Attr.java revision 3213:b0b517a7a9ee
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.code.TypeMetadata.Annotations;
44import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
45import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
46import com.sun.tools.javac.comp.Check.CheckContext;
47import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
48import com.sun.tools.javac.comp.Infer.FreeTypeListener;
49import com.sun.tools.javac.jvm.*;
50import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
53import com.sun.tools.javac.resources.CompilerProperties.Errors;
54import com.sun.tools.javac.resources.CompilerProperties.Fragments;
55import com.sun.tools.javac.tree.*;
56import com.sun.tools.javac.tree.JCTree.*;
57import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
58import com.sun.tools.javac.util.*;
59import com.sun.tools.javac.util.DefinedBy.Api;
60import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
61import com.sun.tools.javac.util.JCDiagnostic.Fragment;
62import com.sun.tools.javac.util.List;
63import static com.sun.tools.javac.code.Flags.*;
64import static com.sun.tools.javac.code.Flags.ANNOTATION;
65import static com.sun.tools.javac.code.Flags.BLOCK;
66import static com.sun.tools.javac.code.Kinds.*;
67import static com.sun.tools.javac.code.Kinds.Kind.*;
68import static com.sun.tools.javac.code.TypeTag.*;
69import static com.sun.tools.javac.code.TypeTag.WILDCARD;
70import static com.sun.tools.javac.tree.JCTree.Tag.*;
71
72/** This is the main context-dependent analysis phase in GJC. It
73 *  encompasses name resolution, type checking and constant folding as
74 *  subtasks. Some subtasks involve auxiliary classes.
75 *  @see Check
76 *  @see Resolve
77 *  @see ConstFold
78 *  @see Infer
79 *
80 *  <p><b>This is NOT part of any supported API.
81 *  If you write code that depends on this, you do so at your own risk.
82 *  This code and its internal interfaces are subject to change or
83 *  deletion without notice.</b>
84 */
85public class Attr extends JCTree.Visitor {
86    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
87
88    final Names names;
89    final Log log;
90    final Symtab syms;
91    final Resolve rs;
92    final Operators operators;
93    final Infer infer;
94    final Analyzer analyzer;
95    final DeferredAttr deferredAttr;
96    final Check chk;
97    final Flow flow;
98    final MemberEnter memberEnter;
99    final TypeEnter typeEnter;
100    final TreeMaker make;
101    final ConstFold cfolder;
102    final Enter enter;
103    final Target target;
104    final Types types;
105    final JCDiagnostic.Factory diags;
106    final TypeAnnotations typeAnnotations;
107    final DeferredLintHandler deferredLintHandler;
108    final TypeEnvs typeEnvs;
109    final Dependencies dependencies;
110    final Annotate annotate;
111    final ArgumentAttr argumentAttr;
112
113    public static Attr instance(Context context) {
114        Attr instance = context.get(attrKey);
115        if (instance == null)
116            instance = new Attr(context);
117        return instance;
118    }
119
120    protected Attr(Context context) {
121        context.put(attrKey, this);
122
123        names = Names.instance(context);
124        log = Log.instance(context);
125        syms = Symtab.instance(context);
126        rs = Resolve.instance(context);
127        operators = Operators.instance(context);
128        chk = Check.instance(context);
129        flow = Flow.instance(context);
130        memberEnter = MemberEnter.instance(context);
131        typeEnter = TypeEnter.instance(context);
132        make = TreeMaker.instance(context);
133        enter = Enter.instance(context);
134        infer = Infer.instance(context);
135        analyzer = Analyzer.instance(context);
136        deferredAttr = DeferredAttr.instance(context);
137        cfolder = ConstFold.instance(context);
138        target = Target.instance(context);
139        types = Types.instance(context);
140        diags = JCDiagnostic.Factory.instance(context);
141        annotate = Annotate.instance(context);
142        typeAnnotations = TypeAnnotations.instance(context);
143        deferredLintHandler = DeferredLintHandler.instance(context);
144        typeEnvs = TypeEnvs.instance(context);
145        dependencies = Dependencies.instance(context);
146        argumentAttr = ArgumentAttr.instance(context);
147
148        Options options = Options.instance(context);
149
150        Source source = Source.instance(context);
151        allowStringsInSwitch = source.allowStringsInSwitch();
152        allowPoly = source.allowPoly();
153        allowTypeAnnos = source.allowTypeAnnotations();
154        allowLambda = source.allowLambda();
155        allowDefaultMethods = source.allowDefaultMethods();
156        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
157        sourceName = source.name;
158        relax = (options.isSet("-retrofit") ||
159                options.isSet("-relax"));
160        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
161
162        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
163        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
164        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
165        methodAttrInfo = new MethodAttrInfo();
166        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
167        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
168        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
169    }
170
171    /** Switch: relax some constraints for retrofit mode.
172     */
173    boolean relax;
174
175    /** Switch: support target-typing inference
176     */
177    boolean allowPoly;
178
179    /** Switch: support type annotations.
180     */
181    boolean allowTypeAnnos;
182
183    /** Switch: support lambda expressions ?
184     */
185    boolean allowLambda;
186
187    /** Switch: support default methods ?
188     */
189    boolean allowDefaultMethods;
190
191    /** Switch: static interface methods enabled?
192     */
193    boolean allowStaticInterfaceMethods;
194
195    /**
196     * Switch: warn about use of variable before declaration?
197     * RFE: 6425594
198     */
199    boolean useBeforeDeclarationWarning;
200
201    /**
202     * Switch: allow strings in switch?
203     */
204    boolean allowStringsInSwitch;
205
206    /**
207     * Switch: name of source level; used for error reporting.
208     */
209    String sourceName;
210
211    /** Check kind and type of given tree against protokind and prototype.
212     *  If check succeeds, store type in tree and return it.
213     *  If check fails, store errType in tree and return it.
214     *  No checks are performed if the prototype is a method type.
215     *  It is not necessary in this case since we know that kind and type
216     *  are correct.
217     *
218     *  @param tree     The tree whose kind and type is checked
219     *  @param found    The computed type of the tree
220     *  @param ownkind  The computed kind of the tree
221     *  @param resultInfo  The expected result of the tree
222     */
223    Type check(final JCTree tree,
224               final Type found,
225               final KindSelector ownkind,
226               final ResultInfo resultInfo) {
227        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
228        Type owntype;
229        boolean shouldCheck = !found.hasTag(ERROR) &&
230                !resultInfo.pt.hasTag(METHOD) &&
231                !resultInfo.pt.hasTag(FORALL);
232        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
233            log.error(tree.pos(), "unexpected.type",
234            resultInfo.pkind.kindNames(),
235            ownkind.kindNames());
236            owntype = types.createErrorType(found);
237        } else if (allowPoly && inferenceContext.free(found)) {
238            //delay the check if there are inference variables in the found type
239            //this means we are dealing with a partially inferred poly expression
240            owntype = shouldCheck ? resultInfo.pt : found;
241            if (resultInfo.checkMode.installPostInferenceHook()) {
242                inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
243                        instantiatedContext -> {
244                            ResultInfo pendingResult =
245                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
246                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
247                        });
248            }
249        } else {
250            owntype = shouldCheck ?
251            resultInfo.check(tree, found) :
252            found;
253        }
254        if (resultInfo.checkMode.updateTreeType()) {
255            tree.type = owntype;
256        }
257        return owntype;
258    }
259
260    /** Is given blank final variable assignable, i.e. in a scope where it
261     *  may be assigned to even though it is final?
262     *  @param v      The blank final variable.
263     *  @param env    The current environment.
264     */
265    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
266        Symbol owner = env.info.scope.owner;
267           // owner refers to the innermost variable, method or
268           // initializer block declaration at this point.
269        return
270            v.owner == owner
271            ||
272            ((owner.name == names.init ||    // i.e. we are in a constructor
273              owner.kind == VAR ||           // i.e. we are in a variable initializer
274              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
275             &&
276             v.owner == owner.owner
277             &&
278             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
279    }
280
281    /** Check that variable can be assigned to.
282     *  @param pos    The current source code position.
283     *  @param v      The assigned variable
284     *  @param base   If the variable is referred to in a Select, the part
285     *                to the left of the `.', null otherwise.
286     *  @param env    The current environment.
287     */
288    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
289        if ((v.flags() & FINAL) != 0 &&
290            ((v.flags() & HASINIT) != 0
291             ||
292             !((base == null ||
293               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
294               isAssignableAsBlankFinal(v, env)))) {
295            if (v.isResourceVariable()) { //TWR resource
296                log.error(pos, "try.resource.may.not.be.assigned", v);
297            } else {
298                log.error(pos, "cant.assign.val.to.final.var", v);
299            }
300        }
301    }
302
303    /** Does tree represent a static reference to an identifier?
304     *  It is assumed that tree is either a SELECT or an IDENT.
305     *  We have to weed out selects from non-type names here.
306     *  @param tree    The candidate tree.
307     */
308    boolean isStaticReference(JCTree tree) {
309        if (tree.hasTag(SELECT)) {
310            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
311            if (lsym == null || lsym.kind != TYP) {
312                return false;
313            }
314        }
315        return true;
316    }
317
318    /** Is this symbol a type?
319     */
320    static boolean isType(Symbol sym) {
321        return sym != null && sym.kind == TYP;
322    }
323
324    /** The current `this' symbol.
325     *  @param env    The current environment.
326     */
327    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
328        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
329    }
330
331    /** Attribute a parsed identifier.
332     * @param tree Parsed identifier name
333     * @param topLevel The toplevel to use
334     */
335    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
336        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
337        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
338                                           syms.errSymbol.name,
339                                           null, null, null, null);
340        localEnv.enclClass.sym = syms.errSymbol;
341        return tree.accept(identAttributer, localEnv);
342    }
343    // where
344        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
345        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
346            @Override @DefinedBy(Api.COMPILER_TREE)
347            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
348                Symbol site = visit(node.getExpression(), env);
349                if (site.kind == ERR || site.kind == ABSENT_TYP)
350                    return site;
351                Name name = (Name)node.getIdentifier();
352                if (site.kind == PCK) {
353                    env.toplevel.packge = (PackageSymbol)site;
354                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
355                            KindSelector.TYP_PCK);
356                } else {
357                    env.enclClass.sym = (ClassSymbol)site;
358                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
359                }
360            }
361
362            @Override @DefinedBy(Api.COMPILER_TREE)
363            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
364                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
365            }
366        }
367
368    public Type coerce(Type etype, Type ttype) {
369        return cfolder.coerce(etype, ttype);
370    }
371
372    public Type attribType(JCTree node, TypeSymbol sym) {
373        Env<AttrContext> env = typeEnvs.get(sym);
374        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
375        return attribTree(node, localEnv, unknownTypeInfo);
376    }
377
378    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
379        // Attribute qualifying package or class.
380        JCFieldAccess s = (JCFieldAccess)tree.qualid;
381        return attribTree(s.selected, env,
382                          new ResultInfo(tree.staticImport ?
383                                         KindSelector.TYP : KindSelector.TYP_PCK,
384                       Type.noType));
385    }
386
387    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
388        breakTree = tree;
389        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
390        try {
391            attribExpr(expr, env);
392        } catch (BreakAttr b) {
393            return b.env;
394        } catch (AssertionError ae) {
395            if (ae.getCause() instanceof BreakAttr) {
396                return ((BreakAttr)(ae.getCause())).env;
397            } else {
398                throw ae;
399            }
400        } finally {
401            breakTree = null;
402            log.useSource(prev);
403        }
404        return env;
405    }
406
407    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
408        breakTree = tree;
409        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
410        try {
411            attribStat(stmt, env);
412        } catch (BreakAttr b) {
413            return b.env;
414        } catch (AssertionError ae) {
415            if (ae.getCause() instanceof BreakAttr) {
416                return ((BreakAttr)(ae.getCause())).env;
417            } else {
418                throw ae;
419            }
420        } finally {
421            breakTree = null;
422            log.useSource(prev);
423        }
424        return env;
425    }
426
427    private JCTree breakTree = null;
428
429    private static class BreakAttr extends RuntimeException {
430        static final long serialVersionUID = -6924771130405446405L;
431        private Env<AttrContext> env;
432        private BreakAttr(Env<AttrContext> env) {
433            this.env = env;
434        }
435    }
436
437    /**
438     * Mode controlling behavior of Attr.Check
439     */
440    enum CheckMode {
441
442        NORMAL,
443
444        NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
445            @Override
446            public boolean updateTreeType() {
447                return false;
448            }
449        },
450        NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
451            @Override
452            public boolean installPostInferenceHook() {
453                return false;
454            }
455        };
456
457        public boolean updateTreeType() {
458            return true;
459        }
460        public boolean installPostInferenceHook() {
461            return true;
462        }
463    }
464
465
466    class ResultInfo {
467        final KindSelector pkind;
468        final Type pt;
469        final CheckContext checkContext;
470        final CheckMode checkMode;
471
472        ResultInfo(KindSelector pkind, Type pt) {
473            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
474        }
475
476        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
477            this(pkind, pt, chk.basicHandler, checkMode);
478        }
479
480        protected ResultInfo(KindSelector pkind,
481                             Type pt, CheckContext checkContext) {
482            this(pkind, pt, checkContext, CheckMode.NORMAL);
483        }
484
485        protected ResultInfo(KindSelector pkind,
486                             Type pt, CheckContext checkContext, CheckMode checkMode) {
487            this.pkind = pkind;
488            this.pt = pt;
489            this.checkContext = checkContext;
490            this.checkMode = checkMode;
491        }
492
493        protected void attr(JCTree tree, Env<AttrContext> env) {
494            tree.accept(Attr.this);
495        }
496
497        protected Type check(final DiagnosticPosition pos, final Type found) {
498            return chk.checkType(pos, found, pt, checkContext);
499        }
500
501        protected ResultInfo dup(Type newPt) {
502            return new ResultInfo(pkind, newPt, checkContext, checkMode);
503        }
504
505        protected ResultInfo dup(CheckContext newContext) {
506            return new ResultInfo(pkind, pt, newContext, checkMode);
507        }
508
509        protected ResultInfo dup(Type newPt, CheckContext newContext) {
510            return new ResultInfo(pkind, newPt, newContext, checkMode);
511        }
512
513        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
514            return new ResultInfo(pkind, newPt, newContext, newMode);
515        }
516
517        protected ResultInfo dup(CheckMode newMode) {
518            return new ResultInfo(pkind, pt, checkContext, newMode);
519        }
520
521        @Override
522        public String toString() {
523            if (pt != null) {
524                return pt.toString();
525            } else {
526                return "";
527            }
528        }
529    }
530
531    class MethodAttrInfo extends ResultInfo {
532        public MethodAttrInfo() {
533            this(chk.basicHandler);
534        }
535
536        public MethodAttrInfo(CheckContext checkContext) {
537            super(KindSelector.VAL, Infer.anyPoly, checkContext);
538        }
539
540        @Override
541        protected void attr(JCTree tree, Env<AttrContext> env) {
542            result = argumentAttr.attribArg(tree, env);
543        }
544
545        protected ResultInfo dup(Type newPt) {
546            throw new IllegalStateException();
547        }
548
549        protected ResultInfo dup(CheckContext newContext) {
550            return new MethodAttrInfo(newContext);
551        }
552
553        protected ResultInfo dup(Type newPt, CheckContext newContext) {
554            throw new IllegalStateException();
555        }
556
557        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
558            throw new IllegalStateException();
559        }
560
561        protected ResultInfo dup(CheckMode newMode) {
562            throw new IllegalStateException();
563        }
564    }
565
566    class RecoveryInfo extends ResultInfo {
567
568        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
569            super(KindSelector.VAL, Type.recoveryType,
570                  new Check.NestedCheckContext(chk.basicHandler) {
571                @Override
572                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
573                    return deferredAttrContext;
574                }
575                @Override
576                public boolean compatible(Type found, Type req, Warner warn) {
577                    return true;
578                }
579                @Override
580                public void report(DiagnosticPosition pos, JCDiagnostic details) {
581                    chk.basicHandler.report(pos, details);
582                }
583            });
584        }
585    }
586
587    final ResultInfo statInfo;
588    final ResultInfo varAssignmentInfo;
589    final ResultInfo methodAttrInfo;
590    final ResultInfo unknownExprInfo;
591    final ResultInfo unknownTypeInfo;
592    final ResultInfo unknownTypeExprInfo;
593    final ResultInfo recoveryInfo;
594
595    Type pt() {
596        return resultInfo.pt;
597    }
598
599    KindSelector pkind() {
600        return resultInfo.pkind;
601    }
602
603/* ************************************************************************
604 * Visitor methods
605 *************************************************************************/
606
607    /** Visitor argument: the current environment.
608     */
609    Env<AttrContext> env;
610
611    /** Visitor argument: the currently expected attribution result.
612     */
613    ResultInfo resultInfo;
614
615    /** Visitor result: the computed type.
616     */
617    Type result;
618
619    /** Visitor method: attribute a tree, catching any completion failure
620     *  exceptions. Return the tree's type.
621     *
622     *  @param tree    The tree to be visited.
623     *  @param env     The environment visitor argument.
624     *  @param resultInfo   The result info visitor argument.
625     */
626    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
627        Env<AttrContext> prevEnv = this.env;
628        ResultInfo prevResult = this.resultInfo;
629        try {
630            this.env = env;
631            this.resultInfo = resultInfo;
632            resultInfo.attr(tree, env);
633            if (tree == breakTree &&
634                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
635                throw new BreakAttr(copyEnv(env));
636            }
637            return result;
638        } catch (CompletionFailure ex) {
639            tree.type = syms.errType;
640            return chk.completionError(tree.pos(), ex);
641        } finally {
642            this.env = prevEnv;
643            this.resultInfo = prevResult;
644        }
645    }
646
647    Env<AttrContext> copyEnv(Env<AttrContext> env) {
648        Env<AttrContext> newEnv =
649                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
650        if (newEnv.outer != null) {
651            newEnv.outer = copyEnv(newEnv.outer);
652        }
653        return newEnv;
654    }
655
656    WriteableScope copyScope(WriteableScope sc) {
657        WriteableScope newScope = WriteableScope.create(sc.owner);
658        List<Symbol> elemsList = List.nil();
659        for (Symbol sym : sc.getSymbols()) {
660            elemsList = elemsList.prepend(sym);
661        }
662        for (Symbol s : elemsList) {
663            newScope.enter(s);
664        }
665        return newScope;
666    }
667
668    /** Derived visitor method: attribute an expression tree.
669     */
670    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
671        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
672    }
673
674    /** Derived visitor method: attribute an expression tree with
675     *  no constraints on the computed type.
676     */
677    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
678        return attribTree(tree, env, unknownExprInfo);
679    }
680
681    /** Derived visitor method: attribute a type tree.
682     */
683    public Type attribType(JCTree tree, Env<AttrContext> env) {
684        Type result = attribType(tree, env, Type.noType);
685        return result;
686    }
687
688    /** Derived visitor method: attribute a type tree.
689     */
690    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
691        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
692        return result;
693    }
694
695    /** Derived visitor method: attribute a statement or definition tree.
696     */
697    public Type attribStat(JCTree tree, Env<AttrContext> env) {
698        Env<AttrContext> analyzeEnv =
699                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
700        try {
701            return attribTree(tree, env, statInfo);
702        } finally {
703            analyzer.analyzeIfNeeded(tree, analyzeEnv);
704        }
705    }
706
707    /** Attribute a list of expressions, returning a list of types.
708     */
709    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
710        ListBuffer<Type> ts = new ListBuffer<>();
711        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
712            ts.append(attribExpr(l.head, env, pt));
713        return ts.toList();
714    }
715
716    /** Attribute a list of statements, returning nothing.
717     */
718    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
719        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
720            attribStat(l.head, env);
721    }
722
723    /** Attribute the arguments in a method call, returning the method kind.
724     */
725    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
726        KindSelector kind = initialKind;
727        for (JCExpression arg : trees) {
728            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
729            if (argtype.hasTag(DEFERRED)) {
730                kind = KindSelector.of(KindSelector.POLY, kind);
731            }
732            argtypes.append(argtype);
733        }
734        return kind;
735    }
736
737    /** Attribute a type argument list, returning a list of types.
738     *  Caller is responsible for calling checkRefTypes.
739     */
740    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
741        ListBuffer<Type> argtypes = new ListBuffer<>();
742        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
743            argtypes.append(attribType(l.head, env));
744        return argtypes.toList();
745    }
746
747    /** Attribute a type argument list, returning a list of types.
748     *  Check that all the types are references.
749     */
750    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
751        List<Type> types = attribAnyTypes(trees, env);
752        return chk.checkRefTypes(trees, types);
753    }
754
755    /**
756     * Attribute type variables (of generic classes or methods).
757     * Compound types are attributed later in attribBounds.
758     * @param typarams the type variables to enter
759     * @param env      the current environment
760     */
761    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
762        for (JCTypeParameter tvar : typarams) {
763            TypeVar a = (TypeVar)tvar.type;
764            a.tsym.flags_field |= UNATTRIBUTED;
765            a.bound = Type.noType;
766            if (!tvar.bounds.isEmpty()) {
767                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
768                for (JCExpression bound : tvar.bounds.tail)
769                    bounds = bounds.prepend(attribType(bound, env));
770                types.setBounds(a, bounds.reverse());
771            } else {
772                // if no bounds are given, assume a single bound of
773                // java.lang.Object.
774                types.setBounds(a, List.of(syms.objectType));
775            }
776            a.tsym.flags_field &= ~UNATTRIBUTED;
777        }
778        for (JCTypeParameter tvar : typarams) {
779            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
780        }
781    }
782
783    /**
784     * Attribute the type references in a list of annotations.
785     */
786    void attribAnnotationTypes(List<JCAnnotation> annotations,
787                               Env<AttrContext> env) {
788        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
789            JCAnnotation a = al.head;
790            attribType(a.annotationType, env);
791        }
792    }
793
794    /**
795     * Attribute a "lazy constant value".
796     *  @param env         The env for the const value
797     *  @param variable    The initializer for the const value
798     *  @param type        The expected type, or null
799     *  @see VarSymbol#setLazyConstValue
800     */
801    public Object attribLazyConstantValue(Env<AttrContext> env,
802                                      JCVariableDecl variable,
803                                      Type type) {
804
805        DiagnosticPosition prevLintPos
806                = deferredLintHandler.setPos(variable.pos());
807
808        try {
809            Type itype = attribExpr(variable.init, env, type);
810            if (itype.constValue() != null) {
811                return coerce(itype, type).constValue();
812            } else {
813                return null;
814            }
815        } finally {
816            deferredLintHandler.setPos(prevLintPos);
817        }
818    }
819
820    /** Attribute type reference in an `extends' or `implements' clause.
821     *  Supertypes of anonymous inner classes are usually already attributed.
822     *
823     *  @param tree              The tree making up the type reference.
824     *  @param env               The environment current at the reference.
825     *  @param classExpected     true if only a class is expected here.
826     *  @param interfaceExpected true if only an interface is expected here.
827     */
828    Type attribBase(JCTree tree,
829                    Env<AttrContext> env,
830                    boolean classExpected,
831                    boolean interfaceExpected,
832                    boolean checkExtensible) {
833        Type t = tree.type != null ?
834            tree.type :
835            attribType(tree, env);
836        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
837    }
838    Type checkBase(Type t,
839                   JCTree tree,
840                   Env<AttrContext> env,
841                   boolean classExpected,
842                   boolean interfaceExpected,
843                   boolean checkExtensible) {
844        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
845                (((JCTypeApply) tree).clazz).pos() : tree.pos();
846        if (t.tsym.isAnonymous()) {
847            log.error(pos, "cant.inherit.from.anon");
848            return types.createErrorType(t);
849        }
850        if (t.isErroneous())
851            return t;
852        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
853            // check that type variable is already visible
854            if (t.getUpperBound() == null) {
855                log.error(pos, "illegal.forward.ref");
856                return types.createErrorType(t);
857            }
858        } else {
859            t = chk.checkClassType(pos, t, checkExtensible);
860        }
861        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
862            log.error(pos, "intf.expected.here");
863            // return errType is necessary since otherwise there might
864            // be undetected cycles which cause attribution to loop
865            return types.createErrorType(t);
866        } else if (checkExtensible &&
867                   classExpected &&
868                   (t.tsym.flags() & INTERFACE) != 0) {
869            log.error(pos, "no.intf.expected.here");
870            return types.createErrorType(t);
871        }
872        if (checkExtensible &&
873            ((t.tsym.flags() & FINAL) != 0)) {
874            log.error(pos,
875                      "cant.inherit.from.final", t.tsym);
876        }
877        chk.checkNonCyclic(pos, t);
878        return t;
879    }
880
881    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
882        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
883        id.type = env.info.scope.owner.enclClass().type;
884        id.sym = env.info.scope.owner.enclClass();
885        return id.type;
886    }
887
888    public void visitClassDef(JCClassDecl tree) {
889        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
890                Optional.ofNullable(env.info.isSpeculative ?
891                        argumentAttr.withLocalCacheContext() : null);
892        try {
893            // Local and anonymous classes have not been entered yet, so we need to
894            // do it now.
895            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
896                enter.classEnter(tree, env);
897            } else {
898                // If this class declaration is part of a class level annotation,
899                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
900                // order to simplify later steps and allow for sensible error
901                // messages.
902                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
903                    enter.classEnter(tree, env);
904            }
905
906            ClassSymbol c = tree.sym;
907            if (c == null) {
908                // exit in case something drastic went wrong during enter.
909                result = null;
910            } else {
911                // make sure class has been completed:
912                c.complete();
913
914                // If this class appears as an anonymous class
915                // in a superclass constructor call where
916                // no explicit outer instance is given,
917                // disable implicit outer instance from being passed.
918                // (This would be an illegal access to "this before super").
919                if (env.info.isSelfCall &&
920                        env.tree.hasTag(NEWCLASS) &&
921                        ((JCNewClass)env.tree).encl == null) {
922                    c.flags_field |= NOOUTERTHIS;
923                }
924                attribClass(tree.pos(), c);
925                result = tree.type = c.type;
926            }
927        } finally {
928            localCacheContext.ifPresent(LocalCacheContext::leave);
929        }
930    }
931
932    public void visitMethodDef(JCMethodDecl tree) {
933        MethodSymbol m = tree.sym;
934        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
935
936        Lint lint = env.info.lint.augment(m);
937        Lint prevLint = chk.setLint(lint);
938        MethodSymbol prevMethod = chk.setMethod(m);
939        try {
940            deferredLintHandler.flush(tree.pos());
941            chk.checkDeprecatedAnnotation(tree.pos(), m);
942
943
944            // Create a new environment with local scope
945            // for attributing the method.
946            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
947            localEnv.info.lint = lint;
948
949            attribStats(tree.typarams, localEnv);
950
951            // If we override any other methods, check that we do so properly.
952            // JLS ???
953            if (m.isStatic()) {
954                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
955            } else {
956                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
957            }
958            chk.checkOverride(env, tree, m);
959
960            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
961                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
962            }
963
964            // Enter all type parameters into the local method scope.
965            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
966                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
967
968            ClassSymbol owner = env.enclClass.sym;
969            if ((owner.flags() & ANNOTATION) != 0 &&
970                    tree.params.nonEmpty())
971                log.error(tree.params.head.pos(),
972                        "intf.annotation.members.cant.have.params");
973
974            // Attribute all value parameters.
975            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
976                attribStat(l.head, localEnv);
977            }
978
979            chk.checkVarargsMethodDecl(localEnv, tree);
980
981            // Check that type parameters are well-formed.
982            chk.validate(tree.typarams, localEnv);
983
984            // Check that result type is well-formed.
985            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
986                chk.validate(tree.restype, localEnv);
987
988            // Check that receiver type is well-formed.
989            if (tree.recvparam != null) {
990                // Use a new environment to check the receiver parameter.
991                // Otherwise I get "might not have been initialized" errors.
992                // Is there a better way?
993                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
994                attribType(tree.recvparam, newEnv);
995                chk.validate(tree.recvparam, newEnv);
996            }
997
998            // annotation method checks
999            if ((owner.flags() & ANNOTATION) != 0) {
1000                // annotation method cannot have throws clause
1001                if (tree.thrown.nonEmpty()) {
1002                    log.error(tree.thrown.head.pos(),
1003                            "throws.not.allowed.in.intf.annotation");
1004                }
1005                // annotation method cannot declare type-parameters
1006                if (tree.typarams.nonEmpty()) {
1007                    log.error(tree.typarams.head.pos(),
1008                            "intf.annotation.members.cant.have.type.params");
1009                }
1010                // validate annotation method's return type (could be an annotation type)
1011                chk.validateAnnotationType(tree.restype);
1012                // ensure that annotation method does not clash with members of Object/Annotation
1013                chk.validateAnnotationMethod(tree.pos(), m);
1014            }
1015
1016            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1017                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1018
1019            if (tree.body == null) {
1020                // Empty bodies are only allowed for
1021                // abstract, native, or interface methods, or for methods
1022                // in a retrofit signature class.
1023                if (tree.defaultValue != null) {
1024                    if ((owner.flags() & ANNOTATION) == 0)
1025                        log.error(tree.pos(),
1026                                  "default.allowed.in.intf.annotation.member");
1027                }
1028                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
1029                    !relax)
1030                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
1031            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1032                if ((owner.flags() & INTERFACE) != 0) {
1033                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
1034                } else {
1035                    log.error(tree.pos(), "abstract.meth.cant.have.body");
1036                }
1037            } else if ((tree.mods.flags & NATIVE) != 0) {
1038                log.error(tree.pos(), "native.meth.cant.have.body");
1039            } else {
1040                // Add an implicit super() call unless an explicit call to
1041                // super(...) or this(...) is given
1042                // or we are compiling class java.lang.Object.
1043                if (tree.name == names.init && owner.type != syms.objectType) {
1044                    JCBlock body = tree.body;
1045                    if (body.stats.isEmpty() ||
1046                            !TreeInfo.isSelfCall(body.stats.head)) {
1047                        body.stats = body.stats.
1048                                prepend(typeEnter.SuperCall(make.at(body.pos),
1049                                        List.<Type>nil(),
1050                                        List.<JCVariableDecl>nil(),
1051                                        false));
1052                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1053                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1054                            TreeInfo.isSuperCall(body.stats.head)) {
1055                        // enum constructors are not allowed to call super
1056                        // directly, so make sure there aren't any super calls
1057                        // in enum constructors, except in the compiler
1058                        // generated one.
1059                        log.error(tree.body.stats.head.pos(),
1060                                "call.to.super.not.allowed.in.enum.ctor",
1061                                env.enclClass.sym);
1062                    }
1063                }
1064
1065                // Attribute all type annotations in the body
1066                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1067                annotate.flush();
1068
1069                // Attribute method body.
1070                attribStat(tree.body, localEnv);
1071            }
1072
1073            localEnv.info.scope.leave();
1074            result = tree.type = m.type;
1075        } finally {
1076            chk.setLint(prevLint);
1077            chk.setMethod(prevMethod);
1078        }
1079    }
1080
1081    public void visitVarDef(JCVariableDecl tree) {
1082        // Local variables have not been entered yet, so we need to do it now:
1083        if (env.info.scope.owner.kind == MTH) {
1084            if (tree.sym != null) {
1085                // parameters have already been entered
1086                env.info.scope.enter(tree.sym);
1087            } else {
1088                try {
1089                    annotate.blockAnnotations();
1090                    memberEnter.memberEnter(tree, env);
1091                } finally {
1092                    annotate.unblockAnnotations();
1093                }
1094            }
1095        } else {
1096            if (tree.init != null) {
1097                // Field initializer expression need to be entered.
1098                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1099                annotate.flush();
1100            }
1101        }
1102
1103        VarSymbol v = tree.sym;
1104        Lint lint = env.info.lint.augment(v);
1105        Lint prevLint = chk.setLint(lint);
1106
1107        // Check that the variable's declared type is well-formed.
1108        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1109                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1110                (tree.sym.flags() & PARAMETER) != 0;
1111        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1112
1113        try {
1114            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1115            deferredLintHandler.flush(tree.pos());
1116            chk.checkDeprecatedAnnotation(tree.pos(), v);
1117
1118            if (tree.init != null) {
1119                if ((v.flags_field & FINAL) == 0 ||
1120                    !memberEnter.needsLazyConstValue(tree.init)) {
1121                    // Not a compile-time constant
1122                    // Attribute initializer in a new environment
1123                    // with the declared variable as owner.
1124                    // Check that initializer conforms to variable's declared type.
1125                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1126                    initEnv.info.lint = lint;
1127                    // In order to catch self-references, we set the variable's
1128                    // declaration position to maximal possible value, effectively
1129                    // marking the variable as undefined.
1130                    initEnv.info.enclVar = v;
1131                    attribExpr(tree.init, initEnv, v.type);
1132                }
1133            }
1134            result = tree.type = v.type;
1135        }
1136        finally {
1137            chk.setLint(prevLint);
1138        }
1139    }
1140
1141    public void visitSkip(JCSkip tree) {
1142        result = null;
1143    }
1144
1145    public void visitBlock(JCBlock tree) {
1146        if (env.info.scope.owner.kind == TYP) {
1147            // Block is a static or instance initializer;
1148            // let the owner of the environment be a freshly
1149            // created BLOCK-method.
1150            Symbol fakeOwner =
1151                new MethodSymbol(tree.flags | BLOCK |
1152                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1153                    env.info.scope.owner);
1154            final Env<AttrContext> localEnv =
1155                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1156
1157            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1158            // Attribute all type annotations in the block
1159            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1160            annotate.flush();
1161            attribStats(tree.stats, localEnv);
1162
1163            {
1164                // Store init and clinit type annotations with the ClassSymbol
1165                // to allow output in Gen.normalizeDefs.
1166                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1167                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1168                if ((tree.flags & STATIC) != 0) {
1169                    cs.appendClassInitTypeAttributes(tas);
1170                } else {
1171                    cs.appendInitTypeAttributes(tas);
1172                }
1173            }
1174        } else {
1175            // Create a new local environment with a local scope.
1176            Env<AttrContext> localEnv =
1177                env.dup(tree, env.info.dup(env.info.scope.dup()));
1178            try {
1179                attribStats(tree.stats, localEnv);
1180            } finally {
1181                localEnv.info.scope.leave();
1182            }
1183        }
1184        result = null;
1185    }
1186
1187    public void visitDoLoop(JCDoWhileLoop tree) {
1188        attribStat(tree.body, env.dup(tree));
1189        attribExpr(tree.cond, env, syms.booleanType);
1190        result = null;
1191    }
1192
1193    public void visitWhileLoop(JCWhileLoop tree) {
1194        attribExpr(tree.cond, env, syms.booleanType);
1195        attribStat(tree.body, env.dup(tree));
1196        result = null;
1197    }
1198
1199    public void visitForLoop(JCForLoop tree) {
1200        Env<AttrContext> loopEnv =
1201            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1202        try {
1203            attribStats(tree.init, loopEnv);
1204            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1205            loopEnv.tree = tree; // before, we were not in loop!
1206            attribStats(tree.step, loopEnv);
1207            attribStat(tree.body, loopEnv);
1208            result = null;
1209        }
1210        finally {
1211            loopEnv.info.scope.leave();
1212        }
1213    }
1214
1215    public void visitForeachLoop(JCEnhancedForLoop tree) {
1216        Env<AttrContext> loopEnv =
1217            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1218        try {
1219            //the Formal Parameter of a for-each loop is not in the scope when
1220            //attributing the for-each expression; we mimick this by attributing
1221            //the for-each expression first (against original scope).
1222            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1223            attribStat(tree.var, loopEnv);
1224            chk.checkNonVoid(tree.pos(), exprType);
1225            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1226            if (elemtype == null) {
1227                // or perhaps expr implements Iterable<T>?
1228                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1229                if (base == null) {
1230                    log.error(tree.expr.pos(),
1231                            "foreach.not.applicable.to.type",
1232                            exprType,
1233                            diags.fragment("type.req.array.or.iterable"));
1234                    elemtype = types.createErrorType(exprType);
1235                } else {
1236                    List<Type> iterableParams = base.allparams();
1237                    elemtype = iterableParams.isEmpty()
1238                        ? syms.objectType
1239                        : types.wildUpperBound(iterableParams.head);
1240                }
1241            }
1242            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1243            loopEnv.tree = tree; // before, we were not in loop!
1244            attribStat(tree.body, loopEnv);
1245            result = null;
1246        }
1247        finally {
1248            loopEnv.info.scope.leave();
1249        }
1250    }
1251
1252    public void visitLabelled(JCLabeledStatement tree) {
1253        // Check that label is not used in an enclosing statement
1254        Env<AttrContext> env1 = env;
1255        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1256            if (env1.tree.hasTag(LABELLED) &&
1257                ((JCLabeledStatement) env1.tree).label == tree.label) {
1258                log.error(tree.pos(), "label.already.in.use",
1259                          tree.label);
1260                break;
1261            }
1262            env1 = env1.next;
1263        }
1264
1265        attribStat(tree.body, env.dup(tree));
1266        result = null;
1267    }
1268
1269    public void visitSwitch(JCSwitch tree) {
1270        Type seltype = attribExpr(tree.selector, env);
1271
1272        Env<AttrContext> switchEnv =
1273            env.dup(tree, env.info.dup(env.info.scope.dup()));
1274
1275        try {
1276
1277            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1278            boolean stringSwitch = false;
1279            if (types.isSameType(seltype, syms.stringType)) {
1280                if (allowStringsInSwitch) {
1281                    stringSwitch = true;
1282                } else {
1283                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1284                }
1285            }
1286            if (!enumSwitch && !stringSwitch)
1287                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1288
1289            // Attribute all cases and
1290            // check that there are no duplicate case labels or default clauses.
1291            Set<Object> labels = new HashSet<>(); // The set of case labels.
1292            boolean hasDefault = false;      // Is there a default label?
1293            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1294                JCCase c = l.head;
1295                if (c.pat != null) {
1296                    if (enumSwitch) {
1297                        Symbol sym = enumConstant(c.pat, seltype);
1298                        if (sym == null) {
1299                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1300                        } else if (!labels.add(sym)) {
1301                            log.error(c.pos(), "duplicate.case.label");
1302                        }
1303                    } else {
1304                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1305                        if (!pattype.hasTag(ERROR)) {
1306                            if (pattype.constValue() == null) {
1307                                log.error(c.pat.pos(),
1308                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1309                            } else if (!labels.add(pattype.constValue())) {
1310                                log.error(c.pos(), "duplicate.case.label");
1311                            }
1312                        }
1313                    }
1314                } else if (hasDefault) {
1315                    log.error(c.pos(), "duplicate.default.label");
1316                } else {
1317                    hasDefault = true;
1318                }
1319                Env<AttrContext> caseEnv =
1320                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1321                try {
1322                    attribStats(c.stats, caseEnv);
1323                } finally {
1324                    caseEnv.info.scope.leave();
1325                    addVars(c.stats, switchEnv.info.scope);
1326                }
1327            }
1328
1329            result = null;
1330        }
1331        finally {
1332            switchEnv.info.scope.leave();
1333        }
1334    }
1335    // where
1336        /** Add any variables defined in stats to the switch scope. */
1337        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1338            for (;stats.nonEmpty(); stats = stats.tail) {
1339                JCTree stat = stats.head;
1340                if (stat.hasTag(VARDEF))
1341                    switchScope.enter(((JCVariableDecl) stat).sym);
1342            }
1343        }
1344    // where
1345    /** Return the selected enumeration constant symbol, or null. */
1346    private Symbol enumConstant(JCTree tree, Type enumType) {
1347        if (tree.hasTag(IDENT)) {
1348            JCIdent ident = (JCIdent)tree;
1349            Name name = ident.name;
1350            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1351                if (sym.kind == VAR) {
1352                    Symbol s = ident.sym = sym;
1353                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1354                    ident.type = s.type;
1355                    return ((s.flags_field & Flags.ENUM) == 0)
1356                        ? null : s;
1357                }
1358            }
1359        }
1360        return null;
1361    }
1362
1363    public void visitSynchronized(JCSynchronized tree) {
1364        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1365        attribStat(tree.body, env);
1366        result = null;
1367    }
1368
1369    public void visitTry(JCTry tree) {
1370        // Create a new local environment with a local
1371        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1372        try {
1373            boolean isTryWithResource = tree.resources.nonEmpty();
1374            // Create a nested environment for attributing the try block if needed
1375            Env<AttrContext> tryEnv = isTryWithResource ?
1376                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1377                localEnv;
1378            try {
1379                // Attribute resource declarations
1380                for (JCTree resource : tree.resources) {
1381                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1382                        @Override
1383                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1384                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1385                        }
1386                    };
1387                    ResultInfo twrResult =
1388                        new ResultInfo(KindSelector.VAR,
1389                                       syms.autoCloseableType,
1390                                       twrContext);
1391                    if (resource.hasTag(VARDEF)) {
1392                        attribStat(resource, tryEnv);
1393                        twrResult.check(resource, resource.type);
1394
1395                        //check that resource type cannot throw InterruptedException
1396                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1397
1398                        VarSymbol var = ((JCVariableDecl) resource).sym;
1399                        var.setData(ElementKind.RESOURCE_VARIABLE);
1400                    } else {
1401                        attribTree(resource, tryEnv, twrResult);
1402                    }
1403                }
1404                // Attribute body
1405                attribStat(tree.body, tryEnv);
1406            } finally {
1407                if (isTryWithResource)
1408                    tryEnv.info.scope.leave();
1409            }
1410
1411            // Attribute catch clauses
1412            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1413                JCCatch c = l.head;
1414                Env<AttrContext> catchEnv =
1415                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1416                try {
1417                    Type ctype = attribStat(c.param, catchEnv);
1418                    if (TreeInfo.isMultiCatch(c)) {
1419                        //multi-catch parameter is implicitly marked as final
1420                        c.param.sym.flags_field |= FINAL | UNION;
1421                    }
1422                    if (c.param.sym.kind == VAR) {
1423                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1424                    }
1425                    chk.checkType(c.param.vartype.pos(),
1426                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1427                                  syms.throwableType);
1428                    attribStat(c.body, catchEnv);
1429                } finally {
1430                    catchEnv.info.scope.leave();
1431                }
1432            }
1433
1434            // Attribute finalizer
1435            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1436            result = null;
1437        }
1438        finally {
1439            localEnv.info.scope.leave();
1440        }
1441    }
1442
1443    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1444        if (!resource.isErroneous() &&
1445            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1446            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1447            Symbol close = syms.noSymbol;
1448            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1449            try {
1450                close = rs.resolveQualifiedMethod(pos,
1451                        env,
1452                        resource,
1453                        names.close,
1454                        List.<Type>nil(),
1455                        List.<Type>nil());
1456            }
1457            finally {
1458                log.popDiagnosticHandler(discardHandler);
1459            }
1460            if (close.kind == MTH &&
1461                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1462                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1463                    env.info.lint.isEnabled(LintCategory.TRY)) {
1464                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1465            }
1466        }
1467    }
1468
1469    public void visitConditional(JCConditional tree) {
1470        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1471
1472        tree.polyKind = (!allowPoly ||
1473                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1474                isBooleanOrNumeric(env, tree)) ?
1475                PolyKind.STANDALONE : PolyKind.POLY;
1476
1477        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1478            //this means we are returning a poly conditional from void-compatible lambda expression
1479            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1480            result = tree.type = types.createErrorType(resultInfo.pt);
1481            return;
1482        }
1483
1484        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1485                unknownExprInfo :
1486                resultInfo.dup(conditionalContext(resultInfo.checkContext));
1487
1488        Type truetype = attribTree(tree.truepart, env, condInfo);
1489        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1490
1491        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1492        if (condtype.constValue() != null &&
1493                truetype.constValue() != null &&
1494                falsetype.constValue() != null &&
1495                !owntype.hasTag(NONE)) {
1496            //constant folding
1497            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1498        }
1499        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1500    }
1501    //where
1502        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1503            switch (tree.getTag()) {
1504                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1505                              ((JCLiteral)tree).typetag == BOOLEAN ||
1506                              ((JCLiteral)tree).typetag == BOT;
1507                case LAMBDA: case REFERENCE: return false;
1508                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1509                case CONDEXPR:
1510                    JCConditional condTree = (JCConditional)tree;
1511                    return isBooleanOrNumeric(env, condTree.truepart) &&
1512                            isBooleanOrNumeric(env, condTree.falsepart);
1513                case APPLY:
1514                    JCMethodInvocation speculativeMethodTree =
1515                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1516                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1517                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1518                            env.enclClass.type :
1519                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1520                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1521                    return primitiveOrBoxed(owntype);
1522                case NEWCLASS:
1523                    JCExpression className =
1524                            removeClassParams.translate(((JCNewClass)tree).clazz);
1525                    JCExpression speculativeNewClassTree =
1526                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1527                    return primitiveOrBoxed(speculativeNewClassTree.type);
1528                default:
1529                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1530                    return primitiveOrBoxed(speculativeType);
1531            }
1532        }
1533        //where
1534            boolean primitiveOrBoxed(Type t) {
1535                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1536            }
1537
1538            TreeTranslator removeClassParams = new TreeTranslator() {
1539                @Override
1540                public void visitTypeApply(JCTypeApply tree) {
1541                    result = translate(tree.clazz);
1542                }
1543            };
1544
1545        CheckContext conditionalContext(CheckContext checkContext) {
1546            return new Check.NestedCheckContext(checkContext) {
1547                //this will use enclosing check context to check compatibility of
1548                //subexpression against target type; if we are in a method check context,
1549                //depending on whether boxing is allowed, we could have incompatibilities
1550                @Override
1551                public void report(DiagnosticPosition pos, JCDiagnostic details) {
1552                    enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1553                }
1554            };
1555        }
1556
1557        /** Compute the type of a conditional expression, after
1558         *  checking that it exists.  See JLS 15.25. Does not take into
1559         *  account the special case where condition and both arms
1560         *  are constants.
1561         *
1562         *  @param pos      The source position to be used for error
1563         *                  diagnostics.
1564         *  @param thentype The type of the expression's then-part.
1565         *  @param elsetype The type of the expression's else-part.
1566         */
1567        Type condType(DiagnosticPosition pos,
1568                               Type thentype, Type elsetype) {
1569            // If same type, that is the result
1570            if (types.isSameType(thentype, elsetype))
1571                return thentype.baseType();
1572
1573            Type thenUnboxed = (thentype.isPrimitive())
1574                ? thentype : types.unboxedType(thentype);
1575            Type elseUnboxed = (elsetype.isPrimitive())
1576                ? elsetype : types.unboxedType(elsetype);
1577
1578            // Otherwise, if both arms can be converted to a numeric
1579            // type, return the least numeric type that fits both arms
1580            // (i.e. return larger of the two, or return int if one
1581            // arm is short, the other is char).
1582            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1583                // If one arm has an integer subrange type (i.e., byte,
1584                // short, or char), and the other is an integer constant
1585                // that fits into the subrange, return the subrange type.
1586                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1587                    elseUnboxed.hasTag(INT) &&
1588                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1589                    return thenUnboxed.baseType();
1590                }
1591                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1592                    thenUnboxed.hasTag(INT) &&
1593                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1594                    return elseUnboxed.baseType();
1595                }
1596
1597                for (TypeTag tag : primitiveTags) {
1598                    Type candidate = syms.typeOfTag[tag.ordinal()];
1599                    if (types.isSubtype(thenUnboxed, candidate) &&
1600                        types.isSubtype(elseUnboxed, candidate)) {
1601                        return candidate;
1602                    }
1603                }
1604            }
1605
1606            // Those were all the cases that could result in a primitive
1607            if (thentype.isPrimitive())
1608                thentype = types.boxedClass(thentype).type;
1609            if (elsetype.isPrimitive())
1610                elsetype = types.boxedClass(elsetype).type;
1611
1612            if (types.isSubtype(thentype, elsetype))
1613                return elsetype.baseType();
1614            if (types.isSubtype(elsetype, thentype))
1615                return thentype.baseType();
1616
1617            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1618                log.error(pos, "neither.conditional.subtype",
1619                          thentype, elsetype);
1620                return thentype.baseType();
1621            }
1622
1623            // both are known to be reference types.  The result is
1624            // lub(thentype,elsetype). This cannot fail, as it will
1625            // always be possible to infer "Object" if nothing better.
1626            return types.lub(thentype.baseType(), elsetype.baseType());
1627        }
1628
1629    final static TypeTag[] primitiveTags = new TypeTag[]{
1630        BYTE,
1631        CHAR,
1632        SHORT,
1633        INT,
1634        LONG,
1635        FLOAT,
1636        DOUBLE,
1637        BOOLEAN,
1638    };
1639
1640    public void visitIf(JCIf tree) {
1641        attribExpr(tree.cond, env, syms.booleanType);
1642        attribStat(tree.thenpart, env);
1643        if (tree.elsepart != null)
1644            attribStat(tree.elsepart, env);
1645        chk.checkEmptyIf(tree);
1646        result = null;
1647    }
1648
1649    public void visitExec(JCExpressionStatement tree) {
1650        //a fresh environment is required for 292 inference to work properly ---
1651        //see Infer.instantiatePolymorphicSignatureInstance()
1652        Env<AttrContext> localEnv = env.dup(tree);
1653        attribExpr(tree.expr, localEnv);
1654        result = null;
1655    }
1656
1657    public void visitBreak(JCBreak tree) {
1658        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1659        result = null;
1660    }
1661
1662    public void visitContinue(JCContinue tree) {
1663        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1664        result = null;
1665    }
1666    //where
1667        /** Return the target of a break or continue statement, if it exists,
1668         *  report an error if not.
1669         *  Note: The target of a labelled break or continue is the
1670         *  (non-labelled) statement tree referred to by the label,
1671         *  not the tree representing the labelled statement itself.
1672         *
1673         *  @param pos     The position to be used for error diagnostics
1674         *  @param tag     The tag of the jump statement. This is either
1675         *                 Tree.BREAK or Tree.CONTINUE.
1676         *  @param label   The label of the jump statement, or null if no
1677         *                 label is given.
1678         *  @param env     The environment current at the jump statement.
1679         */
1680        private JCTree findJumpTarget(DiagnosticPosition pos,
1681                                    JCTree.Tag tag,
1682                                    Name label,
1683                                    Env<AttrContext> env) {
1684            // Search environments outwards from the point of jump.
1685            Env<AttrContext> env1 = env;
1686            LOOP:
1687            while (env1 != null) {
1688                switch (env1.tree.getTag()) {
1689                    case LABELLED:
1690                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1691                        if (label == labelled.label) {
1692                            // If jump is a continue, check that target is a loop.
1693                            if (tag == CONTINUE) {
1694                                if (!labelled.body.hasTag(DOLOOP) &&
1695                                        !labelled.body.hasTag(WHILELOOP) &&
1696                                        !labelled.body.hasTag(FORLOOP) &&
1697                                        !labelled.body.hasTag(FOREACHLOOP))
1698                                    log.error(pos, "not.loop.label", label);
1699                                // Found labelled statement target, now go inwards
1700                                // to next non-labelled tree.
1701                                return TreeInfo.referencedStatement(labelled);
1702                            } else {
1703                                return labelled;
1704                            }
1705                        }
1706                        break;
1707                    case DOLOOP:
1708                    case WHILELOOP:
1709                    case FORLOOP:
1710                    case FOREACHLOOP:
1711                        if (label == null) return env1.tree;
1712                        break;
1713                    case SWITCH:
1714                        if (label == null && tag == BREAK) return env1.tree;
1715                        break;
1716                    case LAMBDA:
1717                    case METHODDEF:
1718                    case CLASSDEF:
1719                        break LOOP;
1720                    default:
1721                }
1722                env1 = env1.next;
1723            }
1724            if (label != null)
1725                log.error(pos, "undef.label", label);
1726            else if (tag == CONTINUE)
1727                log.error(pos, "cont.outside.loop");
1728            else
1729                log.error(pos, "break.outside.switch.loop");
1730            return null;
1731        }
1732
1733    public void visitReturn(JCReturn tree) {
1734        // Check that there is an enclosing method which is
1735        // nested within than the enclosing class.
1736        if (env.info.returnResult == null) {
1737            log.error(tree.pos(), "ret.outside.meth");
1738        } else {
1739            // Attribute return expression, if it exists, and check that
1740            // it conforms to result type of enclosing method.
1741            if (tree.expr != null) {
1742                if (env.info.returnResult.pt.hasTag(VOID)) {
1743                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1744                              diags.fragment("unexpected.ret.val"));
1745                }
1746                attribTree(tree.expr, env, env.info.returnResult);
1747            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1748                    !env.info.returnResult.pt.hasTag(NONE)) {
1749                env.info.returnResult.checkContext.report(tree.pos(),
1750                              diags.fragment("missing.ret.val"));
1751            }
1752        }
1753        result = null;
1754    }
1755
1756    public void visitThrow(JCThrow tree) {
1757        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1758        if (allowPoly) {
1759            chk.checkType(tree, owntype, syms.throwableType);
1760        }
1761        result = null;
1762    }
1763
1764    public void visitAssert(JCAssert tree) {
1765        attribExpr(tree.cond, env, syms.booleanType);
1766        if (tree.detail != null) {
1767            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1768        }
1769        result = null;
1770    }
1771
1772     /** Visitor method for method invocations.
1773     *  NOTE: The method part of an application will have in its type field
1774     *        the return type of the method, not the method's type itself!
1775     */
1776    public void visitApply(JCMethodInvocation tree) {
1777        // The local environment of a method application is
1778        // a new environment nested in the current one.
1779        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1780
1781        // The types of the actual method arguments.
1782        List<Type> argtypes;
1783
1784        // The types of the actual method type arguments.
1785        List<Type> typeargtypes = null;
1786
1787        Name methName = TreeInfo.name(tree.meth);
1788
1789        boolean isConstructorCall =
1790            methName == names._this || methName == names._super;
1791
1792        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1793        if (isConstructorCall) {
1794            // We are seeing a ...this(...) or ...super(...) call.
1795            // Check that this is the first statement in a constructor.
1796            if (checkFirstConstructorStat(tree, env)) {
1797
1798                // Record the fact
1799                // that this is a constructor call (using isSelfCall).
1800                localEnv.info.isSelfCall = true;
1801
1802                // Attribute arguments, yielding list of argument types.
1803                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1804                argtypes = argtypesBuf.toList();
1805                typeargtypes = attribTypes(tree.typeargs, localEnv);
1806
1807                // Variable `site' points to the class in which the called
1808                // constructor is defined.
1809                Type site = env.enclClass.sym.type;
1810                if (methName == names._super) {
1811                    if (site == syms.objectType) {
1812                        log.error(tree.meth.pos(), "no.superclass", site);
1813                        site = types.createErrorType(syms.objectType);
1814                    } else {
1815                        site = types.supertype(site);
1816                    }
1817                }
1818
1819                if (site.hasTag(CLASS)) {
1820                    Type encl = site.getEnclosingType();
1821                    while (encl != null && encl.hasTag(TYPEVAR))
1822                        encl = encl.getUpperBound();
1823                    if (encl.hasTag(CLASS)) {
1824                        // we are calling a nested class
1825
1826                        if (tree.meth.hasTag(SELECT)) {
1827                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1828
1829                            // We are seeing a prefixed call, of the form
1830                            //     <expr>.super(...).
1831                            // Check that the prefix expression conforms
1832                            // to the outer instance type of the class.
1833                            chk.checkRefType(qualifier.pos(),
1834                                             attribExpr(qualifier, localEnv,
1835                                                        encl));
1836                        } else if (methName == names._super) {
1837                            // qualifier omitted; check for existence
1838                            // of an appropriate implicit qualifier.
1839                            rs.resolveImplicitThis(tree.meth.pos(),
1840                                                   localEnv, site, true);
1841                        }
1842                    } else if (tree.meth.hasTag(SELECT)) {
1843                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1844                                  site.tsym);
1845                    }
1846
1847                    // if we're calling a java.lang.Enum constructor,
1848                    // prefix the implicit String and int parameters
1849                    if (site.tsym == syms.enumSym)
1850                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1851
1852                    // Resolve the called constructor under the assumption
1853                    // that we are referring to a superclass instance of the
1854                    // current instance (JLS ???).
1855                    boolean selectSuperPrev = localEnv.info.selectSuper;
1856                    localEnv.info.selectSuper = true;
1857                    localEnv.info.pendingResolutionPhase = null;
1858                    Symbol sym = rs.resolveConstructor(
1859                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1860                    localEnv.info.selectSuper = selectSuperPrev;
1861
1862                    // Set method symbol to resolved constructor...
1863                    TreeInfo.setSymbol(tree.meth, sym);
1864
1865                    // ...and check that it is legal in the current context.
1866                    // (this will also set the tree's type)
1867                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1868                    checkId(tree.meth, site, sym, localEnv,
1869                            new ResultInfo(kind, mpt));
1870                }
1871                // Otherwise, `site' is an error type and we do nothing
1872            }
1873            result = tree.type = syms.voidType;
1874        } else {
1875            // Otherwise, we are seeing a regular method call.
1876            // Attribute the arguments, yielding list of argument types, ...
1877            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1878            argtypes = argtypesBuf.toList();
1879            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1880
1881            // ... and attribute the method using as a prototype a methodtype
1882            // whose formal argument types is exactly the list of actual
1883            // arguments (this will also set the method symbol).
1884            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1885            localEnv.info.pendingResolutionPhase = null;
1886            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1887
1888            // Compute the result type.
1889            Type restype = mtype.getReturnType();
1890            if (restype.hasTag(WILDCARD))
1891                throw new AssertionError(mtype);
1892
1893            Type qualifier = (tree.meth.hasTag(SELECT))
1894                    ? ((JCFieldAccess) tree.meth).selected.type
1895                    : env.enclClass.sym.type;
1896            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1897
1898            chk.checkRefTypes(tree.typeargs, typeargtypes);
1899
1900            // Check that value of resulting type is admissible in the
1901            // current context.  Also, capture the return type
1902            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1903            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1904        }
1905        chk.validate(tree.typeargs, localEnv);
1906    }
1907    //where
1908        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1909            if (methodName == names.clone && types.isArray(qualifierType)) {
1910                // as a special case, array.clone() has a result that is
1911                // the same as static type of the array being cloned
1912                return qualifierType;
1913            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1914                // as a special case, x.getClass() has type Class<? extends |X|>
1915                return new ClassType(restype.getEnclosingType(),
1916                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1917                                                               BoundKind.EXTENDS,
1918                                                             syms.boundClass)),
1919                                     restype.tsym,
1920                                     restype.getMetadata());
1921            } else {
1922                return restype;
1923            }
1924        }
1925
1926        /** Check that given application node appears as first statement
1927         *  in a constructor call.
1928         *  @param tree   The application node
1929         *  @param env    The environment current at the application.
1930         */
1931        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1932            JCMethodDecl enclMethod = env.enclMethod;
1933            if (enclMethod != null && enclMethod.name == names.init) {
1934                JCBlock body = enclMethod.body;
1935                if (body.stats.head.hasTag(EXEC) &&
1936                    ((JCExpressionStatement) body.stats.head).expr == tree)
1937                    return true;
1938            }
1939            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1940                      TreeInfo.name(tree.meth));
1941            return false;
1942        }
1943
1944        /** Obtain a method type with given argument types.
1945         */
1946        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1947            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1948            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1949        }
1950
1951    public void visitNewClass(final JCNewClass tree) {
1952        Type owntype = types.createErrorType(tree.type);
1953
1954        // The local environment of a class creation is
1955        // a new environment nested in the current one.
1956        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1957
1958        // The anonymous inner class definition of the new expression,
1959        // if one is defined by it.
1960        JCClassDecl cdef = tree.def;
1961
1962        // If enclosing class is given, attribute it, and
1963        // complete class name to be fully qualified
1964        JCExpression clazz = tree.clazz; // Class field following new
1965        JCExpression clazzid;            // Identifier in class field
1966        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1967        annoclazzid = null;
1968
1969        if (clazz.hasTag(TYPEAPPLY)) {
1970            clazzid = ((JCTypeApply) clazz).clazz;
1971            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1972                annoclazzid = (JCAnnotatedType) clazzid;
1973                clazzid = annoclazzid.underlyingType;
1974            }
1975        } else {
1976            if (clazz.hasTag(ANNOTATED_TYPE)) {
1977                annoclazzid = (JCAnnotatedType) clazz;
1978                clazzid = annoclazzid.underlyingType;
1979            } else {
1980                clazzid = clazz;
1981            }
1982        }
1983
1984        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1985
1986        if (tree.encl != null) {
1987            // We are seeing a qualified new, of the form
1988            //    <expr>.new C <...> (...) ...
1989            // In this case, we let clazz stand for the name of the
1990            // allocated class C prefixed with the type of the qualifier
1991            // expression, so that we can
1992            // resolve it with standard techniques later. I.e., if
1993            // <expr> has type T, then <expr>.new C <...> (...)
1994            // yields a clazz T.C.
1995            Type encltype = chk.checkRefType(tree.encl.pos(),
1996                                             attribExpr(tree.encl, env));
1997            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1998            // from expr to the combined type, or not? Yes, do this.
1999            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2000                                                 ((JCIdent) clazzid).name);
2001
2002            EndPosTable endPosTable = this.env.toplevel.endPositions;
2003            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2004            if (clazz.hasTag(ANNOTATED_TYPE)) {
2005                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2006                List<JCAnnotation> annos = annoType.annotations;
2007
2008                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2009                    clazzid1 = make.at(tree.pos).
2010                        TypeApply(clazzid1,
2011                                  ((JCTypeApply) clazz).arguments);
2012                }
2013
2014                clazzid1 = make.at(tree.pos).
2015                    AnnotatedType(annos, clazzid1);
2016            } else if (clazz.hasTag(TYPEAPPLY)) {
2017                clazzid1 = make.at(tree.pos).
2018                    TypeApply(clazzid1,
2019                              ((JCTypeApply) clazz).arguments);
2020            }
2021
2022            clazz = clazzid1;
2023        }
2024
2025        // Attribute clazz expression and store
2026        // symbol + type back into the attributed tree.
2027        Type clazztype;
2028
2029        try {
2030            env.info.isNewClass = true;
2031            clazztype = TreeInfo.isEnumInit(env.tree) ?
2032                attribIdentAsEnumType(env, (JCIdent)clazz) :
2033                attribType(clazz, env);
2034        } finally {
2035            env.info.isNewClass = false;
2036        }
2037
2038        clazztype = chk.checkDiamond(tree, clazztype);
2039        chk.validate(clazz, localEnv);
2040        if (tree.encl != null) {
2041            // We have to work in this case to store
2042            // symbol + type back into the attributed tree.
2043            tree.clazz.type = clazztype;
2044            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2045            clazzid.type = ((JCIdent) clazzid).sym.type;
2046            if (annoclazzid != null) {
2047                annoclazzid.type = clazzid.type;
2048            }
2049            if (!clazztype.isErroneous()) {
2050                if (cdef != null && clazztype.tsym.isInterface()) {
2051                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2052                } else if (clazztype.tsym.isStatic()) {
2053                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2054                }
2055            }
2056        } else if (!clazztype.tsym.isInterface() &&
2057                   clazztype.getEnclosingType().hasTag(CLASS)) {
2058            // Check for the existence of an apropos outer instance
2059            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2060        }
2061
2062        // Attribute constructor arguments.
2063        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2064        final KindSelector pkind =
2065            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2066        List<Type> argtypes = argtypesBuf.toList();
2067        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2068
2069        // If we have made no mistakes in the class type...
2070        if (clazztype.hasTag(CLASS)) {
2071            // Enums may not be instantiated except implicitly
2072            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2073                (!env.tree.hasTag(VARDEF) ||
2074                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2075                 ((JCVariableDecl) env.tree).init != tree))
2076                log.error(tree.pos(), "enum.cant.be.instantiated");
2077
2078            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2079                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2080            boolean skipNonDiamondPath = false;
2081            // Check that class is not abstract
2082            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2083                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2084                log.error(tree.pos(), "abstract.cant.be.instantiated",
2085                          clazztype.tsym);
2086                skipNonDiamondPath = true;
2087            } else if (cdef != null && clazztype.tsym.isInterface()) {
2088                // Check that no constructor arguments are given to
2089                // anonymous classes implementing an interface
2090                if (!argtypes.isEmpty())
2091                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2092
2093                if (!typeargtypes.isEmpty())
2094                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2095
2096                // Error recovery: pretend no arguments were supplied.
2097                argtypes = List.nil();
2098                typeargtypes = List.nil();
2099                skipNonDiamondPath = true;
2100            }
2101            if (TreeInfo.isDiamond(tree)) {
2102                ClassType site = new ClassType(clazztype.getEnclosingType(),
2103                            clazztype.tsym.type.getTypeArguments(),
2104                                               clazztype.tsym,
2105                                               clazztype.getMetadata());
2106
2107                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2108                diamondEnv.info.selectSuper = cdef != null;
2109                diamondEnv.info.pendingResolutionPhase = null;
2110
2111                //if the type of the instance creation expression is a class type
2112                //apply method resolution inference (JLS 15.12.2.7). The return type
2113                //of the resolved constructor will be a partially instantiated type
2114                Symbol constructor = rs.resolveDiamond(tree.pos(),
2115                            diamondEnv,
2116                            site,
2117                            argtypes,
2118                            typeargtypes);
2119                tree.constructor = constructor.baseSymbol();
2120
2121                final TypeSymbol csym = clazztype.tsym;
2122                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2123                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2124                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2125                constructorType = checkId(tree, site,
2126                        constructor,
2127                        diamondEnv,
2128                        diamondResult);
2129
2130                tree.clazz.type = types.createErrorType(clazztype);
2131                if (!constructorType.isErroneous()) {
2132                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2133                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2134                }
2135                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2136            }
2137
2138            // Resolve the called constructor under the assumption
2139            // that we are referring to a superclass instance of the
2140            // current instance (JLS ???).
2141            else if (!skipNonDiamondPath) {
2142                //the following code alters some of the fields in the current
2143                //AttrContext - hence, the current context must be dup'ed in
2144                //order to avoid downstream failures
2145                Env<AttrContext> rsEnv = localEnv.dup(tree);
2146                rsEnv.info.selectSuper = cdef != null;
2147                rsEnv.info.pendingResolutionPhase = null;
2148                tree.constructor = rs.resolveConstructor(
2149                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2150                if (cdef == null) { //do not check twice!
2151                    tree.constructorType = checkId(tree,
2152                            clazztype,
2153                            tree.constructor,
2154                            rsEnv,
2155                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2156                    if (rsEnv.info.lastResolveVarargs())
2157                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2158                }
2159            }
2160
2161            if (cdef != null) {
2162                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2163                return;
2164            }
2165
2166            if (tree.constructor != null && tree.constructor.kind == MTH)
2167                owntype = clazztype;
2168        }
2169        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2170        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2171        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2172            //we need to wait for inference to finish and then replace inference vars in the constructor type
2173            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2174                    instantiatedContext -> {
2175                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2176                    });
2177        }
2178        chk.validate(tree.typeargs, localEnv);
2179    }
2180
2181        // where
2182        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2183                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2184                                                   List<Type> argtypes, List<Type> typeargtypes,
2185                                                   KindSelector pkind) {
2186            // We are seeing an anonymous class instance creation.
2187            // In this case, the class instance creation
2188            // expression
2189            //
2190            //    E.new <typeargs1>C<typargs2>(args) { ... }
2191            //
2192            // is represented internally as
2193            //
2194            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2195            //
2196            // This expression is then *transformed* as follows:
2197            //
2198            // (1) add an extends or implements clause
2199            // (2) add a constructor.
2200            //
2201            // For instance, if C is a class, and ET is the type of E,
2202            // the expression
2203            //
2204            //    E.new <typeargs1>C<typargs2>(args) { ... }
2205            //
2206            // is translated to (where X is a fresh name and typarams is the
2207            // parameter list of the super constructor):
2208            //
2209            //   new <typeargs1>X(<*nullchk*>E, args) where
2210            //     X extends C<typargs2> {
2211            //       <typarams> X(ET e, args) {
2212            //         e.<typeargs1>super(args)
2213            //       }
2214            //       ...
2215            //     }
2216            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2217            final boolean isDiamond = TreeInfo.isDiamond(tree);
2218            if (isDiamond
2219                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2220                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2221                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2222                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2223                        instantiatedContext -> {
2224                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2225                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2226                            ResultInfo prevResult = this.resultInfo;
2227                            try {
2228                                this.resultInfo = resultInfoForClassDefinition;
2229                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2230                                                            localEnv, argtypes, typeargtypes, pkind);
2231                            } finally {
2232                                this.resultInfo = prevResult;
2233                            }
2234                        });
2235            } else {
2236                if (isDiamond && clazztype.hasTag(CLASS)) {
2237                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2238                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2239                        // One or more types inferred in the previous steps is non-denotable.
2240                        Fragment fragment = Diamond(clazztype.tsym);
2241                        log.error(tree.clazz.pos(),
2242                                Errors.CantApplyDiamond1(
2243                                        fragment,
2244                                        invalidDiamondArgs.size() > 1 ?
2245                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2246                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2247                    }
2248                    // For <>(){}, inferred types must also be accessible.
2249                    for (Type t : clazztype.getTypeArguments()) {
2250                        rs.checkAccessibleType(env, t);
2251                    }
2252                }
2253
2254                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2255                // false for isInterface call even when the original type is an interface.
2256                boolean implementing = clazztype.tsym.isInterface() ||
2257                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2258
2259                if (implementing) {
2260                    cdef.implementing = List.of(clazz);
2261                } else {
2262                    cdef.extending = clazz;
2263                }
2264
2265                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2266                    isSerializable(clazztype)) {
2267                    localEnv.info.isSerializable = true;
2268                }
2269
2270                attribStat(cdef, localEnv);
2271
2272                List<Type> finalargtypes;
2273                // If an outer instance is given,
2274                // prefix it to the constructor arguments
2275                // and delete it from the new expression
2276                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2277                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2278                    finalargtypes = argtypes.prepend(tree.encl.type);
2279                    tree.encl = null;
2280                } else {
2281                    finalargtypes = argtypes;
2282                }
2283
2284                // Reassign clazztype and recompute constructor. As this necessarily involves
2285                // another attribution pass for deferred types in the case of <>, replicate
2286                // them. Original arguments have right decorations already.
2287                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2288                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2289                }
2290
2291                clazztype = cdef.sym.type;
2292                Symbol sym = tree.constructor = rs.resolveConstructor(
2293                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2294                Assert.check(!sym.kind.isResolutionError());
2295                tree.constructor = sym;
2296                tree.constructorType = checkId(tree,
2297                        clazztype,
2298                        tree.constructor,
2299                        localEnv,
2300                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2301            }
2302            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2303                                clazztype : types.createErrorType(tree.type);
2304            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2305            chk.validate(tree.typeargs, localEnv);
2306        }
2307
2308        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2309            return new Check.NestedCheckContext(checkContext) {
2310                @Override
2311                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2312                    enclosingContext.report(clazz.clazz,
2313                            diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", tsym), details));
2314                }
2315            };
2316        }
2317
2318    /** Make an attributed null check tree.
2319     */
2320    public JCExpression makeNullCheck(JCExpression arg) {
2321        // optimization: X.this is never null; skip null check
2322        Name name = TreeInfo.name(arg);
2323        if (name == names._this || name == names._super) return arg;
2324
2325        JCTree.Tag optag = NULLCHK;
2326        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2327        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2328        tree.type = arg.type;
2329        return tree;
2330    }
2331
2332    public void visitNewArray(JCNewArray tree) {
2333        Type owntype = types.createErrorType(tree.type);
2334        Env<AttrContext> localEnv = env.dup(tree);
2335        Type elemtype;
2336        if (tree.elemtype != null) {
2337            elemtype = attribType(tree.elemtype, localEnv);
2338            chk.validate(tree.elemtype, localEnv);
2339            owntype = elemtype;
2340            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2341                attribExpr(l.head, localEnv, syms.intType);
2342                owntype = new ArrayType(owntype, syms.arrayClass);
2343            }
2344        } else {
2345            // we are seeing an untyped aggregate { ... }
2346            // this is allowed only if the prototype is an array
2347            if (pt().hasTag(ARRAY)) {
2348                elemtype = types.elemtype(pt());
2349            } else {
2350                if (!pt().hasTag(ERROR)) {
2351                    log.error(tree.pos(), "illegal.initializer.for.type",
2352                              pt());
2353                }
2354                elemtype = types.createErrorType(pt());
2355            }
2356        }
2357        if (tree.elems != null) {
2358            attribExprs(tree.elems, localEnv, elemtype);
2359            owntype = new ArrayType(elemtype, syms.arrayClass);
2360        }
2361        if (!types.isReifiable(elemtype))
2362            log.error(tree.pos(), "generic.array.creation");
2363        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2364    }
2365
2366    /*
2367     * A lambda expression can only be attributed when a target-type is available.
2368     * In addition, if the target-type is that of a functional interface whose
2369     * descriptor contains inference variables in argument position the lambda expression
2370     * is 'stuck' (see DeferredAttr).
2371     */
2372    @Override
2373    public void visitLambda(final JCLambda that) {
2374        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2375            if (pt().hasTag(NONE)) {
2376                //lambda only allowed in assignment or method invocation/cast context
2377                log.error(that.pos(), "unexpected.lambda");
2378            }
2379            result = that.type = types.createErrorType(pt());
2380            return;
2381        }
2382        //create an environment for attribution of the lambda expression
2383        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2384        boolean needsRecovery =
2385                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2386        try {
2387            if (needsRecovery && isSerializable(pt())) {
2388                localEnv.info.isSerializable = true;
2389            }
2390            List<Type> explicitParamTypes = null;
2391            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2392                //attribute lambda parameters
2393                attribStats(that.params, localEnv);
2394                explicitParamTypes = TreeInfo.types(that.params);
2395            }
2396
2397            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2398            Type currentTarget = targetInfo.target;
2399            Type lambdaType = targetInfo.descriptor;
2400
2401            if (currentTarget.isErroneous()) {
2402                result = that.type = currentTarget;
2403                return;
2404            }
2405
2406            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2407
2408            if (lambdaType.hasTag(FORALL)) {
2409                //lambda expression target desc cannot be a generic method
2410                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2411                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2412                result = that.type = types.createErrorType(pt());
2413                return;
2414            }
2415
2416            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2417                //add param type info in the AST
2418                List<Type> actuals = lambdaType.getParameterTypes();
2419                List<JCVariableDecl> params = that.params;
2420
2421                boolean arityMismatch = false;
2422
2423                while (params.nonEmpty()) {
2424                    if (actuals.isEmpty()) {
2425                        //not enough actuals to perform lambda parameter inference
2426                        arityMismatch = true;
2427                    }
2428                    //reset previously set info
2429                    Type argType = arityMismatch ?
2430                            syms.errType :
2431                            actuals.head;
2432                    params.head.vartype = make.at(params.head).Type(argType);
2433                    params.head.sym = null;
2434                    actuals = actuals.isEmpty() ?
2435                            actuals :
2436                            actuals.tail;
2437                    params = params.tail;
2438                }
2439
2440                //attribute lambda parameters
2441                attribStats(that.params, localEnv);
2442
2443                if (arityMismatch) {
2444                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2445                        result = that.type = types.createErrorType(currentTarget);
2446                        return;
2447                }
2448            }
2449
2450            //from this point on, no recovery is needed; if we are in assignment context
2451            //we will be able to attribute the whole lambda body, regardless of errors;
2452            //if we are in a 'check' method context, and the lambda is not compatible
2453            //with the target-type, it will be recovered anyway in Attr.checkId
2454            needsRecovery = false;
2455
2456            ResultInfo bodyResultInfo = localEnv.info.returnResult =
2457                    lambdaBodyResult(that, lambdaType, resultInfo);
2458
2459            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2460                attribTree(that.getBody(), localEnv, bodyResultInfo);
2461            } else {
2462                JCBlock body = (JCBlock)that.body;
2463                attribStats(body.stats, localEnv);
2464            }
2465
2466            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2467
2468            boolean isSpeculativeRound =
2469                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2470
2471            preFlow(that);
2472            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2473
2474            that.type = currentTarget; //avoids recovery at this stage
2475            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2476
2477            if (!isSpeculativeRound) {
2478                //add thrown types as bounds to the thrown types free variables if needed:
2479                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2480                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2481                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2482
2483                    chk.unhandled(inferredThrownTypes, thrownTypes);
2484                }
2485
2486                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2487            }
2488            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2489        } catch (Types.FunctionDescriptorLookupError ex) {
2490            JCDiagnostic cause = ex.getDiagnostic();
2491            resultInfo.checkContext.report(that, cause);
2492            result = that.type = types.createErrorType(pt());
2493            return;
2494        } catch (Throwable t) {
2495            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2496            //as that would likely cause the same exception again.
2497            needsRecovery = false;
2498            throw t;
2499        } finally {
2500            localEnv.info.scope.leave();
2501            if (needsRecovery) {
2502                attribTree(that, env, recoveryInfo);
2503            }
2504        }
2505    }
2506    //where
2507        class TargetInfo {
2508            Type target;
2509            Type descriptor;
2510
2511            public TargetInfo(Type target, Type descriptor) {
2512                this.target = target;
2513                this.descriptor = descriptor;
2514            }
2515        }
2516
2517        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2518            Type lambdaType;
2519            Type currentTarget = resultInfo.pt;
2520            if (resultInfo.pt != Type.recoveryType) {
2521                /* We need to adjust the target. If the target is an
2522                 * intersection type, for example: SAM & I1 & I2 ...
2523                 * the target will be updated to SAM
2524                 */
2525                currentTarget = targetChecker.visit(currentTarget, that);
2526                if (explicitParamTypes != null) {
2527                    currentTarget = infer.instantiateFunctionalInterface(that,
2528                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2529                }
2530                currentTarget = types.removeWildcards(currentTarget);
2531                lambdaType = types.findDescriptorType(currentTarget);
2532            } else {
2533                currentTarget = Type.recoveryType;
2534                lambdaType = fallbackDescriptorType(that);
2535            }
2536            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2537                //lambda expression target desc cannot be a generic method
2538                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2539                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2540                currentTarget = types.createErrorType(pt());
2541            }
2542            return new TargetInfo(currentTarget, lambdaType);
2543        }
2544
2545        void preFlow(JCLambda tree) {
2546            new PostAttrAnalyzer() {
2547                @Override
2548                public void scan(JCTree tree) {
2549                    if (tree == null ||
2550                            (tree.type != null &&
2551                            tree.type == Type.stuckType)) {
2552                        //don't touch stuck expressions!
2553                        return;
2554                    }
2555                    super.scan(tree);
2556                }
2557            }.scan(tree);
2558        }
2559
2560        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2561
2562            @Override
2563            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2564                return t.isIntersection() ?
2565                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2566            }
2567
2568            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2569                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2570                Type target = null;
2571                for (Type bound : ict.getExplicitComponents()) {
2572                    TypeSymbol boundSym = bound.tsym;
2573                    if (types.isFunctionalInterface(boundSym) &&
2574                            types.findDescriptorSymbol(boundSym) == desc) {
2575                        target = bound;
2576                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2577                        //bound must be an interface
2578                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2579                    }
2580                }
2581                return target != null ?
2582                        target :
2583                        ict.getExplicitComponents().head; //error recovery
2584            }
2585
2586            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2587                ListBuffer<Type> targs = new ListBuffer<>();
2588                ListBuffer<Type> supertypes = new ListBuffer<>();
2589                for (Type i : ict.interfaces_field) {
2590                    if (i.isParameterized()) {
2591                        targs.appendList(i.tsym.type.allparams());
2592                    }
2593                    supertypes.append(i.tsym.type);
2594                }
2595                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2596                notionalIntf.allparams_field = targs.toList();
2597                notionalIntf.tsym.flags_field |= INTERFACE;
2598                return notionalIntf.tsym;
2599            }
2600
2601            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2602                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2603                        diags.fragment(key, args)));
2604            }
2605        };
2606
2607        private Type fallbackDescriptorType(JCExpression tree) {
2608            switch (tree.getTag()) {
2609                case LAMBDA:
2610                    JCLambda lambda = (JCLambda)tree;
2611                    List<Type> argtypes = List.nil();
2612                    for (JCVariableDecl param : lambda.params) {
2613                        argtypes = param.vartype != null ?
2614                                argtypes.append(param.vartype.type) :
2615                                argtypes.append(syms.errType);
2616                    }
2617                    return new MethodType(argtypes, Type.recoveryType,
2618                            List.of(syms.throwableType), syms.methodClass);
2619                case REFERENCE:
2620                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2621                            List.of(syms.throwableType), syms.methodClass);
2622                default:
2623                    Assert.error("Cannot get here!");
2624            }
2625            return null;
2626        }
2627
2628        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2629                final InferenceContext inferenceContext, final Type... ts) {
2630            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2631        }
2632
2633        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2634                final InferenceContext inferenceContext, final List<Type> ts) {
2635            if (inferenceContext.free(ts)) {
2636                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2637                    @Override
2638                    public void typesInferred(InferenceContext inferenceContext) {
2639                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2640                    }
2641                });
2642            } else {
2643                for (Type t : ts) {
2644                    rs.checkAccessibleType(env, t);
2645                }
2646            }
2647        }
2648
2649        /**
2650         * Lambda/method reference have a special check context that ensures
2651         * that i.e. a lambda return type is compatible with the expected
2652         * type according to both the inherited context and the assignment
2653         * context.
2654         */
2655        class FunctionalReturnContext extends Check.NestedCheckContext {
2656
2657            FunctionalReturnContext(CheckContext enclosingContext) {
2658                super(enclosingContext);
2659            }
2660
2661            @Override
2662            public boolean compatible(Type found, Type req, Warner warn) {
2663                //return type must be compatible in both current context and assignment context
2664                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2665            }
2666
2667            @Override
2668            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2669                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2670            }
2671        }
2672
2673        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2674
2675            JCExpression expr;
2676
2677            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2678                super(enclosingContext);
2679                this.expr = expr;
2680            }
2681
2682            @Override
2683            public boolean compatible(Type found, Type req, Warner warn) {
2684                //a void return is compatible with an expression statement lambda
2685                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2686                        super.compatible(found, req, warn);
2687            }
2688        }
2689
2690        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2691            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2692                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2693                    new FunctionalReturnContext(resultInfo.checkContext);
2694
2695            return descriptor.getReturnType() == Type.recoveryType ?
2696                    recoveryInfo :
2697                    new ResultInfo(KindSelector.VAL,
2698                            descriptor.getReturnType(), funcContext);
2699        }
2700
2701        /**
2702        * Lambda compatibility. Check that given return types, thrown types, parameter types
2703        * are compatible with the expected functional interface descriptor. This means that:
2704        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2705        * types must be compatible with the return type of the expected descriptor.
2706        */
2707        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2708            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2709
2710            //return values have already been checked - but if lambda has no return
2711            //values, we must ensure that void/value compatibility is correct;
2712            //this amounts at checking that, if a lambda body can complete normally,
2713            //the descriptor's return type must be void
2714            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2715                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2716                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2717                        diags.fragment("missing.ret.val", returnType)));
2718            }
2719
2720            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2721            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2722                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2723            }
2724        }
2725
2726        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2727         * static field and that lambda has type annotations, these annotations will
2728         * also be stored at these fake clinit methods.
2729         *
2730         * LambdaToMethod also use fake clinit methods so they can be reused.
2731         * Also as LTM is a phase subsequent to attribution, the methods from
2732         * clinits can be safely removed by LTM to save memory.
2733         */
2734        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2735
2736        public MethodSymbol removeClinit(ClassSymbol sym) {
2737            return clinits.remove(sym);
2738        }
2739
2740        /* This method returns an environment to be used to attribute a lambda
2741         * expression.
2742         *
2743         * The owner of this environment is a method symbol. If the current owner
2744         * is not a method, for example if the lambda is used to initialize
2745         * a field, then if the field is:
2746         *
2747         * - an instance field, we use the first constructor.
2748         * - a static field, we create a fake clinit method.
2749         */
2750        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2751            Env<AttrContext> lambdaEnv;
2752            Symbol owner = env.info.scope.owner;
2753            if (owner.kind == VAR && owner.owner.kind == TYP) {
2754                //field initializer
2755                ClassSymbol enclClass = owner.enclClass();
2756                Symbol newScopeOwner = env.info.scope.owner;
2757                /* if the field isn't static, then we can get the first constructor
2758                 * and use it as the owner of the environment. This is what
2759                 * LTM code is doing to look for type annotations so we are fine.
2760                 */
2761                if ((owner.flags() & STATIC) == 0) {
2762                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2763                        newScopeOwner = s;
2764                        break;
2765                    }
2766                } else {
2767                    /* if the field is static then we need to create a fake clinit
2768                     * method, this method can later be reused by LTM.
2769                     */
2770                    MethodSymbol clinit = clinits.get(enclClass);
2771                    if (clinit == null) {
2772                        Type clinitType = new MethodType(List.<Type>nil(),
2773                                syms.voidType, List.<Type>nil(), syms.methodClass);
2774                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2775                                names.clinit, clinitType, enclClass);
2776                        clinit.params = List.<VarSymbol>nil();
2777                        clinits.put(enclClass, clinit);
2778                    }
2779                    newScopeOwner = clinit;
2780                }
2781                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2782            } else {
2783                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2784            }
2785            return lambdaEnv;
2786        }
2787
2788    @Override
2789    public void visitReference(final JCMemberReference that) {
2790        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2791            if (pt().hasTag(NONE)) {
2792                //method reference only allowed in assignment or method invocation/cast context
2793                log.error(that.pos(), "unexpected.mref");
2794            }
2795            result = that.type = types.createErrorType(pt());
2796            return;
2797        }
2798        final Env<AttrContext> localEnv = env.dup(that);
2799        try {
2800            //attribute member reference qualifier - if this is a constructor
2801            //reference, the expected kind must be a type
2802            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2803
2804            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2805                exprType = chk.checkConstructorRefType(that.expr, exprType);
2806                if (!exprType.isErroneous() &&
2807                    exprType.isRaw() &&
2808                    that.typeargs != null) {
2809                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2810                        diags.fragment("mref.infer.and.explicit.params"));
2811                    exprType = types.createErrorType(exprType);
2812                }
2813            }
2814
2815            if (exprType.isErroneous()) {
2816                //if the qualifier expression contains problems,
2817                //give up attribution of method reference
2818                result = that.type = exprType;
2819                return;
2820            }
2821
2822            if (TreeInfo.isStaticSelector(that.expr, names)) {
2823                //if the qualifier is a type, validate it; raw warning check is
2824                //omitted as we don't know at this stage as to whether this is a
2825                //raw selector (because of inference)
2826                chk.validate(that.expr, env, false);
2827            } else {
2828                Symbol lhsSym = TreeInfo.symbol(that.expr);
2829                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2830            }
2831            //attrib type-arguments
2832            List<Type> typeargtypes = List.nil();
2833            if (that.typeargs != null) {
2834                typeargtypes = attribTypes(that.typeargs, localEnv);
2835            }
2836
2837            boolean isTargetSerializable =
2838                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2839                    isSerializable(pt());
2840            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2841            Type currentTarget = targetInfo.target;
2842            Type desc = targetInfo.descriptor;
2843
2844            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2845            List<Type> argtypes = desc.getParameterTypes();
2846            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2847
2848            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2849                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2850            }
2851
2852            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2853            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2854            try {
2855                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2856                        that.name, argtypes, typeargtypes, referenceCheck,
2857                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2858            } finally {
2859                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2860            }
2861
2862            Symbol refSym = refResult.fst;
2863            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2864
2865            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2866             *  JDK-8075541
2867             */
2868            if (refSym.kind != MTH) {
2869                boolean targetError;
2870                switch (refSym.kind) {
2871                    case ABSENT_MTH:
2872                    case MISSING_ENCL:
2873                        targetError = false;
2874                        break;
2875                    case WRONG_MTH:
2876                    case WRONG_MTHS:
2877                    case AMBIGUOUS:
2878                    case HIDDEN:
2879                    case STATICERR:
2880                        targetError = true;
2881                        break;
2882                    default:
2883                        Assert.error("unexpected result kind " + refSym.kind);
2884                        targetError = false;
2885                }
2886
2887                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2888                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2889
2890                JCDiagnostic.DiagnosticType diagKind = targetError ?
2891                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2892
2893                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2894                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2895
2896                if (targetError && currentTarget == Type.recoveryType) {
2897                    //a target error doesn't make sense during recovery stage
2898                    //as we don't know what actual parameter types are
2899                    result = that.type = currentTarget;
2900                    return;
2901                } else {
2902                    if (targetError) {
2903                        resultInfo.checkContext.report(that, diag);
2904                    } else {
2905                        log.report(diag);
2906                    }
2907                    result = that.type = types.createErrorType(currentTarget);
2908                    return;
2909                }
2910            }
2911
2912            that.sym = refSym.baseSymbol();
2913            that.kind = lookupHelper.referenceKind(that.sym);
2914            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2915
2916            if (desc.getReturnType() == Type.recoveryType) {
2917                // stop here
2918                result = that.type = currentTarget;
2919                return;
2920            }
2921
2922            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2923
2924                if (that.getMode() == ReferenceMode.INVOKE &&
2925                        TreeInfo.isStaticSelector(that.expr, names) &&
2926                        that.kind.isUnbound() &&
2927                        !desc.getParameterTypes().head.isParameterized()) {
2928                    chk.checkRaw(that.expr, localEnv);
2929                }
2930
2931                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2932                        exprType.getTypeArguments().nonEmpty()) {
2933                    //static ref with class type-args
2934                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2935                            diags.fragment("static.mref.with.targs"));
2936                    result = that.type = types.createErrorType(currentTarget);
2937                    return;
2938                }
2939
2940                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2941                    // Check that super-qualified symbols are not abstract (JLS)
2942                    rs.checkNonAbstract(that.pos(), that.sym);
2943                }
2944
2945                if (isTargetSerializable) {
2946                    chk.checkElemAccessFromSerializableLambda(that);
2947                }
2948            }
2949
2950            ResultInfo checkInfo =
2951                    resultInfo.dup(newMethodTemplate(
2952                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2953                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2954                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2955
2956            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2957
2958            if (that.kind.isUnbound() &&
2959                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2960                //re-generate inference constraints for unbound receiver
2961                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2962                    //cannot happen as this has already been checked - we just need
2963                    //to regenerate the inference constraints, as that has been lost
2964                    //as a result of the call to inferenceContext.save()
2965                    Assert.error("Can't get here");
2966                }
2967            }
2968
2969            if (!refType.isErroneous()) {
2970                refType = types.createMethodTypeWithReturn(refType,
2971                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2972            }
2973
2974            //go ahead with standard method reference compatibility check - note that param check
2975            //is a no-op (as this has been taken care during method applicability)
2976            boolean isSpeculativeRound =
2977                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2978
2979            that.type = currentTarget; //avoids recovery at this stage
2980            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2981            if (!isSpeculativeRound) {
2982                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2983            }
2984            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2985        } catch (Types.FunctionDescriptorLookupError ex) {
2986            JCDiagnostic cause = ex.getDiagnostic();
2987            resultInfo.checkContext.report(that, cause);
2988            result = that.type = types.createErrorType(pt());
2989            return;
2990        }
2991    }
2992    //where
2993        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2994            //if this is a constructor reference, the expected kind must be a type
2995            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2996                                  KindSelector.VAL_TYP : KindSelector.TYP,
2997                                  Type.noType);
2998        }
2999
3000
3001    @SuppressWarnings("fallthrough")
3002    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3003        InferenceContext inferenceContext = checkContext.inferenceContext();
3004        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3005
3006        Type resType;
3007        switch (tree.getMode()) {
3008            case NEW:
3009                if (!tree.expr.type.isRaw()) {
3010                    resType = tree.expr.type;
3011                    break;
3012                }
3013            default:
3014                resType = refType.getReturnType();
3015        }
3016
3017        Type incompatibleReturnType = resType;
3018
3019        if (returnType.hasTag(VOID)) {
3020            incompatibleReturnType = null;
3021        }
3022
3023        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3024            if (resType.isErroneous() ||
3025                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
3026                incompatibleReturnType = null;
3027            }
3028        }
3029
3030        if (incompatibleReturnType != null) {
3031            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
3032                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
3033        } else {
3034            if (inferenceContext.free(refType)) {
3035                // we need to wait for inference to finish and then replace inference vars in the referent type
3036                inferenceContext.addFreeTypeListener(List.of(refType),
3037                        instantiatedContext -> {
3038                            tree.referentType = instantiatedContext.asInstType(refType);
3039                        });
3040            } else {
3041                tree.referentType = refType;
3042            }
3043        }
3044
3045        if (!speculativeAttr) {
3046            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3047            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3048                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
3049            }
3050        }
3051    }
3052
3053    /**
3054     * Set functional type info on the underlying AST. Note: as the target descriptor
3055     * might contain inference variables, we might need to register an hook in the
3056     * current inference context.
3057     */
3058    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3059            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3060        if (checkContext.inferenceContext().free(descriptorType)) {
3061            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
3062                public void typesInferred(InferenceContext inferenceContext) {
3063                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3064                            inferenceContext.asInstType(primaryTarget), checkContext);
3065                }
3066            });
3067        } else {
3068            ListBuffer<Type> targets = new ListBuffer<>();
3069            if (pt.hasTag(CLASS)) {
3070                if (pt.isCompound()) {
3071                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
3072                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3073                        if (t != primaryTarget) {
3074                            targets.append(types.removeWildcards(t));
3075                        }
3076                    }
3077                } else {
3078                    targets.append(types.removeWildcards(primaryTarget));
3079                }
3080            }
3081            fExpr.targets = targets.toList();
3082            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3083                    pt != Type.recoveryType) {
3084                //check that functional interface class is well-formed
3085                try {
3086                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3087                     * when it's executed post-inference. See the listener code
3088                     * above.
3089                     */
3090                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3091                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3092                    if (csym != null) {
3093                        chk.checkImplementations(env.tree, csym, csym);
3094                        try {
3095                            //perform an additional functional interface check on the synthetic class,
3096                            //as there may be spurious errors for raw targets - because of existing issues
3097                            //with membership and inheritance (see JDK-8074570).
3098                            csym.flags_field |= INTERFACE;
3099                            types.findDescriptorType(csym.type);
3100                        } catch (FunctionDescriptorLookupError err) {
3101                            resultInfo.checkContext.report(fExpr,
3102                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3103                        }
3104                    }
3105                } catch (Types.FunctionDescriptorLookupError ex) {
3106                    JCDiagnostic cause = ex.getDiagnostic();
3107                    resultInfo.checkContext.report(env.tree, cause);
3108                }
3109            }
3110        }
3111    }
3112
3113    public void visitParens(JCParens tree) {
3114        Type owntype = attribTree(tree.expr, env, resultInfo);
3115        result = check(tree, owntype, pkind(), resultInfo);
3116        Symbol sym = TreeInfo.symbol(tree);
3117        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3118            log.error(tree.pos(), "illegal.start.of.type");
3119    }
3120
3121    public void visitAssign(JCAssign tree) {
3122        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3123        Type capturedType = capture(owntype);
3124        attribExpr(tree.rhs, env, owntype);
3125        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3126    }
3127
3128    public void visitAssignop(JCAssignOp tree) {
3129        // Attribute arguments.
3130        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3131        Type operand = attribExpr(tree.rhs, env);
3132        // Find operator.
3133        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3134        if (operator.kind == MTH &&
3135                !owntype.isErroneous() &&
3136                !operand.isErroneous()) {
3137            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3138            chk.checkCastable(tree.rhs.pos(),
3139                              operator.type.getReturnType(),
3140                              owntype);
3141        }
3142        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3143    }
3144
3145    public void visitUnary(JCUnary tree) {
3146        // Attribute arguments.
3147        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3148            ? attribTree(tree.arg, env, varAssignmentInfo)
3149            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3150
3151        // Find operator.
3152        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3153        Type owntype = types.createErrorType(tree.type);
3154        if (operator.kind == MTH &&
3155                !argtype.isErroneous()) {
3156            owntype = (tree.getTag().isIncOrDecUnaryOp())
3157                ? tree.arg.type
3158                : operator.type.getReturnType();
3159            int opc = ((OperatorSymbol)operator).opcode;
3160
3161            // If the argument is constant, fold it.
3162            if (argtype.constValue() != null) {
3163                Type ctype = cfolder.fold1(opc, argtype);
3164                if (ctype != null) {
3165                    owntype = cfolder.coerce(ctype, owntype);
3166                }
3167            }
3168        }
3169        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3170    }
3171
3172    public void visitBinary(JCBinary tree) {
3173        // Attribute arguments.
3174        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3175        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3176        // Find operator.
3177        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3178        Type owntype = types.createErrorType(tree.type);
3179        if (operator.kind == MTH &&
3180                !left.isErroneous() &&
3181                !right.isErroneous()) {
3182            owntype = operator.type.getReturnType();
3183            int opc = ((OperatorSymbol)operator).opcode;
3184            // If both arguments are constants, fold them.
3185            if (left.constValue() != null && right.constValue() != null) {
3186                Type ctype = cfolder.fold2(opc, left, right);
3187                if (ctype != null) {
3188                    owntype = cfolder.coerce(ctype, owntype);
3189                }
3190            }
3191
3192            // Check that argument types of a reference ==, != are
3193            // castable to each other, (JLS 15.21).  Note: unboxing
3194            // comparisons will not have an acmp* opc at this point.
3195            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3196                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3197                    log.error(tree.pos(), "incomparable.types", left, right);
3198                }
3199            }
3200
3201            chk.checkDivZero(tree.rhs.pos(), operator, right);
3202        }
3203        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3204    }
3205
3206    public void visitTypeCast(final JCTypeCast tree) {
3207        Type clazztype = attribType(tree.clazz, env);
3208        chk.validate(tree.clazz, env, false);
3209        //a fresh environment is required for 292 inference to work properly ---
3210        //see Infer.instantiatePolymorphicSignatureInstance()
3211        Env<AttrContext> localEnv = env.dup(tree);
3212        //should we propagate the target type?
3213        final ResultInfo castInfo;
3214        JCExpression expr = TreeInfo.skipParens(tree.expr);
3215        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3216        if (isPoly) {
3217            //expression is a poly - we need to propagate target type info
3218            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3219                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3220                @Override
3221                public boolean compatible(Type found, Type req, Warner warn) {
3222                    return types.isCastable(found, req, warn);
3223                }
3224            });
3225        } else {
3226            //standalone cast - target-type info is not propagated
3227            castInfo = unknownExprInfo;
3228        }
3229        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3230        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3231        if (exprtype.constValue() != null)
3232            owntype = cfolder.coerce(exprtype, owntype);
3233        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3234        if (!isPoly)
3235            chk.checkRedundantCast(localEnv, tree);
3236    }
3237
3238    public void visitTypeTest(JCInstanceOf tree) {
3239        Type exprtype = chk.checkNullOrRefType(
3240                tree.expr.pos(), attribExpr(tree.expr, env));
3241        Type clazztype = attribType(tree.clazz, env);
3242        if (!clazztype.hasTag(TYPEVAR)) {
3243            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3244        }
3245        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3246            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3247            clazztype = types.createErrorType(clazztype);
3248        }
3249        chk.validate(tree.clazz, env, false);
3250        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3251        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3252    }
3253
3254    public void visitIndexed(JCArrayAccess tree) {
3255        Type owntype = types.createErrorType(tree.type);
3256        Type atype = attribExpr(tree.indexed, env);
3257        attribExpr(tree.index, env, syms.intType);
3258        if (types.isArray(atype))
3259            owntype = types.elemtype(atype);
3260        else if (!atype.hasTag(ERROR))
3261            log.error(tree.pos(), "array.req.but.found", atype);
3262        if (!pkind().contains(KindSelector.VAL))
3263            owntype = capture(owntype);
3264        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3265    }
3266
3267    public void visitIdent(JCIdent tree) {
3268        Symbol sym;
3269
3270        // Find symbol
3271        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3272            // If we are looking for a method, the prototype `pt' will be a
3273            // method type with the type of the call's arguments as parameters.
3274            env.info.pendingResolutionPhase = null;
3275            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3276        } else if (tree.sym != null && tree.sym.kind != VAR) {
3277            sym = tree.sym;
3278        } else {
3279            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3280        }
3281        tree.sym = sym;
3282
3283        // (1) Also find the environment current for the class where
3284        //     sym is defined (`symEnv').
3285        // Only for pre-tiger versions (1.4 and earlier):
3286        // (2) Also determine whether we access symbol out of an anonymous
3287        //     class in a this or super call.  This is illegal for instance
3288        //     members since such classes don't carry a this$n link.
3289        //     (`noOuterThisPath').
3290        Env<AttrContext> symEnv = env;
3291        boolean noOuterThisPath = false;
3292        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3293            sym.kind.matches(KindSelector.VAL_MTH) &&
3294            sym.owner.kind == TYP &&
3295            tree.name != names._this && tree.name != names._super) {
3296
3297            // Find environment in which identifier is defined.
3298            while (symEnv.outer != null &&
3299                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3300                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3301                    noOuterThisPath = false;
3302                symEnv = symEnv.outer;
3303            }
3304        }
3305
3306        // If symbol is a variable, ...
3307        if (sym.kind == VAR) {
3308            VarSymbol v = (VarSymbol)sym;
3309
3310            // ..., evaluate its initializer, if it has one, and check for
3311            // illegal forward reference.
3312            checkInit(tree, env, v, false);
3313
3314            // If we are expecting a variable (as opposed to a value), check
3315            // that the variable is assignable in the current environment.
3316            if (KindSelector.ASG.subset(pkind()))
3317                checkAssignable(tree.pos(), v, null, env);
3318        }
3319
3320        // In a constructor body,
3321        // if symbol is a field or instance method, check that it is
3322        // not accessed before the supertype constructor is called.
3323        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3324            sym.kind.matches(KindSelector.VAL_MTH) &&
3325            sym.owner.kind == TYP &&
3326            (sym.flags() & STATIC) == 0) {
3327            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3328                                          sym : thisSym(tree.pos(), env));
3329        }
3330        Env<AttrContext> env1 = env;
3331        if (sym.kind != ERR && sym.kind != TYP &&
3332            sym.owner != null && sym.owner != env1.enclClass.sym) {
3333            // If the found symbol is inaccessible, then it is
3334            // accessed through an enclosing instance.  Locate this
3335            // enclosing instance:
3336            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3337                env1 = env1.outer;
3338        }
3339
3340        if (env.info.isSerializable) {
3341            chk.checkElemAccessFromSerializableLambda(tree);
3342        }
3343
3344        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3345    }
3346
3347    public void visitSelect(JCFieldAccess tree) {
3348        // Determine the expected kind of the qualifier expression.
3349        KindSelector skind = KindSelector.NIL;
3350        if (tree.name == names._this || tree.name == names._super ||
3351                tree.name == names._class)
3352        {
3353            skind = KindSelector.TYP;
3354        } else {
3355            if (pkind().contains(KindSelector.PCK))
3356                skind = KindSelector.of(skind, KindSelector.PCK);
3357            if (pkind().contains(KindSelector.TYP))
3358                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3359            if (pkind().contains(KindSelector.VAL_MTH))
3360                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3361        }
3362
3363        // Attribute the qualifier expression, and determine its symbol (if any).
3364        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3365        if (!pkind().contains(KindSelector.TYP_PCK))
3366            site = capture(site); // Capture field access
3367
3368        // don't allow T.class T[].class, etc
3369        if (skind == KindSelector.TYP) {
3370            Type elt = site;
3371            while (elt.hasTag(ARRAY))
3372                elt = ((ArrayType)elt).elemtype;
3373            if (elt.hasTag(TYPEVAR)) {
3374                log.error(tree.pos(), "type.var.cant.be.deref");
3375                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3376                tree.sym = tree.type.tsym;
3377                return ;
3378            }
3379        }
3380
3381        // If qualifier symbol is a type or `super', assert `selectSuper'
3382        // for the selection. This is relevant for determining whether
3383        // protected symbols are accessible.
3384        Symbol sitesym = TreeInfo.symbol(tree.selected);
3385        boolean selectSuperPrev = env.info.selectSuper;
3386        env.info.selectSuper =
3387            sitesym != null &&
3388            sitesym.name == names._super;
3389
3390        // Determine the symbol represented by the selection.
3391        env.info.pendingResolutionPhase = null;
3392        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3393        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3394            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3395            sym = syms.errSymbol;
3396        }
3397        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3398            site = capture(site);
3399            sym = selectSym(tree, sitesym, site, env, resultInfo);
3400        }
3401        boolean varArgs = env.info.lastResolveVarargs();
3402        tree.sym = sym;
3403
3404        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3405            site = types.skipTypeVars(site, true);
3406        }
3407
3408        // If that symbol is a variable, ...
3409        if (sym.kind == VAR) {
3410            VarSymbol v = (VarSymbol)sym;
3411
3412            // ..., evaluate its initializer, if it has one, and check for
3413            // illegal forward reference.
3414            checkInit(tree, env, v, true);
3415
3416            // If we are expecting a variable (as opposed to a value), check
3417            // that the variable is assignable in the current environment.
3418            if (KindSelector.ASG.subset(pkind()))
3419                checkAssignable(tree.pos(), v, tree.selected, env);
3420        }
3421
3422        if (sitesym != null &&
3423                sitesym.kind == VAR &&
3424                ((VarSymbol)sitesym).isResourceVariable() &&
3425                sym.kind == MTH &&
3426                sym.name.equals(names.close) &&
3427                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3428                env.info.lint.isEnabled(LintCategory.TRY)) {
3429            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3430        }
3431
3432        // Disallow selecting a type from an expression
3433        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3434            tree.type = check(tree.selected, pt(),
3435                              sitesym == null ?
3436                                      KindSelector.VAL : sitesym.kind.toSelector(),
3437                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3438        }
3439
3440        if (isType(sitesym)) {
3441            if (sym.name == names._this) {
3442                // If `C' is the currently compiled class, check that
3443                // C.this' does not appear in a call to a super(...)
3444                if (env.info.isSelfCall &&
3445                    site.tsym == env.enclClass.sym) {
3446                    chk.earlyRefError(tree.pos(), sym);
3447                }
3448            } else {
3449                // Check if type-qualified fields or methods are static (JLS)
3450                if ((sym.flags() & STATIC) == 0 &&
3451                    !env.next.tree.hasTag(REFERENCE) &&
3452                    sym.name != names._super &&
3453                    (sym.kind == VAR || sym.kind == MTH)) {
3454                    rs.accessBase(rs.new StaticError(sym),
3455                              tree.pos(), site, sym.name, true);
3456                }
3457            }
3458            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3459                    sym.isStatic() && sym.kind == MTH) {
3460                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3461            }
3462        } else if (sym.kind != ERR &&
3463                   (sym.flags() & STATIC) != 0 &&
3464                   sym.name != names._class) {
3465            // If the qualified item is not a type and the selected item is static, report
3466            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3467            chk.warnStatic(tree, "static.not.qualified.by.type",
3468                           sym.kind.kindName(), sym.owner);
3469        }
3470
3471        // If we are selecting an instance member via a `super', ...
3472        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3473
3474            // Check that super-qualified symbols are not abstract (JLS)
3475            rs.checkNonAbstract(tree.pos(), sym);
3476
3477            if (site.isRaw()) {
3478                // Determine argument types for site.
3479                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3480                if (site1 != null) site = site1;
3481            }
3482        }
3483
3484        if (env.info.isSerializable) {
3485            chk.checkElemAccessFromSerializableLambda(tree);
3486        }
3487
3488        env.info.selectSuper = selectSuperPrev;
3489        result = checkId(tree, site, sym, env, resultInfo);
3490    }
3491    //where
3492        /** Determine symbol referenced by a Select expression,
3493         *
3494         *  @param tree   The select tree.
3495         *  @param site   The type of the selected expression,
3496         *  @param env    The current environment.
3497         *  @param resultInfo The current result.
3498         */
3499        private Symbol selectSym(JCFieldAccess tree,
3500                                 Symbol location,
3501                                 Type site,
3502                                 Env<AttrContext> env,
3503                                 ResultInfo resultInfo) {
3504            DiagnosticPosition pos = tree.pos();
3505            Name name = tree.name;
3506            switch (site.getTag()) {
3507            case PACKAGE:
3508                return rs.accessBase(
3509                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3510                    pos, location, site, name, true);
3511            case ARRAY:
3512            case CLASS:
3513                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3514                    return rs.resolveQualifiedMethod(
3515                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3516                } else if (name == names._this || name == names._super) {
3517                    return rs.resolveSelf(pos, env, site.tsym, name);
3518                } else if (name == names._class) {
3519                    // In this case, we have already made sure in
3520                    // visitSelect that qualifier expression is a type.
3521                    Type t = syms.classType;
3522                    List<Type> typeargs = List.of(types.erasure(site));
3523                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3524                    return new VarSymbol(
3525                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3526                } else {
3527                    // We are seeing a plain identifier as selector.
3528                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3529                        sym = rs.accessBase(sym, pos, location, site, name, true);
3530                    return sym;
3531                }
3532            case WILDCARD:
3533                throw new AssertionError(tree);
3534            case TYPEVAR:
3535                // Normally, site.getUpperBound() shouldn't be null.
3536                // It should only happen during memberEnter/attribBase
3537                // when determining the super type which *must* beac
3538                // done before attributing the type variables.  In
3539                // other words, we are seeing this illegal program:
3540                // class B<T> extends A<T.foo> {}
3541                Symbol sym = (site.getUpperBound() != null)
3542                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3543                    : null;
3544                if (sym == null) {
3545                    log.error(pos, "type.var.cant.be.deref");
3546                    return syms.errSymbol;
3547                } else {
3548                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3549                        rs.new AccessError(env, site, sym) :
3550                                sym;
3551                    rs.accessBase(sym2, pos, location, site, name, true);
3552                    return sym;
3553                }
3554            case ERROR:
3555                // preserve identifier names through errors
3556                return types.createErrorType(name, site.tsym, site).tsym;
3557            default:
3558                // The qualifier expression is of a primitive type -- only
3559                // .class is allowed for these.
3560                if (name == names._class) {
3561                    // In this case, we have already made sure in Select that
3562                    // qualifier expression is a type.
3563                    Type t = syms.classType;
3564                    Type arg = types.boxedClass(site).type;
3565                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3566                    return new VarSymbol(
3567                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3568                } else {
3569                    log.error(pos, "cant.deref", site);
3570                    return syms.errSymbol;
3571                }
3572            }
3573        }
3574
3575        /** Determine type of identifier or select expression and check that
3576         *  (1) the referenced symbol is not deprecated
3577         *  (2) the symbol's type is safe (@see checkSafe)
3578         *  (3) if symbol is a variable, check that its type and kind are
3579         *      compatible with the prototype and protokind.
3580         *  (4) if symbol is an instance field of a raw type,
3581         *      which is being assigned to, issue an unchecked warning if its
3582         *      type changes under erasure.
3583         *  (5) if symbol is an instance method of a raw type, issue an
3584         *      unchecked warning if its argument types change under erasure.
3585         *  If checks succeed:
3586         *    If symbol is a constant, return its constant type
3587         *    else if symbol is a method, return its result type
3588         *    otherwise return its type.
3589         *  Otherwise return errType.
3590         *
3591         *  @param tree       The syntax tree representing the identifier
3592         *  @param site       If this is a select, the type of the selected
3593         *                    expression, otherwise the type of the current class.
3594         *  @param sym        The symbol representing the identifier.
3595         *  @param env        The current environment.
3596         *  @param resultInfo    The expected result
3597         */
3598        Type checkId(JCTree tree,
3599                     Type site,
3600                     Symbol sym,
3601                     Env<AttrContext> env,
3602                     ResultInfo resultInfo) {
3603            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3604                    checkMethodId(tree, site, sym, env, resultInfo) :
3605                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3606        }
3607
3608        Type checkMethodId(JCTree tree,
3609                     Type site,
3610                     Symbol sym,
3611                     Env<AttrContext> env,
3612                     ResultInfo resultInfo) {
3613            boolean isPolymorhicSignature =
3614                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3615            return isPolymorhicSignature ?
3616                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3617                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3618        }
3619
3620        Type checkSigPolyMethodId(JCTree tree,
3621                     Type site,
3622                     Symbol sym,
3623                     Env<AttrContext> env,
3624                     ResultInfo resultInfo) {
3625            //recover original symbol for signature polymorphic methods
3626            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3627            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3628            return sym.type;
3629        }
3630
3631        Type checkMethodIdInternal(JCTree tree,
3632                     Type site,
3633                     Symbol sym,
3634                     Env<AttrContext> env,
3635                     ResultInfo resultInfo) {
3636            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3637                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3638                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3639                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3640                return owntype;
3641            } else {
3642                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3643            }
3644        }
3645
3646        Type checkIdInternal(JCTree tree,
3647                     Type site,
3648                     Symbol sym,
3649                     Type pt,
3650                     Env<AttrContext> env,
3651                     ResultInfo resultInfo) {
3652            if (pt.isErroneous()) {
3653                return types.createErrorType(site);
3654            }
3655            Type owntype; // The computed type of this identifier occurrence.
3656            switch (sym.kind) {
3657            case TYP:
3658                // For types, the computed type equals the symbol's type,
3659                // except for two situations:
3660                owntype = sym.type;
3661                if (owntype.hasTag(CLASS)) {
3662                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3663                    Type ownOuter = owntype.getEnclosingType();
3664
3665                    // (a) If the symbol's type is parameterized, erase it
3666                    // because no type parameters were given.
3667                    // We recover generic outer type later in visitTypeApply.
3668                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3669                        owntype = types.erasure(owntype);
3670                    }
3671
3672                    // (b) If the symbol's type is an inner class, then
3673                    // we have to interpret its outer type as a superclass
3674                    // of the site type. Example:
3675                    //
3676                    // class Tree<A> { class Visitor { ... } }
3677                    // class PointTree extends Tree<Point> { ... }
3678                    // ...PointTree.Visitor...
3679                    //
3680                    // Then the type of the last expression above is
3681                    // Tree<Point>.Visitor.
3682                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3683                        Type normOuter = site;
3684                        if (normOuter.hasTag(CLASS)) {
3685                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3686                        }
3687                        if (normOuter == null) // perhaps from an import
3688                            normOuter = types.erasure(ownOuter);
3689                        if (normOuter != ownOuter)
3690                            owntype = new ClassType(
3691                                normOuter, List.<Type>nil(), owntype.tsym,
3692                                owntype.getMetadata());
3693                    }
3694                }
3695                break;
3696            case VAR:
3697                VarSymbol v = (VarSymbol)sym;
3698                // Test (4): if symbol is an instance field of a raw type,
3699                // which is being assigned to, issue an unchecked warning if
3700                // its type changes under erasure.
3701                if (KindSelector.ASG.subset(pkind()) &&
3702                    v.owner.kind == TYP &&
3703                    (v.flags() & STATIC) == 0 &&
3704                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3705                    Type s = types.asOuterSuper(site, v.owner);
3706                    if (s != null &&
3707                        s.isRaw() &&
3708                        !types.isSameType(v.type, v.erasure(types))) {
3709                        chk.warnUnchecked(tree.pos(),
3710                                          "unchecked.assign.to.var",
3711                                          v, s);
3712                    }
3713                }
3714                // The computed type of a variable is the type of the
3715                // variable symbol, taken as a member of the site type.
3716                owntype = (sym.owner.kind == TYP &&
3717                           sym.name != names._this && sym.name != names._super)
3718                    ? types.memberType(site, sym)
3719                    : sym.type;
3720
3721                // If the variable is a constant, record constant value in
3722                // computed type.
3723                if (v.getConstValue() != null && isStaticReference(tree))
3724                    owntype = owntype.constType(v.getConstValue());
3725
3726                if (resultInfo.pkind == KindSelector.VAL) {
3727                    owntype = capture(owntype); // capture "names as expressions"
3728                }
3729                break;
3730            case MTH: {
3731                owntype = checkMethod(site, sym,
3732                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3733                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3734                        resultInfo.pt.getTypeArguments());
3735                break;
3736            }
3737            case PCK: case ERR:
3738                owntype = sym.type;
3739                break;
3740            default:
3741                throw new AssertionError("unexpected kind: " + sym.kind +
3742                                         " in tree " + tree);
3743            }
3744
3745            // Emit a `deprecation' warning if symbol is deprecated.
3746            // (for constructors (but not for constructor references), the error
3747            // was given when the constructor was resolved)
3748
3749            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3750                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3751                chk.checkSunAPI(tree.pos(), sym);
3752                chk.checkProfile(tree.pos(), sym);
3753            }
3754
3755            // If symbol is a variable, check that its type and
3756            // kind are compatible with the prototype and protokind.
3757            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3758        }
3759
3760        /** Check that variable is initialized and evaluate the variable's
3761         *  initializer, if not yet done. Also check that variable is not
3762         *  referenced before it is defined.
3763         *  @param tree    The tree making up the variable reference.
3764         *  @param env     The current environment.
3765         *  @param v       The variable's symbol.
3766         */
3767        private void checkInit(JCTree tree,
3768                               Env<AttrContext> env,
3769                               VarSymbol v,
3770                               boolean onlyWarning) {
3771            // A forward reference is diagnosed if the declaration position
3772            // of the variable is greater than the current tree position
3773            // and the tree and variable definition occur in the same class
3774            // definition.  Note that writes don't count as references.
3775            // This check applies only to class and instance
3776            // variables.  Local variables follow different scope rules,
3777            // and are subject to definite assignment checking.
3778            Env<AttrContext> initEnv = enclosingInitEnv(env);
3779            if (initEnv != null &&
3780                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3781                v.owner.kind == TYP &&
3782                v.owner == env.info.scope.owner.enclClass() &&
3783                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3784                (!env.tree.hasTag(ASSIGN) ||
3785                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3786                String suffix = (initEnv.info.enclVar == v) ?
3787                                "self.ref" : "forward.ref";
3788                if (!onlyWarning || isStaticEnumField(v)) {
3789                    log.error(tree.pos(), "illegal." + suffix);
3790                } else if (useBeforeDeclarationWarning) {
3791                    log.warning(tree.pos(), suffix, v);
3792                }
3793            }
3794
3795            v.getConstValue(); // ensure initializer is evaluated
3796
3797            checkEnumInitializer(tree, env, v);
3798        }
3799
3800        /**
3801         * Returns the enclosing init environment associated with this env (if any). An init env
3802         * can be either a field declaration env or a static/instance initializer env.
3803         */
3804        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3805            while (true) {
3806                switch (env.tree.getTag()) {
3807                    case VARDEF:
3808                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3809                        if (vdecl.sym.owner.kind == TYP) {
3810                            //field
3811                            return env;
3812                        }
3813                        break;
3814                    case BLOCK:
3815                        if (env.next.tree.hasTag(CLASSDEF)) {
3816                            //instance/static initializer
3817                            return env;
3818                        }
3819                        break;
3820                    case METHODDEF:
3821                    case CLASSDEF:
3822                    case TOPLEVEL:
3823                        return null;
3824                }
3825                Assert.checkNonNull(env.next);
3826                env = env.next;
3827            }
3828        }
3829
3830        /**
3831         * Check for illegal references to static members of enum.  In
3832         * an enum type, constructors and initializers may not
3833         * reference its static members unless they are constant.
3834         *
3835         * @param tree    The tree making up the variable reference.
3836         * @param env     The current environment.
3837         * @param v       The variable's symbol.
3838         * @jls  section 8.9 Enums
3839         */
3840        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3841            // JLS:
3842            //
3843            // "It is a compile-time error to reference a static field
3844            // of an enum type that is not a compile-time constant
3845            // (15.28) from constructors, instance initializer blocks,
3846            // or instance variable initializer expressions of that
3847            // type. It is a compile-time error for the constructors,
3848            // instance initializer blocks, or instance variable
3849            // initializer expressions of an enum constant e to refer
3850            // to itself or to an enum constant of the same type that
3851            // is declared to the right of e."
3852            if (isStaticEnumField(v)) {
3853                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3854
3855                if (enclClass == null || enclClass.owner == null)
3856                    return;
3857
3858                // See if the enclosing class is the enum (or a
3859                // subclass thereof) declaring v.  If not, this
3860                // reference is OK.
3861                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3862                    return;
3863
3864                // If the reference isn't from an initializer, then
3865                // the reference is OK.
3866                if (!Resolve.isInitializer(env))
3867                    return;
3868
3869                log.error(tree.pos(), "illegal.enum.static.ref");
3870            }
3871        }
3872
3873        /** Is the given symbol a static, non-constant field of an Enum?
3874         *  Note: enum literals should not be regarded as such
3875         */
3876        private boolean isStaticEnumField(VarSymbol v) {
3877            return Flags.isEnum(v.owner) &&
3878                   Flags.isStatic(v) &&
3879                   !Flags.isConstant(v) &&
3880                   v.name != names._class;
3881        }
3882
3883    /**
3884     * Check that method arguments conform to its instantiation.
3885     **/
3886    public Type checkMethod(Type site,
3887                            final Symbol sym,
3888                            ResultInfo resultInfo,
3889                            Env<AttrContext> env,
3890                            final List<JCExpression> argtrees,
3891                            List<Type> argtypes,
3892                            List<Type> typeargtypes) {
3893        // Test (5): if symbol is an instance method of a raw type, issue
3894        // an unchecked warning if its argument types change under erasure.
3895        if ((sym.flags() & STATIC) == 0 &&
3896            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3897            Type s = types.asOuterSuper(site, sym.owner);
3898            if (s != null && s.isRaw() &&
3899                !types.isSameTypes(sym.type.getParameterTypes(),
3900                                   sym.erasure(types).getParameterTypes())) {
3901                chk.warnUnchecked(env.tree.pos(),
3902                                  "unchecked.call.mbr.of.raw.type",
3903                                  sym, s);
3904            }
3905        }
3906
3907        if (env.info.defaultSuperCallSite != null) {
3908            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3909                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3910                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3911                List<MethodSymbol> icand_sup =
3912                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3913                if (icand_sup.nonEmpty() &&
3914                        icand_sup.head != sym &&
3915                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3916                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3917                        diags.fragment("overridden.default", sym, sup));
3918                    break;
3919                }
3920            }
3921            env.info.defaultSuperCallSite = null;
3922        }
3923
3924        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3925            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3926            if (app.meth.hasTag(SELECT) &&
3927                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3928                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3929            }
3930        }
3931
3932        // Compute the identifier's instantiated type.
3933        // For methods, we need to compute the instance type by
3934        // Resolve.instantiate from the symbol's type as well as
3935        // any type arguments and value arguments.
3936        Warner noteWarner = new Warner();
3937        try {
3938            Type owntype = rs.checkMethod(
3939                    env,
3940                    site,
3941                    sym,
3942                    resultInfo,
3943                    argtypes,
3944                    typeargtypes,
3945                    noteWarner);
3946
3947            DeferredAttr.DeferredTypeMap checkDeferredMap =
3948                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3949
3950            argtypes = argtypes.map(checkDeferredMap);
3951
3952            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3953                chk.warnUnchecked(env.tree.pos(),
3954                        "unchecked.meth.invocation.applied",
3955                        kindName(sym),
3956                        sym.name,
3957                        rs.methodArguments(sym.type.getParameterTypes()),
3958                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3959                        kindName(sym.location()),
3960                        sym.location());
3961               owntype = new MethodType(owntype.getParameterTypes(),
3962                       types.erasure(owntype.getReturnType()),
3963                       types.erasure(owntype.getThrownTypes()),
3964                       syms.methodClass);
3965            }
3966
3967            PolyKind pkind = (sym.type.hasTag(FORALL) &&
3968                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
3969                 PolyKind.POLY : PolyKind.STANDALONE;
3970            TreeInfo.setPolyKind(env.tree, pkind);
3971
3972            return (resultInfo.pt == Infer.anyPoly) ?
3973                    owntype :
3974                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3975                            resultInfo.checkContext.inferenceContext());
3976        } catch (Infer.InferenceException ex) {
3977            //invalid target type - propagate exception outwards or report error
3978            //depending on the current check context
3979            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3980            return types.createErrorType(site);
3981        } catch (Resolve.InapplicableMethodException ex) {
3982            final JCDiagnostic diag = ex.getDiagnostic();
3983            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3984                @Override
3985                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3986                    return new Pair<>(sym, diag);
3987                }
3988            };
3989            List<Type> argtypes2 = argtypes.map(
3990                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3991            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3992                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3993            log.report(errDiag);
3994            return types.createErrorType(site);
3995        }
3996    }
3997
3998    public void visitLiteral(JCLiteral tree) {
3999        result = check(tree, litType(tree.typetag).constType(tree.value),
4000                KindSelector.VAL, resultInfo);
4001    }
4002    //where
4003    /** Return the type of a literal with given type tag.
4004     */
4005    Type litType(TypeTag tag) {
4006        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4007    }
4008
4009    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4010        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4011    }
4012
4013    public void visitTypeArray(JCArrayTypeTree tree) {
4014        Type etype = attribType(tree.elemtype, env);
4015        Type type = new ArrayType(etype, syms.arrayClass);
4016        result = check(tree, type, KindSelector.TYP, resultInfo);
4017    }
4018
4019    /** Visitor method for parameterized types.
4020     *  Bound checking is left until later, since types are attributed
4021     *  before supertype structure is completely known
4022     */
4023    public void visitTypeApply(JCTypeApply tree) {
4024        Type owntype = types.createErrorType(tree.type);
4025
4026        // Attribute functor part of application and make sure it's a class.
4027        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4028
4029        // Attribute type parameters
4030        List<Type> actuals = attribTypes(tree.arguments, env);
4031
4032        if (clazztype.hasTag(CLASS)) {
4033            List<Type> formals = clazztype.tsym.type.getTypeArguments();
4034            if (actuals.isEmpty()) //diamond
4035                actuals = formals;
4036
4037            if (actuals.length() == formals.length()) {
4038                List<Type> a = actuals;
4039                List<Type> f = formals;
4040                while (a.nonEmpty()) {
4041                    a.head = a.head.withTypeVar(f.head);
4042                    a = a.tail;
4043                    f = f.tail;
4044                }
4045                // Compute the proper generic outer
4046                Type clazzOuter = clazztype.getEnclosingType();
4047                if (clazzOuter.hasTag(CLASS)) {
4048                    Type site;
4049                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4050                    if (clazz.hasTag(IDENT)) {
4051                        site = env.enclClass.sym.type;
4052                    } else if (clazz.hasTag(SELECT)) {
4053                        site = ((JCFieldAccess) clazz).selected.type;
4054                    } else throw new AssertionError(""+tree);
4055                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4056                        if (site.hasTag(CLASS))
4057                            site = types.asOuterSuper(site, clazzOuter.tsym);
4058                        if (site == null)
4059                            site = types.erasure(clazzOuter);
4060                        clazzOuter = site;
4061                    }
4062                }
4063                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4064                                        clazztype.getMetadata());
4065            } else {
4066                if (formals.length() != 0) {
4067                    log.error(tree.pos(), "wrong.number.type.args",
4068                              Integer.toString(formals.length()));
4069                } else {
4070                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
4071                }
4072                owntype = types.createErrorType(tree.type);
4073            }
4074        }
4075        result = check(tree, owntype, KindSelector.TYP, resultInfo);
4076    }
4077
4078    public void visitTypeUnion(JCTypeUnion tree) {
4079        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4080        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4081        for (JCExpression typeTree : tree.alternatives) {
4082            Type ctype = attribType(typeTree, env);
4083            ctype = chk.checkType(typeTree.pos(),
4084                          chk.checkClassType(typeTree.pos(), ctype),
4085                          syms.throwableType);
4086            if (!ctype.isErroneous()) {
4087                //check that alternatives of a union type are pairwise
4088                //unrelated w.r.t. subtyping
4089                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4090                    for (Type t : multicatchTypes) {
4091                        boolean sub = types.isSubtype(ctype, t);
4092                        boolean sup = types.isSubtype(t, ctype);
4093                        if (sub || sup) {
4094                            //assume 'a' <: 'b'
4095                            Type a = sub ? ctype : t;
4096                            Type b = sub ? t : ctype;
4097                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4098                        }
4099                    }
4100                }
4101                multicatchTypes.append(ctype);
4102                if (all_multicatchTypes != null)
4103                    all_multicatchTypes.append(ctype);
4104            } else {
4105                if (all_multicatchTypes == null) {
4106                    all_multicatchTypes = new ListBuffer<>();
4107                    all_multicatchTypes.appendList(multicatchTypes);
4108                }
4109                all_multicatchTypes.append(ctype);
4110            }
4111        }
4112        Type t = check(tree, types.lub(multicatchTypes.toList()),
4113                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4114        if (t.hasTag(CLASS)) {
4115            List<Type> alternatives =
4116                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4117            t = new UnionClassType((ClassType) t, alternatives);
4118        }
4119        tree.type = result = t;
4120    }
4121
4122    public void visitTypeIntersection(JCTypeIntersection tree) {
4123        attribTypes(tree.bounds, env);
4124        tree.type = result = checkIntersection(tree, tree.bounds);
4125    }
4126
4127    public void visitTypeParameter(JCTypeParameter tree) {
4128        TypeVar typeVar = (TypeVar) tree.type;
4129
4130        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4131            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4132        }
4133
4134        if (!typeVar.bound.isErroneous()) {
4135            //fixup type-parameter bound computed in 'attribTypeVariables'
4136            typeVar.bound = checkIntersection(tree, tree.bounds);
4137        }
4138    }
4139
4140    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4141        Set<Type> boundSet = new HashSet<>();
4142        if (bounds.nonEmpty()) {
4143            // accept class or interface or typevar as first bound.
4144            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4145            boundSet.add(types.erasure(bounds.head.type));
4146            if (bounds.head.type.isErroneous()) {
4147                return bounds.head.type;
4148            }
4149            else if (bounds.head.type.hasTag(TYPEVAR)) {
4150                // if first bound was a typevar, do not accept further bounds.
4151                if (bounds.tail.nonEmpty()) {
4152                    log.error(bounds.tail.head.pos(),
4153                              "type.var.may.not.be.followed.by.other.bounds");
4154                    return bounds.head.type;
4155                }
4156            } else {
4157                // if first bound was a class or interface, accept only interfaces
4158                // as further bounds.
4159                for (JCExpression bound : bounds.tail) {
4160                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4161                    if (bound.type.isErroneous()) {
4162                        bounds = List.of(bound);
4163                    }
4164                    else if (bound.type.hasTag(CLASS)) {
4165                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4166                    }
4167                }
4168            }
4169        }
4170
4171        if (bounds.length() == 0) {
4172            return syms.objectType;
4173        } else if (bounds.length() == 1) {
4174            return bounds.head.type;
4175        } else {
4176            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4177            // ... the variable's bound is a class type flagged COMPOUND
4178            // (see comment for TypeVar.bound).
4179            // In this case, generate a class tree that represents the
4180            // bound class, ...
4181            JCExpression extending;
4182            List<JCExpression> implementing;
4183            if (!bounds.head.type.isInterface()) {
4184                extending = bounds.head;
4185                implementing = bounds.tail;
4186            } else {
4187                extending = null;
4188                implementing = bounds;
4189            }
4190            JCClassDecl cd = make.at(tree).ClassDef(
4191                make.Modifiers(PUBLIC | ABSTRACT),
4192                names.empty, List.<JCTypeParameter>nil(),
4193                extending, implementing, List.<JCTree>nil());
4194
4195            ClassSymbol c = (ClassSymbol)owntype.tsym;
4196            Assert.check((c.flags() & COMPOUND) != 0);
4197            cd.sym = c;
4198            c.sourcefile = env.toplevel.sourcefile;
4199
4200            // ... and attribute the bound class
4201            c.flags_field |= UNATTRIBUTED;
4202            Env<AttrContext> cenv = enter.classEnv(cd, env);
4203            typeEnvs.put(c, cenv);
4204            attribClass(c);
4205            return owntype;
4206        }
4207    }
4208
4209    public void visitWildcard(JCWildcard tree) {
4210        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4211        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4212            ? syms.objectType
4213            : attribType(tree.inner, env);
4214        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4215                                              tree.kind.kind,
4216                                              syms.boundClass),
4217                KindSelector.TYP, resultInfo);
4218    }
4219
4220    public void visitAnnotation(JCAnnotation tree) {
4221        Assert.error("should be handled in annotate");
4222    }
4223
4224    public void visitAnnotatedType(JCAnnotatedType tree) {
4225        attribAnnotationTypes(tree.annotations, env);
4226        Type underlyingType = attribType(tree.underlyingType, env);
4227        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4228
4229        if (!env.info.isNewClass)
4230            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4231        result = tree.type = annotatedType;
4232    }
4233
4234    public void visitErroneous(JCErroneous tree) {
4235        if (tree.errs != null)
4236            for (JCTree err : tree.errs)
4237                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4238        result = tree.type = syms.errType;
4239    }
4240
4241    /** Default visitor method for all other trees.
4242     */
4243    public void visitTree(JCTree tree) {
4244        throw new AssertionError();
4245    }
4246
4247    /**
4248     * Attribute an env for either a top level tree or class declaration.
4249     */
4250    public void attrib(Env<AttrContext> env) {
4251        if (env.tree.hasTag(TOPLEVEL))
4252            attribTopLevel(env);
4253        else
4254            attribClass(env.tree.pos(), env.enclClass.sym);
4255    }
4256
4257    /**
4258     * Attribute a top level tree. These trees are encountered when the
4259     * package declaration has annotations.
4260     */
4261    public void attribTopLevel(Env<AttrContext> env) {
4262        JCCompilationUnit toplevel = env.toplevel;
4263        try {
4264            annotate.flush();
4265        } catch (CompletionFailure ex) {
4266            chk.completionError(toplevel.pos(), ex);
4267        }
4268    }
4269
4270    /** Main method: attribute class definition associated with given class symbol.
4271     *  reporting completion failures at the given position.
4272     *  @param pos The source position at which completion errors are to be
4273     *             reported.
4274     *  @param c   The class symbol whose definition will be attributed.
4275     */
4276    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4277        try {
4278            annotate.flush();
4279            attribClass(c);
4280        } catch (CompletionFailure ex) {
4281            chk.completionError(pos, ex);
4282        }
4283    }
4284
4285    /** Attribute class definition associated with given class symbol.
4286     *  @param c   The class symbol whose definition will be attributed.
4287     */
4288    void attribClass(ClassSymbol c) throws CompletionFailure {
4289        if (c.type.hasTag(ERROR)) return;
4290
4291        // Check for cycles in the inheritance graph, which can arise from
4292        // ill-formed class files.
4293        chk.checkNonCyclic(null, c.type);
4294
4295        Type st = types.supertype(c.type);
4296        if ((c.flags_field & Flags.COMPOUND) == 0) {
4297            // First, attribute superclass.
4298            if (st.hasTag(CLASS))
4299                attribClass((ClassSymbol)st.tsym);
4300
4301            // Next attribute owner, if it is a class.
4302            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4303                attribClass((ClassSymbol)c.owner);
4304        }
4305
4306        // The previous operations might have attributed the current class
4307        // if there was a cycle. So we test first whether the class is still
4308        // UNATTRIBUTED.
4309        if ((c.flags_field & UNATTRIBUTED) != 0) {
4310            c.flags_field &= ~UNATTRIBUTED;
4311
4312            // Get environment current at the point of class definition.
4313            Env<AttrContext> env = typeEnvs.get(c);
4314
4315            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4316            // because the annotations were not available at the time the env was created. Therefore,
4317            // we look up the environment chain for the first enclosing environment for which the
4318            // lint value is set. Typically, this is the parent env, but might be further if there
4319            // are any envs created as a result of TypeParameter nodes.
4320            Env<AttrContext> lintEnv = env;
4321            while (lintEnv.info.lint == null)
4322                lintEnv = lintEnv.next;
4323
4324            // Having found the enclosing lint value, we can initialize the lint value for this class
4325            env.info.lint = lintEnv.info.lint.augment(c);
4326
4327            Lint prevLint = chk.setLint(env.info.lint);
4328            JavaFileObject prev = log.useSource(c.sourcefile);
4329            ResultInfo prevReturnRes = env.info.returnResult;
4330
4331            try {
4332                deferredLintHandler.flush(env.tree);
4333                env.info.returnResult = null;
4334                // java.lang.Enum may not be subclassed by a non-enum
4335                if (st.tsym == syms.enumSym &&
4336                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4337                    log.error(env.tree.pos(), "enum.no.subclassing");
4338
4339                // Enums may not be extended by source-level classes
4340                if (st.tsym != null &&
4341                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4342                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4343                    log.error(env.tree.pos(), "enum.types.not.extensible");
4344                }
4345
4346                if (isSerializable(c.type)) {
4347                    env.info.isSerializable = true;
4348                }
4349
4350                attribClassBody(env, c);
4351
4352                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4353                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4354                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4355            } finally {
4356                env.info.returnResult = prevReturnRes;
4357                log.useSource(prev);
4358                chk.setLint(prevLint);
4359            }
4360
4361        }
4362    }
4363
4364    public void visitImport(JCImport tree) {
4365        // nothing to do
4366    }
4367
4368    /** Finish the attribution of a class. */
4369    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4370        JCClassDecl tree = (JCClassDecl)env.tree;
4371        Assert.check(c == tree.sym);
4372
4373        // Validate type parameters, supertype and interfaces.
4374        attribStats(tree.typarams, env);
4375        if (!c.isAnonymous()) {
4376            //already checked if anonymous
4377            chk.validate(tree.typarams, env);
4378            chk.validate(tree.extending, env);
4379            chk.validate(tree.implementing, env);
4380        }
4381
4382        c.markAbstractIfNeeded(types);
4383
4384        // If this is a non-abstract class, check that it has no abstract
4385        // methods or unimplemented methods of an implemented interface.
4386        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4387            if (!relax)
4388                chk.checkAllDefined(tree.pos(), c);
4389        }
4390
4391        if ((c.flags() & ANNOTATION) != 0) {
4392            if (tree.implementing.nonEmpty())
4393                log.error(tree.implementing.head.pos(),
4394                          "cant.extend.intf.annotation");
4395            if (tree.typarams.nonEmpty())
4396                log.error(tree.typarams.head.pos(),
4397                          "intf.annotation.cant.have.type.params");
4398
4399            // If this annotation type has a @Repeatable, validate
4400            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4401            // If this annotation type has a @Repeatable, validate
4402            if (repeatable != null) {
4403                // get diagnostic position for error reporting
4404                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4405                Assert.checkNonNull(cbPos);
4406
4407                chk.validateRepeatable(c, repeatable, cbPos);
4408            }
4409        } else {
4410            // Check that all extended classes and interfaces
4411            // are compatible (i.e. no two define methods with same arguments
4412            // yet different return types).  (JLS 8.4.6.3)
4413            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4414            if (allowDefaultMethods) {
4415                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4416            }
4417        }
4418
4419        // Check that class does not import the same parameterized interface
4420        // with two different argument lists.
4421        chk.checkClassBounds(tree.pos(), c.type);
4422
4423        tree.type = c.type;
4424
4425        for (List<JCTypeParameter> l = tree.typarams;
4426             l.nonEmpty(); l = l.tail) {
4427             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4428        }
4429
4430        // Check that a generic class doesn't extend Throwable
4431        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4432            log.error(tree.extending.pos(), "generic.throwable");
4433
4434        // Check that all methods which implement some
4435        // method conform to the method they implement.
4436        chk.checkImplementations(tree);
4437
4438        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4439        checkAutoCloseable(tree.pos(), env, c.type);
4440
4441        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4442            // Attribute declaration
4443            attribStat(l.head, env);
4444            // Check that declarations in inner classes are not static (JLS 8.1.2)
4445            // Make an exception for static constants.
4446            if (c.owner.kind != PCK &&
4447                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4448                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4449                Symbol sym = null;
4450                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4451                if (sym == null ||
4452                    sym.kind != VAR ||
4453                    ((VarSymbol) sym).getConstValue() == null)
4454                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4455            }
4456        }
4457
4458        // Check for cycles among non-initial constructors.
4459        chk.checkCyclicConstructors(tree);
4460
4461        // Check for cycles among annotation elements.
4462        chk.checkNonCyclicElements(tree);
4463
4464        // Check for proper use of serialVersionUID
4465        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4466            isSerializable(c.type) &&
4467            (c.flags() & Flags.ENUM) == 0 &&
4468            checkForSerial(c)) {
4469            checkSerialVersionUID(tree, c);
4470        }
4471        if (allowTypeAnnos) {
4472            // Correctly organize the postions of the type annotations
4473            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4474
4475            // Check type annotations applicability rules
4476            validateTypeAnnotations(tree, false);
4477        }
4478    }
4479        // where
4480        boolean checkForSerial(ClassSymbol c) {
4481            if ((c.flags() & ABSTRACT) == 0) {
4482                return true;
4483            } else {
4484                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4485            }
4486        }
4487
4488        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4489            @Override
4490            public boolean accepts(Symbol s) {
4491                return s.kind == MTH &&
4492                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4493            }
4494        };
4495
4496        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4497        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4498            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4499                if (types.isSameType(al.head.annotationType.type, t))
4500                    return al.head.pos();
4501            }
4502
4503            return null;
4504        }
4505
4506        /** check if a type is a subtype of Serializable, if that is available. */
4507        boolean isSerializable(Type t) {
4508            try {
4509                syms.serializableType.complete();
4510            }
4511            catch (CompletionFailure e) {
4512                return false;
4513            }
4514            return types.isSubtype(t, syms.serializableType);
4515        }
4516
4517        /** Check that an appropriate serialVersionUID member is defined. */
4518        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4519
4520            // check for presence of serialVersionUID
4521            VarSymbol svuid = null;
4522            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4523                if (sym.kind == VAR) {
4524                    svuid = (VarSymbol)sym;
4525                    break;
4526                }
4527            }
4528
4529            if (svuid == null) {
4530                log.warning(LintCategory.SERIAL,
4531                        tree.pos(), "missing.SVUID", c);
4532                return;
4533            }
4534
4535            // check that it is static final
4536            if ((svuid.flags() & (STATIC | FINAL)) !=
4537                (STATIC | FINAL))
4538                log.warning(LintCategory.SERIAL,
4539                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4540
4541            // check that it is long
4542            else if (!svuid.type.hasTag(LONG))
4543                log.warning(LintCategory.SERIAL,
4544                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4545
4546            // check constant
4547            else if (svuid.getConstValue() == null)
4548                log.warning(LintCategory.SERIAL,
4549                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4550        }
4551
4552    private Type capture(Type type) {
4553        return types.capture(type);
4554    }
4555
4556    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4557        tree.accept(new TypeAnnotationsValidator(sigOnly));
4558    }
4559    //where
4560    private final class TypeAnnotationsValidator extends TreeScanner {
4561
4562        private final boolean sigOnly;
4563        public TypeAnnotationsValidator(boolean sigOnly) {
4564            this.sigOnly = sigOnly;
4565        }
4566
4567        public void visitAnnotation(JCAnnotation tree) {
4568            chk.validateTypeAnnotation(tree, false);
4569            super.visitAnnotation(tree);
4570        }
4571        public void visitAnnotatedType(JCAnnotatedType tree) {
4572            if (!tree.underlyingType.type.isErroneous()) {
4573                super.visitAnnotatedType(tree);
4574            }
4575        }
4576        public void visitTypeParameter(JCTypeParameter tree) {
4577            chk.validateTypeAnnotations(tree.annotations, true);
4578            scan(tree.bounds);
4579            // Don't call super.
4580            // This is needed because above we call validateTypeAnnotation with
4581            // false, which would forbid annotations on type parameters.
4582            // super.visitTypeParameter(tree);
4583        }
4584        public void visitMethodDef(JCMethodDecl tree) {
4585            if (tree.recvparam != null &&
4586                    !tree.recvparam.vartype.type.isErroneous()) {
4587                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4588                        tree.recvparam.vartype.type.tsym);
4589            }
4590            if (tree.restype != null && tree.restype.type != null) {
4591                validateAnnotatedType(tree.restype, tree.restype.type);
4592            }
4593            if (sigOnly) {
4594                scan(tree.mods);
4595                scan(tree.restype);
4596                scan(tree.typarams);
4597                scan(tree.recvparam);
4598                scan(tree.params);
4599                scan(tree.thrown);
4600            } else {
4601                scan(tree.defaultValue);
4602                scan(tree.body);
4603            }
4604        }
4605        public void visitVarDef(final JCVariableDecl tree) {
4606            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4607            if (tree.sym != null && tree.sym.type != null)
4608                validateAnnotatedType(tree.vartype, tree.sym.type);
4609            scan(tree.mods);
4610            scan(tree.vartype);
4611            if (!sigOnly) {
4612                scan(tree.init);
4613            }
4614        }
4615        public void visitTypeCast(JCTypeCast tree) {
4616            if (tree.clazz != null && tree.clazz.type != null)
4617                validateAnnotatedType(tree.clazz, tree.clazz.type);
4618            super.visitTypeCast(tree);
4619        }
4620        public void visitTypeTest(JCInstanceOf tree) {
4621            if (tree.clazz != null && tree.clazz.type != null)
4622                validateAnnotatedType(tree.clazz, tree.clazz.type);
4623            super.visitTypeTest(tree);
4624        }
4625        public void visitNewClass(JCNewClass tree) {
4626            if (tree.clazz != null && tree.clazz.type != null) {
4627                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4628                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4629                            tree.clazz.type.tsym);
4630                }
4631                if (tree.def != null) {
4632                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4633                }
4634
4635                validateAnnotatedType(tree.clazz, tree.clazz.type);
4636            }
4637            super.visitNewClass(tree);
4638        }
4639        public void visitNewArray(JCNewArray tree) {
4640            if (tree.elemtype != null && tree.elemtype.type != null) {
4641                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4642                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4643                            tree.elemtype.type.tsym);
4644                }
4645                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4646            }
4647            super.visitNewArray(tree);
4648        }
4649        public void visitClassDef(JCClassDecl tree) {
4650            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4651            if (sigOnly) {
4652                scan(tree.mods);
4653                scan(tree.typarams);
4654                scan(tree.extending);
4655                scan(tree.implementing);
4656            }
4657            for (JCTree member : tree.defs) {
4658                if (member.hasTag(Tag.CLASSDEF)) {
4659                    continue;
4660                }
4661                scan(member);
4662            }
4663        }
4664        public void visitBlock(JCBlock tree) {
4665            if (!sigOnly) {
4666                scan(tree.stats);
4667            }
4668        }
4669
4670        /* I would want to model this after
4671         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4672         * and override visitSelect and visitTypeApply.
4673         * However, we only set the annotated type in the top-level type
4674         * of the symbol.
4675         * Therefore, we need to override each individual location where a type
4676         * can occur.
4677         */
4678        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4679            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4680
4681            if (type.isPrimitiveOrVoid()) {
4682                return;
4683            }
4684
4685            JCTree enclTr = errtree;
4686            Type enclTy = type;
4687
4688            boolean repeat = true;
4689            while (repeat) {
4690                if (enclTr.hasTag(TYPEAPPLY)) {
4691                    List<Type> tyargs = enclTy.getTypeArguments();
4692                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4693                    if (trargs.length() > 0) {
4694                        // Nothing to do for diamonds
4695                        if (tyargs.length() == trargs.length()) {
4696                            for (int i = 0; i < tyargs.length(); ++i) {
4697                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4698                            }
4699                        }
4700                        // If the lengths don't match, it's either a diamond
4701                        // or some nested type that redundantly provides
4702                        // type arguments in the tree.
4703                    }
4704
4705                    // Look at the clazz part of a generic type
4706                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4707                }
4708
4709                if (enclTr.hasTag(SELECT)) {
4710                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4711                    if (enclTy != null &&
4712                            !enclTy.hasTag(NONE)) {
4713                        enclTy = enclTy.getEnclosingType();
4714                    }
4715                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4716                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4717                    if (enclTy == null || enclTy.hasTag(NONE)) {
4718                        if (at.getAnnotations().size() == 1) {
4719                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4720                        } else {
4721                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4722                            for (JCAnnotation an : at.getAnnotations()) {
4723                                comps.add(an.attribute);
4724                            }
4725                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4726                        }
4727                        repeat = false;
4728                    }
4729                    enclTr = at.underlyingType;
4730                    // enclTy doesn't need to be changed
4731                } else if (enclTr.hasTag(IDENT)) {
4732                    repeat = false;
4733                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4734                    JCWildcard wc = (JCWildcard) enclTr;
4735                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4736                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4737                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4738                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4739                    } else {
4740                        // Nothing to do for UNBOUND
4741                    }
4742                    repeat = false;
4743                } else if (enclTr.hasTag(TYPEARRAY)) {
4744                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4745                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4746                    repeat = false;
4747                } else if (enclTr.hasTag(TYPEUNION)) {
4748                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4749                    for (JCTree t : ut.getTypeAlternatives()) {
4750                        validateAnnotatedType(t, t.type);
4751                    }
4752                    repeat = false;
4753                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4754                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4755                    for (JCTree t : it.getBounds()) {
4756                        validateAnnotatedType(t, t.type);
4757                    }
4758                    repeat = false;
4759                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4760                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4761                    repeat = false;
4762                } else {
4763                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4764                            " within: "+ errtree + " with kind: " + errtree.getKind());
4765                }
4766            }
4767        }
4768
4769        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4770                Symbol sym) {
4771            // Ensure that no declaration annotations are present.
4772            // Note that a tree type might be an AnnotatedType with
4773            // empty annotations, if only declaration annotations were given.
4774            // This method will raise an error for such a type.
4775            for (JCAnnotation ai : annotations) {
4776                if (!ai.type.isErroneous() &&
4777                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4778                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4779                }
4780            }
4781        }
4782    }
4783
4784    // <editor-fold desc="post-attribution visitor">
4785
4786    /**
4787     * Handle missing types/symbols in an AST. This routine is useful when
4788     * the compiler has encountered some errors (which might have ended up
4789     * terminating attribution abruptly); if the compiler is used in fail-over
4790     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4791     * prevents NPE to be progagated during subsequent compilation steps.
4792     */
4793    public void postAttr(JCTree tree) {
4794        new PostAttrAnalyzer().scan(tree);
4795    }
4796
4797    class PostAttrAnalyzer extends TreeScanner {
4798
4799        private void initTypeIfNeeded(JCTree that) {
4800            if (that.type == null) {
4801                if (that.hasTag(METHODDEF)) {
4802                    that.type = dummyMethodType((JCMethodDecl)that);
4803                } else {
4804                    that.type = syms.unknownType;
4805                }
4806            }
4807        }
4808
4809        /* Construct a dummy method type. If we have a method declaration,
4810         * and the declared return type is void, then use that return type
4811         * instead of UNKNOWN to avoid spurious error messages in lambda
4812         * bodies (see:JDK-8041704).
4813         */
4814        private Type dummyMethodType(JCMethodDecl md) {
4815            Type restype = syms.unknownType;
4816            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4817                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4818                if (prim.typetag == VOID)
4819                    restype = syms.voidType;
4820            }
4821            return new MethodType(List.<Type>nil(), restype,
4822                                  List.<Type>nil(), syms.methodClass);
4823        }
4824        private Type dummyMethodType() {
4825            return dummyMethodType(null);
4826        }
4827
4828        @Override
4829        public void scan(JCTree tree) {
4830            if (tree == null) return;
4831            if (tree instanceof JCExpression) {
4832                initTypeIfNeeded(tree);
4833            }
4834            super.scan(tree);
4835        }
4836
4837        @Override
4838        public void visitIdent(JCIdent that) {
4839            if (that.sym == null) {
4840                that.sym = syms.unknownSymbol;
4841            }
4842        }
4843
4844        @Override
4845        public void visitSelect(JCFieldAccess that) {
4846            if (that.sym == null) {
4847                that.sym = syms.unknownSymbol;
4848            }
4849            super.visitSelect(that);
4850        }
4851
4852        @Override
4853        public void visitClassDef(JCClassDecl that) {
4854            initTypeIfNeeded(that);
4855            if (that.sym == null) {
4856                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4857            }
4858            super.visitClassDef(that);
4859        }
4860
4861        @Override
4862        public void visitMethodDef(JCMethodDecl that) {
4863            initTypeIfNeeded(that);
4864            if (that.sym == null) {
4865                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4866            }
4867            super.visitMethodDef(that);
4868        }
4869
4870        @Override
4871        public void visitVarDef(JCVariableDecl that) {
4872            initTypeIfNeeded(that);
4873            if (that.sym == null) {
4874                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4875                that.sym.adr = 0;
4876            }
4877            super.visitVarDef(that);
4878        }
4879
4880        @Override
4881        public void visitNewClass(JCNewClass that) {
4882            if (that.constructor == null) {
4883                that.constructor = new MethodSymbol(0, names.init,
4884                        dummyMethodType(), syms.noSymbol);
4885            }
4886            if (that.constructorType == null) {
4887                that.constructorType = syms.unknownType;
4888            }
4889            super.visitNewClass(that);
4890        }
4891
4892        @Override
4893        public void visitAssignop(JCAssignOp that) {
4894            if (that.operator == null) {
4895                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4896                        -1, syms.noSymbol);
4897            }
4898            super.visitAssignop(that);
4899        }
4900
4901        @Override
4902        public void visitBinary(JCBinary that) {
4903            if (that.operator == null) {
4904                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4905                        -1, syms.noSymbol);
4906            }
4907            super.visitBinary(that);
4908        }
4909
4910        @Override
4911        public void visitUnary(JCUnary that) {
4912            if (that.operator == null) {
4913                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4914                        -1, syms.noSymbol);
4915            }
4916            super.visitUnary(that);
4917        }
4918
4919        @Override
4920        public void visitLambda(JCLambda that) {
4921            super.visitLambda(that);
4922            if (that.targets == null) {
4923                that.targets = List.nil();
4924            }
4925        }
4926
4927        @Override
4928        public void visitReference(JCMemberReference that) {
4929            super.visitReference(that);
4930            if (that.sym == null) {
4931                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4932                        syms.noSymbol);
4933            }
4934            if (that.targets == null) {
4935                that.targets = List.nil();
4936            }
4937        }
4938    }
4939    // </editor-fold>
4940}
4941