Attr.java revision 3453:2d1a6b746310
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Directive.RequiresFlag;
40import com.sun.tools.javac.code.Lint.LintCategory;
41import com.sun.tools.javac.code.Scope.WriteableScope;
42import com.sun.tools.javac.code.Symbol.*;
43import com.sun.tools.javac.code.Type.*;
44import com.sun.tools.javac.code.TypeMetadata.Annotations;
45import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
46import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
47import com.sun.tools.javac.comp.Check.CheckContext;
48import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
49import com.sun.tools.javac.comp.Infer.FreeTypeListener;
50import com.sun.tools.javac.jvm.*;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
53import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
54import com.sun.tools.javac.resources.CompilerProperties.Errors;
55import com.sun.tools.javac.resources.CompilerProperties.Fragments;
56import com.sun.tools.javac.tree.*;
57import com.sun.tools.javac.tree.JCTree.*;
58import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
59import com.sun.tools.javac.util.*;
60import com.sun.tools.javac.util.DefinedBy.Api;
61import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
62import com.sun.tools.javac.util.JCDiagnostic.Fragment;
63import com.sun.tools.javac.util.List;
64
65import static com.sun.tools.javac.code.Flags.*;
66import static com.sun.tools.javac.code.Flags.ANNOTATION;
67import static com.sun.tools.javac.code.Flags.BLOCK;
68import static com.sun.tools.javac.code.Kinds.*;
69import static com.sun.tools.javac.code.Kinds.Kind.*;
70import static com.sun.tools.javac.code.TypeTag.*;
71import static com.sun.tools.javac.code.TypeTag.WILDCARD;
72import static com.sun.tools.javac.tree.JCTree.Tag.*;
73
74/** This is the main context-dependent analysis phase in GJC. It
75 *  encompasses name resolution, type checking and constant folding as
76 *  subtasks. Some subtasks involve auxiliary classes.
77 *  @see Check
78 *  @see Resolve
79 *  @see ConstFold
80 *  @see Infer
81 *
82 *  <p><b>This is NOT part of any supported API.
83 *  If you write code that depends on this, you do so at your own risk.
84 *  This code and its internal interfaces are subject to change or
85 *  deletion without notice.</b>
86 */
87public class Attr extends JCTree.Visitor {
88    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
89
90    final Names names;
91    final Log log;
92    final Symtab syms;
93    final Resolve rs;
94    final Operators operators;
95    final Infer infer;
96    final Analyzer analyzer;
97    final DeferredAttr deferredAttr;
98    final Check chk;
99    final Flow flow;
100    final MemberEnter memberEnter;
101    final TypeEnter typeEnter;
102    final TreeMaker make;
103    final ConstFold cfolder;
104    final Enter enter;
105    final Target target;
106    final Types types;
107    final JCDiagnostic.Factory diags;
108    final TypeAnnotations typeAnnotations;
109    final DeferredLintHandler deferredLintHandler;
110    final TypeEnvs typeEnvs;
111    final Dependencies dependencies;
112    final Annotate annotate;
113    final ArgumentAttr argumentAttr;
114
115    public static Attr instance(Context context) {
116        Attr instance = context.get(attrKey);
117        if (instance == null)
118            instance = new Attr(context);
119        return instance;
120    }
121
122    protected Attr(Context context) {
123        context.put(attrKey, this);
124
125        names = Names.instance(context);
126        log = Log.instance(context);
127        syms = Symtab.instance(context);
128        rs = Resolve.instance(context);
129        operators = Operators.instance(context);
130        chk = Check.instance(context);
131        flow = Flow.instance(context);
132        memberEnter = MemberEnter.instance(context);
133        typeEnter = TypeEnter.instance(context);
134        make = TreeMaker.instance(context);
135        enter = Enter.instance(context);
136        infer = Infer.instance(context);
137        analyzer = Analyzer.instance(context);
138        deferredAttr = DeferredAttr.instance(context);
139        cfolder = ConstFold.instance(context);
140        target = Target.instance(context);
141        types = Types.instance(context);
142        diags = JCDiagnostic.Factory.instance(context);
143        annotate = Annotate.instance(context);
144        typeAnnotations = TypeAnnotations.instance(context);
145        deferredLintHandler = DeferredLintHandler.instance(context);
146        typeEnvs = TypeEnvs.instance(context);
147        dependencies = Dependencies.instance(context);
148        argumentAttr = ArgumentAttr.instance(context);
149
150        Options options = Options.instance(context);
151
152        Source source = Source.instance(context);
153        allowStringsInSwitch = source.allowStringsInSwitch();
154        allowPoly = source.allowPoly();
155        allowTypeAnnos = source.allowTypeAnnotations();
156        allowLambda = source.allowLambda();
157        allowDefaultMethods = source.allowDefaultMethods();
158        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
159        sourceName = source.name;
160        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
161
162        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
163        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
164        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
165        methodAttrInfo = new MethodAttrInfo();
166        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
167        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
168        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
169    }
170
171    /** Switch: support target-typing inference
172     */
173    boolean allowPoly;
174
175    /** Switch: support type annotations.
176     */
177    boolean allowTypeAnnos;
178
179    /** Switch: support lambda expressions ?
180     */
181    boolean allowLambda;
182
183    /** Switch: support default methods ?
184     */
185    boolean allowDefaultMethods;
186
187    /** Switch: static interface methods enabled?
188     */
189    boolean allowStaticInterfaceMethods;
190
191    /**
192     * Switch: warn about use of variable before declaration?
193     * RFE: 6425594
194     */
195    boolean useBeforeDeclarationWarning;
196
197    /**
198     * Switch: allow strings in switch?
199     */
200    boolean allowStringsInSwitch;
201
202    /**
203     * Switch: name of source level; used for error reporting.
204     */
205    String sourceName;
206
207    /** Check kind and type of given tree against protokind and prototype.
208     *  If check succeeds, store type in tree and return it.
209     *  If check fails, store errType in tree and return it.
210     *  No checks are performed if the prototype is a method type.
211     *  It is not necessary in this case since we know that kind and type
212     *  are correct.
213     *
214     *  @param tree     The tree whose kind and type is checked
215     *  @param found    The computed type of the tree
216     *  @param ownkind  The computed kind of the tree
217     *  @param resultInfo  The expected result of the tree
218     */
219    Type check(final JCTree tree,
220               final Type found,
221               final KindSelector ownkind,
222               final ResultInfo resultInfo) {
223        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
224        Type owntype;
225        boolean shouldCheck = !found.hasTag(ERROR) &&
226                !resultInfo.pt.hasTag(METHOD) &&
227                !resultInfo.pt.hasTag(FORALL);
228        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
229            log.error(tree.pos(), "unexpected.type",
230            resultInfo.pkind.kindNames(),
231            ownkind.kindNames());
232            owntype = types.createErrorType(found);
233        } else if (allowPoly && inferenceContext.free(found)) {
234            //delay the check if there are inference variables in the found type
235            //this means we are dealing with a partially inferred poly expression
236            owntype = shouldCheck ? resultInfo.pt : found;
237            if (resultInfo.checkMode.installPostInferenceHook()) {
238                inferenceContext.addFreeTypeListener(List.of(found),
239                        instantiatedContext -> {
240                            ResultInfo pendingResult =
241                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
242                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
243                        });
244            }
245        } else {
246            owntype = shouldCheck ?
247            resultInfo.check(tree, found) :
248            found;
249        }
250        if (resultInfo.checkMode.updateTreeType()) {
251            tree.type = owntype;
252        }
253        return owntype;
254    }
255
256    /** Is given blank final variable assignable, i.e. in a scope where it
257     *  may be assigned to even though it is final?
258     *  @param v      The blank final variable.
259     *  @param env    The current environment.
260     */
261    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
262        Symbol owner = env.info.scope.owner;
263           // owner refers to the innermost variable, method or
264           // initializer block declaration at this point.
265        return
266            v.owner == owner
267            ||
268            ((owner.name == names.init ||    // i.e. we are in a constructor
269              owner.kind == VAR ||           // i.e. we are in a variable initializer
270              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
271             &&
272             v.owner == owner.owner
273             &&
274             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
275    }
276
277    /** Check that variable can be assigned to.
278     *  @param pos    The current source code position.
279     *  @param v      The assigned variable
280     *  @param base   If the variable is referred to in a Select, the part
281     *                to the left of the `.', null otherwise.
282     *  @param env    The current environment.
283     */
284    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
285        if (v.name == names._this) {
286            log.error(pos, Errors.CantAssignValToThis);
287        } else if ((v.flags() & FINAL) != 0 &&
288            ((v.flags() & HASINIT) != 0
289             ||
290             !((base == null ||
291               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
292               isAssignableAsBlankFinal(v, env)))) {
293            if (v.isResourceVariable()) { //TWR resource
294                log.error(pos, "try.resource.may.not.be.assigned", v);
295            } else {
296                log.error(pos, "cant.assign.val.to.final.var", v);
297            }
298        }
299    }
300
301    /** Does tree represent a static reference to an identifier?
302     *  It is assumed that tree is either a SELECT or an IDENT.
303     *  We have to weed out selects from non-type names here.
304     *  @param tree    The candidate tree.
305     */
306    boolean isStaticReference(JCTree tree) {
307        if (tree.hasTag(SELECT)) {
308            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
309            if (lsym == null || lsym.kind != TYP) {
310                return false;
311            }
312        }
313        return true;
314    }
315
316    /** Is this symbol a type?
317     */
318    static boolean isType(Symbol sym) {
319        return sym != null && sym.kind == TYP;
320    }
321
322    /** The current `this' symbol.
323     *  @param env    The current environment.
324     */
325    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
326        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
327    }
328
329    /** Attribute a parsed identifier.
330     * @param tree Parsed identifier name
331     * @param topLevel The toplevel to use
332     */
333    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
334        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
335        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
336                                           syms.errSymbol.name,
337                                           null, null, null, null);
338        localEnv.enclClass.sym = syms.errSymbol;
339        return attribIdent(tree, localEnv);
340    }
341
342    /** Attribute a parsed identifier.
343     * @param tree Parsed identifier name
344     * @param env The env to use
345     */
346    public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
347        return tree.accept(identAttributer, env);
348    }
349    // where
350        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
351        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
352            @Override @DefinedBy(Api.COMPILER_TREE)
353            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
354                Symbol site = visit(node.getExpression(), env);
355                if (site.kind == ERR || site.kind == ABSENT_TYP)
356                    return site;
357                Name name = (Name)node.getIdentifier();
358                if (site.kind == PCK) {
359                    env.toplevel.packge = (PackageSymbol)site;
360                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
361                            KindSelector.TYP_PCK);
362                } else {
363                    env.enclClass.sym = (ClassSymbol)site;
364                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
365                }
366            }
367
368            @Override @DefinedBy(Api.COMPILER_TREE)
369            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
370                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
371            }
372        }
373
374    public Type coerce(Type etype, Type ttype) {
375        return cfolder.coerce(etype, ttype);
376    }
377
378    public Type attribType(JCTree node, TypeSymbol sym) {
379        Env<AttrContext> env = typeEnvs.get(sym);
380        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
381        return attribTree(node, localEnv, unknownTypeInfo);
382    }
383
384    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
385        // Attribute qualifying package or class.
386        JCFieldAccess s = (JCFieldAccess)tree.qualid;
387        return attribTree(s.selected, env,
388                          new ResultInfo(tree.staticImport ?
389                                         KindSelector.TYP : KindSelector.TYP_PCK,
390                       Type.noType));
391    }
392
393    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
394        breakTree = tree;
395        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
396        try {
397            attribExpr(expr, env);
398        } catch (BreakAttr b) {
399            return b.env;
400        } catch (AssertionError ae) {
401            if (ae.getCause() instanceof BreakAttr) {
402                return ((BreakAttr)(ae.getCause())).env;
403            } else {
404                throw ae;
405            }
406        } finally {
407            breakTree = null;
408            log.useSource(prev);
409        }
410        return env;
411    }
412
413    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
414        breakTree = tree;
415        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
416        try {
417            attribStat(stmt, env);
418        } catch (BreakAttr b) {
419            return b.env;
420        } catch (AssertionError ae) {
421            if (ae.getCause() instanceof BreakAttr) {
422                return ((BreakAttr)(ae.getCause())).env;
423            } else {
424                throw ae;
425            }
426        } finally {
427            breakTree = null;
428            log.useSource(prev);
429        }
430        return env;
431    }
432
433    private JCTree breakTree = null;
434
435    private static class BreakAttr extends RuntimeException {
436        static final long serialVersionUID = -6924771130405446405L;
437        private Env<AttrContext> env;
438        private BreakAttr(Env<AttrContext> env) {
439            this.env = env;
440        }
441    }
442
443    /**
444     * Mode controlling behavior of Attr.Check
445     */
446    enum CheckMode {
447
448        NORMAL,
449
450        NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
451            @Override
452            public boolean updateTreeType() {
453                return false;
454            }
455        },
456        NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
457            @Override
458            public boolean installPostInferenceHook() {
459                return false;
460            }
461        };
462
463        public boolean updateTreeType() {
464            return true;
465        }
466        public boolean installPostInferenceHook() {
467            return true;
468        }
469    }
470
471
472    class ResultInfo {
473        final KindSelector pkind;
474        final Type pt;
475        final CheckContext checkContext;
476        final CheckMode checkMode;
477
478        ResultInfo(KindSelector pkind, Type pt) {
479            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
480        }
481
482        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
483            this(pkind, pt, chk.basicHandler, checkMode);
484        }
485
486        protected ResultInfo(KindSelector pkind,
487                             Type pt, CheckContext checkContext) {
488            this(pkind, pt, checkContext, CheckMode.NORMAL);
489        }
490
491        protected ResultInfo(KindSelector pkind,
492                             Type pt, CheckContext checkContext, CheckMode checkMode) {
493            this.pkind = pkind;
494            this.pt = pt;
495            this.checkContext = checkContext;
496            this.checkMode = checkMode;
497        }
498
499        protected void attr(JCTree tree, Env<AttrContext> env) {
500            tree.accept(Attr.this);
501        }
502
503        protected Type check(final DiagnosticPosition pos, final Type found) {
504            return chk.checkType(pos, found, pt, checkContext);
505        }
506
507        protected ResultInfo dup(Type newPt) {
508            return new ResultInfo(pkind, newPt, checkContext, checkMode);
509        }
510
511        protected ResultInfo dup(CheckContext newContext) {
512            return new ResultInfo(pkind, pt, newContext, checkMode);
513        }
514
515        protected ResultInfo dup(Type newPt, CheckContext newContext) {
516            return new ResultInfo(pkind, newPt, newContext, checkMode);
517        }
518
519        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
520            return new ResultInfo(pkind, newPt, newContext, newMode);
521        }
522
523        protected ResultInfo dup(CheckMode newMode) {
524            return new ResultInfo(pkind, pt, checkContext, newMode);
525        }
526
527        @Override
528        public String toString() {
529            if (pt != null) {
530                return pt.toString();
531            } else {
532                return "";
533            }
534        }
535    }
536
537    class MethodAttrInfo extends ResultInfo {
538        public MethodAttrInfo() {
539            this(chk.basicHandler);
540        }
541
542        public MethodAttrInfo(CheckContext checkContext) {
543            super(KindSelector.VAL, Infer.anyPoly, checkContext);
544        }
545
546        @Override
547        protected void attr(JCTree tree, Env<AttrContext> env) {
548            result = argumentAttr.attribArg(tree, env);
549        }
550
551        protected ResultInfo dup(Type newPt) {
552            throw new IllegalStateException();
553        }
554
555        protected ResultInfo dup(CheckContext newContext) {
556            return new MethodAttrInfo(newContext);
557        }
558
559        protected ResultInfo dup(Type newPt, CheckContext newContext) {
560            throw new IllegalStateException();
561        }
562
563        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
564            throw new IllegalStateException();
565        }
566
567        protected ResultInfo dup(CheckMode newMode) {
568            throw new IllegalStateException();
569        }
570    }
571
572    class RecoveryInfo extends ResultInfo {
573
574        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
575            super(KindSelector.VAL, Type.recoveryType,
576                  new Check.NestedCheckContext(chk.basicHandler) {
577                @Override
578                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
579                    return deferredAttrContext;
580                }
581                @Override
582                public boolean compatible(Type found, Type req, Warner warn) {
583                    return true;
584                }
585                @Override
586                public void report(DiagnosticPosition pos, JCDiagnostic details) {
587                    chk.basicHandler.report(pos, details);
588                }
589            });
590        }
591    }
592
593    final ResultInfo statInfo;
594    final ResultInfo varAssignmentInfo;
595    final ResultInfo methodAttrInfo;
596    final ResultInfo unknownExprInfo;
597    final ResultInfo unknownTypeInfo;
598    final ResultInfo unknownTypeExprInfo;
599    final ResultInfo recoveryInfo;
600
601    Type pt() {
602        return resultInfo.pt;
603    }
604
605    KindSelector pkind() {
606        return resultInfo.pkind;
607    }
608
609/* ************************************************************************
610 * Visitor methods
611 *************************************************************************/
612
613    /** Visitor argument: the current environment.
614     */
615    Env<AttrContext> env;
616
617    /** Visitor argument: the currently expected attribution result.
618     */
619    ResultInfo resultInfo;
620
621    /** Visitor result: the computed type.
622     */
623    Type result;
624
625    /** Visitor method: attribute a tree, catching any completion failure
626     *  exceptions. Return the tree's type.
627     *
628     *  @param tree    The tree to be visited.
629     *  @param env     The environment visitor argument.
630     *  @param resultInfo   The result info visitor argument.
631     */
632    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
633        Env<AttrContext> prevEnv = this.env;
634        ResultInfo prevResult = this.resultInfo;
635        try {
636            this.env = env;
637            this.resultInfo = resultInfo;
638            resultInfo.attr(tree, env);
639            if (tree == breakTree &&
640                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
641                throw new BreakAttr(copyEnv(env));
642            }
643            return result;
644        } catch (CompletionFailure ex) {
645            tree.type = syms.errType;
646            return chk.completionError(tree.pos(), ex);
647        } finally {
648            this.env = prevEnv;
649            this.resultInfo = prevResult;
650        }
651    }
652
653    Env<AttrContext> copyEnv(Env<AttrContext> env) {
654        Env<AttrContext> newEnv =
655                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
656        if (newEnv.outer != null) {
657            newEnv.outer = copyEnv(newEnv.outer);
658        }
659        return newEnv;
660    }
661
662    WriteableScope copyScope(WriteableScope sc) {
663        WriteableScope newScope = WriteableScope.create(sc.owner);
664        List<Symbol> elemsList = List.nil();
665        for (Symbol sym : sc.getSymbols()) {
666            elemsList = elemsList.prepend(sym);
667        }
668        for (Symbol s : elemsList) {
669            newScope.enter(s);
670        }
671        return newScope;
672    }
673
674    /** Derived visitor method: attribute an expression tree.
675     */
676    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
677        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
678    }
679
680    /** Derived visitor method: attribute an expression tree with
681     *  no constraints on the computed type.
682     */
683    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
684        return attribTree(tree, env, unknownExprInfo);
685    }
686
687    /** Derived visitor method: attribute a type tree.
688     */
689    public Type attribType(JCTree tree, Env<AttrContext> env) {
690        Type result = attribType(tree, env, Type.noType);
691        return result;
692    }
693
694    /** Derived visitor method: attribute a type tree.
695     */
696    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
697        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
698        return result;
699    }
700
701    /** Derived visitor method: attribute a statement or definition tree.
702     */
703    public Type attribStat(JCTree tree, Env<AttrContext> env) {
704        Env<AttrContext> analyzeEnv =
705                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
706        try {
707            return attribTree(tree, env, statInfo);
708        } finally {
709            analyzer.analyzeIfNeeded(tree, analyzeEnv);
710        }
711    }
712
713    /** Attribute a list of expressions, returning a list of types.
714     */
715    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
716        ListBuffer<Type> ts = new ListBuffer<>();
717        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
718            ts.append(attribExpr(l.head, env, pt));
719        return ts.toList();
720    }
721
722    /** Attribute a list of statements, returning nothing.
723     */
724    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
725        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
726            attribStat(l.head, env);
727    }
728
729    /** Attribute the arguments in a method call, returning the method kind.
730     */
731    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
732        KindSelector kind = initialKind;
733        for (JCExpression arg : trees) {
734            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
735            if (argtype.hasTag(DEFERRED)) {
736                kind = KindSelector.of(KindSelector.POLY, kind);
737            }
738            argtypes.append(argtype);
739        }
740        return kind;
741    }
742
743    /** Attribute a type argument list, returning a list of types.
744     *  Caller is responsible for calling checkRefTypes.
745     */
746    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
747        ListBuffer<Type> argtypes = new ListBuffer<>();
748        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
749            argtypes.append(attribType(l.head, env));
750        return argtypes.toList();
751    }
752
753    /** Attribute a type argument list, returning a list of types.
754     *  Check that all the types are references.
755     */
756    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
757        List<Type> types = attribAnyTypes(trees, env);
758        return chk.checkRefTypes(trees, types);
759    }
760
761    /**
762     * Attribute type variables (of generic classes or methods).
763     * Compound types are attributed later in attribBounds.
764     * @param typarams the type variables to enter
765     * @param env      the current environment
766     */
767    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
768        for (JCTypeParameter tvar : typarams) {
769            TypeVar a = (TypeVar)tvar.type;
770            a.tsym.flags_field |= UNATTRIBUTED;
771            a.bound = Type.noType;
772            if (!tvar.bounds.isEmpty()) {
773                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
774                for (JCExpression bound : tvar.bounds.tail)
775                    bounds = bounds.prepend(attribType(bound, env));
776                types.setBounds(a, bounds.reverse());
777            } else {
778                // if no bounds are given, assume a single bound of
779                // java.lang.Object.
780                types.setBounds(a, List.of(syms.objectType));
781            }
782            a.tsym.flags_field &= ~UNATTRIBUTED;
783        }
784        for (JCTypeParameter tvar : typarams) {
785            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
786        }
787    }
788
789    /**
790     * Attribute the type references in a list of annotations.
791     */
792    void attribAnnotationTypes(List<JCAnnotation> annotations,
793                               Env<AttrContext> env) {
794        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
795            JCAnnotation a = al.head;
796            attribType(a.annotationType, env);
797        }
798    }
799
800    /**
801     * Attribute a "lazy constant value".
802     *  @param env         The env for the const value
803     *  @param variable    The initializer for the const value
804     *  @param type        The expected type, or null
805     *  @see VarSymbol#setLazyConstValue
806     */
807    public Object attribLazyConstantValue(Env<AttrContext> env,
808                                      JCVariableDecl variable,
809                                      Type type) {
810
811        DiagnosticPosition prevLintPos
812                = deferredLintHandler.setPos(variable.pos());
813
814        final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
815        try {
816            Type itype = attribExpr(variable.init, env, type);
817            if (itype.constValue() != null) {
818                return coerce(itype, type).constValue();
819            } else {
820                return null;
821            }
822        } finally {
823            log.useSource(prevSource);
824            deferredLintHandler.setPos(prevLintPos);
825        }
826    }
827
828    /** Attribute type reference in an `extends' or `implements' clause.
829     *  Supertypes of anonymous inner classes are usually already attributed.
830     *
831     *  @param tree              The tree making up the type reference.
832     *  @param env               The environment current at the reference.
833     *  @param classExpected     true if only a class is expected here.
834     *  @param interfaceExpected true if only an interface is expected here.
835     */
836    Type attribBase(JCTree tree,
837                    Env<AttrContext> env,
838                    boolean classExpected,
839                    boolean interfaceExpected,
840                    boolean checkExtensible) {
841        Type t = tree.type != null ?
842            tree.type :
843            attribType(tree, env);
844        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
845    }
846    Type checkBase(Type t,
847                   JCTree tree,
848                   Env<AttrContext> env,
849                   boolean classExpected,
850                   boolean interfaceExpected,
851                   boolean checkExtensible) {
852        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
853                (((JCTypeApply) tree).clazz).pos() : tree.pos();
854        if (t.tsym.isAnonymous()) {
855            log.error(pos, "cant.inherit.from.anon");
856            return types.createErrorType(t);
857        }
858        if (t.isErroneous())
859            return t;
860        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
861            // check that type variable is already visible
862            if (t.getUpperBound() == null) {
863                log.error(pos, "illegal.forward.ref");
864                return types.createErrorType(t);
865            }
866        } else {
867            t = chk.checkClassType(pos, t, checkExtensible);
868        }
869        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
870            log.error(pos, "intf.expected.here");
871            // return errType is necessary since otherwise there might
872            // be undetected cycles which cause attribution to loop
873            return types.createErrorType(t);
874        } else if (checkExtensible &&
875                   classExpected &&
876                   (t.tsym.flags() & INTERFACE) != 0) {
877            log.error(pos, "no.intf.expected.here");
878            return types.createErrorType(t);
879        }
880        if (checkExtensible &&
881            ((t.tsym.flags() & FINAL) != 0)) {
882            log.error(pos,
883                      "cant.inherit.from.final", t.tsym);
884        }
885        chk.checkNonCyclic(pos, t);
886        return t;
887    }
888
889    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
890        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
891        id.type = env.info.scope.owner.enclClass().type;
892        id.sym = env.info.scope.owner.enclClass();
893        return id.type;
894    }
895
896    public void visitClassDef(JCClassDecl tree) {
897        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
898                Optional.ofNullable(env.info.isSpeculative ?
899                        argumentAttr.withLocalCacheContext() : null);
900        try {
901            // Local and anonymous classes have not been entered yet, so we need to
902            // do it now.
903            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
904                enter.classEnter(tree, env);
905            } else {
906                // If this class declaration is part of a class level annotation,
907                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
908                // order to simplify later steps and allow for sensible error
909                // messages.
910                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
911                    enter.classEnter(tree, env);
912            }
913
914            ClassSymbol c = tree.sym;
915            if (c == null) {
916                // exit in case something drastic went wrong during enter.
917                result = null;
918            } else {
919                // make sure class has been completed:
920                c.complete();
921
922                // If this class appears as an anonymous class
923                // in a superclass constructor call where
924                // no explicit outer instance is given,
925                // disable implicit outer instance from being passed.
926                // (This would be an illegal access to "this before super").
927                if (env.info.isSelfCall &&
928                        env.tree.hasTag(NEWCLASS) &&
929                        ((JCNewClass)env.tree).encl == null) {
930                    c.flags_field |= NOOUTERTHIS;
931                }
932                attribClass(tree.pos(), c);
933                result = tree.type = c.type;
934            }
935        } finally {
936            localCacheContext.ifPresent(LocalCacheContext::leave);
937        }
938    }
939
940    public void visitMethodDef(JCMethodDecl tree) {
941        MethodSymbol m = tree.sym;
942        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
943
944        Lint lint = env.info.lint.augment(m);
945        Lint prevLint = chk.setLint(lint);
946        MethodSymbol prevMethod = chk.setMethod(m);
947        try {
948            deferredLintHandler.flush(tree.pos());
949            chk.checkDeprecatedAnnotation(tree.pos(), m);
950
951
952            // Create a new environment with local scope
953            // for attributing the method.
954            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
955            localEnv.info.lint = lint;
956
957            attribStats(tree.typarams, localEnv);
958
959            // If we override any other methods, check that we do so properly.
960            // JLS ???
961            if (m.isStatic()) {
962                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
963            } else {
964                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
965            }
966            chk.checkOverride(env, tree, m);
967
968            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
969                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
970            }
971
972            // Enter all type parameters into the local method scope.
973            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
974                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
975
976            ClassSymbol owner = env.enclClass.sym;
977            if ((owner.flags() & ANNOTATION) != 0 &&
978                    tree.params.nonEmpty())
979                log.error(tree.params.head.pos(),
980                        "intf.annotation.members.cant.have.params");
981
982            // Attribute all value parameters.
983            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
984                attribStat(l.head, localEnv);
985            }
986
987            chk.checkVarargsMethodDecl(localEnv, tree);
988
989            // Check that type parameters are well-formed.
990            chk.validate(tree.typarams, localEnv);
991
992            // Check that result type is well-formed.
993            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
994                chk.validate(tree.restype, localEnv);
995
996            // Check that receiver type is well-formed.
997            if (tree.recvparam != null) {
998                // Use a new environment to check the receiver parameter.
999                // Otherwise I get "might not have been initialized" errors.
1000                // Is there a better way?
1001                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1002                attribType(tree.recvparam, newEnv);
1003                chk.validate(tree.recvparam, newEnv);
1004            }
1005
1006            // annotation method checks
1007            if ((owner.flags() & ANNOTATION) != 0) {
1008                // annotation method cannot have throws clause
1009                if (tree.thrown.nonEmpty()) {
1010                    log.error(tree.thrown.head.pos(),
1011                            "throws.not.allowed.in.intf.annotation");
1012                }
1013                // annotation method cannot declare type-parameters
1014                if (tree.typarams.nonEmpty()) {
1015                    log.error(tree.typarams.head.pos(),
1016                            "intf.annotation.members.cant.have.type.params");
1017                }
1018                // validate annotation method's return type (could be an annotation type)
1019                chk.validateAnnotationType(tree.restype);
1020                // ensure that annotation method does not clash with members of Object/Annotation
1021                chk.validateAnnotationMethod(tree.pos(), m);
1022            }
1023
1024            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1025                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1026
1027            if (tree.body == null) {
1028                // Empty bodies are only allowed for
1029                // abstract, native, or interface methods, or for methods
1030                // in a retrofit signature class.
1031                if (tree.defaultValue != null) {
1032                    if ((owner.flags() & ANNOTATION) == 0)
1033                        log.error(tree.pos(),
1034                                  "default.allowed.in.intf.annotation.member");
1035                }
1036                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1037                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
1038            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1039                if ((owner.flags() & INTERFACE) != 0) {
1040                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
1041                } else {
1042                    log.error(tree.pos(), "abstract.meth.cant.have.body");
1043                }
1044            } else if ((tree.mods.flags & NATIVE) != 0) {
1045                log.error(tree.pos(), "native.meth.cant.have.body");
1046            } else {
1047                // Add an implicit super() call unless an explicit call to
1048                // super(...) or this(...) is given
1049                // or we are compiling class java.lang.Object.
1050                if (tree.name == names.init && owner.type != syms.objectType) {
1051                    JCBlock body = tree.body;
1052                    if (body.stats.isEmpty() ||
1053                            !TreeInfo.isSelfCall(body.stats.head)) {
1054                        body.stats = body.stats.
1055                                prepend(typeEnter.SuperCall(make.at(body.pos),
1056                                        List.<Type>nil(),
1057                                        List.<JCVariableDecl>nil(),
1058                                        false));
1059                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1060                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1061                            TreeInfo.isSuperCall(body.stats.head)) {
1062                        // enum constructors are not allowed to call super
1063                        // directly, so make sure there aren't any super calls
1064                        // in enum constructors, except in the compiler
1065                        // generated one.
1066                        log.error(tree.body.stats.head.pos(),
1067                                "call.to.super.not.allowed.in.enum.ctor",
1068                                env.enclClass.sym);
1069                    }
1070                }
1071
1072                // Attribute all type annotations in the body
1073                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1074                annotate.flush();
1075
1076                // Attribute method body.
1077                attribStat(tree.body, localEnv);
1078            }
1079
1080            localEnv.info.scope.leave();
1081            result = tree.type = m.type;
1082        } finally {
1083            chk.setLint(prevLint);
1084            chk.setMethod(prevMethod);
1085        }
1086    }
1087
1088    public void visitVarDef(JCVariableDecl tree) {
1089        // Local variables have not been entered yet, so we need to do it now:
1090        if (env.info.scope.owner.kind == MTH) {
1091            if (tree.sym != null) {
1092                // parameters have already been entered
1093                env.info.scope.enter(tree.sym);
1094            } else {
1095                try {
1096                    annotate.blockAnnotations();
1097                    memberEnter.memberEnter(tree, env);
1098                } finally {
1099                    annotate.unblockAnnotations();
1100                }
1101            }
1102        } else {
1103            if (tree.init != null) {
1104                // Field initializer expression need to be entered.
1105                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1106                annotate.flush();
1107            }
1108        }
1109
1110        VarSymbol v = tree.sym;
1111        Lint lint = env.info.lint.augment(v);
1112        Lint prevLint = chk.setLint(lint);
1113
1114        // Check that the variable's declared type is well-formed.
1115        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1116                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1117                (tree.sym.flags() & PARAMETER) != 0;
1118        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1119
1120        try {
1121            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1122            deferredLintHandler.flush(tree.pos());
1123            chk.checkDeprecatedAnnotation(tree.pos(), v);
1124
1125            if (tree.init != null) {
1126                if ((v.flags_field & FINAL) == 0 ||
1127                    !memberEnter.needsLazyConstValue(tree.init)) {
1128                    // Not a compile-time constant
1129                    // Attribute initializer in a new environment
1130                    // with the declared variable as owner.
1131                    // Check that initializer conforms to variable's declared type.
1132                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1133                    initEnv.info.lint = lint;
1134                    // In order to catch self-references, we set the variable's
1135                    // declaration position to maximal possible value, effectively
1136                    // marking the variable as undefined.
1137                    initEnv.info.enclVar = v;
1138                    attribExpr(tree.init, initEnv, v.type);
1139                }
1140            }
1141            result = tree.type = v.type;
1142        }
1143        finally {
1144            chk.setLint(prevLint);
1145        }
1146    }
1147
1148    public void visitSkip(JCSkip tree) {
1149        result = null;
1150    }
1151
1152    public void visitBlock(JCBlock tree) {
1153        if (env.info.scope.owner.kind == TYP) {
1154            // Block is a static or instance initializer;
1155            // let the owner of the environment be a freshly
1156            // created BLOCK-method.
1157            Symbol fakeOwner =
1158                new MethodSymbol(tree.flags | BLOCK |
1159                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1160                    env.info.scope.owner);
1161            final Env<AttrContext> localEnv =
1162                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1163
1164            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1165            // Attribute all type annotations in the block
1166            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1167            annotate.flush();
1168            attribStats(tree.stats, localEnv);
1169
1170            {
1171                // Store init and clinit type annotations with the ClassSymbol
1172                // to allow output in Gen.normalizeDefs.
1173                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1174                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1175                if ((tree.flags & STATIC) != 0) {
1176                    cs.appendClassInitTypeAttributes(tas);
1177                } else {
1178                    cs.appendInitTypeAttributes(tas);
1179                }
1180            }
1181        } else {
1182            // Create a new local environment with a local scope.
1183            Env<AttrContext> localEnv =
1184                env.dup(tree, env.info.dup(env.info.scope.dup()));
1185            try {
1186                attribStats(tree.stats, localEnv);
1187            } finally {
1188                localEnv.info.scope.leave();
1189            }
1190        }
1191        result = null;
1192    }
1193
1194    public void visitDoLoop(JCDoWhileLoop tree) {
1195        attribStat(tree.body, env.dup(tree));
1196        attribExpr(tree.cond, env, syms.booleanType);
1197        result = null;
1198    }
1199
1200    public void visitWhileLoop(JCWhileLoop tree) {
1201        attribExpr(tree.cond, env, syms.booleanType);
1202        attribStat(tree.body, env.dup(tree));
1203        result = null;
1204    }
1205
1206    public void visitForLoop(JCForLoop tree) {
1207        Env<AttrContext> loopEnv =
1208            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1209        try {
1210            attribStats(tree.init, loopEnv);
1211            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1212            loopEnv.tree = tree; // before, we were not in loop!
1213            attribStats(tree.step, loopEnv);
1214            attribStat(tree.body, loopEnv);
1215            result = null;
1216        }
1217        finally {
1218            loopEnv.info.scope.leave();
1219        }
1220    }
1221
1222    public void visitForeachLoop(JCEnhancedForLoop tree) {
1223        Env<AttrContext> loopEnv =
1224            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1225        try {
1226            //the Formal Parameter of a for-each loop is not in the scope when
1227            //attributing the for-each expression; we mimick this by attributing
1228            //the for-each expression first (against original scope).
1229            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1230            attribStat(tree.var, loopEnv);
1231            chk.checkNonVoid(tree.pos(), exprType);
1232            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1233            if (elemtype == null) {
1234                // or perhaps expr implements Iterable<T>?
1235                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1236                if (base == null) {
1237                    log.error(tree.expr.pos(),
1238                            "foreach.not.applicable.to.type",
1239                            exprType,
1240                            diags.fragment("type.req.array.or.iterable"));
1241                    elemtype = types.createErrorType(exprType);
1242                } else {
1243                    List<Type> iterableParams = base.allparams();
1244                    elemtype = iterableParams.isEmpty()
1245                        ? syms.objectType
1246                        : types.wildUpperBound(iterableParams.head);
1247                }
1248            }
1249            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1250            loopEnv.tree = tree; // before, we were not in loop!
1251            attribStat(tree.body, loopEnv);
1252            result = null;
1253        }
1254        finally {
1255            loopEnv.info.scope.leave();
1256        }
1257    }
1258
1259    public void visitLabelled(JCLabeledStatement tree) {
1260        // Check that label is not used in an enclosing statement
1261        Env<AttrContext> env1 = env;
1262        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1263            if (env1.tree.hasTag(LABELLED) &&
1264                ((JCLabeledStatement) env1.tree).label == tree.label) {
1265                log.error(tree.pos(), "label.already.in.use",
1266                          tree.label);
1267                break;
1268            }
1269            env1 = env1.next;
1270        }
1271
1272        attribStat(tree.body, env.dup(tree));
1273        result = null;
1274    }
1275
1276    public void visitSwitch(JCSwitch tree) {
1277        Type seltype = attribExpr(tree.selector, env);
1278
1279        Env<AttrContext> switchEnv =
1280            env.dup(tree, env.info.dup(env.info.scope.dup()));
1281
1282        try {
1283
1284            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1285            boolean stringSwitch = false;
1286            if (types.isSameType(seltype, syms.stringType)) {
1287                if (allowStringsInSwitch) {
1288                    stringSwitch = true;
1289                } else {
1290                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1291                }
1292            }
1293            if (!enumSwitch && !stringSwitch)
1294                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1295
1296            // Attribute all cases and
1297            // check that there are no duplicate case labels or default clauses.
1298            Set<Object> labels = new HashSet<>(); // The set of case labels.
1299            boolean hasDefault = false;      // Is there a default label?
1300            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1301                JCCase c = l.head;
1302                if (c.pat != null) {
1303                    if (enumSwitch) {
1304                        Symbol sym = enumConstant(c.pat, seltype);
1305                        if (sym == null) {
1306                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1307                        } else if (!labels.add(sym)) {
1308                            log.error(c.pos(), "duplicate.case.label");
1309                        }
1310                    } else {
1311                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1312                        if (!pattype.hasTag(ERROR)) {
1313                            if (pattype.constValue() == null) {
1314                                log.error(c.pat.pos(),
1315                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1316                            } else if (!labels.add(pattype.constValue())) {
1317                                log.error(c.pos(), "duplicate.case.label");
1318                            }
1319                        }
1320                    }
1321                } else if (hasDefault) {
1322                    log.error(c.pos(), "duplicate.default.label");
1323                } else {
1324                    hasDefault = true;
1325                }
1326                Env<AttrContext> caseEnv =
1327                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1328                try {
1329                    attribStats(c.stats, caseEnv);
1330                } finally {
1331                    caseEnv.info.scope.leave();
1332                    addVars(c.stats, switchEnv.info.scope);
1333                }
1334            }
1335
1336            result = null;
1337        }
1338        finally {
1339            switchEnv.info.scope.leave();
1340        }
1341    }
1342    // where
1343        /** Add any variables defined in stats to the switch scope. */
1344        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1345            for (;stats.nonEmpty(); stats = stats.tail) {
1346                JCTree stat = stats.head;
1347                if (stat.hasTag(VARDEF))
1348                    switchScope.enter(((JCVariableDecl) stat).sym);
1349            }
1350        }
1351    // where
1352    /** Return the selected enumeration constant symbol, or null. */
1353    private Symbol enumConstant(JCTree tree, Type enumType) {
1354        if (tree.hasTag(IDENT)) {
1355            JCIdent ident = (JCIdent)tree;
1356            Name name = ident.name;
1357            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1358                if (sym.kind == VAR) {
1359                    Symbol s = ident.sym = sym;
1360                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1361                    ident.type = s.type;
1362                    return ((s.flags_field & Flags.ENUM) == 0)
1363                        ? null : s;
1364                }
1365            }
1366        }
1367        return null;
1368    }
1369
1370    public void visitSynchronized(JCSynchronized tree) {
1371        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1372        attribStat(tree.body, env);
1373        result = null;
1374    }
1375
1376    public void visitTry(JCTry tree) {
1377        // Create a new local environment with a local
1378        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1379        try {
1380            boolean isTryWithResource = tree.resources.nonEmpty();
1381            // Create a nested environment for attributing the try block if needed
1382            Env<AttrContext> tryEnv = isTryWithResource ?
1383                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1384                localEnv;
1385            try {
1386                // Attribute resource declarations
1387                for (JCTree resource : tree.resources) {
1388                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1389                        @Override
1390                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1391                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1392                        }
1393                    };
1394                    ResultInfo twrResult =
1395                        new ResultInfo(KindSelector.VAR,
1396                                       syms.autoCloseableType,
1397                                       twrContext);
1398                    if (resource.hasTag(VARDEF)) {
1399                        attribStat(resource, tryEnv);
1400                        twrResult.check(resource, resource.type);
1401
1402                        //check that resource type cannot throw InterruptedException
1403                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1404
1405                        VarSymbol var = ((JCVariableDecl) resource).sym;
1406                        var.setData(ElementKind.RESOURCE_VARIABLE);
1407                    } else {
1408                        attribTree(resource, tryEnv, twrResult);
1409                    }
1410                }
1411                // Attribute body
1412                attribStat(tree.body, tryEnv);
1413            } finally {
1414                if (isTryWithResource)
1415                    tryEnv.info.scope.leave();
1416            }
1417
1418            // Attribute catch clauses
1419            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1420                JCCatch c = l.head;
1421                Env<AttrContext> catchEnv =
1422                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1423                try {
1424                    Type ctype = attribStat(c.param, catchEnv);
1425                    if (TreeInfo.isMultiCatch(c)) {
1426                        //multi-catch parameter is implicitly marked as final
1427                        c.param.sym.flags_field |= FINAL | UNION;
1428                    }
1429                    if (c.param.sym.kind == VAR) {
1430                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1431                    }
1432                    chk.checkType(c.param.vartype.pos(),
1433                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1434                                  syms.throwableType);
1435                    attribStat(c.body, catchEnv);
1436                } finally {
1437                    catchEnv.info.scope.leave();
1438                }
1439            }
1440
1441            // Attribute finalizer
1442            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1443            result = null;
1444        }
1445        finally {
1446            localEnv.info.scope.leave();
1447        }
1448    }
1449
1450    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1451        if (!resource.isErroneous() &&
1452            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1453            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1454            Symbol close = syms.noSymbol;
1455            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1456            try {
1457                close = rs.resolveQualifiedMethod(pos,
1458                        env,
1459                        resource,
1460                        names.close,
1461                        List.<Type>nil(),
1462                        List.<Type>nil());
1463            }
1464            finally {
1465                log.popDiagnosticHandler(discardHandler);
1466            }
1467            if (close.kind == MTH &&
1468                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1469                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1470                    env.info.lint.isEnabled(LintCategory.TRY)) {
1471                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1472            }
1473        }
1474    }
1475
1476    public void visitConditional(JCConditional tree) {
1477        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1478
1479        tree.polyKind = (!allowPoly ||
1480                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1481                isBooleanOrNumeric(env, tree)) ?
1482                PolyKind.STANDALONE : PolyKind.POLY;
1483
1484        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1485            //this means we are returning a poly conditional from void-compatible lambda expression
1486            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1487            result = tree.type = types.createErrorType(resultInfo.pt);
1488            return;
1489        }
1490
1491        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1492                unknownExprInfo :
1493                resultInfo.dup(conditionalContext(resultInfo.checkContext));
1494
1495        Type truetype = attribTree(tree.truepart, env, condInfo);
1496        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1497
1498        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1499        if (condtype.constValue() != null &&
1500                truetype.constValue() != null &&
1501                falsetype.constValue() != null &&
1502                !owntype.hasTag(NONE)) {
1503            //constant folding
1504            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1505        }
1506        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1507    }
1508    //where
1509        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1510            switch (tree.getTag()) {
1511                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1512                              ((JCLiteral)tree).typetag == BOOLEAN ||
1513                              ((JCLiteral)tree).typetag == BOT;
1514                case LAMBDA: case REFERENCE: return false;
1515                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1516                case CONDEXPR:
1517                    JCConditional condTree = (JCConditional)tree;
1518                    return isBooleanOrNumeric(env, condTree.truepart) &&
1519                            isBooleanOrNumeric(env, condTree.falsepart);
1520                case APPLY:
1521                    JCMethodInvocation speculativeMethodTree =
1522                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1523                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1524                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1525                            env.enclClass.type :
1526                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1527                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1528                    return primitiveOrBoxed(owntype);
1529                case NEWCLASS:
1530                    JCExpression className =
1531                            removeClassParams.translate(((JCNewClass)tree).clazz);
1532                    JCExpression speculativeNewClassTree =
1533                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1534                    return primitiveOrBoxed(speculativeNewClassTree.type);
1535                default:
1536                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1537                    return primitiveOrBoxed(speculativeType);
1538            }
1539        }
1540        //where
1541            boolean primitiveOrBoxed(Type t) {
1542                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1543            }
1544
1545            TreeTranslator removeClassParams = new TreeTranslator() {
1546                @Override
1547                public void visitTypeApply(JCTypeApply tree) {
1548                    result = translate(tree.clazz);
1549                }
1550            };
1551
1552        CheckContext conditionalContext(CheckContext checkContext) {
1553            return new Check.NestedCheckContext(checkContext) {
1554                //this will use enclosing check context to check compatibility of
1555                //subexpression against target type; if we are in a method check context,
1556                //depending on whether boxing is allowed, we could have incompatibilities
1557                @Override
1558                public void report(DiagnosticPosition pos, JCDiagnostic details) {
1559                    enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1560                }
1561            };
1562        }
1563
1564        /** Compute the type of a conditional expression, after
1565         *  checking that it exists.  See JLS 15.25. Does not take into
1566         *  account the special case where condition and both arms
1567         *  are constants.
1568         *
1569         *  @param pos      The source position to be used for error
1570         *                  diagnostics.
1571         *  @param thentype The type of the expression's then-part.
1572         *  @param elsetype The type of the expression's else-part.
1573         */
1574        Type condType(DiagnosticPosition pos,
1575                               Type thentype, Type elsetype) {
1576            // If same type, that is the result
1577            if (types.isSameType(thentype, elsetype))
1578                return thentype.baseType();
1579
1580            Type thenUnboxed = (thentype.isPrimitive())
1581                ? thentype : types.unboxedType(thentype);
1582            Type elseUnboxed = (elsetype.isPrimitive())
1583                ? elsetype : types.unboxedType(elsetype);
1584
1585            // Otherwise, if both arms can be converted to a numeric
1586            // type, return the least numeric type that fits both arms
1587            // (i.e. return larger of the two, or return int if one
1588            // arm is short, the other is char).
1589            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1590                // If one arm has an integer subrange type (i.e., byte,
1591                // short, or char), and the other is an integer constant
1592                // that fits into the subrange, return the subrange type.
1593                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1594                    elseUnboxed.hasTag(INT) &&
1595                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1596                    return thenUnboxed.baseType();
1597                }
1598                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1599                    thenUnboxed.hasTag(INT) &&
1600                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1601                    return elseUnboxed.baseType();
1602                }
1603
1604                for (TypeTag tag : primitiveTags) {
1605                    Type candidate = syms.typeOfTag[tag.ordinal()];
1606                    if (types.isSubtype(thenUnboxed, candidate) &&
1607                        types.isSubtype(elseUnboxed, candidate)) {
1608                        return candidate;
1609                    }
1610                }
1611            }
1612
1613            // Those were all the cases that could result in a primitive
1614            if (thentype.isPrimitive())
1615                thentype = types.boxedClass(thentype).type;
1616            if (elsetype.isPrimitive())
1617                elsetype = types.boxedClass(elsetype).type;
1618
1619            if (types.isSubtype(thentype, elsetype))
1620                return elsetype.baseType();
1621            if (types.isSubtype(elsetype, thentype))
1622                return thentype.baseType();
1623
1624            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1625                log.error(pos, "neither.conditional.subtype",
1626                          thentype, elsetype);
1627                return thentype.baseType();
1628            }
1629
1630            // both are known to be reference types.  The result is
1631            // lub(thentype,elsetype). This cannot fail, as it will
1632            // always be possible to infer "Object" if nothing better.
1633            return types.lub(thentype.baseType(), elsetype.baseType());
1634        }
1635
1636    final static TypeTag[] primitiveTags = new TypeTag[]{
1637        BYTE,
1638        CHAR,
1639        SHORT,
1640        INT,
1641        LONG,
1642        FLOAT,
1643        DOUBLE,
1644        BOOLEAN,
1645    };
1646
1647    public void visitIf(JCIf tree) {
1648        attribExpr(tree.cond, env, syms.booleanType);
1649        attribStat(tree.thenpart, env);
1650        if (tree.elsepart != null)
1651            attribStat(tree.elsepart, env);
1652        chk.checkEmptyIf(tree);
1653        result = null;
1654    }
1655
1656    public void visitExec(JCExpressionStatement tree) {
1657        //a fresh environment is required for 292 inference to work properly ---
1658        //see Infer.instantiatePolymorphicSignatureInstance()
1659        Env<AttrContext> localEnv = env.dup(tree);
1660        attribExpr(tree.expr, localEnv);
1661        result = null;
1662    }
1663
1664    public void visitBreak(JCBreak tree) {
1665        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1666        result = null;
1667    }
1668
1669    public void visitContinue(JCContinue tree) {
1670        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1671        result = null;
1672    }
1673    //where
1674        /** Return the target of a break or continue statement, if it exists,
1675         *  report an error if not.
1676         *  Note: The target of a labelled break or continue is the
1677         *  (non-labelled) statement tree referred to by the label,
1678         *  not the tree representing the labelled statement itself.
1679         *
1680         *  @param pos     The position to be used for error diagnostics
1681         *  @param tag     The tag of the jump statement. This is either
1682         *                 Tree.BREAK or Tree.CONTINUE.
1683         *  @param label   The label of the jump statement, or null if no
1684         *                 label is given.
1685         *  @param env     The environment current at the jump statement.
1686         */
1687        private JCTree findJumpTarget(DiagnosticPosition pos,
1688                                    JCTree.Tag tag,
1689                                    Name label,
1690                                    Env<AttrContext> env) {
1691            // Search environments outwards from the point of jump.
1692            Env<AttrContext> env1 = env;
1693            LOOP:
1694            while (env1 != null) {
1695                switch (env1.tree.getTag()) {
1696                    case LABELLED:
1697                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1698                        if (label == labelled.label) {
1699                            // If jump is a continue, check that target is a loop.
1700                            if (tag == CONTINUE) {
1701                                if (!labelled.body.hasTag(DOLOOP) &&
1702                                        !labelled.body.hasTag(WHILELOOP) &&
1703                                        !labelled.body.hasTag(FORLOOP) &&
1704                                        !labelled.body.hasTag(FOREACHLOOP))
1705                                    log.error(pos, "not.loop.label", label);
1706                                // Found labelled statement target, now go inwards
1707                                // to next non-labelled tree.
1708                                return TreeInfo.referencedStatement(labelled);
1709                            } else {
1710                                return labelled;
1711                            }
1712                        }
1713                        break;
1714                    case DOLOOP:
1715                    case WHILELOOP:
1716                    case FORLOOP:
1717                    case FOREACHLOOP:
1718                        if (label == null) return env1.tree;
1719                        break;
1720                    case SWITCH:
1721                        if (label == null && tag == BREAK) return env1.tree;
1722                        break;
1723                    case LAMBDA:
1724                    case METHODDEF:
1725                    case CLASSDEF:
1726                        break LOOP;
1727                    default:
1728                }
1729                env1 = env1.next;
1730            }
1731            if (label != null)
1732                log.error(pos, "undef.label", label);
1733            else if (tag == CONTINUE)
1734                log.error(pos, "cont.outside.loop");
1735            else
1736                log.error(pos, "break.outside.switch.loop");
1737            return null;
1738        }
1739
1740    public void visitReturn(JCReturn tree) {
1741        // Check that there is an enclosing method which is
1742        // nested within than the enclosing class.
1743        if (env.info.returnResult == null) {
1744            log.error(tree.pos(), "ret.outside.meth");
1745        } else {
1746            // Attribute return expression, if it exists, and check that
1747            // it conforms to result type of enclosing method.
1748            if (tree.expr != null) {
1749                if (env.info.returnResult.pt.hasTag(VOID)) {
1750                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1751                              diags.fragment("unexpected.ret.val"));
1752                }
1753                attribTree(tree.expr, env, env.info.returnResult);
1754            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1755                    !env.info.returnResult.pt.hasTag(NONE)) {
1756                env.info.returnResult.checkContext.report(tree.pos(),
1757                              diags.fragment("missing.ret.val"));
1758            }
1759        }
1760        result = null;
1761    }
1762
1763    public void visitThrow(JCThrow tree) {
1764        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1765        if (allowPoly) {
1766            chk.checkType(tree, owntype, syms.throwableType);
1767        }
1768        result = null;
1769    }
1770
1771    public void visitAssert(JCAssert tree) {
1772        attribExpr(tree.cond, env, syms.booleanType);
1773        if (tree.detail != null) {
1774            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1775        }
1776        result = null;
1777    }
1778
1779     /** Visitor method for method invocations.
1780     *  NOTE: The method part of an application will have in its type field
1781     *        the return type of the method, not the method's type itself!
1782     */
1783    public void visitApply(JCMethodInvocation tree) {
1784        // The local environment of a method application is
1785        // a new environment nested in the current one.
1786        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1787
1788        // The types of the actual method arguments.
1789        List<Type> argtypes;
1790
1791        // The types of the actual method type arguments.
1792        List<Type> typeargtypes = null;
1793
1794        Name methName = TreeInfo.name(tree.meth);
1795
1796        boolean isConstructorCall =
1797            methName == names._this || methName == names._super;
1798
1799        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1800        if (isConstructorCall) {
1801            // We are seeing a ...this(...) or ...super(...) call.
1802            // Check that this is the first statement in a constructor.
1803            if (checkFirstConstructorStat(tree, env)) {
1804
1805                // Record the fact
1806                // that this is a constructor call (using isSelfCall).
1807                localEnv.info.isSelfCall = true;
1808
1809                // Attribute arguments, yielding list of argument types.
1810                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1811                argtypes = argtypesBuf.toList();
1812                typeargtypes = attribTypes(tree.typeargs, localEnv);
1813
1814                // Variable `site' points to the class in which the called
1815                // constructor is defined.
1816                Type site = env.enclClass.sym.type;
1817                if (methName == names._super) {
1818                    if (site == syms.objectType) {
1819                        log.error(tree.meth.pos(), "no.superclass", site);
1820                        site = types.createErrorType(syms.objectType);
1821                    } else {
1822                        site = types.supertype(site);
1823                    }
1824                }
1825
1826                if (site.hasTag(CLASS)) {
1827                    Type encl = site.getEnclosingType();
1828                    while (encl != null && encl.hasTag(TYPEVAR))
1829                        encl = encl.getUpperBound();
1830                    if (encl.hasTag(CLASS)) {
1831                        // we are calling a nested class
1832
1833                        if (tree.meth.hasTag(SELECT)) {
1834                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1835
1836                            // We are seeing a prefixed call, of the form
1837                            //     <expr>.super(...).
1838                            // Check that the prefix expression conforms
1839                            // to the outer instance type of the class.
1840                            chk.checkRefType(qualifier.pos(),
1841                                             attribExpr(qualifier, localEnv,
1842                                                        encl));
1843                        } else if (methName == names._super) {
1844                            // qualifier omitted; check for existence
1845                            // of an appropriate implicit qualifier.
1846                            rs.resolveImplicitThis(tree.meth.pos(),
1847                                                   localEnv, site, true);
1848                        }
1849                    } else if (tree.meth.hasTag(SELECT)) {
1850                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1851                                  site.tsym);
1852                    }
1853
1854                    // if we're calling a java.lang.Enum constructor,
1855                    // prefix the implicit String and int parameters
1856                    if (site.tsym == syms.enumSym)
1857                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1858
1859                    // Resolve the called constructor under the assumption
1860                    // that we are referring to a superclass instance of the
1861                    // current instance (JLS ???).
1862                    boolean selectSuperPrev = localEnv.info.selectSuper;
1863                    localEnv.info.selectSuper = true;
1864                    localEnv.info.pendingResolutionPhase = null;
1865                    Symbol sym = rs.resolveConstructor(
1866                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1867                    localEnv.info.selectSuper = selectSuperPrev;
1868
1869                    // Set method symbol to resolved constructor...
1870                    TreeInfo.setSymbol(tree.meth, sym);
1871
1872                    // ...and check that it is legal in the current context.
1873                    // (this will also set the tree's type)
1874                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1875                    checkId(tree.meth, site, sym, localEnv,
1876                            new ResultInfo(kind, mpt));
1877                }
1878                // Otherwise, `site' is an error type and we do nothing
1879            }
1880            result = tree.type = syms.voidType;
1881        } else {
1882            // Otherwise, we are seeing a regular method call.
1883            // Attribute the arguments, yielding list of argument types, ...
1884            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1885            argtypes = argtypesBuf.toList();
1886            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1887
1888            // ... and attribute the method using as a prototype a methodtype
1889            // whose formal argument types is exactly the list of actual
1890            // arguments (this will also set the method symbol).
1891            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1892            localEnv.info.pendingResolutionPhase = null;
1893            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1894
1895            // Compute the result type.
1896            Type restype = mtype.getReturnType();
1897            if (restype.hasTag(WILDCARD))
1898                throw new AssertionError(mtype);
1899
1900            Type qualifier = (tree.meth.hasTag(SELECT))
1901                    ? ((JCFieldAccess) tree.meth).selected.type
1902                    : env.enclClass.sym.type;
1903            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1904
1905            chk.checkRefTypes(tree.typeargs, typeargtypes);
1906
1907            // Check that value of resulting type is admissible in the
1908            // current context.  Also, capture the return type
1909            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1910            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1911        }
1912        chk.validate(tree.typeargs, localEnv);
1913    }
1914    //where
1915        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1916            if (methodName == names.clone && types.isArray(qualifierType)) {
1917                // as a special case, array.clone() has a result that is
1918                // the same as static type of the array being cloned
1919                return qualifierType;
1920            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1921                // as a special case, x.getClass() has type Class<? extends |X|>
1922                return new ClassType(restype.getEnclosingType(),
1923                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1924                                                               BoundKind.EXTENDS,
1925                                                             syms.boundClass)),
1926                                     restype.tsym,
1927                                     restype.getMetadata());
1928            } else {
1929                return restype;
1930            }
1931        }
1932
1933        /** Check that given application node appears as first statement
1934         *  in a constructor call.
1935         *  @param tree   The application node
1936         *  @param env    The environment current at the application.
1937         */
1938        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1939            JCMethodDecl enclMethod = env.enclMethod;
1940            if (enclMethod != null && enclMethod.name == names.init) {
1941                JCBlock body = enclMethod.body;
1942                if (body.stats.head.hasTag(EXEC) &&
1943                    ((JCExpressionStatement) body.stats.head).expr == tree)
1944                    return true;
1945            }
1946            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1947                      TreeInfo.name(tree.meth));
1948            return false;
1949        }
1950
1951        /** Obtain a method type with given argument types.
1952         */
1953        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1954            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1955            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1956        }
1957
1958    public void visitNewClass(final JCNewClass tree) {
1959        Type owntype = types.createErrorType(tree.type);
1960
1961        // The local environment of a class creation is
1962        // a new environment nested in the current one.
1963        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1964
1965        // The anonymous inner class definition of the new expression,
1966        // if one is defined by it.
1967        JCClassDecl cdef = tree.def;
1968
1969        // If enclosing class is given, attribute it, and
1970        // complete class name to be fully qualified
1971        JCExpression clazz = tree.clazz; // Class field following new
1972        JCExpression clazzid;            // Identifier in class field
1973        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1974        annoclazzid = null;
1975
1976        if (clazz.hasTag(TYPEAPPLY)) {
1977            clazzid = ((JCTypeApply) clazz).clazz;
1978            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1979                annoclazzid = (JCAnnotatedType) clazzid;
1980                clazzid = annoclazzid.underlyingType;
1981            }
1982        } else {
1983            if (clazz.hasTag(ANNOTATED_TYPE)) {
1984                annoclazzid = (JCAnnotatedType) clazz;
1985                clazzid = annoclazzid.underlyingType;
1986            } else {
1987                clazzid = clazz;
1988            }
1989        }
1990
1991        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1992
1993        if (tree.encl != null) {
1994            // We are seeing a qualified new, of the form
1995            //    <expr>.new C <...> (...) ...
1996            // In this case, we let clazz stand for the name of the
1997            // allocated class C prefixed with the type of the qualifier
1998            // expression, so that we can
1999            // resolve it with standard techniques later. I.e., if
2000            // <expr> has type T, then <expr>.new C <...> (...)
2001            // yields a clazz T.C.
2002            Type encltype = chk.checkRefType(tree.encl.pos(),
2003                                             attribExpr(tree.encl, env));
2004            // TODO 308: in <expr>.new C, do we also want to add the type annotations
2005            // from expr to the combined type, or not? Yes, do this.
2006            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2007                                                 ((JCIdent) clazzid).name);
2008
2009            EndPosTable endPosTable = this.env.toplevel.endPositions;
2010            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2011            if (clazz.hasTag(ANNOTATED_TYPE)) {
2012                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2013                List<JCAnnotation> annos = annoType.annotations;
2014
2015                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2016                    clazzid1 = make.at(tree.pos).
2017                        TypeApply(clazzid1,
2018                                  ((JCTypeApply) clazz).arguments);
2019                }
2020
2021                clazzid1 = make.at(tree.pos).
2022                    AnnotatedType(annos, clazzid1);
2023            } else if (clazz.hasTag(TYPEAPPLY)) {
2024                clazzid1 = make.at(tree.pos).
2025                    TypeApply(clazzid1,
2026                              ((JCTypeApply) clazz).arguments);
2027            }
2028
2029            clazz = clazzid1;
2030        }
2031
2032        // Attribute clazz expression and store
2033        // symbol + type back into the attributed tree.
2034        Type clazztype;
2035
2036        try {
2037            env.info.isNewClass = true;
2038            clazztype = TreeInfo.isEnumInit(env.tree) ?
2039                attribIdentAsEnumType(env, (JCIdent)clazz) :
2040                attribType(clazz, env);
2041        } finally {
2042            env.info.isNewClass = false;
2043        }
2044
2045        clazztype = chk.checkDiamond(tree, clazztype);
2046        chk.validate(clazz, localEnv);
2047        if (tree.encl != null) {
2048            // We have to work in this case to store
2049            // symbol + type back into the attributed tree.
2050            tree.clazz.type = clazztype;
2051            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2052            clazzid.type = ((JCIdent) clazzid).sym.type;
2053            if (annoclazzid != null) {
2054                annoclazzid.type = clazzid.type;
2055            }
2056            if (!clazztype.isErroneous()) {
2057                if (cdef != null && clazztype.tsym.isInterface()) {
2058                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2059                } else if (clazztype.tsym.isStatic()) {
2060                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2061                }
2062            }
2063        } else if (!clazztype.tsym.isInterface() &&
2064                   clazztype.getEnclosingType().hasTag(CLASS)) {
2065            // Check for the existence of an apropos outer instance
2066            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2067        }
2068
2069        // Attribute constructor arguments.
2070        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2071        final KindSelector pkind =
2072            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2073        List<Type> argtypes = argtypesBuf.toList();
2074        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2075
2076        // If we have made no mistakes in the class type...
2077        if (clazztype.hasTag(CLASS)) {
2078            // Enums may not be instantiated except implicitly
2079            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2080                (!env.tree.hasTag(VARDEF) ||
2081                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2082                 ((JCVariableDecl) env.tree).init != tree))
2083                log.error(tree.pos(), "enum.cant.be.instantiated");
2084
2085            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2086                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2087            boolean skipNonDiamondPath = false;
2088            // Check that class is not abstract
2089            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2090                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2091                log.error(tree.pos(), "abstract.cant.be.instantiated",
2092                          clazztype.tsym);
2093                skipNonDiamondPath = true;
2094            } else if (cdef != null && clazztype.tsym.isInterface()) {
2095                // Check that no constructor arguments are given to
2096                // anonymous classes implementing an interface
2097                if (!argtypes.isEmpty())
2098                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2099
2100                if (!typeargtypes.isEmpty())
2101                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2102
2103                // Error recovery: pretend no arguments were supplied.
2104                argtypes = List.nil();
2105                typeargtypes = List.nil();
2106                skipNonDiamondPath = true;
2107            }
2108            if (TreeInfo.isDiamond(tree)) {
2109                ClassType site = new ClassType(clazztype.getEnclosingType(),
2110                            clazztype.tsym.type.getTypeArguments(),
2111                                               clazztype.tsym,
2112                                               clazztype.getMetadata());
2113
2114                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2115                diamondEnv.info.selectSuper = cdef != null;
2116                diamondEnv.info.pendingResolutionPhase = null;
2117
2118                //if the type of the instance creation expression is a class type
2119                //apply method resolution inference (JLS 15.12.2.7). The return type
2120                //of the resolved constructor will be a partially instantiated type
2121                Symbol constructor = rs.resolveDiamond(tree.pos(),
2122                            diamondEnv,
2123                            site,
2124                            argtypes,
2125                            typeargtypes);
2126                tree.constructor = constructor.baseSymbol();
2127
2128                final TypeSymbol csym = clazztype.tsym;
2129                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2130                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2131                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2132                constructorType = checkId(tree, site,
2133                        constructor,
2134                        diamondEnv,
2135                        diamondResult);
2136
2137                tree.clazz.type = types.createErrorType(clazztype);
2138                if (!constructorType.isErroneous()) {
2139                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2140                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2141                }
2142                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2143            }
2144
2145            // Resolve the called constructor under the assumption
2146            // that we are referring to a superclass instance of the
2147            // current instance (JLS ???).
2148            else if (!skipNonDiamondPath) {
2149                //the following code alters some of the fields in the current
2150                //AttrContext - hence, the current context must be dup'ed in
2151                //order to avoid downstream failures
2152                Env<AttrContext> rsEnv = localEnv.dup(tree);
2153                rsEnv.info.selectSuper = cdef != null;
2154                rsEnv.info.pendingResolutionPhase = null;
2155                tree.constructor = rs.resolveConstructor(
2156                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2157                if (cdef == null) { //do not check twice!
2158                    tree.constructorType = checkId(tree,
2159                            clazztype,
2160                            tree.constructor,
2161                            rsEnv,
2162                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2163                    if (rsEnv.info.lastResolveVarargs())
2164                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2165                }
2166            }
2167
2168            if (cdef != null) {
2169                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2170                return;
2171            }
2172
2173            if (tree.constructor != null && tree.constructor.kind == MTH)
2174                owntype = clazztype;
2175        }
2176        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2177        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2178        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2179            //we need to wait for inference to finish and then replace inference vars in the constructor type
2180            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2181                    instantiatedContext -> {
2182                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2183                    });
2184        }
2185        chk.validate(tree.typeargs, localEnv);
2186    }
2187
2188        // where
2189        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2190                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2191                                                   List<Type> argtypes, List<Type> typeargtypes,
2192                                                   KindSelector pkind) {
2193            // We are seeing an anonymous class instance creation.
2194            // In this case, the class instance creation
2195            // expression
2196            //
2197            //    E.new <typeargs1>C<typargs2>(args) { ... }
2198            //
2199            // is represented internally as
2200            //
2201            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2202            //
2203            // This expression is then *transformed* as follows:
2204            //
2205            // (1) add an extends or implements clause
2206            // (2) add a constructor.
2207            //
2208            // For instance, if C is a class, and ET is the type of E,
2209            // the expression
2210            //
2211            //    E.new <typeargs1>C<typargs2>(args) { ... }
2212            //
2213            // is translated to (where X is a fresh name and typarams is the
2214            // parameter list of the super constructor):
2215            //
2216            //   new <typeargs1>X(<*nullchk*>E, args) where
2217            //     X extends C<typargs2> {
2218            //       <typarams> X(ET e, args) {
2219            //         e.<typeargs1>super(args)
2220            //       }
2221            //       ...
2222            //     }
2223            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2224            final boolean isDiamond = TreeInfo.isDiamond(tree);
2225            if (isDiamond
2226                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2227                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2228                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2229                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2230                        instantiatedContext -> {
2231                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2232                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2233                            ResultInfo prevResult = this.resultInfo;
2234                            try {
2235                                this.resultInfo = resultInfoForClassDefinition;
2236                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2237                                                            localEnv, argtypes, typeargtypes, pkind);
2238                            } finally {
2239                                this.resultInfo = prevResult;
2240                            }
2241                        });
2242            } else {
2243                if (isDiamond && clazztype.hasTag(CLASS)) {
2244                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2245                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2246                        // One or more types inferred in the previous steps is non-denotable.
2247                        Fragment fragment = Diamond(clazztype.tsym);
2248                        log.error(tree.clazz.pos(),
2249                                Errors.CantApplyDiamond1(
2250                                        fragment,
2251                                        invalidDiamondArgs.size() > 1 ?
2252                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2253                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2254                    }
2255                    // For <>(){}, inferred types must also be accessible.
2256                    for (Type t : clazztype.getTypeArguments()) {
2257                        rs.checkAccessibleType(env, t);
2258                    }
2259                }
2260
2261                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2262                // false for isInterface call even when the original type is an interface.
2263                boolean implementing = clazztype.tsym.isInterface() ||
2264                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2265
2266                if (implementing) {
2267                    cdef.implementing = List.of(clazz);
2268                } else {
2269                    cdef.extending = clazz;
2270                }
2271
2272                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2273                    isSerializable(clazztype)) {
2274                    localEnv.info.isSerializable = true;
2275                }
2276
2277                attribStat(cdef, localEnv);
2278
2279                List<Type> finalargtypes;
2280                // If an outer instance is given,
2281                // prefix it to the constructor arguments
2282                // and delete it from the new expression
2283                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2284                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2285                    finalargtypes = argtypes.prepend(tree.encl.type);
2286                    tree.encl = null;
2287                } else {
2288                    finalargtypes = argtypes;
2289                }
2290
2291                // Reassign clazztype and recompute constructor. As this necessarily involves
2292                // another attribution pass for deferred types in the case of <>, replicate
2293                // them. Original arguments have right decorations already.
2294                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2295                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2296                }
2297
2298                clazztype = cdef.sym.type;
2299                Symbol sym = tree.constructor = rs.resolveConstructor(
2300                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2301                Assert.check(!sym.kind.isResolutionError());
2302                tree.constructor = sym;
2303                tree.constructorType = checkId(tree,
2304                        clazztype,
2305                        tree.constructor,
2306                        localEnv,
2307                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2308            }
2309            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2310                                clazztype : types.createErrorType(tree.type);
2311            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2312            chk.validate(tree.typeargs, localEnv);
2313        }
2314
2315        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2316            return new Check.NestedCheckContext(checkContext) {
2317                @Override
2318                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2319                    enclosingContext.report(clazz.clazz,
2320                            diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", tsym), details));
2321                }
2322            };
2323        }
2324
2325    /** Make an attributed null check tree.
2326     */
2327    public JCExpression makeNullCheck(JCExpression arg) {
2328        // optimization: X.this is never null; skip null check
2329        Name name = TreeInfo.name(arg);
2330        if (name == names._this || name == names._super) return arg;
2331
2332        JCTree.Tag optag = NULLCHK;
2333        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2334        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2335        tree.type = arg.type;
2336        return tree;
2337    }
2338
2339    public void visitNewArray(JCNewArray tree) {
2340        Type owntype = types.createErrorType(tree.type);
2341        Env<AttrContext> localEnv = env.dup(tree);
2342        Type elemtype;
2343        if (tree.elemtype != null) {
2344            elemtype = attribType(tree.elemtype, localEnv);
2345            chk.validate(tree.elemtype, localEnv);
2346            owntype = elemtype;
2347            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2348                attribExpr(l.head, localEnv, syms.intType);
2349                owntype = new ArrayType(owntype, syms.arrayClass);
2350            }
2351        } else {
2352            // we are seeing an untyped aggregate { ... }
2353            // this is allowed only if the prototype is an array
2354            if (pt().hasTag(ARRAY)) {
2355                elemtype = types.elemtype(pt());
2356            } else {
2357                if (!pt().hasTag(ERROR)) {
2358                    log.error(tree.pos(), "illegal.initializer.for.type",
2359                              pt());
2360                }
2361                elemtype = types.createErrorType(pt());
2362            }
2363        }
2364        if (tree.elems != null) {
2365            attribExprs(tree.elems, localEnv, elemtype);
2366            owntype = new ArrayType(elemtype, syms.arrayClass);
2367        }
2368        if (!types.isReifiable(elemtype))
2369            log.error(tree.pos(), "generic.array.creation");
2370        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2371    }
2372
2373    /*
2374     * A lambda expression can only be attributed when a target-type is available.
2375     * In addition, if the target-type is that of a functional interface whose
2376     * descriptor contains inference variables in argument position the lambda expression
2377     * is 'stuck' (see DeferredAttr).
2378     */
2379    @Override
2380    public void visitLambda(final JCLambda that) {
2381        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2382            if (pt().hasTag(NONE)) {
2383                //lambda only allowed in assignment or method invocation/cast context
2384                log.error(that.pos(), "unexpected.lambda");
2385            }
2386            result = that.type = types.createErrorType(pt());
2387            return;
2388        }
2389        //create an environment for attribution of the lambda expression
2390        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2391        boolean needsRecovery =
2392                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2393        try {
2394            if (needsRecovery && isSerializable(pt())) {
2395                localEnv.info.isSerializable = true;
2396            }
2397            List<Type> explicitParamTypes = null;
2398            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2399                //attribute lambda parameters
2400                attribStats(that.params, localEnv);
2401                explicitParamTypes = TreeInfo.types(that.params);
2402            }
2403
2404            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2405            Type currentTarget = targetInfo.target;
2406            Type lambdaType = targetInfo.descriptor;
2407
2408            if (currentTarget.isErroneous()) {
2409                result = that.type = currentTarget;
2410                return;
2411            }
2412
2413            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2414
2415            if (lambdaType.hasTag(FORALL)) {
2416                //lambda expression target desc cannot be a generic method
2417                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2418                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2419                result = that.type = types.createErrorType(pt());
2420                return;
2421            }
2422
2423            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2424                //add param type info in the AST
2425                List<Type> actuals = lambdaType.getParameterTypes();
2426                List<JCVariableDecl> params = that.params;
2427
2428                boolean arityMismatch = false;
2429
2430                while (params.nonEmpty()) {
2431                    if (actuals.isEmpty()) {
2432                        //not enough actuals to perform lambda parameter inference
2433                        arityMismatch = true;
2434                    }
2435                    //reset previously set info
2436                    Type argType = arityMismatch ?
2437                            syms.errType :
2438                            actuals.head;
2439                    params.head.vartype = make.at(params.head).Type(argType);
2440                    params.head.sym = null;
2441                    actuals = actuals.isEmpty() ?
2442                            actuals :
2443                            actuals.tail;
2444                    params = params.tail;
2445                }
2446
2447                //attribute lambda parameters
2448                attribStats(that.params, localEnv);
2449
2450                if (arityMismatch) {
2451                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2452                        result = that.type = types.createErrorType(currentTarget);
2453                        return;
2454                }
2455            }
2456
2457            //from this point on, no recovery is needed; if we are in assignment context
2458            //we will be able to attribute the whole lambda body, regardless of errors;
2459            //if we are in a 'check' method context, and the lambda is not compatible
2460            //with the target-type, it will be recovered anyway in Attr.checkId
2461            needsRecovery = false;
2462
2463            ResultInfo bodyResultInfo = localEnv.info.returnResult =
2464                    lambdaBodyResult(that, lambdaType, resultInfo);
2465
2466            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2467                attribTree(that.getBody(), localEnv, bodyResultInfo);
2468            } else {
2469                JCBlock body = (JCBlock)that.body;
2470                attribStats(body.stats, localEnv);
2471            }
2472
2473            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2474
2475            boolean isSpeculativeRound =
2476                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2477
2478            preFlow(that);
2479            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2480
2481            that.type = currentTarget; //avoids recovery at this stage
2482            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2483
2484            if (!isSpeculativeRound) {
2485                //add thrown types as bounds to the thrown types free variables if needed:
2486                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2487                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2488                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2489
2490                    chk.unhandled(inferredThrownTypes, thrownTypes);
2491                }
2492
2493                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2494            }
2495            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2496        } catch (Types.FunctionDescriptorLookupError ex) {
2497            JCDiagnostic cause = ex.getDiagnostic();
2498            resultInfo.checkContext.report(that, cause);
2499            result = that.type = types.createErrorType(pt());
2500            return;
2501        } catch (Throwable t) {
2502            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2503            //as that would likely cause the same exception again.
2504            needsRecovery = false;
2505            throw t;
2506        } finally {
2507            localEnv.info.scope.leave();
2508            if (needsRecovery) {
2509                attribTree(that, env, recoveryInfo);
2510            }
2511        }
2512    }
2513    //where
2514        class TargetInfo {
2515            Type target;
2516            Type descriptor;
2517
2518            public TargetInfo(Type target, Type descriptor) {
2519                this.target = target;
2520                this.descriptor = descriptor;
2521            }
2522        }
2523
2524        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2525            Type lambdaType;
2526            Type currentTarget = resultInfo.pt;
2527            if (resultInfo.pt != Type.recoveryType) {
2528                /* We need to adjust the target. If the target is an
2529                 * intersection type, for example: SAM & I1 & I2 ...
2530                 * the target will be updated to SAM
2531                 */
2532                currentTarget = targetChecker.visit(currentTarget, that);
2533                if (explicitParamTypes != null) {
2534                    currentTarget = infer.instantiateFunctionalInterface(that,
2535                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2536                }
2537                currentTarget = types.removeWildcards(currentTarget);
2538                lambdaType = types.findDescriptorType(currentTarget);
2539            } else {
2540                currentTarget = Type.recoveryType;
2541                lambdaType = fallbackDescriptorType(that);
2542            }
2543            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2544                //lambda expression target desc cannot be a generic method
2545                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2546                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2547                currentTarget = types.createErrorType(pt());
2548            }
2549            return new TargetInfo(currentTarget, lambdaType);
2550        }
2551
2552        void preFlow(JCLambda tree) {
2553            new PostAttrAnalyzer() {
2554                @Override
2555                public void scan(JCTree tree) {
2556                    if (tree == null ||
2557                            (tree.type != null &&
2558                            tree.type == Type.stuckType)) {
2559                        //don't touch stuck expressions!
2560                        return;
2561                    }
2562                    super.scan(tree);
2563                }
2564            }.scan(tree);
2565        }
2566
2567        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2568
2569            @Override
2570            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2571                return t.isIntersection() ?
2572                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2573            }
2574
2575            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2576                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2577                Type target = null;
2578                for (Type bound : ict.getExplicitComponents()) {
2579                    TypeSymbol boundSym = bound.tsym;
2580                    if (types.isFunctionalInterface(boundSym) &&
2581                            types.findDescriptorSymbol(boundSym) == desc) {
2582                        target = bound;
2583                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2584                        //bound must be an interface
2585                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2586                    }
2587                }
2588                return target != null ?
2589                        target :
2590                        ict.getExplicitComponents().head; //error recovery
2591            }
2592
2593            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2594                ListBuffer<Type> targs = new ListBuffer<>();
2595                ListBuffer<Type> supertypes = new ListBuffer<>();
2596                for (Type i : ict.interfaces_field) {
2597                    if (i.isParameterized()) {
2598                        targs.appendList(i.tsym.type.allparams());
2599                    }
2600                    supertypes.append(i.tsym.type);
2601                }
2602                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2603                notionalIntf.allparams_field = targs.toList();
2604                notionalIntf.tsym.flags_field |= INTERFACE;
2605                return notionalIntf.tsym;
2606            }
2607
2608            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2609                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2610                        diags.fragment(key, args)));
2611            }
2612        };
2613
2614        private Type fallbackDescriptorType(JCExpression tree) {
2615            switch (tree.getTag()) {
2616                case LAMBDA:
2617                    JCLambda lambda = (JCLambda)tree;
2618                    List<Type> argtypes = List.nil();
2619                    for (JCVariableDecl param : lambda.params) {
2620                        argtypes = param.vartype != null ?
2621                                argtypes.append(param.vartype.type) :
2622                                argtypes.append(syms.errType);
2623                    }
2624                    return new MethodType(argtypes, Type.recoveryType,
2625                            List.of(syms.throwableType), syms.methodClass);
2626                case REFERENCE:
2627                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2628                            List.of(syms.throwableType), syms.methodClass);
2629                default:
2630                    Assert.error("Cannot get here!");
2631            }
2632            return null;
2633        }
2634
2635        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2636                final InferenceContext inferenceContext, final Type... ts) {
2637            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2638        }
2639
2640        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2641                final InferenceContext inferenceContext, final List<Type> ts) {
2642            if (inferenceContext.free(ts)) {
2643                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2644                    @Override
2645                    public void typesInferred(InferenceContext inferenceContext) {
2646                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2647                    }
2648                });
2649            } else {
2650                for (Type t : ts) {
2651                    rs.checkAccessibleType(env, t);
2652                }
2653            }
2654        }
2655
2656        /**
2657         * Lambda/method reference have a special check context that ensures
2658         * that i.e. a lambda return type is compatible with the expected
2659         * type according to both the inherited context and the assignment
2660         * context.
2661         */
2662        class FunctionalReturnContext extends Check.NestedCheckContext {
2663
2664            FunctionalReturnContext(CheckContext enclosingContext) {
2665                super(enclosingContext);
2666            }
2667
2668            @Override
2669            public boolean compatible(Type found, Type req, Warner warn) {
2670                //return type must be compatible in both current context and assignment context
2671                return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2672            }
2673
2674            @Override
2675            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2676                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2677            }
2678        }
2679
2680        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2681
2682            JCExpression expr;
2683            boolean expStmtExpected;
2684
2685            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2686                super(enclosingContext);
2687                this.expr = expr;
2688            }
2689
2690            @Override
2691            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2692                if (expStmtExpected) {
2693                    enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2694                } else {
2695                    super.report(pos, details);
2696                }
2697            }
2698
2699            @Override
2700            public boolean compatible(Type found, Type req, Warner warn) {
2701                //a void return is compatible with an expression statement lambda
2702                if (req.hasTag(VOID)) {
2703                    expStmtExpected = true;
2704                    return TreeInfo.isExpressionStatement(expr);
2705                } else {
2706                    return super.compatible(found, req, warn);
2707                }
2708            }
2709        }
2710
2711        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2712            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2713                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2714                    new FunctionalReturnContext(resultInfo.checkContext);
2715
2716            return descriptor.getReturnType() == Type.recoveryType ?
2717                    recoveryInfo :
2718                    new ResultInfo(KindSelector.VAL,
2719                            descriptor.getReturnType(), funcContext);
2720        }
2721
2722        /**
2723        * Lambda compatibility. Check that given return types, thrown types, parameter types
2724        * are compatible with the expected functional interface descriptor. This means that:
2725        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2726        * types must be compatible with the return type of the expected descriptor.
2727        */
2728        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2729            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2730
2731            //return values have already been checked - but if lambda has no return
2732            //values, we must ensure that void/value compatibility is correct;
2733            //this amounts at checking that, if a lambda body can complete normally,
2734            //the descriptor's return type must be void
2735            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2736                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2737                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2738                        diags.fragment("missing.ret.val", returnType)));
2739            }
2740
2741            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2742            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2743                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2744            }
2745        }
2746
2747        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2748         * static field and that lambda has type annotations, these annotations will
2749         * also be stored at these fake clinit methods.
2750         *
2751         * LambdaToMethod also use fake clinit methods so they can be reused.
2752         * Also as LTM is a phase subsequent to attribution, the methods from
2753         * clinits can be safely removed by LTM to save memory.
2754         */
2755        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2756
2757        public MethodSymbol removeClinit(ClassSymbol sym) {
2758            return clinits.remove(sym);
2759        }
2760
2761        /* This method returns an environment to be used to attribute a lambda
2762         * expression.
2763         *
2764         * The owner of this environment is a method symbol. If the current owner
2765         * is not a method, for example if the lambda is used to initialize
2766         * a field, then if the field is:
2767         *
2768         * - an instance field, we use the first constructor.
2769         * - a static field, we create a fake clinit method.
2770         */
2771        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2772            Env<AttrContext> lambdaEnv;
2773            Symbol owner = env.info.scope.owner;
2774            if (owner.kind == VAR && owner.owner.kind == TYP) {
2775                //field initializer
2776                ClassSymbol enclClass = owner.enclClass();
2777                Symbol newScopeOwner = env.info.scope.owner;
2778                /* if the field isn't static, then we can get the first constructor
2779                 * and use it as the owner of the environment. This is what
2780                 * LTM code is doing to look for type annotations so we are fine.
2781                 */
2782                if ((owner.flags() & STATIC) == 0) {
2783                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2784                        newScopeOwner = s;
2785                        break;
2786                    }
2787                } else {
2788                    /* if the field is static then we need to create a fake clinit
2789                     * method, this method can later be reused by LTM.
2790                     */
2791                    MethodSymbol clinit = clinits.get(enclClass);
2792                    if (clinit == null) {
2793                        Type clinitType = new MethodType(List.<Type>nil(),
2794                                syms.voidType, List.<Type>nil(), syms.methodClass);
2795                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2796                                names.clinit, clinitType, enclClass);
2797                        clinit.params = List.<VarSymbol>nil();
2798                        clinits.put(enclClass, clinit);
2799                    }
2800                    newScopeOwner = clinit;
2801                }
2802                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2803            } else {
2804                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2805            }
2806            return lambdaEnv;
2807        }
2808
2809    @Override
2810    public void visitReference(final JCMemberReference that) {
2811        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2812            if (pt().hasTag(NONE)) {
2813                //method reference only allowed in assignment or method invocation/cast context
2814                log.error(that.pos(), "unexpected.mref");
2815            }
2816            result = that.type = types.createErrorType(pt());
2817            return;
2818        }
2819        final Env<AttrContext> localEnv = env.dup(that);
2820        try {
2821            //attribute member reference qualifier - if this is a constructor
2822            //reference, the expected kind must be a type
2823            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2824
2825            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2826                exprType = chk.checkConstructorRefType(that.expr, exprType);
2827                if (!exprType.isErroneous() &&
2828                    exprType.isRaw() &&
2829                    that.typeargs != null) {
2830                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2831                        diags.fragment("mref.infer.and.explicit.params"));
2832                    exprType = types.createErrorType(exprType);
2833                }
2834            }
2835
2836            if (exprType.isErroneous()) {
2837                //if the qualifier expression contains problems,
2838                //give up attribution of method reference
2839                result = that.type = exprType;
2840                return;
2841            }
2842
2843            if (TreeInfo.isStaticSelector(that.expr, names)) {
2844                //if the qualifier is a type, validate it; raw warning check is
2845                //omitted as we don't know at this stage as to whether this is a
2846                //raw selector (because of inference)
2847                chk.validate(that.expr, env, false);
2848            } else {
2849                Symbol lhsSym = TreeInfo.symbol(that.expr);
2850                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2851            }
2852            //attrib type-arguments
2853            List<Type> typeargtypes = List.nil();
2854            if (that.typeargs != null) {
2855                typeargtypes = attribTypes(that.typeargs, localEnv);
2856            }
2857
2858            boolean isTargetSerializable =
2859                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2860                    isSerializable(pt());
2861            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2862            Type currentTarget = targetInfo.target;
2863            Type desc = targetInfo.descriptor;
2864
2865            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2866            List<Type> argtypes = desc.getParameterTypes();
2867            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2868
2869            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2870                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2871            }
2872
2873            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2874            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2875            try {
2876                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2877                        that.name, argtypes, typeargtypes, referenceCheck,
2878                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2879            } finally {
2880                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2881            }
2882
2883            Symbol refSym = refResult.fst;
2884            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2885
2886            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2887             *  JDK-8075541
2888             */
2889            if (refSym.kind != MTH) {
2890                boolean targetError;
2891                switch (refSym.kind) {
2892                    case ABSENT_MTH:
2893                    case MISSING_ENCL:
2894                        targetError = false;
2895                        break;
2896                    case WRONG_MTH:
2897                    case WRONG_MTHS:
2898                    case AMBIGUOUS:
2899                    case HIDDEN:
2900                    case STATICERR:
2901                        targetError = true;
2902                        break;
2903                    default:
2904                        Assert.error("unexpected result kind " + refSym.kind);
2905                        targetError = false;
2906                }
2907
2908                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2909                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2910
2911                JCDiagnostic.DiagnosticType diagKind = targetError ?
2912                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2913
2914                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2915                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2916
2917                if (targetError && currentTarget == Type.recoveryType) {
2918                    //a target error doesn't make sense during recovery stage
2919                    //as we don't know what actual parameter types are
2920                    result = that.type = currentTarget;
2921                    return;
2922                } else {
2923                    if (targetError) {
2924                        resultInfo.checkContext.report(that, diag);
2925                    } else {
2926                        log.report(diag);
2927                    }
2928                    result = that.type = types.createErrorType(currentTarget);
2929                    return;
2930                }
2931            }
2932
2933            that.sym = refSym.baseSymbol();
2934            that.kind = lookupHelper.referenceKind(that.sym);
2935            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2936
2937            if (desc.getReturnType() == Type.recoveryType) {
2938                // stop here
2939                result = that.type = currentTarget;
2940                return;
2941            }
2942
2943            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2944
2945                if (that.getMode() == ReferenceMode.INVOKE &&
2946                        TreeInfo.isStaticSelector(that.expr, names) &&
2947                        that.kind.isUnbound() &&
2948                        !desc.getParameterTypes().head.isParameterized()) {
2949                    chk.checkRaw(that.expr, localEnv);
2950                }
2951
2952                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2953                        exprType.getTypeArguments().nonEmpty()) {
2954                    //static ref with class type-args
2955                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2956                            diags.fragment("static.mref.with.targs"));
2957                    result = that.type = types.createErrorType(currentTarget);
2958                    return;
2959                }
2960
2961                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2962                    // Check that super-qualified symbols are not abstract (JLS)
2963                    rs.checkNonAbstract(that.pos(), that.sym);
2964                }
2965
2966                if (isTargetSerializable) {
2967                    chk.checkElemAccessFromSerializableLambda(that);
2968                }
2969            }
2970
2971            ResultInfo checkInfo =
2972                    resultInfo.dup(newMethodTemplate(
2973                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2974                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2975                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2976
2977            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2978
2979            if (that.kind.isUnbound() &&
2980                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2981                //re-generate inference constraints for unbound receiver
2982                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2983                    //cannot happen as this has already been checked - we just need
2984                    //to regenerate the inference constraints, as that has been lost
2985                    //as a result of the call to inferenceContext.save()
2986                    Assert.error("Can't get here");
2987                }
2988            }
2989
2990            if (!refType.isErroneous()) {
2991                refType = types.createMethodTypeWithReturn(refType,
2992                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2993            }
2994
2995            //go ahead with standard method reference compatibility check - note that param check
2996            //is a no-op (as this has been taken care during method applicability)
2997            boolean isSpeculativeRound =
2998                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2999
3000            that.type = currentTarget; //avoids recovery at this stage
3001            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3002            if (!isSpeculativeRound) {
3003                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3004            }
3005            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3006        } catch (Types.FunctionDescriptorLookupError ex) {
3007            JCDiagnostic cause = ex.getDiagnostic();
3008            resultInfo.checkContext.report(that, cause);
3009            result = that.type = types.createErrorType(pt());
3010            return;
3011        }
3012    }
3013    //where
3014        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3015            //if this is a constructor reference, the expected kind must be a type
3016            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3017                                  KindSelector.VAL_TYP : KindSelector.TYP,
3018                                  Type.noType);
3019        }
3020
3021
3022    @SuppressWarnings("fallthrough")
3023    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3024        InferenceContext inferenceContext = checkContext.inferenceContext();
3025        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3026
3027        Type resType;
3028        switch (tree.getMode()) {
3029            case NEW:
3030                if (!tree.expr.type.isRaw()) {
3031                    resType = tree.expr.type;
3032                    break;
3033                }
3034            default:
3035                resType = refType.getReturnType();
3036        }
3037
3038        Type incompatibleReturnType = resType;
3039
3040        if (returnType.hasTag(VOID)) {
3041            incompatibleReturnType = null;
3042        }
3043
3044        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3045            if (resType.isErroneous() ||
3046                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
3047                incompatibleReturnType = null;
3048            }
3049        }
3050
3051        if (incompatibleReturnType != null) {
3052            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
3053                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
3054        } else {
3055            if (inferenceContext.free(refType)) {
3056                // we need to wait for inference to finish and then replace inference vars in the referent type
3057                inferenceContext.addFreeTypeListener(List.of(refType),
3058                        instantiatedContext -> {
3059                            tree.referentType = instantiatedContext.asInstType(refType);
3060                        });
3061            } else {
3062                tree.referentType = refType;
3063            }
3064        }
3065
3066        if (!speculativeAttr) {
3067            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3068            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3069                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
3070            }
3071        }
3072    }
3073
3074    /**
3075     * Set functional type info on the underlying AST. Note: as the target descriptor
3076     * might contain inference variables, we might need to register an hook in the
3077     * current inference context.
3078     */
3079    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3080            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3081        if (checkContext.inferenceContext().free(descriptorType)) {
3082            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
3083                public void typesInferred(InferenceContext inferenceContext) {
3084                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3085                            inferenceContext.asInstType(primaryTarget), checkContext);
3086                }
3087            });
3088        } else {
3089            ListBuffer<Type> targets = new ListBuffer<>();
3090            if (pt.hasTag(CLASS)) {
3091                if (pt.isCompound()) {
3092                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
3093                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3094                        if (t != primaryTarget) {
3095                            targets.append(types.removeWildcards(t));
3096                        }
3097                    }
3098                } else {
3099                    targets.append(types.removeWildcards(primaryTarget));
3100                }
3101            }
3102            fExpr.targets = targets.toList();
3103            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3104                    pt != Type.recoveryType) {
3105                //check that functional interface class is well-formed
3106                try {
3107                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3108                     * when it's executed post-inference. See the listener code
3109                     * above.
3110                     */
3111                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3112                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3113                    if (csym != null) {
3114                        chk.checkImplementations(env.tree, csym, csym);
3115                        try {
3116                            //perform an additional functional interface check on the synthetic class,
3117                            //as there may be spurious errors for raw targets - because of existing issues
3118                            //with membership and inheritance (see JDK-8074570).
3119                            csym.flags_field |= INTERFACE;
3120                            types.findDescriptorType(csym.type);
3121                        } catch (FunctionDescriptorLookupError err) {
3122                            resultInfo.checkContext.report(fExpr,
3123                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3124                        }
3125                    }
3126                } catch (Types.FunctionDescriptorLookupError ex) {
3127                    JCDiagnostic cause = ex.getDiagnostic();
3128                    resultInfo.checkContext.report(env.tree, cause);
3129                }
3130            }
3131        }
3132    }
3133
3134    public void visitParens(JCParens tree) {
3135        Type owntype = attribTree(tree.expr, env, resultInfo);
3136        result = check(tree, owntype, pkind(), resultInfo);
3137        Symbol sym = TreeInfo.symbol(tree);
3138        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3139            log.error(tree.pos(), "illegal.start.of.type");
3140    }
3141
3142    public void visitAssign(JCAssign tree) {
3143        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3144        Type capturedType = capture(owntype);
3145        attribExpr(tree.rhs, env, owntype);
3146        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3147    }
3148
3149    public void visitAssignop(JCAssignOp tree) {
3150        // Attribute arguments.
3151        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3152        Type operand = attribExpr(tree.rhs, env);
3153        // Find operator.
3154        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3155        if (operator.kind == MTH &&
3156                !owntype.isErroneous() &&
3157                !operand.isErroneous()) {
3158            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3159            chk.checkCastable(tree.rhs.pos(),
3160                              operator.type.getReturnType(),
3161                              owntype);
3162        }
3163        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3164    }
3165
3166    public void visitUnary(JCUnary tree) {
3167        // Attribute arguments.
3168        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3169            ? attribTree(tree.arg, env, varAssignmentInfo)
3170            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3171
3172        // Find operator.
3173        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3174        Type owntype = types.createErrorType(tree.type);
3175        if (operator.kind == MTH &&
3176                !argtype.isErroneous()) {
3177            owntype = (tree.getTag().isIncOrDecUnaryOp())
3178                ? tree.arg.type
3179                : operator.type.getReturnType();
3180            int opc = ((OperatorSymbol)operator).opcode;
3181
3182            // If the argument is constant, fold it.
3183            if (argtype.constValue() != null) {
3184                Type ctype = cfolder.fold1(opc, argtype);
3185                if (ctype != null) {
3186                    owntype = cfolder.coerce(ctype, owntype);
3187                }
3188            }
3189        }
3190        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3191    }
3192
3193    public void visitBinary(JCBinary tree) {
3194        // Attribute arguments.
3195        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3196        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3197        // Find operator.
3198        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3199        Type owntype = types.createErrorType(tree.type);
3200        if (operator.kind == MTH &&
3201                !left.isErroneous() &&
3202                !right.isErroneous()) {
3203            owntype = operator.type.getReturnType();
3204            int opc = ((OperatorSymbol)operator).opcode;
3205            // If both arguments are constants, fold them.
3206            if (left.constValue() != null && right.constValue() != null) {
3207                Type ctype = cfolder.fold2(opc, left, right);
3208                if (ctype != null) {
3209                    owntype = cfolder.coerce(ctype, owntype);
3210                }
3211            }
3212
3213            // Check that argument types of a reference ==, != are
3214            // castable to each other, (JLS 15.21).  Note: unboxing
3215            // comparisons will not have an acmp* opc at this point.
3216            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3217                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3218                    log.error(tree.pos(), "incomparable.types", left, right);
3219                }
3220            }
3221
3222            chk.checkDivZero(tree.rhs.pos(), operator, right);
3223        }
3224        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3225    }
3226
3227    public void visitTypeCast(final JCTypeCast tree) {
3228        Type clazztype = attribType(tree.clazz, env);
3229        chk.validate(tree.clazz, env, false);
3230        //a fresh environment is required for 292 inference to work properly ---
3231        //see Infer.instantiatePolymorphicSignatureInstance()
3232        Env<AttrContext> localEnv = env.dup(tree);
3233        //should we propagate the target type?
3234        final ResultInfo castInfo;
3235        JCExpression expr = TreeInfo.skipParens(tree.expr);
3236        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3237        if (isPoly) {
3238            //expression is a poly - we need to propagate target type info
3239            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3240                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3241                @Override
3242                public boolean compatible(Type found, Type req, Warner warn) {
3243                    return types.isCastable(found, req, warn);
3244                }
3245            });
3246        } else {
3247            //standalone cast - target-type info is not propagated
3248            castInfo = unknownExprInfo;
3249        }
3250        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3251        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3252        if (exprtype.constValue() != null)
3253            owntype = cfolder.coerce(exprtype, owntype);
3254        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3255        if (!isPoly)
3256            chk.checkRedundantCast(localEnv, tree);
3257    }
3258
3259    public void visitTypeTest(JCInstanceOf tree) {
3260        Type exprtype = chk.checkNullOrRefType(
3261                tree.expr.pos(), attribExpr(tree.expr, env));
3262        Type clazztype = attribType(tree.clazz, env);
3263        if (!clazztype.hasTag(TYPEVAR)) {
3264            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3265        }
3266        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3267            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3268            clazztype = types.createErrorType(clazztype);
3269        }
3270        chk.validate(tree.clazz, env, false);
3271        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3272        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3273    }
3274
3275    public void visitIndexed(JCArrayAccess tree) {
3276        Type owntype = types.createErrorType(tree.type);
3277        Type atype = attribExpr(tree.indexed, env);
3278        attribExpr(tree.index, env, syms.intType);
3279        if (types.isArray(atype))
3280            owntype = types.elemtype(atype);
3281        else if (!atype.hasTag(ERROR))
3282            log.error(tree.pos(), "array.req.but.found", atype);
3283        if (!pkind().contains(KindSelector.VAL))
3284            owntype = capture(owntype);
3285        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3286    }
3287
3288    public void visitIdent(JCIdent tree) {
3289        Symbol sym;
3290
3291        // Find symbol
3292        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3293            // If we are looking for a method, the prototype `pt' will be a
3294            // method type with the type of the call's arguments as parameters.
3295            env.info.pendingResolutionPhase = null;
3296            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3297        } else if (tree.sym != null && tree.sym.kind != VAR) {
3298            sym = tree.sym;
3299        } else {
3300            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3301        }
3302        tree.sym = sym;
3303
3304        // (1) Also find the environment current for the class where
3305        //     sym is defined (`symEnv').
3306        // Only for pre-tiger versions (1.4 and earlier):
3307        // (2) Also determine whether we access symbol out of an anonymous
3308        //     class in a this or super call.  This is illegal for instance
3309        //     members since such classes don't carry a this$n link.
3310        //     (`noOuterThisPath').
3311        Env<AttrContext> symEnv = env;
3312        boolean noOuterThisPath = false;
3313        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3314            sym.kind.matches(KindSelector.VAL_MTH) &&
3315            sym.owner.kind == TYP &&
3316            tree.name != names._this && tree.name != names._super) {
3317
3318            // Find environment in which identifier is defined.
3319            while (symEnv.outer != null &&
3320                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3321                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3322                    noOuterThisPath = false;
3323                symEnv = symEnv.outer;
3324            }
3325        }
3326
3327        // If symbol is a variable, ...
3328        if (sym.kind == VAR) {
3329            VarSymbol v = (VarSymbol)sym;
3330
3331            // ..., evaluate its initializer, if it has one, and check for
3332            // illegal forward reference.
3333            checkInit(tree, env, v, false);
3334
3335            // If we are expecting a variable (as opposed to a value), check
3336            // that the variable is assignable in the current environment.
3337            if (KindSelector.ASG.subset(pkind()))
3338                checkAssignable(tree.pos(), v, null, env);
3339        }
3340
3341        // In a constructor body,
3342        // if symbol is a field or instance method, check that it is
3343        // not accessed before the supertype constructor is called.
3344        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3345            sym.kind.matches(KindSelector.VAL_MTH) &&
3346            sym.owner.kind == TYP &&
3347            (sym.flags() & STATIC) == 0) {
3348            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3349                                          sym : thisSym(tree.pos(), env));
3350        }
3351        Env<AttrContext> env1 = env;
3352        if (sym.kind != ERR && sym.kind != TYP &&
3353            sym.owner != null && sym.owner != env1.enclClass.sym) {
3354            // If the found symbol is inaccessible, then it is
3355            // accessed through an enclosing instance.  Locate this
3356            // enclosing instance:
3357            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3358                env1 = env1.outer;
3359        }
3360
3361        if (env.info.isSerializable) {
3362            chk.checkElemAccessFromSerializableLambda(tree);
3363        }
3364
3365        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3366    }
3367
3368    public void visitSelect(JCFieldAccess tree) {
3369        // Determine the expected kind of the qualifier expression.
3370        KindSelector skind = KindSelector.NIL;
3371        if (tree.name == names._this || tree.name == names._super ||
3372                tree.name == names._class)
3373        {
3374            skind = KindSelector.TYP;
3375        } else {
3376            if (pkind().contains(KindSelector.PCK))
3377                skind = KindSelector.of(skind, KindSelector.PCK);
3378            if (pkind().contains(KindSelector.TYP))
3379                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3380            if (pkind().contains(KindSelector.VAL_MTH))
3381                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3382        }
3383
3384        // Attribute the qualifier expression, and determine its symbol (if any).
3385        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3386        if (!pkind().contains(KindSelector.TYP_PCK))
3387            site = capture(site); // Capture field access
3388
3389        // don't allow T.class T[].class, etc
3390        if (skind == KindSelector.TYP) {
3391            Type elt = site;
3392            while (elt.hasTag(ARRAY))
3393                elt = ((ArrayType)elt).elemtype;
3394            if (elt.hasTag(TYPEVAR)) {
3395                log.error(tree.pos(), "type.var.cant.be.deref");
3396                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3397                tree.sym = tree.type.tsym;
3398                return ;
3399            }
3400        }
3401
3402        // If qualifier symbol is a type or `super', assert `selectSuper'
3403        // for the selection. This is relevant for determining whether
3404        // protected symbols are accessible.
3405        Symbol sitesym = TreeInfo.symbol(tree.selected);
3406        boolean selectSuperPrev = env.info.selectSuper;
3407        env.info.selectSuper =
3408            sitesym != null &&
3409            sitesym.name == names._super;
3410
3411        // Determine the symbol represented by the selection.
3412        env.info.pendingResolutionPhase = null;
3413        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3414        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3415            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3416            sym = syms.errSymbol;
3417        }
3418        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3419            site = capture(site);
3420            sym = selectSym(tree, sitesym, site, env, resultInfo);
3421        }
3422        boolean varArgs = env.info.lastResolveVarargs();
3423        tree.sym = sym;
3424
3425        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3426            site = types.skipTypeVars(site, true);
3427        }
3428
3429        // If that symbol is a variable, ...
3430        if (sym.kind == VAR) {
3431            VarSymbol v = (VarSymbol)sym;
3432
3433            // ..., evaluate its initializer, if it has one, and check for
3434            // illegal forward reference.
3435            checkInit(tree, env, v, true);
3436
3437            // If we are expecting a variable (as opposed to a value), check
3438            // that the variable is assignable in the current environment.
3439            if (KindSelector.ASG.subset(pkind()))
3440                checkAssignable(tree.pos(), v, tree.selected, env);
3441        }
3442
3443        if (sitesym != null &&
3444                sitesym.kind == VAR &&
3445                ((VarSymbol)sitesym).isResourceVariable() &&
3446                sym.kind == MTH &&
3447                sym.name.equals(names.close) &&
3448                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3449                env.info.lint.isEnabled(LintCategory.TRY)) {
3450            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3451        }
3452
3453        // Disallow selecting a type from an expression
3454        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3455            tree.type = check(tree.selected, pt(),
3456                              sitesym == null ?
3457                                      KindSelector.VAL : sitesym.kind.toSelector(),
3458                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3459        }
3460
3461        if (isType(sitesym)) {
3462            if (sym.name == names._this) {
3463                // If `C' is the currently compiled class, check that
3464                // C.this' does not appear in a call to a super(...)
3465                if (env.info.isSelfCall &&
3466                    site.tsym == env.enclClass.sym) {
3467                    chk.earlyRefError(tree.pos(), sym);
3468                }
3469            } else {
3470                // Check if type-qualified fields or methods are static (JLS)
3471                if ((sym.flags() & STATIC) == 0 &&
3472                    sym.name != names._super &&
3473                    (sym.kind == VAR || sym.kind == MTH)) {
3474                    rs.accessBase(rs.new StaticError(sym),
3475                              tree.pos(), site, sym.name, true);
3476                }
3477            }
3478            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3479                    sym.isStatic() && sym.kind == MTH) {
3480                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3481            }
3482        } else if (sym.kind != ERR &&
3483                   (sym.flags() & STATIC) != 0 &&
3484                   sym.name != names._class) {
3485            // If the qualified item is not a type and the selected item is static, report
3486            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3487            chk.warnStatic(tree, "static.not.qualified.by.type",
3488                           sym.kind.kindName(), sym.owner);
3489        }
3490
3491        // If we are selecting an instance member via a `super', ...
3492        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3493
3494            // Check that super-qualified symbols are not abstract (JLS)
3495            rs.checkNonAbstract(tree.pos(), sym);
3496
3497            if (site.isRaw()) {
3498                // Determine argument types for site.
3499                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3500                if (site1 != null) site = site1;
3501            }
3502        }
3503
3504        if (env.info.isSerializable) {
3505            chk.checkElemAccessFromSerializableLambda(tree);
3506        }
3507
3508        env.info.selectSuper = selectSuperPrev;
3509        result = checkId(tree, site, sym, env, resultInfo);
3510    }
3511    //where
3512        /** Determine symbol referenced by a Select expression,
3513         *
3514         *  @param tree   The select tree.
3515         *  @param site   The type of the selected expression,
3516         *  @param env    The current environment.
3517         *  @param resultInfo The current result.
3518         */
3519        private Symbol selectSym(JCFieldAccess tree,
3520                                 Symbol location,
3521                                 Type site,
3522                                 Env<AttrContext> env,
3523                                 ResultInfo resultInfo) {
3524            DiagnosticPosition pos = tree.pos();
3525            Name name = tree.name;
3526            switch (site.getTag()) {
3527            case PACKAGE:
3528                return rs.accessBase(
3529                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3530                    pos, location, site, name, true);
3531            case ARRAY:
3532            case CLASS:
3533                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3534                    return rs.resolveQualifiedMethod(
3535                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3536                } else if (name == names._this || name == names._super) {
3537                    return rs.resolveSelf(pos, env, site.tsym, name);
3538                } else if (name == names._class) {
3539                    // In this case, we have already made sure in
3540                    // visitSelect that qualifier expression is a type.
3541                    Type t = syms.classType;
3542                    List<Type> typeargs = List.of(types.erasure(site));
3543                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3544                    return new VarSymbol(
3545                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3546                } else {
3547                    // We are seeing a plain identifier as selector.
3548                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3549                        sym = rs.accessBase(sym, pos, location, site, name, true);
3550                    return sym;
3551                }
3552            case WILDCARD:
3553                throw new AssertionError(tree);
3554            case TYPEVAR:
3555                // Normally, site.getUpperBound() shouldn't be null.
3556                // It should only happen during memberEnter/attribBase
3557                // when determining the super type which *must* beac
3558                // done before attributing the type variables.  In
3559                // other words, we are seeing this illegal program:
3560                // class B<T> extends A<T.foo> {}
3561                Symbol sym = (site.getUpperBound() != null)
3562                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3563                    : null;
3564                if (sym == null) {
3565                    log.error(pos, "type.var.cant.be.deref");
3566                    return syms.errSymbol;
3567                } else {
3568                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3569                        rs.new AccessError(env, site, sym) :
3570                                sym;
3571                    rs.accessBase(sym2, pos, location, site, name, true);
3572                    return sym;
3573                }
3574            case ERROR:
3575                // preserve identifier names through errors
3576                return types.createErrorType(name, site.tsym, site).tsym;
3577            default:
3578                // The qualifier expression is of a primitive type -- only
3579                // .class is allowed for these.
3580                if (name == names._class) {
3581                    // In this case, we have already made sure in Select that
3582                    // qualifier expression is a type.
3583                    Type t = syms.classType;
3584                    Type arg = types.boxedClass(site).type;
3585                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3586                    return new VarSymbol(
3587                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3588                } else {
3589                    log.error(pos, "cant.deref", site);
3590                    return syms.errSymbol;
3591                }
3592            }
3593        }
3594
3595        /** Determine type of identifier or select expression and check that
3596         *  (1) the referenced symbol is not deprecated
3597         *  (2) the symbol's type is safe (@see checkSafe)
3598         *  (3) if symbol is a variable, check that its type and kind are
3599         *      compatible with the prototype and protokind.
3600         *  (4) if symbol is an instance field of a raw type,
3601         *      which is being assigned to, issue an unchecked warning if its
3602         *      type changes under erasure.
3603         *  (5) if symbol is an instance method of a raw type, issue an
3604         *      unchecked warning if its argument types change under erasure.
3605         *  If checks succeed:
3606         *    If symbol is a constant, return its constant type
3607         *    else if symbol is a method, return its result type
3608         *    otherwise return its type.
3609         *  Otherwise return errType.
3610         *
3611         *  @param tree       The syntax tree representing the identifier
3612         *  @param site       If this is a select, the type of the selected
3613         *                    expression, otherwise the type of the current class.
3614         *  @param sym        The symbol representing the identifier.
3615         *  @param env        The current environment.
3616         *  @param resultInfo    The expected result
3617         */
3618        Type checkId(JCTree tree,
3619                     Type site,
3620                     Symbol sym,
3621                     Env<AttrContext> env,
3622                     ResultInfo resultInfo) {
3623            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3624                    checkMethodId(tree, site, sym, env, resultInfo) :
3625                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3626        }
3627
3628        Type checkMethodId(JCTree tree,
3629                     Type site,
3630                     Symbol sym,
3631                     Env<AttrContext> env,
3632                     ResultInfo resultInfo) {
3633            boolean isPolymorhicSignature =
3634                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3635            return isPolymorhicSignature ?
3636                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3637                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3638        }
3639
3640        Type checkSigPolyMethodId(JCTree tree,
3641                     Type site,
3642                     Symbol sym,
3643                     Env<AttrContext> env,
3644                     ResultInfo resultInfo) {
3645            //recover original symbol for signature polymorphic methods
3646            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3647            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3648            return sym.type;
3649        }
3650
3651        Type checkMethodIdInternal(JCTree tree,
3652                     Type site,
3653                     Symbol sym,
3654                     Env<AttrContext> env,
3655                     ResultInfo resultInfo) {
3656            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3657                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3658                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3659                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3660                return owntype;
3661            } else {
3662                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3663            }
3664        }
3665
3666        Type checkIdInternal(JCTree tree,
3667                     Type site,
3668                     Symbol sym,
3669                     Type pt,
3670                     Env<AttrContext> env,
3671                     ResultInfo resultInfo) {
3672            if (pt.isErroneous()) {
3673                return types.createErrorType(site);
3674            }
3675            Type owntype; // The computed type of this identifier occurrence.
3676            switch (sym.kind) {
3677            case TYP:
3678                // For types, the computed type equals the symbol's type,
3679                // except for two situations:
3680                owntype = sym.type;
3681                if (owntype.hasTag(CLASS)) {
3682                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3683                    Type ownOuter = owntype.getEnclosingType();
3684
3685                    // (a) If the symbol's type is parameterized, erase it
3686                    // because no type parameters were given.
3687                    // We recover generic outer type later in visitTypeApply.
3688                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3689                        owntype = types.erasure(owntype);
3690                    }
3691
3692                    // (b) If the symbol's type is an inner class, then
3693                    // we have to interpret its outer type as a superclass
3694                    // of the site type. Example:
3695                    //
3696                    // class Tree<A> { class Visitor { ... } }
3697                    // class PointTree extends Tree<Point> { ... }
3698                    // ...PointTree.Visitor...
3699                    //
3700                    // Then the type of the last expression above is
3701                    // Tree<Point>.Visitor.
3702                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3703                        Type normOuter = site;
3704                        if (normOuter.hasTag(CLASS)) {
3705                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3706                        }
3707                        if (normOuter == null) // perhaps from an import
3708                            normOuter = types.erasure(ownOuter);
3709                        if (normOuter != ownOuter)
3710                            owntype = new ClassType(
3711                                normOuter, List.<Type>nil(), owntype.tsym,
3712                                owntype.getMetadata());
3713                    }
3714                }
3715                break;
3716            case VAR:
3717                VarSymbol v = (VarSymbol)sym;
3718                // Test (4): if symbol is an instance field of a raw type,
3719                // which is being assigned to, issue an unchecked warning if
3720                // its type changes under erasure.
3721                if (KindSelector.ASG.subset(pkind()) &&
3722                    v.owner.kind == TYP &&
3723                    (v.flags() & STATIC) == 0 &&
3724                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3725                    Type s = types.asOuterSuper(site, v.owner);
3726                    if (s != null &&
3727                        s.isRaw() &&
3728                        !types.isSameType(v.type, v.erasure(types))) {
3729                        chk.warnUnchecked(tree.pos(),
3730                                          "unchecked.assign.to.var",
3731                                          v, s);
3732                    }
3733                }
3734                // The computed type of a variable is the type of the
3735                // variable symbol, taken as a member of the site type.
3736                owntype = (sym.owner.kind == TYP &&
3737                           sym.name != names._this && sym.name != names._super)
3738                    ? types.memberType(site, sym)
3739                    : sym.type;
3740
3741                // If the variable is a constant, record constant value in
3742                // computed type.
3743                if (v.getConstValue() != null && isStaticReference(tree))
3744                    owntype = owntype.constType(v.getConstValue());
3745
3746                if (resultInfo.pkind == KindSelector.VAL) {
3747                    owntype = capture(owntype); // capture "names as expressions"
3748                }
3749                break;
3750            case MTH: {
3751                owntype = checkMethod(site, sym,
3752                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3753                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3754                        resultInfo.pt.getTypeArguments());
3755                break;
3756            }
3757            case PCK: case ERR:
3758                owntype = sym.type;
3759                break;
3760            default:
3761                throw new AssertionError("unexpected kind: " + sym.kind +
3762                                         " in tree " + tree);
3763            }
3764
3765            // Emit a `deprecation' warning if symbol is deprecated.
3766            // (for constructors (but not for constructor references), the error
3767            // was given when the constructor was resolved)
3768
3769            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3770                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3771                chk.checkSunAPI(tree.pos(), sym);
3772                chk.checkProfile(tree.pos(), sym);
3773            }
3774
3775            // If symbol is a variable, check that its type and
3776            // kind are compatible with the prototype and protokind.
3777            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3778        }
3779
3780        /** Check that variable is initialized and evaluate the variable's
3781         *  initializer, if not yet done. Also check that variable is not
3782         *  referenced before it is defined.
3783         *  @param tree    The tree making up the variable reference.
3784         *  @param env     The current environment.
3785         *  @param v       The variable's symbol.
3786         */
3787        private void checkInit(JCTree tree,
3788                               Env<AttrContext> env,
3789                               VarSymbol v,
3790                               boolean onlyWarning) {
3791            // A forward reference is diagnosed if the declaration position
3792            // of the variable is greater than the current tree position
3793            // and the tree and variable definition occur in the same class
3794            // definition.  Note that writes don't count as references.
3795            // This check applies only to class and instance
3796            // variables.  Local variables follow different scope rules,
3797            // and are subject to definite assignment checking.
3798            Env<AttrContext> initEnv = enclosingInitEnv(env);
3799            if (initEnv != null &&
3800                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3801                v.owner.kind == TYP &&
3802                v.owner == env.info.scope.owner.enclClass() &&
3803                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3804                (!env.tree.hasTag(ASSIGN) ||
3805                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3806                String suffix = (initEnv.info.enclVar == v) ?
3807                                "self.ref" : "forward.ref";
3808                if (!onlyWarning || isStaticEnumField(v)) {
3809                    log.error(tree.pos(), "illegal." + suffix);
3810                } else if (useBeforeDeclarationWarning) {
3811                    log.warning(tree.pos(), suffix, v);
3812                }
3813            }
3814
3815            v.getConstValue(); // ensure initializer is evaluated
3816
3817            checkEnumInitializer(tree, env, v);
3818        }
3819
3820        /**
3821         * Returns the enclosing init environment associated with this env (if any). An init env
3822         * can be either a field declaration env or a static/instance initializer env.
3823         */
3824        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3825            while (true) {
3826                switch (env.tree.getTag()) {
3827                    case VARDEF:
3828                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3829                        if (vdecl.sym.owner.kind == TYP) {
3830                            //field
3831                            return env;
3832                        }
3833                        break;
3834                    case BLOCK:
3835                        if (env.next.tree.hasTag(CLASSDEF)) {
3836                            //instance/static initializer
3837                            return env;
3838                        }
3839                        break;
3840                    case METHODDEF:
3841                    case CLASSDEF:
3842                    case TOPLEVEL:
3843                        return null;
3844                }
3845                Assert.checkNonNull(env.next);
3846                env = env.next;
3847            }
3848        }
3849
3850        /**
3851         * Check for illegal references to static members of enum.  In
3852         * an enum type, constructors and initializers may not
3853         * reference its static members unless they are constant.
3854         *
3855         * @param tree    The tree making up the variable reference.
3856         * @param env     The current environment.
3857         * @param v       The variable's symbol.
3858         * @jls  section 8.9 Enums
3859         */
3860        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3861            // JLS:
3862            //
3863            // "It is a compile-time error to reference a static field
3864            // of an enum type that is not a compile-time constant
3865            // (15.28) from constructors, instance initializer blocks,
3866            // or instance variable initializer expressions of that
3867            // type. It is a compile-time error for the constructors,
3868            // instance initializer blocks, or instance variable
3869            // initializer expressions of an enum constant e to refer
3870            // to itself or to an enum constant of the same type that
3871            // is declared to the right of e."
3872            if (isStaticEnumField(v)) {
3873                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3874
3875                if (enclClass == null || enclClass.owner == null)
3876                    return;
3877
3878                // See if the enclosing class is the enum (or a
3879                // subclass thereof) declaring v.  If not, this
3880                // reference is OK.
3881                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3882                    return;
3883
3884                // If the reference isn't from an initializer, then
3885                // the reference is OK.
3886                if (!Resolve.isInitializer(env))
3887                    return;
3888
3889                log.error(tree.pos(), "illegal.enum.static.ref");
3890            }
3891        }
3892
3893        /** Is the given symbol a static, non-constant field of an Enum?
3894         *  Note: enum literals should not be regarded as such
3895         */
3896        private boolean isStaticEnumField(VarSymbol v) {
3897            return Flags.isEnum(v.owner) &&
3898                   Flags.isStatic(v) &&
3899                   !Flags.isConstant(v) &&
3900                   v.name != names._class;
3901        }
3902
3903    /**
3904     * Check that method arguments conform to its instantiation.
3905     **/
3906    public Type checkMethod(Type site,
3907                            final Symbol sym,
3908                            ResultInfo resultInfo,
3909                            Env<AttrContext> env,
3910                            final List<JCExpression> argtrees,
3911                            List<Type> argtypes,
3912                            List<Type> typeargtypes) {
3913        // Test (5): if symbol is an instance method of a raw type, issue
3914        // an unchecked warning if its argument types change under erasure.
3915        if ((sym.flags() & STATIC) == 0 &&
3916            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3917            Type s = types.asOuterSuper(site, sym.owner);
3918            if (s != null && s.isRaw() &&
3919                !types.isSameTypes(sym.type.getParameterTypes(),
3920                                   sym.erasure(types).getParameterTypes())) {
3921                chk.warnUnchecked(env.tree.pos(),
3922                                  "unchecked.call.mbr.of.raw.type",
3923                                  sym, s);
3924            }
3925        }
3926
3927        if (env.info.defaultSuperCallSite != null) {
3928            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3929                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3930                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3931                List<MethodSymbol> icand_sup =
3932                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3933                if (icand_sup.nonEmpty() &&
3934                        icand_sup.head != sym &&
3935                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3936                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3937                        diags.fragment("overridden.default", sym, sup));
3938                    break;
3939                }
3940            }
3941            env.info.defaultSuperCallSite = null;
3942        }
3943
3944        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3945            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3946            if (app.meth.hasTag(SELECT) &&
3947                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3948                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3949            }
3950        }
3951
3952        // Compute the identifier's instantiated type.
3953        // For methods, we need to compute the instance type by
3954        // Resolve.instantiate from the symbol's type as well as
3955        // any type arguments and value arguments.
3956        Warner noteWarner = new Warner();
3957        try {
3958            Type owntype = rs.checkMethod(
3959                    env,
3960                    site,
3961                    sym,
3962                    resultInfo,
3963                    argtypes,
3964                    typeargtypes,
3965                    noteWarner);
3966
3967            DeferredAttr.DeferredTypeMap checkDeferredMap =
3968                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3969
3970            argtypes = argtypes.map(checkDeferredMap);
3971
3972            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3973                chk.warnUnchecked(env.tree.pos(),
3974                        "unchecked.meth.invocation.applied",
3975                        kindName(sym),
3976                        sym.name,
3977                        rs.methodArguments(sym.type.getParameterTypes()),
3978                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3979                        kindName(sym.location()),
3980                        sym.location());
3981               owntype = new MethodType(owntype.getParameterTypes(),
3982                       types.erasure(owntype.getReturnType()),
3983                       types.erasure(owntype.getThrownTypes()),
3984                       syms.methodClass);
3985            }
3986
3987            PolyKind pkind = (sym.type.hasTag(FORALL) &&
3988                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
3989                 PolyKind.POLY : PolyKind.STANDALONE;
3990            TreeInfo.setPolyKind(env.tree, pkind);
3991
3992            return (resultInfo.pt == Infer.anyPoly) ?
3993                    owntype :
3994                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3995                            resultInfo.checkContext.inferenceContext());
3996        } catch (Infer.InferenceException ex) {
3997            //invalid target type - propagate exception outwards or report error
3998            //depending on the current check context
3999            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4000            return types.createErrorType(site);
4001        } catch (Resolve.InapplicableMethodException ex) {
4002            final JCDiagnostic diag = ex.getDiagnostic();
4003            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4004                @Override
4005                protected Pair<Symbol, JCDiagnostic> errCandidate() {
4006                    return new Pair<>(sym, diag);
4007                }
4008            };
4009            List<Type> argtypes2 = argtypes.map(
4010                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4011            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4012                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4013            log.report(errDiag);
4014            return types.createErrorType(site);
4015        }
4016    }
4017
4018    public void visitLiteral(JCLiteral tree) {
4019        result = check(tree, litType(tree.typetag).constType(tree.value),
4020                KindSelector.VAL, resultInfo);
4021    }
4022    //where
4023    /** Return the type of a literal with given type tag.
4024     */
4025    Type litType(TypeTag tag) {
4026        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4027    }
4028
4029    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4030        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4031    }
4032
4033    public void visitTypeArray(JCArrayTypeTree tree) {
4034        Type etype = attribType(tree.elemtype, env);
4035        Type type = new ArrayType(etype, syms.arrayClass);
4036        result = check(tree, type, KindSelector.TYP, resultInfo);
4037    }
4038
4039    /** Visitor method for parameterized types.
4040     *  Bound checking is left until later, since types are attributed
4041     *  before supertype structure is completely known
4042     */
4043    public void visitTypeApply(JCTypeApply tree) {
4044        Type owntype = types.createErrorType(tree.type);
4045
4046        // Attribute functor part of application and make sure it's a class.
4047        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4048
4049        // Attribute type parameters
4050        List<Type> actuals = attribTypes(tree.arguments, env);
4051
4052        if (clazztype.hasTag(CLASS)) {
4053            List<Type> formals = clazztype.tsym.type.getTypeArguments();
4054            if (actuals.isEmpty()) //diamond
4055                actuals = formals;
4056
4057            if (actuals.length() == formals.length()) {
4058                List<Type> a = actuals;
4059                List<Type> f = formals;
4060                while (a.nonEmpty()) {
4061                    a.head = a.head.withTypeVar(f.head);
4062                    a = a.tail;
4063                    f = f.tail;
4064                }
4065                // Compute the proper generic outer
4066                Type clazzOuter = clazztype.getEnclosingType();
4067                if (clazzOuter.hasTag(CLASS)) {
4068                    Type site;
4069                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4070                    if (clazz.hasTag(IDENT)) {
4071                        site = env.enclClass.sym.type;
4072                    } else if (clazz.hasTag(SELECT)) {
4073                        site = ((JCFieldAccess) clazz).selected.type;
4074                    } else throw new AssertionError(""+tree);
4075                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4076                        if (site.hasTag(CLASS))
4077                            site = types.asOuterSuper(site, clazzOuter.tsym);
4078                        if (site == null)
4079                            site = types.erasure(clazzOuter);
4080                        clazzOuter = site;
4081                    }
4082                }
4083                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4084                                        clazztype.getMetadata());
4085            } else {
4086                if (formals.length() != 0) {
4087                    log.error(tree.pos(), "wrong.number.type.args",
4088                              Integer.toString(formals.length()));
4089                } else {
4090                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
4091                }
4092                owntype = types.createErrorType(tree.type);
4093            }
4094        }
4095        result = check(tree, owntype, KindSelector.TYP, resultInfo);
4096    }
4097
4098    public void visitTypeUnion(JCTypeUnion tree) {
4099        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4100        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4101        for (JCExpression typeTree : tree.alternatives) {
4102            Type ctype = attribType(typeTree, env);
4103            ctype = chk.checkType(typeTree.pos(),
4104                          chk.checkClassType(typeTree.pos(), ctype),
4105                          syms.throwableType);
4106            if (!ctype.isErroneous()) {
4107                //check that alternatives of a union type are pairwise
4108                //unrelated w.r.t. subtyping
4109                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4110                    for (Type t : multicatchTypes) {
4111                        boolean sub = types.isSubtype(ctype, t);
4112                        boolean sup = types.isSubtype(t, ctype);
4113                        if (sub || sup) {
4114                            //assume 'a' <: 'b'
4115                            Type a = sub ? ctype : t;
4116                            Type b = sub ? t : ctype;
4117                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4118                        }
4119                    }
4120                }
4121                multicatchTypes.append(ctype);
4122                if (all_multicatchTypes != null)
4123                    all_multicatchTypes.append(ctype);
4124            } else {
4125                if (all_multicatchTypes == null) {
4126                    all_multicatchTypes = new ListBuffer<>();
4127                    all_multicatchTypes.appendList(multicatchTypes);
4128                }
4129                all_multicatchTypes.append(ctype);
4130            }
4131        }
4132        Type t = check(tree, types.lub(multicatchTypes.toList()),
4133                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4134        if (t.hasTag(CLASS)) {
4135            List<Type> alternatives =
4136                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4137            t = new UnionClassType((ClassType) t, alternatives);
4138        }
4139        tree.type = result = t;
4140    }
4141
4142    public void visitTypeIntersection(JCTypeIntersection tree) {
4143        attribTypes(tree.bounds, env);
4144        tree.type = result = checkIntersection(tree, tree.bounds);
4145    }
4146
4147    public void visitTypeParameter(JCTypeParameter tree) {
4148        TypeVar typeVar = (TypeVar) tree.type;
4149
4150        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4151            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4152        }
4153
4154        if (!typeVar.bound.isErroneous()) {
4155            //fixup type-parameter bound computed in 'attribTypeVariables'
4156            typeVar.bound = checkIntersection(tree, tree.bounds);
4157        }
4158    }
4159
4160    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4161        Set<Type> boundSet = new HashSet<>();
4162        if (bounds.nonEmpty()) {
4163            // accept class or interface or typevar as first bound.
4164            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4165            boundSet.add(types.erasure(bounds.head.type));
4166            if (bounds.head.type.isErroneous()) {
4167                return bounds.head.type;
4168            }
4169            else if (bounds.head.type.hasTag(TYPEVAR)) {
4170                // if first bound was a typevar, do not accept further bounds.
4171                if (bounds.tail.nonEmpty()) {
4172                    log.error(bounds.tail.head.pos(),
4173                              "type.var.may.not.be.followed.by.other.bounds");
4174                    return bounds.head.type;
4175                }
4176            } else {
4177                // if first bound was a class or interface, accept only interfaces
4178                // as further bounds.
4179                for (JCExpression bound : bounds.tail) {
4180                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4181                    if (bound.type.isErroneous()) {
4182                        bounds = List.of(bound);
4183                    }
4184                    else if (bound.type.hasTag(CLASS)) {
4185                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4186                    }
4187                }
4188            }
4189        }
4190
4191        if (bounds.length() == 0) {
4192            return syms.objectType;
4193        } else if (bounds.length() == 1) {
4194            return bounds.head.type;
4195        } else {
4196            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4197            // ... the variable's bound is a class type flagged COMPOUND
4198            // (see comment for TypeVar.bound).
4199            // In this case, generate a class tree that represents the
4200            // bound class, ...
4201            JCExpression extending;
4202            List<JCExpression> implementing;
4203            if (!bounds.head.type.isInterface()) {
4204                extending = bounds.head;
4205                implementing = bounds.tail;
4206            } else {
4207                extending = null;
4208                implementing = bounds;
4209            }
4210            JCClassDecl cd = make.at(tree).ClassDef(
4211                make.Modifiers(PUBLIC | ABSTRACT),
4212                names.empty, List.<JCTypeParameter>nil(),
4213                extending, implementing, List.<JCTree>nil());
4214
4215            ClassSymbol c = (ClassSymbol)owntype.tsym;
4216            Assert.check((c.flags() & COMPOUND) != 0);
4217            cd.sym = c;
4218            c.sourcefile = env.toplevel.sourcefile;
4219
4220            // ... and attribute the bound class
4221            c.flags_field |= UNATTRIBUTED;
4222            Env<AttrContext> cenv = enter.classEnv(cd, env);
4223            typeEnvs.put(c, cenv);
4224            attribClass(c);
4225            return owntype;
4226        }
4227    }
4228
4229    public void visitWildcard(JCWildcard tree) {
4230        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4231        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4232            ? syms.objectType
4233            : attribType(tree.inner, env);
4234        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4235                                              tree.kind.kind,
4236                                              syms.boundClass),
4237                KindSelector.TYP, resultInfo);
4238    }
4239
4240    public void visitAnnotation(JCAnnotation tree) {
4241        Assert.error("should be handled in annotate");
4242    }
4243
4244    public void visitAnnotatedType(JCAnnotatedType tree) {
4245        attribAnnotationTypes(tree.annotations, env);
4246        Type underlyingType = attribType(tree.underlyingType, env);
4247        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4248
4249        if (!env.info.isNewClass)
4250            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4251        result = tree.type = annotatedType;
4252    }
4253
4254    public void visitErroneous(JCErroneous tree) {
4255        if (tree.errs != null)
4256            for (JCTree err : tree.errs)
4257                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4258        result = tree.type = syms.errType;
4259    }
4260
4261    /** Default visitor method for all other trees.
4262     */
4263    public void visitTree(JCTree tree) {
4264        throw new AssertionError();
4265    }
4266
4267    /**
4268     * Attribute an env for either a top level tree or class or module declaration.
4269     */
4270    public void attrib(Env<AttrContext> env) {
4271        switch (env.tree.getTag()) {
4272            case MODULEDEF:
4273                attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4274                break;
4275            case TOPLEVEL:
4276                attribTopLevel(env);
4277                break;
4278            default:
4279                attribClass(env.tree.pos(), env.enclClass.sym);
4280        }
4281    }
4282
4283    /**
4284     * Attribute a top level tree. These trees are encountered when the
4285     * package declaration has annotations.
4286     */
4287    public void attribTopLevel(Env<AttrContext> env) {
4288        JCCompilationUnit toplevel = env.toplevel;
4289        try {
4290            annotate.flush();
4291        } catch (CompletionFailure ex) {
4292            chk.completionError(toplevel.pos(), ex);
4293        }
4294    }
4295
4296    public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4297        try {
4298            annotate.flush();
4299            attribModule(m);
4300        } catch (CompletionFailure ex) {
4301            chk.completionError(pos, ex);
4302        }
4303    }
4304
4305    void attribModule(ModuleSymbol m) {
4306        // Get environment current at the point of module definition.
4307        Env<AttrContext> env = enter.typeEnvs.get(m);
4308        attribStat(env.tree, env);
4309    }
4310
4311    /** Main method: attribute class definition associated with given class symbol.
4312     *  reporting completion failures at the given position.
4313     *  @param pos The source position at which completion errors are to be
4314     *             reported.
4315     *  @param c   The class symbol whose definition will be attributed.
4316     */
4317    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4318        try {
4319            annotate.flush();
4320            attribClass(c);
4321        } catch (CompletionFailure ex) {
4322            chk.completionError(pos, ex);
4323        }
4324    }
4325
4326    /** Attribute class definition associated with given class symbol.
4327     *  @param c   The class symbol whose definition will be attributed.
4328     */
4329    void attribClass(ClassSymbol c) throws CompletionFailure {
4330        if (c.type.hasTag(ERROR)) return;
4331
4332        // Check for cycles in the inheritance graph, which can arise from
4333        // ill-formed class files.
4334        chk.checkNonCyclic(null, c.type);
4335
4336        Type st = types.supertype(c.type);
4337        if ((c.flags_field & Flags.COMPOUND) == 0) {
4338            // First, attribute superclass.
4339            if (st.hasTag(CLASS))
4340                attribClass((ClassSymbol)st.tsym);
4341
4342            // Next attribute owner, if it is a class.
4343            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4344                attribClass((ClassSymbol)c.owner);
4345        }
4346
4347        // The previous operations might have attributed the current class
4348        // if there was a cycle. So we test first whether the class is still
4349        // UNATTRIBUTED.
4350        if ((c.flags_field & UNATTRIBUTED) != 0) {
4351            c.flags_field &= ~UNATTRIBUTED;
4352
4353            // Get environment current at the point of class definition.
4354            Env<AttrContext> env = typeEnvs.get(c);
4355
4356            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4357            // because the annotations were not available at the time the env was created. Therefore,
4358            // we look up the environment chain for the first enclosing environment for which the
4359            // lint value is set. Typically, this is the parent env, but might be further if there
4360            // are any envs created as a result of TypeParameter nodes.
4361            Env<AttrContext> lintEnv = env;
4362            while (lintEnv.info.lint == null)
4363                lintEnv = lintEnv.next;
4364
4365            // Having found the enclosing lint value, we can initialize the lint value for this class
4366            env.info.lint = lintEnv.info.lint.augment(c);
4367
4368            Lint prevLint = chk.setLint(env.info.lint);
4369            JavaFileObject prev = log.useSource(c.sourcefile);
4370            ResultInfo prevReturnRes = env.info.returnResult;
4371
4372            try {
4373                deferredLintHandler.flush(env.tree);
4374                env.info.returnResult = null;
4375                // java.lang.Enum may not be subclassed by a non-enum
4376                if (st.tsym == syms.enumSym &&
4377                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4378                    log.error(env.tree.pos(), "enum.no.subclassing");
4379
4380                // Enums may not be extended by source-level classes
4381                if (st.tsym != null &&
4382                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4383                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4384                    log.error(env.tree.pos(), "enum.types.not.extensible");
4385                }
4386
4387                if (isSerializable(c.type)) {
4388                    env.info.isSerializable = true;
4389                }
4390
4391                attribClassBody(env, c);
4392
4393                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4394                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4395                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4396            } finally {
4397                env.info.returnResult = prevReturnRes;
4398                log.useSource(prev);
4399                chk.setLint(prevLint);
4400            }
4401
4402        }
4403    }
4404
4405    public void visitImport(JCImport tree) {
4406        // nothing to do
4407    }
4408
4409    public void visitModuleDef(JCModuleDecl tree) {
4410        tree.sym.completeUsesProvides();
4411    }
4412
4413    /** Finish the attribution of a class. */
4414    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4415        JCClassDecl tree = (JCClassDecl)env.tree;
4416        Assert.check(c == tree.sym);
4417
4418        // Validate type parameters, supertype and interfaces.
4419        attribStats(tree.typarams, env);
4420        if (!c.isAnonymous()) {
4421            //already checked if anonymous
4422            chk.validate(tree.typarams, env);
4423            chk.validate(tree.extending, env);
4424            chk.validate(tree.implementing, env);
4425        }
4426
4427        c.markAbstractIfNeeded(types);
4428
4429        // If this is a non-abstract class, check that it has no abstract
4430        // methods or unimplemented methods of an implemented interface.
4431        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4432            chk.checkAllDefined(tree.pos(), c);
4433        }
4434
4435        if ((c.flags() & ANNOTATION) != 0) {
4436            if (tree.implementing.nonEmpty())
4437                log.error(tree.implementing.head.pos(),
4438                          "cant.extend.intf.annotation");
4439            if (tree.typarams.nonEmpty())
4440                log.error(tree.typarams.head.pos(),
4441                          "intf.annotation.cant.have.type.params");
4442
4443            // If this annotation type has a @Repeatable, validate
4444            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4445            // If this annotation type has a @Repeatable, validate
4446            if (repeatable != null) {
4447                // get diagnostic position for error reporting
4448                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4449                Assert.checkNonNull(cbPos);
4450
4451                chk.validateRepeatable(c, repeatable, cbPos);
4452            }
4453        } else {
4454            // Check that all extended classes and interfaces
4455            // are compatible (i.e. no two define methods with same arguments
4456            // yet different return types).  (JLS 8.4.6.3)
4457            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4458            if (allowDefaultMethods) {
4459                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4460            }
4461        }
4462
4463        // Check that class does not import the same parameterized interface
4464        // with two different argument lists.
4465        chk.checkClassBounds(tree.pos(), c.type);
4466
4467        tree.type = c.type;
4468
4469        for (List<JCTypeParameter> l = tree.typarams;
4470             l.nonEmpty(); l = l.tail) {
4471             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4472        }
4473
4474        // Check that a generic class doesn't extend Throwable
4475        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4476            log.error(tree.extending.pos(), "generic.throwable");
4477
4478        // Check that all methods which implement some
4479        // method conform to the method they implement.
4480        chk.checkImplementations(tree);
4481
4482        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4483        checkAutoCloseable(tree.pos(), env, c.type);
4484
4485        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4486            // Attribute declaration
4487            attribStat(l.head, env);
4488            // Check that declarations in inner classes are not static (JLS 8.1.2)
4489            // Make an exception for static constants.
4490            if (c.owner.kind != PCK &&
4491                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4492                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4493                Symbol sym = null;
4494                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4495                if (sym == null ||
4496                    sym.kind != VAR ||
4497                    ((VarSymbol) sym).getConstValue() == null)
4498                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4499            }
4500        }
4501
4502        // Check for cycles among non-initial constructors.
4503        chk.checkCyclicConstructors(tree);
4504
4505        // Check for cycles among annotation elements.
4506        chk.checkNonCyclicElements(tree);
4507
4508        // Check for proper use of serialVersionUID
4509        if (env.info.lint.isEnabled(LintCategory.SERIAL)
4510                && isSerializable(c.type)
4511                && (c.flags() & Flags.ENUM) == 0
4512                && !c.isAnonymous()
4513                && checkForSerial(c)) {
4514            checkSerialVersionUID(tree, c);
4515        }
4516        if (allowTypeAnnos) {
4517            // Correctly organize the postions of the type annotations
4518            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4519
4520            // Check type annotations applicability rules
4521            validateTypeAnnotations(tree, false);
4522        }
4523    }
4524        // where
4525        boolean checkForSerial(ClassSymbol c) {
4526            if ((c.flags() & ABSTRACT) == 0) {
4527                return true;
4528            } else {
4529                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4530            }
4531        }
4532
4533        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4534            @Override
4535            public boolean accepts(Symbol s) {
4536                return s.kind == MTH &&
4537                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4538            }
4539        };
4540
4541        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4542        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4543            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4544                if (types.isSameType(al.head.annotationType.type, t))
4545                    return al.head.pos();
4546            }
4547
4548            return null;
4549        }
4550
4551        /** check if a type is a subtype of Serializable, if that is available. */
4552        boolean isSerializable(Type t) {
4553            try {
4554                syms.serializableType.complete();
4555            }
4556            catch (CompletionFailure e) {
4557                return false;
4558            }
4559            return types.isSubtype(t, syms.serializableType);
4560        }
4561
4562        /** Check that an appropriate serialVersionUID member is defined. */
4563        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4564
4565            // check for presence of serialVersionUID
4566            VarSymbol svuid = null;
4567            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4568                if (sym.kind == VAR) {
4569                    svuid = (VarSymbol)sym;
4570                    break;
4571                }
4572            }
4573
4574            if (svuid == null) {
4575                log.warning(LintCategory.SERIAL,
4576                        tree.pos(), "missing.SVUID", c);
4577                return;
4578            }
4579
4580            // check that it is static final
4581            if ((svuid.flags() & (STATIC | FINAL)) !=
4582                (STATIC | FINAL))
4583                log.warning(LintCategory.SERIAL,
4584                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4585
4586            // check that it is long
4587            else if (!svuid.type.hasTag(LONG))
4588                log.warning(LintCategory.SERIAL,
4589                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4590
4591            // check constant
4592            else if (svuid.getConstValue() == null)
4593                log.warning(LintCategory.SERIAL,
4594                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4595        }
4596
4597    private Type capture(Type type) {
4598        return types.capture(type);
4599    }
4600
4601    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4602        tree.accept(new TypeAnnotationsValidator(sigOnly));
4603    }
4604    //where
4605    private final class TypeAnnotationsValidator extends TreeScanner {
4606
4607        private final boolean sigOnly;
4608        public TypeAnnotationsValidator(boolean sigOnly) {
4609            this.sigOnly = sigOnly;
4610        }
4611
4612        public void visitAnnotation(JCAnnotation tree) {
4613            chk.validateTypeAnnotation(tree, false);
4614            super.visitAnnotation(tree);
4615        }
4616        public void visitAnnotatedType(JCAnnotatedType tree) {
4617            if (!tree.underlyingType.type.isErroneous()) {
4618                super.visitAnnotatedType(tree);
4619            }
4620        }
4621        public void visitTypeParameter(JCTypeParameter tree) {
4622            chk.validateTypeAnnotations(tree.annotations, true);
4623            scan(tree.bounds);
4624            // Don't call super.
4625            // This is needed because above we call validateTypeAnnotation with
4626            // false, which would forbid annotations on type parameters.
4627            // super.visitTypeParameter(tree);
4628        }
4629        public void visitMethodDef(JCMethodDecl tree) {
4630            if (tree.recvparam != null &&
4631                    !tree.recvparam.vartype.type.isErroneous()) {
4632                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4633                        tree.recvparam.vartype.type.tsym);
4634            }
4635            if (tree.restype != null && tree.restype.type != null) {
4636                validateAnnotatedType(tree.restype, tree.restype.type);
4637            }
4638            if (sigOnly) {
4639                scan(tree.mods);
4640                scan(tree.restype);
4641                scan(tree.typarams);
4642                scan(tree.recvparam);
4643                scan(tree.params);
4644                scan(tree.thrown);
4645            } else {
4646                scan(tree.defaultValue);
4647                scan(tree.body);
4648            }
4649        }
4650        public void visitVarDef(final JCVariableDecl tree) {
4651            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4652            if (tree.sym != null && tree.sym.type != null)
4653                validateAnnotatedType(tree.vartype, tree.sym.type);
4654            scan(tree.mods);
4655            scan(tree.vartype);
4656            if (!sigOnly) {
4657                scan(tree.init);
4658            }
4659        }
4660        public void visitTypeCast(JCTypeCast tree) {
4661            if (tree.clazz != null && tree.clazz.type != null)
4662                validateAnnotatedType(tree.clazz, tree.clazz.type);
4663            super.visitTypeCast(tree);
4664        }
4665        public void visitTypeTest(JCInstanceOf tree) {
4666            if (tree.clazz != null && tree.clazz.type != null)
4667                validateAnnotatedType(tree.clazz, tree.clazz.type);
4668            super.visitTypeTest(tree);
4669        }
4670        public void visitNewClass(JCNewClass tree) {
4671            if (tree.clazz != null && tree.clazz.type != null) {
4672                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4673                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4674                            tree.clazz.type.tsym);
4675                }
4676                if (tree.def != null) {
4677                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4678                }
4679
4680                validateAnnotatedType(tree.clazz, tree.clazz.type);
4681            }
4682            super.visitNewClass(tree);
4683        }
4684        public void visitNewArray(JCNewArray tree) {
4685            if (tree.elemtype != null && tree.elemtype.type != null) {
4686                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4687                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4688                            tree.elemtype.type.tsym);
4689                }
4690                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4691            }
4692            super.visitNewArray(tree);
4693        }
4694        public void visitClassDef(JCClassDecl tree) {
4695            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4696            if (sigOnly) {
4697                scan(tree.mods);
4698                scan(tree.typarams);
4699                scan(tree.extending);
4700                scan(tree.implementing);
4701            }
4702            for (JCTree member : tree.defs) {
4703                if (member.hasTag(Tag.CLASSDEF)) {
4704                    continue;
4705                }
4706                scan(member);
4707            }
4708        }
4709        public void visitBlock(JCBlock tree) {
4710            if (!sigOnly) {
4711                scan(tree.stats);
4712            }
4713        }
4714
4715        /* I would want to model this after
4716         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4717         * and override visitSelect and visitTypeApply.
4718         * However, we only set the annotated type in the top-level type
4719         * of the symbol.
4720         * Therefore, we need to override each individual location where a type
4721         * can occur.
4722         */
4723        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4724            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4725
4726            if (type.isPrimitiveOrVoid()) {
4727                return;
4728            }
4729
4730            JCTree enclTr = errtree;
4731            Type enclTy = type;
4732
4733            boolean repeat = true;
4734            while (repeat) {
4735                if (enclTr.hasTag(TYPEAPPLY)) {
4736                    List<Type> tyargs = enclTy.getTypeArguments();
4737                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4738                    if (trargs.length() > 0) {
4739                        // Nothing to do for diamonds
4740                        if (tyargs.length() == trargs.length()) {
4741                            for (int i = 0; i < tyargs.length(); ++i) {
4742                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4743                            }
4744                        }
4745                        // If the lengths don't match, it's either a diamond
4746                        // or some nested type that redundantly provides
4747                        // type arguments in the tree.
4748                    }
4749
4750                    // Look at the clazz part of a generic type
4751                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4752                }
4753
4754                if (enclTr.hasTag(SELECT)) {
4755                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4756                    if (enclTy != null &&
4757                            !enclTy.hasTag(NONE)) {
4758                        enclTy = enclTy.getEnclosingType();
4759                    }
4760                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4761                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4762                    if (enclTy == null || enclTy.hasTag(NONE)) {
4763                        if (at.getAnnotations().size() == 1) {
4764                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4765                        } else {
4766                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4767                            for (JCAnnotation an : at.getAnnotations()) {
4768                                comps.add(an.attribute);
4769                            }
4770                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4771                        }
4772                        repeat = false;
4773                    }
4774                    enclTr = at.underlyingType;
4775                    // enclTy doesn't need to be changed
4776                } else if (enclTr.hasTag(IDENT)) {
4777                    repeat = false;
4778                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4779                    JCWildcard wc = (JCWildcard) enclTr;
4780                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4781                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4782                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4783                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4784                    } else {
4785                        // Nothing to do for UNBOUND
4786                    }
4787                    repeat = false;
4788                } else if (enclTr.hasTag(TYPEARRAY)) {
4789                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4790                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4791                    repeat = false;
4792                } else if (enclTr.hasTag(TYPEUNION)) {
4793                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4794                    for (JCTree t : ut.getTypeAlternatives()) {
4795                        validateAnnotatedType(t, t.type);
4796                    }
4797                    repeat = false;
4798                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4799                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4800                    for (JCTree t : it.getBounds()) {
4801                        validateAnnotatedType(t, t.type);
4802                    }
4803                    repeat = false;
4804                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4805                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4806                    repeat = false;
4807                } else {
4808                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4809                            " within: "+ errtree + " with kind: " + errtree.getKind());
4810                }
4811            }
4812        }
4813
4814        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4815                Symbol sym) {
4816            // Ensure that no declaration annotations are present.
4817            // Note that a tree type might be an AnnotatedType with
4818            // empty annotations, if only declaration annotations were given.
4819            // This method will raise an error for such a type.
4820            for (JCAnnotation ai : annotations) {
4821                if (!ai.type.isErroneous() &&
4822                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4823                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4824                }
4825            }
4826        }
4827    }
4828
4829    // <editor-fold desc="post-attribution visitor">
4830
4831    /**
4832     * Handle missing types/symbols in an AST. This routine is useful when
4833     * the compiler has encountered some errors (which might have ended up
4834     * terminating attribution abruptly); if the compiler is used in fail-over
4835     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4836     * prevents NPE to be progagated during subsequent compilation steps.
4837     */
4838    public void postAttr(JCTree tree) {
4839        new PostAttrAnalyzer().scan(tree);
4840    }
4841
4842    class PostAttrAnalyzer extends TreeScanner {
4843
4844        private void initTypeIfNeeded(JCTree that) {
4845            if (that.type == null) {
4846                if (that.hasTag(METHODDEF)) {
4847                    that.type = dummyMethodType((JCMethodDecl)that);
4848                } else {
4849                    that.type = syms.unknownType;
4850                }
4851            }
4852        }
4853
4854        /* Construct a dummy method type. If we have a method declaration,
4855         * and the declared return type is void, then use that return type
4856         * instead of UNKNOWN to avoid spurious error messages in lambda
4857         * bodies (see:JDK-8041704).
4858         */
4859        private Type dummyMethodType(JCMethodDecl md) {
4860            Type restype = syms.unknownType;
4861            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4862                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4863                if (prim.typetag == VOID)
4864                    restype = syms.voidType;
4865            }
4866            return new MethodType(List.<Type>nil(), restype,
4867                                  List.<Type>nil(), syms.methodClass);
4868        }
4869        private Type dummyMethodType() {
4870            return dummyMethodType(null);
4871        }
4872
4873        @Override
4874        public void scan(JCTree tree) {
4875            if (tree == null) return;
4876            if (tree instanceof JCExpression) {
4877                initTypeIfNeeded(tree);
4878            }
4879            super.scan(tree);
4880        }
4881
4882        @Override
4883        public void visitIdent(JCIdent that) {
4884            if (that.sym == null) {
4885                that.sym = syms.unknownSymbol;
4886            }
4887        }
4888
4889        @Override
4890        public void visitSelect(JCFieldAccess that) {
4891            if (that.sym == null) {
4892                that.sym = syms.unknownSymbol;
4893            }
4894            super.visitSelect(that);
4895        }
4896
4897        @Override
4898        public void visitClassDef(JCClassDecl that) {
4899            initTypeIfNeeded(that);
4900            if (that.sym == null) {
4901                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4902            }
4903            super.visitClassDef(that);
4904        }
4905
4906        @Override
4907        public void visitMethodDef(JCMethodDecl that) {
4908            initTypeIfNeeded(that);
4909            if (that.sym == null) {
4910                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4911            }
4912            super.visitMethodDef(that);
4913        }
4914
4915        @Override
4916        public void visitVarDef(JCVariableDecl that) {
4917            initTypeIfNeeded(that);
4918            if (that.sym == null) {
4919                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4920                that.sym.adr = 0;
4921            }
4922            super.visitVarDef(that);
4923        }
4924
4925        @Override
4926        public void visitNewClass(JCNewClass that) {
4927            if (that.constructor == null) {
4928                that.constructor = new MethodSymbol(0, names.init,
4929                        dummyMethodType(), syms.noSymbol);
4930            }
4931            if (that.constructorType == null) {
4932                that.constructorType = syms.unknownType;
4933            }
4934            super.visitNewClass(that);
4935        }
4936
4937        @Override
4938        public void visitAssignop(JCAssignOp that) {
4939            if (that.operator == null) {
4940                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4941                        -1, syms.noSymbol);
4942            }
4943            super.visitAssignop(that);
4944        }
4945
4946        @Override
4947        public void visitBinary(JCBinary that) {
4948            if (that.operator == null) {
4949                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4950                        -1, syms.noSymbol);
4951            }
4952            super.visitBinary(that);
4953        }
4954
4955        @Override
4956        public void visitUnary(JCUnary that) {
4957            if (that.operator == null) {
4958                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4959                        -1, syms.noSymbol);
4960            }
4961            super.visitUnary(that);
4962        }
4963
4964        @Override
4965        public void visitLambda(JCLambda that) {
4966            super.visitLambda(that);
4967            if (that.targets == null) {
4968                that.targets = List.nil();
4969            }
4970        }
4971
4972        @Override
4973        public void visitReference(JCMemberReference that) {
4974            super.visitReference(that);
4975            if (that.sym == null) {
4976                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4977                        syms.noSymbol);
4978            }
4979            if (that.targets == null) {
4980                that.targets = List.nil();
4981            }
4982        }
4983    }
4984    // </editor-fold>
4985
4986    public void setPackageSymbols(JCExpression pid, Symbol pkg) {
4987        new TreeScanner() {
4988            Symbol packge = pkg;
4989            @Override
4990            public void visitIdent(JCIdent that) {
4991                that.sym = packge;
4992            }
4993
4994            @Override
4995            public void visitSelect(JCFieldAccess that) {
4996                that.sym = packge;
4997                packge = packge.owner;
4998                super.visitSelect(that);
4999            }
5000        }.scan(pid);
5001    }
5002
5003}
5004