            // If we override any other methods, check that we do so properly.
961            // JLS ???
962            if (m.isStatic()) {
963                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
964            } else {
965                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
966            }
967            chk.checkOverride(env, tree, m);
968
969            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
970                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
971            }
972
973            // Enter all type parameters into the local method scope.
974            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
975                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
976
977            ClassSymbol owner = env.enclClass.sym;
978            if ((owner.flags() & ANNOTATION) != 0 &&
979                    tree.params.nonEmpty())
980                log.error(tree.params.head.pos(),
981                        "intf.annotation.members.cant.have.params");
982
983            // Attribute all value parameters.
984            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
985                attribStat(l.head, localEnv);
986            }
987
988            chk.checkVarargsMethodDecl(localEnv, tree);
989
990            // Check that type parameters are well-formed.
991            chk.validate(tree.typarams, localEnv);
992
993            // Check that result type is well-formed.
994            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
995                chk.validate(tree.restype, localEnv);
996
997            // Check that receiver type is well-formed.
998            if (tree.recvparam != null) {
999                // Use a new environment to check the receiver parameter.
1000                // Otherwise I get "might not have been initialized" errors.
1001                // Is there a better way?
1002                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1003                attribType(tree.recvparam, newEnv);
1004                chk.validate(tree.recvparam, newEnv);
1005            }
1006
1007            // annotation method checks
1008            if ((owner.flags() & ANNOTATION) != 0) {
1009                // annotation method cannot have throws clause
1010                if (tree.thrown.nonEmpty()) {
1011                    log.error(tree.thrown.head.pos(),
1012                            "throws.not.allowed.in.intf.annotation");
1013                }
1014                // annotation method cannot declare type-parameters
1015                if (tree.typarams.nonEmpty()) {
1016                    log.error(tree.typarams.head.pos(),
1017                            "intf.annotation.members.cant.have.type.params");
1018                }
1019                // validate annotation method's return type (could be an annotation type)
1020                chk.validateAnnotationType(tree.restype);
1021                // ensure that annotation method does not clash with members of Object/Annotation
1022                chk.validateAnnotationMethod(tree.pos(), m);
1023            }
1024
1025            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1026                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1027
1028            if (tree.body == null) {
1029                // Empty bodies are only allowed for
1030                // abstract, native, or interface methods, or for methods
1031                // in a retrofit signature class.
1032                if (tree.defaultValue != null) {
1033                    if ((owner.flags() & ANNOTATION) == 0)
1034                        log.error(tree.pos(),
1035                                  "default.allowed.in.intf.annotation.member");
1036                }
1037                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1038                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
1039            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1040                if ((owner.flags() & INTERFACE) != 0) {
1041                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
1042                } else {
1043                    log.error(tree.pos(), "abstract.meth.cant.have.body");
1044                }
1045            } else if ((tree.mods.flags & NATIVE) != 0) {
1046                log.error(tree.pos(), "native.meth.cant.have.body");
1047            } else {
1048                // Add an implicit super() call unless an explicit call to
1049                // super(...) or this(...) is given
1050                // or we are compiling class java.lang.Object.
1051                if (tree.name == names.init && owner.type != syms.objectType) {
1052                    JCBlock body = tree.body;
1053                    if (body.stats.isEmpty() ||
1054                            !TreeInfo.isSelfCall(body.stats.head)) {
1055                        body.stats = body.stats.
1056                                prepend(typeEnter.SuperCall(make.at(body.pos),
1057                                        List.<Type>nil(),
1058                                        List.<JCVariableDecl>nil(),
1059                                        false));
1060                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1061                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1062                            TreeInfo.isSuperCall(body.stats.head)) {
1063                        // enum constructors are not allowed to call super
1064                        // directly, so make sure there aren't any super calls
1065                        // in enum constructors, except in the compiler
1066                        // generated one.
1067                        log.error(tree.body.stats.head.pos(),
1068                                "call.to.super.not.allowed.in.enum.ctor",
1069                                env.enclClass.sym);
1070                    }
1071                }
1072
1073                // Attribute all type annotations in the body
1074                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1075                annotate.flush();
1076
1077                // Attribute method body.
1078                attribStat(tree.body, localEnv);
1079            }
1080
1081            localEnv.info.scope.leave();
1082            result = tree.type = m.type;
1083        } finally {
1084            chk.setLint(prevLint);
1085            chk.setMethod(prevMethod);
1086        }
1087    }
1088
1089    public void visitVarDef(JCVariableDecl tree) {
1090        // Local variables have not been entered yet, so we need to do it now:
1091        if (env.info.scope.owner.kind == MTH) {
1092            if (tree.sym != null) {
1093                // parameters have already been entered
1094                env.info.scope.enter(tree.sym);
1095            } else {
1096                try {
1097                    annotate.blockAnnotations();
1098                    memberEnter.memberEnter(tree, env);
1099                } finally {
1100                    annotate.unblockAnnotations();
1101                }
1102            }
1103        } else {
1104            if (tree.init != null) {
1105                // Field initializer expression need to be entered.
1106                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1107                annotate.flush();
1108            }
1109        }
1110
1111        VarSymbol v = tree.sym;
1112        Lint lint = env.info.lint.augment(v);
1113        Lint prevLint = chk.setLint(lint);
1114
1115        // Check that the variable's declared type is well-formed.
1116        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1117                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1118                (tree.sym.flags() & PARAMETER) != 0;
1119        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1120
1121        try {
1122            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1123            deferredLintHandler.flush(tree.pos());
1124            chk.checkDeprecatedAnnotation(tree.pos(), v);
1125
1126            if (tree.init != null) {
1127                if ((v.flags_field & FINAL) == 0 ||
1128                    !memberEnter.needsLazyConstValue(tree.init)) {
1129                    // Not a compile-time constant
1130                    // Attribute initializer in a new environment
1131                    // with the declared variable as owner.
1132                    // Check that initializer conforms to variable's declared type.
1133                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1134                    initEnv.info.lint = lint;
1135                    // In order to catch self-references, we set the variable's
1136                    // declaration position to maximal possible value, effectively
1137                    // marking the variable as undefined.
1138                    initEnv.info.enclVar = v;
1139                    attribExpr(tree.init, initEnv, v.type);
1140                }
1141            }
1142            result = tree.type = v.type;
1143        }
1144        finally {
1145            chk.setLint(prevLint);
1146        }
1147    }
1148
1149    public void visitSkip(JCSkip tree) {
1150        result = null;
1151    }
1152
1153    public void visitBlock(JCBlock tree) {
1154        if (env.info.scope.owner.kind == TYP) {
1155            // Block is a static or instance initializer;
1156            // let the owner of the environment be a freshly
1157            // created BLOCK-method.
1158            Symbol fakeOwner =
1159                new MethodSymbol(tree.flags | BLOCK |
1160                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1161                    env.info.scope.owner);
1162            final Env<AttrContext> localEnv =
1163                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1164
1165            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1166            // Attribute all type annotations in the block
1167            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1168            annotate.flush();
1169            attribStats(tree.stats, localEnv);
1170
1171            {
1172                // Store init and clinit type annotations with the ClassSymbol
1173                // to allow output in Gen.normalizeDefs.
1174                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1175                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1176                if ((tree.flags & STATIC) != 0) {
1177                    cs.appendClassInitTypeAttributes(tas);
1178                } else {
1179                    cs.appendInitTypeAttributes(tas);
1180                }
1181            }
1182        } else {
1183            // Create a new local environment with a local scope.
1184            Env<AttrContext> localEnv =
1185                env.dup(tree, env.info.dup(env.info.scope.dup()));
1186            try {
1187                attribStats(tree.stats, localEnv);
1188            } finally {
1189                localEnv.info.scope.leave();
1190            }
1191        }
1192        result = null;
1193    }
1194
1195    public void visitDoLoop(JCDoWhileLoop tree) {
1196        attribStat(tree.body, env.dup(tree));
1197        attribExpr(tree.cond, env, syms.booleanType);
1198        result = null;
1199    }
1200
1201    public void visitWhileLoop(JCWhileLoop tree) {
1202        attribExpr(tree.cond, env, syms.booleanType);
1203        attribStat(tree.body, env.dup(tree));
1204        result = null;
1205    }
1206
1207    public void visitForLoop(JCForLoop tree) {
1208        Env<AttrContext> loopEnv =
1209            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1210        try {
1211            attribStats(tree.init, loopEnv);
1212            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1213            loopEnv.tree = tree; // before, we were not in loop!
1214            attribStats(tree.step, loopEnv);
1215            attribStat(tree.body, loopEnv);
1216            result = null;
1217        }
1218        finally {
1219            loopEnv.info.scope.leave();
1220        }
1221    }
1222
1223    public void visitForeachLoop(JCEnhancedForLoop tree) {
1224        Env<AttrContext> loopEnv =
1225            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1226        try {
1227            //the Formal Parameter of a for-each loop is not in the scope when
1228            //attributing the for-each expression; we mimick this by attributing
1229            //the for-each expression first (against original scope).
1230            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1231            attribStat(tree.var, loopEnv);
1232            chk.checkNonVoid(tree.pos(), exprType);
1233            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1234            if (elemtype == null) {
1235                // or perhaps expr implements Iterable<T>?
1236                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1237                if (base == null) {
1238                    log.error(tree.expr.pos(),
1239                            "foreach.not.applicable.to.type",
1240                            exprType,
1241                            diags.fragment("type.req.array.or.iterable"));
1242                    elemtype = types.createErrorType(exprType);
1243                } else {
1244                    List<Type> iterableParams = base.allparams();
1245                    elemtype = iterableParams.isEmpty()
1246                        ? syms.objectType
1247                        : types.wildUpperBound(iterableParams.head);
1248                }
1249            }
1250            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1251            loopEnv.tree = tree; // before, we were not in loop!
1252            attribStat(tree.body, loopEnv);
1253            result = null;
1254        }
1255        finally {
1256            loopEnv.info.scope.leave();
1257        }
1258    }
1259
1260    public void visitLabelled(JCLabeledStatement tree) {
1261        // Check that label is not used in an enclosing statement
1262        Env<AttrContext> env1 = env;
1263        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1264            if (env1.tree.hasTag(LABELLED) &&
1265                ((JCLabeledStatement) env1.tree).label == tree.label) {
1266                log.error(tree.pos(), "label.already.in.use",
1267                          tree.label);
1268                break;
1269            }
1270            env1 = env1.next;
1271        }
1272
1273        attribStat(tree.body, env.dup(tree));
1274        result = null;
1275    }
1276
1277    public void visitSwitch(JCSwitch tree) {
1278        Type seltype = attribExpr(tree.selector, env);
1279
1280        Env<AttrContext> switchEnv =
1281            env.dup(tree, env.info.dup(env.info.scope.dup()));
1282
1283        try {
1284
1285            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1286            boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1287            if (stringSwitch && !allowStringsInSwitch) {
1288                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1289            }
1290            if (!enumSwitch && !stringSwitch)
1291                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1292
1293            // Attribute all cases and
1294            // check that there are no duplicate case labels or default clauses.
1295            Set<Object> labels = new HashSet<>(); // The set of case labels.
1296            boolean hasDefault = false;      // Is there a default label?
1297            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1298                JCCase c = l.head;
1299                if (c.pat != null) {
1300                    if (enumSwitch) {
1301                        Symbol sym = enumConstant(c.pat, seltype);
1302                        if (sym == null) {
1303                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1304                        } else if (!labels.add(sym)) {
1305                            log.error(c.pos(), "duplicate.case.label");
1306                        }
1307                    } else {
1308                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1309                        if (!pattype.hasTag(ERROR)) {
1310                            if (pattype.constValue() == null) {
1311                                log.error(c.pat.pos(),
1312                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1313                            } else if (!labels.add(pattype.constValue())) {
1314                                log.error(c.pos(), "duplicate.case.label");
1315                            }
1316                        }
1317                    }
1318                } else if (hasDefault) {
1319                    log.error(c.pos(), "duplicate.default.label");
1320                } else {
1321                    hasDefault = true;
1322                }
1323                Env<AttrContext> caseEnv =
1324                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1325                try {
1326                    attribStats(c.stats, caseEnv);
1327                } finally {
1328                    caseEnv.info.scope.leave();
1329                    addVars(c.stats, switchEnv.info.scope);
1330                }
1331            }
1332
1333            result = null;
1334        }
1335        finally {
1336            switchEnv.info.scope.leave();
1337        }
1338    }
1339    // where
1340        /** Add any variables defined in stats to the switch scope. */
1341        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1342            for (;stats.nonEmpty(); stats = stats.tail) {
1343                JCTree stat = stats.head;
1344                if (stat.hasTag(VARDEF))
1345                    switchScope.enter(((JCVariableDecl) stat).sym);
1346            }
1347        }
1348    // where
1349    /** Return the selected enumeration constant symbol, or null. */
1350    private Symbol enumConstant(JCTree tree, Type enumType) {
1351        if (tree.hasTag(IDENT)) {
1352            JCIdent ident = (JCIdent)tree;
1353            Name name = ident.name;
1354            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1355                if (sym.kind == VAR) {
1356                    Symbol s = ident.sym = sym;
1357                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1358                    ident.type = s.type;
1359                    return ((s.flags_field & Flags.ENUM) == 0)
1360                        ? null : s;
1361                }
1362            }
1363        }
1364        return null;
1365    }
1366
1367    public void visitSynchronized(JCSynchronized tree) {
1368        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1369        attribStat(tree.body, env);
1370        result = null;
1371    }
1372
1373    public void visitTry(JCTry tree) {
1374        // Create a new local environment with a local
1375        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1376        try {
1377            boolean isTryWithResource = tree.resources.nonEmpty();
1378            // Create a nested environment for attributing the try block if needed
1379            Env<AttrContext> tryEnv = isTryWithResource ?
1380                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1381                localEnv;
1382            try {
1383                // Attribute resource declarations
1384                for (JCTree resource : tree.resources) {
1385                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1386                        @Override
1387                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1388                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1389                        }
1390                    };
1391                    ResultInfo twrResult =
1392                        new ResultInfo(KindSelector.VAR,
1393                                       syms.autoCloseableType,
1394                                       twrContext);
1395                    if (resource.hasTag(VARDEF)) {
1396                        attribStat(resource, tryEnv);
1397                        twrResult.check(resource, resource.type);
1398
1399                        //check that resource type cannot throw InterruptedException
1400                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1401
1402                        VarSymbol var = ((JCVariableDecl) resource).sym;
1403                        var.setData(ElementKind.RESOURCE_VARIABLE);
1404                    } else {
1405                        attribTree(resource, tryEnv, twrResult);
1406                    }
1407                }
1408                // Attribute body
1409                attribStat(tree.body, tryEnv);
1410            } finally {
1411                if (isTryWithResource)
1412                    tryEnv.info.scope.leave();
1413            }
1414
1415            // Attribute catch clauses
1416            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1417                JCCatch c = l.head;
1418                Env<AttrContext> catchEnv =
1419                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1420                try {
1421                    Type ctype = attribStat(c.param, catchEnv);
1422                    if (TreeInfo.isMultiCatch(c)) {
1423                        //multi-catch parameter is implicitly marked as final
1424                        c.param.sym.flags_field |= FINAL | UNION;
1425                    }
1426                    if (c.param.sym.kind == VAR) {
1427                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1428                    }
1429                    chk.checkType(c.param.vartype.pos(),
1430                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1431                                  syms.throwableType);
1432                    attribStat(c.body, catchEnv);
1433                } finally {
1434                    catchEnv.info.scope.leave();
1435                }
1436            }
1437
1438            // Attribute finalizer
1439            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1440            result = null;
1441        }
1442        finally {
1443            localEnv.info.scope.leave();
1444        }
1445    }
1446
1447    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1448        if (!resource.isErroneous() &&
1449            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1450            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1451            Symbol close = syms.noSymbol;
1452            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1453            try {
1454                close = rs.resolveQualifiedMethod(pos,
1455                        env,
1456                        resource,
1457                        names.close,
1458                        List.<Type>nil(),
1459                        List.<Type>nil());
1460            }
1461            finally {
1462                log.popDiagnosticHandler(discardHandler);
1463            }
1464            if (close.kind == MTH &&
1465                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1466                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1467                    env.info.lint.isEnabled(LintCategory.TRY)) {
1468                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1469            }
1470        }
1471    }
1472
1473    public void visitConditional(JCConditional tree) {
1474        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1475
1476        tree.polyKind = (!allowPoly ||
1477                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1478                isBooleanOrNumeric(env, tree)) ?
1479                PolyKind.STANDALONE : PolyKind.POLY;
1480
1481        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1482            //this means we are returning a poly conditional from void-compatible lambda expression
1483            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1484            result = tree.type = types.createErrorType(resultInfo.pt);
1485            return;
1486        }
1487
1488        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1489                unknownExprInfo :
1490                resultInfo.dup(conditionalContext(resultInfo.checkContext));
1491
1492        Type truetype = attribTree(tree.truepart, env, condInfo);
1493        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1494
1495        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1496        if (condtype.constValue() != null &&
1497                truetype.constValue() != null &&
1498                falsetype.constValue() != null &&
1499                !owntype.hasTag(NONE)) {
1500            //constant folding
1501            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1502        }
1503        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1504    }
1505    //where
1506        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1507            switch (tree.getTag()) {
1508                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1509                              ((JCLiteral)tree).typetag == BOOLEAN ||
1510                              ((JCLiteral)tree).typetag == BOT;
1511                case LAMBDA: case REFERENCE: return false;
1512                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1513                case CONDEXPR:
1514                    JCConditional condTree = (JCConditional)tree;
1515                    return isBooleanOrNumeric(env, condTree.truepart) &&
1516                            isBooleanOrNumeric(env, condTree.falsepart);
1517                case APPLY:
1518                    JCMethodInvocation speculativeMethodTree =
1519                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1520                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1521                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1522                            env.enclClass.type :
1523                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1524                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1525                    return primitiveOrBoxed(owntype);
1526                case NEWCLASS:
1527                    JCExpression className =
1528                            removeClassParams.translate(((JCNewClass)tree).clazz);
1529                    JCExpression speculativeNewClassTree =
1530                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1531                    return primitiveOrBoxed(speculativeNewClassTree.type);
1532                default:
1533                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1534                    return primitiveOrBoxed(speculativeType);
1535            }
1536        }
1537        //where
1538            boolean primitiveOrBoxed(Type t) {
1539                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1540            }
1541
1542            TreeTranslator removeClassParams = new TreeTranslator() {
1543                @Override
1544                public void visitTypeApply(JCTypeApply tree) {
1545                    result = translate(tree.clazz);
1546                }
1547            };
1548
1549        CheckContext conditionalContext(CheckContext checkContext) {
1550            return new Check.NestedCheckContext(checkContext) {
1551                //this will use enclosing check context to check compatibility of
1552                //subexpression against target type; if we are in a method check context,
1553                //depending on whether boxing is allowed, we could have incompatibilities
1554                @Override
1555                public void report(DiagnosticPosition pos, JCDiagnostic details) {
1556                    enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1557                }
1558            };
1559        }
1560
1561        /** Compute the type of a conditional expression, after
1562         *  checking that it exists.  See JLS 15.25. Does not take into
1563         *  account the special case where condition and both arms
1564         *  are constants.
1565         *
1566         *  @param pos      The source position to be used for error
1567         *                  diagnostics.
1568         *  @param thentype The type of the expression's then-part.
1569         *  @param elsetype The type of the expression's else-part.
1570         */
1571        Type condType(DiagnosticPosition pos,
1572                               Type thentype, Type elsetype) {
1573            // If same type, that is the result
1574            if (types.isSameType(thentype, elsetype))
1575                return thentype.baseType();
1576
1577            Type thenUnboxed = (thentype.isPrimitive())
1578                ? thentype : types.unboxedType(thentype);
1579            Type elseUnboxed = (elsetype.isPrimitive())
1580                ? elsetype : types.unboxedType(elsetype);
1581
1582            // Otherwise, if both arms can be converted to a numeric
1583            // type, return the least numeric type that fits both arms
1584            // (i.e. return larger of the two, or return int if one
1585            // arm is short, the other is char).
1586            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1587                // If one arm has an integer subrange type (i.e., byte,
1588                // short, or char), and the other is an integer constant
1589                // that fits into the subrange, return the subrange type.
1590                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1591                    elseUnboxed.hasTag(INT) &&
1592                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1593                    return thenUnboxed.baseType();
1594                }
1595                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1596                    thenUnboxed.hasTag(INT) &&
1597                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1598                    return elseUnboxed.baseType();
1599                }
1600
1601                for (TypeTag tag : primitiveTags) {
1602                    Type candidate = syms.typeOfTag[tag.ordinal()];
1603                    if (types.isSubtype(thenUnboxed, candidate) &&
1604                        types.isSubtype(elseUnboxed, candidate)) {
1605                        return candidate;
1606                    }
1607                }
1608            }
1609
1610            // Those were all the cases that could result in a primitive
1611            if (thentype.isPrimitive())
1612                thentype = types.boxedClass(thentype).type;
1613            if (elsetype.isPrimitive())
1614                elsetype = types.boxedClass(elsetype).type;
1615
1616            if (types.isSubtype(thentype, elsetype))
1617                return elsetype.baseType();
1618            if (types.isSubtype(elsetype, thentype))
1619                return thentype.baseType();
1620
1621            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1622                log.error(pos, "neither.conditional.subtype",
1623                          thentype, elsetype);
1624                return thentype.baseType();
1625            }
1626
1627            // both are known to be reference types.  The result is
1628            // lub(thentype,elsetype). This cannot fail, as it will
1629            // always be possible to infer "Object" if nothing better.
1630            return types.lub(thentype.baseType(), elsetype.baseType());
1631        }
1632
1633    final static TypeTag[] primitiveTags = new TypeTag[]{
1634        BYTE,
1635        CHAR,
1636        SHORT,
1637        INT,
1638        LONG,
1639        FLOAT,
1640        DOUBLE,
1641        BOOLEAN,
1642    };
1643
1644    public void visitIf(JCIf tree) {
1645        attribExpr(tree.cond, env, syms.booleanType);
1646        attribStat(tree.thenpart, env);
1647        if (tree.elsepart != null)
1648            attribStat(tree.elsepart, env);
1649        chk.checkEmptyIf(tree);
1650        result = null;
1651    }
1652
1653    public void visitExec(JCExpressionStatement tree) {
1654        //a fresh environment is required for 292 inference to work properly ---
1655        //see Infer.instantiatePolymorphicSignatureInstance()
1656        Env<AttrContext> localEnv = env.dup(tree);
1657        attribExpr(tree.expr, localEnv);
1658        result = null;
1659    }
1660
1661    public void visitBreak(JCBreak tree) {
1662        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1663        result = null;
1664    }
1665
1666    public void visitContinue(JCContinue tree) {
1667        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1668        result = null;
1669    }
1670    //where
1671        /** Return the target of a break or continue statement, if it exists,
1672         *  report an error if not.
1673         *  Note: The target of a labelled break or continue is the
1674         *  (non-labelled) statement tree referred to by the label,
1675         *  not the tree representing the labelled statement itself.
1676         *
1677         *  @param pos     The position to be used for error diagnostics
1678         *  @param tag     The tag of the jump statement. This is either
1679         *                 Tree.BREAK or Tree.CONTINUE.
1680         *  @param label   The label of the jump statement, or null if no
1681         *                 label is given.
1682         *  @param env     The environment current at the jump statement.
1683         */
1684        private JCTree findJumpTarget(DiagnosticPosition pos,
1685                                    JCTree.Tag tag,
1686                                    Name label,
1687                                    Env<AttrContext> env) {
1688            // Search environments outwards from the point of jump.
1689            Env<AttrContext> env1 = env;
1690            LOOP:
1691            while (env1 != null) {
1692                switch (env1.tree.getTag()) {
1693                    case LABELLED:
1694                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1695                        if (label == labelled.label) {
1696                            // If jump is a continue, check that target is a loop.
1697                            if (tag == CONTINUE) {
1698                                if (!labelled.body.hasTag(DOLOOP) &&
1699                                        !labelled.body.hasTag(WHILELOOP) &&
1700                                        !labelled.body.hasTag(FORLOOP) &&
1701                                        !labelled.body.hasTag(FOREACHLOOP))
1702                                    log.error(pos, "not.loop.label", label);
1703                                // Found labelled statement target, now go inwards
1704                                // to next non-labelled tree.
1705                                return TreeInfo.referencedStatement(labelled);
1706                            } else {
1707                                return labelled;
1708                            }
1709                        }
1710                        break;
1711                    case DOLOOP:
1712                    case WHILELOOP:
1713                    case FORLOOP:
1714                    case FOREACHLOOP:
1715                        if (label == null) return env1.tree;
1716                        break;
1717                    case SWITCH:
1718                        if (label == null && tag == BREAK) return env1.tree;
1719                        break;
1720                    case LAMBDA:
1721                    case METHODDEF:
1722                    case CLASSDEF:
1723                        break LOOP;
1724                    default:
1725                }
1726                env1 = env1.next;
1727            }
1728            if (label != null)
1729                log.error(pos, "undef.label", label);
1730            else if (tag == CONTINUE)
1731                log.error(pos, "cont.outside.loop");
1732            else
1733                log.error(pos, "break.outside.switch.loop");
1734            return null;
1735        }
1736
1737    public void visitReturn(JCReturn tree) {
1738        // Check that there is an enclosing method which is
1739        // nested within than the enclosing class.
1740        if (env.info.returnResult == null) {
1741            log.error(tree.pos(), "ret.outside.meth");
1742        } else {
1743            // Attribute return expression, if it exists, and check that
1744            // it conforms to result type of enclosing method.
1745            if (tree.expr != null) {
1746                if (env.info.returnResult.pt.hasTag(VOID)) {
1747                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1748                              diags.fragment("unexpected.ret.val"));
1749                }
1750                attribTree(tree.expr, env, env.info.returnResult);
1751            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1752                    !env.info.returnResult.pt.hasTag(NONE)) {
1753                env.info.returnResult.checkContext.report(tree.pos(),
1754                              diags.fragment("missing.ret.val"));
1755            }
1756        }
1757        result = null;
1758    }
1759
1760    public void visitThrow(JCThrow tree) {
1761        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1762        if (allowPoly) {
1763            chk.checkType(tree, owntype, syms.throwableType);
1764        }
1765        result = null;
1766    }
1767
1768    public void visitAssert(JCAssert tree) {
1769        attribExpr(tree.cond, env, syms.booleanType);
1770        if (tree.detail != null) {
1771            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1772        }
1773        result = null;
1774    }
1775
1776     /** Visitor method for method invocations.
1777     *  NOTE: The method part of an application will have in its type field
1778     *        the return type of the method, not the method's type itself!
1779     */
1780    public void visitApply(JCMethodInvocation tree) {
1781        // The local environment of a method application is
1782        // a new environment nested in the current one.
1783        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1784
1785        // The types of the actual method arguments.
1786        List<Type> argtypes;
1787
1788        // The types of the actual method type arguments.
1789        List<Type> typeargtypes = null;
1790
1791        Name methName = TreeInfo.name(tree.meth);
1792
1793        boolean isConstructorCall =
1794            methName == names._this || methName == names._super;
1795
1796        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1797        if (isConstructorCall) {
1798            // We are seeing a ...this(...) or ...super(...) call.
1799            // Check that this is the first statement in a constructor.
1800            if (checkFirstConstructorStat(tree, env)) {
1801
1802                // Record the fact
1803                // that this is a constructor call (using isSelfCall).
1804                localEnv.info.isSelfCall = true;
1805
1806                // Attribute arguments, yielding list of argument types.
1807                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1808                argtypes = argtypesBuf.toList();
1809                typeargtypes = attribTypes(tree.typeargs, localEnv);
1810
1811                // Variable `site' points to the class in which the called
1812                // constructor is defined.
1813                Type site = env.enclClass.sym.type;
1814                if (methName == names._super) {
1815                    if (site == syms.objectType) {
1816                        log.error(tree.meth.pos(), "no.superclass", site);
1817                        site = types.createErrorType(syms.objectType);
1818                    } else {
1819                        site = types.supertype(site);
1820                    }
1821                }
1822
1823                if (site.hasTag(CLASS)) {
1824                    Type encl = site.getEnclosingType();
1825                    while (encl != null && encl.hasTag(TYPEVAR))
1826                        encl = encl.getUpperBound();
1827                    if (encl.hasTag(CLASS)) {
1828                        // we are calling a nested class
1829
1830                        if (tree.meth.hasTag(SELECT)) {
1831                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1832
1833                            // We are seeing a prefixed call, of the form
1834                            //     <expr>.super(...).
1835                            // Check that the prefix expression conforms
1836                            // to the outer instance type of the class.
1837                            chk.checkRefType(qualifier.pos(),
1838                                             attribExpr(qualifier, localEnv,
1839                                                        encl));
1840                        } else if (methName == names._super) {
1841                            // qualifier omitted; check for existence
1842                            // of an appropriate implicit qualifier.
1843                            rs.resolveImplicitThis(tree.meth.pos(),
1844                                                   localEnv, site, true);
1845                        }
1846                    } else if (tree.meth.hasTag(SELECT)) {
1847                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1848                                  site.tsym);
1849                    }
1850
1851                    // if we're calling a java.lang.Enum constructor,
1852                    // prefix the implicit String and int parameters
1853                    if (site.tsym == syms.enumSym)
1854                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1855
1856                    // Resolve the called constructor under the assumption
1857                    // that we are referring to a superclass instance of the
1858                    // current instance (JLS ???).
1859                    boolean selectSuperPrev = localEnv.info.selectSuper;
1860                    localEnv.info.selectSuper = true;
1861                    localEnv.info.pendingResolutionPhase = null;
1862                    Symbol sym = rs.resolveConstructor(
1863                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1864                    localEnv.info.selectSuper = selectSuperPrev;
1865
1866                    // Set method symbol to resolved constructor...
1867                    TreeInfo.setSymbol(tree.meth, sym);
1868
1869                    // ...and check that it is legal in the current context.
1870                    // (this will also set the tree's type)
1871                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1872                    checkId(tree.meth, site, sym, localEnv,
1873                            new ResultInfo(kind, mpt));
1874                }
1875                // Otherwise, `site' is an error type and we do nothing
1876            }
1877            result = tree.type = syms.voidType;
1878        } else {
1879            // Otherwise, we are seeing a regular method call.
1880            // Attribute the arguments, yielding list of argument types, ...
1881            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1882            argtypes = argtypesBuf.toList();
1883            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1884
1885            // ... and attribute the method using as a prototype a methodtype
1886            // whose formal argument types is exactly the list of actual
1887            // arguments (this will also set the method symbol).
1888            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1889            localEnv.info.pendingResolutionPhase = null;
1890            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1891
1892            // Compute the result type.
1893            Type restype = mtype.getReturnType();
1894            if (restype.hasTag(WILDCARD))
1895                throw new AssertionError(mtype);
1896
1897            Type qualifier = (tree.meth.hasTag(SELECT))
1898                    ? ((JCFieldAccess) tree.meth).selected.type
1899                    : env.enclClass.sym.type;
1900            Symbol msym = TreeInfo.symbol(tree.meth);
1901            restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
1902
1903            chk.checkRefTypes(tree.typeargs, typeargtypes);
1904
1905            // Check that value of resulting type is admissible in the
1906            // current context.  Also, capture the return type
1907            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1908            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1909        }
1910        chk.validate(tree.typeargs, localEnv);
1911    }
1912    //where
1913        Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1914            if (msym != null &&
1915                    msym.owner == syms.objectType.tsym &&
1916                    methodName == names.getClass &&
1917                    argtypes.isEmpty()) {
1918                // as a special case, x.getClass() has type Class<? extends |X|>
1919                return new ClassType(restype.getEnclosingType(),
1920                        List.<Type>of(new WildcardType(types.erasure(qualifierType),
1921                                BoundKind.EXTENDS,
1922                                syms.boundClass)),
1923                        restype.tsym,
1924                        restype.getMetadata());
1925            } else if (msym != null &&
1926                    msym.owner == syms.arrayClass &&
1927                    methodName == names.clone &&
1928                    types.isArray(qualifierType)) {
1929                // as a special case, array.clone() has a result that is
1930                // the same as static type of the array being cloned
1931                return qualifierType;
1932            } else {
1933                return restype;
1934            }
1935        }
1936
1937        /** Check that given application node appears as first statement
1938         *  in a constructor call.
1939         *  @param tree   The application node
1940         *  @param env    The environment current at the application.
1941         */
1942        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1943            JCMethodDecl enclMethod = env.enclMethod;
1944            if (enclMethod != null && enclMethod.name == names.init) {
1945                JCBlock body = enclMethod.body;
1946                if (body.stats.head.hasTag(EXEC) &&
1947                    ((JCExpressionStatement) body.stats.head).expr == tree)
1948                    return true;
1949            }
1950            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1951                      TreeInfo.name(tree.meth));
1952            return false;
1953        }
1954
1955        /** Obtain a method type with given argument types.
1956         */
1957        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1958            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1959            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1960        }
1961
1962    public void visitNewClass(final JCNewClass tree) {
1963        Type owntype = types.createErrorType(tree.type);
1964
1965        // The local environment of a class creation is
1966        // a new environment nested in the current one.
1967        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1968
1969        // The anonymous inner class definition of the new expression,
1970        // if one is defined by it.
1971        JCClassDecl cdef = tree.def;
1972
1973        // If enclosing class is given, attribute it, and
1974        // complete class name to be fully qualified
1975        JCExpression clazz = tree.clazz; // Class field following new
1976        JCExpression clazzid;            // Identifier in class field
1977        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1978        annoclazzid = null;
1979
1980        if (clazz.hasTag(TYPEAPPLY)) {
1981            clazzid = ((JCTypeApply) clazz).clazz;
1982            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1983                annoclazzid = (JCAnnotatedType) clazzid;
1984                clazzid = annoclazzid.underlyingType;
1985            }
1986        } else {
1987            if (clazz.hasTag(ANNOTATED_TYPE)) {
1988                annoclazzid = (JCAnnotatedType) clazz;
1989                clazzid = annoclazzid.underlyingType;
1990            } else {
1991                clazzid = clazz;
1992            }
1993        }
1994
1995        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1996
1997        if (tree.encl != null) {
1998            // We are seeing a qualified new, of the form
1999            //    <expr>.new C <...> (...) ...
2000            // In this case, we let clazz stand for the name of the
2001            // allocated class C prefixed with the type of the qualifier
2002            // expression, so that we can
2003            // resolve it with standard techniques later. I.e., if
2004            // <expr> has type T, then <expr>.new C <...> (...)
2005            // yields a clazz T.C.
2006            Type encltype = chk.checkRefType(tree.encl.pos(),
2007                                             attribExpr(tree.encl, env));
2008            // TODO 308: in <expr>.new C, do we also want to add the type annotations
2009            // from expr to the combined type, or not? Yes, do this.
2010            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2011                                                 ((JCIdent) clazzid).name);
2012
2013            EndPosTable endPosTable = this.env.toplevel.endPositions;
2014            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2015            if (clazz.hasTag(ANNOTATED_TYPE)) {
2016                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2017                List<JCAnnotation> annos = annoType.annotations;
2018
2019                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2020                    clazzid1 = make.at(tree.pos).
2021                        TypeApply(clazzid1,
2022                                  ((JCTypeApply) clazz).arguments);
2023                }
2024
2025                clazzid1 = make.at(tree.pos).
2026                    AnnotatedType(annos, clazzid1);
2027            } else if (clazz.hasTag(TYPEAPPLY)) {
2028                clazzid1 = make.at(tree.pos).
2029                    TypeApply(clazzid1,
2030                              ((JCTypeApply) clazz).arguments);
2031            }
2032
2033            clazz = clazzid1;
2034        }
2035
2036        // Attribute clazz expression and store
2037        // symbol + type back into the attributed tree.
2038        Type clazztype;
2039
2040        try {
2041            env.info.isNewClass = true;
2042            clazztype = TreeInfo.isEnumInit(env.tree) ?
2043                attribIdentAsEnumType(env, (JCIdent)clazz) :
2044                attribType(clazz, env);
2045        } finally {
2046            env.info.isNewClass = false;
2047        }
2048
2049        clazztype = chk.checkDiamond(tree, clazztype);
2050        chk.validate(clazz, localEnv);
2051        if (tree.encl != null) {
2052            // We have to work in this case to store
2053            // symbol + type back into the attributed tree.
2054            tree.clazz.type = clazztype;
2055            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2056            clazzid.type = ((JCIdent) clazzid).sym.type;
2057            if (annoclazzid != null) {
2058                annoclazzid.type = clazzid.type;
2059            }
2060            if (!clazztype.isErroneous()) {
2061                if (cdef != null && clazztype.tsym.isInterface()) {
2062                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2063                } else if (clazztype.tsym.isStatic()) {
2064                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2065                }
2066            }
2067        } else if (!clazztype.tsym.isInterface() &&
2068                   clazztype.getEnclosingType().hasTag(CLASS)) {
2069            // Check for the existence of an apropos outer instance
2070            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2071        }
2072
2073        // Attribute constructor arguments.
2074        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2075        final KindSelector pkind =
2076            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2077        List<Type> argtypes = argtypesBuf.toList();
2078        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2079
2080        // If we have made no mistakes in the class type...
2081        if (clazztype.hasTag(CLASS)) {
2082            // Enums may not be instantiated except implicitly
2083            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2084                (!env.tree.hasTag(VARDEF) ||
2085                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2086                 ((JCVariableDecl) env.tree).init != tree))
2087                log.error(tree.pos(), "enum.cant.be.instantiated");
2088
2089            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2090                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2091            boolean skipNonDiamondPath = false;
2092            // Check that class is not abstract
2093            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2094                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2095                log.error(tree.pos(), "abstract.cant.be.instantiated",
2096                          clazztype.tsym);
2097                skipNonDiamondPath = true;
2098            } else if (cdef != null && clazztype.tsym.isInterface()) {
2099                // Check that no constructor arguments are given to
2100                // anonymous classes implementing an interface
2101                if (!argtypes.isEmpty())
2102                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2103
2104                if (!typeargtypes.isEmpty())
2105                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2106
2107                // Error recovery: pretend no arguments were supplied.
2108                argtypes = List.nil();
2109                typeargtypes = List.nil();
2110                skipNonDiamondPath = true;
2111            }
2112            if (TreeInfo.isDiamond(tree)) {
2113                ClassType site = new ClassType(clazztype.getEnclosingType(),
2114                            clazztype.tsym.type.getTypeArguments(),
2115                                               clazztype.tsym,
2116                                               clazztype.getMetadata());
2117
2118                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2119                diamondEnv.info.selectSuper = cdef != null;
2120                diamondEnv.info.pendingResolutionPhase = null;
2121
2122                //if the type of the instance creation expression is a class type
2123                //apply method resolution inference (JLS 15.12.2.7). The return type
2124                //of the resolved constructor will be a partially instantiated type
2125                Symbol constructor = rs.resolveDiamond(tree.pos(),
2126                            diamondEnv,
2127                            site,
2128                            argtypes,
2129                            typeargtypes);
2130                tree.constructor = constructor.baseSymbol();
2131
2132                final TypeSymbol csym = clazztype.tsym;
2133                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2134                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2135                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2136                constructorType = checkId(tree, site,
2137                        constructor,
2138                        diamondEnv,
2139                        diamondResult);
2140
2141                tree.clazz.type = types.createErrorType(clazztype);
2142                if (!constructorType.isErroneous()) {
2143                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2144                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2145                }
2146                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2147            }
2148
2149            // Resolve the called constructor under the assumption
2150            // that we are referring to a superclass instance of the
2151            // current instance (JLS ???).
2152            else if (!skipNonDiamondPath) {
2153                //the following code alters some of the fields in the current
2154                //AttrContext - hence, the current context must be dup'ed in
2155                //order to avoid downstream failures
2156                Env<AttrContext> rsEnv = localEnv.dup(tree);
2157                rsEnv.info.selectSuper = cdef != null;
2158                rsEnv.info.pendingResolutionPhase = null;
2159                tree.constructor = rs.resolveConstructor(
2160                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2161                if (cdef == null) { //do not check twice!
2162                    tree.constructorType = checkId(tree,
2163                            clazztype,
2164                            tree.constructor,
2165                            rsEnv,
2166                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2167                    if (rsEnv.info.lastResolveVarargs())
2168                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2169                }
2170            }
2171
2172            if (cdef != null) {
2173                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2174                return;
2175            }
2176
2177            if (tree.constructor != null && tree.constructor.kind == MTH)
2178                owntype = clazztype;
2179        }
2180        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2181        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2182        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2183            //we need to wait for inference to finish and then replace inference vars in the constructor type
2184            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2185                    instantiatedContext -> {
2186                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2187                    });
2188        }
2189        chk.validate(tree.typeargs, localEnv);
2190    }
2191
2192        // where
2193        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2194                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2195                                                   List<Type> argtypes, List<Type> typeargtypes,
2196                                                   KindSelector pkind) {
2197            // We are seeing an anonymous class instance creation.
2198            // In this case, the class instance creation
2199            // expression
2200            //
2201            //    E.new <typeargs1>C<typargs2>(args) { ... }
2202            //
2203            // is represented internally as
2204            //
2205            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2206            //
2207            // This expression is then *transformed* as follows:
2208            //
2209            // (1) add an extends or implements clause
2210            // (2) add a constructor.
2211            //
2212            // For instance, if C is a class, and ET is the type of E,
2213            // the expression
2214            //
2215            //    E.new <typeargs1>C<typargs2>(args) { ... }
2216            //
2217            // is translated to (where X is a fresh name and typarams is the
2218            // parameter list of the super constructor):
2219            //
2220            //   new <typeargs1>X(<*nullchk*>E, args) where
2221            //     X extends C<typargs2> {
2222            //       <typarams> X(ET e, args) {
2223            //         e.<typeargs1>super(args)
2224            //       }
2225            //       ...
2226            //     }
2227            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2228            final boolean isDiamond = TreeInfo.isDiamond(tree);
2229            if (isDiamond
2230                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2231                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2232                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2233                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2234                        instantiatedContext -> {
2235                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2236                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2237                            ResultInfo prevResult = this.resultInfo;
2238                            try {
2239                                this.resultInfo = resultInfoForClassDefinition;
2240                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2241                                                            localEnv, argtypes, typeargtypes, pkind);
2242                            } finally {
2243                                this.resultInfo = prevResult;
2244                            }
2245                        });
2246            } else {
2247                if (isDiamond && clazztype.hasTag(CLASS)) {
2248                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2249                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2250                        // One or more types inferred in the previous steps is non-denotable.
2251                        Fragment fragment = Diamond(clazztype.tsym);
2252                        log.error(tree.clazz.pos(),
2253                                Errors.CantApplyDiamond1(
2254                                        fragment,
2255                                        invalidDiamondArgs.size() > 1 ?
2256                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2257                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2258                    }
2259                    // For <>(){}, inferred types must also be accessible.
2260                    for (Type t : clazztype.getTypeArguments()) {
2261                        rs.checkAccessibleType(env, t);
2262                    }
2263                }
2264
2265                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2266                // false for isInterface call even when the original type is an interface.
2267                boolean implementing = clazztype.tsym.isInterface() ||
2268                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2269
2270                if (implementing) {
2271                    cdef.implementing = List.of(clazz);
2272                } else {
2273                    cdef.extending = clazz;
2274                }
2275
2276                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2277                    isSerializable(clazztype)) {
2278                    localEnv.info.isSerializable = true;
2279                }
2280
2281                attribStat(cdef, localEnv);
2282
2283                List<Type> finalargtypes;
2284                // If an outer instance is given,
2285                // prefix it to the constructor arguments
2286                // and delete it from the new expression
2287                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2288                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2289                    finalargtypes = argtypes.prepend(tree.encl.type);
2290                    tree.encl = null;
2291                } else {
2292                    finalargtypes = argtypes;
2293                }
2294
2295                // Reassign clazztype and recompute constructor. As this necessarily involves
2296                // another attribution pass for deferred types in the case of <>, replicate
2297                // them. Original arguments have right decorations already.
2298                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2299                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2300                }
2301
2302                clazztype = cdef.sym.type;
2303                Symbol sym = tree.constructor = rs.resolveConstructor(
2304                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2305                Assert.check(!sym.kind.isResolutionError());
2306                tree.constructor = sym;
2307                tree.constructorType = checkId(tree,
2308                        clazztype,
2309                        tree.constructor,
2310                        localEnv,
2311                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2312            }
2313            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2314                                clazztype : types.createErrorType(tree.type);
2315            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2316            chk.validate(tree.typeargs, localEnv);
2317        }
2318
2319        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2320            return new Check.NestedCheckContext(checkContext) {
2321                @Override
2322                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2323                    enclosingContext.report(clazz.clazz,
2324                            diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", tsym), details));
2325                }
2326            };
2327        }
2328
2329    /** Make an attributed null check tree.
2330     */
2331    public JCExpression makeNullCheck(JCExpression arg) {
2332        // optimization: X.this is never null; skip null check
2333        Name name = TreeInfo.name(arg);
2334        if (name == names._this || name == names._super) return arg;
2335
2336        JCTree.Tag optag = NULLCHK;
2337        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2338        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2339        tree.type = arg.type;
2340        return tree;
2341    }
2342
2343    public void visitNewArray(JCNewArray tree) {
2344        Type owntype = types.createErrorType(tree.type);
2345        Env<AttrContext> localEnv = env.dup(tree);
2346        Type elemtype;
2347        if (tree.elemtype != null) {
2348            elemtype = attribType(tree.elemtype, localEnv);
2349            chk.validate(tree.elemtype, localEnv);
2350            owntype = elemtype;
2351            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2352                attribExpr(l.head, localEnv, syms.intType);
2353                owntype = new ArrayType(owntype, syms.arrayClass);
2354            }
2355        } else {
2356            // we are seeing an untyped aggregate { ... }
2357            // this is allowed only if the prototype is an array
2358            if (pt().hasTag(ARRAY)) {
2359                elemtype = types.elemtype(pt());
2360            } else {
2361                if (!pt().hasTag(ERROR)) {
2362                    log.error(tree.pos(), "illegal.initializer.for.type",
2363                              pt());
2364                }
2365                elemtype = types.createErrorType(pt());
2366            }
2367        }
2368        if (tree.elems != null) {
2369            attribExprs(tree.elems, localEnv, elemtype);
2370            owntype = new ArrayType(elemtype, syms.arrayClass);
2371        }
2372        if (!types.isReifiable(elemtype))
2373            log.error(tree.pos(), "generic.array.creation");
2374        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2375    }
2376
2377    /*
2378     * A lambda expression can only be attributed when a target-type is available.
2379     * In addition, if the target-type is that of a functional interface whose
2380     * descriptor contains inference variables in argument position the lambda expression
2381     * is 'stuck' (see DeferredAttr).
2382     */
2383    @Override
2384    public void visitLambda(final JCLambda that) {
2385        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2386            if (pt().hasTag(NONE)) {
2387                //lambda only allowed in assignment or method invocation/cast context
2388                log.error(that.pos(), "unexpected.lambda");
2389            }
2390            result = that.type = types.createErrorType(pt());
2391            return;
2392        }
2393        //create an environment for attribution of the lambda expression
2394        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2395        boolean needsRecovery =
2396                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2397        try {
2398            if (needsRecovery && isSerializable(pt())) {
2399                localEnv.info.isSerializable = true;
2400            }
2401            List<Type> explicitParamTypes = null;
2402            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2403                //attribute lambda parameters
2404                attribStats(that.params, localEnv);
2405                explicitParamTypes = TreeInfo.types(that.params);
2406            }
2407
2408            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2409            Type currentTarget = targetInfo.target;
2410            Type lambdaType = targetInfo.descriptor;
2411
2412            if (currentTarget.isErroneous()) {
2413                result = that.type = currentTarget;
2414                return;
2415            }
2416
2417            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2418
2419            if (lambdaType.hasTag(FORALL)) {
2420                //lambda expression target desc cannot be a generic method
2421                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2422                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2423                result = that.type = types.createErrorType(pt());
2424                return;
2425            }
2426
2427            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2428                //add param type info in the AST
2429                List<Type> actuals = lambdaType.getParameterTypes();
2430                List<JCVariableDecl> params = that.params;
2431
2432                boolean arityMismatch = false;
2433
2434                while (params.nonEmpty()) {
2435                    if (actuals.isEmpty()) {
2436                        //not enough actuals to perform lambda parameter inference
2437                        arityMismatch = true;
2438                    }
2439                    //reset previously set info
2440                    Type argType = arityMismatch ?
2441                            syms.errType :
2442                            actuals.head;
2443                    params.head.vartype = make.at(params.head).Type(argType);
2444                    params.head.sym = null;
2445                    actuals = actuals.isEmpty() ?
2446                            actuals :
2447                            actuals.tail;
2448                    params = params.tail;
2449                }
2450
2451                //attribute lambda parameters
2452                attribStats(that.params, localEnv);
2453
2454                if (arityMismatch) {
2455                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2456                        result = that.type = types.createErrorType(currentTarget);
2457                        return;
2458                }
2459            }
2460
2461            //from this point on, no recovery is needed; if we are in assignment context
2462            //we will be able to attribute the whole lambda body, regardless of errors;
2463            //if we are in a 'check' method context, and the lambda is not compatible
2464            //with the target-type, it will be recovered anyway in Attr.checkId
2465            needsRecovery = false;
2466
2467            ResultInfo bodyResultInfo = localEnv.info.returnResult =
2468                    lambdaBodyResult(that, lambdaType, resultInfo);
2469
2470            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2471                attribTree(that.getBody(), localEnv, bodyResultInfo);
2472            } else {
2473                JCBlock body = (JCBlock)that.body;
2474                attribStats(body.stats, localEnv);
2475            }
2476
2477            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2478
2479            boolean isSpeculativeRound =
2480                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2481
2482            preFlow(that);
2483            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2484
2485            that.type = currentTarget; //avoids recovery at this stage
2486            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2487
2488            if (!isSpeculativeRound) {
2489                //add thrown types as bounds to the thrown types free variables if needed:
2490                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2491                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2492                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2493
2494                    chk.unhandled(inferredThrownTypes, thrownTypes);
2495                }
2496
2497                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2498            }
2499            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2500        } catch (Types.FunctionDescriptorLookupError ex) {
2501            JCDiagnostic cause = ex.getDiagnostic();
2502            resultInfo.checkContext.report(that, cause);
2503            result = that.type = types.createErrorType(pt());
2504            return;
2505        } catch (Throwable t) {
2506            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2507            //as that would likely cause the same exception again.
2508            needsRecovery = false;
2509            throw t;
2510        } finally {
2511            localEnv.info.scope.leave();
2512            if (needsRecovery) {
2513                attribTree(that, env, recoveryInfo);
2514            }
2515        }
2516    }
2517    //where
2518        class TargetInfo {
2519            Type target;
2520            Type descriptor;
2521
2522            public TargetInfo(Type target, Type descriptor) {
2523                this.target = target;
2524                this.descriptor = descriptor;
2525            }
2526        }
2527
2528        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2529            Type lambdaType;
2530            Type currentTarget = resultInfo.pt;
2531            if (resultInfo.pt != Type.recoveryType) {
2532                /* We need to adjust the target. If the target is an
2533                 * intersection type, for example: SAM & I1 & I2 ...
2534                 * the target will be updated to SAM
2535                 */
2536                currentTarget = targetChecker.visit(currentTarget, that);
2537                if (explicitParamTypes != null) {
2538                    currentTarget = infer.instantiateFunctionalInterface(that,
2539                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2540                }
2541                currentTarget = types.removeWildcards(currentTarget);
2542                lambdaType = types.findDescriptorType(currentTarget);
2543            } else {
2544                currentTarget = Type.recoveryType;
2545                lambdaType = fallbackDescriptorType(that);
2546            }
2547            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2548                //lambda expression target desc cannot be a generic method
2549                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2550                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2551                currentTarget = types.createErrorType(pt());
2552            }
2553            return new TargetInfo(currentTarget, lambdaType);
2554        }
2555
2556        void preFlow(JCLambda tree) {
2557            new PostAttrAnalyzer() {
2558                @Override
2559                public void scan(JCTree tree) {
2560                    if (tree == null ||
2561                            (tree.type != null &&
2562                            tree.type == Type.stuckType)) {
2563                        //don't touch stuck expressions!
2564                        return;
2565                    }
2566                    super.scan(tree);
2567                }
2568            }.scan(tree);
2569        }
2570
2571        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2572
2573            @Override
2574            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2575                return t.isIntersection() ?
2576                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2577            }
2578
2579            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2580                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2581                Type target = null;
2582                for (Type bound : ict.getExplicitComponents()) {
2583                    TypeSymbol boundSym = bound.tsym;
2584                    if (types.isFunctionalInterface(boundSym) &&
2585                            types.findDescriptorSymbol(boundSym) == desc) {
2586                        target = bound;
2587                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2588                        //bound must be an interface
2589                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2590                    }
2591                }
2592                return target != null ?
2593                        target :
2594                        ict.getExplicitComponents().head; //error recovery
2595            }
2596
2597            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2598                ListBuffer<Type> targs = new ListBuffer<>();
2599                ListBuffer<Type> supertypes = new ListBuffer<>();
2600                for (Type i : ict.interfaces_field) {
2601                    if (i.isParameterized()) {
2602                        targs.appendList(i.tsym.type.allparams());
2603                    }
2604                    supertypes.append(i.tsym.type);
2605                }
2606                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2607                notionalIntf.allparams_field = targs.toList();
2608                notionalIntf.tsym.flags_field |= INTERFACE;
2609                return notionalIntf.tsym;
2610            }
2611
2612            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2613                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2614                        diags.fragment(key, args)));
2615            }
2616        };
2617
2618        private Type fallbackDescriptorType(JCExpression tree) {
2619            switch (tree.getTag()) {
2620                case LAMBDA:
2621                    JCLambda lambda = (JCLambda)tree;
2622                    List<Type> argtypes = List.nil();
2623                    for (JCVariableDecl param : lambda.params) {
2624                        argtypes = param.vartype != null ?
2625                                argtypes.append(param.vartype.type) :
2626                                argtypes.append(syms.errType);
2627                    }
2628                    return new MethodType(argtypes, Type.recoveryType,
2629                            List.of(syms.throwableType), syms.methodClass);
2630                case REFERENCE:
2631                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2632                            List.of(syms.throwableType), syms.methodClass);
2633                default:
2634                    Assert.error("Cannot get here!");
2635            }
2636            return null;
2637        }
2638
2639        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2640                final InferenceContext inferenceContext, final Type... ts) {
2641            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2642        }
2643
2644        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2645                final InferenceContext inferenceContext, final List<Type> ts) {
2646            if (inferenceContext.free(ts)) {
2647                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2648                    @Override
2649                    public void typesInferred(InferenceContext inferenceContext) {
2650                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2651                    }
2652                });
2653            } else {
2654                for (Type t : ts) {
2655                    rs.checkAccessibleType(env, t);
2656                }
2657            }
2658        }
2659
2660        /**
2661         * Lambda/method reference have a special check context that ensures
2662         * that i.e. a lambda return type is compatible with the expected
2663         * type according to both the inherited context and the assignment
2664         * context.
2665         */
2666        class FunctionalReturnContext extends Check.NestedCheckContext {
2667
2668            FunctionalReturnContext(CheckContext enclosingContext) {
2669                super(enclosingContext);
2670            }
2671
2672            @Override
2673            public boolean compatible(Type found, Type req, Warner warn) {
2674                //return type must be compatible in both current context and assignment context
2675                return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2676            }
2677
2678            @Override
2679            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2680                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2681            }
2682        }
2683
2684        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2685
2686            JCExpression expr;
2687            boolean expStmtExpected;
2688
2689            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2690                super(enclosingContext);
2691                this.expr = expr;
2692            }
2693
2694            @Override
2695            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2696                if (expStmtExpected) {
2697                    enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2698                } else {
2699                    super.report(pos, details);
2700                }
2701            }
2702
2703            @Override
2704            public boolean compatible(Type found, Type req, Warner warn) {
2705                //a void return is compatible with an expression statement lambda
2706                if (req.hasTag(VOID)) {
2707                    expStmtExpected = true;
2708                    return TreeInfo.isExpressionStatement(expr);
2709                } else {
2710                    return super.compatible(found, req, warn);
2711                }
2712            }
2713        }
2714
2715        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2716            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2717                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2718                    new FunctionalReturnContext(resultInfo.checkContext);
2719
2720            return descriptor.getReturnType() == Type.recoveryType ?
2721                    recoveryInfo :
2722                    new ResultInfo(KindSelector.VAL,
2723                            descriptor.getReturnType(), funcContext);
2724        }
2725
2726        /**
2727        * Lambda compatibility. Check that given return types, thrown types, parameter types
2728        * are compatible with the expected functional interface descriptor. This means that:
2729        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2730        * types must be compatible with the return type of the expected descriptor.
2731        */
2732        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2733            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2734
2735            //return values have already been checked - but if lambda has no return
2736            //values, we must ensure that void/value compatibility is correct;
2737            //this amounts at checking that, if a lambda body can complete normally,
2738            //the descriptor's return type must be void
2739            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2740                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2741                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2742                        diags.fragment("missing.ret.val", returnType)));
2743            }
2744
2745            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2746            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2747                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2748            }
2749        }
2750
2751        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2752         * static field and that lambda has type annotations, these annotations will
2753         * also be stored at these fake clinit methods.
2754         *
2755         * LambdaToMethod also use fake clinit methods so they can be reused.
2756         * Also as LTM is a phase subsequent to attribution, the methods from
2757         * clinits can be safely removed by LTM to save memory.
2758         */
2759        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2760
2761        public MethodSymbol removeClinit(ClassSymbol sym) {
2762            return clinits.remove(sym);
2763        }
2764
2765        /* This method returns an environment to be used to attribute a lambda
2766         * expression.
2767         *
2768         * The owner of this environment is a method symbol. If the current owner
2769         * is not a method, for example if the lambda is used to initialize
2770         * a field, then if the field is:
2771         *
2772         * - an instance field, we use the first constructor.
2773         * - a static field, we create a fake clinit method.
2774         */
2775        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2776            Env<AttrContext> lambdaEnv;
2777            Symbol owner = env.info.scope.owner;
2778            if (owner.kind == VAR && owner.owner.kind == TYP) {
2779                //field initializer
2780                ClassSymbol enclClass = owner.enclClass();
2781                Symbol newScopeOwner = env.info.scope.owner;
2782                /* if the field isn't static, then we can get the first constructor
2783                 * and use it as the owner of the environment. This is what
2784                 * LTM code is doing to look for type annotations so we are fine.
2785                 */
2786                if ((owner.flags() & STATIC) == 0) {
2787                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2788                        newScopeOwner = s;
2789                        break;
2790                    }
2791                } else {
2792                    /* if the field is static then we need to create a fake clinit
2793                     * method, this method can later be reused by LTM.
2794                     */
2795                    MethodSymbol clinit = clinits.get(enclClass);
2796                    if (clinit == null) {
2797                        Type clinitType = new MethodType(List.<Type>nil(),
2798                                syms.voidType, List.<Type>nil(), syms.methodClass);
2799                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2800                                names.clinit, clinitType, enclClass);
2801                        clinit.params = List.<VarSymbol>nil();
2802                        clinits.put(enclClass, clinit);
2803                    }
2804                    newScopeOwner = clinit;
2805                }
2806                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2807            } else {
2808                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2809            }
2810            return lambdaEnv;
2811        }
2812
2813    @Override
2814    public void visitReference(final JCMemberReference that) {
2815        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2816            if (pt().hasTag(NONE)) {
2817                //method reference only allowed in assignment or method invocation/cast context
2818                log.error(that.pos(), "unexpected.mref");
2819            }
2820            result = that.type = types.createErrorType(pt());
2821            return;
2822        }
2823        final Env<AttrContext> localEnv = env.dup(that);
2824        try {
2825            //attribute member reference qualifier - if this is a constructor
2826            //reference, the expected kind must be a type
2827            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2828
2829            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2830                exprType = chk.checkConstructorRefType(that.expr, exprType);
2831                if (!exprType.isErroneous() &&
2832                    exprType.isRaw() &&
2833                    that.typeargs != null) {
2834                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2835                        diags.fragment("mref.infer.and.explicit.params"));
2836                    exprType = types.createErrorType(exprType);
2837                }
2838            }
2839
2840            if (exprType.isErroneous()) {
2841                //if the qualifier expression contains problems,
2842                //give up attribution of method reference
2843                result = that.type = exprType;
2844                return;
2845            }
2846
2847            if (TreeInfo.isStaticSelector(that.expr, names)) {
2848                //if the qualifier is a type, validate it; raw warning check is
2849                //omitted as we don't know at this stage as to whether this is a
2850                //raw selector (because of inference)
2851                chk.validate(that.expr, env, false);
2852            } else {
2853                Symbol lhsSym = TreeInfo.symbol(that.expr);
2854                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2855            }
2856            //attrib type-arguments
2857            List<Type> typeargtypes = List.nil();
2858            if (that.typeargs != null) {
2859                typeargtypes = attribTypes(that.typeargs, localEnv);
2860            }
2861
2862            boolean isTargetSerializable =
2863                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2864                    isSerializable(pt());
2865            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2866            Type currentTarget = targetInfo.target;
2867            Type desc = targetInfo.descriptor;
2868
2869            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2870            List<Type> argtypes = desc.getParameterTypes();
2871            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2872
2873            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2874                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2875            }
2876
2877            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2878            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2879            try {
2880                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2881                        that.name, argtypes, typeargtypes, referenceCheck,
2882                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2883            } finally {
2884                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2885            }
2886
2887            Symbol refSym = refResult.fst;
2888            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2889
2890            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2891             *  JDK-8075541
2892             */
2893            if (refSym.kind != MTH) {
2894                boolean targetError;
2895                switch (refSym.kind) {
2896                    case ABSENT_MTH:
2897                    case MISSING_ENCL:
2898                        targetError = false;
2899                        break;
2900                    case WRONG_MTH:
2901                    case WRONG_MTHS:
2902                    case AMBIGUOUS:
2903                    case HIDDEN:
2904                    case STATICERR:
2905                        targetError = true;
2906                        break;
2907                    default:
2908                        Assert.error("unexpected result kind " + refSym.kind);
2909                        targetError = false;
2910                }
2911
2912                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2913                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2914
2915                JCDiagnostic.DiagnosticType diagKind = targetError ?
2916                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2917
2918                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2919                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2920
2921                if (targetError && currentTarget == Type.recoveryType) {
2922                    //a target error doesn't make sense during recovery stage
2923                    //as we don't know what actual parameter types are
2924                    result = that.type = currentTarget;
2925                    return;
2926                } else {
2927                    if (targetError) {
2928                        resultInfo.checkContext.report(that, diag);
2929                    } else {
2930                        log.report(diag);
2931                    }
2932                    result = that.type = types.createErrorType(currentTarget);
2933                    return;
2934                }
2935            }
2936
2937            that.sym = refSym.baseSymbol();
2938            that.kind = lookupHelper.referenceKind(that.sym);
2939            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2940
2941            if (desc.getReturnType() == Type.recoveryType) {
2942                // stop here
2943                result = that.type = currentTarget;
2944                return;
2945            }
2946
2947            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2948
2949                if (that.getMode() == ReferenceMode.INVOKE &&
2950                        TreeInfo.isStaticSelector(that.expr, names) &&
2951                        that.kind.isUnbound() &&
2952                        !desc.getParameterTypes().head.isParameterized()) {
2953                    chk.checkRaw(that.expr, localEnv);
2954                }
2955
2956                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2957                        exprType.getTypeArguments().nonEmpty()) {
2958                    //static ref with class type-args
2959                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2960                            diags.fragment("static.mref.with.targs"));
2961                    result = that.type = types.createErrorType(currentTarget);
2962                    return;
2963                }
2964
2965                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2966                    // Check that super-qualified symbols are not abstract (JLS)
2967                    rs.checkNonAbstract(that.pos(), that.sym);
2968                }
2969
2970                if (isTargetSerializable) {
2971                    chk.checkElemAccessFromSerializableLambda(that);
2972                }
2973            }
2974
2975            ResultInfo checkInfo =
2976                    resultInfo.dup(newMethodTemplate(
2977                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2978                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2979                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2980
2981            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2982
2983            if (that.kind.isUnbound() &&
2984                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2985                //re-generate inference constraints for unbound receiver
2986                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2987                    //cannot happen as this has already been checked - we just need
2988                    //to regenerate the inference constraints, as that has been lost
2989                    //as a result of the call to inferenceContext.save()
2990                    Assert.error("Can't get here");
2991                }
2992            }
2993
2994            if (!refType.isErroneous()) {
2995                refType = types.createMethodTypeWithReturn(refType,
2996                        adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2997            }
2998
2999            //go ahead with standard method reference compatibility check - note that param check
3000            //is a no-op (as this has been taken care during method applicability)
3001            boolean isSpeculativeRound =
3002                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3003
3004            that.type = currentTarget; //avoids recovery at this stage
3005            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3006            if (!isSpeculativeRound) {
3007                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3008            }
3009            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3010        } catch (Types.FunctionDescriptorLookupError ex) {
3011            JCDiagnostic cause = ex.getDiagnostic();
3012            resultInfo.checkContext.report(that, cause);
3013            result = that.type = types.createErrorType(pt());
3014            return;
3015        }
3016    }
3017    //where
3018        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3019            //if this is a constructor reference, the expected kind must be a type
3020            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3021                                  KindSelector.VAL_TYP : KindSelector.TYP,
3022                                  Type.noType);
3023        }
3024
3025
3026    @SuppressWarnings("fallthrough")
3027    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3028        InferenceContext inferenceContext = checkContext.inferenceContext();
3029        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3030
3031        Type resType;
3032        switch (tree.getMode()) {
3033            case NEW:
3034                if (!tree.expr.type.isRaw()) {
3035                    resType = tree.expr.type;
3036                    break;
3037                }
3038            default:
3039                resType = refType.getReturnType();
3040        }
3041
3042        Type incompatibleReturnType = resType;
3043
3044        if (returnType.hasTag(VOID)) {
3045            incompatibleReturnType = null;
3046        }
3047
3048        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3049            if (resType.isErroneous() ||
3050                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
3051                incompatibleReturnType = null;
3052            }
3053        }
3054
3055        if (incompatibleReturnType != null) {
3056            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
3057                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
3058        } else {
3059            if (inferenceContext.free(refType)) {
3060                // we need to wait for inference to finish and then replace inference vars in the referent type
3061                inferenceContext.addFreeTypeListener(List.of(refType),
3062                        instantiatedContext -> {
3063                            tree.referentType = instantiatedContext.asInstType(refType);
3064                        });
3065            } else {
3066                tree.referentType = refType;
3067            }
3068        }
3069
3070        if (!speculativeAttr) {
3071            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3072            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3073                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
3074            }
3075        }
3076    }
3077
3078    /**
3079     * Set functional type info on the underlying AST. Note: as the target descriptor
3080     * might contain inference variables, we might need to register an hook in the
3081     * current inference context.
3082     */
3083    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3084            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3085        if (checkContext.inferenceContext().free(descriptorType)) {
3086            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
3087                public void typesInferred(InferenceContext inferenceContext) {
3088                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3089                            inferenceContext.asInstType(primaryTarget), checkContext);
3090                }
3091            });
3092        } else {
3093            ListBuffer<Type> targets = new ListBuffer<>();
3094            if (pt.hasTag(CLASS)) {
3095                if (pt.isCompound()) {
3096                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
3097                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3098                        if (t != primaryTarget) {
3099                            targets.append(types.removeWildcards(t));
3100                        }
3101                    }
3102                } else {
3103                    targets.append(types.removeWildcards(primaryTarget));
3104                }
3105            }
3106            fExpr.targets = targets.toList();
3107            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3108                    pt != Type.recoveryType) {
3109                //check that functional interface class is well-formed
3110                try {
3111                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3112                     * when it's executed post-inference. See the listener code
3113                     * above.
3114                     */
3115                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3116                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3117                    if (csym != null) {
3118                        chk.checkImplementations(env.tree, csym, csym);
3119                        try {
3120                            //perform an additional functional interface check on the synthetic class,
3121                            //as there may be spurious errors for raw targets - because of existing issues
3122                            //with membership and inheritance (see JDK-8074570).
3123                            csym.flags_field |= INTERFACE;
3124                            types.findDescriptorType(csym.type);
3125                        } catch (FunctionDescriptorLookupError err) {
3126                            resultInfo.checkContext.report(fExpr,
3127                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3128                        }
3129                    }
3130                } catch (Types.FunctionDescriptorLookupError ex) {
3131                    JCDiagnostic cause = ex.getDiagnostic();
3132                    resultInfo.checkContext.report(env.tree, cause);
3133                }
3134            }
3135        }
3136    }
3137
3138    public void visitParens(JCParens tree) {
3139        Type owntype = attribTree(tree.expr, env, resultInfo);
3140        result = check(tree, owntype, pkind(), resultInfo);
3141        Symbol sym = TreeInfo.symbol(tree);
3142        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3143            log.error(tree.pos(), "illegal.start.of.type");
3144    }
3145
3146    public void visitAssign(JCAssign tree) {
3147        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3148        Type capturedType = capture(owntype);
3149        attribExpr(tree.rhs, env, owntype);
3150        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3151    }
3152
3153    public void visitAssignop(JCAssignOp tree) {
3154        // Attribute arguments.
3155        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3156        Type operand = attribExpr(tree.rhs, env);
3157        // Find operator.
3158        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3159        if (operator != operators.noOpSymbol &&
3160                !owntype.isErroneous() &&
3161                !operand.isErroneous()) {
3162            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3163            chk.checkCastable(tree.rhs.pos(),
3164                              operator.type.getReturnType(),
3165                              owntype);
3166        }
3167        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3168    }
3169
3170    public void visitUnary(JCUnary tree) {
3171        // Attribute arguments.
3172        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3173            ? attribTree(tree.arg, env, varAssignmentInfo)
3174            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3175
3176        // Find operator.
3177        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3178        Type owntype = types.createErrorType(tree.type);
3179        if (operator != operators.noOpSymbol &&
3180                !argtype.isErroneous()) {
3181            owntype = (tree.getTag().isIncOrDecUnaryOp())
3182                ? tree.arg.type
3183                : operator.type.getReturnType();
3184            int opc = ((OperatorSymbol)operator).opcode;
3185
3186            // If the argument is constant, fold it.
3187            if (argtype.constValue() != null) {
3188                Type ctype = cfolder.fold1(opc, argtype);
3189                if (ctype != null) {
3190                    owntype = cfolder.coerce(ctype, owntype);
3191                }
3192            }
3193        }
3194        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3195    }
3196
3197    public void visitBinary(JCBinary tree) {
3198        // Attribute arguments.
3199        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3200        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3201        // Find operator.
3202        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3203        Type owntype = types.createErrorType(tree.type);
3204        if (operator != operators.noOpSymbol &&
3205                !left.isErroneous() &&
3206                !right.isErroneous()) {
3207            owntype = operator.type.getReturnType();
3208            int opc = ((OperatorSymbol)operator).opcode;
3209            // If both arguments are constants, fold them.
3210            if (left.constValue() != null && right.constValue() != null) {
3211                Type ctype = cfolder.fold2(opc, left, right);
3212                if (ctype != null) {
3213                    owntype = cfolder.coerce(ctype, owntype);
3214                }
3215            }
3216
3217            // Check that argument types of a reference ==, != are
3218            // castable to each other, (JLS 15.21).  Note: unboxing
3219            // comparisons will not have an acmp* opc at this point.
3220            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3221                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3222                    log.error(tree.pos(), "incomparable.types", left, right);
3223                }
3224            }
3225
3226            chk.checkDivZero(tree.rhs.pos(), operator, right);
3227        }
3228        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3229    }
3230
3231    public void visitTypeCast(final JCTypeCast tree) {
3232        Type clazztype = attribType(tree.clazz, env);
3233        chk.validate(tree.clazz, env, false);
3234        //a fresh environment is required for 292 inference to work properly ---
3235        //see Infer.instantiatePolymorphicSignatureInstance()
3236        Env<AttrContext> localEnv = env.dup(tree);
3237        //should we propagate the target type?
3238        final ResultInfo castInfo;
3239        JCExpression expr = TreeInfo.skipParens(tree.expr);
3240        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3241        if (isPoly) {
3242            //expression is a poly - we need to propagate target type info
3243            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3244                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3245                @Override
3246                public boolean compatible(Type found, Type req, Warner warn) {
3247                    return types.isCastable(found, req, warn);
3248                }
3249            });
3250        } else {
3251            //standalone cast - target-type info is not propagated
3252            castInfo = unknownExprInfo;
3253        }
3254        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3255        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3256        if (exprtype.constValue() != null)
3257            owntype = cfolder.coerce(exprtype, owntype);
3258        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3259        if (!isPoly)
3260            chk.checkRedundantCast(localEnv, tree);
3261    }
3262
3263    public void visitTypeTest(JCInstanceOf tree) {
3264        Type exprtype = chk.checkNullOrRefType(
3265                tree.expr.pos(), attribExpr(tree.expr, env));
3266        Type clazztype = attribType(tree.clazz, env);
3267        if (!clazztype.hasTag(TYPEVAR)) {
3268            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3269        }
3270        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3271            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3272            clazztype = types.createErrorType(clazztype);
3273        }
3274        chk.validate(tree.clazz, env, false);
3275        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3276        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3277    }
3278
3279    public void visitIndexed(JCArrayAccess tree) {
3280        Type owntype = types.createErrorType(tree.type);
3281        Type atype = attribExpr(tree.indexed, env);
3282        attribExpr(tree.index, env, syms.intType);
3283        if (types.isArray(atype))
3284            owntype = types.elemtype(atype);
3285        else if (!atype.hasTag(ERROR))
3286            log.error(tree.pos(), "array.req.but.found", atype);
3287        if (!pkind().contains(KindSelector.VAL))
3288            owntype = capture(owntype);
3289        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3290    }
3291
3292    public void visitIdent(JCIdent tree) {
3293        Symbol sym;
3294
3295        // Find symbol
3296        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3297            // If we are looking for a method, the prototype `pt' will be a
3298            // method type with the type of the call's arguments as parameters.
3299            env.info.pendingResolutionPhase = null;
3300            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3301        } else if (tree.sym != null && tree.sym.kind != VAR) {
3302            sym = tree.sym;
3303        } else {
3304            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3305        }
3306        tree.sym = sym;
3307
3308        // (1) Also find the environment current for the class where
3309        //     sym is defined (`symEnv').
3310        // Only for pre-tiger versions (1.4 and earlier):
3311        // (2) Also determine whether we access symbol out of an anonymous
3312        //     class in a this or super call.  This is illegal for instance
3313        //     members since such classes don't carry a this$n link.
3314        //     (`noOuterThisPath').
3315        Env<AttrContext> symEnv = env;
3316        boolean noOuterThisPath = false;
3317        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3318            sym.kind.matches(KindSelector.VAL_MTH) &&
3319            sym.owner.kind == TYP &&
3320            tree.name != names._this && tree.name != names._super) {
3321
3322            // Find environment in which identifier is defined.
3323            while (symEnv.outer != null &&
3324                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3325                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3326                    noOuterThisPath = false;
3327                symEnv = symEnv.outer;
3328            }
3329        }
3330
3331        // If symbol is a variable, ...
3332        if (sym.kind == VAR) {
3333            VarSymbol v = (VarSymbol)sym;
3334
3335            // ..., evaluate its initializer, if it has one, and check for
3336            // illegal forward reference.
3337            checkInit(tree, env, v, false);
3338
3339            // If we are expecting a variable (as opposed to a value), check
3340            // that the variable is assignable in the current environment.
3341            if (KindSelector.ASG.subset(pkind()))
3342                checkAssignable(tree.pos(), v, null, env);
3343        }
3344
3345        // In a constructor body,
3346        // if symbol is a field or instance method, check that it is
3347        // not accessed before the supertype constructor is called.
3348        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3349            sym.kind.matches(KindSelector.VAL_MTH) &&
3350            sym.owner.kind == TYP &&
3351            (sym.flags() & STATIC) == 0) {
3352            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3353                                          sym : thisSym(tree.pos(), env));
3354        }
3355        Env<AttrContext> env1 = env;
3356        if (sym.kind != ERR && sym.kind != TYP &&
3357            sym.owner != null && sym.owner != env1.enclClass.sym) {
3358            // If the found symbol is inaccessible, then it is
3359            // accessed through an enclosing instance.  Locate this
3360            // enclosing instance:
3361            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3362                env1 = env1.outer;
3363        }
3364
3365        if (env.info.isSerializable) {
3366            chk.checkElemAccessFromSerializableLambda(tree);
3367        }
3368
3369        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3370    }
3371
3372    public void visitSelect(JCFieldAccess tree) {
3373        // Determine the expected kind of the qualifier expression.
3374        KindSelector skind = KindSelector.NIL;
3375        if (tree.name == names._this || tree.name == names._super ||
3376                tree.name == names._class)
3377        {
3378            skind = KindSelector.TYP;
3379        } else {
3380            if (pkind().contains(KindSelector.PCK))
3381                skind = KindSelector.of(skind, KindSelector.PCK);
3382            if (pkind().contains(KindSelector.TYP))
3383                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3384            if (pkind().contains(KindSelector.VAL_MTH))
3385                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3386        }
3387
3388        // Attribute the qualifier expression, and determine its symbol (if any).
3389        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3390        if (!pkind().contains(KindSelector.TYP_PCK))
3391            site = capture(site); // Capture field access
3392
3393        // don't allow T.class T[].class, etc
3394        if (skind == KindSelector.TYP) {
3395            Type elt = site;
3396            while (elt.hasTag(ARRAY))
3397                elt = ((ArrayType)elt).elemtype;
3398            if (elt.hasTag(TYPEVAR)) {
3399                log.error(tree.pos(), "type.var.cant.be.deref");
3400                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3401                tree.sym = tree.type.tsym;
3402                return ;
3403            }
3404        }
3405
3406        // If qualifier symbol is a type or `super', assert `selectSuper'
3407        // for the selection. This is relevant for determining whether
3408        // protected symbols are accessible.
3409        Symbol sitesym = TreeInfo.symbol(tree.selected);
3410        boolean selectSuperPrev = env.info.selectSuper;
3411        env.info.selectSuper =
3412            sitesym != null &&
3413            sitesym.name == names._super;
3414
3415        // Determine the symbol represented by the selection.
3416        env.info.pendingResolutionPhase = null;
3417        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3418        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3419            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3420            sym = syms.errSymbol;
3421        }
3422        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3423            site = capture(site);
3424            sym = selectSym(tree, sitesym, site, env, resultInfo);
3425        }
3426        boolean varArgs = env.info.lastResolveVarargs();
3427        tree.sym = sym;
3428
3429        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3430            site = types.skipTypeVars(site, true);
3431        }
3432
3433        // If that symbol is a variable, ...
3434        if (sym.kind == VAR) {
3435            VarSymbol v = (VarSymbol)sym;
3436
3437            // ..., evaluate its initializer, if it has one, and check for
3438            // illegal forward reference.
3439            checkInit(tree, env, v, true);
3440
3441            // If we are expecting a variable (as opposed to a value), check
3442            // that the variable is assignable in the current environment.
3443            if (KindSelector.ASG.subset(pkind()))
3444                checkAssignable(tree.pos(), v, tree.selected, env);
3445        }
3446
3447        if (sitesym != null &&
3448                sitesym.kind == VAR &&
3449                ((VarSymbol)sitesym).isResourceVariable() &&
3450                sym.kind == MTH &&
3451                sym.name.equals(names.close) &&
3452                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3453                env.info.lint.isEnabled(LintCategory.TRY)) {
3454            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3455        }
3456
3457        // Disallow selecting a type from an expression
3458        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3459            tree.type = check(tree.selected, pt(),
3460                              sitesym == null ?
3461                                      KindSelector.VAL : sitesym.kind.toSelector(),
3462                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3463        }
3464
3465        if (isType(sitesym)) {
3466            if (sym.name == names._this) {
3467                // If `C' is the currently compiled class, check that
3468                // C.this' does not appear in a call to a super(...)
3469                if (env.info.isSelfCall &&
3470                    site.tsym == env.enclClass.sym) {
3471                    chk.earlyRefError(tree.pos(), sym);
3472                }
3473            } else {
3474                // Check if type-qualified fields or methods are static (JLS)
3475                if ((sym.flags() & STATIC) == 0 &&
3476                    sym.name != names._super &&
3477                    (sym.kind == VAR || sym.kind == MTH)) {
3478                    rs.accessBase(rs.new StaticError(sym),
3479                              tree.pos(), site, sym.name, true);
3480                }
3481            }
3482            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3483                    sym.isStatic() && sym.kind == MTH) {
3484                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3485            }
3486        } else if (sym.kind != ERR &&
3487                   (sym.flags() & STATIC) != 0 &&
3488                   sym.name != names._class) {
3489            // If the qualified item is not a type and the selected item is static, report
3490            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3491            chk.warnStatic(tree, "static.not.qualified.by.type",
3492                           sym.kind.kindName(), sym.owner);
3493        }
3494
3495        // If we are selecting an instance member via a `super', ...
3496        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3497
3498            // Check that super-qualified symbols are not abstract (JLS)
3499            rs.checkNonAbstract(tree.pos(), sym);
3500
3501            if (site.isRaw()) {
3502                // Determine argument types for site.
3503                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3504                if (site1 != null) site = site1;
3505            }
3506        }
3507
3508        if (env.info.isSerializable) {
3509            chk.checkElemAccessFromSerializableLambda(tree);
3510        }
3511
3512        env.info.selectSuper = selectSuperPrev;
3513        result = checkId(tree, site, sym, env, resultInfo);
3514    }
3515    //where
3516        /** Determine symbol referenced by a Select expression,
3517         *
3518         *  @param tree   The select tree.
3519         *  @param site   The type of the selected expression,
3520         *  @param env    The current environment.
3521         *  @param resultInfo The current result.
3522         */
3523        private Symbol selectSym(JCFieldAccess tree,
3524                                 Symbol location,
3525                                 Type site,
3526                                 Env<AttrContext> env,
3527                                 ResultInfo resultInfo) {
3528            DiagnosticPosition pos = tree.pos();
3529            Name name = tree.name;
3530            switch (site.getTag()) {
3531            case PACKAGE:
3532                return rs.accessBase(
3533                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3534                    pos, location, site, name, true);
3535            case ARRAY:
3536            case CLASS:
3537                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3538                    return rs.resolveQualifiedMethod(
3539                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3540                } else if (name == names._this || name == names._super) {
3541                    return rs.resolveSelf(pos, env, site.tsym, name);
3542                } else if (name == names._class) {
3543                    // In this case, we have already made sure in
3544                    // visitSelect that qualifier expression is a type.
3545                    Type t = syms.classType;
3546                    List<Type> typeargs = List.of(types.erasure(site));
3547                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3548                    return new VarSymbol(
3549                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3550                } else {
3551                    // We are seeing a plain identifier as selector.
3552                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3553                        sym = rs.accessBase(sym, pos, location, site, name, true);
3554                    return sym;
3555                }
3556            case WILDCARD:
3557                throw new AssertionError(tree);
3558            case TYPEVAR:
3559                // Normally, site.getUpperBound() shouldn't be null.
3560                // It should only happen during memberEnter/attribBase
3561                // when determining the super type which *must* beac
3562                // done before attributing the type variables.  In
3563                // other words, we are seeing this illegal program:
3564                // class B<T> extends A<T.foo> {}
3565                Symbol sym = (site.getUpperBound() != null)
3566                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3567                    : null;
3568                if (sym == null) {
3569                    log.error(pos, "type.var.cant.be.deref");
3570                    return syms.errSymbol;
3571                } else {
3572                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3573                        rs.new AccessError(env, site, sym) :
3574                                sym;
3575                    rs.accessBase(sym2, pos, location, site, name, true);
3576                    return sym;
3577                }
3578            case ERROR:
3579                // preserve identifier names through errors
3580                return types.createErrorType(name, site.tsym, site).tsym;
3581            default:
3582                // The qualifier expression is of a primitive type -- only
3583                // .class is allowed for these.
3584                if (name == names._class) {
3585                    // In this case, we have already made sure in Select that
3586                    // qualifier expression is a type.
3587                    Type t = syms.classType;
3588                    Type arg = types.boxedClass(site).type;
3589                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3590                    return new VarSymbol(
3591                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3592                } else {
3593                    log.error(pos, "cant.deref", site);
3594                    return syms.errSymbol;
3595                }
3596            }
3597        }
3598
3599        /** Determine type of identifier or select expression and check that
3600         *  (1) the referenced symbol is not deprecated
3601         *  (2) the symbol's type is safe (@see checkSafe)
3602         *  (3) if symbol is a variable, check that its type and kind are
3603         *      compatible with the prototype and protokind.
3604         *  (4) if symbol is an instance field of a raw type,
3605         *      which is being assigned to, issue an unchecked warning if its
3606         *      type changes under erasure.
3607         *  (5) if symbol is an instance method of a raw type, issue an
3608         *      unchecked warning if its argument types change under erasure.
3609         *  If checks succeed:
3610         *    If symbol is a constant, return its constant type
3611         *    else if symbol is a method, return its result type
3612         *    otherwise return its type.
3613         *  Otherwise return errType.
3614         *
3615         *  @param tree       The syntax tree representing the identifier
3616         *  @param site       If this is a select, the type of the selected
3617         *                    expression, otherwise the type of the current class.
3618         *  @param sym        The symbol representing the identifier.
3619         *  @param env        The current environment.
3620         *  @param resultInfo    The expected result
3621         */
3622        Type checkId(JCTree tree,
3623                     Type site,
3624                     Symbol sym,
3625                     Env<AttrContext> env,
3626                     ResultInfo resultInfo) {
3627            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3628                    checkMethodId(tree, site, sym, env, resultInfo) :
3629                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3630        }
3631
3632        Type checkMethodId(JCTree tree,
3633                     Type site,
3634                     Symbol sym,
3635                     Env<AttrContext> env,
3636                     ResultInfo resultInfo) {
3637            boolean isPolymorhicSignature =
3638                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3639            return isPolymorhicSignature ?
3640                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3641                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3642        }
3643
3644        Type checkSigPolyMethodId(JCTree tree,
3645                     Type site,
3646                     Symbol sym,
3647                     Env<AttrContext> env,
3648                     ResultInfo resultInfo) {
3649            //recover original symbol for signature polymorphic methods
3650            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3651            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3652            return sym.type;
3653        }
3654
3655        Type checkMethodIdInternal(JCTree tree,
3656                     Type site,
3657                     Symbol sym,
3658                     Env<AttrContext> env,
3659                     ResultInfo resultInfo) {
3660            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3661                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3662                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3663                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3664                return owntype;
3665            } else {
3666                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3667            }
3668        }
3669
3670        Type checkIdInternal(JCTree tree,
3671                     Type site,
3672                     Symbol sym,
3673                     Type pt,
3674                     Env<AttrContext> env,
3675                     ResultInfo resultInfo) {
3676            if (pt.isErroneous()) {
3677                return types.createErrorType(site);
3678            }
3679            Type owntype; // The computed type of this identifier occurrence.
3680            switch (sym.kind) {
3681            case TYP:
3682                // For types, the computed type equals the symbol's type,
3683                // except for two situations:
3684                owntype = sym.type;
3685                if (owntype.hasTag(CLASS)) {
3686                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3687                    Type ownOuter = owntype.getEnclosingType();
3688
3689                    // (a) If the symbol's type is parameterized, erase it
3690                    // because no type parameters were given.
3691                    // We recover generic outer type later in visitTypeApply.
3692                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3693                        owntype = types.erasure(owntype);
3694                    }
3695
3696                    // (b) If the symbol's type is an inner class, then
3697                    // we have to interpret its outer type as a superclass
3698                    // of the site type. Example:
3699                    //
3700                    // class Tree<A> { class Visitor { ... } }
3701                    // class PointTree extends Tree<Point> { ... }
3702                    // ...PointTree.Visitor...
3703                    //
3704                    // Then the type of the last expression above is
3705                    // Tree<Point>.Visitor.
3706                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3707                        Type normOuter = site;
3708                        if (normOuter.hasTag(CLASS)) {
3709                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3710                        }
3711                        if (normOuter == null) // perhaps from an import
3712                            normOuter = types.erasure(ownOuter);
3713                        if (normOuter != ownOuter)
3714                            owntype = new ClassType(
3715                                normOuter, List.<Type>nil(), owntype.tsym,
3716                                owntype.getMetadata());
3717                    }
3718                }
3719                break;
3720            case VAR:
3721                VarSymbol v = (VarSymbol)sym;
3722                // Test (4): if symbol is an instance field of a raw type,
3723                // which is being assigned to, issue an unchecked warning if
3724                // its type changes under erasure.
3725                if (KindSelector.ASG.subset(pkind()) &&
3726                    v.owner.kind == TYP &&
3727                    (v.flags() & STATIC) == 0 &&
3728                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3729                    Type s = types.asOuterSuper(site, v.owner);
3730                    if (s != null &&
3731                        s.isRaw() &&
3732                        !types.isSameType(v.type, v.erasure(types))) {
3733                        chk.warnUnchecked(tree.pos(),
3734                                          "unchecked.assign.to.var",
3735                                          v, s);
3736                    }
3737                }
3738                // The computed type of a variable is the type of the
3739                // variable symbol, taken as a member of the site type.
3740                owntype = (sym.owner.kind == TYP &&
3741                           sym.name != names._this && sym.name != names._super)
3742                    ? types.memberType(site, sym)
3743                    : sym.type;
3744
3745                // If the variable is a constant, record constant value in
3746                // computed type.
3747                if (v.getConstValue() != null && isStaticReference(tree))
3748                    owntype = owntype.constType(v.getConstValue());
3749
3750                if (resultInfo.pkind == KindSelector.VAL) {
3751                    owntype = capture(owntype); // capture "names as expressions"
3752                }
3753                break;
3754            case MTH: {
3755                owntype = checkMethod(site, sym,
3756                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3757                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3758                        resultInfo.pt.getTypeArguments());
3759                break;
3760            }
3761            case PCK: case ERR:
3762                owntype = sym.type;
3763                break;
3764            default:
3765                throw new AssertionError("unexpected kind: " + sym.kind +
3766                                         " in tree " + tree);
3767            }
3768
3769            // Emit a `deprecation' warning if symbol is deprecated.
3770            // (for constructors (but not for constructor references), the error
3771            // was given when the constructor was resolved)
3772
3773            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3774                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3775                chk.checkSunAPI(tree.pos(), sym);
3776                chk.checkProfile(tree.pos(), sym);
3777            }
3778
3779            // If symbol is a variable, check that its type and
3780            // kind are compatible with the prototype and protokind.
3781            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3782        }
3783
3784        /** Check that variable is initialized and evaluate the variable's
3785         *  initializer, if not yet done. Also check that variable is not
3786         *  referenced before it is defined.
3787         *  @param tree    The tree making up the variable reference.
3788         *  @param env     The current environment.
3789         *  @param v       The variable's symbol.
3790         */
3791        private void checkInit(JCTree tree,
3792                               Env<AttrContext> env,
3793                               VarSymbol v,
3794                               boolean onlyWarning) {
3795            // A forward reference is diagnosed if the declaration position
3796            // of the variable is greater than the current tree position
3797            // and the tree and variable definition occur in the same class
3798            // definition.  Note that writes don't count as references.
3799            // This check applies only to class and instance
3800            // variables.  Local variables follow different scope rules,
3801            // and are subject to definite assignment checking.
3802            Env<AttrContext> initEnv = enclosingInitEnv(env);
3803            if (initEnv != null &&
3804                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3805                v.owner.kind == TYP &&
3806                v.owner == env.info.scope.owner.enclClass() &&
3807                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3808                (!env.tree.hasTag(ASSIGN) ||
3809                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3810                String suffix = (initEnv.info.enclVar == v) ?
3811                                "self.ref" : "forward.ref";
3812                if (!onlyWarning || isStaticEnumField(v)) {
3813                    log.error(tree.pos(), "illegal." + suffix);
3814                } else if (useBeforeDeclarationWarning) {
3815                    log.warning(tree.pos(), suffix, v);
3816                }
3817            }
3818
3819            v.getConstValue(); // ensure initializer is evaluated
3820
3821            checkEnumInitializer(tree, env, v);
3822        }
3823
3824        /**
3825         * Returns the enclosing init environment associated with this env (if any). An init env
3826         * can be either a field declaration env or a static/instance initializer env.
3827         */
3828        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3829            while (true) {
3830                switch (env.tree.getTag()) {
3831                    case VARDEF:
3832                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3833                        if (vdecl.sym.owner.kind == TYP) {
3834                            //field
3835                            return env;
3836                        }
3837                        break;
3838                    case BLOCK:
3839                        if (env.next.tree.hasTag(CLASSDEF)) {
3840                            //instance/static initializer
3841                            return env;
3842                        }
3843                        break;
3844                    case METHODDEF:
3845                    case CLASSDEF:
3846                    case TOPLEVEL:
3847                        return null;
3848                }
3849                Assert.checkNonNull(env.next);
3850                env = env.next;
3851            }
3852        }
3853
3854        /**
3855         * Check for illegal references to static members of enum.  In
3856         * an enum type, constructors and initializers may not
3857         * reference its static members unless they are constant.
3858         *
3859         * @param tree    The tree making up the variable reference.
3860         * @param env     The current environment.
3861         * @param v       The variable's symbol.
3862         * @jls  section 8.9 Enums
3863         */
3864        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3865            // JLS:
3866            //
3867            // "It is a compile-time error to reference a static field
3868            // of an enum type that is not a compile-time constant
3869            // (15.28) from constructors, instance initializer blocks,
3870            // or instance variable initializer expressions of that
3871            // type. It is a compile-time error for the constructors,
3872            // instance initializer blocks, or instance variable
3873            // initializer expressions of an enum constant e to refer
3874            // to itself or to an enum constant of the same type that
3875            // is declared to the right of e."
3876            if (isStaticEnumField(v)) {
3877                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3878
3879                if (enclClass == null || enclClass.owner == null)
3880                    return;
3881
3882                // See if the enclosing class is the enum (or a
3883                // subclass thereof) declaring v.  If not, this
3884                // reference is OK.
3885                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3886                    return;
3887
3888                // If the reference isn't from an initializer, then
3889                // the reference is OK.
3890                if (!Resolve.isInitializer(env))
3891                    return;
3892
3893                log.error(tree.pos(), "illegal.enum.static.ref");
3894            }
3895        }
3896
3897        /** Is the given symbol a static, non-constant field of an Enum?
3898         *  Note: enum literals should not be regarded as such
3899         */
3900        private boolean isStaticEnumField(VarSymbol v) {
3901            return Flags.isEnum(v.owner) &&
3902                   Flags.isStatic(v) &&
3903                   !Flags.isConstant(v) &&
3904                   v.name != names._class;
3905        }
3906
3907    /**
3908     * Check that method arguments conform to its instantiation.
3909     **/
3910    public Type checkMethod(Type site,
3911                            final Symbol sym,
3912                            ResultInfo resultInfo,
3913                            Env<AttrContext> env,
3914                            final List<JCExpression> argtrees,
3915                            List<Type> argtypes,
3916                            List<Type> typeargtypes) {
3917        // Test (5): if symbol is an instance method of a raw type, issue
3918        // an unchecked warning if its argument types change under erasure.
3919        if ((sym.flags() & STATIC) == 0 &&
3920            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3921            Type s = types.asOuterSuper(site, sym.owner);
3922            if (s != null && s.isRaw() &&
3923                !types.isSameTypes(sym.type.getParameterTypes(),
3924                                   sym.erasure(types).getParameterTypes())) {
3925                chk.warnUnchecked(env.tree.pos(),
3926                                  "unchecked.call.mbr.of.raw.type",
3927                                  sym, s);
3928            }
3929        }
3930
3931        if (env.info.defaultSuperCallSite != null) {
3932            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3933                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3934                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3935                List<MethodSymbol> icand_sup =
3936                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3937                if (icand_sup.nonEmpty() &&
3938                        icand_sup.head != sym &&
3939                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3940                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3941                        diags.fragment("overridden.default", sym, sup));
3942                    break;
3943                }
3944            }
3945            env.info.defaultSuperCallSite = null;
3946        }
3947
3948        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3949            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3950            if (app.meth.hasTag(SELECT) &&
3951                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3952                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3953            }
3954        }
3955
3956        // Compute the identifier's instantiated type.
3957        // For methods, we need to compute the instance type by
3958        // Resolve.instantiate from the symbol's type as well as
3959        // any type arguments and value arguments.
3960        Warner noteWarner = new Warner();
3961        try {
3962            Type owntype = rs.checkMethod(
3963                    env,
3964                    site,
3965                    sym,
3966                    resultInfo,
3967                    argtypes,
3968                    typeargtypes,
3969                    noteWarner);
3970
3971            DeferredAttr.DeferredTypeMap checkDeferredMap =
3972                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3973
3974            argtypes = argtypes.map(checkDeferredMap);
3975
3976            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3977                chk.warnUnchecked(env.tree.pos(),
3978                        "unchecked.meth.invocation.applied",
3979                        kindName(sym),
3980                        sym.name,
3981                        rs.methodArguments(sym.type.getParameterTypes()),
3982                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3983                        kindName(sym.location()),
3984                        sym.location());
3985               owntype = new MethodType(owntype.getParameterTypes(),
3986                       types.erasure(owntype.getReturnType()),
3987                       types.erasure(owntype.getThrownTypes()),
3988                       syms.methodClass);
3989            }
3990
3991            PolyKind pkind = (sym.type.hasTag(FORALL) &&
3992                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
3993                 PolyKind.POLY : PolyKind.STANDALONE;
3994            TreeInfo.setPolyKind(env.tree, pkind);
3995
3996            return (resultInfo.pt == Infer.anyPoly) ?
3997                    owntype :
3998                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3999                            resultInfo.checkContext.inferenceContext());
4000        } catch (Infer.InferenceException ex) {
4001            //invalid target type - propagate exception outwards or report error
4002            //depending on the current check context
4003            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4004            return types.createErrorType(site);
4005        } catch (Resolve.InapplicableMethodException ex) {
4006            final JCDiagnostic diag = ex.getDiagnostic();
4007            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4008                @Override
4009                protected Pair<Symbol, JCDiagnostic> errCandidate() {
4010                    return new Pair<>(sym, diag);
4011                }
4012            };
4013            List<Type> argtypes2 = argtypes.map(
4014                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4015            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4016                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4017            log.report(errDiag);
4018            return types.createErrorType(site);
4019        }
4020    }
4021
4022    public void visitLiteral(JCLiteral tree) {
4023        result = check(tree, litType(tree.typetag).constType(tree.value),
4024                KindSelector.VAL, resultInfo);
4025    }
4026    //where
4027    /** Return the type of a literal with given type tag.
4028     */
4029    Type litType(TypeTag tag) {
4030        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4031    }
4032
4033    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4034        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4035    }
4036
4037    public void visitTypeArray(JCArrayTypeTree tree) {
4038        Type etype = attribType(tree.elemtype, env);
4039        Type type = new ArrayType(etype, syms.arrayClass);
4040        result = check(tree, type, KindSelector.TYP, resultInfo);
4041    }
4042
4043    /** Visitor method for parameterized types.
4044     *  Bound checking is left until later, since types are attributed
4045     *  before supertype structure is completely known
4046     */
4047    public void visitTypeApply(JCTypeApply tree) {
4048        Type owntype = types.createErrorType(tree.type);
4049
4050        // Attribute functor part of application and make sure it's a class.
4051        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4052
4053        // Attribute type parameters
4054        List<Type> actuals = attribTypes(tree.arguments, env);
4055
4056        if (clazztype.hasTag(CLASS)) {
4057            List<Type> formals = clazztype.tsym.type.getTypeArguments();
4058            if (actuals.isEmpty()) //diamond
4059                actuals = formals;
4060
4061            if (actuals.length() == formals.length()) {
4062                List<Type> a = actuals;
4063                List<Type> f = formals;
4064                while (a.nonEmpty()) {
4065                    a.head = a.head.withTypeVar(f.head);
4066                    a = a.tail;
4067                    f = f.tail;
4068                }
4069                // Compute the proper generic outer
4070                Type clazzOuter = clazztype.getEnclosingType();
4071                if (clazzOuter.hasTag(CLASS)) {
4072                    Type site;
4073                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4074                    if (clazz.hasTag(IDENT)) {
4075                        site = env.enclClass.sym.type;
4076                    } else if (clazz.hasTag(SELECT)) {
4077                        site = ((JCFieldAccess) clazz).selected.type;
4078                    } else throw new AssertionError(""+tree);
4079                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4080                        if (site.hasTag(CLASS))
4081                            site = types.asOuterSuper(site, clazzOuter.tsym);
4082                        if (site == null)
4083                            site = types.erasure(clazzOuter);
4084                        clazzOuter = site;
4085                    }
4086                }
4087                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4088                                        clazztype.getMetadata());
4089            } else {
4090                if (formals.length() != 0) {
4091                    log.error(tree.pos(), "wrong.number.type.args",
4092                              Integer.toString(formals.length()));
4093                } else {
4094                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
4095                }
4096                owntype = types.createErrorType(tree.type);
4097            }
4098        }
4099        result = check(tree, owntype, KindSelector.TYP, resultInfo);
4100    }
4101
4102    public void visitTypeUnion(JCTypeUnion tree) {
4103        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4104        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4105        for (JCExpression typeTree : tree.alternatives) {
4106            Type ctype = attribType(typeTree, env);
4107            ctype = chk.checkType(typeTree.pos(),
4108                          chk.checkClassType(typeTree.pos(), ctype),
4109                          syms.throwableType);
4110            if (!ctype.isErroneous()) {
4111                //check that alternatives of a union type are pairwise
4112                //unrelated w.r.t. subtyping
4113                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4114                    for (Type t : multicatchTypes) {
4115                        boolean sub = types.isSubtype(ctype, t);
4116                        boolean sup = types.isSubtype(t, ctype);
4117                        if (sub || sup) {
4118                            //assume 'a' <: 'b'
4119                            Type a = sub ? ctype : t;
4120                            Type b = sub ? t : ctype;
4121                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4122                        }
4123                    }
4124                }
4125                multicatchTypes.append(ctype);
4126                if (all_multicatchTypes != null)
4127                    all_multicatchTypes.append(ctype);
4128            } else {
4129                if (all_multicatchTypes == null) {
4130                    all_multicatchTypes = new ListBuffer<>();
4131                    all_multicatchTypes.appendList(multicatchTypes);
4132                }
4133                all_multicatchTypes.append(ctype);
4134            }
4135        }
4136        Type t = check(tree, types.lub(multicatchTypes.toList()),
4137                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4138        if (t.hasTag(CLASS)) {
4139            List<Type> alternatives =
4140                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4141            t = new UnionClassType((ClassType) t, alternatives);
4142        }
4143        tree.type = result = t;
4144    }
4145
4146    public void visitTypeIntersection(JCTypeIntersection tree) {
4147        attribTypes(tree.bounds, env);
4148        tree.type = result = checkIntersection(tree, tree.bounds);
4149    }
4150
4151    public void visitTypeParameter(JCTypeParameter tree) {
4152        TypeVar typeVar = (TypeVar) tree.type;
4153
4154        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4155            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4156        }
4157
4158        if (!typeVar.bound.isErroneous()) {
4159            //fixup type-parameter bound computed in 'attribTypeVariables'
4160            typeVar.bound = checkIntersection(tree, tree.bounds);
4161        }
4162    }
4163
4164    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4165        Set<Type> boundSet = new HashSet<>();
4166        if (bounds.nonEmpty()) {
4167            // accept class or interface or typevar as first bound.
4168            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4169            boundSet.add(types.erasure(bounds.head.type));
4170            if (bounds.head.type.isErroneous()) {
4171                return bounds.head.type;
4172            }
4173            else if (bounds.head.type.hasTag(TYPEVAR)) {
4174                // if first bound was a typevar, do not accept further bounds.
4175                if (bounds.tail.nonEmpty()) {
4176                    log.error(bounds.tail.head.pos(),
4177                              "type.var.may.not.be.followed.by.other.bounds");
4178                    return bounds.head.type;
4179                }
4180            } else {
4181                // if first bound was a class or interface, accept only interfaces
4182                // as further bounds.
4183                for (JCExpression bound : bounds.tail) {
4184                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4185                    if (bound.type.isErroneous()) {
4186                        bounds = List.of(bound);
4187                    }
4188                    else if (bound.type.hasTag(CLASS)) {
4189                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4190                    }
4191                }
4192            }
4193        }
4194
4195        if (bounds.length() == 0) {
4196            return syms.objectType;
4197        } else if (bounds.length() == 1) {
4198            return bounds.head.type;
4199        } else {
4200            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4201            // ... the variable's bound is a class type flagged COMPOUND
4202            // (see comment for TypeVar.bound).
4203            // In this case, generate a class tree that represents the
4204            // bound class, ...
4205            JCExpression extending;
4206            List<JCExpression> implementing;
4207            if (!bounds.head.type.isInterface()) {
4208                extending = bounds.head;
4209                implementing = bounds.tail;
4210            } else {
4211                extending = null;
4212                implementing = bounds;
4213            }
4214            JCClassDecl cd = make.at(tree).ClassDef(
4215                make.Modifiers(PUBLIC | ABSTRACT),
4216                names.empty, List.<JCTypeParameter>nil(),
4217                extending, implementing, List.<JCTree>nil());
4218
4219            ClassSymbol c = (ClassSymbol)owntype.tsym;
4220            Assert.check((c.flags() & COMPOUND) != 0);
4221            cd.sym = c;
4222            c.sourcefile = env.toplevel.sourcefile;
4223
4224            // ... and attribute the bound class
4225            c.flags_field |= UNATTRIBUTED;
4226            Env<AttrContext> cenv = enter.classEnv(cd, env);
4227            typeEnvs.put(c, cenv);
4228            attribClass(c);
4229            return owntype;
4230        }
4231    }
4232
4233    public void visitWildcard(JCWildcard tree) {
4234        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4235        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4236            ? syms.objectType
4237            : attribType(tree.inner, env);
4238        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4239                                              tree.kind.kind,
4240                                              syms.boundClass),
4241                KindSelector.TYP, resultInfo);
4242    }
4243
4244    public void visitAnnotation(JCAnnotation tree) {
4245        Assert.error("should be handled in annotate");
4246    }
4247
4248    public void visitAnnotatedType(JCAnnotatedType tree) {
4249        attribAnnotationTypes(tree.annotations, env);
4250        Type underlyingType = attribType(tree.underlyingType, env);
4251        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4252
4253        if (!env.info.isNewClass)
4254            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4255        result = tree.type = annotatedType;
4256    }
4257
4258    public void visitErroneous(JCErroneous tree) {
4259        if (tree.errs != null)
4260            for (JCTree err : tree.errs)
4261                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4262        result = tree.type = syms.errType;
4263    }
4264
4265    /** Default visitor method for all other trees.
4266     */
4267    public void visitTree(JCTree tree) {
4268        throw new AssertionError();
4269    }
4270
4271    /**
4272     * Attribute an env for either a top level tree or class or module declaration.
4273     */
4274    public void attrib(Env<AttrContext> env) {
4275        switch (env.tree.getTag()) {
4276            case MODULEDEF:
4277                attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4278                break;
4279            case TOPLEVEL:
4280                attribTopLevel(env);
4281                break;
4282            case PACKAGEDEF:
4283                attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4284                break;
4285            default:
4286                attribClass(env.tree.pos(), env.enclClass.sym);
4287        }
4288    }
4289
4290    /**
4291     * Attribute a top level tree. These trees are encountered when the
4292     * package declaration has annotations.
4293     */
4294    public void attribTopLevel(Env<AttrContext> env) {
4295        JCCompilationUnit toplevel = env.toplevel;
4296        try {
4297            annotate.flush();
4298        } catch (CompletionFailure ex) {
4299            chk.completionError(toplevel.pos(), ex);
4300        }
4301    }
4302
4303    public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4304        try {
4305            annotate.flush();
4306            attribPackage(p);
4307        } catch (CompletionFailure ex) {
4308            chk.completionError(pos, ex);
4309        }
4310    }
4311
4312    void attribPackage(PackageSymbol p) {
4313        Env<AttrContext> env = typeEnvs.get(p);
4314        chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4315    }
4316
4317    public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4318        try {
4319            annotate.flush();
4320            attribModule(m);
4321        } catch (CompletionFailure ex) {
4322            chk.completionError(pos, ex);
4323        }
4324    }
4325
4326    void attribModule(ModuleSymbol m) {
4327        // Get environment current at the point of module definition.
4328        Env<AttrContext> env = enter.typeEnvs.get(m);
4329        attribStat(env.tree, env);
4330    }
4331
4332    /** Main method: attribute class definition associated with given class symbol.
4333     *  reporting completion failures at the given position.
4334     *  @param pos The source position at which completion errors are to be
4335     *             reported.
4336     *  @param c   The class symbol whose definition will be attributed.
4337     */
4338    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4339        try {
4340            annotate.flush();
4341            attribClass(c);
4342        } catch (CompletionFailure ex) {
4343            chk.completionError(pos, ex);
4344        }
4345    }
4346
4347    /** Attribute class definition associated with given class symbol.
4348     *  @param c   The class symbol whose definition will be attributed.
4349     */
4350    void attribClass(ClassSymbol c) throws CompletionFailure {
4351        if (c.type.hasTag(ERROR)) return;
4352
4353        // Check for cycles in the inheritance graph, which can arise from
4354        // ill-formed class files.
4355        chk.checkNonCyclic(null, c.type);
4356
4357        Type st = types.supertype(c.type);
4358        if ((c.flags_field & Flags.COMPOUND) == 0) {
4359            // First, attribute superclass.
4360            if (st.hasTag(CLASS))
4361                attribClass((ClassSymbol)st.tsym);
4362
4363            // Next attribute owner, if it is a class.
4364            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4365                attribClass((ClassSymbol)c.owner);
4366        }
4367
4368        // The previous operations might have attributed the current class
4369        // if there was a cycle. So we test first whether the class is still
4370        // UNATTRIBUTED.
4371        if ((c.flags_field & UNATTRIBUTED) != 0) {
4372            c.flags_field &= ~UNATTRIBUTED;
4373
4374            // Get environment current at the point of class definition.
4375            Env<AttrContext> env = typeEnvs.get(c);
4376
4377            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4378            // because the annotations were not available at the time the env was created. Therefore,
4379            // we look up the environment chain for the first enclosing environment for which the
4380            // lint value is set. Typically, this is the parent env, but might be further if there
4381            // are any envs created as a result of TypeParameter nodes.
4382            Env<AttrContext> lintEnv = env;
4383            while (lintEnv.info.lint == null)
4384                lintEnv = lintEnv.next;
4385
4386            // Having found the enclosing lint value, we can initialize the lint value for this class
4387            env.info.lint = lintEnv.info.lint.augment(c);
4388
4389            Lint prevLint = chk.setLint(env.info.lint);
4390            JavaFileObject prev = log.useSource(c.sourcefile);
4391            ResultInfo prevReturnRes = env.info.returnResult;
4392
4393            try {
4394                deferredLintHandler.flush(env.tree);
4395                env.info.returnResult = null;
4396                // java.lang.Enum may not be subclassed by a non-enum
4397                if (st.tsym == syms.enumSym &&
4398                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4399                    log.error(env.tree.pos(), "enum.no.subclassing");
4400
4401                // Enums may not be extended by source-level classes
4402                if (st.tsym != null &&
4403                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4404                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4405                    log.error(env.tree.pos(), "enum.types.not.extensible");
4406                }
4407
4408                if (isSerializable(c.type)) {
4409                    env.info.isSerializable = true;
4410                }
4411
4412                attribClassBody(env, c);
4413
4414                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4415                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4416                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4417            } finally {
4418                env.info.returnResult = prevReturnRes;
4419                log.useSource(prev);
4420                chk.setLint(prevLint);
4421            }
4422
4423        }
4424    }
4425
4426    public void visitImport(JCImport tree) {
4427        // nothing to do
4428    }
4429
4430    public void visitModuleDef(JCModuleDecl tree) {
4431        tree.sym.completeUsesProvides();
4432    }
4433
4434    /** Finish the attribution of a class. */
4435    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4436        JCClassDecl tree = (JCClassDecl)env.tree;
4437        Assert.check(c == tree.sym);
4438
4439        // Validate type parameters, supertype and interfaces.
4440        attribStats(tree.typarams, env);
4441        if (!c.isAnonymous()) {
4442            //already checked if anonymous
4443            chk.validate(tree.typarams, env);
4444            chk.validate(tree.extending, env);
4445            chk.validate(tree.implementing, env);
4446        }
4447
4448        c.markAbstractIfNeeded(types);
4449
4450        // If this is a non-abstract class, check that it has no abstract
4451        // methods or unimplemented methods of an implemented interface.
4452        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4453            chk.checkAllDefined(tree.pos(), c);
4454        }
4455
4456        if ((c.flags() & ANNOTATION) != 0) {
4457            if (tree.implementing.nonEmpty())
4458                log.error(tree.implementing.head.pos(),
4459                          "cant.extend.intf.annotation");
4460            if (tree.typarams.nonEmpty())
4461                log.error(tree.typarams.head.pos(),
4462                          "intf.annotation.cant.have.type.params");
4463
4464            // If this annotation type has a @Repeatable, validate
4465            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4466            // If this annotation type has a @Repeatable, validate
4467            if (repeatable != null) {
4468                // get diagnostic position for error reporting
4469                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4470                Assert.checkNonNull(cbPos);
4471
4472                chk.validateRepeatable(c, repeatable, cbPos);
4473            }
4474        } else {
4475            // Check that all extended classes and interfaces
4476            // are compatible (i.e. no two define methods with same arguments
4477            // yet different return types).  (JLS 8.4.6.3)
4478            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4479            if (allowDefaultMethods) {
4480                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4481            }
4482        }
4483
4484        // Check that class does not import the same parameterized interface
4485        // with two different argument lists.
4486        chk.checkClassBounds(tree.pos(), c.type);
4487
4488        tree.type = c.type;
4489
4490        for (List<JCTypeParameter> l = tree.typarams;
4491             l.nonEmpty(); l = l.tail) {
4492             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4493        }
4494
4495        // Check that a generic class doesn't extend Throwable
4496        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4497            log.error(tree.extending.pos(), "generic.throwable");
4498
4499        // Check that all methods which implement some
4500        // method conform to the method they implement.
4501        chk.checkImplementations(tree);
4502
4503        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4504        checkAutoCloseable(tree.pos(), env, c.type);
4505
4506        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4507            // Attribute declaration
4508            attribStat(l.head, env);
4509            // Check that declarations in inner classes are not static (JLS 8.1.2)
4510            // Make an exception for static constants.
4511            if (c.owner.kind != PCK &&
4512                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4513                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4514                Symbol sym = null;
4515                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4516                if (sym == null ||
4517                    sym.kind != VAR ||
4518                    ((VarSymbol) sym).getConstValue() == null)
4519                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4520            }
4521        }
4522
4523        // Check for cycles among non-initial constructors.
4524        chk.checkCyclicConstructors(tree);
4525
4526        // Check for cycles among annotation elements.
4527        chk.checkNonCyclicElements(tree);
4528
4529        // Check for proper use of serialVersionUID
4530        if (env.info.lint.isEnabled(LintCategory.SERIAL)
4531                && isSerializable(c.type)
4532                && (c.flags() & Flags.ENUM) == 0
4533                && !c.isAnonymous()
4534                && checkForSerial(c)) {
4535            checkSerialVersionUID(tree, c);
4536        }
4537        if (allowTypeAnnos) {
4538            // Correctly organize the postions of the type annotations
4539            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4540
4541            // Check type annotations applicability rules
4542            validateTypeAnnotations(tree, false);
4543        }
4544    }
4545        // where
4546        boolean checkForSerial(ClassSymbol c) {
4547            if ((c.flags() & ABSTRACT) == 0) {
4548                return true;
4549            } else {
4550                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4551            }
4552        }
4553
4554        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4555            @Override
4556            public boolean accepts(Symbol s) {
4557                return s.kind == MTH &&
4558                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4559            }
4560        };
4561
4562        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4563        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4564            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4565                if (types.isSameType(al.head.annotationType.type, t))
4566                    return al.head.pos();
4567            }
4568
4569            return null;
4570        }
4571
4572        /** check if a type is a subtype of Serializable, if that is available. */
4573        boolean isSerializable(Type t) {
4574            try {
4575                syms.serializableType.complete();
4576            }
4577            catch (CompletionFailure e) {
4578                return false;
4579            }
4580            return types.isSubtype(t, syms.serializableType);
4581        }
4582
4583        /** Check that an appropriate serialVersionUID member is defined. */
4584        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4585
4586            // check for presence of serialVersionUID
4587            VarSymbol svuid = null;
4588            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4589                if (sym.kind == VAR) {
4590                    svuid = (VarSymbol)sym;
4591                    break;
4592                }
4593            }
4594
4595            if (svuid == null) {
4596                log.warning(LintCategory.SERIAL,
4597                        tree.pos(), "missing.SVUID", c);
4598                return;
4599            }
4600
4601            // check that it is static final
4602            if ((svuid.flags() & (STATIC | FINAL)) !=
4603                (STATIC | FINAL))
4604                log.warning(LintCategory.SERIAL,
4605                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4606
4607            // check that it is long
4608            else if (!svuid.type.hasTag(LONG))
4609                log.warning(LintCategory.SERIAL,
4610                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4611
4612            // check constant
4613            else if (svuid.getConstValue() == null)
4614                log.warning(LintCategory.SERIAL,
4615                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4616        }
4617
4618    private Type capture(Type type) {
4619        return types.capture(type);
4620    }
4621
4622    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4623        tree.accept(new TypeAnnotationsValidator(sigOnly));
4624    }
4625    //where
4626    private final class TypeAnnotationsValidator extends TreeScanner {
4627
4628        private final boolean sigOnly;
4629        public TypeAnnotationsValidator(boolean sigOnly) {
4630            this.sigOnly = sigOnly;
4631        }
4632
4633        public void visitAnnotation(JCAnnotation tree) {
4634            chk.validateTypeAnnotation(tree, false);
4635            super.visitAnnotation(tree);
4636        }
4637        public void visitAnnotatedType(JCAnnotatedType tree) {
4638            if (!tree.underlyingType.type.isErroneous()) {
4639                super.visitAnnotatedType(tree);
4640            }
4641        }
4642        public void visitTypeParameter(JCTypeParameter tree) {
4643            chk.validateTypeAnnotations(tree.annotations, true);
4644            scan(tree.bounds);
4645            // Don't call super.
4646            // This is needed because above we call validateTypeAnnotation with
4647            // false, which would forbid annotations on type parameters.
4648            // super.visitTypeParameter(tree);
4649        }
4650        public void visitMethodDef(JCMethodDecl tree) {
4651            if (tree.recvparam != null &&
4652                    !tree.recvparam.vartype.type.isErroneous()) {
4653                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4654                        tree.recvparam.vartype.type.tsym);
4655            }
4656            if (tree.restype != null && tree.restype.type != null) {
4657                validateAnnotatedType(tree.restype, tree.restype.type);
4658            }
4659            if (sigOnly) {
4660                scan(tree.mods);
4661                scan(tree.restype);
4662                scan(tree.typarams);
4663                scan(tree.recvparam);
4664                scan(tree.params);
4665                scan(tree.thrown);
4666            } else {
4667                scan(tree.defaultValue);
4668                scan(tree.body);
4669            }
4670        }
4671        public void visitVarDef(final JCVariableDecl tree) {
4672            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4673            if (tree.sym != null && tree.sym.type != null)
4674                validateAnnotatedType(tree.vartype, tree.sym.type);
4675            scan(tree.mods);
4676            scan(tree.vartype);
4677            if (!sigOnly) {
4678                scan(tree.init);
4679            }
4680        }
4681        public void visitTypeCast(JCTypeCast tree) {
4682            if (tree.clazz != null && tree.clazz.type != null)
4683                validateAnnotatedType(tree.clazz, tree.clazz.type);
4684            super.visitTypeCast(tree);
4685        }
4686        public void visitTypeTest(JCInstanceOf tree) {
4687            if (tree.clazz != null && tree.clazz.type != null)
4688                validateAnnotatedType(tree.clazz, tree.clazz.type);
4689            super.visitTypeTest(tree);
4690        }
4691        public void visitNewClass(JCNewClass tree) {
4692            if (tree.clazz != null && tree.clazz.type != null) {
4693                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4694                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4695                            tree.clazz.type.tsym);
4696                }
4697                if (tree.def != null) {
4698                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4699                }
4700
4701                validateAnnotatedType(tree.clazz, tree.clazz.type);
4702            }
4703            super.visitNewClass(tree);
4704        }
4705        public void visitNewArray(JCNewArray tree) {
4706            if (tree.elemtype != null && tree.elemtype.type != null) {
4707                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4708                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4709                            tree.elemtype.type.tsym);
4710                }
4711                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4712            }
4713            super.visitNewArray(tree);
4714        }
4715        public void visitClassDef(JCClassDecl tree) {
4716            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4717            if (sigOnly) {
4718                scan(tree.mods);
4719                scan(tree.typarams);
4720                scan(tree.extending);
4721                scan(tree.implementing);
4722            }
4723            for (JCTree member : tree.defs) {
4724                if (member.hasTag(Tag.CLASSDEF)) {
4725                    continue;
4726                }
4727                scan(member);
4728            }
4729        }
4730        public void visitBlock(JCBlock tree) {
4731            if (!sigOnly) {
4732                scan(tree.stats);
4733            }
4734        }
4735
4736        /* I would want to model this after
4737         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4738         * and override visitSelect and visitTypeApply.
4739         * However, we only set the annotated type in the top-level type
4740         * of the symbol.
4741         * Therefore, we need to override each individual location where a type
4742         * can occur.
4743         */
4744        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4745            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4746
4747            if (type.isPrimitiveOrVoid()) {
4748                return;
4749            }
4750
4751            JCTree enclTr = errtree;
4752            Type enclTy = type;
4753
4754            boolean repeat = true;
4755            while (repeat) {
4756                if (enclTr.hasTag(TYPEAPPLY)) {
4757                    List<Type> tyargs = enclTy.getTypeArguments();
4758                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4759                    if (trargs.length() > 0) {
4760                        // Nothing to do for diamonds
4761                        if (tyargs.length() == trargs.length()) {
4762                            for (int i = 0; i < tyargs.length(); ++i) {
4763                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4764                            }
4765                        }
4766                        // If the lengths don't match, it's either a diamond
4767                        // or some nested type that redundantly provides
4768                        // type arguments in the tree.
4769                    }
4770
4771                    // Look at the clazz part of a generic type
4772                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4773                }
4774
4775                if (enclTr.hasTag(SELECT)) {
4776                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4777                    if (enclTy != null &&
4778                            !enclTy.hasTag(NONE)) {
4779                        enclTy = enclTy.getEnclosingType();
4780                    }
4781                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4782                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4783                    if (enclTy == null || enclTy.hasTag(NONE)) {
4784                        if (at.getAnnotations().size() == 1) {
4785                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4786                        } else {
4787                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4788                            for (JCAnnotation an : at.getAnnotations()) {
4789                                comps.add(an.attribute);
4790                            }
4791                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4792                        }
4793                        repeat = false;
4794                    }
4795                    enclTr = at.underlyingType;
4796                    // enclTy doesn't need to be changed
4797                } else if (enclTr.hasTag(IDENT)) {
4798                    repeat = false;
4799                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4800                    JCWildcard wc = (JCWildcard) enclTr;
4801                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4802                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4803                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4804                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4805                    } else {
4806                        // Nothing to do for UNBOUND
4807                    }
4808                    repeat = false;
4809                } else if (enclTr.hasTag(TYPEARRAY)) {
4810                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4811                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4812                    repeat = false;
4813                } else if (enclTr.hasTag(TYPEUNION)) {
4814                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4815                    for (JCTree t : ut.getTypeAlternatives()) {
4816                        validateAnnotatedType(t, t.type);
4817                    }
4818                    repeat = false;
4819                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4820                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4821                    for (JCTree t : it.getBounds()) {
4822                        validateAnnotatedType(t, t.type);
4823                    }
4824                    repeat = false;
4825                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4826                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4827                    repeat = false;
4828                } else {
4829                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4830                            " within: "+ errtree + " with kind: " + errtree.getKind());
4831                }
4832            }
4833        }
4834
4835        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4836                Symbol sym) {
4837            // Ensure that no declaration annotations are present.
4838            // Note that a tree type might be an AnnotatedType with
4839            // empty annotations, if only declaration annotations were given.
4840            // This method will raise an error for such a type.
4841            for (JCAnnotation ai : annotations) {
4842                if (!ai.type.isErroneous() &&
4843                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4844                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4845                }
4846            }
4847        }
4848    }
4849
4850    // <editor-fold desc="post-attribution visitor">
4851
4852    /**
4853     * Handle missing types/symbols in an AST. This routine is useful when
4854     * the compiler has encountered some errors (which might have ended up
4855     * terminating attribution abruptly); if the compiler is used in fail-over
4856     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4857     * prevents NPE to be progagated during subsequent compilation steps.
4858     */
4859    public void postAttr(JCTree tree) {
4860        new PostAttrAnalyzer().scan(tree);
4861    }
4862
4863    class PostAttrAnalyzer extends TreeScanner {
4864
4865        private void initTypeIfNeeded(JCTree that) {
4866            if (that.type == null) {
4867                if (that.hasTag(METHODDEF)) {
4868                    that.type = dummyMethodType((JCMethodDecl)that);
4869                } else {
4870                    that.type = syms.unknownType;
4871                }
4872            }
4873        }
4874
4875        /* Construct a dummy method type. If we have a method declaration,
4876         * and the declared return type is void, then use that return type
4877         * instead of UNKNOWN to avoid spurious error messages in lambda
4878         * bodies (see:JDK-8041704).
4879         */
4880        private Type dummyMethodType(JCMethodDecl md) {
4881            Type restype = syms.unknownType;
4882            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4883                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4884                if (prim.typetag == VOID)
4885                    restype = syms.voidType;
4886            }
4887            return new MethodType(List.<Type>nil(), restype,
4888                                  List.<Type>nil(), syms.methodClass);
4889        }
4890        private Type dummyMethodType() {
4891            return dummyMethodType(null);
4892        }
4893
4894        @Override
4895        public void scan(JCTree tree) {
4896            if (tree == null) return;
4897            if (tree instanceof JCExpression) {
4898                initTypeIfNeeded(tree);
4899            }
4900            super.scan(tree);
4901        }
4902
4903        @Override
4904        public void visitIdent(JCIdent that) {
4905            if (that.sym == null) {
4906                that.sym = syms.unknownSymbol;
4907            }
4908        }
4909
4910        @Override
4911        public void visitSelect(JCFieldAccess that) {
4912            if (that.sym == null) {
4913                that.sym = syms.unknownSymbol;
4914            }
4915            super.visitSelect(that);
4916        }
4917
4918        @Override
4919        public void visitClassDef(JCClassDecl that) {
4920            initTypeIfNeeded(that);
4921            if (that.sym == null) {
4922                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4923            }
4924            super.visitClassDef(that);
4925        }
4926
4927        @Override
4928        public void visitMethodDef(JCMethodDecl that) {
4929            initTypeIfNeeded(that);
4930            if (that.sym == null) {
4931                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4932            }
4933            super.visitMethodDef(that);
4934        }
4935
4936        @Override
4937        public void visitVarDef(JCVariableDecl that) {
4938            initTypeIfNeeded(that);
4939            if (that.sym == null) {
4940                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4941                that.sym.adr = 0;
4942            }
4943            super.visitVarDef(that);
4944        }
4945
4946        @Override
4947        public void visitNewClass(JCNewClass that) {
4948            if (that.constructor == null) {
4949                that.constructor = new MethodSymbol(0, names.init,
4950                        dummyMethodType(), syms.noSymbol);
4951            }
4952            if (that.constructorType == null) {
4953                that.constructorType = syms.unknownType;
4954            }
4955            super.visitNewClass(that);
4956        }
4957
4958        @Override
4959        public void visitAssignop(JCAssignOp that) {
4960            if (that.operator == null) {
4961                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4962                        -1, syms.noSymbol);
4963            }
4964            super.visitAssignop(that);
4965        }
4966
4967        @Override
4968        public void visitBinary(JCBinary that) {
4969            if (that.operator == null) {
4970                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4971                        -1, syms.noSymbol);
4972            }
4973            super.visitBinary(that);
4974        }
4975
4976        @Override
4977        public void visitUnary(JCUnary that) {
4978            if (that.operator == null) {
4979                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4980                        -1, syms.noSymbol);
4981            }
4982            super.visitUnary(that);
4983        }
4984
4985        @Override
4986        public void visitLambda(JCLambda that) {
4987            super.visitLambda(that);
4988            if (that.targets == null) {
4989                that.targets = List.nil();
4990            }
4991        }
4992
4993        @Override
4994        public void visitReference(JCMemberReference that) {
4995            super.visitReference(that);
4996            if (that.sym == null) {
4997                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4998                        syms.noSymbol);
4999            }
5000            if (that.targets == null) {
5001                that.targets = List.nil();
5002            }
5003        }
5004    }
5005    // </editor-fold>
5006
5007    public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5008        new TreeScanner() {
5009            Symbol packge = pkg;
5010            @Override
5011            public void visitIdent(JCIdent that) {
5012                that.sym = packge;
5013            }
5014
5015            @Override
5016            public void visitSelect(JCFieldAccess that) {
5017                that.sym = packge;
5018                packge = packge.owner;
5019                super.visitSelect(that);
5020            }
5021        }.scan(pid);
5022    }
5023
5024}
5025