Attr.java revision 2941:c11a5cb11750
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.code.TypeMetadata.Annotations;
44import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
45import com.sun.tools.javac.comp.Check.CheckContext;
46import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
47import com.sun.tools.javac.comp.Infer.InferenceContext;
48import com.sun.tools.javac.comp.Infer.FreeTypeListener;
49import com.sun.tools.javac.jvm.*;
50import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
53import com.sun.tools.javac.resources.CompilerProperties.Errors;
54import com.sun.tools.javac.resources.CompilerProperties.Fragments;
55import com.sun.tools.javac.tree.*;
56import com.sun.tools.javac.tree.JCTree.*;
57import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
58import com.sun.tools.javac.util.*;
59import com.sun.tools.javac.util.DefinedBy.Api;
60import com.sun.tools.javac.util.Dependencies.AttributionKind;
61import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
62import com.sun.tools.javac.util.JCDiagnostic.Fragment;
63import com.sun.tools.javac.util.List;
64import static com.sun.tools.javac.code.Flags.*;
65import static com.sun.tools.javac.code.Flags.ANNOTATION;
66import static com.sun.tools.javac.code.Flags.BLOCK;
67import static com.sun.tools.javac.code.Kinds.*;
68import static com.sun.tools.javac.code.Kinds.Kind.*;
69import static com.sun.tools.javac.code.TypeTag.*;
70import static com.sun.tools.javac.code.TypeTag.WILDCARD;
71import static com.sun.tools.javac.tree.JCTree.Tag.*;
72
73/** This is the main context-dependent analysis phase in GJC. It
74 *  encompasses name resolution, type checking and constant folding as
75 *  subtasks. Some subtasks involve auxiliary classes.
76 *  @see Check
77 *  @see Resolve
78 *  @see ConstFold
79 *  @see Infer
80 *
81 *  <p><b>This is NOT part of any supported API.
82 *  If you write code that depends on this, you do so at your own risk.
83 *  This code and its internal interfaces are subject to change or
84 *  deletion without notice.</b>
85 */
86public class Attr extends JCTree.Visitor {
87    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
88
89    final Names names;
90    final Log log;
91    final Symtab syms;
92    final Resolve rs;
93    final Operators operators;
94    final Infer infer;
95    final Analyzer analyzer;
96    final DeferredAttr deferredAttr;
97    final Check chk;
98    final Flow flow;
99    final MemberEnter memberEnter;
100    final TypeEnter typeEnter;
101    final TreeMaker make;
102    final ConstFold cfolder;
103    final Enter enter;
104    final Target target;
105    final Types types;
106    final JCDiagnostic.Factory diags;
107    final TypeAnnotations typeAnnotations;
108    final DeferredLintHandler deferredLintHandler;
109    final TypeEnvs typeEnvs;
110    final Dependencies dependencies;
111    final Annotate annotate;
112
113    public static Attr instance(Context context) {
114        Attr instance = context.get(attrKey);
115        if (instance == null)
116            instance = new Attr(context);
117        return instance;
118    }
119
120    protected Attr(Context context) {
121        context.put(attrKey, this);
122
123        names = Names.instance(context);
124        log = Log.instance(context);
125        syms = Symtab.instance(context);
126        rs = Resolve.instance(context);
127        operators = Operators.instance(context);
128        chk = Check.instance(context);
129        flow = Flow.instance(context);
130        memberEnter = MemberEnter.instance(context);
131        typeEnter = TypeEnter.instance(context);
132        make = TreeMaker.instance(context);
133        enter = Enter.instance(context);
134        infer = Infer.instance(context);
135        analyzer = Analyzer.instance(context);
136        deferredAttr = DeferredAttr.instance(context);
137        cfolder = ConstFold.instance(context);
138        target = Target.instance(context);
139        types = Types.instance(context);
140        diags = JCDiagnostic.Factory.instance(context);
141        annotate = Annotate.instance(context);
142        typeAnnotations = TypeAnnotations.instance(context);
143        deferredLintHandler = DeferredLintHandler.instance(context);
144        typeEnvs = TypeEnvs.instance(context);
145        dependencies = Dependencies.instance(context);
146
147        Options options = Options.instance(context);
148
149        Source source = Source.instance(context);
150        allowStringsInSwitch = source.allowStringsInSwitch();
151        allowPoly = source.allowPoly();
152        allowTypeAnnos = source.allowTypeAnnotations();
153        allowLambda = source.allowLambda();
154        allowDefaultMethods = source.allowDefaultMethods();
155        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
156        sourceName = source.name;
157        relax = (options.isSet("-retrofit") ||
158                options.isSet("-relax"));
159        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
160
161        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
162        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
163        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
164        unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
165        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
166        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
167        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
168    }
169
170    /** Switch: relax some constraints for retrofit mode.
171     */
172    boolean relax;
173
174    /** Switch: support target-typing inference
175     */
176    boolean allowPoly;
177
178    /** Switch: support type annotations.
179     */
180    boolean allowTypeAnnos;
181
182    /** Switch: support lambda expressions ?
183     */
184    boolean allowLambda;
185
186    /** Switch: support default methods ?
187     */
188    boolean allowDefaultMethods;
189
190    /** Switch: static interface methods enabled?
191     */
192    boolean allowStaticInterfaceMethods;
193
194    /**
195     * Switch: warn about use of variable before declaration?
196     * RFE: 6425594
197     */
198    boolean useBeforeDeclarationWarning;
199
200    /**
201     * Switch: allow strings in switch?
202     */
203    boolean allowStringsInSwitch;
204
205    /**
206     * Switch: name of source level; used for error reporting.
207     */
208    String sourceName;
209
210    /** Check kind and type of given tree against protokind and prototype.
211     *  If check succeeds, store type in tree and return it.
212     *  If check fails, store errType in tree and return it.
213     *  No checks are performed if the prototype is a method type.
214     *  It is not necessary in this case since we know that kind and type
215     *  are correct.
216     *
217     *  @param tree     The tree whose kind and type is checked
218     *  @param found    The computed type of the tree
219     *  @param ownkind  The computed kind of the tree
220     *  @param resultInfo  The expected result of the tree
221     */
222    Type check(final JCTree tree,
223               final Type found,
224               final KindSelector ownkind,
225               final ResultInfo resultInfo) {
226        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
227        Type owntype;
228        boolean shouldCheck = !found.hasTag(ERROR) &&
229                !resultInfo.pt.hasTag(METHOD) &&
230                !resultInfo.pt.hasTag(FORALL);
231        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
232            log.error(tree.pos(), "unexpected.type",
233            resultInfo.pkind.kindNames(),
234            ownkind.kindNames());
235            owntype = types.createErrorType(found);
236        } else if (allowPoly && inferenceContext.free(found)) {
237            //delay the check if there are inference variables in the found type
238            //this means we are dealing with a partially inferred poly expression
239            owntype = shouldCheck ? resultInfo.pt : found;
240            if (resultInfo.checkMode.installPostInferenceHook()) {
241                inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
242                        instantiatedContext -> {
243                            ResultInfo pendingResult =
244                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
245                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
246                        });
247            }
248        } else {
249            owntype = shouldCheck ?
250            resultInfo.check(tree, found) :
251            found;
252        }
253        if (resultInfo.checkMode.updateTreeType()) {
254            tree.type = owntype;
255        }
256        return owntype;
257    }
258
259    /** Is given blank final variable assignable, i.e. in a scope where it
260     *  may be assigned to even though it is final?
261     *  @param v      The blank final variable.
262     *  @param env    The current environment.
263     */
264    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
265        Symbol owner = env.info.scope.owner;
266           // owner refers to the innermost variable, method or
267           // initializer block declaration at this point.
268        return
269            v.owner == owner
270            ||
271            ((owner.name == names.init ||    // i.e. we are in a constructor
272              owner.kind == VAR ||           // i.e. we are in a variable initializer
273              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
274             &&
275             v.owner == owner.owner
276             &&
277             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
278    }
279
280    /** Check that variable can be assigned to.
281     *  @param pos    The current source code position.
282     *  @param v      The assigned varaible
283     *  @param base   If the variable is referred to in a Select, the part
284     *                to the left of the `.', null otherwise.
285     *  @param env    The current environment.
286     */
287    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
288        if ((v.flags() & FINAL) != 0 &&
289            ((v.flags() & HASINIT) != 0
290             ||
291             !((base == null ||
292               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
293               isAssignableAsBlankFinal(v, env)))) {
294            if (v.isResourceVariable()) { //TWR resource
295                log.error(pos, "try.resource.may.not.be.assigned", v);
296            } else {
297                log.error(pos, "cant.assign.val.to.final.var", v);
298            }
299        }
300    }
301
302    /** Does tree represent a static reference to an identifier?
303     *  It is assumed that tree is either a SELECT or an IDENT.
304     *  We have to weed out selects from non-type names here.
305     *  @param tree    The candidate tree.
306     */
307    boolean isStaticReference(JCTree tree) {
308        if (tree.hasTag(SELECT)) {
309            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
310            if (lsym == null || lsym.kind != TYP) {
311                return false;
312            }
313        }
314        return true;
315    }
316
317    /** Is this symbol a type?
318     */
319    static boolean isType(Symbol sym) {
320        return sym != null && sym.kind == TYP;
321    }
322
323    /** The current `this' symbol.
324     *  @param env    The current environment.
325     */
326    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
327        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
328    }
329
330    /** Attribute a parsed identifier.
331     * @param tree Parsed identifier name
332     * @param topLevel The toplevel to use
333     */
334    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
335        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
336        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
337                                           syms.errSymbol.name,
338                                           null, null, null, null);
339        localEnv.enclClass.sym = syms.errSymbol;
340        return tree.accept(identAttributer, localEnv);
341    }
342    // where
343        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
344        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
345            @Override @DefinedBy(Api.COMPILER_TREE)
346            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
347                Symbol site = visit(node.getExpression(), env);
348                if (site.kind == ERR || site.kind == ABSENT_TYP)
349                    return site;
350                Name name = (Name)node.getIdentifier();
351                if (site.kind == PCK) {
352                    env.toplevel.packge = (PackageSymbol)site;
353                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
354                            KindSelector.TYP_PCK);
355                } else {
356                    env.enclClass.sym = (ClassSymbol)site;
357                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
358                }
359            }
360
361            @Override @DefinedBy(Api.COMPILER_TREE)
362            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
363                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
364            }
365        }
366
367    public Type coerce(Type etype, Type ttype) {
368        return cfolder.coerce(etype, ttype);
369    }
370
371    public Type attribType(JCTree node, TypeSymbol sym) {
372        Env<AttrContext> env = typeEnvs.get(sym);
373        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
374        return attribTree(node, localEnv, unknownTypeInfo);
375    }
376
377    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
378        // Attribute qualifying package or class.
379        JCFieldAccess s = (JCFieldAccess)tree.qualid;
380        return attribTree(s.selected, env,
381                          new ResultInfo(tree.staticImport ?
382                                         KindSelector.TYP : KindSelector.TYP_PCK,
383                       Type.noType));
384    }
385
386    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
387        breakTree = tree;
388        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
389        try {
390            attribExpr(expr, env);
391        } catch (BreakAttr b) {
392            return b.env;
393        } catch (AssertionError ae) {
394            if (ae.getCause() instanceof BreakAttr) {
395                return ((BreakAttr)(ae.getCause())).env;
396            } else {
397                throw ae;
398            }
399        } finally {
400            breakTree = null;
401            log.useSource(prev);
402        }
403        return env;
404    }
405
406    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
407        breakTree = tree;
408        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
409        try {
410            attribStat(stmt, env);
411        } catch (BreakAttr b) {
412            return b.env;
413        } catch (AssertionError ae) {
414            if (ae.getCause() instanceof BreakAttr) {
415                return ((BreakAttr)(ae.getCause())).env;
416            } else {
417                throw ae;
418            }
419        } finally {
420            breakTree = null;
421            log.useSource(prev);
422        }
423        return env;
424    }
425
426    private JCTree breakTree = null;
427
428    private static class BreakAttr extends RuntimeException {
429        static final long serialVersionUID = -6924771130405446405L;
430        private Env<AttrContext> env;
431        private BreakAttr(Env<AttrContext> env) {
432            this.env = env;
433        }
434    }
435
436    /**
437     * Mode controlling behavior of Attr.Check
438     */
439    enum CheckMode {
440
441        NORMAL,
442
443        NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
444            @Override
445            public boolean updateTreeType() {
446                return false;
447            }
448        },
449        NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
450            @Override
451            public boolean installPostInferenceHook() {
452                return false;
453            }
454        };
455
456        public boolean updateTreeType() {
457            return true;
458        }
459        public boolean installPostInferenceHook() {
460            return true;
461        }
462    }
463
464
465    class ResultInfo {
466        final KindSelector pkind;
467        final Type pt;
468        final CheckContext checkContext;
469        final CheckMode checkMode;
470
471        ResultInfo(KindSelector pkind, Type pt) {
472            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
473        }
474
475        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
476            this(pkind, pt, chk.basicHandler, checkMode);
477        }
478
479        protected ResultInfo(KindSelector pkind,
480                             Type pt, CheckContext checkContext) {
481            this(pkind, pt, checkContext, CheckMode.NORMAL);
482        }
483
484        protected ResultInfo(KindSelector pkind,
485                             Type pt, CheckContext checkContext, CheckMode checkMode) {
486            this.pkind = pkind;
487            this.pt = pt;
488            this.checkContext = checkContext;
489            this.checkMode = checkMode;
490        }
491
492        protected Type check(final DiagnosticPosition pos, final Type found) {
493            return chk.checkType(pos, found, pt, checkContext);
494        }
495
496        protected ResultInfo dup(Type newPt) {
497            return new ResultInfo(pkind, newPt, checkContext, checkMode);
498        }
499
500        protected ResultInfo dup(CheckContext newContext) {
501            return new ResultInfo(pkind, pt, newContext, checkMode);
502        }
503
504        protected ResultInfo dup(Type newPt, CheckContext newContext) {
505            return new ResultInfo(pkind, newPt, newContext, checkMode);
506        }
507
508        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
509            return new ResultInfo(pkind, newPt, newContext, newMode);
510        }
511
512        protected ResultInfo dup(CheckMode newMode) {
513            return new ResultInfo(pkind, pt, checkContext, newMode);
514        }
515
516        @Override
517        public String toString() {
518            if (pt != null) {
519                return pt.toString();
520            } else {
521                return "";
522            }
523        }
524    }
525
526    class RecoveryInfo extends ResultInfo {
527
528        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
529            super(KindSelector.VAL, Type.recoveryType,
530                  new Check.NestedCheckContext(chk.basicHandler) {
531                @Override
532                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
533                    return deferredAttrContext;
534                }
535                @Override
536                public boolean compatible(Type found, Type req, Warner warn) {
537                    return true;
538                }
539                @Override
540                public void report(DiagnosticPosition pos, JCDiagnostic details) {
541                    chk.basicHandler.report(pos, details);
542                }
543            });
544        }
545    }
546
547    final ResultInfo statInfo;
548    final ResultInfo varAssignmentInfo;
549    final ResultInfo unknownAnyPolyInfo;
550    final ResultInfo unknownExprInfo;
551    final ResultInfo unknownTypeInfo;
552    final ResultInfo unknownTypeExprInfo;
553    final ResultInfo recoveryInfo;
554
555    Type pt() {
556        return resultInfo.pt;
557    }
558
559    KindSelector pkind() {
560        return resultInfo.pkind;
561    }
562
563/* ************************************************************************
564 * Visitor methods
565 *************************************************************************/
566
567    /** Visitor argument: the current environment.
568     */
569    Env<AttrContext> env;
570
571    /** Visitor argument: the currently expected attribution result.
572     */
573    ResultInfo resultInfo;
574
575    /** Visitor result: the computed type.
576     */
577    Type result;
578
579    /** Visitor method: attribute a tree, catching any completion failure
580     *  exceptions. Return the tree's type.
581     *
582     *  @param tree    The tree to be visited.
583     *  @param env     The environment visitor argument.
584     *  @param resultInfo   The result info visitor argument.
585     */
586    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
587        Env<AttrContext> prevEnv = this.env;
588        ResultInfo prevResult = this.resultInfo;
589        try {
590            this.env = env;
591            this.resultInfo = resultInfo;
592            tree.accept(this);
593            if (tree == breakTree &&
594                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
595                throw new BreakAttr(copyEnv(env));
596            }
597            return result;
598        } catch (CompletionFailure ex) {
599            tree.type = syms.errType;
600            return chk.completionError(tree.pos(), ex);
601        } finally {
602            this.env = prevEnv;
603            this.resultInfo = prevResult;
604        }
605    }
606
607    Env<AttrContext> copyEnv(Env<AttrContext> env) {
608        Env<AttrContext> newEnv =
609                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
610        if (newEnv.outer != null) {
611            newEnv.outer = copyEnv(newEnv.outer);
612        }
613        return newEnv;
614    }
615
616    WriteableScope copyScope(WriteableScope sc) {
617        WriteableScope newScope = WriteableScope.create(sc.owner);
618        List<Symbol> elemsList = List.nil();
619        for (Symbol sym : sc.getSymbols()) {
620            elemsList = elemsList.prepend(sym);
621        }
622        for (Symbol s : elemsList) {
623            newScope.enter(s);
624        }
625        return newScope;
626    }
627
628    /** Derived visitor method: attribute an expression tree.
629     */
630    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
631        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
632    }
633
634    /** Derived visitor method: attribute an expression tree with
635     *  no constraints on the computed type.
636     */
637    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
638        return attribTree(tree, env, unknownExprInfo);
639    }
640
641    /** Derived visitor method: attribute a type tree.
642     */
643    public Type attribType(JCTree tree, Env<AttrContext> env) {
644        Type result = attribType(tree, env, Type.noType);
645        return result;
646    }
647
648    /** Derived visitor method: attribute a type tree.
649     */
650    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
651        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
652        return result;
653    }
654
655    /** Derived visitor method: attribute a statement or definition tree.
656     */
657    public Type attribStat(JCTree tree, Env<AttrContext> env) {
658        Env<AttrContext> analyzeEnv =
659                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
660        try {
661            return attribTree(tree, env, statInfo);
662        } finally {
663            analyzer.analyzeIfNeeded(tree, analyzeEnv);
664        }
665    }
666
667    /** Attribute a list of expressions, returning a list of types.
668     */
669    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
670        ListBuffer<Type> ts = new ListBuffer<>();
671        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
672            ts.append(attribExpr(l.head, env, pt));
673        return ts.toList();
674    }
675
676    /** Attribute a list of statements, returning nothing.
677     */
678    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
679        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
680            attribStat(l.head, env);
681    }
682
683    /** Attribute the arguments in a method call, returning the method kind.
684     */
685    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
686        KindSelector kind = initialKind;
687        for (JCExpression arg : trees) {
688            Type argtype;
689            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
690                argtype = deferredAttr.new DeferredType(arg, env);
691                kind = KindSelector.of(KindSelector.POLY, kind);
692            } else {
693                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
694            }
695            argtypes.append(argtype);
696        }
697        return kind;
698    }
699
700    /** Attribute a type argument list, returning a list of types.
701     *  Caller is responsible for calling checkRefTypes.
702     */
703    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
704        ListBuffer<Type> argtypes = new ListBuffer<>();
705        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
706            argtypes.append(attribType(l.head, env));
707        return argtypes.toList();
708    }
709
710    /** Attribute a type argument list, returning a list of types.
711     *  Check that all the types are references.
712     */
713    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
714        List<Type> types = attribAnyTypes(trees, env);
715        return chk.checkRefTypes(trees, types);
716    }
717
718    /**
719     * Attribute type variables (of generic classes or methods).
720     * Compound types are attributed later in attribBounds.
721     * @param typarams the type variables to enter
722     * @param env      the current environment
723     */
724    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
725        for (JCTypeParameter tvar : typarams) {
726            dependencies.push(AttributionKind.TVAR, tvar);
727            TypeVar a = (TypeVar)tvar.type;
728            a.tsym.flags_field |= UNATTRIBUTED;
729            a.bound = Type.noType;
730            if (!tvar.bounds.isEmpty()) {
731                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
732                for (JCExpression bound : tvar.bounds.tail)
733                    bounds = bounds.prepend(attribType(bound, env));
734                types.setBounds(a, bounds.reverse());
735            } else {
736                // if no bounds are given, assume a single bound of
737                // java.lang.Object.
738                types.setBounds(a, List.of(syms.objectType));
739            }
740            a.tsym.flags_field &= ~UNATTRIBUTED;
741            dependencies.pop();
742        }
743        for (JCTypeParameter tvar : typarams) {
744            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
745        }
746    }
747
748    /**
749     * Attribute the type references in a list of annotations.
750     */
751    void attribAnnotationTypes(List<JCAnnotation> annotations,
752                               Env<AttrContext> env) {
753        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
754            JCAnnotation a = al.head;
755            attribType(a.annotationType, env);
756        }
757    }
758
759    /**
760     * Attribute a "lazy constant value".
761     *  @param env         The env for the const value
762     *  @param initializer The initializer for the const value
763     *  @param type        The expected type, or null
764     *  @see VarSymbol#setLazyConstValue
765     */
766    public Object attribLazyConstantValue(Env<AttrContext> env,
767                                      JCVariableDecl variable,
768                                      Type type) {
769
770        DiagnosticPosition prevLintPos
771                = deferredLintHandler.setPos(variable.pos());
772
773        try {
774            Type itype = attribExpr(variable.init, env, type);
775            if (itype.constValue() != null) {
776                return coerce(itype, type).constValue();
777            } else {
778                return null;
779            }
780        } finally {
781            deferredLintHandler.setPos(prevLintPos);
782        }
783    }
784
785    /** Attribute type reference in an `extends' or `implements' clause.
786     *  Supertypes of anonymous inner classes are usually already attributed.
787     *
788     *  @param tree              The tree making up the type reference.
789     *  @param env               The environment current at the reference.
790     *  @param classExpected     true if only a class is expected here.
791     *  @param interfaceExpected true if only an interface is expected here.
792     */
793    Type attribBase(JCTree tree,
794                    Env<AttrContext> env,
795                    boolean classExpected,
796                    boolean interfaceExpected,
797                    boolean checkExtensible) {
798        Type t = tree.type != null ?
799            tree.type :
800            attribType(tree, env);
801        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
802    }
803    Type checkBase(Type t,
804                   JCTree tree,
805                   Env<AttrContext> env,
806                   boolean classExpected,
807                   boolean interfaceExpected,
808                   boolean checkExtensible) {
809        if (t.tsym.isAnonymous()) {
810            log.error(tree.pos(), "cant.inherit.from.anon");
811            return types.createErrorType(t);
812        }
813        if (t.isErroneous())
814            return t;
815        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
816            // check that type variable is already visible
817            if (t.getUpperBound() == null) {
818                log.error(tree.pos(), "illegal.forward.ref");
819                return types.createErrorType(t);
820            }
821        } else {
822            t = chk.checkClassType(tree.pos(), t, checkExtensible);
823        }
824        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
825            log.error(tree.pos(), "intf.expected.here");
826            // return errType is necessary since otherwise there might
827            // be undetected cycles which cause attribution to loop
828            return types.createErrorType(t);
829        } else if (checkExtensible &&
830                   classExpected &&
831                   (t.tsym.flags() & INTERFACE) != 0) {
832            log.error(tree.pos(), "no.intf.expected.here");
833            return types.createErrorType(t);
834        }
835        if (checkExtensible &&
836            ((t.tsym.flags() & FINAL) != 0)) {
837            log.error(tree.pos(),
838                      "cant.inherit.from.final", t.tsym);
839        }
840        chk.checkNonCyclic(tree.pos(), t);
841        return t;
842    }
843
844    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
845        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
846        id.type = env.info.scope.owner.enclClass().type;
847        id.sym = env.info.scope.owner.enclClass();
848        return id.type;
849    }
850
851    public void visitClassDef(JCClassDecl tree) {
852        // Local and anonymous classes have not been entered yet, so we need to
853        // do it now.
854        if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
855            enter.classEnter(tree, env);
856        } else {
857            // If this class declaration is part of a class level annotation,
858            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
859            // order to simplify later steps and allow for sensible error
860            // messages.
861            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
862                enter.classEnter(tree, env);
863        }
864
865        ClassSymbol c = tree.sym;
866        if (c == null) {
867            // exit in case something drastic went wrong during enter.
868            result = null;
869        } else {
870            // make sure class has been completed:
871            c.complete();
872
873            // If this class appears as an anonymous class
874            // in a superclass constructor call where
875            // no explicit outer instance is given,
876            // disable implicit outer instance from being passed.
877            // (This would be an illegal access to "this before super").
878            if (env.info.isSelfCall &&
879                env.tree.hasTag(NEWCLASS) &&
880                ((JCNewClass) env.tree).encl == null)
881            {
882                c.flags_field |= NOOUTERTHIS;
883            }
884            attribClass(tree.pos(), c);
885            result = tree.type = c.type;
886        }
887    }
888
889    public void visitMethodDef(JCMethodDecl tree) {
890        MethodSymbol m = tree.sym;
891        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
892
893        Lint lint = env.info.lint.augment(m);
894        Lint prevLint = chk.setLint(lint);
895        MethodSymbol prevMethod = chk.setMethod(m);
896        try {
897            deferredLintHandler.flush(tree.pos());
898            chk.checkDeprecatedAnnotation(tree.pos(), m);
899
900
901            // Create a new environment with local scope
902            // for attributing the method.
903            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
904            localEnv.info.lint = lint;
905
906            attribStats(tree.typarams, localEnv);
907
908            // If we override any other methods, check that we do so properly.
909            // JLS ???
910            if (m.isStatic()) {
911                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
912            } else {
913                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
914            }
915            chk.checkOverride(env, tree, m);
916
917            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
918                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
919            }
920
921            // Enter all type parameters into the local method scope.
922            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
923                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
924
925            ClassSymbol owner = env.enclClass.sym;
926            if ((owner.flags() & ANNOTATION) != 0 &&
927                    tree.params.nonEmpty())
928                log.error(tree.params.head.pos(),
929                        "intf.annotation.members.cant.have.params");
930
931            // Attribute all value parameters.
932            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
933                attribStat(l.head, localEnv);
934            }
935
936            chk.checkVarargsMethodDecl(localEnv, tree);
937
938            // Check that type parameters are well-formed.
939            chk.validate(tree.typarams, localEnv);
940
941            // Check that result type is well-formed.
942            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
943                chk.validate(tree.restype, localEnv);
944
945            // Check that receiver type is well-formed.
946            if (tree.recvparam != null) {
947                // Use a new environment to check the receiver parameter.
948                // Otherwise I get "might not have been initialized" errors.
949                // Is there a better way?
950                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
951                attribType(tree.recvparam, newEnv);
952                chk.validate(tree.recvparam, newEnv);
953            }
954
955            // annotation method checks
956            if ((owner.flags() & ANNOTATION) != 0) {
957                // annotation method cannot have throws clause
958                if (tree.thrown.nonEmpty()) {
959                    log.error(tree.thrown.head.pos(),
960                            "throws.not.allowed.in.intf.annotation");
961                }
962                // annotation method cannot declare type-parameters
963                if (tree.typarams.nonEmpty()) {
964                    log.error(tree.typarams.head.pos(),
965                            "intf.annotation.members.cant.have.type.params");
966                }
967                // validate annotation method's return type (could be an annotation type)
968                chk.validateAnnotationType(tree.restype);
969                // ensure that annotation method does not clash with members of Object/Annotation
970                chk.validateAnnotationMethod(tree.pos(), m);
971            }
972
973            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
974                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
975
976            if (tree.body == null) {
977                // Empty bodies are only allowed for
978                // abstract, native, or interface methods, or for methods
979                // in a retrofit signature class.
980                if (tree.defaultValue != null) {
981                    if ((owner.flags() & ANNOTATION) == 0)
982                        log.error(tree.pos(),
983                                  "default.allowed.in.intf.annotation.member");
984                }
985                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
986                    !relax)
987                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
988            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
989                if ((owner.flags() & INTERFACE) != 0) {
990                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
991                } else {
992                    log.error(tree.pos(), "abstract.meth.cant.have.body");
993                }
994            } else if ((tree.mods.flags & NATIVE) != 0) {
995                log.error(tree.pos(), "native.meth.cant.have.body");
996            } else {
997                // Add an implicit super() call unless an explicit call to
998                // super(...) or this(...) is given
999                // or we are compiling class java.lang.Object.
1000                if (tree.name == names.init && owner.type != syms.objectType) {
1001                    JCBlock body = tree.body;
1002                    if (body.stats.isEmpty() ||
1003                            !TreeInfo.isSelfCall(body.stats.head)) {
1004                        body.stats = body.stats.
1005                                prepend(typeEnter.SuperCall(make.at(body.pos),
1006                                        List.<Type>nil(),
1007                                        List.<JCVariableDecl>nil(),
1008                                        false));
1009                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1010                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1011                            TreeInfo.isSuperCall(body.stats.head)) {
1012                        // enum constructors are not allowed to call super
1013                        // directly, so make sure there aren't any super calls
1014                        // in enum constructors, except in the compiler
1015                        // generated one.
1016                        log.error(tree.body.stats.head.pos(),
1017                                "call.to.super.not.allowed.in.enum.ctor",
1018                                env.enclClass.sym);
1019                    }
1020                }
1021
1022                // Attribute all type annotations in the body
1023                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1024                annotate.flush();
1025
1026                // Attribute method body.
1027                attribStat(tree.body, localEnv);
1028            }
1029
1030            localEnv.info.scope.leave();
1031            result = tree.type = m.type;
1032        } finally {
1033            chk.setLint(prevLint);
1034            chk.setMethod(prevMethod);
1035        }
1036    }
1037
1038    public void visitVarDef(JCVariableDecl tree) {
1039        // Local variables have not been entered yet, so we need to do it now:
1040        if (env.info.scope.owner.kind == MTH) {
1041            if (tree.sym != null) {
1042                // parameters have already been entered
1043                env.info.scope.enter(tree.sym);
1044            } else {
1045                try {
1046                    annotate.blockAnnotations();
1047                    memberEnter.memberEnter(tree, env);
1048                } finally {
1049                    annotate.unblockAnnotations();
1050                }
1051            }
1052        } else {
1053            if (tree.init != null) {
1054                // Field initializer expression need to be entered.
1055                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1056                annotate.flush();
1057            }
1058        }
1059
1060        VarSymbol v = tree.sym;
1061        Lint lint = env.info.lint.augment(v);
1062        Lint prevLint = chk.setLint(lint);
1063
1064        // Check that the variable's declared type is well-formed.
1065        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1066                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1067                (tree.sym.flags() & PARAMETER) != 0;
1068        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1069
1070        try {
1071            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1072            deferredLintHandler.flush(tree.pos());
1073            chk.checkDeprecatedAnnotation(tree.pos(), v);
1074
1075            if (tree.init != null) {
1076                if ((v.flags_field & FINAL) == 0 ||
1077                    !memberEnter.needsLazyConstValue(tree.init)) {
1078                    // Not a compile-time constant
1079                    // Attribute initializer in a new environment
1080                    // with the declared variable as owner.
1081                    // Check that initializer conforms to variable's declared type.
1082                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1083                    initEnv.info.lint = lint;
1084                    // In order to catch self-references, we set the variable's
1085                    // declaration position to maximal possible value, effectively
1086                    // marking the variable as undefined.
1087                    initEnv.info.enclVar = v;
1088                    attribExpr(tree.init, initEnv, v.type);
1089                }
1090            }
1091            result = tree.type = v.type;
1092        }
1093        finally {
1094            chk.setLint(prevLint);
1095        }
1096    }
1097
1098    public void visitSkip(JCSkip tree) {
1099        result = null;
1100    }
1101
1102    public void visitBlock(JCBlock tree) {
1103        if (env.info.scope.owner.kind == TYP) {
1104            // Block is a static or instance initializer;
1105            // let the owner of the environment be a freshly
1106            // created BLOCK-method.
1107            Symbol fakeOwner =
1108                new MethodSymbol(tree.flags | BLOCK |
1109                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1110                    env.info.scope.owner);
1111            final Env<AttrContext> localEnv =
1112                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1113
1114            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1115            // Attribute all type annotations in the block
1116            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1117            annotate.flush();
1118            attribStats(tree.stats, localEnv);
1119
1120            {
1121                // Store init and clinit type annotations with the ClassSymbol
1122                // to allow output in Gen.normalizeDefs.
1123                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1124                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1125                if ((tree.flags & STATIC) != 0) {
1126                    cs.appendClassInitTypeAttributes(tas);
1127                } else {
1128                    cs.appendInitTypeAttributes(tas);
1129                }
1130            }
1131        } else {
1132            // Create a new local environment with a local scope.
1133            Env<AttrContext> localEnv =
1134                env.dup(tree, env.info.dup(env.info.scope.dup()));
1135            try {
1136                attribStats(tree.stats, localEnv);
1137            } finally {
1138                localEnv.info.scope.leave();
1139            }
1140        }
1141        result = null;
1142    }
1143
1144    public void visitDoLoop(JCDoWhileLoop tree) {
1145        attribStat(tree.body, env.dup(tree));
1146        attribExpr(tree.cond, env, syms.booleanType);
1147        result = null;
1148    }
1149
1150    public void visitWhileLoop(JCWhileLoop tree) {
1151        attribExpr(tree.cond, env, syms.booleanType);
1152        attribStat(tree.body, env.dup(tree));
1153        result = null;
1154    }
1155
1156    public void visitForLoop(JCForLoop tree) {
1157        Env<AttrContext> loopEnv =
1158            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1159        try {
1160            attribStats(tree.init, loopEnv);
1161            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1162            loopEnv.tree = tree; // before, we were not in loop!
1163            attribStats(tree.step, loopEnv);
1164            attribStat(tree.body, loopEnv);
1165            result = null;
1166        }
1167        finally {
1168            loopEnv.info.scope.leave();
1169        }
1170    }
1171
1172    public void visitForeachLoop(JCEnhancedForLoop tree) {
1173        Env<AttrContext> loopEnv =
1174            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1175        try {
1176            //the Formal Parameter of a for-each loop is not in the scope when
1177            //attributing the for-each expression; we mimick this by attributing
1178            //the for-each expression first (against original scope).
1179            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1180            attribStat(tree.var, loopEnv);
1181            chk.checkNonVoid(tree.pos(), exprType);
1182            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1183            if (elemtype == null) {
1184                // or perhaps expr implements Iterable<T>?
1185                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1186                if (base == null) {
1187                    log.error(tree.expr.pos(),
1188                            "foreach.not.applicable.to.type",
1189                            exprType,
1190                            diags.fragment("type.req.array.or.iterable"));
1191                    elemtype = types.createErrorType(exprType);
1192                } else {
1193                    List<Type> iterableParams = base.allparams();
1194                    elemtype = iterableParams.isEmpty()
1195                        ? syms.objectType
1196                        : types.wildUpperBound(iterableParams.head);
1197                }
1198            }
1199            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1200            loopEnv.tree = tree; // before, we were not in loop!
1201            attribStat(tree.body, loopEnv);
1202            result = null;
1203        }
1204        finally {
1205            loopEnv.info.scope.leave();
1206        }
1207    }
1208
1209    public void visitLabelled(JCLabeledStatement tree) {
1210        // Check that label is not used in an enclosing statement
1211        Env<AttrContext> env1 = env;
1212        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1213            if (env1.tree.hasTag(LABELLED) &&
1214                ((JCLabeledStatement) env1.tree).label == tree.label) {
1215                log.error(tree.pos(), "label.already.in.use",
1216                          tree.label);
1217                break;
1218            }
1219            env1 = env1.next;
1220        }
1221
1222        attribStat(tree.body, env.dup(tree));
1223        result = null;
1224    }
1225
1226    public void visitSwitch(JCSwitch tree) {
1227        Type seltype = attribExpr(tree.selector, env);
1228
1229        Env<AttrContext> switchEnv =
1230            env.dup(tree, env.info.dup(env.info.scope.dup()));
1231
1232        try {
1233
1234            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1235            boolean stringSwitch = false;
1236            if (types.isSameType(seltype, syms.stringType)) {
1237                if (allowStringsInSwitch) {
1238                    stringSwitch = true;
1239                } else {
1240                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1241                }
1242            }
1243            if (!enumSwitch && !stringSwitch)
1244                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1245
1246            // Attribute all cases and
1247            // check that there are no duplicate case labels or default clauses.
1248            Set<Object> labels = new HashSet<>(); // The set of case labels.
1249            boolean hasDefault = false;      // Is there a default label?
1250            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1251                JCCase c = l.head;
1252                if (c.pat != null) {
1253                    if (enumSwitch) {
1254                        Symbol sym = enumConstant(c.pat, seltype);
1255                        if (sym == null) {
1256                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1257                        } else if (!labels.add(sym)) {
1258                            log.error(c.pos(), "duplicate.case.label");
1259                        }
1260                    } else {
1261                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1262                        if (!pattype.hasTag(ERROR)) {
1263                            if (pattype.constValue() == null) {
1264                                log.error(c.pat.pos(),
1265                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1266                            } else if (!labels.add(pattype.constValue())) {
1267                                log.error(c.pos(), "duplicate.case.label");
1268                            }
1269                        }
1270                    }
1271                } else if (hasDefault) {
1272                    log.error(c.pos(), "duplicate.default.label");
1273                } else {
1274                    hasDefault = true;
1275                }
1276                Env<AttrContext> caseEnv =
1277                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1278                try {
1279                    attribStats(c.stats, caseEnv);
1280                } finally {
1281                    caseEnv.info.scope.leave();
1282                    addVars(c.stats, switchEnv.info.scope);
1283                }
1284            }
1285
1286            result = null;
1287        }
1288        finally {
1289            switchEnv.info.scope.leave();
1290        }
1291    }
1292    // where
1293        /** Add any variables defined in stats to the switch scope. */
1294        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1295            for (;stats.nonEmpty(); stats = stats.tail) {
1296                JCTree stat = stats.head;
1297                if (stat.hasTag(VARDEF))
1298                    switchScope.enter(((JCVariableDecl) stat).sym);
1299            }
1300        }
1301    // where
1302    /** Return the selected enumeration constant symbol, or null. */
1303    private Symbol enumConstant(JCTree tree, Type enumType) {
1304        if (tree.hasTag(IDENT)) {
1305            JCIdent ident = (JCIdent)tree;
1306            Name name = ident.name;
1307            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1308                if (sym.kind == VAR) {
1309                    Symbol s = ident.sym = sym;
1310                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1311                    ident.type = s.type;
1312                    return ((s.flags_field & Flags.ENUM) == 0)
1313                        ? null : s;
1314                }
1315            }
1316        }
1317        return null;
1318    }
1319
1320    public void visitSynchronized(JCSynchronized tree) {
1321        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1322        attribStat(tree.body, env);
1323        result = null;
1324    }
1325
1326    public void visitTry(JCTry tree) {
1327        // Create a new local environment with a local
1328        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1329        try {
1330            boolean isTryWithResource = tree.resources.nonEmpty();
1331            // Create a nested environment for attributing the try block if needed
1332            Env<AttrContext> tryEnv = isTryWithResource ?
1333                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1334                localEnv;
1335            try {
1336                // Attribute resource declarations
1337                for (JCTree resource : tree.resources) {
1338                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1339                        @Override
1340                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1341                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1342                        }
1343                    };
1344                    ResultInfo twrResult =
1345                        new ResultInfo(KindSelector.VAR,
1346                                       syms.autoCloseableType,
1347                                       twrContext);
1348                    if (resource.hasTag(VARDEF)) {
1349                        attribStat(resource, tryEnv);
1350                        twrResult.check(resource, resource.type);
1351
1352                        //check that resource type cannot throw InterruptedException
1353                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1354
1355                        VarSymbol var = ((JCVariableDecl) resource).sym;
1356                        var.setData(ElementKind.RESOURCE_VARIABLE);
1357                    } else {
1358                        attribTree(resource, tryEnv, twrResult);
1359                    }
1360                }
1361                // Attribute body
1362                attribStat(tree.body, tryEnv);
1363            } finally {
1364                if (isTryWithResource)
1365                    tryEnv.info.scope.leave();
1366            }
1367
1368            // Attribute catch clauses
1369            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1370                JCCatch c = l.head;
1371                Env<AttrContext> catchEnv =
1372                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1373                try {
1374                    Type ctype = attribStat(c.param, catchEnv);
1375                    if (TreeInfo.isMultiCatch(c)) {
1376                        //multi-catch parameter is implicitly marked as final
1377                        c.param.sym.flags_field |= FINAL | UNION;
1378                    }
1379                    if (c.param.sym.kind == VAR) {
1380                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1381                    }
1382                    chk.checkType(c.param.vartype.pos(),
1383                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1384                                  syms.throwableType);
1385                    attribStat(c.body, catchEnv);
1386                } finally {
1387                    catchEnv.info.scope.leave();
1388                }
1389            }
1390
1391            // Attribute finalizer
1392            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1393            result = null;
1394        }
1395        finally {
1396            localEnv.info.scope.leave();
1397        }
1398    }
1399
1400    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1401        if (!resource.isErroneous() &&
1402            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1403            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1404            Symbol close = syms.noSymbol;
1405            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1406            try {
1407                close = rs.resolveQualifiedMethod(pos,
1408                        env,
1409                        resource,
1410                        names.close,
1411                        List.<Type>nil(),
1412                        List.<Type>nil());
1413            }
1414            finally {
1415                log.popDiagnosticHandler(discardHandler);
1416            }
1417            if (close.kind == MTH &&
1418                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1419                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1420                    env.info.lint.isEnabled(LintCategory.TRY)) {
1421                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1422            }
1423        }
1424    }
1425
1426    public void visitConditional(JCConditional tree) {
1427        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1428
1429        tree.polyKind = (!allowPoly ||
1430                pt().hasTag(NONE) && pt() != Type.recoveryType ||
1431                isBooleanOrNumeric(env, tree)) ?
1432                PolyKind.STANDALONE : PolyKind.POLY;
1433
1434        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1435            //cannot get here (i.e. it means we are returning from void method - which is already an error)
1436            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1437            result = tree.type = types.createErrorType(resultInfo.pt);
1438            return;
1439        }
1440
1441        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1442                unknownExprInfo :
1443                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1444                    //this will use enclosing check context to check compatibility of
1445                    //subexpression against target type; if we are in a method check context,
1446                    //depending on whether boxing is allowed, we could have incompatibilities
1447                    @Override
1448                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
1449                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1450                    }
1451                });
1452
1453        Type truetype = attribTree(tree.truepart, env, condInfo);
1454        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1455
1456        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1457        if (condtype.constValue() != null &&
1458                truetype.constValue() != null &&
1459                falsetype.constValue() != null &&
1460                !owntype.hasTag(NONE)) {
1461            //constant folding
1462            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1463        }
1464        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1465    }
1466    //where
1467        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1468            switch (tree.getTag()) {
1469                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1470                              ((JCLiteral)tree).typetag == BOOLEAN ||
1471                              ((JCLiteral)tree).typetag == BOT;
1472                case LAMBDA: case REFERENCE: return false;
1473                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1474                case CONDEXPR:
1475                    JCConditional condTree = (JCConditional)tree;
1476                    return isBooleanOrNumeric(env, condTree.truepart) &&
1477                            isBooleanOrNumeric(env, condTree.falsepart);
1478                case APPLY:
1479                    JCMethodInvocation speculativeMethodTree =
1480                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1481                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1482                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1483                            env.enclClass.type :
1484                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1485                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1486                    return primitiveOrBoxed(owntype);
1487                case NEWCLASS:
1488                    JCExpression className =
1489                            removeClassParams.translate(((JCNewClass)tree).clazz);
1490                    JCExpression speculativeNewClassTree =
1491                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1492                    return primitiveOrBoxed(speculativeNewClassTree.type);
1493                default:
1494                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1495                    return primitiveOrBoxed(speculativeType);
1496            }
1497        }
1498        //where
1499            boolean primitiveOrBoxed(Type t) {
1500                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1501            }
1502
1503            TreeTranslator removeClassParams = new TreeTranslator() {
1504                @Override
1505                public void visitTypeApply(JCTypeApply tree) {
1506                    result = translate(tree.clazz);
1507                }
1508            };
1509
1510        /** Compute the type of a conditional expression, after
1511         *  checking that it exists.  See JLS 15.25. Does not take into
1512         *  account the special case where condition and both arms
1513         *  are constants.
1514         *
1515         *  @param pos      The source position to be used for error
1516         *                  diagnostics.
1517         *  @param thentype The type of the expression's then-part.
1518         *  @param elsetype The type of the expression's else-part.
1519         */
1520        Type condType(DiagnosticPosition pos,
1521                               Type thentype, Type elsetype) {
1522            // If same type, that is the result
1523            if (types.isSameType(thentype, elsetype))
1524                return thentype.baseType();
1525
1526            Type thenUnboxed = (thentype.isPrimitive())
1527                ? thentype : types.unboxedType(thentype);
1528            Type elseUnboxed = (elsetype.isPrimitive())
1529                ? elsetype : types.unboxedType(elsetype);
1530
1531            // Otherwise, if both arms can be converted to a numeric
1532            // type, return the least numeric type that fits both arms
1533            // (i.e. return larger of the two, or return int if one
1534            // arm is short, the other is char).
1535            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1536                // If one arm has an integer subrange type (i.e., byte,
1537                // short, or char), and the other is an integer constant
1538                // that fits into the subrange, return the subrange type.
1539                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1540                    elseUnboxed.hasTag(INT) &&
1541                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1542                    return thenUnboxed.baseType();
1543                }
1544                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1545                    thenUnboxed.hasTag(INT) &&
1546                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1547                    return elseUnboxed.baseType();
1548                }
1549
1550                for (TypeTag tag : primitiveTags) {
1551                    Type candidate = syms.typeOfTag[tag.ordinal()];
1552                    if (types.isSubtype(thenUnboxed, candidate) &&
1553                        types.isSubtype(elseUnboxed, candidate)) {
1554                        return candidate;
1555                    }
1556                }
1557            }
1558
1559            // Those were all the cases that could result in a primitive
1560            if (thentype.isPrimitive())
1561                thentype = types.boxedClass(thentype).type;
1562            if (elsetype.isPrimitive())
1563                elsetype = types.boxedClass(elsetype).type;
1564
1565            if (types.isSubtype(thentype, elsetype))
1566                return elsetype.baseType();
1567            if (types.isSubtype(elsetype, thentype))
1568                return thentype.baseType();
1569
1570            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1571                log.error(pos, "neither.conditional.subtype",
1572                          thentype, elsetype);
1573                return thentype.baseType();
1574            }
1575
1576            // both are known to be reference types.  The result is
1577            // lub(thentype,elsetype). This cannot fail, as it will
1578            // always be possible to infer "Object" if nothing better.
1579            return types.lub(thentype.baseType(), elsetype.baseType());
1580        }
1581
1582    final static TypeTag[] primitiveTags = new TypeTag[]{
1583        BYTE,
1584        CHAR,
1585        SHORT,
1586        INT,
1587        LONG,
1588        FLOAT,
1589        DOUBLE,
1590        BOOLEAN,
1591    };
1592
1593    public void visitIf(JCIf tree) {
1594        attribExpr(tree.cond, env, syms.booleanType);
1595        attribStat(tree.thenpart, env);
1596        if (tree.elsepart != null)
1597            attribStat(tree.elsepart, env);
1598        chk.checkEmptyIf(tree);
1599        result = null;
1600    }
1601
1602    public void visitExec(JCExpressionStatement tree) {
1603        //a fresh environment is required for 292 inference to work properly ---
1604        //see Infer.instantiatePolymorphicSignatureInstance()
1605        Env<AttrContext> localEnv = env.dup(tree);
1606        attribExpr(tree.expr, localEnv);
1607        result = null;
1608    }
1609
1610    public void visitBreak(JCBreak tree) {
1611        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1612        result = null;
1613    }
1614
1615    public void visitContinue(JCContinue tree) {
1616        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1617        result = null;
1618    }
1619    //where
1620        /** Return the target of a break or continue statement, if it exists,
1621         *  report an error if not.
1622         *  Note: The target of a labelled break or continue is the
1623         *  (non-labelled) statement tree referred to by the label,
1624         *  not the tree representing the labelled statement itself.
1625         *
1626         *  @param pos     The position to be used for error diagnostics
1627         *  @param tag     The tag of the jump statement. This is either
1628         *                 Tree.BREAK or Tree.CONTINUE.
1629         *  @param label   The label of the jump statement, or null if no
1630         *                 label is given.
1631         *  @param env     The environment current at the jump statement.
1632         */
1633        private JCTree findJumpTarget(DiagnosticPosition pos,
1634                                    JCTree.Tag tag,
1635                                    Name label,
1636                                    Env<AttrContext> env) {
1637            // Search environments outwards from the point of jump.
1638            Env<AttrContext> env1 = env;
1639            LOOP:
1640            while (env1 != null) {
1641                switch (env1.tree.getTag()) {
1642                    case LABELLED:
1643                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1644                        if (label == labelled.label) {
1645                            // If jump is a continue, check that target is a loop.
1646                            if (tag == CONTINUE) {
1647                                if (!labelled.body.hasTag(DOLOOP) &&
1648                                        !labelled.body.hasTag(WHILELOOP) &&
1649                                        !labelled.body.hasTag(FORLOOP) &&
1650                                        !labelled.body.hasTag(FOREACHLOOP))
1651                                    log.error(pos, "not.loop.label", label);
1652                                // Found labelled statement target, now go inwards
1653                                // to next non-labelled tree.
1654                                return TreeInfo.referencedStatement(labelled);
1655                            } else {
1656                                return labelled;
1657                            }
1658                        }
1659                        break;
1660                    case DOLOOP:
1661                    case WHILELOOP:
1662                    case FORLOOP:
1663                    case FOREACHLOOP:
1664                        if (label == null) return env1.tree;
1665                        break;
1666                    case SWITCH:
1667                        if (label == null && tag == BREAK) return env1.tree;
1668                        break;
1669                    case LAMBDA:
1670                    case METHODDEF:
1671                    case CLASSDEF:
1672                        break LOOP;
1673                    default:
1674                }
1675                env1 = env1.next;
1676            }
1677            if (label != null)
1678                log.error(pos, "undef.label", label);
1679            else if (tag == CONTINUE)
1680                log.error(pos, "cont.outside.loop");
1681            else
1682                log.error(pos, "break.outside.switch.loop");
1683            return null;
1684        }
1685
1686    public void visitReturn(JCReturn tree) {
1687        // Check that there is an enclosing method which is
1688        // nested within than the enclosing class.
1689        if (env.info.returnResult == null) {
1690            log.error(tree.pos(), "ret.outside.meth");
1691        } else {
1692            // Attribute return expression, if it exists, and check that
1693            // it conforms to result type of enclosing method.
1694            if (tree.expr != null) {
1695                if (env.info.returnResult.pt.hasTag(VOID)) {
1696                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1697                              diags.fragment("unexpected.ret.val"));
1698                }
1699                attribTree(tree.expr, env, env.info.returnResult);
1700            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1701                    !env.info.returnResult.pt.hasTag(NONE)) {
1702                env.info.returnResult.checkContext.report(tree.pos(),
1703                              diags.fragment("missing.ret.val"));
1704            }
1705        }
1706        result = null;
1707    }
1708
1709    public void visitThrow(JCThrow tree) {
1710        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1711        if (allowPoly) {
1712            chk.checkType(tree, owntype, syms.throwableType);
1713        }
1714        result = null;
1715    }
1716
1717    public void visitAssert(JCAssert tree) {
1718        attribExpr(tree.cond, env, syms.booleanType);
1719        if (tree.detail != null) {
1720            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1721        }
1722        result = null;
1723    }
1724
1725     /** Visitor method for method invocations.
1726     *  NOTE: The method part of an application will have in its type field
1727     *        the return type of the method, not the method's type itself!
1728     */
1729    public void visitApply(JCMethodInvocation tree) {
1730        // The local environment of a method application is
1731        // a new environment nested in the current one.
1732        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1733
1734        // The types of the actual method arguments.
1735        List<Type> argtypes;
1736
1737        // The types of the actual method type arguments.
1738        List<Type> typeargtypes = null;
1739
1740        Name methName = TreeInfo.name(tree.meth);
1741
1742        boolean isConstructorCall =
1743            methName == names._this || methName == names._super;
1744
1745        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1746        if (isConstructorCall) {
1747            // We are seeing a ...this(...) or ...super(...) call.
1748            // Check that this is the first statement in a constructor.
1749            if (checkFirstConstructorStat(tree, env)) {
1750
1751                // Record the fact
1752                // that this is a constructor call (using isSelfCall).
1753                localEnv.info.isSelfCall = true;
1754
1755                // Attribute arguments, yielding list of argument types.
1756                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1757                argtypes = argtypesBuf.toList();
1758                typeargtypes = attribTypes(tree.typeargs, localEnv);
1759
1760                // Variable `site' points to the class in which the called
1761                // constructor is defined.
1762                Type site = env.enclClass.sym.type;
1763                if (methName == names._super) {
1764                    if (site == syms.objectType) {
1765                        log.error(tree.meth.pos(), "no.superclass", site);
1766                        site = types.createErrorType(syms.objectType);
1767                    } else {
1768                        site = types.supertype(site);
1769                    }
1770                }
1771
1772                if (site.hasTag(CLASS)) {
1773                    Type encl = site.getEnclosingType();
1774                    while (encl != null && encl.hasTag(TYPEVAR))
1775                        encl = encl.getUpperBound();
1776                    if (encl.hasTag(CLASS)) {
1777                        // we are calling a nested class
1778
1779                        if (tree.meth.hasTag(SELECT)) {
1780                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1781
1782                            // We are seeing a prefixed call, of the form
1783                            //     <expr>.super(...).
1784                            // Check that the prefix expression conforms
1785                            // to the outer instance type of the class.
1786                            chk.checkRefType(qualifier.pos(),
1787                                             attribExpr(qualifier, localEnv,
1788                                                        encl));
1789                        } else if (methName == names._super) {
1790                            // qualifier omitted; check for existence
1791                            // of an appropriate implicit qualifier.
1792                            rs.resolveImplicitThis(tree.meth.pos(),
1793                                                   localEnv, site, true);
1794                        }
1795                    } else if (tree.meth.hasTag(SELECT)) {
1796                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1797                                  site.tsym);
1798                    }
1799
1800                    // if we're calling a java.lang.Enum constructor,
1801                    // prefix the implicit String and int parameters
1802                    if (site.tsym == syms.enumSym)
1803                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1804
1805                    // Resolve the called constructor under the assumption
1806                    // that we are referring to a superclass instance of the
1807                    // current instance (JLS ???).
1808                    boolean selectSuperPrev = localEnv.info.selectSuper;
1809                    localEnv.info.selectSuper = true;
1810                    localEnv.info.pendingResolutionPhase = null;
1811                    Symbol sym = rs.resolveConstructor(
1812                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1813                    localEnv.info.selectSuper = selectSuperPrev;
1814
1815                    // Set method symbol to resolved constructor...
1816                    TreeInfo.setSymbol(tree.meth, sym);
1817
1818                    // ...and check that it is legal in the current context.
1819                    // (this will also set the tree's type)
1820                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1821                    checkId(tree.meth, site, sym, localEnv,
1822                            new ResultInfo(kind, mpt));
1823                }
1824                // Otherwise, `site' is an error type and we do nothing
1825            }
1826            result = tree.type = syms.voidType;
1827        } else {
1828            // Otherwise, we are seeing a regular method call.
1829            // Attribute the arguments, yielding list of argument types, ...
1830            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1831            argtypes = argtypesBuf.toList();
1832            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1833
1834            // ... and attribute the method using as a prototype a methodtype
1835            // whose formal argument types is exactly the list of actual
1836            // arguments (this will also set the method symbol).
1837            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1838            localEnv.info.pendingResolutionPhase = null;
1839            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1840
1841            // Compute the result type.
1842            Type restype = mtype.getReturnType();
1843            if (restype.hasTag(WILDCARD))
1844                throw new AssertionError(mtype);
1845
1846            Type qualifier = (tree.meth.hasTag(SELECT))
1847                    ? ((JCFieldAccess) tree.meth).selected.type
1848                    : env.enclClass.sym.type;
1849            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1850
1851            chk.checkRefTypes(tree.typeargs, typeargtypes);
1852
1853            // Check that value of resulting type is admissible in the
1854            // current context.  Also, capture the return type
1855            result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1856        }
1857        chk.validate(tree.typeargs, localEnv);
1858    }
1859    //where
1860        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1861            if (methodName == names.clone && types.isArray(qualifierType)) {
1862                // as a special case, array.clone() has a result that is
1863                // the same as static type of the array being cloned
1864                return qualifierType;
1865            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1866                // as a special case, x.getClass() has type Class<? extends |X|>
1867                return new ClassType(restype.getEnclosingType(),
1868                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1869                                                               BoundKind.EXTENDS,
1870                                                             syms.boundClass)),
1871                                     restype.tsym,
1872                                     restype.getMetadata());
1873            } else {
1874                return restype;
1875            }
1876        }
1877
1878        /** Check that given application node appears as first statement
1879         *  in a constructor call.
1880         *  @param tree   The application node
1881         *  @param env    The environment current at the application.
1882         */
1883        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1884            JCMethodDecl enclMethod = env.enclMethod;
1885            if (enclMethod != null && enclMethod.name == names.init) {
1886                JCBlock body = enclMethod.body;
1887                if (body.stats.head.hasTag(EXEC) &&
1888                    ((JCExpressionStatement) body.stats.head).expr == tree)
1889                    return true;
1890            }
1891            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1892                      TreeInfo.name(tree.meth));
1893            return false;
1894        }
1895
1896        /** Obtain a method type with given argument types.
1897         */
1898        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1899            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1900            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1901        }
1902
1903    public void visitNewClass(final JCNewClass tree) {
1904        Type owntype = types.createErrorType(tree.type);
1905
1906        // The local environment of a class creation is
1907        // a new environment nested in the current one.
1908        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1909
1910        // The anonymous inner class definition of the new expression,
1911        // if one is defined by it.
1912        JCClassDecl cdef = tree.def;
1913
1914        // If enclosing class is given, attribute it, and
1915        // complete class name to be fully qualified
1916        JCExpression clazz = tree.clazz; // Class field following new
1917        JCExpression clazzid;            // Identifier in class field
1918        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1919        annoclazzid = null;
1920
1921        if (clazz.hasTag(TYPEAPPLY)) {
1922            clazzid = ((JCTypeApply) clazz).clazz;
1923            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1924                annoclazzid = (JCAnnotatedType) clazzid;
1925                clazzid = annoclazzid.underlyingType;
1926            }
1927        } else {
1928            if (clazz.hasTag(ANNOTATED_TYPE)) {
1929                annoclazzid = (JCAnnotatedType) clazz;
1930                clazzid = annoclazzid.underlyingType;
1931            } else {
1932                clazzid = clazz;
1933            }
1934        }
1935
1936        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1937
1938        if (tree.encl != null) {
1939            // We are seeing a qualified new, of the form
1940            //    <expr>.new C <...> (...) ...
1941            // In this case, we let clazz stand for the name of the
1942            // allocated class C prefixed with the type of the qualifier
1943            // expression, so that we can
1944            // resolve it with standard techniques later. I.e., if
1945            // <expr> has type T, then <expr>.new C <...> (...)
1946            // yields a clazz T.C.
1947            Type encltype = chk.checkRefType(tree.encl.pos(),
1948                                             attribExpr(tree.encl, env));
1949            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1950            // from expr to the combined type, or not? Yes, do this.
1951            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1952                                                 ((JCIdent) clazzid).name);
1953
1954            EndPosTable endPosTable = this.env.toplevel.endPositions;
1955            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1956            if (clazz.hasTag(ANNOTATED_TYPE)) {
1957                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1958                List<JCAnnotation> annos = annoType.annotations;
1959
1960                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1961                    clazzid1 = make.at(tree.pos).
1962                        TypeApply(clazzid1,
1963                                  ((JCTypeApply) clazz).arguments);
1964                }
1965
1966                clazzid1 = make.at(tree.pos).
1967                    AnnotatedType(annos, clazzid1);
1968            } else if (clazz.hasTag(TYPEAPPLY)) {
1969                clazzid1 = make.at(tree.pos).
1970                    TypeApply(clazzid1,
1971                              ((JCTypeApply) clazz).arguments);
1972            }
1973
1974            clazz = clazzid1;
1975        }
1976
1977        // Attribute clazz expression and store
1978        // symbol + type back into the attributed tree.
1979        Type clazztype;
1980
1981        try {
1982            env.info.isNewClass = true;
1983            clazztype = TreeInfo.isEnumInit(env.tree) ?
1984                attribIdentAsEnumType(env, (JCIdent)clazz) :
1985                attribType(clazz, env);
1986        } finally {
1987            env.info.isNewClass = false;
1988        }
1989
1990        clazztype = chk.checkDiamond(tree, clazztype);
1991        chk.validate(clazz, localEnv);
1992        if (tree.encl != null) {
1993            // We have to work in this case to store
1994            // symbol + type back into the attributed tree.
1995            tree.clazz.type = clazztype;
1996            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1997            clazzid.type = ((JCIdent) clazzid).sym.type;
1998            if (annoclazzid != null) {
1999                annoclazzid.type = clazzid.type;
2000            }
2001            if (!clazztype.isErroneous()) {
2002                if (cdef != null && clazztype.tsym.isInterface()) {
2003                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2004                } else if (clazztype.tsym.isStatic()) {
2005                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2006                }
2007            }
2008        } else if (!clazztype.tsym.isInterface() &&
2009                   clazztype.getEnclosingType().hasTag(CLASS)) {
2010            // Check for the existence of an apropos outer instance
2011            rs.resolveImplicitThis(tree.pos(), env, clazztype);
2012        }
2013
2014        // Attribute constructor arguments.
2015        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2016        final KindSelector pkind =
2017            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2018        List<Type> argtypes = argtypesBuf.toList();
2019        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2020
2021        // If we have made no mistakes in the class type...
2022        if (clazztype.hasTag(CLASS)) {
2023            // Enums may not be instantiated except implicitly
2024            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2025                (!env.tree.hasTag(VARDEF) ||
2026                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2027                 ((JCVariableDecl) env.tree).init != tree))
2028                log.error(tree.pos(), "enum.cant.be.instantiated");
2029
2030            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2031                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2032            boolean skipNonDiamondPath = false;
2033            // Check that class is not abstract
2034            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2035                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2036                log.error(tree.pos(), "abstract.cant.be.instantiated",
2037                          clazztype.tsym);
2038                skipNonDiamondPath = true;
2039            } else if (cdef != null && clazztype.tsym.isInterface()) {
2040                // Check that no constructor arguments are given to
2041                // anonymous classes implementing an interface
2042                if (!argtypes.isEmpty())
2043                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2044
2045                if (!typeargtypes.isEmpty())
2046                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2047
2048                // Error recovery: pretend no arguments were supplied.
2049                argtypes = List.nil();
2050                typeargtypes = List.nil();
2051                skipNonDiamondPath = true;
2052            }
2053            if (TreeInfo.isDiamond(tree)) {
2054                ClassType site = new ClassType(clazztype.getEnclosingType(),
2055                            clazztype.tsym.type.getTypeArguments(),
2056                                               clazztype.tsym,
2057                                               clazztype.getMetadata());
2058
2059                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2060                diamondEnv.info.selectSuper = cdef != null;
2061                diamondEnv.info.pendingResolutionPhase = null;
2062
2063                //if the type of the instance creation expression is a class type
2064                //apply method resolution inference (JLS 15.12.2.7). The return type
2065                //of the resolved constructor will be a partially instantiated type
2066                Symbol constructor = rs.resolveDiamond(tree.pos(),
2067                            diamondEnv,
2068                            site,
2069                            argtypes,
2070                            typeargtypes);
2071                tree.constructor = constructor.baseSymbol();
2072
2073                final TypeSymbol csym = clazztype.tsym;
2074                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2075                    @Override
2076                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2077                        enclosingContext.report(tree.clazz,
2078                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2079                    }
2080                }, CheckMode.NO_TREE_UPDATE);
2081                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2082                constructorType = checkId(tree, site,
2083                        constructor,
2084                        diamondEnv,
2085                        diamondResult);
2086
2087                tree.clazz.type = types.createErrorType(clazztype);
2088                if (!constructorType.isErroneous()) {
2089                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2090                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2091                }
2092                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2093            }
2094
2095            // Resolve the called constructor under the assumption
2096            // that we are referring to a superclass instance of the
2097            // current instance (JLS ???).
2098            else if (!skipNonDiamondPath) {
2099                //the following code alters some of the fields in the current
2100                //AttrContext - hence, the current context must be dup'ed in
2101                //order to avoid downstream failures
2102                Env<AttrContext> rsEnv = localEnv.dup(tree);
2103                rsEnv.info.selectSuper = cdef != null;
2104                rsEnv.info.pendingResolutionPhase = null;
2105                tree.constructor = rs.resolveConstructor(
2106                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2107                if (cdef == null) { //do not check twice!
2108                    tree.constructorType = checkId(tree,
2109                            clazztype,
2110                            tree.constructor,
2111                            rsEnv,
2112                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2113                    if (rsEnv.info.lastResolveVarargs())
2114                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2115                }
2116            }
2117
2118            if (cdef != null) {
2119                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2120                return;
2121            }
2122
2123            if (tree.constructor != null && tree.constructor.kind == MTH)
2124                owntype = clazztype;
2125        }
2126        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2127        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2128        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2129            //we need to wait for inference to finish and then replace inference vars in the constructor type
2130            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2131                    instantiatedContext -> {
2132                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2133                    });
2134        }
2135        chk.validate(tree.typeargs, localEnv);
2136    }
2137
2138        // where
2139        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2140                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2141                                                   List<Type> argtypes, List<Type> typeargtypes,
2142                                                   KindSelector pkind) {
2143            // We are seeing an anonymous class instance creation.
2144            // In this case, the class instance creation
2145            // expression
2146            //
2147            //    E.new <typeargs1>C<typargs2>(args) { ... }
2148            //
2149            // is represented internally as
2150            //
2151            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2152            //
2153            // This expression is then *transformed* as follows:
2154            //
2155            // (1) add an extends or implements clause
2156            // (2) add a constructor.
2157            //
2158            // For instance, if C is a class, and ET is the type of E,
2159            // the expression
2160            //
2161            //    E.new <typeargs1>C<typargs2>(args) { ... }
2162            //
2163            // is translated to (where X is a fresh name and typarams is the
2164            // parameter list of the super constructor):
2165            //
2166            //   new <typeargs1>X(<*nullchk*>E, args) where
2167            //     X extends C<typargs2> {
2168            //       <typarams> X(ET e, args) {
2169            //         e.<typeargs1>super(args)
2170            //       }
2171            //       ...
2172            //     }
2173            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2174            final boolean isDiamond = TreeInfo.isDiamond(tree);
2175            if (isDiamond
2176                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2177                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2178                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2179                        instantiatedContext -> {
2180                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2181                            clazz.type = instantiatedContext.asInstType(clazz.type);
2182                            visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, localEnv, argtypes, typeargtypes, pkind);
2183                        });
2184            } else {
2185                if (isDiamond && clazztype.hasTag(CLASS)) {
2186                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2187                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2188                        // One or more types inferred in the previous steps is non-denotable.
2189                        Fragment fragment = Diamond(clazztype.tsym);
2190                        log.error(tree.clazz.pos(),
2191                                Errors.CantApplyDiamond1(
2192                                        fragment,
2193                                        invalidDiamondArgs.size() > 1 ?
2194                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2195                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2196                    }
2197                    // For <>(){}, inferred types must also be accessible.
2198                    for (Type t : clazztype.getTypeArguments()) {
2199                        rs.checkAccessibleType(env, t);
2200                    }
2201                }
2202
2203                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2204                // false for isInterface call even when the original type is an interface.
2205                boolean implementing = clazztype.tsym.isInterface() ||
2206                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2207
2208                if (implementing) {
2209                    cdef.implementing = List.of(clazz);
2210                } else {
2211                    cdef.extending = clazz;
2212                }
2213
2214                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2215                    isSerializable(clazztype)) {
2216                    localEnv.info.isSerializable = true;
2217                }
2218
2219                attribStat(cdef, localEnv);
2220
2221                List<Type> finalargtypes;
2222                // If an outer instance is given,
2223                // prefix it to the constructor arguments
2224                // and delete it from the new expression
2225                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2226                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2227                    finalargtypes = argtypes.prepend(tree.encl.type);
2228                    tree.encl = null;
2229                } else {
2230                    finalargtypes = argtypes;
2231                }
2232
2233                // Reassign clazztype and recompute constructor. As this necessarily involves
2234                // another attribution pass for deferred types in the case of <>, replicate
2235                // them. Original arguments have right decorations already.
2236                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2237                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2238                }
2239
2240                clazztype = cdef.sym.type;
2241                Symbol sym = tree.constructor = rs.resolveConstructor(
2242                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2243                Assert.check(!sym.kind.isResolutionError());
2244                tree.constructor = sym;
2245                tree.constructorType = checkId(tree,
2246                        clazztype,
2247                        tree.constructor,
2248                        localEnv,
2249                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2250            }
2251            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2252                                clazztype : types.createErrorType(tree.type);
2253            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2254            chk.validate(tree.typeargs, localEnv);
2255        }
2256
2257    /** Make an attributed null check tree.
2258     */
2259    public JCExpression makeNullCheck(JCExpression arg) {
2260        // optimization: X.this is never null; skip null check
2261        Name name = TreeInfo.name(arg);
2262        if (name == names._this || name == names._super) return arg;
2263
2264        JCTree.Tag optag = NULLCHK;
2265        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2266        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2267        tree.type = arg.type;
2268        return tree;
2269    }
2270
2271    public void visitNewArray(JCNewArray tree) {
2272        Type owntype = types.createErrorType(tree.type);
2273        Env<AttrContext> localEnv = env.dup(tree);
2274        Type elemtype;
2275        if (tree.elemtype != null) {
2276            elemtype = attribType(tree.elemtype, localEnv);
2277            chk.validate(tree.elemtype, localEnv);
2278            owntype = elemtype;
2279            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2280                attribExpr(l.head, localEnv, syms.intType);
2281                owntype = new ArrayType(owntype, syms.arrayClass);
2282            }
2283        } else {
2284            // we are seeing an untyped aggregate { ... }
2285            // this is allowed only if the prototype is an array
2286            if (pt().hasTag(ARRAY)) {
2287                elemtype = types.elemtype(pt());
2288            } else {
2289                if (!pt().hasTag(ERROR)) {
2290                    log.error(tree.pos(), "illegal.initializer.for.type",
2291                              pt());
2292                }
2293                elemtype = types.createErrorType(pt());
2294            }
2295        }
2296        if (tree.elems != null) {
2297            attribExprs(tree.elems, localEnv, elemtype);
2298            owntype = new ArrayType(elemtype, syms.arrayClass);
2299        }
2300        if (!types.isReifiable(elemtype))
2301            log.error(tree.pos(), "generic.array.creation");
2302        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2303    }
2304
2305    /*
2306     * A lambda expression can only be attributed when a target-type is available.
2307     * In addition, if the target-type is that of a functional interface whose
2308     * descriptor contains inference variables in argument position the lambda expression
2309     * is 'stuck' (see DeferredAttr).
2310     */
2311    @Override
2312    public void visitLambda(final JCLambda that) {
2313        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2314            if (pt().hasTag(NONE)) {
2315                //lambda only allowed in assignment or method invocation/cast context
2316                log.error(that.pos(), "unexpected.lambda");
2317            }
2318            result = that.type = types.createErrorType(pt());
2319            return;
2320        }
2321        //create an environment for attribution of the lambda expression
2322        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2323        boolean needsRecovery =
2324                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2325        try {
2326            Type currentTarget = pt();
2327            if (needsRecovery && isSerializable(currentTarget)) {
2328                localEnv.info.isSerializable = true;
2329            }
2330            List<Type> explicitParamTypes = null;
2331            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2332                //attribute lambda parameters
2333                attribStats(that.params, localEnv);
2334                explicitParamTypes = TreeInfo.types(that.params);
2335            }
2336
2337            Type lambdaType;
2338            if (pt() != Type.recoveryType) {
2339                /* We need to adjust the target. If the target is an
2340                 * intersection type, for example: SAM & I1 & I2 ...
2341                 * the target will be updated to SAM
2342                 */
2343                currentTarget = targetChecker.visit(currentTarget, that);
2344                if (explicitParamTypes != null) {
2345                    currentTarget = infer.instantiateFunctionalInterface(that,
2346                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2347                }
2348                currentTarget = types.removeWildcards(currentTarget);
2349                lambdaType = types.findDescriptorType(currentTarget);
2350            } else {
2351                currentTarget = Type.recoveryType;
2352                lambdaType = fallbackDescriptorType(that);
2353            }
2354
2355            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2356
2357            if (lambdaType.hasTag(FORALL)) {
2358                //lambda expression target desc cannot be a generic method
2359                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2360                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2361                result = that.type = types.createErrorType(pt());
2362                return;
2363            }
2364
2365            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2366                //add param type info in the AST
2367                List<Type> actuals = lambdaType.getParameterTypes();
2368                List<JCVariableDecl> params = that.params;
2369
2370                boolean arityMismatch = false;
2371
2372                while (params.nonEmpty()) {
2373                    if (actuals.isEmpty()) {
2374                        //not enough actuals to perform lambda parameter inference
2375                        arityMismatch = true;
2376                    }
2377                    //reset previously set info
2378                    Type argType = arityMismatch ?
2379                            syms.errType :
2380                            actuals.head;
2381                    params.head.vartype = make.at(params.head).Type(argType);
2382                    params.head.sym = null;
2383                    actuals = actuals.isEmpty() ?
2384                            actuals :
2385                            actuals.tail;
2386                    params = params.tail;
2387                }
2388
2389                //attribute lambda parameters
2390                attribStats(that.params, localEnv);
2391
2392                if (arityMismatch) {
2393                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2394                        result = that.type = types.createErrorType(currentTarget);
2395                        return;
2396                }
2397            }
2398
2399            //from this point on, no recovery is needed; if we are in assignment context
2400            //we will be able to attribute the whole lambda body, regardless of errors;
2401            //if we are in a 'check' method context, and the lambda is not compatible
2402            //with the target-type, it will be recovered anyway in Attr.checkId
2403            needsRecovery = false;
2404
2405            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2406                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2407                    new FunctionalReturnContext(resultInfo.checkContext);
2408
2409            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2410                recoveryInfo :
2411                new ResultInfo(KindSelector.VAL,
2412                               lambdaType.getReturnType(), funcContext);
2413            localEnv.info.returnResult = bodyResultInfo;
2414
2415            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2416                attribTree(that.getBody(), localEnv, bodyResultInfo);
2417            } else {
2418                JCBlock body = (JCBlock)that.body;
2419                attribStats(body.stats, localEnv);
2420            }
2421
2422            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2423
2424            boolean isSpeculativeRound =
2425                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2426
2427            preFlow(that);
2428            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2429
2430            that.type = currentTarget; //avoids recovery at this stage
2431            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2432
2433            if (!isSpeculativeRound) {
2434                //add thrown types as bounds to the thrown types free variables if needed:
2435                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2436                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2437                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2438
2439                    chk.unhandled(inferredThrownTypes, thrownTypes);
2440                }
2441
2442                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2443            }
2444            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2445        } catch (Types.FunctionDescriptorLookupError ex) {
2446            JCDiagnostic cause = ex.getDiagnostic();
2447            resultInfo.checkContext.report(that, cause);
2448            result = that.type = types.createErrorType(pt());
2449            return;
2450        } catch (Throwable t) {
2451            //when an unexpected exception happens, avoid attempts to attribute the same tree again
2452            //as that would likely cause the same exception again.
2453            needsRecovery = false;
2454            throw t;
2455        } finally {
2456            localEnv.info.scope.leave();
2457            if (needsRecovery) {
2458                attribTree(that, env, recoveryInfo);
2459            }
2460        }
2461    }
2462    //where
2463        void preFlow(JCLambda tree) {
2464            new PostAttrAnalyzer() {
2465                @Override
2466                public void scan(JCTree tree) {
2467                    if (tree == null ||
2468                            (tree.type != null &&
2469                            tree.type == Type.stuckType)) {
2470                        //don't touch stuck expressions!
2471                        return;
2472                    }
2473                    super.scan(tree);
2474                }
2475            }.scan(tree);
2476        }
2477
2478        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2479
2480            @Override
2481            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2482                return t.isIntersection() ?
2483                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2484            }
2485
2486            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2487                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2488                Type target = null;
2489                for (Type bound : ict.getExplicitComponents()) {
2490                    TypeSymbol boundSym = bound.tsym;
2491                    if (types.isFunctionalInterface(boundSym) &&
2492                            types.findDescriptorSymbol(boundSym) == desc) {
2493                        target = bound;
2494                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2495                        //bound must be an interface
2496                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2497                    }
2498                }
2499                return target != null ?
2500                        target :
2501                        ict.getExplicitComponents().head; //error recovery
2502            }
2503
2504            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2505                ListBuffer<Type> targs = new ListBuffer<>();
2506                ListBuffer<Type> supertypes = new ListBuffer<>();
2507                for (Type i : ict.interfaces_field) {
2508                    if (i.isParameterized()) {
2509                        targs.appendList(i.tsym.type.allparams());
2510                    }
2511                    supertypes.append(i.tsym.type);
2512                }
2513                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2514                notionalIntf.allparams_field = targs.toList();
2515                notionalIntf.tsym.flags_field |= INTERFACE;
2516                return notionalIntf.tsym;
2517            }
2518
2519            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2520                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2521                        diags.fragment(key, args)));
2522            }
2523        };
2524
2525        private Type fallbackDescriptorType(JCExpression tree) {
2526            switch (tree.getTag()) {
2527                case LAMBDA:
2528                    JCLambda lambda = (JCLambda)tree;
2529                    List<Type> argtypes = List.nil();
2530                    for (JCVariableDecl param : lambda.params) {
2531                        argtypes = param.vartype != null ?
2532                                argtypes.append(param.vartype.type) :
2533                                argtypes.append(syms.errType);
2534                    }
2535                    return new MethodType(argtypes, Type.recoveryType,
2536                            List.of(syms.throwableType), syms.methodClass);
2537                case REFERENCE:
2538                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2539                            List.of(syms.throwableType), syms.methodClass);
2540                default:
2541                    Assert.error("Cannot get here!");
2542            }
2543            return null;
2544        }
2545
2546        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2547                final InferenceContext inferenceContext, final Type... ts) {
2548            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2549        }
2550
2551        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2552                final InferenceContext inferenceContext, final List<Type> ts) {
2553            if (inferenceContext.free(ts)) {
2554                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2555                    @Override
2556                    public void typesInferred(InferenceContext inferenceContext) {
2557                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2558                    }
2559                });
2560            } else {
2561                for (Type t : ts) {
2562                    rs.checkAccessibleType(env, t);
2563                }
2564            }
2565        }
2566
2567        /**
2568         * Lambda/method reference have a special check context that ensures
2569         * that i.e. a lambda return type is compatible with the expected
2570         * type according to both the inherited context and the assignment
2571         * context.
2572         */
2573        class FunctionalReturnContext extends Check.NestedCheckContext {
2574
2575            FunctionalReturnContext(CheckContext enclosingContext) {
2576                super(enclosingContext);
2577            }
2578
2579            @Override
2580            public boolean compatible(Type found, Type req, Warner warn) {
2581                //return type must be compatible in both current context and assignment context
2582                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2583            }
2584
2585            @Override
2586            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2587                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2588            }
2589        }
2590
2591        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2592
2593            JCExpression expr;
2594
2595            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2596                super(enclosingContext);
2597                this.expr = expr;
2598            }
2599
2600            @Override
2601            public boolean compatible(Type found, Type req, Warner warn) {
2602                //a void return is compatible with an expression statement lambda
2603                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2604                        super.compatible(found, req, warn);
2605            }
2606        }
2607
2608        /**
2609        * Lambda compatibility. Check that given return types, thrown types, parameter types
2610        * are compatible with the expected functional interface descriptor. This means that:
2611        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2612        * types must be compatible with the return type of the expected descriptor.
2613        */
2614        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2615            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2616
2617            //return values have already been checked - but if lambda has no return
2618            //values, we must ensure that void/value compatibility is correct;
2619            //this amounts at checking that, if a lambda body can complete normally,
2620            //the descriptor's return type must be void
2621            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2622                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2623                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2624                        diags.fragment("missing.ret.val", returnType)));
2625            }
2626
2627            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2628            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2629                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2630            }
2631        }
2632
2633        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2634         * static field and that lambda has type annotations, these annotations will
2635         * also be stored at these fake clinit methods.
2636         *
2637         * LambdaToMethod also use fake clinit methods so they can be reused.
2638         * Also as LTM is a phase subsequent to attribution, the methods from
2639         * clinits can be safely removed by LTM to save memory.
2640         */
2641        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2642
2643        public MethodSymbol removeClinit(ClassSymbol sym) {
2644            return clinits.remove(sym);
2645        }
2646
2647        /* This method returns an environment to be used to attribute a lambda
2648         * expression.
2649         *
2650         * The owner of this environment is a method symbol. If the current owner
2651         * is not a method, for example if the lambda is used to initialize
2652         * a field, then if the field is:
2653         *
2654         * - an instance field, we use the first constructor.
2655         * - a static field, we create a fake clinit method.
2656         */
2657        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2658            Env<AttrContext> lambdaEnv;
2659            Symbol owner = env.info.scope.owner;
2660            if (owner.kind == VAR && owner.owner.kind == TYP) {
2661                //field initializer
2662                ClassSymbol enclClass = owner.enclClass();
2663                Symbol newScopeOwner = env.info.scope.owner;
2664                /* if the field isn't static, then we can get the first constructor
2665                 * and use it as the owner of the environment. This is what
2666                 * LTM code is doing to look for type annotations so we are fine.
2667                 */
2668                if ((owner.flags() & STATIC) == 0) {
2669                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2670                        newScopeOwner = s;
2671                        break;
2672                    }
2673                } else {
2674                    /* if the field is static then we need to create a fake clinit
2675                     * method, this method can later be reused by LTM.
2676                     */
2677                    MethodSymbol clinit = clinits.get(enclClass);
2678                    if (clinit == null) {
2679                        Type clinitType = new MethodType(List.<Type>nil(),
2680                                syms.voidType, List.<Type>nil(), syms.methodClass);
2681                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2682                                names.clinit, clinitType, enclClass);
2683                        clinit.params = List.<VarSymbol>nil();
2684                        clinits.put(enclClass, clinit);
2685                    }
2686                    newScopeOwner = clinit;
2687                }
2688                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2689            } else {
2690                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2691            }
2692            return lambdaEnv;
2693        }
2694
2695    @Override
2696    public void visitReference(final JCMemberReference that) {
2697        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2698            if (pt().hasTag(NONE)) {
2699                //method reference only allowed in assignment or method invocation/cast context
2700                log.error(that.pos(), "unexpected.mref");
2701            }
2702            result = that.type = types.createErrorType(pt());
2703            return;
2704        }
2705        final Env<AttrContext> localEnv = env.dup(that);
2706        try {
2707            //attribute member reference qualifier - if this is a constructor
2708            //reference, the expected kind must be a type
2709            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2710
2711            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2712                exprType = chk.checkConstructorRefType(that.expr, exprType);
2713                if (!exprType.isErroneous() &&
2714                    exprType.isRaw() &&
2715                    that.typeargs != null) {
2716                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2717                        diags.fragment("mref.infer.and.explicit.params"));
2718                    exprType = types.createErrorType(exprType);
2719                }
2720            }
2721
2722            if (exprType.isErroneous()) {
2723                //if the qualifier expression contains problems,
2724                //give up attribution of method reference
2725                result = that.type = exprType;
2726                return;
2727            }
2728
2729            if (TreeInfo.isStaticSelector(that.expr, names)) {
2730                //if the qualifier is a type, validate it; raw warning check is
2731                //omitted as we don't know at this stage as to whether this is a
2732                //raw selector (because of inference)
2733                chk.validate(that.expr, env, false);
2734            }
2735
2736            //attrib type-arguments
2737            List<Type> typeargtypes = List.nil();
2738            if (that.typeargs != null) {
2739                typeargtypes = attribTypes(that.typeargs, localEnv);
2740            }
2741
2742            Type desc;
2743            Type currentTarget = pt();
2744            boolean isTargetSerializable =
2745                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2746                    isSerializable(currentTarget);
2747            if (currentTarget != Type.recoveryType) {
2748                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2749                desc = types.findDescriptorType(currentTarget);
2750            } else {
2751                currentTarget = Type.recoveryType;
2752                desc = fallbackDescriptorType(that);
2753            }
2754
2755            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2756            List<Type> argtypes = desc.getParameterTypes();
2757            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2758
2759            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2760                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2761            }
2762
2763            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2764            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2765            try {
2766                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2767                        that.name, argtypes, typeargtypes, referenceCheck,
2768                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2769            } finally {
2770                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2771            }
2772
2773            Symbol refSym = refResult.fst;
2774            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2775
2776            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2777             *  JDK-8075541
2778             */
2779            if (refSym.kind != MTH) {
2780                boolean targetError;
2781                switch (refSym.kind) {
2782                    case ABSENT_MTH:
2783                    case MISSING_ENCL:
2784                        targetError = false;
2785                        break;
2786                    case WRONG_MTH:
2787                    case WRONG_MTHS:
2788                    case AMBIGUOUS:
2789                    case HIDDEN:
2790                    case STATICERR:
2791                        targetError = true;
2792                        break;
2793                    default:
2794                        Assert.error("unexpected result kind " + refSym.kind);
2795                        targetError = false;
2796                }
2797
2798                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2799                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2800
2801                JCDiagnostic.DiagnosticType diagKind = targetError ?
2802                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2803
2804                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2805                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2806
2807                if (targetError && currentTarget == Type.recoveryType) {
2808                    //a target error doesn't make sense during recovery stage
2809                    //as we don't know what actual parameter types are
2810                    result = that.type = currentTarget;
2811                    return;
2812                } else {
2813                    if (targetError) {
2814                        resultInfo.checkContext.report(that, diag);
2815                    } else {
2816                        log.report(diag);
2817                    }
2818                    result = that.type = types.createErrorType(currentTarget);
2819                    return;
2820                }
2821            }
2822
2823            that.sym = refSym.baseSymbol();
2824            that.kind = lookupHelper.referenceKind(that.sym);
2825            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2826
2827            if (desc.getReturnType() == Type.recoveryType) {
2828                // stop here
2829                result = that.type = currentTarget;
2830                return;
2831            }
2832
2833            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2834
2835                if (that.getMode() == ReferenceMode.INVOKE &&
2836                        TreeInfo.isStaticSelector(that.expr, names) &&
2837                        that.kind.isUnbound() &&
2838                        !desc.getParameterTypes().head.isParameterized()) {
2839                    chk.checkRaw(that.expr, localEnv);
2840                }
2841
2842                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2843                        exprType.getTypeArguments().nonEmpty()) {
2844                    //static ref with class type-args
2845                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2846                            diags.fragment("static.mref.with.targs"));
2847                    result = that.type = types.createErrorType(currentTarget);
2848                    return;
2849                }
2850
2851                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2852                    // Check that super-qualified symbols are not abstract (JLS)
2853                    rs.checkNonAbstract(that.pos(), that.sym);
2854                }
2855
2856                if (isTargetSerializable) {
2857                    chk.checkElemAccessFromSerializableLambda(that);
2858                }
2859            }
2860
2861            ResultInfo checkInfo =
2862                    resultInfo.dup(newMethodTemplate(
2863                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2864                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2865                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2866
2867            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2868
2869            if (that.kind.isUnbound() &&
2870                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2871                //re-generate inference constraints for unbound receiver
2872                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2873                    //cannot happen as this has already been checked - we just need
2874                    //to regenerate the inference constraints, as that has been lost
2875                    //as a result of the call to inferenceContext.save()
2876                    Assert.error("Can't get here");
2877                }
2878            }
2879
2880            if (!refType.isErroneous()) {
2881                refType = types.createMethodTypeWithReturn(refType,
2882                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2883            }
2884
2885            //go ahead with standard method reference compatibility check - note that param check
2886            //is a no-op (as this has been taken care during method applicability)
2887            boolean isSpeculativeRound =
2888                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2889
2890            that.type = currentTarget; //avoids recovery at this stage
2891            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2892            if (!isSpeculativeRound) {
2893                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2894            }
2895            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2896        } catch (Types.FunctionDescriptorLookupError ex) {
2897            JCDiagnostic cause = ex.getDiagnostic();
2898            resultInfo.checkContext.report(that, cause);
2899            result = that.type = types.createErrorType(pt());
2900            return;
2901        }
2902    }
2903    //where
2904        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2905            //if this is a constructor reference, the expected kind must be a type
2906            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2907                                  KindSelector.VAL_TYP : KindSelector.TYP,
2908                                  Type.noType);
2909        }
2910
2911
2912    @SuppressWarnings("fallthrough")
2913    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2914        InferenceContext inferenceContext = checkContext.inferenceContext();
2915        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
2916
2917        Type resType;
2918        switch (tree.getMode()) {
2919            case NEW:
2920                if (!tree.expr.type.isRaw()) {
2921                    resType = tree.expr.type;
2922                    break;
2923                }
2924            default:
2925                resType = refType.getReturnType();
2926        }
2927
2928        Type incompatibleReturnType = resType;
2929
2930        if (returnType.hasTag(VOID)) {
2931            incompatibleReturnType = null;
2932        }
2933
2934        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2935            if (resType.isErroneous() ||
2936                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2937                incompatibleReturnType = null;
2938            }
2939        }
2940
2941        if (incompatibleReturnType != null) {
2942            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2943                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2944        } else {
2945            if (inferenceContext.free(refType)) {
2946                // we need to wait for inference to finish and then replace inference vars in the referent type
2947                inferenceContext.addFreeTypeListener(List.of(refType),
2948                        instantiatedContext -> {
2949                            tree.referentType = instantiatedContext.asInstType(refType);
2950                        });
2951            } else {
2952                tree.referentType = refType;
2953            }
2954        }
2955
2956        if (!speculativeAttr) {
2957            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
2958            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2959                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2960            }
2961        }
2962    }
2963
2964    /**
2965     * Set functional type info on the underlying AST. Note: as the target descriptor
2966     * might contain inference variables, we might need to register an hook in the
2967     * current inference context.
2968     */
2969    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2970            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2971        if (checkContext.inferenceContext().free(descriptorType)) {
2972            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2973                public void typesInferred(InferenceContext inferenceContext) {
2974                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2975                            inferenceContext.asInstType(primaryTarget), checkContext);
2976                }
2977            });
2978        } else {
2979            ListBuffer<Type> targets = new ListBuffer<>();
2980            if (pt.hasTag(CLASS)) {
2981                if (pt.isCompound()) {
2982                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
2983                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2984                        if (t != primaryTarget) {
2985                            targets.append(types.removeWildcards(t));
2986                        }
2987                    }
2988                } else {
2989                    targets.append(types.removeWildcards(primaryTarget));
2990                }
2991            }
2992            fExpr.targets = targets.toList();
2993            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2994                    pt != Type.recoveryType) {
2995                //check that functional interface class is well-formed
2996                try {
2997                    /* Types.makeFunctionalInterfaceClass() may throw an exception
2998                     * when it's executed post-inference. See the listener code
2999                     * above.
3000                     */
3001                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3002                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
3003                    if (csym != null) {
3004                        chk.checkImplementations(env.tree, csym, csym);
3005                        try {
3006                            //perform an additional functional interface check on the synthetic class,
3007                            //as there may be spurious errors for raw targets - because of existing issues
3008                            //with membership and inheritance (see JDK-8074570).
3009                            csym.flags_field |= INTERFACE;
3010                            types.findDescriptorType(csym.type);
3011                        } catch (FunctionDescriptorLookupError err) {
3012                            resultInfo.checkContext.report(fExpr,
3013                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3014                        }
3015                    }
3016                } catch (Types.FunctionDescriptorLookupError ex) {
3017                    JCDiagnostic cause = ex.getDiagnostic();
3018                    resultInfo.checkContext.report(env.tree, cause);
3019                }
3020            }
3021        }
3022    }
3023
3024    public void visitParens(JCParens tree) {
3025        Type owntype = attribTree(tree.expr, env, resultInfo);
3026        result = check(tree, owntype, pkind(), resultInfo);
3027        Symbol sym = TreeInfo.symbol(tree);
3028        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3029            log.error(tree.pos(), "illegal.start.of.type");
3030    }
3031
3032    public void visitAssign(JCAssign tree) {
3033        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3034        Type capturedType = capture(owntype);
3035        attribExpr(tree.rhs, env, owntype);
3036        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3037    }
3038
3039    public void visitAssignop(JCAssignOp tree) {
3040        // Attribute arguments.
3041        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3042        Type operand = attribExpr(tree.rhs, env);
3043        // Find operator.
3044        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3045        if (operator.kind == MTH &&
3046                !owntype.isErroneous() &&
3047                !operand.isErroneous()) {
3048            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3049            chk.checkCastable(tree.rhs.pos(),
3050                              operator.type.getReturnType(),
3051                              owntype);
3052        }
3053        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3054    }
3055
3056    public void visitUnary(JCUnary tree) {
3057        // Attribute arguments.
3058        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3059            ? attribTree(tree.arg, env, varAssignmentInfo)
3060            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3061
3062        // Find operator.
3063        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3064        Type owntype = types.createErrorType(tree.type);
3065        if (operator.kind == MTH &&
3066                !argtype.isErroneous()) {
3067            owntype = (tree.getTag().isIncOrDecUnaryOp())
3068                ? tree.arg.type
3069                : operator.type.getReturnType();
3070            int opc = ((OperatorSymbol)operator).opcode;
3071
3072            // If the argument is constant, fold it.
3073            if (argtype.constValue() != null) {
3074                Type ctype = cfolder.fold1(opc, argtype);
3075                if (ctype != null) {
3076                    owntype = cfolder.coerce(ctype, owntype);
3077                }
3078            }
3079        }
3080        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3081    }
3082
3083    public void visitBinary(JCBinary tree) {
3084        // Attribute arguments.
3085        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3086        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3087        // Find operator.
3088        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3089        Type owntype = types.createErrorType(tree.type);
3090        if (operator.kind == MTH &&
3091                !left.isErroneous() &&
3092                !right.isErroneous()) {
3093            owntype = operator.type.getReturnType();
3094            int opc = ((OperatorSymbol)operator).opcode;
3095            // If both arguments are constants, fold them.
3096            if (left.constValue() != null && right.constValue() != null) {
3097                Type ctype = cfolder.fold2(opc, left, right);
3098                if (ctype != null) {
3099                    owntype = cfolder.coerce(ctype, owntype);
3100                }
3101            }
3102
3103            // Check that argument types of a reference ==, != are
3104            // castable to each other, (JLS 15.21).  Note: unboxing
3105            // comparisons will not have an acmp* opc at this point.
3106            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3107                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3108                    log.error(tree.pos(), "incomparable.types", left, right);
3109                }
3110            }
3111
3112            chk.checkDivZero(tree.rhs.pos(), operator, right);
3113        }
3114        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3115    }
3116
3117    public void visitTypeCast(final JCTypeCast tree) {
3118        Type clazztype = attribType(tree.clazz, env);
3119        chk.validate(tree.clazz, env, false);
3120        //a fresh environment is required for 292 inference to work properly ---
3121        //see Infer.instantiatePolymorphicSignatureInstance()
3122        Env<AttrContext> localEnv = env.dup(tree);
3123        //should we propagate the target type?
3124        final ResultInfo castInfo;
3125        JCExpression expr = TreeInfo.skipParens(tree.expr);
3126        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3127        if (isPoly) {
3128            //expression is a poly - we need to propagate target type info
3129            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3130                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3131                @Override
3132                public boolean compatible(Type found, Type req, Warner warn) {
3133                    return types.isCastable(found, req, warn);
3134                }
3135            });
3136        } else {
3137            //standalone cast - target-type info is not propagated
3138            castInfo = unknownExprInfo;
3139        }
3140        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3141        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3142        if (exprtype.constValue() != null)
3143            owntype = cfolder.coerce(exprtype, owntype);
3144        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3145        if (!isPoly)
3146            chk.checkRedundantCast(localEnv, tree);
3147    }
3148
3149    public void visitTypeTest(JCInstanceOf tree) {
3150        Type exprtype = chk.checkNullOrRefType(
3151                tree.expr.pos(), attribExpr(tree.expr, env));
3152        Type clazztype = attribType(tree.clazz, env);
3153        if (!clazztype.hasTag(TYPEVAR)) {
3154            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3155        }
3156        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3157            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3158            clazztype = types.createErrorType(clazztype);
3159        }
3160        chk.validate(tree.clazz, env, false);
3161        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3162        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3163    }
3164
3165    public void visitIndexed(JCArrayAccess tree) {
3166        Type owntype = types.createErrorType(tree.type);
3167        Type atype = attribExpr(tree.indexed, env);
3168        attribExpr(tree.index, env, syms.intType);
3169        if (types.isArray(atype))
3170            owntype = types.elemtype(atype);
3171        else if (!atype.hasTag(ERROR))
3172            log.error(tree.pos(), "array.req.but.found", atype);
3173        if (!pkind().contains(KindSelector.VAL))
3174            owntype = capture(owntype);
3175        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3176    }
3177
3178    public void visitIdent(JCIdent tree) {
3179        Symbol sym;
3180
3181        // Find symbol
3182        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3183            // If we are looking for a method, the prototype `pt' will be a
3184            // method type with the type of the call's arguments as parameters.
3185            env.info.pendingResolutionPhase = null;
3186            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3187        } else if (tree.sym != null && tree.sym.kind != VAR) {
3188            sym = tree.sym;
3189        } else {
3190            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3191        }
3192        tree.sym = sym;
3193
3194        // (1) Also find the environment current for the class where
3195        //     sym is defined (`symEnv').
3196        // Only for pre-tiger versions (1.4 and earlier):
3197        // (2) Also determine whether we access symbol out of an anonymous
3198        //     class in a this or super call.  This is illegal for instance
3199        //     members since such classes don't carry a this$n link.
3200        //     (`noOuterThisPath').
3201        Env<AttrContext> symEnv = env;
3202        boolean noOuterThisPath = false;
3203        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3204            sym.kind.matches(KindSelector.VAL_MTH) &&
3205            sym.owner.kind == TYP &&
3206            tree.name != names._this && tree.name != names._super) {
3207
3208            // Find environment in which identifier is defined.
3209            while (symEnv.outer != null &&
3210                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3211                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3212                    noOuterThisPath = false;
3213                symEnv = symEnv.outer;
3214            }
3215        }
3216
3217        // If symbol is a variable, ...
3218        if (sym.kind == VAR) {
3219            VarSymbol v = (VarSymbol)sym;
3220
3221            // ..., evaluate its initializer, if it has one, and check for
3222            // illegal forward reference.
3223            checkInit(tree, env, v, false);
3224
3225            // If we are expecting a variable (as opposed to a value), check
3226            // that the variable is assignable in the current environment.
3227            if (KindSelector.ASG.subset(pkind()))
3228                checkAssignable(tree.pos(), v, null, env);
3229        }
3230
3231        // In a constructor body,
3232        // if symbol is a field or instance method, check that it is
3233        // not accessed before the supertype constructor is called.
3234        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3235            sym.kind.matches(KindSelector.VAL_MTH) &&
3236            sym.owner.kind == TYP &&
3237            (sym.flags() & STATIC) == 0) {
3238            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3239                                          sym : thisSym(tree.pos(), env));
3240        }
3241        Env<AttrContext> env1 = env;
3242        if (sym.kind != ERR && sym.kind != TYP &&
3243            sym.owner != null && sym.owner != env1.enclClass.sym) {
3244            // If the found symbol is inaccessible, then it is
3245            // accessed through an enclosing instance.  Locate this
3246            // enclosing instance:
3247            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3248                env1 = env1.outer;
3249        }
3250
3251        if (env.info.isSerializable) {
3252            chk.checkElemAccessFromSerializableLambda(tree);
3253        }
3254
3255        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3256    }
3257
3258    public void visitSelect(JCFieldAccess tree) {
3259        // Determine the expected kind of the qualifier expression.
3260        KindSelector skind = KindSelector.NIL;
3261        if (tree.name == names._this || tree.name == names._super ||
3262                tree.name == names._class)
3263        {
3264            skind = KindSelector.TYP;
3265        } else {
3266            if (pkind().contains(KindSelector.PCK))
3267                skind = KindSelector.of(skind, KindSelector.PCK);
3268            if (pkind().contains(KindSelector.TYP))
3269                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3270            if (pkind().contains(KindSelector.VAL_MTH))
3271                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3272        }
3273
3274        // Attribute the qualifier expression, and determine its symbol (if any).
3275        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3276        if (!pkind().contains(KindSelector.TYP_PCK))
3277            site = capture(site); // Capture field access
3278
3279        // don't allow T.class T[].class, etc
3280        if (skind == KindSelector.TYP) {
3281            Type elt = site;
3282            while (elt.hasTag(ARRAY))
3283                elt = ((ArrayType)elt).elemtype;
3284            if (elt.hasTag(TYPEVAR)) {
3285                log.error(tree.pos(), "type.var.cant.be.deref");
3286                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3287                tree.sym = tree.type.tsym;
3288                return ;
3289            }
3290        }
3291
3292        // If qualifier symbol is a type or `super', assert `selectSuper'
3293        // for the selection. This is relevant for determining whether
3294        // protected symbols are accessible.
3295        Symbol sitesym = TreeInfo.symbol(tree.selected);
3296        boolean selectSuperPrev = env.info.selectSuper;
3297        env.info.selectSuper =
3298            sitesym != null &&
3299            sitesym.name == names._super;
3300
3301        // Determine the symbol represented by the selection.
3302        env.info.pendingResolutionPhase = null;
3303        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3304        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3305            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3306            sym = syms.errSymbol;
3307        }
3308        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3309            site = capture(site);
3310            sym = selectSym(tree, sitesym, site, env, resultInfo);
3311        }
3312        boolean varArgs = env.info.lastResolveVarargs();
3313        tree.sym = sym;
3314
3315        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3316            site = types.skipTypeVars(site, true);
3317        }
3318
3319        // If that symbol is a variable, ...
3320        if (sym.kind == VAR) {
3321            VarSymbol v = (VarSymbol)sym;
3322
3323            // ..., evaluate its initializer, if it has one, and check for
3324            // illegal forward reference.
3325            checkInit(tree, env, v, true);
3326
3327            // If we are expecting a variable (as opposed to a value), check
3328            // that the variable is assignable in the current environment.
3329            if (KindSelector.ASG.subset(pkind()))
3330                checkAssignable(tree.pos(), v, tree.selected, env);
3331        }
3332
3333        if (sitesym != null &&
3334                sitesym.kind == VAR &&
3335                ((VarSymbol)sitesym).isResourceVariable() &&
3336                sym.kind == MTH &&
3337                sym.name.equals(names.close) &&
3338                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3339                env.info.lint.isEnabled(LintCategory.TRY)) {
3340            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3341        }
3342
3343        // Disallow selecting a type from an expression
3344        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3345            tree.type = check(tree.selected, pt(),
3346                              sitesym == null ?
3347                                      KindSelector.VAL : sitesym.kind.toSelector(),
3348                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3349        }
3350
3351        if (isType(sitesym)) {
3352            if (sym.name == names._this) {
3353                // If `C' is the currently compiled class, check that
3354                // C.this' does not appear in a call to a super(...)
3355                if (env.info.isSelfCall &&
3356                    site.tsym == env.enclClass.sym) {
3357                    chk.earlyRefError(tree.pos(), sym);
3358                }
3359            } else {
3360                // Check if type-qualified fields or methods are static (JLS)
3361                if ((sym.flags() & STATIC) == 0 &&
3362                    !env.next.tree.hasTag(REFERENCE) &&
3363                    sym.name != names._super &&
3364                    (sym.kind == VAR || sym.kind == MTH)) {
3365                    rs.accessBase(rs.new StaticError(sym),
3366                              tree.pos(), site, sym.name, true);
3367                }
3368            }
3369            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3370                    sym.isStatic() && sym.kind == MTH) {
3371                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3372            }
3373        } else if (sym.kind != ERR &&
3374                   (sym.flags() & STATIC) != 0 &&
3375                   sym.name != names._class) {
3376            // If the qualified item is not a type and the selected item is static, report
3377            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3378            chk.warnStatic(tree, "static.not.qualified.by.type",
3379                           sym.kind.kindName(), sym.owner);
3380        }
3381
3382        // If we are selecting an instance member via a `super', ...
3383        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3384
3385            // Check that super-qualified symbols are not abstract (JLS)
3386            rs.checkNonAbstract(tree.pos(), sym);
3387
3388            if (site.isRaw()) {
3389                // Determine argument types for site.
3390                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3391                if (site1 != null) site = site1;
3392            }
3393        }
3394
3395        if (env.info.isSerializable) {
3396            chk.checkElemAccessFromSerializableLambda(tree);
3397        }
3398
3399        env.info.selectSuper = selectSuperPrev;
3400        result = checkId(tree, site, sym, env, resultInfo);
3401    }
3402    //where
3403        /** Determine symbol referenced by a Select expression,
3404         *
3405         *  @param tree   The select tree.
3406         *  @param site   The type of the selected expression,
3407         *  @param env    The current environment.
3408         *  @param resultInfo The current result.
3409         */
3410        private Symbol selectSym(JCFieldAccess tree,
3411                                 Symbol location,
3412                                 Type site,
3413                                 Env<AttrContext> env,
3414                                 ResultInfo resultInfo) {
3415            DiagnosticPosition pos = tree.pos();
3416            Name name = tree.name;
3417            switch (site.getTag()) {
3418            case PACKAGE:
3419                return rs.accessBase(
3420                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3421                    pos, location, site, name, true);
3422            case ARRAY:
3423            case CLASS:
3424                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3425                    return rs.resolveQualifiedMethod(
3426                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3427                } else if (name == names._this || name == names._super) {
3428                    return rs.resolveSelf(pos, env, site.tsym, name);
3429                } else if (name == names._class) {
3430                    // In this case, we have already made sure in
3431                    // visitSelect that qualifier expression is a type.
3432                    Type t = syms.classType;
3433                    List<Type> typeargs = List.of(types.erasure(site));
3434                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3435                    return new VarSymbol(
3436                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3437                } else {
3438                    // We are seeing a plain identifier as selector.
3439                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3440                        sym = rs.accessBase(sym, pos, location, site, name, true);
3441                    return sym;
3442                }
3443            case WILDCARD:
3444                throw new AssertionError(tree);
3445            case TYPEVAR:
3446                // Normally, site.getUpperBound() shouldn't be null.
3447                // It should only happen during memberEnter/attribBase
3448                // when determining the super type which *must* beac
3449                // done before attributing the type variables.  In
3450                // other words, we are seeing this illegal program:
3451                // class B<T> extends A<T.foo> {}
3452                Symbol sym = (site.getUpperBound() != null)
3453                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3454                    : null;
3455                if (sym == null) {
3456                    log.error(pos, "type.var.cant.be.deref");
3457                    return syms.errSymbol;
3458                } else {
3459                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3460                        rs.new AccessError(env, site, sym) :
3461                                sym;
3462                    rs.accessBase(sym2, pos, location, site, name, true);
3463                    return sym;
3464                }
3465            case ERROR:
3466                // preserve identifier names through errors
3467                return types.createErrorType(name, site.tsym, site).tsym;
3468            default:
3469                // The qualifier expression is of a primitive type -- only
3470                // .class is allowed for these.
3471                if (name == names._class) {
3472                    // In this case, we have already made sure in Select that
3473                    // qualifier expression is a type.
3474                    Type t = syms.classType;
3475                    Type arg = types.boxedClass(site).type;
3476                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3477                    return new VarSymbol(
3478                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3479                } else {
3480                    log.error(pos, "cant.deref", site);
3481                    return syms.errSymbol;
3482                }
3483            }
3484        }
3485
3486        /** Determine type of identifier or select expression and check that
3487         *  (1) the referenced symbol is not deprecated
3488         *  (2) the symbol's type is safe (@see checkSafe)
3489         *  (3) if symbol is a variable, check that its type and kind are
3490         *      compatible with the prototype and protokind.
3491         *  (4) if symbol is an instance field of a raw type,
3492         *      which is being assigned to, issue an unchecked warning if its
3493         *      type changes under erasure.
3494         *  (5) if symbol is an instance method of a raw type, issue an
3495         *      unchecked warning if its argument types change under erasure.
3496         *  If checks succeed:
3497         *    If symbol is a constant, return its constant type
3498         *    else if symbol is a method, return its result type
3499         *    otherwise return its type.
3500         *  Otherwise return errType.
3501         *
3502         *  @param tree       The syntax tree representing the identifier
3503         *  @param site       If this is a select, the type of the selected
3504         *                    expression, otherwise the type of the current class.
3505         *  @param sym        The symbol representing the identifier.
3506         *  @param env        The current environment.
3507         *  @param resultInfo    The expected result
3508         */
3509        Type checkId(JCTree tree,
3510                     Type site,
3511                     Symbol sym,
3512                     Env<AttrContext> env,
3513                     ResultInfo resultInfo) {
3514            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3515                    checkMethodId(tree, site, sym, env, resultInfo) :
3516                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3517        }
3518
3519        Type checkMethodId(JCTree tree,
3520                     Type site,
3521                     Symbol sym,
3522                     Env<AttrContext> env,
3523                     ResultInfo resultInfo) {
3524            boolean isPolymorhicSignature =
3525                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3526            return isPolymorhicSignature ?
3527                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3528                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3529        }
3530
3531        Type checkSigPolyMethodId(JCTree tree,
3532                     Type site,
3533                     Symbol sym,
3534                     Env<AttrContext> env,
3535                     ResultInfo resultInfo) {
3536            //recover original symbol for signature polymorphic methods
3537            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3538            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3539            return sym.type;
3540        }
3541
3542        Type checkMethodIdInternal(JCTree tree,
3543                     Type site,
3544                     Symbol sym,
3545                     Env<AttrContext> env,
3546                     ResultInfo resultInfo) {
3547            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3548                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3549                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3550                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3551                return owntype;
3552            } else {
3553                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3554            }
3555        }
3556
3557        Type checkIdInternal(JCTree tree,
3558                     Type site,
3559                     Symbol sym,
3560                     Type pt,
3561                     Env<AttrContext> env,
3562                     ResultInfo resultInfo) {
3563            if (pt.isErroneous()) {
3564                return types.createErrorType(site);
3565            }
3566            Type owntype; // The computed type of this identifier occurrence.
3567            switch (sym.kind) {
3568            case TYP:
3569                // For types, the computed type equals the symbol's type,
3570                // except for two situations:
3571                owntype = sym.type;
3572                if (owntype.hasTag(CLASS)) {
3573                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3574                    Type ownOuter = owntype.getEnclosingType();
3575
3576                    // (a) If the symbol's type is parameterized, erase it
3577                    // because no type parameters were given.
3578                    // We recover generic outer type later in visitTypeApply.
3579                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3580                        owntype = types.erasure(owntype);
3581                    }
3582
3583                    // (b) If the symbol's type is an inner class, then
3584                    // we have to interpret its outer type as a superclass
3585                    // of the site type. Example:
3586                    //
3587                    // class Tree<A> { class Visitor { ... } }
3588                    // class PointTree extends Tree<Point> { ... }
3589                    // ...PointTree.Visitor...
3590                    //
3591                    // Then the type of the last expression above is
3592                    // Tree<Point>.Visitor.
3593                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3594                        Type normOuter = site;
3595                        if (normOuter.hasTag(CLASS)) {
3596                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3597                        }
3598                        if (normOuter == null) // perhaps from an import
3599                            normOuter = types.erasure(ownOuter);
3600                        if (normOuter != ownOuter)
3601                            owntype = new ClassType(
3602                                normOuter, List.<Type>nil(), owntype.tsym,
3603                                owntype.getMetadata());
3604                    }
3605                }
3606                break;
3607            case VAR:
3608                VarSymbol v = (VarSymbol)sym;
3609                // Test (4): if symbol is an instance field of a raw type,
3610                // which is being assigned to, issue an unchecked warning if
3611                // its type changes under erasure.
3612                if (KindSelector.ASG.subset(pkind()) &&
3613                    v.owner.kind == TYP &&
3614                    (v.flags() & STATIC) == 0 &&
3615                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3616                    Type s = types.asOuterSuper(site, v.owner);
3617                    if (s != null &&
3618                        s.isRaw() &&
3619                        !types.isSameType(v.type, v.erasure(types))) {
3620                        chk.warnUnchecked(tree.pos(),
3621                                          "unchecked.assign.to.var",
3622                                          v, s);
3623                    }
3624                }
3625                // The computed type of a variable is the type of the
3626                // variable symbol, taken as a member of the site type.
3627                owntype = (sym.owner.kind == TYP &&
3628                           sym.name != names._this && sym.name != names._super)
3629                    ? types.memberType(site, sym)
3630                    : sym.type;
3631
3632                // If the variable is a constant, record constant value in
3633                // computed type.
3634                if (v.getConstValue() != null && isStaticReference(tree))
3635                    owntype = owntype.constType(v.getConstValue());
3636
3637                if (resultInfo.pkind == KindSelector.VAL) {
3638                    owntype = capture(owntype); // capture "names as expressions"
3639                }
3640                break;
3641            case MTH: {
3642                owntype = checkMethod(site, sym,
3643                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3644                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3645                        resultInfo.pt.getTypeArguments());
3646                break;
3647            }
3648            case PCK: case ERR:
3649                owntype = sym.type;
3650                break;
3651            default:
3652                throw new AssertionError("unexpected kind: " + sym.kind +
3653                                         " in tree " + tree);
3654            }
3655
3656            // Test (1): emit a `deprecation' warning if symbol is deprecated.
3657            // (for constructors, the error was given when the constructor was
3658            // resolved)
3659
3660            if (sym.name != names.init) {
3661                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3662                chk.checkSunAPI(tree.pos(), sym);
3663                chk.checkProfile(tree.pos(), sym);
3664            }
3665
3666            // Test (3): if symbol is a variable, check that its type and
3667            // kind are compatible with the prototype and protokind.
3668            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3669        }
3670
3671        /** Check that variable is initialized and evaluate the variable's
3672         *  initializer, if not yet done. Also check that variable is not
3673         *  referenced before it is defined.
3674         *  @param tree    The tree making up the variable reference.
3675         *  @param env     The current environment.
3676         *  @param v       The variable's symbol.
3677         */
3678        private void checkInit(JCTree tree,
3679                               Env<AttrContext> env,
3680                               VarSymbol v,
3681                               boolean onlyWarning) {
3682//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3683//                             tree.pos + " " + v.pos + " " +
3684//                             Resolve.isStatic(env));//DEBUG
3685
3686            // A forward reference is diagnosed if the declaration position
3687            // of the variable is greater than the current tree position
3688            // and the tree and variable definition occur in the same class
3689            // definition.  Note that writes don't count as references.
3690            // This check applies only to class and instance
3691            // variables.  Local variables follow different scope rules,
3692            // and are subject to definite assignment checking.
3693            if ((env.info.enclVar == v || v.pos > tree.pos) &&
3694                v.owner.kind == TYP &&
3695                enclosingInitEnv(env) != null &&
3696                v.owner == env.info.scope.owner.enclClass() &&
3697                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3698                (!env.tree.hasTag(ASSIGN) ||
3699                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3700                String suffix = (env.info.enclVar == v) ?
3701                                "self.ref" : "forward.ref";
3702                if (!onlyWarning || isStaticEnumField(v)) {
3703                    log.error(tree.pos(), "illegal." + suffix);
3704                } else if (useBeforeDeclarationWarning) {
3705                    log.warning(tree.pos(), suffix, v);
3706                }
3707            }
3708
3709            v.getConstValue(); // ensure initializer is evaluated
3710
3711            checkEnumInitializer(tree, env, v);
3712        }
3713
3714        /**
3715         * Returns the enclosing init environment associated with this env (if any). An init env
3716         * can be either a field declaration env or a static/instance initializer env.
3717         */
3718        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3719            while (true) {
3720                switch (env.tree.getTag()) {
3721                    case VARDEF:
3722                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3723                        if (vdecl.sym.owner.kind == TYP) {
3724                            //field
3725                            return env;
3726                        }
3727                        break;
3728                    case BLOCK:
3729                        if (env.next.tree.hasTag(CLASSDEF)) {
3730                            //instance/static initializer
3731                            return env;
3732                        }
3733                        break;
3734                    case METHODDEF:
3735                    case CLASSDEF:
3736                    case TOPLEVEL:
3737                        return null;
3738                }
3739                Assert.checkNonNull(env.next);
3740                env = env.next;
3741            }
3742        }
3743
3744        /**
3745         * Check for illegal references to static members of enum.  In
3746         * an enum type, constructors and initializers may not
3747         * reference its static members unless they are constant.
3748         *
3749         * @param tree    The tree making up the variable reference.
3750         * @param env     The current environment.
3751         * @param v       The variable's symbol.
3752         * @jls  section 8.9 Enums
3753         */
3754        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3755            // JLS:
3756            //
3757            // "It is a compile-time error to reference a static field
3758            // of an enum type that is not a compile-time constant
3759            // (15.28) from constructors, instance initializer blocks,
3760            // or instance variable initializer expressions of that
3761            // type. It is a compile-time error for the constructors,
3762            // instance initializer blocks, or instance variable
3763            // initializer expressions of an enum constant e to refer
3764            // to itself or to an enum constant of the same type that
3765            // is declared to the right of e."
3766            if (isStaticEnumField(v)) {
3767                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3768
3769                if (enclClass == null || enclClass.owner == null)
3770                    return;
3771
3772                // See if the enclosing class is the enum (or a
3773                // subclass thereof) declaring v.  If not, this
3774                // reference is OK.
3775                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3776                    return;
3777
3778                // If the reference isn't from an initializer, then
3779                // the reference is OK.
3780                if (!Resolve.isInitializer(env))
3781                    return;
3782
3783                log.error(tree.pos(), "illegal.enum.static.ref");
3784            }
3785        }
3786
3787        /** Is the given symbol a static, non-constant field of an Enum?
3788         *  Note: enum literals should not be regarded as such
3789         */
3790        private boolean isStaticEnumField(VarSymbol v) {
3791            return Flags.isEnum(v.owner) &&
3792                   Flags.isStatic(v) &&
3793                   !Flags.isConstant(v) &&
3794                   v.name != names._class;
3795        }
3796
3797    Warner noteWarner = new Warner();
3798
3799    /**
3800     * Check that method arguments conform to its instantiation.
3801     **/
3802    public Type checkMethod(Type site,
3803                            final Symbol sym,
3804                            ResultInfo resultInfo,
3805                            Env<AttrContext> env,
3806                            final List<JCExpression> argtrees,
3807                            List<Type> argtypes,
3808                            List<Type> typeargtypes) {
3809        // Test (5): if symbol is an instance method of a raw type, issue
3810        // an unchecked warning if its argument types change under erasure.
3811        if ((sym.flags() & STATIC) == 0 &&
3812            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3813            Type s = types.asOuterSuper(site, sym.owner);
3814            if (s != null && s.isRaw() &&
3815                !types.isSameTypes(sym.type.getParameterTypes(),
3816                                   sym.erasure(types).getParameterTypes())) {
3817                chk.warnUnchecked(env.tree.pos(),
3818                                  "unchecked.call.mbr.of.raw.type",
3819                                  sym, s);
3820            }
3821        }
3822
3823        if (env.info.defaultSuperCallSite != null) {
3824            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3825                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3826                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3827                List<MethodSymbol> icand_sup =
3828                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3829                if (icand_sup.nonEmpty() &&
3830                        icand_sup.head != sym &&
3831                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3832                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3833                        diags.fragment("overridden.default", sym, sup));
3834                    break;
3835                }
3836            }
3837            env.info.defaultSuperCallSite = null;
3838        }
3839
3840        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3841            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3842            if (app.meth.hasTag(SELECT) &&
3843                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3844                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3845            }
3846        }
3847
3848        // Compute the identifier's instantiated type.
3849        // For methods, we need to compute the instance type by
3850        // Resolve.instantiate from the symbol's type as well as
3851        // any type arguments and value arguments.
3852        noteWarner.clear();
3853        try {
3854            Type owntype = rs.checkMethod(
3855                    env,
3856                    site,
3857                    sym,
3858                    resultInfo,
3859                    argtypes,
3860                    typeargtypes,
3861                    noteWarner);
3862
3863            DeferredAttr.DeferredTypeMap checkDeferredMap =
3864                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3865
3866            argtypes = argtypes.map(checkDeferredMap);
3867
3868            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3869                chk.warnUnchecked(env.tree.pos(),
3870                        "unchecked.meth.invocation.applied",
3871                        kindName(sym),
3872                        sym.name,
3873                        rs.methodArguments(sym.type.getParameterTypes()),
3874                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3875                        kindName(sym.location()),
3876                        sym.location());
3877               owntype = new MethodType(owntype.getParameterTypes(),
3878                       types.erasure(owntype.getReturnType()),
3879                       types.erasure(owntype.getThrownTypes()),
3880                       syms.methodClass);
3881            }
3882
3883            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3884                    resultInfo.checkContext.inferenceContext());
3885        } catch (Infer.InferenceException ex) {
3886            //invalid target type - propagate exception outwards or report error
3887            //depending on the current check context
3888            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3889            return types.createErrorType(site);
3890        } catch (Resolve.InapplicableMethodException ex) {
3891            final JCDiagnostic diag = ex.getDiagnostic();
3892            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3893                @Override
3894                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3895                    return new Pair<>(sym, diag);
3896                }
3897            };
3898            List<Type> argtypes2 = argtypes.map(
3899                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3900            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3901                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3902            log.report(errDiag);
3903            return types.createErrorType(site);
3904        }
3905    }
3906
3907    public void visitLiteral(JCLiteral tree) {
3908        result = check(tree, litType(tree.typetag).constType(tree.value),
3909                KindSelector.VAL, resultInfo);
3910    }
3911    //where
3912    /** Return the type of a literal with given type tag.
3913     */
3914    Type litType(TypeTag tag) {
3915        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3916    }
3917
3918    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3919        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3920    }
3921
3922    public void visitTypeArray(JCArrayTypeTree tree) {
3923        Type etype = attribType(tree.elemtype, env);
3924        Type type = new ArrayType(etype, syms.arrayClass);
3925        result = check(tree, type, KindSelector.TYP, resultInfo);
3926    }
3927
3928    /** Visitor method for parameterized types.
3929     *  Bound checking is left until later, since types are attributed
3930     *  before supertype structure is completely known
3931     */
3932    public void visitTypeApply(JCTypeApply tree) {
3933        Type owntype = types.createErrorType(tree.type);
3934
3935        // Attribute functor part of application and make sure it's a class.
3936        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3937
3938        // Attribute type parameters
3939        List<Type> actuals = attribTypes(tree.arguments, env);
3940
3941        if (clazztype.hasTag(CLASS)) {
3942            List<Type> formals = clazztype.tsym.type.getTypeArguments();
3943            if (actuals.isEmpty()) //diamond
3944                actuals = formals;
3945
3946            if (actuals.length() == formals.length()) {
3947                List<Type> a = actuals;
3948                List<Type> f = formals;
3949                while (a.nonEmpty()) {
3950                    a.head = a.head.withTypeVar(f.head);
3951                    a = a.tail;
3952                    f = f.tail;
3953                }
3954                // Compute the proper generic outer
3955                Type clazzOuter = clazztype.getEnclosingType();
3956                if (clazzOuter.hasTag(CLASS)) {
3957                    Type site;
3958                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3959                    if (clazz.hasTag(IDENT)) {
3960                        site = env.enclClass.sym.type;
3961                    } else if (clazz.hasTag(SELECT)) {
3962                        site = ((JCFieldAccess) clazz).selected.type;
3963                    } else throw new AssertionError(""+tree);
3964                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3965                        if (site.hasTag(CLASS))
3966                            site = types.asOuterSuper(site, clazzOuter.tsym);
3967                        if (site == null)
3968                            site = types.erasure(clazzOuter);
3969                        clazzOuter = site;
3970                    }
3971                }
3972                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3973                                        clazztype.getMetadata());
3974            } else {
3975                if (formals.length() != 0) {
3976                    log.error(tree.pos(), "wrong.number.type.args",
3977                              Integer.toString(formals.length()));
3978                } else {
3979                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3980                }
3981                owntype = types.createErrorType(tree.type);
3982            }
3983        }
3984        result = check(tree, owntype, KindSelector.TYP, resultInfo);
3985    }
3986
3987    public void visitTypeUnion(JCTypeUnion tree) {
3988        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3989        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3990        for (JCExpression typeTree : tree.alternatives) {
3991            Type ctype = attribType(typeTree, env);
3992            ctype = chk.checkType(typeTree.pos(),
3993                          chk.checkClassType(typeTree.pos(), ctype),
3994                          syms.throwableType);
3995            if (!ctype.isErroneous()) {
3996                //check that alternatives of a union type are pairwise
3997                //unrelated w.r.t. subtyping
3998                if (chk.intersects(ctype,  multicatchTypes.toList())) {
3999                    for (Type t : multicatchTypes) {
4000                        boolean sub = types.isSubtype(ctype, t);
4001                        boolean sup = types.isSubtype(t, ctype);
4002                        if (sub || sup) {
4003                            //assume 'a' <: 'b'
4004                            Type a = sub ? ctype : t;
4005                            Type b = sub ? t : ctype;
4006                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4007                        }
4008                    }
4009                }
4010                multicatchTypes.append(ctype);
4011                if (all_multicatchTypes != null)
4012                    all_multicatchTypes.append(ctype);
4013            } else {
4014                if (all_multicatchTypes == null) {
4015                    all_multicatchTypes = new ListBuffer<>();
4016                    all_multicatchTypes.appendList(multicatchTypes);
4017                }
4018                all_multicatchTypes.append(ctype);
4019            }
4020        }
4021        Type t = check(tree, types.lub(multicatchTypes.toList()),
4022                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4023        if (t.hasTag(CLASS)) {
4024            List<Type> alternatives =
4025                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4026            t = new UnionClassType((ClassType) t, alternatives);
4027        }
4028        tree.type = result = t;
4029    }
4030
4031    public void visitTypeIntersection(JCTypeIntersection tree) {
4032        attribTypes(tree.bounds, env);
4033        tree.type = result = checkIntersection(tree, tree.bounds);
4034    }
4035
4036    public void visitTypeParameter(JCTypeParameter tree) {
4037        TypeVar typeVar = (TypeVar) tree.type;
4038
4039        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4040            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4041        }
4042
4043        if (!typeVar.bound.isErroneous()) {
4044            //fixup type-parameter bound computed in 'attribTypeVariables'
4045            typeVar.bound = checkIntersection(tree, tree.bounds);
4046        }
4047    }
4048
4049    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4050        Set<Type> boundSet = new HashSet<>();
4051        if (bounds.nonEmpty()) {
4052            // accept class or interface or typevar as first bound.
4053            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4054            boundSet.add(types.erasure(bounds.head.type));
4055            if (bounds.head.type.isErroneous()) {
4056                return bounds.head.type;
4057            }
4058            else if (bounds.head.type.hasTag(TYPEVAR)) {
4059                // if first bound was a typevar, do not accept further bounds.
4060                if (bounds.tail.nonEmpty()) {
4061                    log.error(bounds.tail.head.pos(),
4062                              "type.var.may.not.be.followed.by.other.bounds");
4063                    return bounds.head.type;
4064                }
4065            } else {
4066                // if first bound was a class or interface, accept only interfaces
4067                // as further bounds.
4068                for (JCExpression bound : bounds.tail) {
4069                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4070                    if (bound.type.isErroneous()) {
4071                        bounds = List.of(bound);
4072                    }
4073                    else if (bound.type.hasTag(CLASS)) {
4074                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4075                    }
4076                }
4077            }
4078        }
4079
4080        if (bounds.length() == 0) {
4081            return syms.objectType;
4082        } else if (bounds.length() == 1) {
4083            return bounds.head.type;
4084        } else {
4085            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4086            // ... the variable's bound is a class type flagged COMPOUND
4087            // (see comment for TypeVar.bound).
4088            // In this case, generate a class tree that represents the
4089            // bound class, ...
4090            JCExpression extending;
4091            List<JCExpression> implementing;
4092            if (!bounds.head.type.isInterface()) {
4093                extending = bounds.head;
4094                implementing = bounds.tail;
4095            } else {
4096                extending = null;
4097                implementing = bounds;
4098            }
4099            JCClassDecl cd = make.at(tree).ClassDef(
4100                make.Modifiers(PUBLIC | ABSTRACT),
4101                names.empty, List.<JCTypeParameter>nil(),
4102                extending, implementing, List.<JCTree>nil());
4103
4104            ClassSymbol c = (ClassSymbol)owntype.tsym;
4105            Assert.check((c.flags() & COMPOUND) != 0);
4106            cd.sym = c;
4107            c.sourcefile = env.toplevel.sourcefile;
4108
4109            // ... and attribute the bound class
4110            c.flags_field |= UNATTRIBUTED;
4111            Env<AttrContext> cenv = enter.classEnv(cd, env);
4112            typeEnvs.put(c, cenv);
4113            attribClass(c);
4114            return owntype;
4115        }
4116    }
4117
4118    public void visitWildcard(JCWildcard tree) {
4119        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4120        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4121            ? syms.objectType
4122            : attribType(tree.inner, env);
4123        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4124                                              tree.kind.kind,
4125                                              syms.boundClass),
4126                KindSelector.TYP, resultInfo);
4127    }
4128
4129    public void visitAnnotation(JCAnnotation tree) {
4130        Assert.error("should be handled in annotate");
4131    }
4132
4133    public void visitAnnotatedType(JCAnnotatedType tree) {
4134        attribAnnotationTypes(tree.annotations, env);
4135        Type underlyingType = attribType(tree.underlyingType, env);
4136        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4137
4138        if (!env.info.isNewClass)
4139            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4140        result = tree.type = annotatedType;
4141    }
4142
4143    public void visitErroneous(JCErroneous tree) {
4144        if (tree.errs != null)
4145            for (JCTree err : tree.errs)
4146                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4147        result = tree.type = syms.errType;
4148    }
4149
4150    /** Default visitor method for all other trees.
4151     */
4152    public void visitTree(JCTree tree) {
4153        throw new AssertionError();
4154    }
4155
4156    /**
4157     * Attribute an env for either a top level tree or class declaration.
4158     */
4159    public void attrib(Env<AttrContext> env) {
4160        if (env.tree.hasTag(TOPLEVEL))
4161            attribTopLevel(env);
4162        else
4163            attribClass(env.tree.pos(), env.enclClass.sym);
4164    }
4165
4166    /**
4167     * Attribute a top level tree. These trees are encountered when the
4168     * package declaration has annotations.
4169     */
4170    public void attribTopLevel(Env<AttrContext> env) {
4171        JCCompilationUnit toplevel = env.toplevel;
4172        try {
4173            annotate.flush();
4174        } catch (CompletionFailure ex) {
4175            chk.completionError(toplevel.pos(), ex);
4176        }
4177    }
4178
4179    /** Main method: attribute class definition associated with given class symbol.
4180     *  reporting completion failures at the given position.
4181     *  @param pos The source position at which completion errors are to be
4182     *             reported.
4183     *  @param c   The class symbol whose definition will be attributed.
4184     */
4185    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4186        try {
4187            annotate.flush();
4188            attribClass(c);
4189        } catch (CompletionFailure ex) {
4190            chk.completionError(pos, ex);
4191        }
4192    }
4193
4194    /** Attribute class definition associated with given class symbol.
4195     *  @param c   The class symbol whose definition will be attributed.
4196     */
4197    void attribClass(ClassSymbol c) throws CompletionFailure {
4198        if (c.type.hasTag(ERROR)) return;
4199
4200        // Check for cycles in the inheritance graph, which can arise from
4201        // ill-formed class files.
4202        chk.checkNonCyclic(null, c.type);
4203
4204        Type st = types.supertype(c.type);
4205        if ((c.flags_field & Flags.COMPOUND) == 0) {
4206            // First, attribute superclass.
4207            if (st.hasTag(CLASS))
4208                attribClass((ClassSymbol)st.tsym);
4209
4210            // Next attribute owner, if it is a class.
4211            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4212                attribClass((ClassSymbol)c.owner);
4213        }
4214
4215        // The previous operations might have attributed the current class
4216        // if there was a cycle. So we test first whether the class is still
4217        // UNATTRIBUTED.
4218        if ((c.flags_field & UNATTRIBUTED) != 0) {
4219            c.flags_field &= ~UNATTRIBUTED;
4220
4221            // Get environment current at the point of class definition.
4222            Env<AttrContext> env = typeEnvs.get(c);
4223
4224            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4225            // because the annotations were not available at the time the env was created. Therefore,
4226            // we look up the environment chain for the first enclosing environment for which the
4227            // lint value is set. Typically, this is the parent env, but might be further if there
4228            // are any envs created as a result of TypeParameter nodes.
4229            Env<AttrContext> lintEnv = env;
4230            while (lintEnv.info.lint == null)
4231                lintEnv = lintEnv.next;
4232
4233            // Having found the enclosing lint value, we can initialize the lint value for this class
4234            env.info.lint = lintEnv.info.lint.augment(c);
4235
4236            Lint prevLint = chk.setLint(env.info.lint);
4237            JavaFileObject prev = log.useSource(c.sourcefile);
4238            ResultInfo prevReturnRes = env.info.returnResult;
4239
4240            try {
4241                deferredLintHandler.flush(env.tree);
4242                env.info.returnResult = null;
4243                // java.lang.Enum may not be subclassed by a non-enum
4244                if (st.tsym == syms.enumSym &&
4245                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4246                    log.error(env.tree.pos(), "enum.no.subclassing");
4247
4248                // Enums may not be extended by source-level classes
4249                if (st.tsym != null &&
4250                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4251                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4252                    log.error(env.tree.pos(), "enum.types.not.extensible");
4253                }
4254
4255                if (isSerializable(c.type)) {
4256                    env.info.isSerializable = true;
4257                }
4258
4259                attribClassBody(env, c);
4260
4261                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4262                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4263                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4264            } finally {
4265                env.info.returnResult = prevReturnRes;
4266                log.useSource(prev);
4267                chk.setLint(prevLint);
4268            }
4269
4270        }
4271    }
4272
4273    public void visitImport(JCImport tree) {
4274        // nothing to do
4275    }
4276
4277    /** Finish the attribution of a class. */
4278    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4279        JCClassDecl tree = (JCClassDecl)env.tree;
4280        Assert.check(c == tree.sym);
4281
4282        // Validate type parameters, supertype and interfaces.
4283        attribStats(tree.typarams, env);
4284        if (!c.isAnonymous()) {
4285            //already checked if anonymous
4286            chk.validate(tree.typarams, env);
4287            chk.validate(tree.extending, env);
4288            chk.validate(tree.implementing, env);
4289        }
4290
4291        c.markAbstractIfNeeded(types);
4292
4293        // If this is a non-abstract class, check that it has no abstract
4294        // methods or unimplemented methods of an implemented interface.
4295        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4296            if (!relax)
4297                chk.checkAllDefined(tree.pos(), c);
4298        }
4299
4300        if ((c.flags() & ANNOTATION) != 0) {
4301            if (tree.implementing.nonEmpty())
4302                log.error(tree.implementing.head.pos(),
4303                          "cant.extend.intf.annotation");
4304            if (tree.typarams.nonEmpty())
4305                log.error(tree.typarams.head.pos(),
4306                          "intf.annotation.cant.have.type.params");
4307
4308            // If this annotation type has a @Repeatable, validate
4309            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4310            // If this annotation type has a @Repeatable, validate
4311            if (repeatable != null) {
4312                // get diagnostic position for error reporting
4313                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4314                Assert.checkNonNull(cbPos);
4315
4316                chk.validateRepeatable(c, repeatable, cbPos);
4317            }
4318        } else {
4319            // Check that all extended classes and interfaces
4320            // are compatible (i.e. no two define methods with same arguments
4321            // yet different return types).  (JLS 8.4.6.3)
4322            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4323            if (allowDefaultMethods) {
4324                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4325            }
4326        }
4327
4328        // Check that class does not import the same parameterized interface
4329        // with two different argument lists.
4330        chk.checkClassBounds(tree.pos(), c.type);
4331
4332        tree.type = c.type;
4333
4334        for (List<JCTypeParameter> l = tree.typarams;
4335             l.nonEmpty(); l = l.tail) {
4336             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4337        }
4338
4339        // Check that a generic class doesn't extend Throwable
4340        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4341            log.error(tree.extending.pos(), "generic.throwable");
4342
4343        // Check that all methods which implement some
4344        // method conform to the method they implement.
4345        chk.checkImplementations(tree);
4346
4347        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4348        checkAutoCloseable(tree.pos(), env, c.type);
4349
4350        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4351            // Attribute declaration
4352            attribStat(l.head, env);
4353            // Check that declarations in inner classes are not static (JLS 8.1.2)
4354            // Make an exception for static constants.
4355            if (c.owner.kind != PCK &&
4356                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4357                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4358                Symbol sym = null;
4359                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4360                if (sym == null ||
4361                    sym.kind != VAR ||
4362                    ((VarSymbol) sym).getConstValue() == null)
4363                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4364            }
4365        }
4366
4367        // Check for cycles among non-initial constructors.
4368        chk.checkCyclicConstructors(tree);
4369
4370        // Check for cycles among annotation elements.
4371        chk.checkNonCyclicElements(tree);
4372
4373        // Check for proper use of serialVersionUID
4374        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4375            isSerializable(c.type) &&
4376            (c.flags() & Flags.ENUM) == 0 &&
4377            checkForSerial(c)) {
4378            checkSerialVersionUID(tree, c);
4379        }
4380        if (allowTypeAnnos) {
4381            // Correctly organize the postions of the type annotations
4382            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4383
4384            // Check type annotations applicability rules
4385            validateTypeAnnotations(tree, false);
4386        }
4387    }
4388        // where
4389        boolean checkForSerial(ClassSymbol c) {
4390            if ((c.flags() & ABSTRACT) == 0) {
4391                return true;
4392            } else {
4393                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4394            }
4395        }
4396
4397        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4398            @Override
4399            public boolean accepts(Symbol s) {
4400                return s.kind == MTH &&
4401                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4402            }
4403        };
4404
4405        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4406        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4407            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4408                if (types.isSameType(al.head.annotationType.type, t))
4409                    return al.head.pos();
4410            }
4411
4412            return null;
4413        }
4414
4415        /** check if a type is a subtype of Serializable, if that is available. */
4416        boolean isSerializable(Type t) {
4417            try {
4418                syms.serializableType.complete();
4419            }
4420            catch (CompletionFailure e) {
4421                return false;
4422            }
4423            return types.isSubtype(t, syms.serializableType);
4424        }
4425
4426        /** Check that an appropriate serialVersionUID member is defined. */
4427        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4428
4429            // check for presence of serialVersionUID
4430            VarSymbol svuid = null;
4431            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4432                if (sym.kind == VAR) {
4433                    svuid = (VarSymbol)sym;
4434                    break;
4435                }
4436            }
4437
4438            if (svuid == null) {
4439                log.warning(LintCategory.SERIAL,
4440                        tree.pos(), "missing.SVUID", c);
4441                return;
4442            }
4443
4444            // check that it is static final
4445            if ((svuid.flags() & (STATIC | FINAL)) !=
4446                (STATIC | FINAL))
4447                log.warning(LintCategory.SERIAL,
4448                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4449
4450            // check that it is long
4451            else if (!svuid.type.hasTag(LONG))
4452                log.warning(LintCategory.SERIAL,
4453                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4454
4455            // check constant
4456            else if (svuid.getConstValue() == null)
4457                log.warning(LintCategory.SERIAL,
4458                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4459        }
4460
4461    private Type capture(Type type) {
4462        return types.capture(type);
4463    }
4464
4465    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4466        tree.accept(new TypeAnnotationsValidator(sigOnly));
4467    }
4468    //where
4469    private final class TypeAnnotationsValidator extends TreeScanner {
4470
4471        private final boolean sigOnly;
4472        public TypeAnnotationsValidator(boolean sigOnly) {
4473            this.sigOnly = sigOnly;
4474        }
4475
4476        public void visitAnnotation(JCAnnotation tree) {
4477            chk.validateTypeAnnotation(tree, false);
4478            super.visitAnnotation(tree);
4479        }
4480        public void visitAnnotatedType(JCAnnotatedType tree) {
4481            if (!tree.underlyingType.type.isErroneous()) {
4482                super.visitAnnotatedType(tree);
4483            }
4484        }
4485        public void visitTypeParameter(JCTypeParameter tree) {
4486            chk.validateTypeAnnotations(tree.annotations, true);
4487            scan(tree.bounds);
4488            // Don't call super.
4489            // This is needed because above we call validateTypeAnnotation with
4490            // false, which would forbid annotations on type parameters.
4491            // super.visitTypeParameter(tree);
4492        }
4493        public void visitMethodDef(JCMethodDecl tree) {
4494            if (tree.recvparam != null &&
4495                    !tree.recvparam.vartype.type.isErroneous()) {
4496                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4497                        tree.recvparam.vartype.type.tsym);
4498            }
4499            if (tree.restype != null && tree.restype.type != null) {
4500                validateAnnotatedType(tree.restype, tree.restype.type);
4501            }
4502            if (sigOnly) {
4503                scan(tree.mods);
4504                scan(tree.restype);
4505                scan(tree.typarams);
4506                scan(tree.recvparam);
4507                scan(tree.params);
4508                scan(tree.thrown);
4509            } else {
4510                scan(tree.defaultValue);
4511                scan(tree.body);
4512            }
4513        }
4514        public void visitVarDef(final JCVariableDecl tree) {
4515            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4516            if (tree.sym != null && tree.sym.type != null)
4517                validateAnnotatedType(tree.vartype, tree.sym.type);
4518            scan(tree.mods);
4519            scan(tree.vartype);
4520            if (!sigOnly) {
4521                scan(tree.init);
4522            }
4523        }
4524        public void visitTypeCast(JCTypeCast tree) {
4525            if (tree.clazz != null && tree.clazz.type != null)
4526                validateAnnotatedType(tree.clazz, tree.clazz.type);
4527            super.visitTypeCast(tree);
4528        }
4529        public void visitTypeTest(JCInstanceOf tree) {
4530            if (tree.clazz != null && tree.clazz.type != null)
4531                validateAnnotatedType(tree.clazz, tree.clazz.type);
4532            super.visitTypeTest(tree);
4533        }
4534        public void visitNewClass(JCNewClass tree) {
4535            if (tree.clazz != null && tree.clazz.type != null) {
4536                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4537                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4538                            tree.clazz.type.tsym);
4539                }
4540                if (tree.def != null) {
4541                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4542                }
4543
4544                validateAnnotatedType(tree.clazz, tree.clazz.type);
4545            }
4546            super.visitNewClass(tree);
4547        }
4548        public void visitNewArray(JCNewArray tree) {
4549            if (tree.elemtype != null && tree.elemtype.type != null) {
4550                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4551                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4552                            tree.elemtype.type.tsym);
4553                }
4554                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4555            }
4556            super.visitNewArray(tree);
4557        }
4558        public void visitClassDef(JCClassDecl tree) {
4559            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4560            if (sigOnly) {
4561                scan(tree.mods);
4562                scan(tree.typarams);
4563                scan(tree.extending);
4564                scan(tree.implementing);
4565            }
4566            for (JCTree member : tree.defs) {
4567                if (member.hasTag(Tag.CLASSDEF)) {
4568                    continue;
4569                }
4570                scan(member);
4571            }
4572        }
4573        public void visitBlock(JCBlock tree) {
4574            if (!sigOnly) {
4575                scan(tree.stats);
4576            }
4577        }
4578
4579        /* I would want to model this after
4580         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4581         * and override visitSelect and visitTypeApply.
4582         * However, we only set the annotated type in the top-level type
4583         * of the symbol.
4584         * Therefore, we need to override each individual location where a type
4585         * can occur.
4586         */
4587        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4588            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4589
4590            if (type.isPrimitiveOrVoid()) {
4591                return;
4592            }
4593
4594            JCTree enclTr = errtree;
4595            Type enclTy = type;
4596
4597            boolean repeat = true;
4598            while (repeat) {
4599                if (enclTr.hasTag(TYPEAPPLY)) {
4600                    List<Type> tyargs = enclTy.getTypeArguments();
4601                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4602                    if (trargs.length() > 0) {
4603                        // Nothing to do for diamonds
4604                        if (tyargs.length() == trargs.length()) {
4605                            for (int i = 0; i < tyargs.length(); ++i) {
4606                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4607                            }
4608                        }
4609                        // If the lengths don't match, it's either a diamond
4610                        // or some nested type that redundantly provides
4611                        // type arguments in the tree.
4612                    }
4613
4614                    // Look at the clazz part of a generic type
4615                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4616                }
4617
4618                if (enclTr.hasTag(SELECT)) {
4619                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4620                    if (enclTy != null &&
4621                            !enclTy.hasTag(NONE)) {
4622                        enclTy = enclTy.getEnclosingType();
4623                    }
4624                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4625                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4626                    if (enclTy == null || enclTy.hasTag(NONE)) {
4627                        if (at.getAnnotations().size() == 1) {
4628                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4629                        } else {
4630                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4631                            for (JCAnnotation an : at.getAnnotations()) {
4632                                comps.add(an.attribute);
4633                            }
4634                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4635                        }
4636                        repeat = false;
4637                    }
4638                    enclTr = at.underlyingType;
4639                    // enclTy doesn't need to be changed
4640                } else if (enclTr.hasTag(IDENT)) {
4641                    repeat = false;
4642                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4643                    JCWildcard wc = (JCWildcard) enclTr;
4644                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4645                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4646                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4647                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4648                    } else {
4649                        // Nothing to do for UNBOUND
4650                    }
4651                    repeat = false;
4652                } else if (enclTr.hasTag(TYPEARRAY)) {
4653                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4654                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4655                    repeat = false;
4656                } else if (enclTr.hasTag(TYPEUNION)) {
4657                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4658                    for (JCTree t : ut.getTypeAlternatives()) {
4659                        validateAnnotatedType(t, t.type);
4660                    }
4661                    repeat = false;
4662                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4663                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4664                    for (JCTree t : it.getBounds()) {
4665                        validateAnnotatedType(t, t.type);
4666                    }
4667                    repeat = false;
4668                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4669                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4670                    repeat = false;
4671                } else {
4672                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4673                            " within: "+ errtree + " with kind: " + errtree.getKind());
4674                }
4675            }
4676        }
4677
4678        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4679                Symbol sym) {
4680            // Ensure that no declaration annotations are present.
4681            // Note that a tree type might be an AnnotatedType with
4682            // empty annotations, if only declaration annotations were given.
4683            // This method will raise an error for such a type.
4684            for (JCAnnotation ai : annotations) {
4685                if (!ai.type.isErroneous() &&
4686                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4687                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4688                }
4689            }
4690        }
4691    }
4692
4693    // <editor-fold desc="post-attribution visitor">
4694
4695    /**
4696     * Handle missing types/symbols in an AST. This routine is useful when
4697     * the compiler has encountered some errors (which might have ended up
4698     * terminating attribution abruptly); if the compiler is used in fail-over
4699     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4700     * prevents NPE to be progagated during subsequent compilation steps.
4701     */
4702    public void postAttr(JCTree tree) {
4703        new PostAttrAnalyzer().scan(tree);
4704    }
4705
4706    class PostAttrAnalyzer extends TreeScanner {
4707
4708        private void initTypeIfNeeded(JCTree that) {
4709            if (that.type == null) {
4710                if (that.hasTag(METHODDEF)) {
4711                    that.type = dummyMethodType((JCMethodDecl)that);
4712                } else {
4713                    that.type = syms.unknownType;
4714                }
4715            }
4716        }
4717
4718        /* Construct a dummy method type. If we have a method declaration,
4719         * and the declared return type is void, then use that return type
4720         * instead of UNKNOWN to avoid spurious error messages in lambda
4721         * bodies (see:JDK-8041704).
4722         */
4723        private Type dummyMethodType(JCMethodDecl md) {
4724            Type restype = syms.unknownType;
4725            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4726                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4727                if (prim.typetag == VOID)
4728                    restype = syms.voidType;
4729            }
4730            return new MethodType(List.<Type>nil(), restype,
4731                                  List.<Type>nil(), syms.methodClass);
4732        }
4733        private Type dummyMethodType() {
4734            return dummyMethodType(null);
4735        }
4736
4737        @Override
4738        public void scan(JCTree tree) {
4739            if (tree == null) return;
4740            if (tree instanceof JCExpression) {
4741                initTypeIfNeeded(tree);
4742            }
4743            super.scan(tree);
4744        }
4745
4746        @Override
4747        public void visitIdent(JCIdent that) {
4748            if (that.sym == null) {
4749                that.sym = syms.unknownSymbol;
4750            }
4751        }
4752
4753        @Override
4754        public void visitSelect(JCFieldAccess that) {
4755            if (that.sym == null) {
4756                that.sym = syms.unknownSymbol;
4757            }
4758            super.visitSelect(that);
4759        }
4760
4761        @Override
4762        public void visitClassDef(JCClassDecl that) {
4763            initTypeIfNeeded(that);
4764            if (that.sym == null) {
4765                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4766            }
4767            super.visitClassDef(that);
4768        }
4769
4770        @Override
4771        public void visitMethodDef(JCMethodDecl that) {
4772            initTypeIfNeeded(that);
4773            if (that.sym == null) {
4774                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4775            }
4776            super.visitMethodDef(that);
4777        }
4778
4779        @Override
4780        public void visitVarDef(JCVariableDecl that) {
4781            initTypeIfNeeded(that);
4782            if (that.sym == null) {
4783                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4784                that.sym.adr = 0;
4785            }
4786            super.visitVarDef(that);
4787        }
4788
4789        @Override
4790        public void visitNewClass(JCNewClass that) {
4791            if (that.constructor == null) {
4792                that.constructor = new MethodSymbol(0, names.init,
4793                        dummyMethodType(), syms.noSymbol);
4794            }
4795            if (that.constructorType == null) {
4796                that.constructorType = syms.unknownType;
4797            }
4798            super.visitNewClass(that);
4799        }
4800
4801        @Override
4802        public void visitAssignop(JCAssignOp that) {
4803            if (that.operator == null) {
4804                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4805                        -1, syms.noSymbol);
4806            }
4807            super.visitAssignop(that);
4808        }
4809
4810        @Override
4811        public void visitBinary(JCBinary that) {
4812            if (that.operator == null) {
4813                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4814                        -1, syms.noSymbol);
4815            }
4816            super.visitBinary(that);
4817        }
4818
4819        @Override
4820        public void visitUnary(JCUnary that) {
4821            if (that.operator == null) {
4822                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4823                        -1, syms.noSymbol);
4824            }
4825            super.visitUnary(that);
4826        }
4827
4828        @Override
4829        public void visitLambda(JCLambda that) {
4830            super.visitLambda(that);
4831            if (that.targets == null) {
4832                that.targets = List.nil();
4833            }
4834        }
4835
4836        @Override
4837        public void visitReference(JCMemberReference that) {
4838            super.visitReference(that);
4839            if (that.sym == null) {
4840                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4841                        syms.noSymbol);
4842            }
4843            if (that.targets == null) {
4844                that.targets = List.nil();
4845            }
4846        }
4847    }
4848    // </editor-fold>
4849}
4850