Attr.java revision 2976:431f00f9cbd2
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.code.TypeMetadata.Annotations;
44import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
45import com.sun.tools.javac.comp.Check.CheckContext;
46import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
47import com.sun.tools.javac.comp.Infer.InferenceContext;
48import com.sun.tools.javac.comp.Infer.FreeTypeListener;
49import com.sun.tools.javac.jvm.*;
50import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
53import com.sun.tools.javac.resources.CompilerProperties.Errors;
54import com.sun.tools.javac.resources.CompilerProperties.Fragments;
55import com.sun.tools.javac.tree.*;
56import com.sun.tools.javac.tree.JCTree.*;
57import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
58import com.sun.tools.javac.util.*;
59import com.sun.tools.javac.util.DefinedBy.Api;
60import com.sun.tools.javac.util.Dependencies.AttributionKind;
61import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
62import com.sun.tools.javac.util.JCDiagnostic.Fragment;
63import com.sun.tools.javac.util.List;
64import static com.sun.tools.javac.code.Flags.*;
65import static com.sun.tools.javac.code.Flags.ANNOTATION;
66import static com.sun.tools.javac.code.Flags.BLOCK;
67import static com.sun.tools.javac.code.Kinds.*;
68import static com.sun.tools.javac.code.Kinds.Kind.*;
69import static com.sun.tools.javac.code.TypeTag.*;
70import static com.sun.tools.javac.code.TypeTag.WILDCARD;
71import static com.sun.tools.javac.tree.JCTree.Tag.*;
72
73/** This is the main context-dependent analysis phase in GJC. It
74 *  encompasses name resolution, type checking and constant folding as
75 *  subtasks. Some subtasks involve auxiliary classes.
76 *  @see Check
77 *  @see Resolve
78 *  @see ConstFold
79 *  @see Infer
80 *
81 *  <p><b>This is NOT part of any supported API.
82 *  If you write code that depends on this, you do so at your own risk.
83 *  This code and its internal interfaces are subject to change or
84 *  deletion without notice.</b>
85 */
86public class Attr extends JCTree.Visitor {
87    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
88
89    final Names names;
90    final Log log;
91    final Symtab syms;
92    final Resolve rs;
93    final Operators operators;
94    final Infer infer;
95    final Analyzer analyzer;
96    final DeferredAttr deferredAttr;
97    final Check chk;
98    final Flow flow;
99    final MemberEnter memberEnter;
100    final TypeEnter typeEnter;
101    final TreeMaker make;
102    final ConstFold cfolder;
103    final Enter enter;
104    final Target target;
105    final Types types;
106    final JCDiagnostic.Factory diags;
107    final TypeAnnotations typeAnnotations;
108    final DeferredLintHandler deferredLintHandler;
109    final TypeEnvs typeEnvs;
110    final Dependencies dependencies;
111    final Annotate annotate;
112
113    public static Attr instance(Context context) {
114        Attr instance = context.get(attrKey);
115        if (instance == null)
116            instance = new Attr(context);
117        return instance;
118    }
119
120    protected Attr(Context context) {
121        context.put(attrKey, this);
122
123        names = Names.instance(context);
124        log = Log.instance(context);
125        syms = Symtab.instance(context);
126        rs = Resolve.instance(context);
127        operators = Operators.instance(context);
128        chk = Check.instance(context);
129        flow = Flow.instance(context);
130        memberEnter = MemberEnter.instance(context);
131        typeEnter = TypeEnter.instance(context);
132        make = TreeMaker.instance(context);
133        enter = Enter.instance(context);
134        infer = Infer.instance(context);
135        analyzer = Analyzer.instance(context);
136        deferredAttr = DeferredAttr.instance(context);
137        cfolder = ConstFold.instance(context);
138        target = Target.instance(context);
139        types = Types.instance(context);
140        diags = JCDiagnostic.Factory.instance(context);
141        annotate = Annotate.instance(context);
142        typeAnnotations = TypeAnnotations.instance(context);
143        deferredLintHandler = DeferredLintHandler.instance(context);
144        typeEnvs = TypeEnvs.instance(context);
145        dependencies = Dependencies.instance(context);
146
147        Options options = Options.instance(context);
148
149        Source source = Source.instance(context);
150        allowStringsInSwitch = source.allowStringsInSwitch();
151        allowPoly = source.allowPoly();
152        allowTypeAnnos = source.allowTypeAnnotations();
153        allowLambda = source.allowLambda();
154        allowDefaultMethods = source.allowDefaultMethods();
155        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
156        sourceName = source.name;
157        relax = (options.isSet("-retrofit") ||
158                options.isSet("-relax"));
159        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
160
161        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
162        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
163        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
164        unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
165        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
166        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
167        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
168    }
169
170    /** Switch: relax some constraints for retrofit mode.
171     */
172    boolean relax;
173
174    /** Switch: support target-typing inference
175     */
176    boolean allowPoly;
177
178    /** Switch: support type annotations.
179     */
180    boolean allowTypeAnnos;
181
182    /** Switch: support lambda expressions ?
183     */
184    boolean allowLambda;
185
186    /** Switch: support default methods ?
187     */
188    boolean allowDefaultMethods;
189
190    /** Switch: static interface methods enabled?
191     */
192    boolean allowStaticInterfaceMethods;
193
194    /**
195     * Switch: warn about use of variable before declaration?
196     * RFE: 6425594
197     */
198    boolean useBeforeDeclarationWarning;
199
200    /**
201     * Switch: allow strings in switch?
202     */
203    boolean allowStringsInSwitch;
204
205    /**
206     * Switch: name of source level; used for error reporting.
207     */
208    String sourceName;
209
210    /** Check kind and type of given tree against protokind and prototype.
211     *  If check succeeds, store type in tree and return it.
212     *  If check fails, store errType in tree and return it.
213     *  No checks are performed if the prototype is a method type.
214     *  It is not necessary in this case since we know that kind and type
215     *  are correct.
216     *
217     *  @param tree     The tree whose kind and type is checked
218     *  @param found    The computed type of the tree
219     *  @param ownkind  The computed kind of the tree
220     *  @param resultInfo  The expected result of the tree
221     */
222    Type check(final JCTree tree,
223               final Type found,
224               final KindSelector ownkind,
225               final ResultInfo resultInfo) {
226        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
227        Type owntype;
228        boolean shouldCheck = !found.hasTag(ERROR) &&
229                !resultInfo.pt.hasTag(METHOD) &&
230                !resultInfo.pt.hasTag(FORALL);
231        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
232            log.error(tree.pos(), "unexpected.type",
233            resultInfo.pkind.kindNames(),
234            ownkind.kindNames());
235            owntype = types.createErrorType(found);
236        } else if (allowPoly && inferenceContext.free(found)) {
237            //delay the check if there are inference variables in the found type
238            //this means we are dealing with a partially inferred poly expression
239            owntype = shouldCheck ? resultInfo.pt : found;
240            if (resultInfo.checkMode.installPostInferenceHook()) {
241                inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
242                        instantiatedContext -> {
243                            ResultInfo pendingResult =
244                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
245                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
246                        });
247            }
248        } else {
249            owntype = shouldCheck ?
250            resultInfo.check(tree, found) :
251            found;
252        }
253        if (resultInfo.checkMode.updateTreeType()) {
254            tree.type = owntype;
255        }
256        return owntype;
257    }
258
259    /** Is given blank final variable assignable, i.e. in a scope where it
260     *  may be assigned to even though it is final?
261     *  @param v      The blank final variable.
262     *  @param env    The current environment.
263     */
264    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
265        Symbol owner = env.info.scope.owner;
266           // owner refers to the innermost variable, method or
267           // initializer block declaration at this point.
268        return
269            v.owner == owner
270            ||
271            ((owner.name == names.init ||    // i.e. we are in a constructor
272              owner.kind == VAR ||           // i.e. we are in a variable initializer
273              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
274             &&
275             v.owner == owner.owner
276             &&
277             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
278    }
279
280    /** Check that variable can be assigned to.
281     *  @param pos    The current source code position.
282     *  @param v      The assigned varaible
283     *  @param base   If the variable is referred to in a Select, the part
284     *                to the left of the `.', null otherwise.
285     *  @param env    The current environment.
286     */
287    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
288        if ((v.flags() & FINAL) != 0 &&
289            ((v.flags() & HASINIT) != 0
290             ||
291             !((base == null ||
292               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
293               isAssignableAsBlankFinal(v, env)))) {
294            if (v.isResourceVariable()) { //TWR resource
295                log.error(pos, "try.resource.may.not.be.assigned", v);
296            } else {
297                log.error(pos, "cant.assign.val.to.final.var", v);
298            }
299        }
300    }
301
302    /** Does tree represent a static reference to an identifier?
303     *  It is assumed that tree is either a SELECT or an IDENT.
304     *  We have to weed out selects from non-type names here.
305     *  @param tree    The candidate tree.
306     */
307    boolean isStaticReference(JCTree tree) {
308        if (tree.hasTag(SELECT)) {
309            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
310            if (lsym == null || lsym.kind != TYP) {
311                return false;
312            }
313        }
314        return true;
315    }
316
317    /** Is this symbol a type?
318     */
319    static boolean isType(Symbol sym) {
320        return sym != null && sym.kind == TYP;
321    }
322
323    /** The current `this' symbol.
324     *  @param env    The current environment.
325     */
326    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
327        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
328    }
329
330    /** Attribute a parsed identifier.
331     * @param tree Parsed identifier name
332     * @param topLevel The toplevel to use
333     */
334    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
335        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
336        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
337                                           syms.errSymbol.name,
338                                           null, null, null, null);
339        localEnv.enclClass.sym = syms.errSymbol;
340        return tree.accept(identAttributer, localEnv);
341    }
342    // where
343        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
344        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
345            @Override @DefinedBy(Api.COMPILER_TREE)
346            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
347                Symbol site = visit(node.getExpression(), env);
348                if (site.kind == ERR || site.kind == ABSENT_TYP)
349                    return site;
350                Name name = (Name)node.getIdentifier();
351                if (site.kind == PCK) {
352                    env.toplevel.packge = (PackageSymbol)site;
353                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
354                            KindSelector.TYP_PCK);
355                } else {
356                    env.enclClass.sym = (ClassSymbol)site;
357                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
358                }
359            }
360
361            @Override @DefinedBy(Api.COMPILER_TREE)
362            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
363                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
364            }
365        }
366
367    public Type coerce(Type etype, Type ttype) {
368        return cfolder.coerce(etype, ttype);
369    }
370
371    public Type attribType(JCTree node, TypeSymbol sym) {
372        Env<AttrContext> env = typeEnvs.get(sym);
373        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
374        return attribTree(node, localEnv, unknownTypeInfo);
375    }
376
377    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
378        // Attribute qualifying package or class.
379        JCFieldAccess s = (JCFieldAccess)tree.qualid;
380        return attribTree(s.selected, env,
381                          new ResultInfo(tree.staticImport ?
382                                         KindSelector.TYP : KindSelector.TYP_PCK,
383                       Type.noType));
384    }
385
386    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
387        breakTree = tree;
388        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
389        try {
390            attribExpr(expr, env);
391        } catch (BreakAttr b) {
392            return b.env;
393        } catch (AssertionError ae) {
394            if (ae.getCause() instanceof BreakAttr) {
395                return ((BreakAttr)(ae.getCause())).env;
396            } else {
397                throw ae;
398            }
399        } finally {
400            breakTree = null;
401            log.useSource(prev);
402        }
403        return env;
404    }
405
406    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
407        breakTree = tree;
408        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
409        try {
410            attribStat(stmt, env);
411        } catch (BreakAttr b) {
412            return b.env;
413        } catch (AssertionError ae) {
414            if (ae.getCause() instanceof BreakAttr) {
415                return ((BreakAttr)(ae.getCause())).env;
416            } else {
417                throw ae;
418            }
419        } finally {
420            breakTree = null;
421            log.useSource(prev);
422        }
423        return env;
424    }
425
426    private JCTree breakTree = null;
427
428    private static class BreakAttr extends RuntimeException {
429        static final long serialVersionUID = -6924771130405446405L;
430        private Env<AttrContext> env;
431        private BreakAttr(Env<AttrContext> env) {
432            this.env = env;
433        }
434    }
435
436    /**
437     * Mode controlling behavior of Attr.Check
438     */
439    enum CheckMode {
440
441        NORMAL,
442
443        NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
444            @Override
445            public boolean updateTreeType() {
446                return false;
447            }
448        },
449        NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
450            @Override
451            public boolean installPostInferenceHook() {
452                return false;
453            }
454        };
455
456        public boolean updateTreeType() {
457            return true;
458        }
459        public boolean installPostInferenceHook() {
460            return true;
461        }
462    }
463
464
465    class ResultInfo {
466        final KindSelector pkind;
467        final Type pt;
468        final CheckContext checkContext;
469        final CheckMode checkMode;
470
471        ResultInfo(KindSelector pkind, Type pt) {
472            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
473        }
474
475        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
476            this(pkind, pt, chk.basicHandler, checkMode);
477        }
478
479        protected ResultInfo(KindSelector pkind,
480                             Type pt, CheckContext checkContext) {
481            this(pkind, pt, checkContext, CheckMode.NORMAL);
482        }
483
484        protected ResultInfo(KindSelector pkind,
485                             Type pt, CheckContext checkContext, CheckMode checkMode) {
486            this.pkind = pkind;
487            this.pt = pt;
488            this.checkContext = checkContext;
489            this.checkMode = checkMode;
490        }
491
492        protected Type check(final DiagnosticPosition pos, final Type found) {
493            return chk.checkType(pos, found, pt, checkContext);
494        }
495
496        protected ResultInfo dup(Type newPt) {
497            return new ResultInfo(pkind, newPt, checkContext, checkMode);
498        }
499
500        protected ResultInfo dup(CheckContext newContext) {
501            return new ResultInfo(pkind, pt, newContext, checkMode);
502        }
503
504        protected ResultInfo dup(Type newPt, CheckContext newContext) {
505            return new ResultInfo(pkind, newPt, newContext, checkMode);
506        }
507
508        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
509            return new ResultInfo(pkind, newPt, newContext, newMode);
510        }
511
512        protected ResultInfo dup(CheckMode newMode) {
513            return new ResultInfo(pkind, pt, checkContext, newMode);
514        }
515
516        @Override
517        public String toString() {
518            if (pt != null) {
519                return pt.toString();
520            } else {
521                return "";
522            }
523        }
524    }
525
526    class RecoveryInfo extends ResultInfo {
527
528        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
529            super(KindSelector.VAL, Type.recoveryType,
530                  new Check.NestedCheckContext(chk.basicHandler) {
531                @Override
532                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
533                    return deferredAttrContext;
534                }
535                @Override
536                public boolean compatible(Type found, Type req, Warner warn) {
537                    return true;
538                }
539                @Override
540                public void report(DiagnosticPosition pos, JCDiagnostic details) {
541                    chk.basicHandler.report(pos, details);
542                }
543            });
544        }
545    }
546
547    final ResultInfo statInfo;
548    final ResultInfo varAssignmentInfo;
549    final ResultInfo unknownAnyPolyInfo;
550    final ResultInfo unknownExprInfo;
551    final ResultInfo unknownTypeInfo;
552    final ResultInfo unknownTypeExprInfo;
553    final ResultInfo recoveryInfo;
554
555    Type pt() {
556        return resultInfo.pt;
557    }
558
559    KindSelector pkind() {
560        return resultInfo.pkind;
561    }
562
563/* ************************************************************************
564 * Visitor methods
565 *************************************************************************/
566
567    /** Visitor argument: the current environment.
568     */
569    Env<AttrContext> env;
570
571    /** Visitor argument: the currently expected attribution result.
572     */
573    ResultInfo resultInfo;
574
575    /** Visitor result: the computed type.
576     */
577    Type result;
578
579    /** Visitor method: attribute a tree, catching any completion failure
580     *  exceptions. Return the tree's type.
581     *
582     *  @param tree    The tree to be visited.
583     *  @param env     The environment visitor argument.
584     *  @param resultInfo   The result info visitor argument.
585     */
586    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
587        Env<AttrContext> prevEnv = this.env;
588        ResultInfo prevResult = this.resultInfo;
589        try {
590            this.env = env;
591            this.resultInfo = resultInfo;
592            tree.accept(this);
593            if (tree == breakTree &&
594                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
595                throw new BreakAttr(copyEnv(env));
596            }
597            return result;
598        } catch (CompletionFailure ex) {
599            tree.type = syms.errType;
600            return chk.completionError(tree.pos(), ex);
601        } finally {
602            this.env = prevEnv;
603            this.resultInfo = prevResult;
604        }
605    }
606
607    Env<AttrContext> copyEnv(Env<AttrContext> env) {
608        Env<AttrContext> newEnv =
609                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
610        if (newEnv.outer != null) {
611            newEnv.outer = copyEnv(newEnv.outer);
612        }
613        return newEnv;
614    }
615
616    WriteableScope copyScope(WriteableScope sc) {
617        WriteableScope newScope = WriteableScope.create(sc.owner);
618        List<Symbol> elemsList = List.nil();
619        for (Symbol sym : sc.getSymbols()) {
620            elemsList = elemsList.prepend(sym);
621        }
622        for (Symbol s : elemsList) {
623            newScope.enter(s);
624        }
625        return newScope;
626    }
627
628    /** Derived visitor method: attribute an expression tree.
629     */
630    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
631        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
632    }
633
634    /** Derived visitor method: attribute an expression tree with
635     *  no constraints on the computed type.
636     */
637    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
638        return attribTree(tree, env, unknownExprInfo);
639    }
640
641    /** Derived visitor method: attribute a type tree.
642     */
643    public Type attribType(JCTree tree, Env<AttrContext> env) {
644        Type result = attribType(tree, env, Type.noType);
645        return result;
646    }
647
648    /** Derived visitor method: attribute a type tree.
649     */
650    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
651        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
652        return result;
653    }
654
655    /** Derived visitor method: attribute a statement or definition tree.
656     */
657    public Type attribStat(JCTree tree, Env<AttrContext> env) {
658        Env<AttrContext> analyzeEnv =
659                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
660        try {
661            return attribTree(tree, env, statInfo);
662        } finally {
663            analyzer.analyzeIfNeeded(tree, analyzeEnv);
664        }
665    }
666
667    /** Attribute a list of expressions, returning a list of types.
668     */
669    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
670        ListBuffer<Type> ts = new ListBuffer<>();
671        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
672            ts.append(attribExpr(l.head, env, pt));
673        return ts.toList();
674    }
675
676    /** Attribute a list of statements, returning nothing.
677     */
678    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
679        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
680            attribStat(l.head, env);
681    }
682
683    /** Attribute the arguments in a method call, returning the method kind.
684     */
685    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
686        KindSelector kind = initialKind;
687        for (JCExpression arg : trees) {
688            Type argtype;
689            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
690                argtype = deferredAttr.new DeferredType(arg, env);
691                kind = KindSelector.of(KindSelector.POLY, kind);
692            } else {
693                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
694            }
695            argtypes.append(argtype);
696        }
697        return kind;
698    }
699
700    /** Attribute a type argument list, returning a list of types.
701     *  Caller is responsible for calling checkRefTypes.
702     */
703    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
704        ListBuffer<Type> argtypes = new ListBuffer<>();
705        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
706            argtypes.append(attribType(l.head, env));
707        return argtypes.toList();
708    }
709
710    /** Attribute a type argument list, returning a list of types.
711     *  Check that all the types are references.
712     */
713    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
714        List<Type> types = attribAnyTypes(trees, env);
715        return chk.checkRefTypes(trees, types);
716    }
717
718    /**
719     * Attribute type variables (of generic classes or methods).
720     * Compound types are attributed later in attribBounds.
721     * @param typarams the type variables to enter
722     * @param env      the current environment
723     */
724    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
725        for (JCTypeParameter tvar : typarams) {
726            dependencies.push(AttributionKind.TVAR, tvar);
727            TypeVar a = (TypeVar)tvar.type;
728            a.tsym.flags_field |= UNATTRIBUTED;
729            a.bound = Type.noType;
730            if (!tvar.bounds.isEmpty()) {
731                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
732                for (JCExpression bound : tvar.bounds.tail)
733                    bounds = bounds.prepend(attribType(bound, env));
734                types.setBounds(a, bounds.reverse());
735            } else {
736                // if no bounds are given, assume a single bound of
737                // java.lang.Object.
738                types.setBounds(a, List.of(syms.objectType));
739            }
740            a.tsym.flags_field &= ~UNATTRIBUTED;
741            dependencies.pop();
742        }
743        for (JCTypeParameter tvar : typarams) {
744            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
745        }
746    }
747
748    /**
749     * Attribute the type references in a list of annotations.
750     */
751    void attribAnnotationTypes(List<JCAnnotation> annotations,
752                               Env<AttrContext> env) {
753        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
754            JCAnnotation a = al.head;
755            attribType(a.annotationType, env);
756        }
757    }
758
759    /**
760     * Attribute a "lazy constant value".
761     *  @param env         The env for the const value
762     *  @param initializer The initializer for the const value
763     *  @param type        The expected type, or null
764     *  @see VarSymbol#setLazyConstValue
765     */
766    public Object attribLazyConstantValue(Env<AttrContext> env,
767                                      JCVariableDecl variable,
768                                      Type type) {
769
770        DiagnosticPosition prevLintPos
771                = deferredLintHandler.setPos(variable.pos());
772
773        try {
774            Type itype = attribExpr(variable.init, env, type);
775            if (itype.constValue() != null) {
776                return coerce(itype, type).constValue();
777            } else {
778                return null;
779            }
780        } finally {
781            deferredLintHandler.setPos(prevLintPos);
782        }
783    }
784
785    /** Attribute type reference in an `extends' or `implements' clause.
786     *  Supertypes of anonymous inner classes are usually already attributed.
787     *
788     *  @param tree              The tree making up the type reference.
789     *  @param env               The environment current at the reference.
790     *  @param classExpected     true if only a class is expected here.
791     *  @param interfaceExpected true if only an interface is expected here.
792     */
793    Type attribBase(JCTree tree,
794                    Env<AttrContext> env,
795                    boolean classExpected,
796                    boolean interfaceExpected,
797                    boolean checkExtensible) {
798        Type t = tree.type != null ?
799            tree.type :
800            attribType(tree, env);
801        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
802    }
803    Type checkBase(Type t,
804                   JCTree tree,
805                   Env<AttrContext> env,
806                   boolean classExpected,
807                   boolean interfaceExpected,
808                   boolean checkExtensible) {
809        if (t.tsym.isAnonymous()) {
810            log.error(tree.pos(), "cant.inherit.from.anon");
811            return types.createErrorType(t);
812        }
813        if (t.isErroneous())
814            return t;
815        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
816            // check that type variable is already visible
817            if (t.getUpperBound() == null) {
818                log.error(tree.pos(), "illegal.forward.ref");
819                return types.createErrorType(t);
820            }
821        } else {
822            t = chk.checkClassType(tree.pos(), t, checkExtensible);
823        }
824        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
825            log.error(tree.pos(), "intf.expected.here");
826            // return errType is necessary since otherwise there might
827            // be undetected cycles which cause attribution to loop
828            return types.createErrorType(t);
829        } else if (checkExtensible &&
830                   classExpected &&
831                   (t.tsym.flags() & INTERFACE) != 0) {
832            log.error(tree.pos(), "no.intf.expected.here");
833            return types.createErrorType(t);
834        }
835        if (checkExtensible &&
836            ((t.tsym.flags() & FINAL) != 0)) {
837            log.error(tree.pos(),
838                      "cant.inherit.from.final", t.tsym);
839        }
840        chk.checkNonCyclic(tree.pos(), t);
841        return t;
842    }
843
844    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
845        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
846        id.type = env.info.scope.owner.enclClass().type;
847        id.sym = env.info.scope.owner.enclClass();
848        return id.type;
849    }
850
851    public void visitClassDef(JCClassDecl tree) {
852        // Local and anonymous classes have not been entered yet, so we need to
853        // do it now.
854        if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
855            enter.classEnter(tree, env);
856        } else {
857            // If this class declaration is part of a class level annotation,
858            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
859            // order to simplify later steps and allow for sensible error
860            // messages.
861            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
862                enter.classEnter(tree, env);
863        }
864
865        ClassSymbol c = tree.sym;
866        if (c == null) {
867            // exit in case something drastic went wrong during enter.
868            result = null;
869        } else {
870            // make sure class has been completed:
871            c.complete();
872
873            // If this class appears as an anonymous class
874            // in a superclass constructor call where
875            // no explicit outer instance is given,
876            // disable implicit outer instance from being passed.
877            // (This would be an illegal access to "this before super").
878            if (env.info.isSelfCall &&
879                env.tree.hasTag(NEWCLASS) &&
880                ((JCNewClass) env.tree).encl == null)
881            {
882                c.flags_field |= NOOUTERTHIS;
883            }
884            attribClass(tree.pos(), c);
885            result = tree.type = c.type;
886        }
887    }
888
889    public void visitMethodDef(JCMethodDecl tree) {
890        MethodSymbol m = tree.sym;
891        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
892
893        Lint lint = env.info.lint.augment(m);
894        Lint prevLint = chk.setLint(lint);
895        MethodSymbol prevMethod = chk.setMethod(m);
896        try {
897            deferredLintHandler.flush(tree.pos());
898            chk.checkDeprecatedAnnotation(tree.pos(), m);
899
900
901            // Create a new environment with local scope
902            // for attributing the method.
903            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
904            localEnv.info.lint = lint;
905
906            attribStats(tree.typarams, localEnv);
907
908            // If we override any other methods, check that we do so properly.
909            // JLS ???
910            if (m.isStatic()) {
911                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
912            } else {
913                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
914            }
915            chk.checkOverride(env, tree, m);
916
917            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
918                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
919            }
920
921            // Enter all type parameters into the local method scope.
922            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
923                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
924
925            ClassSymbol owner = env.enclClass.sym;
926            if ((owner.flags() & ANNOTATION) != 0 &&
927                    tree.params.nonEmpty())
928                log.error(tree.params.head.pos(),
929                        "intf.annotation.members.cant.have.params");
930
931            // Attribute all value parameters.
932            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
933                attribStat(l.head, localEnv);
934            }
935
936            chk.checkVarargsMethodDecl(localEnv, tree);
937
938            // Check that type parameters are well-formed.
939            chk.validate(tree.typarams, localEnv);
940
941            // Check that result type is well-formed.
942            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
943                chk.validate(tree.restype, localEnv);
944
945            // Check that receiver type is well-formed.
946            if (tree.recvparam != null) {
947                // Use a new environment to check the receiver parameter.
948                // Otherwise I get "might not have been initialized" errors.
949                // Is there a better way?
950                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
951                attribType(tree.recvparam, newEnv);
952                chk.validate(tree.recvparam, newEnv);
953            }
954
955            // annotation method checks
956            if ((owner.flags() & ANNOTATION) != 0) {
957                // annotation method cannot have throws clause
958                if (tree.thrown.nonEmpty()) {
959                    log.error(tree.thrown.head.pos(),
960                            "throws.not.allowed.in.intf.annotation");
961                }
962                // annotation method cannot declare type-parameters
963                if (tree.typarams.nonEmpty()) {
964                    log.error(tree.typarams.head.pos(),
965                            "intf.annotation.members.cant.have.type.params");
966                }
967                // validate annotation method's return type (could be an annotation type)
968                chk.validateAnnotationType(tree.restype);
969                // ensure that annotation method does not clash with members of Object/Annotation
970                chk.validateAnnotationMethod(tree.pos(), m);
971            }
972
973            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
974                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
975
976            if (tree.body == null) {
977                // Empty bodies are only allowed for
978                // abstract, native, or interface methods, or for methods
979                // in a retrofit signature class.
980                if (tree.defaultValue != null) {
981                    if ((owner.flags() & ANNOTATION) == 0)
982                        log.error(tree.pos(),
983                                  "default.allowed.in.intf.annotation.member");
984                }
985                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
986                    !relax)
987                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
988            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
989                if ((owner.flags() & INTERFACE) != 0) {
990                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
991                } else {
992                    log.error(tree.pos(), "abstract.meth.cant.have.body");
993                }
994            } else if ((tree.mods.flags & NATIVE) != 0) {
995                log.error(tree.pos(), "native.meth.cant.have.body");
996            } else {
997                // Add an implicit super() call unless an explicit call to
998                // super(...) or this(...) is given
999                // or we are compiling class java.lang.Object.
1000                if (tree.name == names.init && owner.type != syms.objectType) {
1001                    JCBlock body = tree.body;
1002                    if (body.stats.isEmpty() ||
1003                            !TreeInfo.isSelfCall(body.stats.head)) {
1004                        body.stats = body.stats.
1005                                prepend(typeEnter.SuperCall(make.at(body.pos),
1006                                        List.<Type>nil(),
1007                                        List.<JCVariableDecl>nil(),
1008                                        false));
1009                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1010                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1011                            TreeInfo.isSuperCall(body.stats.head)) {
1012                        // enum constructors are not allowed to call super
1013                        // directly, so make sure there aren't any super calls
1014                        // in enum constructors, except in the compiler
1015                        // generated one.
1016                        log.error(tree.body.stats.head.pos(),
1017                                "call.to.super.not.allowed.in.enum.ctor",
1018                                env.enclClass.sym);
1019                    }
1020                }
1021
1022                // Attribute all type annotations in the body
1023                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1024                annotate.flush();
1025
1026                // Attribute method body.
1027                attribStat(tree.body, localEnv);
1028            }
1029
1030            localEnv.info.scope.leave();
1031            result = tree.type = m.type;
1032        } finally {
1033            chk.setLint(prevLint);
1034            chk.setMethod(prevMethod);
1035        }
1036    }
1037
1038    public void visitVarDef(JCVariableDecl tree) {
1039        // Local variables have not been entered yet, so we need to do it now:
1040        if (env.info.scope.owner.kind == MTH) {
1041            if (tree.sym != null) {
1042                // parameters have already been entered
1043                env.info.scope.enter(tree.sym);
1044            } else {
1045                try {
1046                    annotate.blockAnnotations();
1047                    memberEnter.memberEnter(tree, env);
1048                } finally {
1049                    annotate.unblockAnnotations();
1050                }
1051            }
1052        } else {
1053            if (tree.init != null) {
1054                // Field initializer expression need to be entered.
1055                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1056                annotate.flush();
1057            }
1058        }
1059
1060        VarSymbol v = tree.sym;
1061        Lint lint = env.info.lint.augment(v);
1062        Lint prevLint = chk.setLint(lint);
1063
1064        // Check that the variable's declared type is well-formed.
1065        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1066                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1067                (tree.sym.flags() & PARAMETER) != 0;
1068        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1069
1070        try {
1071            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1072            deferredLintHandler.flush(tree.pos());
1073            chk.checkDeprecatedAnnotation(tree.pos(), v);
1074
1075            if (tree.init != null) {
1076                if ((v.flags_field & FINAL) == 0 ||
1077                    !memberEnter.needsLazyConstValue(tree.init)) {
1078                    // Not a compile-time constant
1079                    // Attribute initializer in a new environment
1080                    // with the declared variable as owner.
1081                    // Check that initializer conforms to variable's declared type.
1082                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1083                    initEnv.info.lint = lint;
1084                    // In order to catch self-references, we set the variable's
1085                    // declaration position to maximal possible value, effectively
1086                    // marking the variable as undefined.
1087                    initEnv.info.enclVar = v;
1088                    attribExpr(tree.init, initEnv, v.type);
1089                }
1090            }
1091            result = tree.type = v.type;
1092        }
1093        finally {
1094            chk.setLint(prevLint);
1095        }
1096    }
1097
1098    public void visitSkip(JCSkip tree) {
1099        result = null;
1100    }
1101
1102    public void visitBlock(JCBlock tree) {
1103        if (env.info.scope.owner.kind == TYP) {
1104            // Block is a static or instance initializer;
1105            // let the owner of the environment be a freshly
1106            // created BLOCK-method.
1107            Symbol fakeOwner =
1108                new MethodSymbol(tree.flags | BLOCK |
1109                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1110                    env.info.scope.owner);
1111            final Env<AttrContext> localEnv =
1112                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1113
1114            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1115            // Attribute all type annotations in the block
1116            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1117            annotate.flush();
1118            attribStats(tree.stats, localEnv);
1119
1120            {
1121                // Store init and clinit type annotations with the ClassSymbol
1122                // to allow output in Gen.normalizeDefs.
1123                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1124                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1125                if ((tree.flags & STATIC) != 0) {
1126                    cs.appendClassInitTypeAttributes(tas);
1127                } else {
1128                    cs.appendInitTypeAttributes(tas);
1129                }
1130            }
1131        } else {
1132            // Create a new local environment with a local scope.
1133            Env<AttrContext> localEnv =
1134                env.dup(tree, env.info.dup(env.info.scope.dup()));
1135            try {
1136                attribStats(tree.stats, localEnv);
1137            } finally {
1138                localEnv.info.scope.leave();
1139            }
1140        }
1141        result = null;
1142    }
1143
1144    public void visitDoLoop(JCDoWhileLoop tree) {
1145        attribStat(tree.body, env.dup(tree));
1146        attribExpr(tree.cond, env, syms.booleanType);
1147        result = null;
1148    }
1149
1150    public void visitWhileLoop(JCWhileLoop tree) {
1151        attribExpr(tree.cond, env, syms.booleanType);
1152        attribStat(tree.body, env.dup(tree));
1153        result = null;
1154    }
1155
1156    public void visitForLoop(JCForLoop tree) {
1157        Env<AttrContext> loopEnv =
1158            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1159        try {
1160            attribStats(tree.init, loopEnv);
1161            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1162            loopEnv.tree = tree; // before, we were not in loop!
1163            attribStats(tree.step, loopEnv);
1164            attribStat(tree.body, loopEnv);
1165            result = null;
1166        }
1167        finally {
1168            loopEnv.info.scope.leave();
1169        }
1170    }
1171
1172    public void visitForeachLoop(JCEnhancedForLoop tree) {
1173        Env<AttrContext> loopEnv =
1174            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1175        try {
1176            //the Formal Parameter of a for-each loop is not in the scope when
1177            //attributing the for-each expression; we mimick this by attributing
1178            //the for-each expression first (against original scope).
1179            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1180            attribStat(tree.var, loopEnv);
1181            chk.checkNonVoid(tree.pos(), exprType);
1182            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1183            if (elemtype == null) {
1184                // or perhaps expr implements Iterable<T>?
1185                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1186                if (base == null) {
1187                    log.error(tree.expr.pos(),
1188                            "foreach.not.applicable.to.type",
1189                            exprType,
1190                            diags.fragment("type.req.array.or.iterable"));
1191                    elemtype = types.createErrorType(exprType);
1192                } else {
1193                    List<Type> iterableParams = base.allparams();
1194                    elemtype = iterableParams.isEmpty()
1195                        ? syms.objectType
1196                        : types.wildUpperBound(iterableParams.head);
1197                }
1198            }
1199            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1200            loopEnv.tree = tree; // before, we were not in loop!
1201            attribStat(tree.body, loopEnv);
1202            result = null;
1203        }
1204        finally {
1205            loopEnv.info.scope.leave();
1206        }
1207    }
1208
1209    public void visitLabelled(JCLabeledStatement tree) {
1210        // Check that label is not used in an enclosing statement
1211        Env<AttrContext> env1 = env;
1212        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1213            if (env1.tree.hasTag(LABELLED) &&
1214                ((JCLabeledStatement) env1.tree).label == tree.label) {
1215                log.error(tree.pos(), "label.already.in.use",
1216                          tree.label);
1217                break;
1218            }
1219            env1 = env1.next;
1220        }
1221
1222        attribStat(tree.body, env.dup(tree));
1223        result = null;
1224    }
1225
1226    public void visitSwitch(JCSwitch tree) {
1227        Type seltype = attribExpr(tree.selector, env);
1228
1229        Env<AttrContext> switchEnv =
1230            env.dup(tree, env.info.dup(env.info.scope.dup()));
1231
1232        try {
1233
1234            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1235            boolean stringSwitch = false;
1236            if (types.isSameType(seltype, syms.stringType)) {
1237                if (allowStringsInSwitch) {
1238                    stringSwitch = true;
1239                } else {
1240                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1241                }
1242            }
1243            if (!enumSwitch && !stringSwitch)
1244                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1245
1246            // Attribute all cases and
1247            // check that there are no duplicate case labels or default clauses.
1248            Set<Object> labels = new HashSet<>(); // The set of case labels.
1249            boolean hasDefault = false;      // Is there a default label?
1250            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1251                JCCase c = l.head;
1252                if (c.pat != null) {
1253                    if (enumSwitch) {
1254                        Symbol sym = enumConstant(c.pat, seltype);
1255                        if (sym == null) {
1256                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1257                        } else if (!labels.add(sym)) {
1258                            log.error(c.pos(), "duplicate.case.label");
1259                        }
1260                    } else {
1261                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1262                        if (!pattype.hasTag(ERROR)) {
1263                            if (pattype.constValue() == null) {
1264                                log.error(c.pat.pos(),
1265                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1266                            } else if (!labels.add(pattype.constValue())) {
1267                                log.error(c.pos(), "duplicate.case.label");
1268                            }
1269                        }
1270                    }
1271                } else if (hasDefault) {
1272                    log.error(c.pos(), "duplicate.default.label");
1273                } else {
1274                    hasDefault = true;
1275                }
1276                Env<AttrContext> caseEnv =
1277                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1278                try {
1279                    attribStats(c.stats, caseEnv);
1280                } finally {
1281                    caseEnv.info.scope.leave();
1282                    addVars(c.stats, switchEnv.info.scope);
1283                }
1284            }
1285
1286            result = null;
1287        }
1288        finally {
1289            switchEnv.info.scope.leave();
1290        }
1291    }
1292    // where
1293        /** Add any variables defined in stats to the switch scope. */
1294        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1295            for (;stats.nonEmpty(); stats = stats.tail) {
1296                JCTree stat = stats.head;
1297                if (stat.hasTag(VARDEF))
1298                    switchScope.enter(((JCVariableDecl) stat).sym);
1299            }
1300        }
1301    // where
1302    /** Return the selected enumeration constant symbol, or null. */
1303    private Symbol enumConstant(JCTree tree, Type enumType) {
1304        if (tree.hasTag(IDENT)) {
1305            JCIdent ident = (JCIdent)tree;
1306            Name name = ident.name;
1307            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1308                if (sym.kind == VAR) {
1309                    Symbol s = ident.sym = sym;
1310                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1311                    ident.type = s.type;
1312                    return ((s.flags_field & Flags.ENUM) == 0)
1313                        ? null : s;
1314                }
1315            }
1316        }
1317        return null;
1318    }
1319
1320    public void visitSynchronized(JCSynchronized tree) {
1321        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1322        attribStat(tree.body, env);
1323        result = null;
1324    }
1325
1326    public void visitTry(JCTry tree) {
1327        // Create a new local environment with a local
1328        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1329        try {
1330            boolean isTryWithResource = tree.resources.nonEmpty();
1331            // Create a nested environment for attributing the try block if needed
1332            Env<AttrContext> tryEnv = isTryWithResource ?
1333                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1334                localEnv;
1335            try {
1336                // Attribute resource declarations
1337                for (JCTree resource : tree.resources) {
1338                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1339                        @Override
1340                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1341                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1342                        }
1343                    };
1344                    ResultInfo twrResult =
1345                        new ResultInfo(KindSelector.VAR,
1346                                       syms.autoCloseableType,
1347                                       twrContext);
1348                    if (resource.hasTag(VARDEF)) {
1349                        attribStat(resource, tryEnv);
1350                        twrResult.check(resource, resource.type);
1351
1352                        //check that resource type cannot throw InterruptedException
1353                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1354
1355                        VarSymbol var = ((JCVariableDecl) resource).sym;
1356                        var.setData(ElementKind.RESOURCE_VARIABLE);
1357                    } else {
1358                        attribTree(resource, tryEnv, twrResult);
1359                    }
1360                }
1361                // Attribute body
1362                attribStat(tree.body, tryEnv);
1363            } finally {
1364                if (isTryWithResource)
1365                    tryEnv.info.scope.leave();
1366            }
1367
1368            // Attribute catch clauses
1369            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1370                JCCatch c = l.head;
1371                Env<AttrContext> catchEnv =
1372                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1373                try {
1374                    Type ctype = attribStat(c.param, catchEnv);
1375                    if (TreeInfo.isMultiCatch(c)) {
1376                        //multi-catch parameter is implicitly marked as final
1377                        c.param.sym.flags_field |= FINAL | UNION;
1378                    }
1379                    if (c.param.sym.kind == VAR) {
1380                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1381                    }
1382                    chk.checkType(c.param.vartype.pos(),
1383                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1384                                  syms.throwableType);
1385                    attribStat(c.body, catchEnv);
1386                } finally {
1387                    catchEnv.info.scope.leave();
1388                }
1389            }
1390
1391            // Attribute finalizer
1392            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1393            result = null;
1394        }
1395        finally {
1396            localEnv.info.scope.leave();
1397        }
1398    }
1399
1400    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1401        if (!resource.isErroneous() &&
1402            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1403            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1404            Symbol close = syms.noSymbol;
1405            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1406            try {
1407                close = rs.resolveQualifiedMethod(pos,
1408                        env,
1409                        resource,
1410                        names.close,
1411                        List.<Type>nil(),
1412                        List.<Type>nil());
1413            }
1414            finally {
1415                log.popDiagnosticHandler(discardHandler);
1416            }
1417            if (close.kind == MTH &&
1418                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1419                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1420                    env.info.lint.isEnabled(LintCategory.TRY)) {
1421                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1422            }
1423        }
1424    }
1425
1426    public void visitConditional(JCConditional tree) {
1427        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1428
1429        tree.polyKind = (!allowPoly ||
1430                pt().hasTag(NONE) && pt() != Type.recoveryType ||
1431                isBooleanOrNumeric(env, tree)) ?
1432                PolyKind.STANDALONE : PolyKind.POLY;
1433
1434        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1435            //cannot get here (i.e. it means we are returning from void method - which is already an error)
1436            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1437            result = tree.type = types.createErrorType(resultInfo.pt);
1438            return;
1439        }
1440
1441        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1442                unknownExprInfo :
1443                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1444                    //this will use enclosing check context to check compatibility of
1445                    //subexpression against target type; if we are in a method check context,
1446                    //depending on whether boxing is allowed, we could have incompatibilities
1447                    @Override
1448                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
1449                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1450                    }
1451                });
1452
1453        Type truetype = attribTree(tree.truepart, env, condInfo);
1454        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1455
1456        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1457        if (condtype.constValue() != null &&
1458                truetype.constValue() != null &&
1459                falsetype.constValue() != null &&
1460                !owntype.hasTag(NONE)) {
1461            //constant folding
1462            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1463        }
1464        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1465    }
1466    //where
1467        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1468            switch (tree.getTag()) {
1469                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1470                              ((JCLiteral)tree).typetag == BOOLEAN ||
1471                              ((JCLiteral)tree).typetag == BOT;
1472                case LAMBDA: case REFERENCE: return false;
1473                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1474                case CONDEXPR:
1475                    JCConditional condTree = (JCConditional)tree;
1476                    return isBooleanOrNumeric(env, condTree.truepart) &&
1477                            isBooleanOrNumeric(env, condTree.falsepart);
1478                case APPLY:
1479                    JCMethodInvocation speculativeMethodTree =
1480                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1481                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1482                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1483                            env.enclClass.type :
1484                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1485                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1486                    return primitiveOrBoxed(owntype);
1487                case NEWCLASS:
1488                    JCExpression className =
1489                            removeClassParams.translate(((JCNewClass)tree).clazz);
1490                    JCExpression speculativeNewClassTree =
1491                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1492                    return primitiveOrBoxed(speculativeNewClassTree.type);
1493                default:
1494                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1495                    return primitiveOrBoxed(speculativeType);
1496            }
1497        }
1498        //where
1499            boolean primitiveOrBoxed(Type t) {
1500                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1501            }
1502
1503            TreeTranslator removeClassParams = new TreeTranslator() {
1504                @Override
1505                public void visitTypeApply(JCTypeApply tree) {
1506                    result = translate(tree.clazz);
1507                }
1508            };
1509
1510        /** Compute the type of a conditional expression, after
1511         *  checking that it exists.  See JLS 15.25. Does not take into
1512         *  account the special case where condition and both arms
1513         *  are constants.
1514         *
1515         *  @param pos      The source position to be used for error
1516         *                  diagnostics.
1517         *  @param thentype The type of the expression's then-part.
1518         *  @param elsetype The type of the expression's else-part.
1519         */
1520        Type condType(DiagnosticPosition pos,
1521                               Type thentype, Type elsetype) {
1522            // If same type, that is the result
1523            if (types.isSameType(thentype, elsetype))
1524                return thentype.baseType();
1525
1526            Type thenUnboxed = (thentype.isPrimitive())
1527                ? thentype : types.unboxedType(thentype);
1528            Type elseUnboxed = (elsetype.isPrimitive())
1529                ? elsetype : types.unboxedType(elsetype);
1530
1531            // Otherwise, if both arms can be converted to a numeric
1532            // type, return the least numeric type that fits both arms
1533            // (i.e. return larger of the two, or return int if one
1534            // arm is short, the other is char).
1535            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1536                // If one arm has an integer subrange type (i.e., byte,
1537                // short, or char), and the other is an integer constant
1538                // that fits into the subrange, return the subrange type.
1539                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1540                    elseUnboxed.hasTag(INT) &&
1541                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1542                    return thenUnboxed.baseType();
1543                }
1544                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1545                    thenUnboxed.hasTag(INT) &&
1546                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1547                    return elseUnboxed.baseType();
1548                }
1549
1550                for (TypeTag tag : primitiveTags) {
1551                    Type candidate = syms.typeOfTag[tag.ordinal()];
1552                    if (types.isSubtype(thenUnboxed, candidate) &&
1553                        types.isSubtype(elseUnboxed, candidate)) {
1554                        return candidate;
1555                    }
1556                }
1557            }
1558
1559            // Those were all the cases that could result in a primitive
1560            if (thentype.isPrimitive())
1561                thentype = types.boxedClass(thentype).type;
1562            if (elsetype.isPrimitive())
1563                elsetype = types.boxedClass(elsetype).type;
1564
1565            if (types.isSubtype(thentype, elsetype))
1566                return elsetype.baseType();
1567            if (types.isSubtype(elsetype, thentype))
1568                return thentype.baseType();
1569
1570            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1571                log.error(pos, "neither.conditional.subtype",
1572                          thentype, elsetype);
1573                return thentype.baseType();
1574            }
1575
1576            // both are known to be reference types.  The result is
1577            // lub(thentype,elsetype). This cannot fail, as it will
1578            // always be possible to infer "Object" if nothing better.
1579            return types.lub(thentype.baseType(), elsetype.baseType());
1580        }
1581
1582    final static TypeTag[] primitiveTags = new TypeTag[]{
1583        BYTE,
1584        CHAR,
1585        SHORT,
1586        INT,
1587        LONG,
1588        FLOAT,
1589        DOUBLE,
1590        BOOLEAN,
1591    };
1592
1593    public void visitIf(JCIf tree) {
1594        attribExpr(tree.cond, env, syms.booleanType);
1595        attribStat(tree.thenpart, env);
1596        if (tree.elsepart != null)
1597            attribStat(tree.elsepart, env);
1598        chk.checkEmptyIf(tree);
1599        result = null;
1600    }
1601
1602    public void visitExec(JCExpressionStatement tree) {
1603        //a fresh environment is required for 292 inference to work properly ---
1604        //see Infer.instantiatePolymorphicSignatureInstance()
1605        Env<AttrContext> localEnv = env.dup(tree);
1606        attribExpr(tree.expr, localEnv);
1607        result = null;
1608    }
1609
1610    public void visitBreak(JCBreak tree) {
1611        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1612        result = null;
1613    }
1614
1615    public void visitContinue(JCContinue tree) {
1616        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1617        result = null;
1618    }
1619    //where
1620        /** Return the target of a break or continue statement, if it exists,
1621         *  report an error if not.
1622         *  Note: The target of a labelled break or continue is the
1623         *  (non-labelled) statement tree referred to by the label,
1624         *  not the tree representing the labelled statement itself.
1625         *
1626         *  @param pos     The position to be used for error diagnostics
1627         *  @param tag     The tag of the jump statement. This is either
1628         *                 Tree.BREAK or Tree.CONTINUE.
1629         *  @param label   The label of the jump statement, or null if no
1630         *                 label is given.
1631         *  @param env     The environment current at the jump statement.
1632         */
1633        private JCTree findJumpTarget(DiagnosticPosition pos,
1634                                    JCTree.Tag tag,
1635                                    Name label,
1636                                    Env<AttrContext> env) {
1637            // Search environments outwards from the point of jump.
1638            Env<AttrContext> env1 = env;
1639            LOOP:
1640            while (env1 != null) {
1641                switch (env1.tree.getTag()) {
1642                    case LABELLED:
1643                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1644                        if (label == labelled.label) {
1645                            // If jump is a continue, check that target is a loop.
1646                            if (tag == CONTINUE) {
1647                                if (!labelled.body.hasTag(DOLOOP) &&
1648                                        !labelled.body.hasTag(WHILELOOP) &&
1649                                        !labelled.body.hasTag(FORLOOP) &&
1650                                        !labelled.body.hasTag(FOREACHLOOP))
1651                                    log.error(pos, "not.loop.label", label);
1652                                // Found labelled statement target, now go inwards
1653                                // to next non-labelled tree.
1654                                return TreeInfo.referencedStatement(labelled);
1655                            } else {
1656                                return labelled;
1657                            }
1658                        }
1659                        break;
1660                    case DOLOOP:
1661                    case WHILELOOP:
1662                    case FORLOOP:
1663                    case FOREACHLOOP:
1664                        if (label == null) return env1.tree;
1665                        break;
1666                    case SWITCH:
1667                        if (label == null && tag == BREAK) return env1.tree;
1668                        break;
1669                    case LAMBDA:
1670                    case METHODDEF:
1671                    case CLASSDEF:
1672                        break LOOP;
1673                    default:
1674                }
1675                env1 = env1.next;
1676            }
1677            if (label != null)
1678                log.error(pos, "undef.label", label);
1679            else if (tag == CONTINUE)
1680                log.error(pos, "cont.outside.loop");
1681            else
1682                log.error(pos, "break.outside.switch.loop");
1683            return null;
1684        }
1685
1686    public void visitReturn(JCReturn tree) {
1687        // Check that there is an enclosing method which is
1688        // nested within than the enclosing class.
1689        if (env.info.returnResult == null) {
1690            log.error(tree.pos(), "ret.outside.meth");
1691        } else {
1692            // Attribute return expression, if it exists, and check that
1693            // it conforms to result type of enclosing method.
1694            if (tree.expr != null) {
1695                if (env.info.returnResult.pt.hasTag(VOID)) {
1696                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1697                              diags.fragment("unexpected.ret.val"));
1698                }
1699                attribTree(tree.expr, env, env.info.returnResult);
1700            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1701                    !env.info.returnResult.pt.hasTag(NONE)) {
1702                env.info.returnResult.checkContext.report(tree.pos(),
1703                              diags.fragment("missing.ret.val"));
1704            }
1705        }
1706        result = null;
1707    }
1708
1709    public void visitThrow(JCThrow tree) {
1710        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1711        if (allowPoly) {
1712            chk.checkType(tree, owntype, syms.throwableType);
1713        }
1714        result = null;
1715    }
1716
1717    public void visitAssert(JCAssert tree) {
1718        attribExpr(tree.cond, env, syms.booleanType);
1719        if (tree.detail != null) {
1720            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1721        }
1722        result = null;
1723    }
1724
1725     /** Visitor method for method invocations.
1726     *  NOTE: The method part of an application will have in its type field
1727     *        the return type of the method, not the method's type itself!
1728     */
1729    public void visitApply(JCMethodInvocation tree) {
1730        // The local environment of a method application is
1731        // a new environment nested in the current one.
1732        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1733
1734        // The types of the actual method arguments.
1735        List<Type> argtypes;
1736
1737        // The types of the actual method type arguments.
1738        List<Type> typeargtypes = null;
1739
1740        Name methName = TreeInfo.name(tree.meth);
1741
1742        boolean isConstructorCall =
1743            methName == names._this || methName == names._super;
1744
1745        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1746        if (isConstructorCall) {
1747            // We are seeing a ...this(...) or ...super(...) call.
1748            // Check that this is the first statement in a constructor.
1749            if (checkFirstConstructorStat(tree, env)) {
1750
1751                // Record the fact
1752                // that this is a constructor call (using isSelfCall).
1753                localEnv.info.isSelfCall = true;
1754
1755                // Attribute arguments, yielding list of argument types.
1756                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1757                argtypes = argtypesBuf.toList();
1758                typeargtypes = attribTypes(tree.typeargs, localEnv);
1759
1760                // Variable `site' points to the class in which the called
1761                // constructor is defined.
1762                Type site = env.enclClass.sym.type;
1763                if (methName == names._super) {
1764                    if (site == syms.objectType) {
1765                        log.error(tree.meth.pos(), "no.superclass", site);
1766                        site = types.createErrorType(syms.objectType);
1767                    } else {
1768                        site = types.supertype(site);
1769                    }
1770                }
1771
1772                if (site.hasTag(CLASS)) {
1773                    Type encl = site.getEnclosingType();
1774                    while (encl != null && encl.hasTag(TYPEVAR))
1775                        encl = encl.getUpperBound();
1776                    if (encl.hasTag(CLASS)) {
1777                        // we are calling a nested class
1778
1779                        if (tree.meth.hasTag(SELECT)) {
1780                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1781
1782                            // We are seeing a prefixed call, of the form
1783                            //     <expr>.super(...).
1784                            // Check that the prefix expression conforms
1785                            // to the outer instance type of the class.
1786                            chk.checkRefType(qualifier.pos(),
1787                                             attribExpr(qualifier, localEnv,
1788                                                        encl));
1789                        } else if (methName == names._super) {
1790                            // qualifier omitted; check for existence
1791                            // of an appropriate implicit qualifier.
1792                            rs.resolveImplicitThis(tree.meth.pos(),
1793                                                   localEnv, site, true);
1794                        }
1795                    } else if (tree.meth.hasTag(SELECT)) {
1796                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1797                                  site.tsym);
1798                    }
1799
1800                    // if we're calling a java.lang.Enum constructor,
1801                    // prefix the implicit String and int parameters
1802                    if (site.tsym == syms.enumSym)
1803                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1804
1805                    // Resolve the called constructor under the assumption
1806                    // that we are referring to a superclass instance of the
1807                    // current instance (JLS ???).
1808                    boolean selectSuperPrev = localEnv.info.selectSuper;
1809                    localEnv.info.selectSuper = true;
1810                    localEnv.info.pendingResolutionPhase = null;
1811                    Symbol sym = rs.resolveConstructor(
1812                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1813                    localEnv.info.selectSuper = selectSuperPrev;
1814
1815                    // Set method symbol to resolved constructor...
1816                    TreeInfo.setSymbol(tree.meth, sym);
1817
1818                    // ...and check that it is legal in the current context.
1819                    // (this will also set the tree's type)
1820                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1821                    checkId(tree.meth, site, sym, localEnv,
1822                            new ResultInfo(kind, mpt));
1823                }
1824                // Otherwise, `site' is an error type and we do nothing
1825            }
1826            result = tree.type = syms.voidType;
1827        } else {
1828            // Otherwise, we are seeing a regular method call.
1829            // Attribute the arguments, yielding list of argument types, ...
1830            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1831            argtypes = argtypesBuf.toList();
1832            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1833
1834            // ... and attribute the method using as a prototype a methodtype
1835            // whose formal argument types is exactly the list of actual
1836            // arguments (this will also set the method symbol).
1837            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1838            localEnv.info.pendingResolutionPhase = null;
1839            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1840
1841            // Compute the result type.
1842            Type restype = mtype.getReturnType();
1843            if (restype.hasTag(WILDCARD))
1844                throw new AssertionError(mtype);
1845
1846            Type qualifier = (tree.meth.hasTag(SELECT))
1847                    ? ((JCFieldAccess) tree.meth).selected.type
1848                    : env.enclClass.sym.type;
1849            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1850
1851            chk.checkRefTypes(tree.typeargs, typeargtypes);
1852
1853            // Check that value of resulting type is admissible in the
1854            // current context.  Also, capture the return type
1855            result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1856        }
1857        chk.validate(tree.typeargs, localEnv);
1858    }
1859    //where
1860        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1861            if (methodName == names.clone && types.isArray(qualifierType)) {
1862                // as a special case, array.clone() has a result that is
1863                // the same as static type of the array being cloned
1864                return qualifierType;
1865            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1866                // as a special case, x.getClass() has type Class<? extends |X|>
1867                return new ClassType(restype.getEnclosingType(),
1868                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1869                                                               BoundKind.EXTENDS,
1870                                                             syms.boundClass)),
1871                                     restype.tsym,
1872                                     restype.getMetadata());
1873            } else {
1874                return restype;
1875            }
1876        }
1877
1878        /** Check that given application node appears as first statement
1879         *  in a constructor call.
1880         *  @param tree   The application node
1881         *  @param env    The environment current at the application.
1882         */
1883        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1884            JCMethodDecl enclMethod = env.enclMethod;
1885            if (enclMethod != null && enclMethod.name == names.init) {
1886                JCBlock body = enclMethod.body;
1887                if (body.stats.head.hasTag(EXEC) &&
1888                    ((JCExpressionStatement) body.stats.head).expr == tree)
1889                    return true;
1890            }
1891            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1892                      TreeInfo.name(tree.meth));
1893            return false;
1894        }
1895
1896        /** Obtain a method type with given argument types.
1897         */
1898        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1899            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1900            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1901        }
1902
1903    public void visitNewClass(final JCNewClass tree) {
1904        Type owntype = types.createErrorType(tree.type);
1905
1906        // The local environment of a class creation is
1907        // a new environment nested in the current one.
1908        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1909
1910        // The anonymous inner class definition of the new expression,
1911        // if one is defined by it.
1912        JCClassDecl cdef = tree.def;
1913
1914        // If enclosing class is given, attribute it, and
1915        // complete class name to be fully qualified
1916        JCExpression clazz = tree.clazz; // Class field following new
1917        JCExpression clazzid;            // Identifier in class field
1918        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1919        annoclazzid = null;
1920
1921        if (clazz.hasTag(TYPEAPPLY)) {
1922            clazzid = ((JCTypeApply) clazz).clazz;
1923            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1924                annoclazzid = (JCAnnotatedType) clazzid;
1925                clazzid = annoclazzid.underlyingType;
1926            }
1927        } else {
1928            if (clazz.hasTag(ANNOTATED_TYPE)) {
1929                annoclazzid = (JCAnnotatedType) clazz;
1930                clazzid = annoclazzid.underlyingType;
1931            } else {
1932                clazzid = clazz;
1933            }
1934        }
1935
1936        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1937
1938        if (tree.encl != null) {
1939            // We are seeing a qualified new, of the form
1940            //    <expr>.new C <...> (...) ...
1941            // In this case, we let clazz stand for the name of the
1942            // allocated class C prefixed with the type of the qualifier
1943            // expression, so that we can
1944            // resolve it with standard techniques later. I.e., if
1945            // <expr> has type T, then <expr>.new C <...> (...)
1946            // yields a clazz T.C.
1947            Type encltype = chk.checkRefType(tree.encl.pos(),
1948                                             attribExpr(tree.encl, env));
1949            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1950            // from expr to the combined type, or not? Yes, do this.
1951            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1952                                                 ((JCIdent) clazzid).name);
1953
1954            EndPosTable endPosTable = this.env.toplevel.endPositions;
1955            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1956            if (clazz.hasTag(ANNOTATED_TYPE)) {
1957                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1958                List<JCAnnotation> annos = annoType.annotations;
1959
1960                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1961                    clazzid1 = make.at(tree.pos).
1962                        TypeApply(clazzid1,
1963                                  ((JCTypeApply) clazz).arguments);
1964                }
1965
1966                clazzid1 = make.at(tree.pos).
1967                    AnnotatedType(annos, clazzid1);
1968            } else if (clazz.hasTag(TYPEAPPLY)) {
1969                clazzid1 = make.at(tree.pos).
1970                    TypeApply(clazzid1,
1971                              ((JCTypeApply) clazz).arguments);
1972            }
1973
1974            clazz = clazzid1;
1975        }
1976
1977        // Attribute clazz expression and store
1978        // symbol + type back into the attributed tree.
1979        Type clazztype;
1980
1981        try {
1982            env.info.isNewClass = true;
1983            clazztype = TreeInfo.isEnumInit(env.tree) ?
1984                attribIdentAsEnumType(env, (JCIdent)clazz) :
1985                attribType(clazz, env);
1986        } finally {
1987            env.info.isNewClass = false;
1988        }
1989
1990        clazztype = chk.checkDiamond(tree, clazztype);
1991        chk.validate(clazz, localEnv);
1992        if (tree.encl != null) {
1993            // We have to work in this case to store
1994            // symbol + type back into the attributed tree.
1995            tree.clazz.type = clazztype;
1996            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1997            clazzid.type = ((JCIdent) clazzid).sym.type;
1998            if (annoclazzid != null) {
1999                annoclazzid.type = clazzid.type;
2000            }
2001            if (!clazztype.isErroneous()) {
2002                if (cdef != null && clazztype.tsym.isInterface()) {
2003                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2004                } else if (clazztype.tsym.isStatic()) {
2005                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2006                }
2007            }
2008        } else if (!clazztype.tsym.isInterface() &&
2009                   clazztype.getEnclosingType().hasTag(CLASS)) {
2010            // Check for the existence of an apropos outer instance
2011            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2012        }
2013
2014        // Attribute constructor arguments.
2015        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2016        final KindSelector pkind =
2017            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2018        List<Type> argtypes = argtypesBuf.toList();
2019        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2020
2021        // If we have made no mistakes in the class type...
2022        if (clazztype.hasTag(CLASS)) {
2023            // Enums may not be instantiated except implicitly
2024            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2025                (!env.tree.hasTag(VARDEF) ||
2026                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2027                 ((JCVariableDecl) env.tree).init != tree))
2028                log.error(tree.pos(), "enum.cant.be.instantiated");
2029
2030            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2031                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2032            boolean skipNonDiamondPath = false;
2033            // Check that class is not abstract
2034            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2035                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2036                log.error(tree.pos(), "abstract.cant.be.instantiated",
2037                          clazztype.tsym);
2038                skipNonDiamondPath = true;
2039            } else if (cdef != null && clazztype.tsym.isInterface()) {
2040                // Check that no constructor arguments are given to
2041                // anonymous classes implementing an interface
2042                if (!argtypes.isEmpty())
2043                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2044
2045                if (!typeargtypes.isEmpty())
2046                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2047
2048                // Error recovery: pretend no arguments were supplied.
2049                argtypes = List.nil();
2050                typeargtypes = List.nil();
2051                skipNonDiamondPath = true;
2052            }
2053            if (TreeInfo.isDiamond(tree)) {
2054                ClassType site = new ClassType(clazztype.getEnclosingType(),
2055                            clazztype.tsym.type.getTypeArguments(),
2056                                               clazztype.tsym,
2057                                               clazztype.getMetadata());
2058
2059                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2060                diamondEnv.info.selectSuper = cdef != null;
2061                diamondEnv.info.pendingResolutionPhase = null;
2062
2063                //if the type of the instance creation expression is a class type
2064                //apply method resolution inference (JLS 15.12.2.7). The return type
2065                //of the resolved constructor will be a partially instantiated type
2066                Symbol constructor = rs.resolveDiamond(tree.pos(),
2067                            diamondEnv,
2068                            site,
2069                            argtypes,
2070                            typeargtypes);
2071                tree.constructor = constructor.baseSymbol();
2072
2073                final TypeSymbol csym = clazztype.tsym;
2074                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2075                    @Override
2076                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2077                        enclosingContext.report(tree.clazz,
2078                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2079                    }
2080                }, CheckMode.NO_TREE_UPDATE);
2081                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2082                constructorType = checkId(tree, site,
2083                        constructor,
2084                        diamondEnv,
2085                        diamondResult);
2086
2087                tree.clazz.type = types.createErrorType(clazztype);
2088                if (!constructorType.isErroneous()) {
2089                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2090                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2091                }
2092                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2093            }
2094
2095            // Resolve the called constructor under the assumption
2096            // that we are referring to a superclass instance of the
2097            // current instance (JLS ???).
2098            else if (!skipNonDiamondPath) {
2099                //the following code alters some of the fields in the current
2100                //AttrContext - hence, the current context must be dup'ed in
2101                //order to avoid downstream failures
2102                Env<AttrContext> rsEnv = localEnv.dup(tree);
2103                rsEnv.info.selectSuper = cdef != null;
2104                rsEnv.info.pendingResolutionPhase = null;
2105                tree.constructor = rs.resolveConstructor(
2106                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2107                if (cdef == null) { //do not check twice!
2108                    tree.constructorType = checkId(tree,
2109                            clazztype,
2110                            tree.constructor,
2111                            rsEnv,
2112                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2113                    if (rsEnv.info.lastResolveVarargs())
2114                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2115                }
2116            }
2117
2118            if (cdef != null) {
2119                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2120                return;
2121            }
2122
2123            if (tree.constructor != null && tree.constructor.kind == MTH)
2124                owntype = clazztype;
2125        }
2126        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2127        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2128        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2129            //we need to wait for inference to finish and then replace inference vars in the constructor type
2130            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2131                    instantiatedContext -> {
2132                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2133                    });
2134        }
2135        chk.validate(tree.typeargs, localEnv);
2136    }
2137
2138        // where
2139        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2140                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2141                                                   List<Type> argtypes, List<Type> typeargtypes,
2142                                                   KindSelector pkind) {
2143            // We are seeing an anonymous class instance creation.
2144            // In this case, the class instance creation
2145            // expression
2146            //
2147            //    E.new <typeargs1>C<typargs2>(args) { ... }
2148            //
2149            // is represented internally as
2150            //
2151            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2152            //
2153            // This expression is then *transformed* as follows:
2154            //
2155            // (1) add an extends or implements clause
2156            // (2) add a constructor.
2157            //
2158            // For instance, if C is a class, and ET is the type of E,
2159            // the expression
2160            //
2161            //    E.new <typeargs1>C<typargs2>(args) { ... }
2162            //
2163            // is translated to (where X is a fresh name and typarams is the
2164            // parameter list of the super constructor):
2165            //
2166            //   new <typeargs1>X(<*nullchk*>E, args) where
2167            //     X extends C<typargs2> {
2168            //       <typarams> X(ET e, args) {
2169            //         e.<typeargs1>super(args)
2170            //       }
2171            //       ...
2172            //     }
2173            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2174            final boolean isDiamond = TreeInfo.isDiamond(tree);
2175            if (isDiamond
2176                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2177                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2178                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2179                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2180                        instantiatedContext -> {
2181                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2182                            clazz.type = instantiatedContext.asInstType(clazz.type);
2183                            ResultInfo prevResult = this.resultInfo;
2184                            try {
2185                                this.resultInfo = resultInfoForClassDefinition;
2186                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2187                                                            localEnv, argtypes, typeargtypes, pkind);
2188                            } finally {
2189                                this.resultInfo = prevResult;
2190                            }
2191                        });
2192            } else {
2193                if (isDiamond && clazztype.hasTag(CLASS)) {
2194                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2195                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2196                        // One or more types inferred in the previous steps is non-denotable.
2197                        Fragment fragment = Diamond(clazztype.tsym);
2198                        log.error(tree.clazz.pos(),
2199                                Errors.CantApplyDiamond1(
2200                                        fragment,
2201                                        invalidDiamondArgs.size() > 1 ?
2202                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2203                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2204                    }
2205                    // For <>(){}, inferred types must also be accessible.
2206                    for (Type t : clazztype.getTypeArguments()) {
2207                        rs.checkAccessibleType(env, t);
2208                    }
2209                }
2210
2211                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2212                // false for isInterface call even when the original type is an interface.
2213                boolean implementing = clazztype.tsym.isInterface() ||
2214                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2215
2216                if (implementing) {
2217                    cdef.implementing = List.of(clazz);
2218                } else {
2219                    cdef.extending = clazz;
2220                }
2221
2222                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2223                    isSerializable(clazztype)) {
2224                    localEnv.info.isSerializable = true;
2225                }
2226
2227                attribStat(cdef, localEnv);
2228
2229                List<Type> finalargtypes;
2230                // If an outer instance is given,
2231                // prefix it to the constructor arguments
2232                // and delete it from the new expression
2233                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2234                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2235                    finalargtypes = argtypes.prepend(tree.encl.type);
2236                    tree.encl = null;
2237                } else {
2238                    finalargtypes = argtypes;
2239                }
2240
2241                // Reassign clazztype and recompute constructor. As this necessarily involves
2242                // another attribution pass for deferred types in the case of <>, replicate
2243                // them. Original arguments have right decorations already.
2244                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2245                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2246                }
2247
2248                clazztype = cdef.sym.type;
2249                Symbol sym = tree.constructor = rs.resolveConstructor(
2250                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2251                Assert.check(!sym.kind.isResolutionError());
2252                tree.constructor = sym;
2253                tree.constructorType = checkId(tree,
2254                        clazztype,
2255                        tree.constructor,
2256                        localEnv,
2257                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2258            }
2259            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2260                                clazztype : types.createErrorType(tree.type);
2261            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2262            chk.validate(tree.typeargs, localEnv);
2263        }
2264
2265    /** Make an attributed null check tree.
2266     */
2267    public JCExpression makeNullCheck(JCExpression arg) {
2268        // optimization: X.this is never null; skip null check
2269        Name name = TreeInfo.name(arg);
2270        if (name == names._this || name == names._super) return arg;
2271
2272        JCTree.Tag optag = NULLCHK;
2273        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2274        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2275        tree.type = arg.type;
2276        return tree;
2277    }
2278
2279    public void visitNewArray(JCNewArray tree) {
2280        Type owntype = types.createErrorType(tree.type);
2281        Env<AttrContext> localEnv = env.dup(tree);
2282        Type elemtype;
2283        if (tree.elemtype != null) {
2284            elemtype = attribType(tree.elemtype, localEnv);
2285            chk.validate(tree.elemtype, localEnv);
2286            owntype = elemtype;
2287            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2288                attribExpr(l.head, localEnv, syms.intType);
2289                owntype = new ArrayType(owntype, syms.arrayClass);
2290            }
2291        } else {
2292            // we are seeing an untyped aggregate { ... }
2293            // this is allowed only if the prototype is an array
2294            if (pt().hasTag(ARRAY)) {
2295                elemtype = types.elemtype(pt());
2296            } else {
2297                if (!pt().hasTag(ERROR)) {
2298                    log.error(tree.pos(), "illegal.initializer.for.type",
2299                              pt());
2300                }
2301                elemtype = types.createErrorType(pt());
2302            }
2303        }
2304        if (tree.elems != null) {
2305            attribExprs(tree.elems, localEnv, elemtype);
2306            owntype = new ArrayType(elemtype, syms.arrayClass);
2307        }
2308        if (!types.isReifiable(elemtype))
2309            log.error(tree.pos(), "generic.array.creation");
2310        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2311    }
2312
2313    /*
2314     * A lambda expression can only be attributed when a target-type is available.
2315     * In addition, if the target-type is that of a functional interface whose
2316     * descriptor contains inference variables in argument position the lambda expression
2317     * is 'stuck' (see DeferredAttr).
2318     */
2319    @Override
2320    public void visitLambda(final JCLambda that) {
2321        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2322            if (pt().hasTag(NONE)) {
2323                //lambda only allowed in assignment or method invocation/cast context
2324                log.error(that.pos(), "unexpected.lambda");
2325            }
2326            result = that.type = types.createErrorType(pt());
2327            return;
2328        }
2329        //create an environment for attribution of the lambda expression
2330        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2331        boolean needsRecovery =
2332                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2333        try {
2334            Type currentTarget = pt();
2335            if (needsRecovery && isSerializable(currentTarget)) {
2336                localEnv.info.isSerializable = true;
2337            }
2338            List<Type> explicitParamTypes = null;
2339            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2340                //attribute lambda parameters
2341                attribStats(that.params, localEnv);
2342                explicitParamTypes = TreeInfo.types(that.params);
2343            }
2344
2345            Type lambdaType;
2346            if (pt() != Type.recoveryType) {
2347                /* We need to adjust the target. If the target is an
2348                 * intersection type, for example: SAM & I1 & I2 ...
2349                 * the target will be updated to SAM
2350                 */
2351                currentTarget = targetChecker.visit(currentTarget, that);
2352                if (explicitParamTypes != null) {
2353                    currentTarget = infer.instantiateFunctionalInterface(that,
2354                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2355                }
2356                currentTarget = types.removeWildcards(currentTarget);
2357                lambdaType = types.findDescriptorType(currentTarget);
2358            } else {
2359                currentTarget = Type.recoveryType;
2360                lambdaType = fallbackDescriptorType(that);
2361            }
2362
2363            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2364
2365            if (lambdaType.hasTag(FORALL)) {
2366                //lambda expression target desc cannot be a generic method
2367                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2368                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2369                result = that.type = types.createErrorType(pt());
2370                return;
2371            }
2372
2373            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2374                //add param type info in the AST
2375                List<Type> actuals = lambdaType.getParameterTypes();
2376                List<JCVariableDecl> params = that.params;
2377
2378                boolean arityMismatch = false;
2379
2380                while (params.nonEmpty()) {
2381                    if (actuals.isEmpty()) {
2382                        //not enough actuals to perform lambda parameter inference
2383                        arityMismatch = true;
2384                    }
2385                    //reset previously set info
2386                    Type argType = arityMismatch ?
2387                            syms.errType :
2388                            actuals.head;
2389                    params.head.vartype = make.at(params.head).Type(argType);
2390                    params.head.sym = null;
2391                    actuals = actuals.isEmpty() ?
2392                            actuals :
2393                            actuals.tail;
2394                    params = params.tail;
2395                }
2396
2397                //attribute lambda parameters
2398                attribStats(that.params, localEnv);
2399
2400                if (arityMismatch) {
2401                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2402                        result = that.type = types.createErrorType(currentTarget);
2403                        return;
2404                }
2405            }
2406
2407            //from this point on, no recovery is needed; if we are in assignment context
2408            //we will be able to attribute the whole lambda body, regardless of errors;
2409            //if we are in a 'check' method context, and the lambda is not compatible
2410            //with the target-type, it will be recovered anyway in Attr.checkId
2411            needsRecovery = false;
2412
2413            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2414                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2415                    new FunctionalReturnContext(resultInfo.checkContext);
2416
2417            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2418                recoveryInfo :
2419                new ResultInfo(KindSelector.VAL,
2420                               lambdaType.getReturnType(), funcContext);
2421            localEnv.info.returnResult = bodyResultInfo;
2422
2423            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2424                attribTree(that.getBody(), localEnv, bodyResultInfo);
2425            } else {
2426                JCBlock body = (JCBlock)that.body;
2427                attribStats(body.stats, localEnv);
2428            }
2429
2430            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2431
2432            boolean isSpeculativeRound =
2433                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2434
2435            preFlow(that);
2436            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2437
2438            that.type = currentTarget; //avoids recovery at this stage
2439            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2440
2441            if (!isSpeculativeRound) {
2442                //add thrown types as bounds to the thrown types free variables if needed:
2443                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2444                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2445                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2446
2447                    chk.unhandled(inferredThrownTypes, thrownTypes);
2448                }
2449
2450                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2451            }
2452            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2453        } catch (Types.FunctionDescriptorLookupError ex) {
2454            JCDiagnostic cause = ex.getDiagnostic();
2455            resultInfo.checkContext.report(that, cause);
2456            result = that.type = types.createErrorType(pt());
2457            return;
2458        } catch (Throwable t) {
2459            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2460            //as that would likely cause the same exception again.
2461            needsRecovery = false;
2462            throw t;
2463        } finally {
2464            localEnv.info.scope.leave();
2465            if (needsRecovery) {
2466                attribTree(that, env, recoveryInfo);
2467            }
2468        }
2469    }
2470    //where
2471        void preFlow(JCLambda tree) {
2472            new PostAttrAnalyzer() {
2473                @Override
2474                public void scan(JCTree tree) {
2475                    if (tree == null ||
2476                            (tree.type != null &&
2477                            tree.type == Type.stuckType)) {
2478                        //don't touch stuck expressions!
2479                        return;
2480                    }
2481                    super.scan(tree);
2482                }
2483            }.scan(tree);
2484        }
2485
2486        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2487
2488            @Override
2489            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2490                return t.isIntersection() ?
2491                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2492            }
2493
2494            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2495                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2496                Type target = null;
2497                for (Type bound : ict.getExplicitComponents()) {
2498                    TypeSymbol boundSym = bound.tsym;
2499                    if (types.isFunctionalInterface(boundSym) &&
2500                            types.findDescriptorSymbol(boundSym) == desc) {
2501                        target = bound;
2502                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2503                        //bound must be an interface
2504                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2505                    }
2506                }
2507                return target != null ?
2508                        target :
2509                        ict.getExplicitComponents().head; //error recovery
2510            }
2511
2512            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2513                ListBuffer<Type> targs = new ListBuffer<>();
2514                ListBuffer<Type> supertypes = new ListBuffer<>();
2515                for (Type i : ict.interfaces_field) {
2516                    if (i.isParameterized()) {
2517                        targs.appendList(i.tsym.type.allparams());
2518                    }
2519                    supertypes.append(i.tsym.type);
2520                }
2521                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2522                notionalIntf.allparams_field = targs.toList();
2523                notionalIntf.tsym.flags_field |= INTERFACE;
2524                return notionalIntf.tsym;
2525            }
2526
2527            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2528                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2529                        diags.fragment(key, args)));
2530            }
2531        };
2532
2533        private Type fallbackDescriptorType(JCExpression tree) {
2534            switch (tree.getTag()) {
2535                case LAMBDA:
2536                    JCLambda lambda = (JCLambda)tree;
2537                    List<Type> argtypes = List.nil();
2538                    for (JCVariableDecl param : lambda.params) {
2539                        argtypes = param.vartype != null ?
2540                                argtypes.append(param.vartype.type) :
2541                                argtypes.append(syms.errType);
2542                    }
2543                    return new MethodType(argtypes, Type.recoveryType,
2544                            List.of(syms.throwableType), syms.methodClass);
2545                case REFERENCE:
2546                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2547                            List.of(syms.throwableType), syms.methodClass);
2548                default:
2549                    Assert.error("Cannot get here!");
2550            }
2551            return null;
2552        }
2553
2554        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2555                final InferenceContext inferenceContext, final Type... ts) {
2556            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2557        }
2558
2559        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2560                final InferenceContext inferenceContext, final List<Type> ts) {
2561            if (inferenceContext.free(ts)) {
2562                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2563                    @Override
2564                    public void typesInferred(InferenceContext inferenceContext) {
2565                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2566                    }
2567                });
2568            } else {
2569                for (Type t : ts) {
2570                    rs.checkAccessibleType(env, t);
2571                }
2572            }
2573        }
2574
2575        /**
2576         * Lambda/method reference have a special check context that ensures
2577         * that i.e. a lambda return type is compatible with the expected
2578         * type according to both the inherited context and the assignment
2579         * context.
2580         */
2581        class FunctionalReturnContext extends Check.NestedCheckContext {
2582
2583            FunctionalReturnContext(CheckContext enclosingContext) {
2584                super(enclosingContext);
2585            }
2586
2587            @Override
2588            public boolean compatible(Type found, Type req, Warner warn) {
2589                //return type must be compatible in both current context and assignment context
2590                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2591            }
2592
2593            @Override
2594            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2595                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2596            }
2597        }
2598
2599        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2600
2601            JCExpression expr;
2602
2603            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2604                super(enclosingContext);
2605                this.expr = expr;
2606            }
2607
2608            @Override
2609            public boolean compatible(Type found, Type req, Warner warn) {
2610                //a void return is compatible with an expression statement lambda
2611                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2612                        super.compatible(found, req, warn);
2613            }
2614        }
2615
2616        /**
2617        * Lambda compatibility. Check that given return types, thrown types, parameter types
2618        * are compatible with the expected functional interface descriptor. This means that:
2619        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2620        * types must be compatible with the return type of the expected descriptor.
2621        */
2622        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2623            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2624
2625            //return values have already been checked - but if lambda has no return
2626            //values, we must ensure that void/value compatibility is correct;
2627            //this amounts at checking that, if a lambda body can complete normally,
2628            //the descriptor's return type must be void
2629            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2630                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2631                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2632                        diags.fragment("missing.ret.val", returnType)));
2633            }
2634
2635            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2636            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2637                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2638            }
2639        }
2640
2641        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2642         * static field and that lambda has type annotations, these annotations will
2643         * also be stored at these fake clinit methods.
2644         *
2645         * LambdaToMethod also use fake clinit methods so they can be reused.
2646         * Also as LTM is a phase subsequent to attribution, the methods from
2647         * clinits can be safely removed by LTM to save memory.
2648         */
2649        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2650
2651        public MethodSymbol removeClinit(ClassSymbol sym) {
2652            return clinits.remove(sym);
2653        }
2654
2655        /* This method returns an environment to be used to attribute a lambda
2656         * expression.
2657         *
2658         * The owner of this environment is a method symbol. If the current owner
2659         * is not a method, for example if the lambda is used to initialize
2660         * a field, then if the field is:
2661         *
2662         * - an instance field, we use the first constructor.
2663         * - a static field, we create a fake clinit method.
2664         */
2665        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2666            Env<AttrContext> lambdaEnv;
2667            Symbol owner = env.info.scope.owner;
2668            if (owner.kind == VAR && owner.owner.kind == TYP) {
2669                //field initializer
2670                ClassSymbol enclClass = owner.enclClass();
2671                Symbol newScopeOwner = env.info.scope.owner;
2672                /* if the field isn't static, then we can get the first constructor
2673                 * and use it as the owner of the environment. This is what
2674                 * LTM code is doing to look for type annotations so we are fine.
2675                 */
2676                if ((owner.flags() & STATIC) == 0) {
2677                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2678                        newScopeOwner = s;
2679                        break;
2680                    }
2681                } else {
2682                    /* if the field is static then we need to create a fake clinit
2683                     * method, this method can later be reused by LTM.
2684                     */
2685                    MethodSymbol clinit = clinits.get(enclClass);
2686                    if (clinit == null) {
2687                        Type clinitType = new MethodType(List.<Type>nil(),
2688                                syms.voidType, List.<Type>nil(), syms.methodClass);
2689                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2690                                names.clinit, clinitType, enclClass);
2691                        clinit.params = List.<VarSymbol>nil();
2692                        clinits.put(enclClass, clinit);
2693                    }
2694                    newScopeOwner = clinit;
2695                }
2696                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2697            } else {
2698                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2699            }
2700            return lambdaEnv;
2701        }
2702
2703    @Override
2704    public void visitReference(final JCMemberReference that) {
2705        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2706            if (pt().hasTag(NONE)) {
2707                //method reference only allowed in assignment or method invocation/cast context
2708                log.error(that.pos(), "unexpected.mref");
2709            }
2710            result = that.type = types.createErrorType(pt());
2711            return;
2712        }
2713        final Env<AttrContext> localEnv = env.dup(that);
2714        try {
2715            //attribute member reference qualifier - if this is a constructor
2716            //reference, the expected kind must be a type
2717            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2718
2719            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2720                exprType = chk.checkConstructorRefType(that.expr, exprType);
2721                if (!exprType.isErroneous() &&
2722                    exprType.isRaw() &&
2723                    that.typeargs != null) {
2724                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2725                        diags.fragment("mref.infer.and.explicit.params"));
2726                    exprType = types.createErrorType(exprType);
2727                }
2728            }
2729
2730            if (exprType.isErroneous()) {
2731                //if the qualifier expression contains problems,
2732                //give up attribution of method reference
2733                result = that.type = exprType;
2734                return;
2735            }
2736
2737            if (TreeInfo.isStaticSelector(that.expr, names)) {
2738                //if the qualifier is a type, validate it; raw warning check is
2739                //omitted as we don't know at this stage as to whether this is a
2740                //raw selector (because of inference)
2741                chk.validate(that.expr, env, false);
2742            }
2743
2744            //attrib type-arguments
2745            List<Type> typeargtypes = List.nil();
2746            if (that.typeargs != null) {
2747                typeargtypes = attribTypes(that.typeargs, localEnv);
2748            }
2749
2750            Type desc;
2751            Type currentTarget = pt();
2752            boolean isTargetSerializable =
2753                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2754                    isSerializable(currentTarget);
2755            if (currentTarget != Type.recoveryType) {
2756                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2757                desc = types.findDescriptorType(currentTarget);
2758            } else {
2759                currentTarget = Type.recoveryType;
2760                desc = fallbackDescriptorType(that);
2761            }
2762
2763            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2764            List<Type> argtypes = desc.getParameterTypes();
2765            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2766
2767            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2768                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2769            }
2770
2771            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2772            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2773            try {
2774                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2775                        that.name, argtypes, typeargtypes, referenceCheck,
2776                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2777            } finally {
2778                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2779            }
2780
2781            Symbol refSym = refResult.fst;
2782            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2783
2784            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2785             *  JDK-8075541
2786             */
2787            if (refSym.kind != MTH) {
2788                boolean targetError;
2789                switch (refSym.kind) {
2790                    case ABSENT_MTH:
2791                    case MISSING_ENCL:
2792                        targetError = false;
2793                        break;
2794                    case WRONG_MTH:
2795                    case WRONG_MTHS:
2796                    case AMBIGUOUS:
2797                    case HIDDEN:
2798                    case STATICERR:
2799                        targetError = true;
2800                        break;
2801                    default:
2802                        Assert.error("unexpected result kind " + refSym.kind);
2803                        targetError = false;
2804                }
2805
2806                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2807                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2808
2809                JCDiagnostic.DiagnosticType diagKind = targetError ?
2810                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2811
2812                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2813                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2814
2815                if (targetError && currentTarget == Type.recoveryType) {
2816                    //a target error doesn't make sense during recovery stage
2817                    //as we don't know what actual parameter types are
2818                    result = that.type = currentTarget;
2819                    return;
2820                } else {
2821                    if (targetError) {
2822                        resultInfo.checkContext.report(that, diag);
2823                    } else {
2824                        log.report(diag);
2825                    }
2826                    result = that.type = types.createErrorType(currentTarget);
2827                    return;
2828                }
2829            }
2830
2831            that.sym = refSym.baseSymbol();
2832            that.kind = lookupHelper.referenceKind(that.sym);
2833            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2834
2835            if (desc.getReturnType() == Type.recoveryType) {
2836                // stop here
2837                result = that.type = currentTarget;
2838                return;
2839            }
2840
2841            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2842
2843                if (that.getMode() == ReferenceMode.INVOKE &&
2844                        TreeInfo.isStaticSelector(that.expr, names) &&
2845                        that.kind.isUnbound() &&
2846                        !desc.getParameterTypes().head.isParameterized()) {
2847                    chk.checkRaw(that.expr, localEnv);
2848                }
2849
2850                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2851                        exprType.getTypeArguments().nonEmpty()) {
2852                    //static ref with class type-args
2853                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2854                            diags.fragment("static.mref.with.targs"));
2855                    result = that.type = types.createErrorType(currentTarget);
2856                    return;
2857                }
2858
2859                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2860                    // Check that super-qualified symbols are not abstract (JLS)
2861                    rs.checkNonAbstract(that.pos(), that.sym);
2862                }
2863
2864                if (isTargetSerializable) {
2865                    chk.checkElemAccessFromSerializableLambda(that);
2866                }
2867            }
2868
2869            ResultInfo checkInfo =
2870                    resultInfo.dup(newMethodTemplate(
2871                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2872                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2873                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2874
2875            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2876
2877            if (that.kind.isUnbound() &&
2878                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2879                //re-generate inference constraints for unbound receiver
2880                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2881                    //cannot happen as this has already been checked - we just need
2882                    //to regenerate the inference constraints, as that has been lost
2883                    //as a result of the call to inferenceContext.save()
2884                    Assert.error("Can't get here");
2885                }
2886            }
2887
2888            if (!refType.isErroneous()) {
2889                refType = types.createMethodTypeWithReturn(refType,
2890                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2891            }
2892
2893            //go ahead with standard method reference compatibility check - note that param check
2894            //is a no-op (as this has been taken care during method applicability)
2895            boolean isSpeculativeRound =
2896                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2897
2898            that.type = currentTarget; //avoids recovery at this stage
2899            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2900            if (!isSpeculativeRound) {
2901                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2902            }
2903            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2904        } catch (Types.FunctionDescriptorLookupError ex) {
2905            JCDiagnostic cause = ex.getDiagnostic();
2906            resultInfo.checkContext.report(that, cause);
2907            result = that.type = types.createErrorType(pt());
2908            return;
2909        }
2910    }
2911    //where
2912        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2913            //if this is a constructor reference, the expected kind must be a type
2914            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2915                                  KindSelector.VAL_TYP : KindSelector.TYP,
2916                                  Type.noType);
2917        }
2918
2919
2920    @SuppressWarnings("fallthrough")
2921    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2922        InferenceContext inferenceContext = checkContext.inferenceContext();
2923        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
2924
2925        Type resType;
2926        switch (tree.getMode()) {
2927            case NEW:
2928                if (!tree.expr.type.isRaw()) {
2929                    resType = tree.expr.type;
2930                    break;
2931                }
2932            default:
2933                resType = refType.getReturnType();
2934        }
2935
2936        Type incompatibleReturnType = resType;
2937
2938        if (returnType.hasTag(VOID)) {
2939            incompatibleReturnType = null;
2940        }
2941
2942        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2943            if (resType.isErroneous() ||
2944                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2945                incompatibleReturnType = null;
2946            }
2947        }
2948
2949        if (incompatibleReturnType != null) {
2950            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2951                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2952        } else {
2953            if (inferenceContext.free(refType)) {
2954                // we need to wait for inference to finish and then replace inference vars in the referent type
2955                inferenceContext.addFreeTypeListener(List.of(refType),
2956                        instantiatedContext -> {
2957                            tree.referentType = instantiatedContext.asInstType(refType);
2958                        });
2959            } else {
2960                tree.referentType = refType;
2961            }
2962        }
2963
2964        if (!speculativeAttr) {
2965            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
2966            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2967                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2968            }
2969        }
2970    }
2971
2972    /**
2973     * Set functional type info on the underlying AST. Note: as the target descriptor
2974     * might contain inference variables, we might need to register an hook in the
2975     * current inference context.
2976     */
2977    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2978            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2979        if (checkContext.inferenceContext().free(descriptorType)) {
2980            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2981                public void typesInferred(InferenceContext inferenceContext) {
2982                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2983                            inferenceContext.asInstType(primaryTarget), checkContext);
2984                }
2985            });
2986        } else {
2987            ListBuffer<Type> targets = new ListBuffer<>();
2988            if (pt.hasTag(CLASS)) {
2989                if (pt.isCompound()) {
2990                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
2991                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2992                        if (t != primaryTarget) {
2993                            targets.append(types.removeWildcards(t));
2994                        }
2995                    }
2996                } else {
2997                    targets.append(types.removeWildcards(primaryTarget));
2998                }
2999            }
3000            fExpr.targets = targets.toList();
3001            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3002                    pt != Type.recoveryType) {
3003                //check that functional interface class is well-formed
3004                try {
3005                    /* Types.makeFunctionalInterfaceClass() may throw an exception
3006                     * when it's executed post-inference. See the listener code
3007                     * above.
3008                     */
3009                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3010                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3011                    if (csym != null) {
3012                        chk.checkImplementations(env.tree, csym, csym);
3013                        try {
3014                            //perform an additional functional interface check on the synthetic class,
3015                            //as there may be spurious errors for raw targets - because of existing issues
3016                            //with membership and inheritance (see JDK-8074570).
3017                            csym.flags_field |= INTERFACE;
3018                            types.findDescriptorType(csym.type);
3019                        } catch (FunctionDescriptorLookupError err) {
3020                            resultInfo.checkContext.report(fExpr,
3021                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3022                        }
3023                    }
3024                } catch (Types.FunctionDescriptorLookupError ex) {
3025                    JCDiagnostic cause = ex.getDiagnostic();
3026                    resultInfo.checkContext.report(env.tree, cause);
3027                }
3028            }
3029        }
3030    }
3031
3032    public void visitParens(JCParens tree) {
3033        Type owntype = attribTree(tree.expr, env, resultInfo);
3034        result = check(tree, owntype, pkind(), resultInfo);
3035        Symbol sym = TreeInfo.symbol(tree);
3036        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3037            log.error(tree.pos(), "illegal.start.of.type");
3038    }
3039
3040    public void visitAssign(JCAssign tree) {
3041        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3042        Type capturedType = capture(owntype);
3043        attribExpr(tree.rhs, env, owntype);
3044        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3045    }
3046
3047    public void visitAssignop(JCAssignOp tree) {
3048        // Attribute arguments.
3049        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3050        Type operand = attribExpr(tree.rhs, env);
3051        // Find operator.
3052        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3053        if (operator.kind == MTH &&
3054                !owntype.isErroneous() &&
3055                !operand.isErroneous()) {
3056            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3057            chk.checkCastable(tree.rhs.pos(),
3058                              operator.type.getReturnType(),
3059                              owntype);
3060        }
3061        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3062    }
3063
3064    public void visitUnary(JCUnary tree) {
3065        // Attribute arguments.
3066        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3067            ? attribTree(tree.arg, env, varAssignmentInfo)
3068            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3069
3070        // Find operator.
3071        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3072        Type owntype = types.createErrorType(tree.type);
3073        if (operator.kind == MTH &&
3074                !argtype.isErroneous()) {
3075            owntype = (tree.getTag().isIncOrDecUnaryOp())
3076                ? tree.arg.type
3077                : operator.type.getReturnType();
3078            int opc = ((OperatorSymbol)operator).opcode;
3079
3080            // If the argument is constant, fold it.
3081            if (argtype.constValue() != null) {
3082                Type ctype = cfolder.fold1(opc, argtype);
3083                if (ctype != null) {
3084                    owntype = cfolder.coerce(ctype, owntype);
3085                }
3086            }
3087        }
3088        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3089    }
3090
3091    public void visitBinary(JCBinary tree) {
3092        // Attribute arguments.
3093        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3094        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3095        // Find operator.
3096        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3097        Type owntype = types.createErrorType(tree.type);
3098        if (operator.kind == MTH &&
3099                !left.isErroneous() &&
3100                !right.isErroneous()) {
3101            owntype = operator.type.getReturnType();
3102            int opc = ((OperatorSymbol)operator).opcode;
3103            // If both arguments are constants, fold them.
3104            if (left.constValue() != null && right.constValue() != null) {
3105                Type ctype = cfolder.fold2(opc, left, right);
3106                if (ctype != null) {
3107                    owntype = cfolder.coerce(ctype, owntype);
3108                }
3109            }
3110
3111            // Check that argument types of a reference ==, != are
3112            // castable to each other, (JLS 15.21).  Note: unboxing
3113            // comparisons will not have an acmp* opc at this point.
3114            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3115                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3116                    log.error(tree.pos(), "incomparable.types", left, right);
3117                }
3118            }
3119
3120            chk.checkDivZero(tree.rhs.pos(), operator, right);
3121        }
3122        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3123    }
3124
3125    public void visitTypeCast(final JCTypeCast tree) {
3126        Type clazztype = attribType(tree.clazz, env);
3127        chk.validate(tree.clazz, env, false);
3128        //a fresh environment is required for 292 inference to work properly ---
3129        //see Infer.instantiatePolymorphicSignatureInstance()
3130        Env<AttrContext> localEnv = env.dup(tree);
3131        //should we propagate the target type?
3132        final ResultInfo castInfo;
3133        JCExpression expr = TreeInfo.skipParens(tree.expr);
3134        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3135        if (isPoly) {
3136            //expression is a poly - we need to propagate target type info
3137            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3138                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3139                @Override
3140                public boolean compatible(Type found, Type req, Warner warn) {
3141                    return types.isCastable(found, req, warn);
3142                }
3143            });
3144        } else {
3145            //standalone cast - target-type info is not propagated
3146            castInfo = unknownExprInfo;
3147        }
3148        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3149        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3150        if (exprtype.constValue() != null)
3151            owntype = cfolder.coerce(exprtype, owntype);
3152        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3153        if (!isPoly)
3154            chk.checkRedundantCast(localEnv, tree);
3155    }
3156
3157    public void visitTypeTest(JCInstanceOf tree) {
3158        Type exprtype = chk.checkNullOrRefType(
3159                tree.expr.pos(), attribExpr(tree.expr, env));
3160        Type clazztype = attribType(tree.clazz, env);
3161        if (!clazztype.hasTag(TYPEVAR)) {
3162            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3163        }
3164        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3165            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3166            clazztype = types.createErrorType(clazztype);
3167        }
3168        chk.validate(tree.clazz, env, false);
3169        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3170        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3171    }
3172
3173    public void visitIndexed(JCArrayAccess tree) {
3174        Type owntype = types.createErrorType(tree.type);
3175        Type atype = attribExpr(tree.indexed, env);
3176        attribExpr(tree.index, env, syms.intType);
3177        if (types.isArray(atype))
3178            owntype = types.elemtype(atype);
3179        else if (!atype.hasTag(ERROR))
3180            log.error(tree.pos(), "array.req.but.found", atype);
3181        if (!pkind().contains(KindSelector.VAL))
3182            owntype = capture(owntype);
3183        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3184    }
3185
3186    public void visitIdent(JCIdent tree) {
3187        Symbol sym;
3188
3189        // Find symbol
3190        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3191            // If we are looking for a method, the prototype `pt' will be a
3192            // method type with the type of the call's arguments as parameters.
3193            env.info.pendingResolutionPhase = null;
3194            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3195        } else if (tree.sym != null && tree.sym.kind != VAR) {
3196            sym = tree.sym;
3197        } else {
3198            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3199        }
3200        tree.sym = sym;
3201
3202        // (1) Also find the environment current for the class where
3203        //     sym is defined (`symEnv').
3204        // Only for pre-tiger versions (1.4 and earlier):
3205        // (2) Also determine whether we access symbol out of an anonymous
3206        //     class in a this or super call.  This is illegal for instance
3207        //     members since such classes don't carry a this$n link.
3208        //     (`noOuterThisPath').
3209        Env<AttrContext> symEnv = env;
3210        boolean noOuterThisPath = false;
3211        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3212            sym.kind.matches(KindSelector.VAL_MTH) &&
3213            sym.owner.kind == TYP &&
3214            tree.name != names._this && tree.name != names._super) {
3215
3216            // Find environment in which identifier is defined.
3217            while (symEnv.outer != null &&
3218                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3219                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3220                    noOuterThisPath = false;
3221                symEnv = symEnv.outer;
3222            }
3223        }
3224
3225        // If symbol is a variable, ...
3226        if (sym.kind == VAR) {
3227            VarSymbol v = (VarSymbol)sym;
3228
3229            // ..., evaluate its initializer, if it has one, and check for
3230            // illegal forward reference.
3231            checkInit(tree, env, v, false);
3232
3233            // If we are expecting a variable (as opposed to a value), check
3234            // that the variable is assignable in the current environment.
3235            if (KindSelector.ASG.subset(pkind()))
3236                checkAssignable(tree.pos(), v, null, env);
3237        }
3238
3239        // In a constructor body,
3240        // if symbol is a field or instance method, check that it is
3241        // not accessed before the supertype constructor is called.
3242        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3243            sym.kind.matches(KindSelector.VAL_MTH) &&
3244            sym.owner.kind == TYP &&
3245            (sym.flags() & STATIC) == 0) {
3246            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3247                                          sym : thisSym(tree.pos(), env));
3248        }
3249        Env<AttrContext> env1 = env;
3250        if (sym.kind != ERR && sym.kind != TYP &&
3251            sym.owner != null && sym.owner != env1.enclClass.sym) {
3252            // If the found symbol is inaccessible, then it is
3253            // accessed through an enclosing instance.  Locate this
3254            // enclosing instance:
3255            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3256                env1 = env1.outer;
3257        }
3258
3259        if (env.info.isSerializable) {
3260            chk.checkElemAccessFromSerializableLambda(tree);
3261        }
3262
3263        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3264    }
3265
3266    public void visitSelect(JCFieldAccess tree) {
3267        // Determine the expected kind of the qualifier expression.
3268        KindSelector skind = KindSelector.NIL;
3269        if (tree.name == names._this || tree.name == names._super ||
3270                tree.name == names._class)
3271        {
3272            skind = KindSelector.TYP;
3273        } else {
3274            if (pkind().contains(KindSelector.PCK))
3275                skind = KindSelector.of(skind, KindSelector.PCK);
3276            if (pkind().contains(KindSelector.TYP))
3277                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3278            if (pkind().contains(KindSelector.VAL_MTH))
3279                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3280        }
3281
3282        // Attribute the qualifier expression, and determine its symbol (if any).
3283        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3284        if (!pkind().contains(KindSelector.TYP_PCK))
3285            site = capture(site); // Capture field access
3286
3287        // don't allow T.class T[].class, etc
3288        if (skind == KindSelector.TYP) {
3289            Type elt = site;
3290            while (elt.hasTag(ARRAY))
3291                elt = ((ArrayType)elt).elemtype;
3292            if (elt.hasTag(TYPEVAR)) {
3293                log.error(tree.pos(), "type.var.cant.be.deref");
3294                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3295                tree.sym = tree.type.tsym;
3296                return ;
3297            }
3298        }
3299
3300        // If qualifier symbol is a type or `super', assert `selectSuper'
3301        // for the selection. This is relevant for determining whether
3302        // protected symbols are accessible.
3303        Symbol sitesym = TreeInfo.symbol(tree.selected);
3304        boolean selectSuperPrev = env.info.selectSuper;
3305        env.info.selectSuper =
3306            sitesym != null &&
3307            sitesym.name == names._super;
3308
3309        // Determine the symbol represented by the selection.
3310        env.info.pendingResolutionPhase = null;
3311        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3312        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3313            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3314            sym = syms.errSymbol;
3315        }
3316        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3317            site = capture(site);
3318            sym = selectSym(tree, sitesym, site, env, resultInfo);
3319        }
3320        boolean varArgs = env.info.lastResolveVarargs();
3321        tree.sym = sym;
3322
3323        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3324            site = types.skipTypeVars(site, true);
3325        }
3326
3327        // If that symbol is a variable, ...
3328        if (sym.kind == VAR) {
3329            VarSymbol v = (VarSymbol)sym;
3330
3331            // ..., evaluate its initializer, if it has one, and check for
3332            // illegal forward reference.
3333            checkInit(tree, env, v, true);
3334
3335            // If we are expecting a variable (as opposed to a value), check
3336            // that the variable is assignable in the current environment.
3337            if (KindSelector.ASG.subset(pkind()))
3338                checkAssignable(tree.pos(), v, tree.selected, env);
3339        }
3340
3341        if (sitesym != null &&
3342                sitesym.kind == VAR &&
3343                ((VarSymbol)sitesym).isResourceVariable() &&
3344                sym.kind == MTH &&
3345                sym.name.equals(names.close) &&
3346                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3347                env.info.lint.isEnabled(LintCategory.TRY)) {
3348            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3349        }
3350
3351        // Disallow selecting a type from an expression
3352        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3353            tree.type = check(tree.selected, pt(),
3354                              sitesym == null ?
3355                                      KindSelector.VAL : sitesym.kind.toSelector(),
3356                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3357        }
3358
3359        if (isType(sitesym)) {
3360            if (sym.name == names._this) {
3361                // If `C' is the currently compiled class, check that
3362                // C.this' does not appear in a call to a super(...)
3363                if (env.info.isSelfCall &&
3364                    site.tsym == env.enclClass.sym) {
3365                    chk.earlyRefError(tree.pos(), sym);
3366                }
3367            } else {
3368                // Check if type-qualified fields or methods are static (JLS)
3369                if ((sym.flags() & STATIC) == 0 &&
3370                    !env.next.tree.hasTag(REFERENCE) &&
3371                    sym.name != names._super &&
3372                    (sym.kind == VAR || sym.kind == MTH)) {
3373                    rs.accessBase(rs.new StaticError(sym),
3374                              tree.pos(), site, sym.name, true);
3375                }
3376            }
3377            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3378                    sym.isStatic() && sym.kind == MTH) {
3379                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3380            }
3381        } else if (sym.kind != ERR &&
3382                   (sym.flags() & STATIC) != 0 &&
3383                   sym.name != names._class) {
3384            // If the qualified item is not a type and the selected item is static, report
3385            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3386            chk.warnStatic(tree, "static.not.qualified.by.type",
3387                           sym.kind.kindName(), sym.owner);
3388        }
3389
3390        // If we are selecting an instance member via a `super', ...
3391        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3392
3393            // Check that super-qualified symbols are not abstract (JLS)
3394            rs.checkNonAbstract(tree.pos(), sym);
3395
3396            if (site.isRaw()) {
3397                // Determine argument types for site.
3398                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3399                if (site1 != null) site = site1;
3400            }
3401        }
3402
3403        if (env.info.isSerializable) {
3404            chk.checkElemAccessFromSerializableLambda(tree);
3405        }
3406
3407        env.info.selectSuper = selectSuperPrev;
3408        result = checkId(tree, site, sym, env, resultInfo);
3409    }
3410    //where
3411        /** Determine symbol referenced by a Select expression,
3412         *
3413         *  @param tree   The select tree.
3414         *  @param site   The type of the selected expression,
3415         *  @param env    The current environment.
3416         *  @param resultInfo The current result.
3417         */
3418        private Symbol selectSym(JCFieldAccess tree,
3419                                 Symbol location,
3420                                 Type site,
3421                                 Env<AttrContext> env,
3422                                 ResultInfo resultInfo) {
3423            DiagnosticPosition pos = tree.pos();
3424            Name name = tree.name;
3425            switch (site.getTag()) {
3426            case PACKAGE:
3427                return rs.accessBase(
3428                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3429                    pos, location, site, name, true);
3430            case ARRAY:
3431            case CLASS:
3432                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3433                    return rs.resolveQualifiedMethod(
3434                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3435                } else if (name == names._this || name == names._super) {
3436                    return rs.resolveSelf(pos, env, site.tsym, name);
3437                } else if (name == names._class) {
3438                    // In this case, we have already made sure in
3439                    // visitSelect that qualifier expression is a type.
3440                    Type t = syms.classType;
3441                    List<Type> typeargs = List.of(types.erasure(site));
3442                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3443                    return new VarSymbol(
3444                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3445                } else {
3446                    // We are seeing a plain identifier as selector.
3447                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3448                        sym = rs.accessBase(sym, pos, location, site, name, true);
3449                    return sym;
3450                }
3451            case WILDCARD:
3452                throw new AssertionError(tree);
3453            case TYPEVAR:
3454                // Normally, site.getUpperBound() shouldn't be null.
3455                // It should only happen during memberEnter/attribBase
3456                // when determining the super type which *must* beac
3457                // done before attributing the type variables.  In
3458                // other words, we are seeing this illegal program:
3459                // class B<T> extends A<T.foo> {}
3460                Symbol sym = (site.getUpperBound() != null)
3461                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3462                    : null;
3463                if (sym == null) {
3464                    log.error(pos, "type.var.cant.be.deref");
3465                    return syms.errSymbol;
3466                } else {
3467                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3468                        rs.new AccessError(env, site, sym) :
3469                                sym;
3470                    rs.accessBase(sym2, pos, location, site, name, true);
3471                    return sym;
3472                }
3473            case ERROR:
3474                // preserve identifier names through errors
3475                return types.createErrorType(name, site.tsym, site).tsym;
3476            default:
3477                // The qualifier expression is of a primitive type -- only
3478                // .class is allowed for these.
3479                if (name == names._class) {
3480                    // In this case, we have already made sure in Select that
3481                    // qualifier expression is a type.
3482                    Type t = syms.classType;
3483                    Type arg = types.boxedClass(site).type;
3484                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3485                    return new VarSymbol(
3486                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3487                } else {
3488                    log.error(pos, "cant.deref", site);
3489                    return syms.errSymbol;
3490                }
3491            }
3492        }
3493
3494        /** Determine type of identifier or select expression and check that
3495         *  (1) the referenced symbol is not deprecated
3496         *  (2) the symbol's type is safe (@see checkSafe)
3497         *  (3) if symbol is a variable, check that its type and kind are
3498         *      compatible with the prototype and protokind.
3499         *  (4) if symbol is an instance field of a raw type,
3500         *      which is being assigned to, issue an unchecked warning if its
3501         *      type changes under erasure.
3502         *  (5) if symbol is an instance method of a raw type, issue an
3503         *      unchecked warning if its argument types change under erasure.
3504         *  If checks succeed:
3505         *    If symbol is a constant, return its constant type
3506         *    else if symbol is a method, return its result type
3507         *    otherwise return its type.
3508         *  Otherwise return errType.
3509         *
3510         *  @param tree       The syntax tree representing the identifier
3511         *  @param site       If this is a select, the type of the selected
3512         *                    expression, otherwise the type of the current class.
3513         *  @param sym        The symbol representing the identifier.
3514         *  @param env        The current environment.
3515         *  @param resultInfo    The expected result
3516         */
3517        Type checkId(JCTree tree,
3518                     Type site,
3519                     Symbol sym,
3520                     Env<AttrContext> env,
3521                     ResultInfo resultInfo) {
3522            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3523                    checkMethodId(tree, site, sym, env, resultInfo) :
3524                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3525        }
3526
3527        Type checkMethodId(JCTree tree,
3528                     Type site,
3529                     Symbol sym,
3530                     Env<AttrContext> env,
3531                     ResultInfo resultInfo) {
3532            boolean isPolymorhicSignature =
3533                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3534            return isPolymorhicSignature ?
3535                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3536                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3537        }
3538
3539        Type checkSigPolyMethodId(JCTree tree,
3540                     Type site,
3541                     Symbol sym,
3542                     Env<AttrContext> env,
3543                     ResultInfo resultInfo) {
3544            //recover original symbol for signature polymorphic methods
3545            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3546            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3547            return sym.type;
3548        }
3549
3550        Type checkMethodIdInternal(JCTree tree,
3551                     Type site,
3552                     Symbol sym,
3553                     Env<AttrContext> env,
3554                     ResultInfo resultInfo) {
3555            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3556                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3557                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3558                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3559                return owntype;
3560            } else {
3561                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3562            }
3563        }
3564
3565        Type checkIdInternal(JCTree tree,
3566                     Type site,
3567                     Symbol sym,
3568                     Type pt,
3569                     Env<AttrContext> env,
3570                     ResultInfo resultInfo) {
3571            if (pt.isErroneous()) {
3572                return types.createErrorType(site);
3573            }
3574            Type owntype; // The computed type of this identifier occurrence.
3575            switch (sym.kind) {
3576            case TYP:
3577                // For types, the computed type equals the symbol's type,
3578                // except for two situations:
3579                owntype = sym.type;
3580                if (owntype.hasTag(CLASS)) {
3581                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3582                    Type ownOuter = owntype.getEnclosingType();
3583
3584                    // (a) If the symbol's type is parameterized, erase it
3585                    // because no type parameters were given.
3586                    // We recover generic outer type later in visitTypeApply.
3587                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3588                        owntype = types.erasure(owntype);
3589                    }
3590
3591                    // (b) If the symbol's type is an inner class, then
3592                    // we have to interpret its outer type as a superclass
3593                    // of the site type. Example:
3594                    //
3595                    // class Tree<A> { class Visitor { ... } }
3596                    // class PointTree extends Tree<Point> { ... }
3597                    // ...PointTree.Visitor...
3598                    //
3599                    // Then the type of the last expression above is
3600                    // Tree<Point>.Visitor.
3601                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3602                        Type normOuter = site;
3603                        if (normOuter.hasTag(CLASS)) {
3604                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3605                        }
3606                        if (normOuter == null) // perhaps from an import
3607                            normOuter = types.erasure(ownOuter);
3608                        if (normOuter != ownOuter)
3609                            owntype = new ClassType(
3610                                normOuter, List.<Type>nil(), owntype.tsym,
3611                                owntype.getMetadata());
3612                    }
3613                }
3614                break;
3615            case VAR:
3616                VarSymbol v = (VarSymbol)sym;
3617                // Test (4): if symbol is an instance field of a raw type,
3618                // which is being assigned to, issue an unchecked warning if
3619                // its type changes under erasure.
3620                if (KindSelector.ASG.subset(pkind()) &&
3621                    v.owner.kind == TYP &&
3622                    (v.flags() & STATIC) == 0 &&
3623                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3624                    Type s = types.asOuterSuper(site, v.owner);
3625                    if (s != null &&
3626                        s.isRaw() &&
3627                        !types.isSameType(v.type, v.erasure(types))) {
3628                        chk.warnUnchecked(tree.pos(),
3629                                          "unchecked.assign.to.var",
3630                                          v, s);
3631                    }
3632                }
3633                // The computed type of a variable is the type of the
3634                // variable symbol, taken as a member of the site type.
3635                owntype = (sym.owner.kind == TYP &&
3636                           sym.name != names._this && sym.name != names._super)
3637                    ? types.memberType(site, sym)
3638                    : sym.type;
3639
3640                // If the variable is a constant, record constant value in
3641                // computed type.
3642                if (v.getConstValue() != null && isStaticReference(tree))
3643                    owntype = owntype.constType(v.getConstValue());
3644
3645                if (resultInfo.pkind == KindSelector.VAL) {
3646                    owntype = capture(owntype); // capture "names as expressions"
3647                }
3648                break;
3649            case MTH: {
3650                owntype = checkMethod(site, sym,
3651                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3652                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3653                        resultInfo.pt.getTypeArguments());
3654                break;
3655            }
3656            case PCK: case ERR:
3657                owntype = sym.type;
3658                break;
3659            default:
3660                throw new AssertionError("unexpected kind: " + sym.kind +
3661                                         " in tree " + tree);
3662            }
3663
3664            // Test (1): emit a `deprecation' warning if symbol is deprecated.
3665            // (for constructors, the error was given when the constructor was
3666            // resolved)
3667
3668            if (sym.name != names.init) {
3669                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3670                chk.checkSunAPI(tree.pos(), sym);
3671                chk.checkProfile(tree.pos(), sym);
3672            }
3673
3674            // Test (3): if symbol is a variable, check that its type and
3675            // kind are compatible with the prototype and protokind.
3676            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3677        }
3678
3679        /** Check that variable is initialized and evaluate the variable's
3680         *  initializer, if not yet done. Also check that variable is not
3681         *  referenced before it is defined.
3682         *  @param tree    The tree making up the variable reference.
3683         *  @param env     The current environment.
3684         *  @param v       The variable's symbol.
3685         */
3686        private void checkInit(JCTree tree,
3687                               Env<AttrContext> env,
3688                               VarSymbol v,
3689                               boolean onlyWarning) {
3690//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3691//                             tree.pos + " " + v.pos + " " +
3692//                             Resolve.isStatic(env));//DEBUG
3693
3694            // A forward reference is diagnosed if the declaration position
3695            // of the variable is greater than the current tree position
3696            // and the tree and variable definition occur in the same class
3697            // definition.  Note that writes don't count as references.
3698            // This check applies only to class and instance
3699            // variables.  Local variables follow different scope rules,
3700            // and are subject to definite assignment checking.
3701            if ((env.info.enclVar == v || v.pos > tree.pos) &&
3702                v.owner.kind == TYP &&
3703                enclosingInitEnv(env) != null &&
3704                v.owner == env.info.scope.owner.enclClass() &&
3705                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3706                (!env.tree.hasTag(ASSIGN) ||
3707                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3708                String suffix = (env.info.enclVar == v) ?
3709                                "self.ref" : "forward.ref";
3710                if (!onlyWarning || isStaticEnumField(v)) {
3711                    log.error(tree.pos(), "illegal." + suffix);
3712                } else if (useBeforeDeclarationWarning) {
3713                    log.warning(tree.pos(), suffix, v);
3714                }
3715            }
3716
3717            v.getConstValue(); // ensure initializer is evaluated
3718
3719            checkEnumInitializer(tree, env, v);
3720        }
3721
3722        /**
3723         * Returns the enclosing init environment associated with this env (if any). An init env
3724         * can be either a field declaration env or a static/instance initializer env.
3725         */
3726        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3727            while (true) {
3728                switch (env.tree.getTag()) {
3729                    case VARDEF:
3730                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3731                        if (vdecl.sym.owner.kind == TYP) {
3732                            //field
3733                            return env;
3734                        }
3735                        break;
3736                    case BLOCK:
3737                        if (env.next.tree.hasTag(CLASSDEF)) {
3738                            //instance/static initializer
3739                            return env;
3740                        }
3741                        break;
3742                    case METHODDEF:
3743                    case CLASSDEF:
3744                    case TOPLEVEL:
3745                        return null;
3746                }
3747                Assert.checkNonNull(env.next);
3748                env = env.next;
3749            }
3750        }
3751
3752        /**
3753         * Check for illegal references to static members of enum.  In
3754         * an enum type, constructors and initializers may not
3755         * reference its static members unless they are constant.
3756         *
3757         * @param tree    The tree making up the variable reference.
3758         * @param env     The current environment.
3759         * @param v       The variable's symbol.
3760         * @jls  section 8.9 Enums
3761         */
3762        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3763            // JLS:
3764            //
3765            // "It is a compile-time error to reference a static field
3766            // of an enum type that is not a compile-time constant
3767            // (15.28) from constructors, instance initializer blocks,
3768            // or instance variable initializer expressions of that
3769            // type. It is a compile-time error for the constructors,
3770            // instance initializer blocks, or instance variable
3771            // initializer expressions of an enum constant e to refer
3772            // to itself or to an enum constant of the same type that
3773            // is declared to the right of e."
3774            if (isStaticEnumField(v)) {
3775                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3776
3777                if (enclClass == null || enclClass.owner == null)
3778                    return;
3779
3780                // See if the enclosing class is the enum (or a
3781                // subclass thereof) declaring v.  If not, this
3782                // reference is OK.
3783                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3784                    return;
3785
3786                // If the reference isn't from an initializer, then
3787                // the reference is OK.
3788                if (!Resolve.isInitializer(env))
3789                    return;
3790
3791                log.error(tree.pos(), "illegal.enum.static.ref");
3792            }
3793        }
3794
3795        /** Is the given symbol a static, non-constant field of an Enum?
3796         *  Note: enum literals should not be regarded as such
3797         */
3798        private boolean isStaticEnumField(VarSymbol v) {
3799            return Flags.isEnum(v.owner) &&
3800                   Flags.isStatic(v) &&
3801                   !Flags.isConstant(v) &&
3802                   v.name != names._class;
3803        }
3804
3805    Warner noteWarner = new Warner();
3806
3807    /**
3808     * Check that method arguments conform to its instantiation.
3809     **/
3810    public Type checkMethod(Type site,
3811                            final Symbol sym,
3812                            ResultInfo resultInfo,
3813                            Env<AttrContext> env,
3814                            final List<JCExpression> argtrees,
3815                            List<Type> argtypes,
3816                            List<Type> typeargtypes) {
3817        // Test (5): if symbol is an instance method of a raw type, issue
3818        // an unchecked warning if its argument types change under erasure.
3819        if ((sym.flags() & STATIC) == 0 &&
3820            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3821            Type s = types.asOuterSuper(site, sym.owner);
3822            if (s != null && s.isRaw() &&
3823                !types.isSameTypes(sym.type.getParameterTypes(),
3824                                   sym.erasure(types).getParameterTypes())) {
3825                chk.warnUnchecked(env.tree.pos(),
3826                                  "unchecked.call.mbr.of.raw.type",
3827                                  sym, s);
3828            }
3829        }
3830
3831        if (env.info.defaultSuperCallSite != null) {
3832            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3833                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3834                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3835                List<MethodSymbol> icand_sup =
3836                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3837                if (icand_sup.nonEmpty() &&
3838                        icand_sup.head != sym &&
3839                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3840                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3841                        diags.fragment("overridden.default", sym, sup));
3842                    break;
3843                }
3844            }
3845            env.info.defaultSuperCallSite = null;
3846        }
3847
3848        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3849            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3850            if (app.meth.hasTag(SELECT) &&
3851                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3852                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3853            }
3854        }
3855
3856        // Compute the identifier's instantiated type.
3857        // For methods, we need to compute the instance type by
3858        // Resolve.instantiate from the symbol's type as well as
3859        // any type arguments and value arguments.
3860        noteWarner.clear();
3861        try {
3862            Type owntype = rs.checkMethod(
3863                    env,
3864                    site,
3865                    sym,
3866                    resultInfo,
3867                    argtypes,
3868                    typeargtypes,
3869                    noteWarner);
3870
3871            DeferredAttr.DeferredTypeMap checkDeferredMap =
3872                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3873
3874            argtypes = argtypes.map(checkDeferredMap);
3875
3876            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3877                chk.warnUnchecked(env.tree.pos(),
3878                        "unchecked.meth.invocation.applied",
3879                        kindName(sym),
3880                        sym.name,
3881                        rs.methodArguments(sym.type.getParameterTypes()),
3882                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3883                        kindName(sym.location()),
3884                        sym.location());
3885               owntype = new MethodType(owntype.getParameterTypes(),
3886                       types.erasure(owntype.getReturnType()),
3887                       types.erasure(owntype.getThrownTypes()),
3888                       syms.methodClass);
3889            }
3890
3891            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3892                    resultInfo.checkContext.inferenceContext());
3893        } catch (Infer.InferenceException ex) {
3894            //invalid target type - propagate exception outwards or report error
3895            //depending on the current check context
3896            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3897            return types.createErrorType(site);
3898        } catch (Resolve.InapplicableMethodException ex) {
3899            final JCDiagnostic diag = ex.getDiagnostic();
3900            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3901                @Override
3902                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3903                    return new Pair<>(sym, diag);
3904                }
3905            };
3906            List<Type> argtypes2 = argtypes.map(
3907                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3908            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3909                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3910            log.report(errDiag);
3911            return types.createErrorType(site);
3912        }
3913    }
3914
3915    public void visitLiteral(JCLiteral tree) {
3916        result = check(tree, litType(tree.typetag).constType(tree.value),
3917                KindSelector.VAL, resultInfo);
3918    }
3919    //where
3920    /** Return the type of a literal with given type tag.
3921     */
3922    Type litType(TypeTag tag) {
3923        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3924    }
3925
3926    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3927        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3928    }
3929
3930    public void visitTypeArray(JCArrayTypeTree tree) {
3931        Type etype = attribType(tree.elemtype, env);
3932        Type type = new ArrayType(etype, syms.arrayClass);
3933        result = check(tree, type, KindSelector.TYP, resultInfo);
3934    }
3935
3936    /** Visitor method for parameterized types.
3937     *  Bound checking is left until later, since types are attributed
3938     *  before supertype structure is completely known
3939     */
3940    public void visitTypeApply(JCTypeApply tree) {
3941        Type owntype = types.createErrorType(tree.type);
3942
3943        // Attribute functor part of application and make sure it's a class.
3944        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3945
3946        // Attribute type parameters
3947        List<Type> actuals = attribTypes(tree.arguments, env);
3948
3949        if (clazztype.hasTag(CLASS)) {
3950            List<Type> formals = clazztype.tsym.type.getTypeArguments();
3951            if (actuals.isEmpty()) //diamond
3952                actuals = formals;
3953
3954            if (actuals.length() == formals.length()) {
3955                List<Type> a = actuals;
3956                List<Type> f = formals;
3957                while (a.nonEmpty()) {
3958                    a.head = a.head.withTypeVar(f.head);
3959                    a = a.tail;
3960                    f = f.tail;
3961                }
3962                // Compute the proper generic outer
3963                Type clazzOuter = clazztype.getEnclosingType();
3964                if (clazzOuter.hasTag(CLASS)) {
3965                    Type site;
3966                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3967                    if (clazz.hasTag(IDENT)) {
3968                        site = env.enclClass.sym.type;
3969                    } else if (clazz.hasTag(SELECT)) {
3970                        site = ((JCFieldAccess) clazz).selected.type;
3971                    } else throw new AssertionError(""+tree);
3972                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3973                        if (site.hasTag(CLASS))
3974                            site = types.asOuterSuper(site, clazzOuter.tsym);
3975                        if (site == null)
3976                            site = types.erasure(clazzOuter);
3977                        clazzOuter = site;
3978                    }
3979                }
3980                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3981                                        clazztype.getMetadata());
3982            } else {
3983                if (formals.length() != 0) {
3984                    log.error(tree.pos(), "wrong.number.type.args",
3985                              Integer.toString(formals.length()));
3986                } else {
3987                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3988                }
3989                owntype = types.createErrorType(tree.type);
3990            }
3991        }
3992        result = check(tree, owntype, KindSelector.TYP, resultInfo);
3993    }
3994
3995    public void visitTypeUnion(JCTypeUnion tree) {
3996        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3997        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3998        for (JCExpression typeTree : tree.alternatives) {
3999            Type ctype = attribType(typeTree, env);
4000            ctype = chk.checkType(typeTree.pos(),
4001                          chk.checkClassType(typeTree.pos(), ctype),
4002                          syms.throwableType);
4003            if (!ctype.isErroneous()) {
4004                //check that alternatives of a union type are pairwise
4005                //unrelated w.r.t. subtyping
4006                if (chk.intersects(ctype,  multicatchTypes.toList())) {
4007                    for (Type t : multicatchTypes) {
4008                        boolean sub = types.isSubtype(ctype, t);
4009                        boolean sup = types.isSubtype(t, ctype);
4010                        if (sub || sup) {
4011                            //assume 'a' <: 'b'
4012                            Type a = sub ? ctype : t;
4013                            Type b = sub ? t : ctype;
4014                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4015                        }
4016                    }
4017                }
4018                multicatchTypes.append(ctype);
4019                if (all_multicatchTypes != null)
4020                    all_multicatchTypes.append(ctype);
4021            } else {
4022                if (all_multicatchTypes == null) {
4023                    all_multicatchTypes = new ListBuffer<>();
4024                    all_multicatchTypes.appendList(multicatchTypes);
4025                }
4026                all_multicatchTypes.append(ctype);
4027            }
4028        }
4029        Type t = check(tree, types.lub(multicatchTypes.toList()),
4030                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4031        if (t.hasTag(CLASS)) {
4032            List<Type> alternatives =
4033                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4034            t = new UnionClassType((ClassType) t, alternatives);
4035        }
4036        tree.type = result = t;
4037    }
4038
4039    public void visitTypeIntersection(JCTypeIntersection tree) {
4040        attribTypes(tree.bounds, env);
4041        tree.type = result = checkIntersection(tree, tree.bounds);
4042    }
4043
4044    public void visitTypeParameter(JCTypeParameter tree) {
4045        TypeVar typeVar = (TypeVar) tree.type;
4046
4047        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4048            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4049        }
4050
4051        if (!typeVar.bound.isErroneous()) {
4052            //fixup type-parameter bound computed in 'attribTypeVariables'
4053            typeVar.bound = checkIntersection(tree, tree.bounds);
4054        }
4055    }
4056
4057    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4058        Set<Type> boundSet = new HashSet<>();
4059        if (bounds.nonEmpty()) {
4060            // accept class or interface or typevar as first bound.
4061            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4062            boundSet.add(types.erasure(bounds.head.type));
4063            if (bounds.head.type.isErroneous()) {
4064                return bounds.head.type;
4065            }
4066            else if (bounds.head.type.hasTag(TYPEVAR)) {
4067                // if first bound was a typevar, do not accept further bounds.
4068                if (bounds.tail.nonEmpty()) {
4069                    log.error(bounds.tail.head.pos(),
4070                              "type.var.may.not.be.followed.by.other.bounds");
4071                    return bounds.head.type;
4072                }
4073            } else {
4074                // if first bound was a class or interface, accept only interfaces
4075                // as further bounds.
4076                for (JCExpression bound : bounds.tail) {
4077                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4078                    if (bound.type.isErroneous()) {
4079                        bounds = List.of(bound);
4080                    }
4081                    else if (bound.type.hasTag(CLASS)) {
4082                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4083                    }
4084                }
4085            }
4086        }
4087
4088        if (bounds.length() == 0) {
4089            return syms.objectType;
4090        } else if (bounds.length() == 1) {
4091            return bounds.head.type;
4092        } else {
4093            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4094            // ... the variable's bound is a class type flagged COMPOUND
4095            // (see comment for TypeVar.bound).
4096            // In this case, generate a class tree that represents the
4097            // bound class, ...
4098            JCExpression extending;
4099            List<JCExpression> implementing;
4100            if (!bounds.head.type.isInterface()) {
4101                extending = bounds.head;
4102                implementing = bounds.tail;
4103            } else {
4104                extending = null;
4105                implementing = bounds;
4106            }
4107            JCClassDecl cd = make.at(tree).ClassDef(
4108                make.Modifiers(PUBLIC | ABSTRACT),
4109                names.empty, List.<JCTypeParameter>nil(),
4110                extending, implementing, List.<JCTree>nil());
4111
4112            ClassSymbol c = (ClassSymbol)owntype.tsym;
4113            Assert.check((c.flags() & COMPOUND) != 0);
4114            cd.sym = c;
4115            c.sourcefile = env.toplevel.sourcefile;
4116
4117            // ... and attribute the bound class
4118            c.flags_field |= UNATTRIBUTED;
4119            Env<AttrContext> cenv = enter.classEnv(cd, env);
4120            typeEnvs.put(c, cenv);
4121            attribClass(c);
4122            return owntype;
4123        }
4124    }
4125
4126    public void visitWildcard(JCWildcard tree) {
4127        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4128        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4129            ? syms.objectType
4130            : attribType(tree.inner, env);
4131        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4132                                              tree.kind.kind,
4133                                              syms.boundClass),
4134                KindSelector.TYP, resultInfo);
4135    }
4136
4137    public void visitAnnotation(JCAnnotation tree) {
4138        Assert.error("should be handled in annotate");
4139    }
4140
4141    public void visitAnnotatedType(JCAnnotatedType tree) {
4142        attribAnnotationTypes(tree.annotations, env);
4143        Type underlyingType = attribType(tree.underlyingType, env);
4144        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4145
4146        if (!env.info.isNewClass)
4147            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4148        result = tree.type = annotatedType;
4149    }
4150
4151    public void visitErroneous(JCErroneous tree) {
4152        if (tree.errs != null)
4153            for (JCTree err : tree.errs)
4154                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4155        result = tree.type = syms.errType;
4156    }
4157
4158    /** Default visitor method for all other trees.
4159     */
4160    public void visitTree(JCTree tree) {
4161        throw new AssertionError();
4162    }
4163
4164    /**
4165     * Attribute an env for either a top level tree or class declaration.
4166     */
4167    public void attrib(Env<AttrContext> env) {
4168        if (env.tree.hasTag(TOPLEVEL))
4169            attribTopLevel(env);
4170        else
4171            attribClass(env.tree.pos(), env.enclClass.sym);
4172    }
4173
4174    /**
4175     * Attribute a top level tree. These trees are encountered when the
4176     * package declaration has annotations.
4177     */
4178    public void attribTopLevel(Env<AttrContext> env) {
4179        JCCompilationUnit toplevel = env.toplevel;
4180        try {
4181            annotate.flush();
4182        } catch (CompletionFailure ex) {
4183            chk.completionError(toplevel.pos(), ex);
4184        }
4185    }
4186
4187    /** Main method: attribute class definition associated with given class symbol.
4188     *  reporting completion failures at the given position.
4189     *  @param pos The source position at which completion errors are to be
4190     *             reported.
4191     *  @param c   The class symbol whose definition will be attributed.
4192     */
4193    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4194        try {
4195            annotate.flush();
4196            attribClass(c);
4197        } catch (CompletionFailure ex) {
4198            chk.completionError(pos, ex);
4199        }
4200    }
4201
4202    /** Attribute class definition associated with given class symbol.
4203     *  @param c   The class symbol whose definition will be attributed.
4204     */
4205    void attribClass(ClassSymbol c) throws CompletionFailure {
4206        if (c.type.hasTag(ERROR)) return;
4207
4208        // Check for cycles in the inheritance graph, which can arise from
4209        // ill-formed class files.
4210        chk.checkNonCyclic(null, c.type);
4211
4212        Type st = types.supertype(c.type);
4213        if ((c.flags_field & Flags.COMPOUND) == 0) {
4214            // First, attribute superclass.
4215            if (st.hasTag(CLASS))
4216                attribClass((ClassSymbol)st.tsym);
4217
4218            // Next attribute owner, if it is a class.
4219            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4220                attribClass((ClassSymbol)c.owner);
4221        }
4222
4223        // The previous operations might have attributed the current class
4224        // if there was a cycle. So we test first whether the class is still
4225        // UNATTRIBUTED.
4226        if ((c.flags_field & UNATTRIBUTED) != 0) {
4227            c.flags_field &= ~UNATTRIBUTED;
4228
4229            // Get environment current at the point of class definition.
4230            Env<AttrContext> env = typeEnvs.get(c);
4231
4232            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4233            // because the annotations were not available at the time the env was created. Therefore,
4234            // we look up the environment chain for the first enclosing environment for which the
4235            // lint value is set. Typically, this is the parent env, but might be further if there
4236            // are any envs created as a result of TypeParameter nodes.
4237            Env<AttrContext> lintEnv = env;
4238            while (lintEnv.info.lint == null)
4239                lintEnv = lintEnv.next;
4240
4241            // Having found the enclosing lint value, we can initialize the lint value for this class
4242            env.info.lint = lintEnv.info.lint.augment(c);
4243
4244            Lint prevLint = chk.setLint(env.info.lint);
4245            JavaFileObject prev = log.useSource(c.sourcefile);
4246            ResultInfo prevReturnRes = env.info.returnResult;
4247
4248            try {
4249                deferredLintHandler.flush(env.tree);
4250                env.info.returnResult = null;
4251                // java.lang.Enum may not be subclassed by a non-enum
4252                if (st.tsym == syms.enumSym &&
4253                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4254                    log.error(env.tree.pos(), "enum.no.subclassing");
4255
4256                // Enums may not be extended by source-level classes
4257                if (st.tsym != null &&
4258                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4259                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4260                    log.error(env.tree.pos(), "enum.types.not.extensible");
4261                }
4262
4263                if (isSerializable(c.type)) {
4264                    env.info.isSerializable = true;
4265                }
4266
4267                attribClassBody(env, c);
4268
4269                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4270                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4271                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4272            } finally {
4273                env.info.returnResult = prevReturnRes;
4274                log.useSource(prev);
4275                chk.setLint(prevLint);
4276            }
4277
4278        }
4279    }
4280
4281    public void visitImport(JCImport tree) {
4282        // nothing to do
4283    }
4284
4285    /** Finish the attribution of a class. */
4286    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4287        JCClassDecl tree = (JCClassDecl)env.tree;
4288        Assert.check(c == tree.sym);
4289
4290        // Validate type parameters, supertype and interfaces.
4291        attribStats(tree.typarams, env);
4292        if (!c.isAnonymous()) {
4293            //already checked if anonymous
4294            chk.validate(tree.typarams, env);
4295            chk.validate(tree.extending, env);
4296            chk.validate(tree.implementing, env);
4297        }
4298
4299        c.markAbstractIfNeeded(types);
4300
4301        // If this is a non-abstract class, check that it has no abstract
4302        // methods or unimplemented methods of an implemented interface.
4303        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4304            if (!relax)
4305                chk.checkAllDefined(tree.pos(), c);
4306        }
4307
4308        if ((c.flags() & ANNOTATION) != 0) {
4309            if (tree.implementing.nonEmpty())
4310                log.error(tree.implementing.head.pos(),
4311                          "cant.extend.intf.annotation");
4312            if (tree.typarams.nonEmpty())
4313                log.error(tree.typarams.head.pos(),
4314                          "intf.annotation.cant.have.type.params");
4315
4316            // If this annotation type has a @Repeatable, validate
4317            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4318            // If this annotation type has a @Repeatable, validate
4319            if (repeatable != null) {
4320                // get diagnostic position for error reporting
4321                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4322                Assert.checkNonNull(cbPos);
4323
4324                chk.validateRepeatable(c, repeatable, cbPos);
4325            }
4326        } else {
4327            // Check that all extended classes and interfaces
4328            // are compatible (i.e. no two define methods with same arguments
4329            // yet different return types).  (JLS 8.4.6.3)
4330            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4331            if (allowDefaultMethods) {
4332                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4333            }
4334        }
4335
4336        // Check that class does not import the same parameterized interface
4337        // with two different argument lists.
4338        chk.checkClassBounds(tree.pos(), c.type);
4339
4340        tree.type = c.type;
4341
4342        for (List<JCTypeParameter> l = tree.typarams;
4343             l.nonEmpty(); l = l.tail) {
4344             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4345        }
4346
4347        // Check that a generic class doesn't extend Throwable
4348        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4349            log.error(tree.extending.pos(), "generic.throwable");
4350
4351        // Check that all methods which implement some
4352        // method conform to the method they implement.
4353        chk.checkImplementations(tree);
4354
4355        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4356        checkAutoCloseable(tree.pos(), env, c.type);
4357
4358        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4359            // Attribute declaration
4360            attribStat(l.head, env);
4361            // Check that declarations in inner classes are not static (JLS 8.1.2)
4362            // Make an exception for static constants.
4363            if (c.owner.kind != PCK &&
4364                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4365                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4366                Symbol sym = null;
4367                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4368                if (sym == null ||
4369                    sym.kind != VAR ||
4370                    ((VarSymbol) sym).getConstValue() == null)
4371                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4372            }
4373        }
4374
4375        // Check for cycles among non-initial constructors.
4376        chk.checkCyclicConstructors(tree);
4377
4378        // Check for cycles among annotation elements.
4379        chk.checkNonCyclicElements(tree);
4380
4381        // Check for proper use of serialVersionUID
4382        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4383            isSerializable(c.type) &&
4384            (c.flags() & Flags.ENUM) == 0 &&
4385            checkForSerial(c)) {
4386            checkSerialVersionUID(tree, c);
4387        }
4388        if (allowTypeAnnos) {
4389            // Correctly organize the postions of the type annotations
4390            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4391
4392            // Check type annotations applicability rules
4393            validateTypeAnnotations(tree, false);
4394        }
4395    }
4396        // where
4397        boolean checkForSerial(ClassSymbol c) {
4398            if ((c.flags() & ABSTRACT) == 0) {
4399                return true;
4400            } else {
4401                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4402            }
4403        }
4404
4405        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4406            @Override
4407            public boolean accepts(Symbol s) {
4408                return s.kind == MTH &&
4409                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4410            }
4411        };
4412
4413        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4414        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4415            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4416                if (types.isSameType(al.head.annotationType.type, t))
4417                    return al.head.pos();
4418            }
4419
4420            return null;
4421        }
4422
4423        /** check if a type is a subtype of Serializable, if that is available. */
4424        boolean isSerializable(Type t) {
4425            try {
4426                syms.serializableType.complete();
4427            }
4428            catch (CompletionFailure e) {
4429                return false;
4430            }
4431            return types.isSubtype(t, syms.serializableType);
4432        }
4433
4434        /** Check that an appropriate serialVersionUID member is defined. */
4435        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4436
4437            // check for presence of serialVersionUID
4438            VarSymbol svuid = null;
4439            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4440                if (sym.kind == VAR) {
4441                    svuid = (VarSymbol)sym;
4442                    break;
4443                }
4444            }
4445
4446            if (svuid == null) {
4447                log.warning(LintCategory.SERIAL,
4448                        tree.pos(), "missing.SVUID", c);
4449                return;
4450            }
4451
4452            // check that it is static final
4453            if ((svuid.flags() & (STATIC | FINAL)) !=
4454                (STATIC | FINAL))
4455                log.warning(LintCategory.SERIAL,
4456                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4457
4458            // check that it is long
4459            else if (!svuid.type.hasTag(LONG))
4460                log.warning(LintCategory.SERIAL,
4461                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4462
4463            // check constant
4464            else if (svuid.getConstValue() == null)
4465                log.warning(LintCategory.SERIAL,
4466                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4467        }
4468
4469    private Type capture(Type type) {
4470        return types.capture(type);
4471    }
4472
4473    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4474        tree.accept(new TypeAnnotationsValidator(sigOnly));
4475    }
4476    //where
4477    private final class TypeAnnotationsValidator extends TreeScanner {
4478
4479        private final boolean sigOnly;
4480        public TypeAnnotationsValidator(boolean sigOnly) {
4481            this.sigOnly = sigOnly;
4482        }
4483
4484        public void visitAnnotation(JCAnnotation tree) {
4485            chk.validateTypeAnnotation(tree, false);
4486            super.visitAnnotation(tree);
4487        }
4488        public void visitAnnotatedType(JCAnnotatedType tree) {
4489            if (!tree.underlyingType.type.isErroneous()) {
4490                super.visitAnnotatedType(tree);
4491            }
4492        }
4493        public void visitTypeParameter(JCTypeParameter tree) {
4494            chk.validateTypeAnnotations(tree.annotations, true);
4495            scan(tree.bounds);
4496            // Don't call super.
4497            // This is needed because above we call validateTypeAnnotation with
4498            // false, which would forbid annotations on type parameters.
4499            // super.visitTypeParameter(tree);
4500        }
4501        public void visitMethodDef(JCMethodDecl tree) {
4502            if (tree.recvparam != null &&
4503                    !tree.recvparam.vartype.type.isErroneous()) {
4504                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4505                        tree.recvparam.vartype.type.tsym);
4506            }
4507            if (tree.restype != null && tree.restype.type != null) {
4508                validateAnnotatedType(tree.restype, tree.restype.type);
4509            }
4510            if (sigOnly) {
4511                scan(tree.mods);
4512                scan(tree.restype);
4513                scan(tree.typarams);
4514                scan(tree.recvparam);
4515                scan(tree.params);
4516                scan(tree.thrown);
4517            } else {
4518                scan(tree.defaultValue);
4519                scan(tree.body);
4520            }
4521        }
4522        public void visitVarDef(final JCVariableDecl tree) {
4523            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4524            if (tree.sym != null && tree.sym.type != null)
4525                validateAnnotatedType(tree.vartype, tree.sym.type);
4526            scan(tree.mods);
4527            scan(tree.vartype);
4528            if (!sigOnly) {
4529                scan(tree.init);
4530            }
4531        }
4532        public void visitTypeCast(JCTypeCast tree) {
4533            if (tree.clazz != null && tree.clazz.type != null)
4534                validateAnnotatedType(tree.clazz, tree.clazz.type);
4535            super.visitTypeCast(tree);
4536        }
4537        public void visitTypeTest(JCInstanceOf tree) {
4538            if (tree.clazz != null && tree.clazz.type != null)
4539                validateAnnotatedType(tree.clazz, tree.clazz.type);
4540            super.visitTypeTest(tree);
4541        }
4542        public void visitNewClass(JCNewClass tree) {
4543            if (tree.clazz != null && tree.clazz.type != null) {
4544                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4545                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4546                            tree.clazz.type.tsym);
4547                }
4548                if (tree.def != null) {
4549                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4550                }
4551
4552                validateAnnotatedType(tree.clazz, tree.clazz.type);
4553            }
4554            super.visitNewClass(tree);
4555        }
4556        public void visitNewArray(JCNewArray tree) {
4557            if (tree.elemtype != null && tree.elemtype.type != null) {
4558                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4559                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4560                            tree.elemtype.type.tsym);
4561                }
4562                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4563            }
4564            super.visitNewArray(tree);
4565        }
4566        public void visitClassDef(JCClassDecl tree) {
4567            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4568            if (sigOnly) {
4569                scan(tree.mods);
4570                scan(tree.typarams);
4571                scan(tree.extending);
4572                scan(tree.implementing);
4573            }
4574            for (JCTree member : tree.defs) {
4575                if (member.hasTag(Tag.CLASSDEF)) {
4576                    continue;
4577                }
4578                scan(member);
4579            }
4580        }
4581        public void visitBlock(JCBlock tree) {
4582            if (!sigOnly) {
4583                scan(tree.stats);
4584            }
4585        }
4586
4587        /* I would want to model this after
4588         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4589         * and override visitSelect and visitTypeApply.
4590         * However, we only set the annotated type in the top-level type
4591         * of the symbol.
4592         * Therefore, we need to override each individual location where a type
4593         * can occur.
4594         */
4595        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4596            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4597
4598            if (type.isPrimitiveOrVoid()) {
4599                return;
4600            }
4601
4602            JCTree enclTr = errtree;
4603            Type enclTy = type;
4604
4605            boolean repeat = true;
4606            while (repeat) {
4607                if (enclTr.hasTag(TYPEAPPLY)) {
4608                    List<Type> tyargs = enclTy.getTypeArguments();
4609                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4610                    if (trargs.length() > 0) {
4611                        // Nothing to do for diamonds
4612                        if (tyargs.length() == trargs.length()) {
4613                            for (int i = 0; i < tyargs.length(); ++i) {
4614                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4615                            }
4616                        }
4617                        // If the lengths don't match, it's either a diamond
4618                        // or some nested type that redundantly provides
4619                        // type arguments in the tree.
4620                    }
4621
4622                    // Look at the clazz part of a generic type
4623                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4624                }
4625
4626                if (enclTr.hasTag(SELECT)) {
4627                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4628                    if (enclTy != null &&
4629                            !enclTy.hasTag(NONE)) {
4630                        enclTy = enclTy.getEnclosingType();
4631                    }
4632                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4633                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4634                    if (enclTy == null || enclTy.hasTag(NONE)) {
4635                        if (at.getAnnotations().size() == 1) {
4636                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4637                        } else {
4638                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4639                            for (JCAnnotation an : at.getAnnotations()) {
4640                                comps.add(an.attribute);
4641                            }
4642                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4643                        }
4644                        repeat = false;
4645                    }
4646                    enclTr = at.underlyingType;
4647                    // enclTy doesn't need to be changed
4648                } else if (enclTr.hasTag(IDENT)) {
4649                    repeat = false;
4650                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4651                    JCWildcard wc = (JCWildcard) enclTr;
4652                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4653                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4654                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4655                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4656                    } else {
4657                        // Nothing to do for UNBOUND
4658                    }
4659                    repeat = false;
4660                } else if (enclTr.hasTag(TYPEARRAY)) {
4661                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4662                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4663                    repeat = false;
4664                } else if (enclTr.hasTag(TYPEUNION)) {
4665                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4666                    for (JCTree t : ut.getTypeAlternatives()) {
4667                        validateAnnotatedType(t, t.type);
4668                    }
4669                    repeat = false;
4670                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4671                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4672                    for (JCTree t : it.getBounds()) {
4673                        validateAnnotatedType(t, t.type);
4674                    }
4675                    repeat = false;
4676                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4677                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4678                    repeat = false;
4679                } else {
4680                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4681                            " within: "+ errtree + " with kind: " + errtree.getKind());
4682                }
4683            }
4684        }
4685
4686        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4687                Symbol sym) {
4688            // Ensure that no declaration annotations are present.
4689            // Note that a tree type might be an AnnotatedType with
4690            // empty annotations, if only declaration annotations were given.
4691            // This method will raise an error for such a type.
4692            for (JCAnnotation ai : annotations) {
4693                if (!ai.type.isErroneous() &&
4694                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4695                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4696                }
4697            }
4698        }
4699    }
4700
4701    // <editor-fold desc="post-attribution visitor">
4702
4703    /**
4704     * Handle missing types/symbols in an AST. This routine is useful when
4705     * the compiler has encountered some errors (which might have ended up
4706     * terminating attribution abruptly); if the compiler is used in fail-over
4707     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4708     * prevents NPE to be progagated during subsequent compilation steps.
4709     */
4710    public void postAttr(JCTree tree) {
4711        new PostAttrAnalyzer().scan(tree);
4712    }
4713
4714    class PostAttrAnalyzer extends TreeScanner {
4715
4716        private void initTypeIfNeeded(JCTree that) {
4717            if (that.type == null) {
4718                if (that.hasTag(METHODDEF)) {
4719                    that.type = dummyMethodType((JCMethodDecl)that);
4720                } else {
4721                    that.type = syms.unknownType;
4722                }
4723            }
4724        }
4725
4726        /* Construct a dummy method type. If we have a method declaration,
4727         * and the declared return type is void, then use that return type
4728         * instead of UNKNOWN to avoid spurious error messages in lambda
4729         * bodies (see:JDK-8041704).
4730         */
4731        private Type dummyMethodType(JCMethodDecl md) {
4732            Type restype = syms.unknownType;
4733            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4734                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4735                if (prim.typetag == VOID)
4736                    restype = syms.voidType;
4737            }
4738            return new MethodType(List.<Type>nil(), restype,
4739                                  List.<Type>nil(), syms.methodClass);
4740        }
4741        private Type dummyMethodType() {
4742            return dummyMethodType(null);
4743        }
4744
4745        @Override
4746        public void scan(JCTree tree) {
4747            if (tree == null) return;
4748            if (tree instanceof JCExpression) {
4749                initTypeIfNeeded(tree);
4750            }
4751            super.scan(tree);
4752        }
4753
4754        @Override
4755        public void visitIdent(JCIdent that) {
4756            if (that.sym == null) {
4757                that.sym = syms.unknownSymbol;
4758            }
4759        }
4760
4761        @Override
4762        public void visitSelect(JCFieldAccess that) {
4763            if (that.sym == null) {
4764                that.sym = syms.unknownSymbol;
4765            }
4766            super.visitSelect(that);
4767        }
4768
4769        @Override
4770        public void visitClassDef(JCClassDecl that) {
4771            initTypeIfNeeded(that);
4772            if (that.sym == null) {
4773                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4774            }
4775            super.visitClassDef(that);
4776        }
4777
4778        @Override
4779        public void visitMethodDef(JCMethodDecl that) {
4780            initTypeIfNeeded(that);
4781            if (that.sym == null) {
4782                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4783            }
4784            super.visitMethodDef(that);
4785        }
4786
4787        @Override
4788        public void visitVarDef(JCVariableDecl that) {
4789            initTypeIfNeeded(that);
4790            if (that.sym == null) {
4791                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4792                that.sym.adr = 0;
4793            }
4794            super.visitVarDef(that);
4795        }
4796
4797        @Override
4798        public void visitNewClass(JCNewClass that) {
4799            if (that.constructor == null) {
4800                that.constructor = new MethodSymbol(0, names.init,
4801                        dummyMethodType(), syms.noSymbol);
4802            }
4803            if (that.constructorType == null) {
4804                that.constructorType = syms.unknownType;
4805            }
4806            super.visitNewClass(that);
4807        }
4808
4809        @Override
4810        public void visitAssignop(JCAssignOp that) {
4811            if (that.operator == null) {
4812                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4813                        -1, syms.noSymbol);
4814            }
4815            super.visitAssignop(that);
4816        }
4817
4818        @Override
4819        public void visitBinary(JCBinary that) {
4820            if (that.operator == null) {
4821                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4822                        -1, syms.noSymbol);
4823            }
4824            super.visitBinary(that);
4825        }
4826
4827        @Override
4828        public void visitUnary(JCUnary that) {
4829            if (that.operator == null) {
4830                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4831                        -1, syms.noSymbol);
4832            }
4833            super.visitUnary(that);
4834        }
4835
4836        @Override
4837        public void visitLambda(JCLambda that) {
4838            super.visitLambda(that);
4839            if (that.targets == null) {
4840                that.targets = List.nil();
4841            }
4842        }
4843
4844        @Override
4845        public void visitReference(JCMemberReference that) {
4846            super.visitReference(that);
4847            if (that.sym == null) {
4848                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4849                        syms.noSymbol);
4850            }
4851            if (that.targets == null) {
4852                that.targets = List.nil();
4853            }
4854        }
4855    }
4856    // </editor-fold>
4857}
4858