Attr.java revision 2877:62e285806e83
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.code.TypeMetadata.Annotations;
44import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
45import com.sun.tools.javac.comp.Check.CheckContext;
46import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
47import com.sun.tools.javac.comp.Infer.InferenceContext;
48import com.sun.tools.javac.comp.Infer.FreeTypeListener;
49import com.sun.tools.javac.jvm.*;
50import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
51import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
52import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
53import com.sun.tools.javac.resources.CompilerProperties.Errors;
54import com.sun.tools.javac.resources.CompilerProperties.Fragments;
55import com.sun.tools.javac.tree.*;
56import com.sun.tools.javac.tree.JCTree.*;
57import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
58import com.sun.tools.javac.util.*;
59import com.sun.tools.javac.util.DefinedBy.Api;
60import com.sun.tools.javac.util.Dependencies.AttributionKind;
61import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
62import com.sun.tools.javac.util.JCDiagnostic.Fragment;
63import com.sun.tools.javac.util.List;
64import static com.sun.tools.javac.code.Flags.*;
65import static com.sun.tools.javac.code.Flags.ANNOTATION;
66import static com.sun.tools.javac.code.Flags.BLOCK;
67import static com.sun.tools.javac.code.Kinds.*;
68import static com.sun.tools.javac.code.Kinds.Kind.*;
69import static com.sun.tools.javac.code.TypeTag.*;
70import static com.sun.tools.javac.code.TypeTag.WILDCARD;
71import static com.sun.tools.javac.tree.JCTree.Tag.*;
72
73/** This is the main context-dependent analysis phase in GJC. It
74 *  encompasses name resolution, type checking and constant folding as
75 *  subtasks. Some subtasks involve auxiliary classes.
76 *  @see Check
77 *  @see Resolve
78 *  @see ConstFold
79 *  @see Infer
80 *
81 *  <p><b>This is NOT part of any supported API.
82 *  If you write code that depends on this, you do so at your own risk.
83 *  This code and its internal interfaces are subject to change or
84 *  deletion without notice.</b>
85 */
86public class Attr extends JCTree.Visitor {
87    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
88
89    final Names names;
90    final Log log;
91    final Symtab syms;
92    final Resolve rs;
93    final Operators operators;
94    final Infer infer;
95    final Analyzer analyzer;
96    final DeferredAttr deferredAttr;
97    final Check chk;
98    final Flow flow;
99    final MemberEnter memberEnter;
100    final TypeEnter typeEnter;
101    final TreeMaker make;
102    final ConstFold cfolder;
103    final Enter enter;
104    final Target target;
105    final Types types;
106    final JCDiagnostic.Factory diags;
107    final TypeAnnotations typeAnnotations;
108    final DeferredLintHandler deferredLintHandler;
109    final TypeEnvs typeEnvs;
110    final Dependencies dependencies;
111    final Annotate annotate;
112
113    public static Attr instance(Context context) {
114        Attr instance = context.get(attrKey);
115        if (instance == null)
116            instance = new Attr(context);
117        return instance;
118    }
119
120    protected Attr(Context context) {
121        context.put(attrKey, this);
122
123        names = Names.instance(context);
124        log = Log.instance(context);
125        syms = Symtab.instance(context);
126        rs = Resolve.instance(context);
127        operators = Operators.instance(context);
128        chk = Check.instance(context);
129        flow = Flow.instance(context);
130        memberEnter = MemberEnter.instance(context);
131        typeEnter = TypeEnter.instance(context);
132        make = TreeMaker.instance(context);
133        enter = Enter.instance(context);
134        infer = Infer.instance(context);
135        analyzer = Analyzer.instance(context);
136        deferredAttr = DeferredAttr.instance(context);
137        cfolder = ConstFold.instance(context);
138        target = Target.instance(context);
139        types = Types.instance(context);
140        diags = JCDiagnostic.Factory.instance(context);
141        annotate = Annotate.instance(context);
142        typeAnnotations = TypeAnnotations.instance(context);
143        deferredLintHandler = DeferredLintHandler.instance(context);
144        typeEnvs = TypeEnvs.instance(context);
145        dependencies = Dependencies.instance(context);
146
147        Options options = Options.instance(context);
148
149        Source source = Source.instance(context);
150        allowStringsInSwitch = source.allowStringsInSwitch();
151        allowPoly = source.allowPoly();
152        allowTypeAnnos = source.allowTypeAnnotations();
153        allowLambda = source.allowLambda();
154        allowDefaultMethods = source.allowDefaultMethods();
155        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
156        sourceName = source.name;
157        relax = (options.isSet("-retrofit") ||
158                options.isSet("-relax"));
159        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
160
161        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
162        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
163        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
164        unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
165        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
166        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
167        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
168
169        noCheckTree = make.at(-1).Skip();
170    }
171
172    /** Switch: relax some constraints for retrofit mode.
173     */
174    boolean relax;
175
176    /** Switch: support target-typing inference
177     */
178    boolean allowPoly;
179
180    /** Switch: support type annotations.
181     */
182    boolean allowTypeAnnos;
183
184    /** Switch: support lambda expressions ?
185     */
186    boolean allowLambda;
187
188    /** Switch: support default methods ?
189     */
190    boolean allowDefaultMethods;
191
192    /** Switch: static interface methods enabled?
193     */
194    boolean allowStaticInterfaceMethods;
195
196    /**
197     * Switch: warn about use of variable before declaration?
198     * RFE: 6425594
199     */
200    boolean useBeforeDeclarationWarning;
201
202    /**
203     * Switch: allow strings in switch?
204     */
205    boolean allowStringsInSwitch;
206
207    /**
208     * Switch: name of source level; used for error reporting.
209     */
210    String sourceName;
211
212    /** Check kind and type of given tree against protokind and prototype.
213     *  If check succeeds, store type in tree and return it.
214     *  If check fails, store errType in tree and return it.
215     *  No checks are performed if the prototype is a method type.
216     *  It is not necessary in this case since we know that kind and type
217     *  are correct.
218     *
219     *  @param tree     The tree whose kind and type is checked
220     *  @param found    The computed type of the tree
221     *  @param ownkind  The computed kind of the tree
222     *  @param resultInfo  The expected result of the tree
223     */
224    Type check(final JCTree tree,
225               final Type found,
226               final KindSelector ownkind,
227               final ResultInfo resultInfo) {
228        return check(tree, found, ownkind, resultInfo, true);
229    }
230    /** Check kind and type of given tree against protokind and prototype.
231     *  If check succeeds, store type in tree and return it.
232     *  If check fails, store errType in tree and return it.
233     *  No checks are performed if the prototype is a method type.
234     *  It is not necessary in this case since we know that kind and type
235     *  are correct.
236     *
237     *  @param tree     The tree whose kind and type is checked
238     *  @param found    The computed type of the tree
239     *  @param ownkind  The computed kind of the tree
240     *  @param resultInfo  The expected result of the tree
241     *  @param recheckPostInference If true and inference is underway, arrange to recheck the tree after inference finishes.
242     */
243    Type check(final JCTree tree,
244               final Type found,
245               final KindSelector ownkind,
246               final ResultInfo resultInfo,
247               boolean recheckPostInference) {
248        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
249        Type owntype;
250        boolean shouldCheck = !found.hasTag(ERROR) &&
251                !resultInfo.pt.hasTag(METHOD) &&
252                !resultInfo.pt.hasTag(FORALL);
253        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
254            log.error(tree.pos(), "unexpected.type",
255            resultInfo.pkind.kindNames(),
256            ownkind.kindNames());
257            owntype = types.createErrorType(found);
258        } else if (allowPoly && inferenceContext.free(found)) {
259            //delay the check if there are inference variables in the found type
260            //this means we are dealing with a partially inferred poly expression
261            owntype = shouldCheck ? resultInfo.pt : found;
262            if (recheckPostInference) {
263                inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
264                        instantiatedContext -> {
265                            ResultInfo pendingResult =
266                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
267                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult, false);
268                        });
269            }
270        } else {
271            owntype = shouldCheck ?
272            resultInfo.check(tree, found) :
273            found;
274        }
275        if (tree != noCheckTree) {
276            tree.type = owntype;
277        }
278        return owntype;
279    }
280
281    /** Is given blank final variable assignable, i.e. in a scope where it
282     *  may be assigned to even though it is final?
283     *  @param v      The blank final variable.
284     *  @param env    The current environment.
285     */
286    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
287        Symbol owner = env.info.scope.owner;
288           // owner refers to the innermost variable, method or
289           // initializer block declaration at this point.
290        return
291            v.owner == owner
292            ||
293            ((owner.name == names.init ||    // i.e. we are in a constructor
294              owner.kind == VAR ||           // i.e. we are in a variable initializer
295              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
296             &&
297             v.owner == owner.owner
298             &&
299             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
300    }
301
302    /** Check that variable can be assigned to.
303     *  @param pos    The current source code position.
304     *  @param v      The assigned varaible
305     *  @param base   If the variable is referred to in a Select, the part
306     *                to the left of the `.', null otherwise.
307     *  @param env    The current environment.
308     */
309    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
310        if ((v.flags() & FINAL) != 0 &&
311            ((v.flags() & HASINIT) != 0
312             ||
313             !((base == null ||
314               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
315               isAssignableAsBlankFinal(v, env)))) {
316            if (v.isResourceVariable()) { //TWR resource
317                log.error(pos, "try.resource.may.not.be.assigned", v);
318            } else {
319                log.error(pos, "cant.assign.val.to.final.var", v);
320            }
321        }
322    }
323
324    /** Does tree represent a static reference to an identifier?
325     *  It is assumed that tree is either a SELECT or an IDENT.
326     *  We have to weed out selects from non-type names here.
327     *  @param tree    The candidate tree.
328     */
329    boolean isStaticReference(JCTree tree) {
330        if (tree.hasTag(SELECT)) {
331            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
332            if (lsym == null || lsym.kind != TYP) {
333                return false;
334            }
335        }
336        return true;
337    }
338
339    /** Is this symbol a type?
340     */
341    static boolean isType(Symbol sym) {
342        return sym != null && sym.kind == TYP;
343    }
344
345    /** The current `this' symbol.
346     *  @param env    The current environment.
347     */
348    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
349        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
350    }
351
352    /** Attribute a parsed identifier.
353     * @param tree Parsed identifier name
354     * @param topLevel The toplevel to use
355     */
356    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
357        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
358        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
359                                           syms.errSymbol.name,
360                                           null, null, null, null);
361        localEnv.enclClass.sym = syms.errSymbol;
362        return tree.accept(identAttributer, localEnv);
363    }
364    // where
365        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
366        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
367            @Override @DefinedBy(Api.COMPILER_TREE)
368            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
369                Symbol site = visit(node.getExpression(), env);
370                if (site.kind == ERR || site.kind == ABSENT_TYP)
371                    return site;
372                Name name = (Name)node.getIdentifier();
373                if (site.kind == PCK) {
374                    env.toplevel.packge = (PackageSymbol)site;
375                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
376                            KindSelector.TYP_PCK);
377                } else {
378                    env.enclClass.sym = (ClassSymbol)site;
379                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
380                }
381            }
382
383            @Override @DefinedBy(Api.COMPILER_TREE)
384            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
385                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
386            }
387        }
388
389    public Type coerce(Type etype, Type ttype) {
390        return cfolder.coerce(etype, ttype);
391    }
392
393    public Type attribType(JCTree node, TypeSymbol sym) {
394        Env<AttrContext> env = typeEnvs.get(sym);
395        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
396        return attribTree(node, localEnv, unknownTypeInfo);
397    }
398
399    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
400        // Attribute qualifying package or class.
401        JCFieldAccess s = (JCFieldAccess)tree.qualid;
402        return attribTree(s.selected, env,
403                          new ResultInfo(tree.staticImport ?
404                                         KindSelector.TYP : KindSelector.TYP_PCK,
405                       Type.noType));
406    }
407
408    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
409        breakTree = tree;
410        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
411        try {
412            attribExpr(expr, env);
413        } catch (BreakAttr b) {
414            return b.env;
415        } catch (AssertionError ae) {
416            if (ae.getCause() instanceof BreakAttr) {
417                return ((BreakAttr)(ae.getCause())).env;
418            } else {
419                throw ae;
420            }
421        } finally {
422            breakTree = null;
423            log.useSource(prev);
424        }
425        return env;
426    }
427
428    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
429        breakTree = tree;
430        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
431        try {
432            attribStat(stmt, env);
433        } catch (BreakAttr b) {
434            return b.env;
435        } catch (AssertionError ae) {
436            if (ae.getCause() instanceof BreakAttr) {
437                return ((BreakAttr)(ae.getCause())).env;
438            } else {
439                throw ae;
440            }
441        } finally {
442            breakTree = null;
443            log.useSource(prev);
444        }
445        return env;
446    }
447
448    private JCTree breakTree = null;
449
450    private static class BreakAttr extends RuntimeException {
451        static final long serialVersionUID = -6924771130405446405L;
452        private Env<AttrContext> env;
453        private BreakAttr(Env<AttrContext> env) {
454            this.env = env;
455        }
456    }
457
458    class ResultInfo {
459        final KindSelector pkind;
460        final Type pt;
461        final CheckContext checkContext;
462
463        ResultInfo(KindSelector pkind, Type pt) {
464            this(pkind, pt, chk.basicHandler);
465        }
466
467        protected ResultInfo(KindSelector pkind,
468                             Type pt, CheckContext checkContext) {
469            this.pkind = pkind;
470            this.pt = pt;
471            this.checkContext = checkContext;
472        }
473
474        protected Type check(final DiagnosticPosition pos, final Type found) {
475            return chk.checkType(pos, found, pt, checkContext);
476        }
477
478        protected ResultInfo dup(Type newPt) {
479            return new ResultInfo(pkind, newPt, checkContext);
480        }
481
482        protected ResultInfo dup(CheckContext newContext) {
483            return new ResultInfo(pkind, pt, newContext);
484        }
485
486        protected ResultInfo dup(Type newPt, CheckContext newContext) {
487            return new ResultInfo(pkind, newPt, newContext);
488        }
489
490        @Override
491        public String toString() {
492            if (pt != null) {
493                return pt.toString();
494            } else {
495                return "";
496            }
497        }
498    }
499
500    class RecoveryInfo extends ResultInfo {
501
502        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
503            super(KindSelector.VAL, Type.recoveryType,
504                  new Check.NestedCheckContext(chk.basicHandler) {
505                @Override
506                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
507                    return deferredAttrContext;
508                }
509                @Override
510                public boolean compatible(Type found, Type req, Warner warn) {
511                    return true;
512                }
513                @Override
514                public void report(DiagnosticPosition pos, JCDiagnostic details) {
515                    chk.basicHandler.report(pos, details);
516                }
517            });
518        }
519    }
520
521    final ResultInfo statInfo;
522    final ResultInfo varAssignmentInfo;
523    final ResultInfo unknownAnyPolyInfo;
524    final ResultInfo unknownExprInfo;
525    final ResultInfo unknownTypeInfo;
526    final ResultInfo unknownTypeExprInfo;
527    final ResultInfo recoveryInfo;
528
529    Type pt() {
530        return resultInfo.pt;
531    }
532
533    KindSelector pkind() {
534        return resultInfo.pkind;
535    }
536
537/* ************************************************************************
538 * Visitor methods
539 *************************************************************************/
540
541    /** Visitor argument: the current environment.
542     */
543    Env<AttrContext> env;
544
545    /** Visitor argument: the currently expected attribution result.
546     */
547    ResultInfo resultInfo;
548
549    /** Visitor result: the computed type.
550     */
551    Type result;
552
553    /** Synthetic tree to be used during 'fake' checks.
554     */
555    JCTree noCheckTree;
556
557    /** Visitor method: attribute a tree, catching any completion failure
558     *  exceptions. Return the tree's type.
559     *
560     *  @param tree    The tree to be visited.
561     *  @param env     The environment visitor argument.
562     *  @param resultInfo   The result info visitor argument.
563     */
564    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
565        Env<AttrContext> prevEnv = this.env;
566        ResultInfo prevResult = this.resultInfo;
567        try {
568            this.env = env;
569            this.resultInfo = resultInfo;
570            tree.accept(this);
571            if (tree == breakTree &&
572                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
573                throw new BreakAttr(copyEnv(env));
574            }
575            return result;
576        } catch (CompletionFailure ex) {
577            tree.type = syms.errType;
578            return chk.completionError(tree.pos(), ex);
579        } finally {
580            this.env = prevEnv;
581            this.resultInfo = prevResult;
582        }
583    }
584
585    Env<AttrContext> copyEnv(Env<AttrContext> env) {
586        Env<AttrContext> newEnv =
587                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
588        if (newEnv.outer != null) {
589            newEnv.outer = copyEnv(newEnv.outer);
590        }
591        return newEnv;
592    }
593
594    WriteableScope copyScope(WriteableScope sc) {
595        WriteableScope newScope = WriteableScope.create(sc.owner);
596        List<Symbol> elemsList = List.nil();
597        for (Symbol sym : sc.getSymbols()) {
598            elemsList = elemsList.prepend(sym);
599        }
600        for (Symbol s : elemsList) {
601            newScope.enter(s);
602        }
603        return newScope;
604    }
605
606    /** Derived visitor method: attribute an expression tree.
607     */
608    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
609        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
610    }
611
612    /** Derived visitor method: attribute an expression tree with
613     *  no constraints on the computed type.
614     */
615    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
616        return attribTree(tree, env, unknownExprInfo);
617    }
618
619    /** Derived visitor method: attribute a type tree.
620     */
621    public Type attribType(JCTree tree, Env<AttrContext> env) {
622        Type result = attribType(tree, env, Type.noType);
623        return result;
624    }
625
626    /** Derived visitor method: attribute a type tree.
627     */
628    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
629        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
630        return result;
631    }
632
633    /** Derived visitor method: attribute a statement or definition tree.
634     */
635    public Type attribStat(JCTree tree, Env<AttrContext> env) {
636        Env<AttrContext> analyzeEnv =
637                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
638        try {
639            return attribTree(tree, env, statInfo);
640        } finally {
641            analyzer.analyzeIfNeeded(tree, analyzeEnv);
642        }
643    }
644
645    /** Attribute a list of expressions, returning a list of types.
646     */
647    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
648        ListBuffer<Type> ts = new ListBuffer<>();
649        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
650            ts.append(attribExpr(l.head, env, pt));
651        return ts.toList();
652    }
653
654    /** Attribute a list of statements, returning nothing.
655     */
656    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
657        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
658            attribStat(l.head, env);
659    }
660
661    /** Attribute the arguments in a method call, returning the method kind.
662     */
663    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
664        KindSelector kind = initialKind;
665        for (JCExpression arg : trees) {
666            Type argtype;
667            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
668                argtype = deferredAttr.new DeferredType(arg, env);
669                kind = KindSelector.of(KindSelector.POLY, kind);
670            } else {
671                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
672            }
673            argtypes.append(argtype);
674        }
675        return kind;
676    }
677
678    /** Attribute a type argument list, returning a list of types.
679     *  Caller is responsible for calling checkRefTypes.
680     */
681    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
682        ListBuffer<Type> argtypes = new ListBuffer<>();
683        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
684            argtypes.append(attribType(l.head, env));
685        return argtypes.toList();
686    }
687
688    /** Attribute a type argument list, returning a list of types.
689     *  Check that all the types are references.
690     */
691    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
692        List<Type> types = attribAnyTypes(trees, env);
693        return chk.checkRefTypes(trees, types);
694    }
695
696    /**
697     * Attribute type variables (of generic classes or methods).
698     * Compound types are attributed later in attribBounds.
699     * @param typarams the type variables to enter
700     * @param env      the current environment
701     */
702    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
703        for (JCTypeParameter tvar : typarams) {
704            dependencies.push(AttributionKind.TVAR, tvar);
705            TypeVar a = (TypeVar)tvar.type;
706            a.tsym.flags_field |= UNATTRIBUTED;
707            a.bound = Type.noType;
708            if (!tvar.bounds.isEmpty()) {
709                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
710                for (JCExpression bound : tvar.bounds.tail)
711                    bounds = bounds.prepend(attribType(bound, env));
712                types.setBounds(a, bounds.reverse());
713            } else {
714                // if no bounds are given, assume a single bound of
715                // java.lang.Object.
716                types.setBounds(a, List.of(syms.objectType));
717            }
718            a.tsym.flags_field &= ~UNATTRIBUTED;
719            dependencies.pop();
720        }
721        for (JCTypeParameter tvar : typarams) {
722            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
723        }
724    }
725
726    /**
727     * Attribute the type references in a list of annotations.
728     */
729    void attribAnnotationTypes(List<JCAnnotation> annotations,
730                               Env<AttrContext> env) {
731        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
732            JCAnnotation a = al.head;
733            attribType(a.annotationType, env);
734        }
735    }
736
737    /**
738     * Attribute a "lazy constant value".
739     *  @param env         The env for the const value
740     *  @param initializer The initializer for the const value
741     *  @param type        The expected type, or null
742     *  @see VarSymbol#setLazyConstValue
743     */
744    public Object attribLazyConstantValue(Env<AttrContext> env,
745                                      JCVariableDecl variable,
746                                      Type type) {
747
748        DiagnosticPosition prevLintPos
749                = deferredLintHandler.setPos(variable.pos());
750
751        try {
752            Type itype = attribExpr(variable.init, env, type);
753            if (itype.constValue() != null) {
754                return coerce(itype, type).constValue();
755            } else {
756                return null;
757            }
758        } finally {
759            deferredLintHandler.setPos(prevLintPos);
760        }
761    }
762
763    /** Attribute type reference in an `extends' or `implements' clause.
764     *  Supertypes of anonymous inner classes are usually already attributed.
765     *
766     *  @param tree              The tree making up the type reference.
767     *  @param env               The environment current at the reference.
768     *  @param classExpected     true if only a class is expected here.
769     *  @param interfaceExpected true if only an interface is expected here.
770     */
771    Type attribBase(JCTree tree,
772                    Env<AttrContext> env,
773                    boolean classExpected,
774                    boolean interfaceExpected,
775                    boolean checkExtensible) {
776        Type t = tree.type != null ?
777            tree.type :
778            attribType(tree, env);
779        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
780    }
781    Type checkBase(Type t,
782                   JCTree tree,
783                   Env<AttrContext> env,
784                   boolean classExpected,
785                   boolean interfaceExpected,
786                   boolean checkExtensible) {
787        if (t.tsym.isAnonymous()) {
788            log.error(tree.pos(), "cant.inherit.from.anon");
789            return types.createErrorType(t);
790        }
791        if (t.isErroneous())
792            return t;
793        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
794            // check that type variable is already visible
795            if (t.getUpperBound() == null) {
796                log.error(tree.pos(), "illegal.forward.ref");
797                return types.createErrorType(t);
798            }
799        } else {
800            t = chk.checkClassType(tree.pos(), t, checkExtensible);
801        }
802        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
803            log.error(tree.pos(), "intf.expected.here");
804            // return errType is necessary since otherwise there might
805            // be undetected cycles which cause attribution to loop
806            return types.createErrorType(t);
807        } else if (checkExtensible &&
808                   classExpected &&
809                   (t.tsym.flags() & INTERFACE) != 0) {
810            log.error(tree.pos(), "no.intf.expected.here");
811            return types.createErrorType(t);
812        }
813        if (checkExtensible &&
814            ((t.tsym.flags() & FINAL) != 0)) {
815            log.error(tree.pos(),
816                      "cant.inherit.from.final", t.tsym);
817        }
818        chk.checkNonCyclic(tree.pos(), t);
819        return t;
820    }
821
822    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
823        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
824        id.type = env.info.scope.owner.enclClass().type;
825        id.sym = env.info.scope.owner.enclClass();
826        return id.type;
827    }
828
829    public void visitClassDef(JCClassDecl tree) {
830        // Local and anonymous classes have not been entered yet, so we need to
831        // do it now.
832        if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
833            enter.classEnter(tree, env);
834        } else {
835            // If this class declaration is part of a class level annotation,
836            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
837            // order to simplify later steps and allow for sensible error
838            // messages.
839            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
840                enter.classEnter(tree, env);
841        }
842
843        ClassSymbol c = tree.sym;
844        if (c == null) {
845            // exit in case something drastic went wrong during enter.
846            result = null;
847        } else {
848            // make sure class has been completed:
849            c.complete();
850
851            // If this class appears as an anonymous class
852            // in a superclass constructor call where
853            // no explicit outer instance is given,
854            // disable implicit outer instance from being passed.
855            // (This would be an illegal access to "this before super").
856            if (env.info.isSelfCall &&
857                env.tree.hasTag(NEWCLASS) &&
858                ((JCNewClass) env.tree).encl == null)
859            {
860                c.flags_field |= NOOUTERTHIS;
861            }
862            attribClass(tree.pos(), c);
863            result = tree.type = c.type;
864        }
865    }
866
867    public void visitMethodDef(JCMethodDecl tree) {
868        MethodSymbol m = tree.sym;
869        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
870
871        Lint lint = env.info.lint.augment(m);
872        Lint prevLint = chk.setLint(lint);
873        MethodSymbol prevMethod = chk.setMethod(m);
874        try {
875            deferredLintHandler.flush(tree.pos());
876            chk.checkDeprecatedAnnotation(tree.pos(), m);
877
878
879            // Create a new environment with local scope
880            // for attributing the method.
881            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
882            localEnv.info.lint = lint;
883
884            attribStats(tree.typarams, localEnv);
885
886            // If we override any other methods, check that we do so properly.
887            // JLS ???
888            if (m.isStatic()) {
889                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
890            } else {
891                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
892            }
893            chk.checkOverride(env, tree, m);
894
895            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
896                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
897            }
898
899            // Enter all type parameters into the local method scope.
900            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
901                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
902
903            ClassSymbol owner = env.enclClass.sym;
904            if ((owner.flags() & ANNOTATION) != 0 &&
905                    tree.params.nonEmpty())
906                log.error(tree.params.head.pos(),
907                        "intf.annotation.members.cant.have.params");
908
909            // Attribute all value parameters.
910            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
911                attribStat(l.head, localEnv);
912            }
913
914            chk.checkVarargsMethodDecl(localEnv, tree);
915
916            // Check that type parameters are well-formed.
917            chk.validate(tree.typarams, localEnv);
918
919            // Check that result type is well-formed.
920            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
921                chk.validate(tree.restype, localEnv);
922
923            // Check that receiver type is well-formed.
924            if (tree.recvparam != null) {
925                // Use a new environment to check the receiver parameter.
926                // Otherwise I get "might not have been initialized" errors.
927                // Is there a better way?
928                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
929                attribType(tree.recvparam, newEnv);
930                chk.validate(tree.recvparam, newEnv);
931            }
932
933            // annotation method checks
934            if ((owner.flags() & ANNOTATION) != 0) {
935                // annotation method cannot have throws clause
936                if (tree.thrown.nonEmpty()) {
937                    log.error(tree.thrown.head.pos(),
938                            "throws.not.allowed.in.intf.annotation");
939                }
940                // annotation method cannot declare type-parameters
941                if (tree.typarams.nonEmpty()) {
942                    log.error(tree.typarams.head.pos(),
943                            "intf.annotation.members.cant.have.type.params");
944                }
945                // validate annotation method's return type (could be an annotation type)
946                chk.validateAnnotationType(tree.restype);
947                // ensure that annotation method does not clash with members of Object/Annotation
948                chk.validateAnnotationMethod(tree.pos(), m);
949            }
950
951            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
952                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
953
954            if (tree.body == null) {
955                // Empty bodies are only allowed for
956                // abstract, native, or interface methods, or for methods
957                // in a retrofit signature class.
958                if (tree.defaultValue != null) {
959                    if ((owner.flags() & ANNOTATION) == 0)
960                        log.error(tree.pos(),
961                                  "default.allowed.in.intf.annotation.member");
962                }
963                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
964                    !relax)
965                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
966            } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
967                if ((owner.flags() & INTERFACE) != 0) {
968                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
969                } else {
970                    log.error(tree.pos(), "abstract.meth.cant.have.body");
971                }
972            } else if ((tree.mods.flags & NATIVE) != 0) {
973                log.error(tree.pos(), "native.meth.cant.have.body");
974            } else {
975                // Add an implicit super() call unless an explicit call to
976                // super(...) or this(...) is given
977                // or we are compiling class java.lang.Object.
978                if (tree.name == names.init && owner.type != syms.objectType) {
979                    JCBlock body = tree.body;
980                    if (body.stats.isEmpty() ||
981                            !TreeInfo.isSelfCall(body.stats.head)) {
982                        body.stats = body.stats.
983                                prepend(typeEnter.SuperCall(make.at(body.pos),
984                                        List.<Type>nil(),
985                                        List.<JCVariableDecl>nil(),
986                                        false));
987                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
988                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
989                            TreeInfo.isSuperCall(body.stats.head)) {
990                        // enum constructors are not allowed to call super
991                        // directly, so make sure there aren't any super calls
992                        // in enum constructors, except in the compiler
993                        // generated one.
994                        log.error(tree.body.stats.head.pos(),
995                                "call.to.super.not.allowed.in.enum.ctor",
996                                env.enclClass.sym);
997                    }
998                }
999
1000                // Attribute all type annotations in the body
1001                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1002                annotate.flush();
1003
1004                // Attribute method body.
1005                attribStat(tree.body, localEnv);
1006            }
1007
1008            localEnv.info.scope.leave();
1009            result = tree.type = m.type;
1010        } finally {
1011            chk.setLint(prevLint);
1012            chk.setMethod(prevMethod);
1013        }
1014    }
1015
1016    public void visitVarDef(JCVariableDecl tree) {
1017        // Local variables have not been entered yet, so we need to do it now:
1018        if (env.info.scope.owner.kind == MTH) {
1019            if (tree.sym != null) {
1020                // parameters have already been entered
1021                env.info.scope.enter(tree.sym);
1022            } else {
1023                try {
1024                    annotate.blockAnnotations();
1025                    memberEnter.memberEnter(tree, env);
1026                } finally {
1027                    annotate.unblockAnnotations();
1028                }
1029            }
1030        } else {
1031            if (tree.init != null) {
1032                // Field initializer expression need to be entered.
1033                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1034                annotate.flush();
1035            }
1036        }
1037
1038        VarSymbol v = tree.sym;
1039        Lint lint = env.info.lint.augment(v);
1040        Lint prevLint = chk.setLint(lint);
1041
1042        // Check that the variable's declared type is well-formed.
1043        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1044                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1045                (tree.sym.flags() & PARAMETER) != 0;
1046        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1047
1048        try {
1049            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1050            deferredLintHandler.flush(tree.pos());
1051            chk.checkDeprecatedAnnotation(tree.pos(), v);
1052
1053            if (tree.init != null) {
1054                if ((v.flags_field & FINAL) == 0 ||
1055                    !memberEnter.needsLazyConstValue(tree.init)) {
1056                    // Not a compile-time constant
1057                    // Attribute initializer in a new environment
1058                    // with the declared variable as owner.
1059                    // Check that initializer conforms to variable's declared type.
1060                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1061                    initEnv.info.lint = lint;
1062                    // In order to catch self-references, we set the variable's
1063                    // declaration position to maximal possible value, effectively
1064                    // marking the variable as undefined.
1065                    initEnv.info.enclVar = v;
1066                    attribExpr(tree.init, initEnv, v.type);
1067                }
1068            }
1069            result = tree.type = v.type;
1070        }
1071        finally {
1072            chk.setLint(prevLint);
1073        }
1074    }
1075
1076    public void visitSkip(JCSkip tree) {
1077        result = null;
1078    }
1079
1080    public void visitBlock(JCBlock tree) {
1081        if (env.info.scope.owner.kind == TYP) {
1082            // Block is a static or instance initializer;
1083            // let the owner of the environment be a freshly
1084            // created BLOCK-method.
1085            Symbol fakeOwner =
1086                new MethodSymbol(tree.flags | BLOCK |
1087                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1088                    env.info.scope.owner);
1089            final Env<AttrContext> localEnv =
1090                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1091
1092            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1093            // Attribute all type annotations in the block
1094            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1095            annotate.flush();
1096            attribStats(tree.stats, localEnv);
1097
1098            {
1099                // Store init and clinit type annotations with the ClassSymbol
1100                // to allow output in Gen.normalizeDefs.
1101                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1102                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1103                if ((tree.flags & STATIC) != 0) {
1104                    cs.appendClassInitTypeAttributes(tas);
1105                } else {
1106                    cs.appendInitTypeAttributes(tas);
1107                }
1108            }
1109        } else {
1110            // Create a new local environment with a local scope.
1111            Env<AttrContext> localEnv =
1112                env.dup(tree, env.info.dup(env.info.scope.dup()));
1113            try {
1114                attribStats(tree.stats, localEnv);
1115            } finally {
1116                localEnv.info.scope.leave();
1117            }
1118        }
1119        result = null;
1120    }
1121
1122    public void visitDoLoop(JCDoWhileLoop tree) {
1123        attribStat(tree.body, env.dup(tree));
1124        attribExpr(tree.cond, env, syms.booleanType);
1125        result = null;
1126    }
1127
1128    public void visitWhileLoop(JCWhileLoop tree) {
1129        attribExpr(tree.cond, env, syms.booleanType);
1130        attribStat(tree.body, env.dup(tree));
1131        result = null;
1132    }
1133
1134    public void visitForLoop(JCForLoop tree) {
1135        Env<AttrContext> loopEnv =
1136            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1137        try {
1138            attribStats(tree.init, loopEnv);
1139            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1140            loopEnv.tree = tree; // before, we were not in loop!
1141            attribStats(tree.step, loopEnv);
1142            attribStat(tree.body, loopEnv);
1143            result = null;
1144        }
1145        finally {
1146            loopEnv.info.scope.leave();
1147        }
1148    }
1149
1150    public void visitForeachLoop(JCEnhancedForLoop tree) {
1151        Env<AttrContext> loopEnv =
1152            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1153        try {
1154            //the Formal Parameter of a for-each loop is not in the scope when
1155            //attributing the for-each expression; we mimick this by attributing
1156            //the for-each expression first (against original scope).
1157            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1158            attribStat(tree.var, loopEnv);
1159            chk.checkNonVoid(tree.pos(), exprType);
1160            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1161            if (elemtype == null) {
1162                // or perhaps expr implements Iterable<T>?
1163                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1164                if (base == null) {
1165                    log.error(tree.expr.pos(),
1166                            "foreach.not.applicable.to.type",
1167                            exprType,
1168                            diags.fragment("type.req.array.or.iterable"));
1169                    elemtype = types.createErrorType(exprType);
1170                } else {
1171                    List<Type> iterableParams = base.allparams();
1172                    elemtype = iterableParams.isEmpty()
1173                        ? syms.objectType
1174                        : types.wildUpperBound(iterableParams.head);
1175                }
1176            }
1177            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1178            loopEnv.tree = tree; // before, we were not in loop!
1179            attribStat(tree.body, loopEnv);
1180            result = null;
1181        }
1182        finally {
1183            loopEnv.info.scope.leave();
1184        }
1185    }
1186
1187    public void visitLabelled(JCLabeledStatement tree) {
1188        // Check that label is not used in an enclosing statement
1189        Env<AttrContext> env1 = env;
1190        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1191            if (env1.tree.hasTag(LABELLED) &&
1192                ((JCLabeledStatement) env1.tree).label == tree.label) {
1193                log.error(tree.pos(), "label.already.in.use",
1194                          tree.label);
1195                break;
1196            }
1197            env1 = env1.next;
1198        }
1199
1200        attribStat(tree.body, env.dup(tree));
1201        result = null;
1202    }
1203
1204    public void visitSwitch(JCSwitch tree) {
1205        Type seltype = attribExpr(tree.selector, env);
1206
1207        Env<AttrContext> switchEnv =
1208            env.dup(tree, env.info.dup(env.info.scope.dup()));
1209
1210        try {
1211
1212            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1213            boolean stringSwitch = false;
1214            if (types.isSameType(seltype, syms.stringType)) {
1215                if (allowStringsInSwitch) {
1216                    stringSwitch = true;
1217                } else {
1218                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1219                }
1220            }
1221            if (!enumSwitch && !stringSwitch)
1222                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1223
1224            // Attribute all cases and
1225            // check that there are no duplicate case labels or default clauses.
1226            Set<Object> labels = new HashSet<>(); // The set of case labels.
1227            boolean hasDefault = false;      // Is there a default label?
1228            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1229                JCCase c = l.head;
1230                if (c.pat != null) {
1231                    if (enumSwitch) {
1232                        Symbol sym = enumConstant(c.pat, seltype);
1233                        if (sym == null) {
1234                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1235                        } else if (!labels.add(sym)) {
1236                            log.error(c.pos(), "duplicate.case.label");
1237                        }
1238                    } else {
1239                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1240                        if (!pattype.hasTag(ERROR)) {
1241                            if (pattype.constValue() == null) {
1242                                log.error(c.pat.pos(),
1243                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1244                            } else if (!labels.add(pattype.constValue())) {
1245                                log.error(c.pos(), "duplicate.case.label");
1246                            }
1247                        }
1248                    }
1249                } else if (hasDefault) {
1250                    log.error(c.pos(), "duplicate.default.label");
1251                } else {
1252                    hasDefault = true;
1253                }
1254                Env<AttrContext> caseEnv =
1255                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1256                try {
1257                    attribStats(c.stats, caseEnv);
1258                } finally {
1259                    caseEnv.info.scope.leave();
1260                    addVars(c.stats, switchEnv.info.scope);
1261                }
1262            }
1263
1264            result = null;
1265        }
1266        finally {
1267            switchEnv.info.scope.leave();
1268        }
1269    }
1270    // where
1271        /** Add any variables defined in stats to the switch scope. */
1272        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1273            for (;stats.nonEmpty(); stats = stats.tail) {
1274                JCTree stat = stats.head;
1275                if (stat.hasTag(VARDEF))
1276                    switchScope.enter(((JCVariableDecl) stat).sym);
1277            }
1278        }
1279    // where
1280    /** Return the selected enumeration constant symbol, or null. */
1281    private Symbol enumConstant(JCTree tree, Type enumType) {
1282        if (tree.hasTag(IDENT)) {
1283            JCIdent ident = (JCIdent)tree;
1284            Name name = ident.name;
1285            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1286                if (sym.kind == VAR) {
1287                    Symbol s = ident.sym = sym;
1288                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1289                    ident.type = s.type;
1290                    return ((s.flags_field & Flags.ENUM) == 0)
1291                        ? null : s;
1292                }
1293            }
1294        }
1295        return null;
1296    }
1297
1298    public void visitSynchronized(JCSynchronized tree) {
1299        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1300        attribStat(tree.body, env);
1301        result = null;
1302    }
1303
1304    public void visitTry(JCTry tree) {
1305        // Create a new local environment with a local
1306        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1307        try {
1308            boolean isTryWithResource = tree.resources.nonEmpty();
1309            // Create a nested environment for attributing the try block if needed
1310            Env<AttrContext> tryEnv = isTryWithResource ?
1311                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1312                localEnv;
1313            try {
1314                // Attribute resource declarations
1315                for (JCTree resource : tree.resources) {
1316                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1317                        @Override
1318                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1319                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1320                        }
1321                    };
1322                    ResultInfo twrResult =
1323                        new ResultInfo(KindSelector.VAR,
1324                                       syms.autoCloseableType,
1325                                       twrContext);
1326                    if (resource.hasTag(VARDEF)) {
1327                        attribStat(resource, tryEnv);
1328                        twrResult.check(resource, resource.type);
1329
1330                        //check that resource type cannot throw InterruptedException
1331                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1332
1333                        VarSymbol var = ((JCVariableDecl) resource).sym;
1334                        var.setData(ElementKind.RESOURCE_VARIABLE);
1335                    } else {
1336                        attribTree(resource, tryEnv, twrResult);
1337                    }
1338                }
1339                // Attribute body
1340                attribStat(tree.body, tryEnv);
1341            } finally {
1342                if (isTryWithResource)
1343                    tryEnv.info.scope.leave();
1344            }
1345
1346            // Attribute catch clauses
1347            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1348                JCCatch c = l.head;
1349                Env<AttrContext> catchEnv =
1350                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1351                try {
1352                    Type ctype = attribStat(c.param, catchEnv);
1353                    if (TreeInfo.isMultiCatch(c)) {
1354                        //multi-catch parameter is implicitly marked as final
1355                        c.param.sym.flags_field |= FINAL | UNION;
1356                    }
1357                    if (c.param.sym.kind == VAR) {
1358                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1359                    }
1360                    chk.checkType(c.param.vartype.pos(),
1361                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1362                                  syms.throwableType);
1363                    attribStat(c.body, catchEnv);
1364                } finally {
1365                    catchEnv.info.scope.leave();
1366                }
1367            }
1368
1369            // Attribute finalizer
1370            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1371            result = null;
1372        }
1373        finally {
1374            localEnv.info.scope.leave();
1375        }
1376    }
1377
1378    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1379        if (!resource.isErroneous() &&
1380            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1381            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1382            Symbol close = syms.noSymbol;
1383            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1384            try {
1385                close = rs.resolveQualifiedMethod(pos,
1386                        env,
1387                        resource,
1388                        names.close,
1389                        List.<Type>nil(),
1390                        List.<Type>nil());
1391            }
1392            finally {
1393                log.popDiagnosticHandler(discardHandler);
1394            }
1395            if (close.kind == MTH &&
1396                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1397                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1398                    env.info.lint.isEnabled(LintCategory.TRY)) {
1399                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1400            }
1401        }
1402    }
1403
1404    public void visitConditional(JCConditional tree) {
1405        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1406
1407        tree.polyKind = (!allowPoly ||
1408                pt().hasTag(NONE) && pt() != Type.recoveryType ||
1409                isBooleanOrNumeric(env, tree)) ?
1410                PolyKind.STANDALONE : PolyKind.POLY;
1411
1412        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1413            //cannot get here (i.e. it means we are returning from void method - which is already an error)
1414            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1415            result = tree.type = types.createErrorType(resultInfo.pt);
1416            return;
1417        }
1418
1419        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1420                unknownExprInfo :
1421                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1422                    //this will use enclosing check context to check compatibility of
1423                    //subexpression against target type; if we are in a method check context,
1424                    //depending on whether boxing is allowed, we could have incompatibilities
1425                    @Override
1426                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
1427                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1428                    }
1429                });
1430
1431        Type truetype = attribTree(tree.truepart, env, condInfo);
1432        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1433
1434        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1435        if (condtype.constValue() != null &&
1436                truetype.constValue() != null &&
1437                falsetype.constValue() != null &&
1438                !owntype.hasTag(NONE)) {
1439            //constant folding
1440            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1441        }
1442        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1443    }
1444    //where
1445        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1446            switch (tree.getTag()) {
1447                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1448                              ((JCLiteral)tree).typetag == BOOLEAN ||
1449                              ((JCLiteral)tree).typetag == BOT;
1450                case LAMBDA: case REFERENCE: return false;
1451                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1452                case CONDEXPR:
1453                    JCConditional condTree = (JCConditional)tree;
1454                    return isBooleanOrNumeric(env, condTree.truepart) &&
1455                            isBooleanOrNumeric(env, condTree.falsepart);
1456                case APPLY:
1457                    JCMethodInvocation speculativeMethodTree =
1458                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1459                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1460                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1461                            env.enclClass.type :
1462                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1463                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1464                    return primitiveOrBoxed(owntype);
1465                case NEWCLASS:
1466                    JCExpression className =
1467                            removeClassParams.translate(((JCNewClass)tree).clazz);
1468                    JCExpression speculativeNewClassTree =
1469                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1470                    return primitiveOrBoxed(speculativeNewClassTree.type);
1471                default:
1472                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1473                    return primitiveOrBoxed(speculativeType);
1474            }
1475        }
1476        //where
1477            boolean primitiveOrBoxed(Type t) {
1478                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1479            }
1480
1481            TreeTranslator removeClassParams = new TreeTranslator() {
1482                @Override
1483                public void visitTypeApply(JCTypeApply tree) {
1484                    result = translate(tree.clazz);
1485                }
1486            };
1487
1488        /** Compute the type of a conditional expression, after
1489         *  checking that it exists.  See JLS 15.25. Does not take into
1490         *  account the special case where condition and both arms
1491         *  are constants.
1492         *
1493         *  @param pos      The source position to be used for error
1494         *                  diagnostics.
1495         *  @param thentype The type of the expression's then-part.
1496         *  @param elsetype The type of the expression's else-part.
1497         */
1498        Type condType(DiagnosticPosition pos,
1499                               Type thentype, Type elsetype) {
1500            // If same type, that is the result
1501            if (types.isSameType(thentype, elsetype))
1502                return thentype.baseType();
1503
1504            Type thenUnboxed = (thentype.isPrimitive())
1505                ? thentype : types.unboxedType(thentype);
1506            Type elseUnboxed = (elsetype.isPrimitive())
1507                ? elsetype : types.unboxedType(elsetype);
1508
1509            // Otherwise, if both arms can be converted to a numeric
1510            // type, return the least numeric type that fits both arms
1511            // (i.e. return larger of the two, or return int if one
1512            // arm is short, the other is char).
1513            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1514                // If one arm has an integer subrange type (i.e., byte,
1515                // short, or char), and the other is an integer constant
1516                // that fits into the subrange, return the subrange type.
1517                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1518                    elseUnboxed.hasTag(INT) &&
1519                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1520                    return thenUnboxed.baseType();
1521                }
1522                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1523                    thenUnboxed.hasTag(INT) &&
1524                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1525                    return elseUnboxed.baseType();
1526                }
1527
1528                for (TypeTag tag : primitiveTags) {
1529                    Type candidate = syms.typeOfTag[tag.ordinal()];
1530                    if (types.isSubtype(thenUnboxed, candidate) &&
1531                        types.isSubtype(elseUnboxed, candidate)) {
1532                        return candidate;
1533                    }
1534                }
1535            }
1536
1537            // Those were all the cases that could result in a primitive
1538            if (thentype.isPrimitive())
1539                thentype = types.boxedClass(thentype).type;
1540            if (elsetype.isPrimitive())
1541                elsetype = types.boxedClass(elsetype).type;
1542
1543            if (types.isSubtype(thentype, elsetype))
1544                return elsetype.baseType();
1545            if (types.isSubtype(elsetype, thentype))
1546                return thentype.baseType();
1547
1548            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1549                log.error(pos, "neither.conditional.subtype",
1550                          thentype, elsetype);
1551                return thentype.baseType();
1552            }
1553
1554            // both are known to be reference types.  The result is
1555            // lub(thentype,elsetype). This cannot fail, as it will
1556            // always be possible to infer "Object" if nothing better.
1557            return types.lub(thentype.baseType(), elsetype.baseType());
1558        }
1559
1560    final static TypeTag[] primitiveTags = new TypeTag[]{
1561        BYTE,
1562        CHAR,
1563        SHORT,
1564        INT,
1565        LONG,
1566        FLOAT,
1567        DOUBLE,
1568        BOOLEAN,
1569    };
1570
1571    public void visitIf(JCIf tree) {
1572        attribExpr(tree.cond, env, syms.booleanType);
1573        attribStat(tree.thenpart, env);
1574        if (tree.elsepart != null)
1575            attribStat(tree.elsepart, env);
1576        chk.checkEmptyIf(tree);
1577        result = null;
1578    }
1579
1580    public void visitExec(JCExpressionStatement tree) {
1581        //a fresh environment is required for 292 inference to work properly ---
1582        //see Infer.instantiatePolymorphicSignatureInstance()
1583        Env<AttrContext> localEnv = env.dup(tree);
1584        attribExpr(tree.expr, localEnv);
1585        result = null;
1586    }
1587
1588    public void visitBreak(JCBreak tree) {
1589        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1590        result = null;
1591    }
1592
1593    public void visitContinue(JCContinue tree) {
1594        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1595        result = null;
1596    }
1597    //where
1598        /** Return the target of a break or continue statement, if it exists,
1599         *  report an error if not.
1600         *  Note: The target of a labelled break or continue is the
1601         *  (non-labelled) statement tree referred to by the label,
1602         *  not the tree representing the labelled statement itself.
1603         *
1604         *  @param pos     The position to be used for error diagnostics
1605         *  @param tag     The tag of the jump statement. This is either
1606         *                 Tree.BREAK or Tree.CONTINUE.
1607         *  @param label   The label of the jump statement, or null if no
1608         *                 label is given.
1609         *  @param env     The environment current at the jump statement.
1610         */
1611        private JCTree findJumpTarget(DiagnosticPosition pos,
1612                                    JCTree.Tag tag,
1613                                    Name label,
1614                                    Env<AttrContext> env) {
1615            // Search environments outwards from the point of jump.
1616            Env<AttrContext> env1 = env;
1617            LOOP:
1618            while (env1 != null) {
1619                switch (env1.tree.getTag()) {
1620                    case LABELLED:
1621                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1622                        if (label == labelled.label) {
1623                            // If jump is a continue, check that target is a loop.
1624                            if (tag == CONTINUE) {
1625                                if (!labelled.body.hasTag(DOLOOP) &&
1626                                        !labelled.body.hasTag(WHILELOOP) &&
1627                                        !labelled.body.hasTag(FORLOOP) &&
1628                                        !labelled.body.hasTag(FOREACHLOOP))
1629                                    log.error(pos, "not.loop.label", label);
1630                                // Found labelled statement target, now go inwards
1631                                // to next non-labelled tree.
1632                                return TreeInfo.referencedStatement(labelled);
1633                            } else {
1634                                return labelled;
1635                            }
1636                        }
1637                        break;
1638                    case DOLOOP:
1639                    case WHILELOOP:
1640                    case FORLOOP:
1641                    case FOREACHLOOP:
1642                        if (label == null) return env1.tree;
1643                        break;
1644                    case SWITCH:
1645                        if (label == null && tag == BREAK) return env1.tree;
1646                        break;
1647                    case LAMBDA:
1648                    case METHODDEF:
1649                    case CLASSDEF:
1650                        break LOOP;
1651                    default:
1652                }
1653                env1 = env1.next;
1654            }
1655            if (label != null)
1656                log.error(pos, "undef.label", label);
1657            else if (tag == CONTINUE)
1658                log.error(pos, "cont.outside.loop");
1659            else
1660                log.error(pos, "break.outside.switch.loop");
1661            return null;
1662        }
1663
1664    public void visitReturn(JCReturn tree) {
1665        // Check that there is an enclosing method which is
1666        // nested within than the enclosing class.
1667        if (env.info.returnResult == null) {
1668            log.error(tree.pos(), "ret.outside.meth");
1669        } else {
1670            // Attribute return expression, if it exists, and check that
1671            // it conforms to result type of enclosing method.
1672            if (tree.expr != null) {
1673                if (env.info.returnResult.pt.hasTag(VOID)) {
1674                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1675                              diags.fragment("unexpected.ret.val"));
1676                }
1677                attribTree(tree.expr, env, env.info.returnResult);
1678            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1679                    !env.info.returnResult.pt.hasTag(NONE)) {
1680                env.info.returnResult.checkContext.report(tree.pos(),
1681                              diags.fragment("missing.ret.val"));
1682            }
1683        }
1684        result = null;
1685    }
1686
1687    public void visitThrow(JCThrow tree) {
1688        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1689        if (allowPoly) {
1690            chk.checkType(tree, owntype, syms.throwableType);
1691        }
1692        result = null;
1693    }
1694
1695    public void visitAssert(JCAssert tree) {
1696        attribExpr(tree.cond, env, syms.booleanType);
1697        if (tree.detail != null) {
1698            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1699        }
1700        result = null;
1701    }
1702
1703     /** Visitor method for method invocations.
1704     *  NOTE: The method part of an application will have in its type field
1705     *        the return type of the method, not the method's type itself!
1706     */
1707    public void visitApply(JCMethodInvocation tree) {
1708        // The local environment of a method application is
1709        // a new environment nested in the current one.
1710        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1711
1712        // The types of the actual method arguments.
1713        List<Type> argtypes;
1714
1715        // The types of the actual method type arguments.
1716        List<Type> typeargtypes = null;
1717
1718        Name methName = TreeInfo.name(tree.meth);
1719
1720        boolean isConstructorCall =
1721            methName == names._this || methName == names._super;
1722
1723        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1724        if (isConstructorCall) {
1725            // We are seeing a ...this(...) or ...super(...) call.
1726            // Check that this is the first statement in a constructor.
1727            if (checkFirstConstructorStat(tree, env)) {
1728
1729                // Record the fact
1730                // that this is a constructor call (using isSelfCall).
1731                localEnv.info.isSelfCall = true;
1732
1733                // Attribute arguments, yielding list of argument types.
1734                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1735                argtypes = argtypesBuf.toList();
1736                typeargtypes = attribTypes(tree.typeargs, localEnv);
1737
1738                // Variable `site' points to the class in which the called
1739                // constructor is defined.
1740                Type site = env.enclClass.sym.type;
1741                if (methName == names._super) {
1742                    if (site == syms.objectType) {
1743                        log.error(tree.meth.pos(), "no.superclass", site);
1744                        site = types.createErrorType(syms.objectType);
1745                    } else {
1746                        site = types.supertype(site);
1747                    }
1748                }
1749
1750                if (site.hasTag(CLASS)) {
1751                    Type encl = site.getEnclosingType();
1752                    while (encl != null && encl.hasTag(TYPEVAR))
1753                        encl = encl.getUpperBound();
1754                    if (encl.hasTag(CLASS)) {
1755                        // we are calling a nested class
1756
1757                        if (tree.meth.hasTag(SELECT)) {
1758                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1759
1760                            // We are seeing a prefixed call, of the form
1761                            //     <expr>.super(...).
1762                            // Check that the prefix expression conforms
1763                            // to the outer instance type of the class.
1764                            chk.checkRefType(qualifier.pos(),
1765                                             attribExpr(qualifier, localEnv,
1766                                                        encl));
1767                        } else if (methName == names._super) {
1768                            // qualifier omitted; check for existence
1769                            // of an appropriate implicit qualifier.
1770                            rs.resolveImplicitThis(tree.meth.pos(),
1771                                                   localEnv, site, true);
1772                        }
1773                    } else if (tree.meth.hasTag(SELECT)) {
1774                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1775                                  site.tsym);
1776                    }
1777
1778                    // if we're calling a java.lang.Enum constructor,
1779                    // prefix the implicit String and int parameters
1780                    if (site.tsym == syms.enumSym)
1781                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1782
1783                    // Resolve the called constructor under the assumption
1784                    // that we are referring to a superclass instance of the
1785                    // current instance (JLS ???).
1786                    boolean selectSuperPrev = localEnv.info.selectSuper;
1787                    localEnv.info.selectSuper = true;
1788                    localEnv.info.pendingResolutionPhase = null;
1789                    Symbol sym = rs.resolveConstructor(
1790                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1791                    localEnv.info.selectSuper = selectSuperPrev;
1792
1793                    // Set method symbol to resolved constructor...
1794                    TreeInfo.setSymbol(tree.meth, sym);
1795
1796                    // ...and check that it is legal in the current context.
1797                    // (this will also set the tree's type)
1798                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1799                    checkId(tree.meth, site, sym, localEnv,
1800                            new ResultInfo(kind, mpt));
1801                }
1802                // Otherwise, `site' is an error type and we do nothing
1803            }
1804            result = tree.type = syms.voidType;
1805        } else {
1806            // Otherwise, we are seeing a regular method call.
1807            // Attribute the arguments, yielding list of argument types, ...
1808            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1809            argtypes = argtypesBuf.toList();
1810            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1811
1812            // ... and attribute the method using as a prototype a methodtype
1813            // whose formal argument types is exactly the list of actual
1814            // arguments (this will also set the method symbol).
1815            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1816            localEnv.info.pendingResolutionPhase = null;
1817            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1818
1819            // Compute the result type.
1820            Type restype = mtype.getReturnType();
1821            if (restype.hasTag(WILDCARD))
1822                throw new AssertionError(mtype);
1823
1824            Type qualifier = (tree.meth.hasTag(SELECT))
1825                    ? ((JCFieldAccess) tree.meth).selected.type
1826                    : env.enclClass.sym.type;
1827            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1828
1829            chk.checkRefTypes(tree.typeargs, typeargtypes);
1830
1831            // Check that value of resulting type is admissible in the
1832            // current context.  Also, capture the return type
1833            result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1834        }
1835        chk.validate(tree.typeargs, localEnv);
1836    }
1837    //where
1838        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1839            if (methodName == names.clone && types.isArray(qualifierType)) {
1840                // as a special case, array.clone() has a result that is
1841                // the same as static type of the array being cloned
1842                return qualifierType;
1843            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1844                // as a special case, x.getClass() has type Class<? extends |X|>
1845                return new ClassType(restype.getEnclosingType(),
1846                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1847                                                               BoundKind.EXTENDS,
1848                                                             syms.boundClass)),
1849                                     restype.tsym,
1850                                     restype.getMetadata());
1851            } else {
1852                return restype;
1853            }
1854        }
1855
1856        /** Check that given application node appears as first statement
1857         *  in a constructor call.
1858         *  @param tree   The application node
1859         *  @param env    The environment current at the application.
1860         */
1861        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1862            JCMethodDecl enclMethod = env.enclMethod;
1863            if (enclMethod != null && enclMethod.name == names.init) {
1864                JCBlock body = enclMethod.body;
1865                if (body.stats.head.hasTag(EXEC) &&
1866                    ((JCExpressionStatement) body.stats.head).expr == tree)
1867                    return true;
1868            }
1869            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1870                      TreeInfo.name(tree.meth));
1871            return false;
1872        }
1873
1874        /** Obtain a method type with given argument types.
1875         */
1876        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1877            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1878            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1879        }
1880
1881    public void visitNewClass(final JCNewClass tree) {
1882        Type owntype = types.createErrorType(tree.type);
1883
1884        // The local environment of a class creation is
1885        // a new environment nested in the current one.
1886        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1887
1888        // The anonymous inner class definition of the new expression,
1889        // if one is defined by it.
1890        JCClassDecl cdef = tree.def;
1891
1892        // If enclosing class is given, attribute it, and
1893        // complete class name to be fully qualified
1894        JCExpression clazz = tree.clazz; // Class field following new
1895        JCExpression clazzid;            // Identifier in class field
1896        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1897        annoclazzid = null;
1898
1899        if (clazz.hasTag(TYPEAPPLY)) {
1900            clazzid = ((JCTypeApply) clazz).clazz;
1901            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1902                annoclazzid = (JCAnnotatedType) clazzid;
1903                clazzid = annoclazzid.underlyingType;
1904            }
1905        } else {
1906            if (clazz.hasTag(ANNOTATED_TYPE)) {
1907                annoclazzid = (JCAnnotatedType) clazz;
1908                clazzid = annoclazzid.underlyingType;
1909            } else {
1910                clazzid = clazz;
1911            }
1912        }
1913
1914        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1915
1916        if (tree.encl != null) {
1917            // We are seeing a qualified new, of the form
1918            //    <expr>.new C <...> (...) ...
1919            // In this case, we let clazz stand for the name of the
1920            // allocated class C prefixed with the type of the qualifier
1921            // expression, so that we can
1922            // resolve it with standard techniques later. I.e., if
1923            // <expr> has type T, then <expr>.new C <...> (...)
1924            // yields a clazz T.C.
1925            Type encltype = chk.checkRefType(tree.encl.pos(),
1926                                             attribExpr(tree.encl, env));
1927            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1928            // from expr to the combined type, or not? Yes, do this.
1929            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1930                                                 ((JCIdent) clazzid).name);
1931
1932            EndPosTable endPosTable = this.env.toplevel.endPositions;
1933            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1934            if (clazz.hasTag(ANNOTATED_TYPE)) {
1935                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1936                List<JCAnnotation> annos = annoType.annotations;
1937
1938                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1939                    clazzid1 = make.at(tree.pos).
1940                        TypeApply(clazzid1,
1941                                  ((JCTypeApply) clazz).arguments);
1942                }
1943
1944                clazzid1 = make.at(tree.pos).
1945                    AnnotatedType(annos, clazzid1);
1946            } else if (clazz.hasTag(TYPEAPPLY)) {
1947                clazzid1 = make.at(tree.pos).
1948                    TypeApply(clazzid1,
1949                              ((JCTypeApply) clazz).arguments);
1950            }
1951
1952            clazz = clazzid1;
1953        }
1954
1955        // Attribute clazz expression and store
1956        // symbol + type back into the attributed tree.
1957        Type clazztype;
1958
1959        try {
1960            env.info.isNewClass = true;
1961            clazztype = TreeInfo.isEnumInit(env.tree) ?
1962                attribIdentAsEnumType(env, (JCIdent)clazz) :
1963                attribType(clazz, env);
1964        } finally {
1965            env.info.isNewClass = false;
1966        }
1967
1968        clazztype = chk.checkDiamond(tree, clazztype);
1969        chk.validate(clazz, localEnv);
1970        if (tree.encl != null) {
1971            // We have to work in this case to store
1972            // symbol + type back into the attributed tree.
1973            tree.clazz.type = clazztype;
1974            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1975            clazzid.type = ((JCIdent) clazzid).sym.type;
1976            if (annoclazzid != null) {
1977                annoclazzid.type = clazzid.type;
1978            }
1979            if (!clazztype.isErroneous()) {
1980                if (cdef != null && clazztype.tsym.isInterface()) {
1981                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1982                } else if (clazztype.tsym.isStatic()) {
1983                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1984                }
1985            }
1986        } else if (!clazztype.tsym.isInterface() &&
1987                   clazztype.getEnclosingType().hasTag(CLASS)) {
1988            // Check for the existence of an apropos outer instance
1989            rs.resolveImplicitThis(tree.pos(), env, clazztype);
1990        }
1991
1992        // Attribute constructor arguments.
1993        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1994        final KindSelector pkind =
1995            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1996        List<Type> argtypes = argtypesBuf.toList();
1997        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1998
1999        // If we have made no mistakes in the class type...
2000        if (clazztype.hasTag(CLASS)) {
2001            // Enums may not be instantiated except implicitly
2002            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2003                (!env.tree.hasTag(VARDEF) ||
2004                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2005                 ((JCVariableDecl) env.tree).init != tree))
2006                log.error(tree.pos(), "enum.cant.be.instantiated");
2007
2008            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2009                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2010            boolean skipNonDiamondPath = false;
2011            // Check that class is not abstract
2012            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2013                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2014                log.error(tree.pos(), "abstract.cant.be.instantiated",
2015                          clazztype.tsym);
2016                skipNonDiamondPath = true;
2017            } else if (cdef != null && clazztype.tsym.isInterface()) {
2018                // Check that no constructor arguments are given to
2019                // anonymous classes implementing an interface
2020                if (!argtypes.isEmpty())
2021                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2022
2023                if (!typeargtypes.isEmpty())
2024                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2025
2026                // Error recovery: pretend no arguments were supplied.
2027                argtypes = List.nil();
2028                typeargtypes = List.nil();
2029                skipNonDiamondPath = true;
2030            }
2031            if (TreeInfo.isDiamond(tree)) {
2032                ClassType site = new ClassType(clazztype.getEnclosingType(),
2033                            clazztype.tsym.type.getTypeArguments(),
2034                                               clazztype.tsym,
2035                                               clazztype.getMetadata());
2036
2037                Env<AttrContext> diamondEnv = localEnv.dup(tree);
2038                diamondEnv.info.selectSuper = cdef != null;
2039                diamondEnv.info.pendingResolutionPhase = null;
2040
2041                //if the type of the instance creation expression is a class type
2042                //apply method resolution inference (JLS 15.12.2.7). The return type
2043                //of the resolved constructor will be a partially instantiated type
2044                Symbol constructor = rs.resolveDiamond(tree.pos(),
2045                            diamondEnv,
2046                            site,
2047                            argtypes,
2048                            typeargtypes);
2049                tree.constructor = constructor.baseSymbol();
2050
2051                final TypeSymbol csym = clazztype.tsym;
2052                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2053                    @Override
2054                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2055                        enclosingContext.report(tree.clazz,
2056                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2057                    }
2058                });
2059                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2060                constructorType = checkId(noCheckTree, site,
2061                        constructor,
2062                        diamondEnv,
2063                        diamondResult);
2064
2065                tree.clazz.type = types.createErrorType(clazztype);
2066                if (!constructorType.isErroneous()) {
2067                    tree.clazz.type = clazz.type = constructorType.getReturnType();
2068                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2069                }
2070                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2071            }
2072
2073            // Resolve the called constructor under the assumption
2074            // that we are referring to a superclass instance of the
2075            // current instance (JLS ???).
2076            else if (!skipNonDiamondPath) {
2077                //the following code alters some of the fields in the current
2078                //AttrContext - hence, the current context must be dup'ed in
2079                //order to avoid downstream failures
2080                Env<AttrContext> rsEnv = localEnv.dup(tree);
2081                rsEnv.info.selectSuper = cdef != null;
2082                rsEnv.info.pendingResolutionPhase = null;
2083                tree.constructor = rs.resolveConstructor(
2084                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2085                if (cdef == null) { //do not check twice!
2086                    tree.constructorType = checkId(noCheckTree,
2087                            clazztype,
2088                            tree.constructor,
2089                            rsEnv,
2090                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2091                    if (rsEnv.info.lastResolveVarargs())
2092                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2093                }
2094            }
2095
2096            if (cdef != null) {
2097                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2098                return;
2099            }
2100
2101            if (tree.constructor != null && tree.constructor.kind == MTH)
2102                owntype = clazztype;
2103        }
2104        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2105        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2106        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2107            //we need to wait for inference to finish and then replace inference vars in the constructor type
2108            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2109                    instantiatedContext -> {
2110                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2111                    });
2112        }
2113        chk.validate(tree.typeargs, localEnv);
2114    }
2115
2116        // where
2117        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2118                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
2119                                                   List<Type> argtypes, List<Type> typeargtypes,
2120                                                   KindSelector pkind) {
2121            // We are seeing an anonymous class instance creation.
2122            // In this case, the class instance creation
2123            // expression
2124            //
2125            //    E.new <typeargs1>C<typargs2>(args) { ... }
2126            //
2127            // is represented internally as
2128            //
2129            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2130            //
2131            // This expression is then *transformed* as follows:
2132            //
2133            // (1) add an extends or implements clause
2134            // (2) add a constructor.
2135            //
2136            // For instance, if C is a class, and ET is the type of E,
2137            // the expression
2138            //
2139            //    E.new <typeargs1>C<typargs2>(args) { ... }
2140            //
2141            // is translated to (where X is a fresh name and typarams is the
2142            // parameter list of the super constructor):
2143            //
2144            //   new <typeargs1>X(<*nullchk*>E, args) where
2145            //     X extends C<typargs2> {
2146            //       <typarams> X(ET e, args) {
2147            //         e.<typeargs1>super(args)
2148            //       }
2149            //       ...
2150            //     }
2151            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2152            final boolean isDiamond = TreeInfo.isDiamond(tree);
2153            if (isDiamond
2154                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2155                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2156                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2157                        instantiatedContext -> {
2158                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2159                            clazz.type = instantiatedContext.asInstType(clazz.type);
2160                            visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, localEnv, argtypes, typeargtypes, pkind);
2161                        });
2162            } else {
2163                if (isDiamond && clazztype.hasTag(CLASS)) {
2164                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2165                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2166                        // One or more types inferred in the previous steps is non-denotable.
2167                        Fragment fragment = Diamond(clazztype.tsym);
2168                        log.error(tree.clazz.pos(),
2169                                Errors.CantApplyDiamond1(
2170                                        fragment,
2171                                        invalidDiamondArgs.size() > 1 ?
2172                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2173                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
2174                    }
2175                    // For <>(){}, inferred types must also be accessible.
2176                    for (Type t : clazztype.getTypeArguments()) {
2177                        rs.checkAccessibleType(env, t);
2178                    }
2179                }
2180
2181                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2182                // false for isInterface call even when the original type is an interface.
2183                boolean implementing = clazztype.tsym.isInterface() ||
2184                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2185
2186                if (implementing) {
2187                    cdef.implementing = List.of(clazz);
2188                } else {
2189                    cdef.extending = clazz;
2190                }
2191
2192                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2193                    isSerializable(clazztype)) {
2194                    localEnv.info.isSerializable = true;
2195                }
2196
2197                attribStat(cdef, localEnv);
2198
2199                List<Type> finalargtypes;
2200                // If an outer instance is given,
2201                // prefix it to the constructor arguments
2202                // and delete it from the new expression
2203                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2204                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2205                    finalargtypes = argtypes.prepend(tree.encl.type);
2206                    tree.encl = null;
2207                } else {
2208                    finalargtypes = argtypes;
2209                }
2210
2211                // Reassign clazztype and recompute constructor. As this necessarily involves
2212                // another attribution pass for deferred types in the case of <>, replicate
2213                // them. Original arguments have right decorations already.
2214                if (isDiamond && pkind.contains(KindSelector.POLY)) {
2215                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2216                }
2217
2218                clazztype = cdef.sym.type;
2219                Symbol sym = tree.constructor = rs.resolveConstructor(
2220                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2221                Assert.check(!sym.kind.isResolutionError());
2222                tree.constructor = sym;
2223                tree.constructorType = checkId(noCheckTree,
2224                        clazztype,
2225                        tree.constructor,
2226                        localEnv,
2227                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes)));
2228            }
2229            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2230                                clazztype : types.createErrorType(tree.type);
2231            result = check(tree, owntype, KindSelector.VAL, resultInfo, false);
2232            chk.validate(tree.typeargs, localEnv);
2233        }
2234
2235    /** Make an attributed null check tree.
2236     */
2237    public JCExpression makeNullCheck(JCExpression arg) {
2238        // optimization: X.this is never null; skip null check
2239        Name name = TreeInfo.name(arg);
2240        if (name == names._this || name == names._super) return arg;
2241
2242        JCTree.Tag optag = NULLCHK;
2243        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2244        tree.operator = operators.resolveUnary(arg, optag, arg.type);
2245        tree.type = arg.type;
2246        return tree;
2247    }
2248
2249    public void visitNewArray(JCNewArray tree) {
2250        Type owntype = types.createErrorType(tree.type);
2251        Env<AttrContext> localEnv = env.dup(tree);
2252        Type elemtype;
2253        if (tree.elemtype != null) {
2254            elemtype = attribType(tree.elemtype, localEnv);
2255            chk.validate(tree.elemtype, localEnv);
2256            owntype = elemtype;
2257            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2258                attribExpr(l.head, localEnv, syms.intType);
2259                owntype = new ArrayType(owntype, syms.arrayClass);
2260            }
2261        } else {
2262            // we are seeing an untyped aggregate { ... }
2263            // this is allowed only if the prototype is an array
2264            if (pt().hasTag(ARRAY)) {
2265                elemtype = types.elemtype(pt());
2266            } else {
2267                if (!pt().hasTag(ERROR)) {
2268                    log.error(tree.pos(), "illegal.initializer.for.type",
2269                              pt());
2270                }
2271                elemtype = types.createErrorType(pt());
2272            }
2273        }
2274        if (tree.elems != null) {
2275            attribExprs(tree.elems, localEnv, elemtype);
2276            owntype = new ArrayType(elemtype, syms.arrayClass);
2277        }
2278        if (!types.isReifiable(elemtype))
2279            log.error(tree.pos(), "generic.array.creation");
2280        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2281    }
2282
2283    /*
2284     * A lambda expression can only be attributed when a target-type is available.
2285     * In addition, if the target-type is that of a functional interface whose
2286     * descriptor contains inference variables in argument position the lambda expression
2287     * is 'stuck' (see DeferredAttr).
2288     */
2289    @Override
2290    public void visitLambda(final JCLambda that) {
2291        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2292            if (pt().hasTag(NONE)) {
2293                //lambda only allowed in assignment or method invocation/cast context
2294                log.error(that.pos(), "unexpected.lambda");
2295            }
2296            result = that.type = types.createErrorType(pt());
2297            return;
2298        }
2299        //create an environment for attribution of the lambda expression
2300        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2301        boolean needsRecovery =
2302                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2303        try {
2304            Type currentTarget = pt();
2305            if (needsRecovery && isSerializable(currentTarget)) {
2306                localEnv.info.isSerializable = true;
2307            }
2308            List<Type> explicitParamTypes = null;
2309            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2310                //attribute lambda parameters
2311                attribStats(that.params, localEnv);
2312                explicitParamTypes = TreeInfo.types(that.params);
2313            }
2314
2315            Type lambdaType;
2316            if (pt() != Type.recoveryType) {
2317                /* We need to adjust the target. If the target is an
2318                 * intersection type, for example: SAM & I1 & I2 ...
2319                 * the target will be updated to SAM
2320                 */
2321                currentTarget = targetChecker.visit(currentTarget, that);
2322                if (explicitParamTypes != null) {
2323                    currentTarget = infer.instantiateFunctionalInterface(that,
2324                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2325                }
2326                currentTarget = types.removeWildcards(currentTarget);
2327                lambdaType = types.findDescriptorType(currentTarget);
2328            } else {
2329                currentTarget = Type.recoveryType;
2330                lambdaType = fallbackDescriptorType(that);
2331            }
2332
2333            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2334
2335            if (lambdaType.hasTag(FORALL)) {
2336                //lambda expression target desc cannot be a generic method
2337                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2338                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2339                result = that.type = types.createErrorType(pt());
2340                return;
2341            }
2342
2343            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2344                //add param type info in the AST
2345                List<Type> actuals = lambdaType.getParameterTypes();
2346                List<JCVariableDecl> params = that.params;
2347
2348                boolean arityMismatch = false;
2349
2350                while (params.nonEmpty()) {
2351                    if (actuals.isEmpty()) {
2352                        //not enough actuals to perform lambda parameter inference
2353                        arityMismatch = true;
2354                    }
2355                    //reset previously set info
2356                    Type argType = arityMismatch ?
2357                            syms.errType :
2358                            actuals.head;
2359                    params.head.vartype = make.at(params.head).Type(argType);
2360                    params.head.sym = null;
2361                    actuals = actuals.isEmpty() ?
2362                            actuals :
2363                            actuals.tail;
2364                    params = params.tail;
2365                }
2366
2367                //attribute lambda parameters
2368                attribStats(that.params, localEnv);
2369
2370                if (arityMismatch) {
2371                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2372                        result = that.type = types.createErrorType(currentTarget);
2373                        return;
2374                }
2375            }
2376
2377            //from this point on, no recovery is needed; if we are in assignment context
2378            //we will be able to attribute the whole lambda body, regardless of errors;
2379            //if we are in a 'check' method context, and the lambda is not compatible
2380            //with the target-type, it will be recovered anyway in Attr.checkId
2381            needsRecovery = false;
2382
2383            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2384                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2385                    new FunctionalReturnContext(resultInfo.checkContext);
2386
2387            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2388                recoveryInfo :
2389                new ResultInfo(KindSelector.VAL,
2390                               lambdaType.getReturnType(), funcContext);
2391            localEnv.info.returnResult = bodyResultInfo;
2392
2393            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2394                attribTree(that.getBody(), localEnv, bodyResultInfo);
2395            } else {
2396                JCBlock body = (JCBlock)that.body;
2397                attribStats(body.stats, localEnv);
2398            }
2399
2400            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2401
2402            boolean isSpeculativeRound =
2403                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2404
2405            preFlow(that);
2406            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2407
2408            that.type = currentTarget; //avoids recovery at this stage
2409            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2410
2411            if (!isSpeculativeRound) {
2412                //add thrown types as bounds to the thrown types free variables if needed:
2413                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2414                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2415                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2416
2417                    chk.unhandled(inferredThrownTypes, thrownTypes);
2418                }
2419
2420                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2421            }
2422            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2423        } catch (Types.FunctionDescriptorLookupError ex) {
2424            JCDiagnostic cause = ex.getDiagnostic();
2425            resultInfo.checkContext.report(that, cause);
2426            result = that.type = types.createErrorType(pt());
2427            return;
2428        } finally {
2429            localEnv.info.scope.leave();
2430            if (needsRecovery) {
2431                attribTree(that, env, recoveryInfo);
2432            }
2433        }
2434    }
2435    //where
2436        void preFlow(JCLambda tree) {
2437            new PostAttrAnalyzer() {
2438                @Override
2439                public void scan(JCTree tree) {
2440                    if (tree == null ||
2441                            (tree.type != null &&
2442                            tree.type == Type.stuckType)) {
2443                        //don't touch stuck expressions!
2444                        return;
2445                    }
2446                    super.scan(tree);
2447                }
2448            }.scan(tree);
2449        }
2450
2451        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2452
2453            @Override
2454            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2455                return t.isIntersection() ?
2456                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2457            }
2458
2459            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2460                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2461                Type target = null;
2462                for (Type bound : ict.getExplicitComponents()) {
2463                    TypeSymbol boundSym = bound.tsym;
2464                    if (types.isFunctionalInterface(boundSym) &&
2465                            types.findDescriptorSymbol(boundSym) == desc) {
2466                        target = bound;
2467                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2468                        //bound must be an interface
2469                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2470                    }
2471                }
2472                return target != null ?
2473                        target :
2474                        ict.getExplicitComponents().head; //error recovery
2475            }
2476
2477            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2478                ListBuffer<Type> targs = new ListBuffer<>();
2479                ListBuffer<Type> supertypes = new ListBuffer<>();
2480                for (Type i : ict.interfaces_field) {
2481                    if (i.isParameterized()) {
2482                        targs.appendList(i.tsym.type.allparams());
2483                    }
2484                    supertypes.append(i.tsym.type);
2485                }
2486                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2487                notionalIntf.allparams_field = targs.toList();
2488                notionalIntf.tsym.flags_field |= INTERFACE;
2489                return notionalIntf.tsym;
2490            }
2491
2492            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2493                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2494                        diags.fragment(key, args)));
2495            }
2496        };
2497
2498        private Type fallbackDescriptorType(JCExpression tree) {
2499            switch (tree.getTag()) {
2500                case LAMBDA:
2501                    JCLambda lambda = (JCLambda)tree;
2502                    List<Type> argtypes = List.nil();
2503                    for (JCVariableDecl param : lambda.params) {
2504                        argtypes = param.vartype != null ?
2505                                argtypes.append(param.vartype.type) :
2506                                argtypes.append(syms.errType);
2507                    }
2508                    return new MethodType(argtypes, Type.recoveryType,
2509                            List.of(syms.throwableType), syms.methodClass);
2510                case REFERENCE:
2511                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2512                            List.of(syms.throwableType), syms.methodClass);
2513                default:
2514                    Assert.error("Cannot get here!");
2515            }
2516            return null;
2517        }
2518
2519        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2520                final InferenceContext inferenceContext, final Type... ts) {
2521            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2522        }
2523
2524        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2525                final InferenceContext inferenceContext, final List<Type> ts) {
2526            if (inferenceContext.free(ts)) {
2527                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2528                    @Override
2529                    public void typesInferred(InferenceContext inferenceContext) {
2530                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2531                    }
2532                });
2533            } else {
2534                for (Type t : ts) {
2535                    rs.checkAccessibleType(env, t);
2536                }
2537            }
2538        }
2539
2540        /**
2541         * Lambda/method reference have a special check context that ensures
2542         * that i.e. a lambda return type is compatible with the expected
2543         * type according to both the inherited context and the assignment
2544         * context.
2545         */
2546        class FunctionalReturnContext extends Check.NestedCheckContext {
2547
2548            FunctionalReturnContext(CheckContext enclosingContext) {
2549                super(enclosingContext);
2550            }
2551
2552            @Override
2553            public boolean compatible(Type found, Type req, Warner warn) {
2554                //return type must be compatible in both current context and assignment context
2555                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2556            }
2557
2558            @Override
2559            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2560                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2561            }
2562        }
2563
2564        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2565
2566            JCExpression expr;
2567
2568            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2569                super(enclosingContext);
2570                this.expr = expr;
2571            }
2572
2573            @Override
2574            public boolean compatible(Type found, Type req, Warner warn) {
2575                //a void return is compatible with an expression statement lambda
2576                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2577                        super.compatible(found, req, warn);
2578            }
2579        }
2580
2581        /**
2582        * Lambda compatibility. Check that given return types, thrown types, parameter types
2583        * are compatible with the expected functional interface descriptor. This means that:
2584        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2585        * types must be compatible with the return type of the expected descriptor.
2586        */
2587        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2588            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2589
2590            //return values have already been checked - but if lambda has no return
2591            //values, we must ensure that void/value compatibility is correct;
2592            //this amounts at checking that, if a lambda body can complete normally,
2593            //the descriptor's return type must be void
2594            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2595                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2596                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2597                        diags.fragment("missing.ret.val", returnType)));
2598            }
2599
2600            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2601            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2602                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2603            }
2604        }
2605
2606        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2607         * static field and that lambda has type annotations, these annotations will
2608         * also be stored at these fake clinit methods.
2609         *
2610         * LambdaToMethod also use fake clinit methods so they can be reused.
2611         * Also as LTM is a phase subsequent to attribution, the methods from
2612         * clinits can be safely removed by LTM to save memory.
2613         */
2614        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2615
2616        public MethodSymbol removeClinit(ClassSymbol sym) {
2617            return clinits.remove(sym);
2618        }
2619
2620        /* This method returns an environment to be used to attribute a lambda
2621         * expression.
2622         *
2623         * The owner of this environment is a method symbol. If the current owner
2624         * is not a method, for example if the lambda is used to initialize
2625         * a field, then if the field is:
2626         *
2627         * - an instance field, we use the first constructor.
2628         * - a static field, we create a fake clinit method.
2629         */
2630        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2631            Env<AttrContext> lambdaEnv;
2632            Symbol owner = env.info.scope.owner;
2633            if (owner.kind == VAR && owner.owner.kind == TYP) {
2634                //field initializer
2635                ClassSymbol enclClass = owner.enclClass();
2636                Symbol newScopeOwner = env.info.scope.owner;
2637                /* if the field isn't static, then we can get the first constructor
2638                 * and use it as the owner of the environment. This is what
2639                 * LTM code is doing to look for type annotations so we are fine.
2640                 */
2641                if ((owner.flags() & STATIC) == 0) {
2642                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2643                        newScopeOwner = s;
2644                        break;
2645                    }
2646                } else {
2647                    /* if the field is static then we need to create a fake clinit
2648                     * method, this method can later be reused by LTM.
2649                     */
2650                    MethodSymbol clinit = clinits.get(enclClass);
2651                    if (clinit == null) {
2652                        Type clinitType = new MethodType(List.<Type>nil(),
2653                                syms.voidType, List.<Type>nil(), syms.methodClass);
2654                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2655                                names.clinit, clinitType, enclClass);
2656                        clinit.params = List.<VarSymbol>nil();
2657                        clinits.put(enclClass, clinit);
2658                    }
2659                    newScopeOwner = clinit;
2660                }
2661                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2662            } else {
2663                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2664            }
2665            return lambdaEnv;
2666        }
2667
2668    @Override
2669    public void visitReference(final JCMemberReference that) {
2670        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2671            if (pt().hasTag(NONE)) {
2672                //method reference only allowed in assignment or method invocation/cast context
2673                log.error(that.pos(), "unexpected.mref");
2674            }
2675            result = that.type = types.createErrorType(pt());
2676            return;
2677        }
2678        final Env<AttrContext> localEnv = env.dup(that);
2679        try {
2680            //attribute member reference qualifier - if this is a constructor
2681            //reference, the expected kind must be a type
2682            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2683
2684            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2685                exprType = chk.checkConstructorRefType(that.expr, exprType);
2686                if (!exprType.isErroneous() &&
2687                    exprType.isRaw() &&
2688                    that.typeargs != null) {
2689                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2690                        diags.fragment("mref.infer.and.explicit.params"));
2691                    exprType = types.createErrorType(exprType);
2692                }
2693            }
2694
2695            if (exprType.isErroneous()) {
2696                //if the qualifier expression contains problems,
2697                //give up attribution of method reference
2698                result = that.type = exprType;
2699                return;
2700            }
2701
2702            if (TreeInfo.isStaticSelector(that.expr, names)) {
2703                //if the qualifier is a type, validate it; raw warning check is
2704                //omitted as we don't know at this stage as to whether this is a
2705                //raw selector (because of inference)
2706                chk.validate(that.expr, env, false);
2707            }
2708
2709            //attrib type-arguments
2710            List<Type> typeargtypes = List.nil();
2711            if (that.typeargs != null) {
2712                typeargtypes = attribTypes(that.typeargs, localEnv);
2713            }
2714
2715            Type desc;
2716            Type currentTarget = pt();
2717            boolean isTargetSerializable =
2718                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2719                    isSerializable(currentTarget);
2720            if (currentTarget != Type.recoveryType) {
2721                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2722                desc = types.findDescriptorType(currentTarget);
2723            } else {
2724                currentTarget = Type.recoveryType;
2725                desc = fallbackDescriptorType(that);
2726            }
2727
2728            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2729            List<Type> argtypes = desc.getParameterTypes();
2730            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2731
2732            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2733                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2734            }
2735
2736            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2737            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2738            try {
2739                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2740                        that.name, argtypes, typeargtypes, referenceCheck,
2741                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2742            } finally {
2743                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2744            }
2745
2746            Symbol refSym = refResult.fst;
2747            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2748
2749            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2750             *  JDK-8075541
2751             */
2752            if (refSym.kind != MTH) {
2753                boolean targetError;
2754                switch (refSym.kind) {
2755                    case ABSENT_MTH:
2756                    case MISSING_ENCL:
2757                        targetError = false;
2758                        break;
2759                    case WRONG_MTH:
2760                    case WRONG_MTHS:
2761                    case AMBIGUOUS:
2762                    case HIDDEN:
2763                    case STATICERR:
2764                        targetError = true;
2765                        break;
2766                    default:
2767                        Assert.error("unexpected result kind " + refSym.kind);
2768                        targetError = false;
2769                }
2770
2771                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2772                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2773
2774                JCDiagnostic.DiagnosticType diagKind = targetError ?
2775                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2776
2777                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2778                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2779
2780                if (targetError && currentTarget == Type.recoveryType) {
2781                    //a target error doesn't make sense during recovery stage
2782                    //as we don't know what actual parameter types are
2783                    result = that.type = currentTarget;
2784                    return;
2785                } else {
2786                    if (targetError) {
2787                        resultInfo.checkContext.report(that, diag);
2788                    } else {
2789                        log.report(diag);
2790                    }
2791                    result = that.type = types.createErrorType(currentTarget);
2792                    return;
2793                }
2794            }
2795
2796            that.sym = refSym.baseSymbol();
2797            that.kind = lookupHelper.referenceKind(that.sym);
2798            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2799
2800            if (desc.getReturnType() == Type.recoveryType) {
2801                // stop here
2802                result = that.type = currentTarget;
2803                return;
2804            }
2805
2806            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2807
2808                if (that.getMode() == ReferenceMode.INVOKE &&
2809                        TreeInfo.isStaticSelector(that.expr, names) &&
2810                        that.kind.isUnbound() &&
2811                        !desc.getParameterTypes().head.isParameterized()) {
2812                    chk.checkRaw(that.expr, localEnv);
2813                }
2814
2815                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2816                        exprType.getTypeArguments().nonEmpty()) {
2817                    //static ref with class type-args
2818                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2819                            diags.fragment("static.mref.with.targs"));
2820                    result = that.type = types.createErrorType(currentTarget);
2821                    return;
2822                }
2823
2824                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2825                    // Check that super-qualified symbols are not abstract (JLS)
2826                    rs.checkNonAbstract(that.pos(), that.sym);
2827                }
2828
2829                if (isTargetSerializable) {
2830                    chk.checkElemAccessFromSerializableLambda(that);
2831                }
2832            }
2833
2834            ResultInfo checkInfo =
2835                    resultInfo.dup(newMethodTemplate(
2836                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2837                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2838                        new FunctionalReturnContext(resultInfo.checkContext));
2839
2840            Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);
2841
2842            if (that.kind.isUnbound() &&
2843                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2844                //re-generate inference constraints for unbound receiver
2845                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2846                    //cannot happen as this has already been checked - we just need
2847                    //to regenerate the inference constraints, as that has been lost
2848                    //as a result of the call to inferenceContext.save()
2849                    Assert.error("Can't get here");
2850                }
2851            }
2852
2853            if (!refType.isErroneous()) {
2854                refType = types.createMethodTypeWithReturn(refType,
2855                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2856            }
2857
2858            //go ahead with standard method reference compatibility check - note that param check
2859            //is a no-op (as this has been taken care during method applicability)
2860            boolean isSpeculativeRound =
2861                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2862
2863            that.type = currentTarget; //avoids recovery at this stage
2864            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2865            if (!isSpeculativeRound) {
2866                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2867            }
2868            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2869        } catch (Types.FunctionDescriptorLookupError ex) {
2870            JCDiagnostic cause = ex.getDiagnostic();
2871            resultInfo.checkContext.report(that, cause);
2872            result = that.type = types.createErrorType(pt());
2873            return;
2874        }
2875    }
2876    //where
2877        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2878            //if this is a constructor reference, the expected kind must be a type
2879            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2880                                  KindSelector.VAL_TYP : KindSelector.TYP,
2881                                  Type.noType);
2882        }
2883
2884
2885    @SuppressWarnings("fallthrough")
2886    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2887        InferenceContext inferenceContext = checkContext.inferenceContext();
2888        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
2889
2890        Type resType;
2891        switch (tree.getMode()) {
2892            case NEW:
2893                if (!tree.expr.type.isRaw()) {
2894                    resType = tree.expr.type;
2895                    break;
2896                }
2897            default:
2898                resType = refType.getReturnType();
2899        }
2900
2901        Type incompatibleReturnType = resType;
2902
2903        if (returnType.hasTag(VOID)) {
2904            incompatibleReturnType = null;
2905        }
2906
2907        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2908            if (resType.isErroneous() ||
2909                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2910                incompatibleReturnType = null;
2911            }
2912        }
2913
2914        if (incompatibleReturnType != null) {
2915            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2916                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2917        } else {
2918            if (inferenceContext.free(refType)) {
2919                // we need to wait for inference to finish and then replace inference vars in the referent type
2920                inferenceContext.addFreeTypeListener(List.of(refType),
2921                        instantiatedContext -> {
2922                            tree.referentType = instantiatedContext.asInstType(refType);
2923                        });
2924            } else {
2925                tree.referentType = refType;
2926            }
2927        }
2928
2929        if (!speculativeAttr) {
2930            List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
2931            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2932                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2933            }
2934        }
2935    }
2936
2937    /**
2938     * Set functional type info on the underlying AST. Note: as the target descriptor
2939     * might contain inference variables, we might need to register an hook in the
2940     * current inference context.
2941     */
2942    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2943            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2944        if (checkContext.inferenceContext().free(descriptorType)) {
2945            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2946                public void typesInferred(InferenceContext inferenceContext) {
2947                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2948                            inferenceContext.asInstType(primaryTarget), checkContext);
2949                }
2950            });
2951        } else {
2952            ListBuffer<Type> targets = new ListBuffer<>();
2953            if (pt.hasTag(CLASS)) {
2954                if (pt.isCompound()) {
2955                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
2956                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2957                        if (t != primaryTarget) {
2958                            targets.append(types.removeWildcards(t));
2959                        }
2960                    }
2961                } else {
2962                    targets.append(types.removeWildcards(primaryTarget));
2963                }
2964            }
2965            fExpr.targets = targets.toList();
2966            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2967                    pt != Type.recoveryType) {
2968                //check that functional interface class is well-formed
2969                try {
2970                    /* Types.makeFunctionalInterfaceClass() may throw an exception
2971                     * when it's executed post-inference. See the listener code
2972                     * above.
2973                     */
2974                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2975                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
2976                    if (csym != null) {
2977                        chk.checkImplementations(env.tree, csym, csym);
2978                        try {
2979                            //perform an additional functional interface check on the synthetic class,
2980                            //as there may be spurious errors for raw targets - because of existing issues
2981                            //with membership and inheritance (see JDK-8074570).
2982                            csym.flags_field |= INTERFACE;
2983                            types.findDescriptorType(csym.type);
2984                        } catch (FunctionDescriptorLookupError err) {
2985                            resultInfo.checkContext.report(fExpr,
2986                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
2987                        }
2988                    }
2989                } catch (Types.FunctionDescriptorLookupError ex) {
2990                    JCDiagnostic cause = ex.getDiagnostic();
2991                    resultInfo.checkContext.report(env.tree, cause);
2992                }
2993            }
2994        }
2995    }
2996
2997    public void visitParens(JCParens tree) {
2998        Type owntype = attribTree(tree.expr, env, resultInfo);
2999        result = check(tree, owntype, pkind(), resultInfo);
3000        Symbol sym = TreeInfo.symbol(tree);
3001        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3002            log.error(tree.pos(), "illegal.start.of.type");
3003    }
3004
3005    public void visitAssign(JCAssign tree) {
3006        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3007        Type capturedType = capture(owntype);
3008        attribExpr(tree.rhs, env, owntype);
3009        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3010    }
3011
3012    public void visitAssignop(JCAssignOp tree) {
3013        // Attribute arguments.
3014        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3015        Type operand = attribExpr(tree.rhs, env);
3016        // Find operator.
3017        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3018        if (operator.kind == MTH &&
3019                !owntype.isErroneous() &&
3020                !operand.isErroneous()) {
3021            chk.checkDivZero(tree.rhs.pos(), operator, operand);
3022            chk.checkCastable(tree.rhs.pos(),
3023                              operator.type.getReturnType(),
3024                              owntype);
3025        }
3026        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3027    }
3028
3029    public void visitUnary(JCUnary tree) {
3030        // Attribute arguments.
3031        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3032            ? attribTree(tree.arg, env, varAssignmentInfo)
3033            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3034
3035        // Find operator.
3036        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3037        Type owntype = types.createErrorType(tree.type);
3038        if (operator.kind == MTH &&
3039                !argtype.isErroneous()) {
3040            owntype = (tree.getTag().isIncOrDecUnaryOp())
3041                ? tree.arg.type
3042                : operator.type.getReturnType();
3043            int opc = ((OperatorSymbol)operator).opcode;
3044
3045            // If the argument is constant, fold it.
3046            if (argtype.constValue() != null) {
3047                Type ctype = cfolder.fold1(opc, argtype);
3048                if (ctype != null) {
3049                    owntype = cfolder.coerce(ctype, owntype);
3050                }
3051            }
3052        }
3053        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3054    }
3055
3056    public void visitBinary(JCBinary tree) {
3057        // Attribute arguments.
3058        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3059        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3060        // Find operator.
3061        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3062        Type owntype = types.createErrorType(tree.type);
3063        if (operator.kind == MTH &&
3064                !left.isErroneous() &&
3065                !right.isErroneous()) {
3066            owntype = operator.type.getReturnType();
3067            int opc = ((OperatorSymbol)operator).opcode;
3068            // If both arguments are constants, fold them.
3069            if (left.constValue() != null && right.constValue() != null) {
3070                Type ctype = cfolder.fold2(opc, left, right);
3071                if (ctype != null) {
3072                    owntype = cfolder.coerce(ctype, owntype);
3073                }
3074            }
3075
3076            // Check that argument types of a reference ==, != are
3077            // castable to each other, (JLS 15.21).  Note: unboxing
3078            // comparisons will not have an acmp* opc at this point.
3079            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3080                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3081                    log.error(tree.pos(), "incomparable.types", left, right);
3082                }
3083            }
3084
3085            chk.checkDivZero(tree.rhs.pos(), operator, right);
3086        }
3087        result = check(tree, owntype, KindSelector.VAL, resultInfo);
3088    }
3089
3090    public void visitTypeCast(final JCTypeCast tree) {
3091        Type clazztype = attribType(tree.clazz, env);
3092        chk.validate(tree.clazz, env, false);
3093        //a fresh environment is required for 292 inference to work properly ---
3094        //see Infer.instantiatePolymorphicSignatureInstance()
3095        Env<AttrContext> localEnv = env.dup(tree);
3096        //should we propagate the target type?
3097        final ResultInfo castInfo;
3098        JCExpression expr = TreeInfo.skipParens(tree.expr);
3099        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3100        if (isPoly) {
3101            //expression is a poly - we need to propagate target type info
3102            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3103                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3104                @Override
3105                public boolean compatible(Type found, Type req, Warner warn) {
3106                    return types.isCastable(found, req, warn);
3107                }
3108            });
3109        } else {
3110            //standalone cast - target-type info is not propagated
3111            castInfo = unknownExprInfo;
3112        }
3113        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3114        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3115        if (exprtype.constValue() != null)
3116            owntype = cfolder.coerce(exprtype, owntype);
3117        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3118        if (!isPoly)
3119            chk.checkRedundantCast(localEnv, tree);
3120    }
3121
3122    public void visitTypeTest(JCInstanceOf tree) {
3123        Type exprtype = chk.checkNullOrRefType(
3124                tree.expr.pos(), attribExpr(tree.expr, env));
3125        Type clazztype = attribType(tree.clazz, env);
3126        if (!clazztype.hasTag(TYPEVAR)) {
3127            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3128        }
3129        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3130            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3131            clazztype = types.createErrorType(clazztype);
3132        }
3133        chk.validate(tree.clazz, env, false);
3134        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3135        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3136    }
3137
3138    public void visitIndexed(JCArrayAccess tree) {
3139        Type owntype = types.createErrorType(tree.type);
3140        Type atype = attribExpr(tree.indexed, env);
3141        attribExpr(tree.index, env, syms.intType);
3142        if (types.isArray(atype))
3143            owntype = types.elemtype(atype);
3144        else if (!atype.hasTag(ERROR))
3145            log.error(tree.pos(), "array.req.but.found", atype);
3146        if (!pkind().contains(KindSelector.VAL))
3147            owntype = capture(owntype);
3148        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3149    }
3150
3151    public void visitIdent(JCIdent tree) {
3152        Symbol sym;
3153
3154        // Find symbol
3155        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3156            // If we are looking for a method, the prototype `pt' will be a
3157            // method type with the type of the call's arguments as parameters.
3158            env.info.pendingResolutionPhase = null;
3159            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3160        } else if (tree.sym != null && tree.sym.kind != VAR) {
3161            sym = tree.sym;
3162        } else {
3163            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3164        }
3165        tree.sym = sym;
3166
3167        // (1) Also find the environment current for the class where
3168        //     sym is defined (`symEnv').
3169        // Only for pre-tiger versions (1.4 and earlier):
3170        // (2) Also determine whether we access symbol out of an anonymous
3171        //     class in a this or super call.  This is illegal for instance
3172        //     members since such classes don't carry a this$n link.
3173        //     (`noOuterThisPath').
3174        Env<AttrContext> symEnv = env;
3175        boolean noOuterThisPath = false;
3176        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3177            sym.kind.matches(KindSelector.VAL_MTH) &&
3178            sym.owner.kind == TYP &&
3179            tree.name != names._this && tree.name != names._super) {
3180
3181            // Find environment in which identifier is defined.
3182            while (symEnv.outer != null &&
3183                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3184                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3185                    noOuterThisPath = false;
3186                symEnv = symEnv.outer;
3187            }
3188        }
3189
3190        // If symbol is a variable, ...
3191        if (sym.kind == VAR) {
3192            VarSymbol v = (VarSymbol)sym;
3193
3194            // ..., evaluate its initializer, if it has one, and check for
3195            // illegal forward reference.
3196            checkInit(tree, env, v, false);
3197
3198            // If we are expecting a variable (as opposed to a value), check
3199            // that the variable is assignable in the current environment.
3200            if (KindSelector.ASG.subset(pkind()))
3201                checkAssignable(tree.pos(), v, null, env);
3202        }
3203
3204        // In a constructor body,
3205        // if symbol is a field or instance method, check that it is
3206        // not accessed before the supertype constructor is called.
3207        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3208            sym.kind.matches(KindSelector.VAL_MTH) &&
3209            sym.owner.kind == TYP &&
3210            (sym.flags() & STATIC) == 0) {
3211            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3212                                          sym : thisSym(tree.pos(), env));
3213        }
3214        Env<AttrContext> env1 = env;
3215        if (sym.kind != ERR && sym.kind != TYP &&
3216            sym.owner != null && sym.owner != env1.enclClass.sym) {
3217            // If the found symbol is inaccessible, then it is
3218            // accessed through an enclosing instance.  Locate this
3219            // enclosing instance:
3220            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3221                env1 = env1.outer;
3222        }
3223
3224        if (env.info.isSerializable) {
3225            chk.checkElemAccessFromSerializableLambda(tree);
3226        }
3227
3228        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3229    }
3230
3231    public void visitSelect(JCFieldAccess tree) {
3232        // Determine the expected kind of the qualifier expression.
3233        KindSelector skind = KindSelector.NIL;
3234        if (tree.name == names._this || tree.name == names._super ||
3235                tree.name == names._class)
3236        {
3237            skind = KindSelector.TYP;
3238        } else {
3239            if (pkind().contains(KindSelector.PCK))
3240                skind = KindSelector.of(skind, KindSelector.PCK);
3241            if (pkind().contains(KindSelector.TYP))
3242                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3243            if (pkind().contains(KindSelector.VAL_MTH))
3244                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3245        }
3246
3247        // Attribute the qualifier expression, and determine its symbol (if any).
3248        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3249        if (!pkind().contains(KindSelector.TYP_PCK))
3250            site = capture(site); // Capture field access
3251
3252        // don't allow T.class T[].class, etc
3253        if (skind == KindSelector.TYP) {
3254            Type elt = site;
3255            while (elt.hasTag(ARRAY))
3256                elt = ((ArrayType)elt).elemtype;
3257            if (elt.hasTag(TYPEVAR)) {
3258                log.error(tree.pos(), "type.var.cant.be.deref");
3259                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3260                tree.sym = tree.type.tsym;
3261                return ;
3262            }
3263        }
3264
3265        // If qualifier symbol is a type or `super', assert `selectSuper'
3266        // for the selection. This is relevant for determining whether
3267        // protected symbols are accessible.
3268        Symbol sitesym = TreeInfo.symbol(tree.selected);
3269        boolean selectSuperPrev = env.info.selectSuper;
3270        env.info.selectSuper =
3271            sitesym != null &&
3272            sitesym.name == names._super;
3273
3274        // Determine the symbol represented by the selection.
3275        env.info.pendingResolutionPhase = null;
3276        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3277        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3278            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3279            sym = syms.errSymbol;
3280        }
3281        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3282            site = capture(site);
3283            sym = selectSym(tree, sitesym, site, env, resultInfo);
3284        }
3285        boolean varArgs = env.info.lastResolveVarargs();
3286        tree.sym = sym;
3287
3288        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3289            site = types.skipTypeVars(site, true);
3290        }
3291
3292        // If that symbol is a variable, ...
3293        if (sym.kind == VAR) {
3294            VarSymbol v = (VarSymbol)sym;
3295
3296            // ..., evaluate its initializer, if it has one, and check for
3297            // illegal forward reference.
3298            checkInit(tree, env, v, true);
3299
3300            // If we are expecting a variable (as opposed to a value), check
3301            // that the variable is assignable in the current environment.
3302            if (KindSelector.ASG.subset(pkind()))
3303                checkAssignable(tree.pos(), v, tree.selected, env);
3304        }
3305
3306        if (sitesym != null &&
3307                sitesym.kind == VAR &&
3308                ((VarSymbol)sitesym).isResourceVariable() &&
3309                sym.kind == MTH &&
3310                sym.name.equals(names.close) &&
3311                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3312                env.info.lint.isEnabled(LintCategory.TRY)) {
3313            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3314        }
3315
3316        // Disallow selecting a type from an expression
3317        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3318            tree.type = check(tree.selected, pt(),
3319                              sitesym == null ?
3320                                      KindSelector.VAL : sitesym.kind.toSelector(),
3321                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3322        }
3323
3324        if (isType(sitesym)) {
3325            if (sym.name == names._this) {
3326                // If `C' is the currently compiled class, check that
3327                // C.this' does not appear in a call to a super(...)
3328                if (env.info.isSelfCall &&
3329                    site.tsym == env.enclClass.sym) {
3330                    chk.earlyRefError(tree.pos(), sym);
3331                }
3332            } else {
3333                // Check if type-qualified fields or methods are static (JLS)
3334                if ((sym.flags() & STATIC) == 0 &&
3335                    !env.next.tree.hasTag(REFERENCE) &&
3336                    sym.name != names._super &&
3337                    (sym.kind == VAR || sym.kind == MTH)) {
3338                    rs.accessBase(rs.new StaticError(sym),
3339                              tree.pos(), site, sym.name, true);
3340                }
3341            }
3342            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3343                    sym.isStatic() && sym.kind == MTH) {
3344                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3345            }
3346        } else if (sym.kind != ERR &&
3347                   (sym.flags() & STATIC) != 0 &&
3348                   sym.name != names._class) {
3349            // If the qualified item is not a type and the selected item is static, report
3350            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3351            chk.warnStatic(tree, "static.not.qualified.by.type",
3352                           sym.kind.kindName(), sym.owner);
3353        }
3354
3355        // If we are selecting an instance member via a `super', ...
3356        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3357
3358            // Check that super-qualified symbols are not abstract (JLS)
3359            rs.checkNonAbstract(tree.pos(), sym);
3360
3361            if (site.isRaw()) {
3362                // Determine argument types for site.
3363                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3364                if (site1 != null) site = site1;
3365            }
3366        }
3367
3368        if (env.info.isSerializable) {
3369            chk.checkElemAccessFromSerializableLambda(tree);
3370        }
3371
3372        env.info.selectSuper = selectSuperPrev;
3373        result = checkId(tree, site, sym, env, resultInfo);
3374    }
3375    //where
3376        /** Determine symbol referenced by a Select expression,
3377         *
3378         *  @param tree   The select tree.
3379         *  @param site   The type of the selected expression,
3380         *  @param env    The current environment.
3381         *  @param resultInfo The current result.
3382         */
3383        private Symbol selectSym(JCFieldAccess tree,
3384                                 Symbol location,
3385                                 Type site,
3386                                 Env<AttrContext> env,
3387                                 ResultInfo resultInfo) {
3388            DiagnosticPosition pos = tree.pos();
3389            Name name = tree.name;
3390            switch (site.getTag()) {
3391            case PACKAGE:
3392                return rs.accessBase(
3393                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3394                    pos, location, site, name, true);
3395            case ARRAY:
3396            case CLASS:
3397                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3398                    return rs.resolveQualifiedMethod(
3399                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3400                } else if (name == names._this || name == names._super) {
3401                    return rs.resolveSelf(pos, env, site.tsym, name);
3402                } else if (name == names._class) {
3403                    // In this case, we have already made sure in
3404                    // visitSelect that qualifier expression is a type.
3405                    Type t = syms.classType;
3406                    List<Type> typeargs = List.of(types.erasure(site));
3407                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3408                    return new VarSymbol(
3409                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3410                } else {
3411                    // We are seeing a plain identifier as selector.
3412                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3413                        sym = rs.accessBase(sym, pos, location, site, name, true);
3414                    return sym;
3415                }
3416            case WILDCARD:
3417                throw new AssertionError(tree);
3418            case TYPEVAR:
3419                // Normally, site.getUpperBound() shouldn't be null.
3420                // It should only happen during memberEnter/attribBase
3421                // when determining the super type which *must* beac
3422                // done before attributing the type variables.  In
3423                // other words, we are seeing this illegal program:
3424                // class B<T> extends A<T.foo> {}
3425                Symbol sym = (site.getUpperBound() != null)
3426                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3427                    : null;
3428                if (sym == null) {
3429                    log.error(pos, "type.var.cant.be.deref");
3430                    return syms.errSymbol;
3431                } else {
3432                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3433                        rs.new AccessError(env, site, sym) :
3434                                sym;
3435                    rs.accessBase(sym2, pos, location, site, name, true);
3436                    return sym;
3437                }
3438            case ERROR:
3439                // preserve identifier names through errors
3440                return types.createErrorType(name, site.tsym, site).tsym;
3441            default:
3442                // The qualifier expression is of a primitive type -- only
3443                // .class is allowed for these.
3444                if (name == names._class) {
3445                    // In this case, we have already made sure in Select that
3446                    // qualifier expression is a type.
3447                    Type t = syms.classType;
3448                    Type arg = types.boxedClass(site).type;
3449                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3450                    return new VarSymbol(
3451                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3452                } else {
3453                    log.error(pos, "cant.deref", site);
3454                    return syms.errSymbol;
3455                }
3456            }
3457        }
3458
3459        /** Determine type of identifier or select expression and check that
3460         *  (1) the referenced symbol is not deprecated
3461         *  (2) the symbol's type is safe (@see checkSafe)
3462         *  (3) if symbol is a variable, check that its type and kind are
3463         *      compatible with the prototype and protokind.
3464         *  (4) if symbol is an instance field of a raw type,
3465         *      which is being assigned to, issue an unchecked warning if its
3466         *      type changes under erasure.
3467         *  (5) if symbol is an instance method of a raw type, issue an
3468         *      unchecked warning if its argument types change under erasure.
3469         *  If checks succeed:
3470         *    If symbol is a constant, return its constant type
3471         *    else if symbol is a method, return its result type
3472         *    otherwise return its type.
3473         *  Otherwise return errType.
3474         *
3475         *  @param tree       The syntax tree representing the identifier
3476         *  @param site       If this is a select, the type of the selected
3477         *                    expression, otherwise the type of the current class.
3478         *  @param sym        The symbol representing the identifier.
3479         *  @param env        The current environment.
3480         *  @param resultInfo    The expected result
3481         */
3482        Type checkId(JCTree tree,
3483                     Type site,
3484                     Symbol sym,
3485                     Env<AttrContext> env,
3486                     ResultInfo resultInfo) {
3487            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3488                    checkMethodId(tree, site, sym, env, resultInfo) :
3489                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3490        }
3491
3492        Type checkMethodId(JCTree tree,
3493                     Type site,
3494                     Symbol sym,
3495                     Env<AttrContext> env,
3496                     ResultInfo resultInfo) {
3497            boolean isPolymorhicSignature =
3498                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3499            return isPolymorhicSignature ?
3500                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3501                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3502        }
3503
3504        Type checkSigPolyMethodId(JCTree tree,
3505                     Type site,
3506                     Symbol sym,
3507                     Env<AttrContext> env,
3508                     ResultInfo resultInfo) {
3509            //recover original symbol for signature polymorphic methods
3510            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3511            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3512            return sym.type;
3513        }
3514
3515        Type checkMethodIdInternal(JCTree tree,
3516                     Type site,
3517                     Symbol sym,
3518                     Env<AttrContext> env,
3519                     ResultInfo resultInfo) {
3520            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3521                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3522                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3523                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3524                return owntype;
3525            } else {
3526                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3527            }
3528        }
3529
3530        Type checkIdInternal(JCTree tree,
3531                     Type site,
3532                     Symbol sym,
3533                     Type pt,
3534                     Env<AttrContext> env,
3535                     ResultInfo resultInfo) {
3536            if (pt.isErroneous()) {
3537                return types.createErrorType(site);
3538            }
3539            Type owntype; // The computed type of this identifier occurrence.
3540            switch (sym.kind) {
3541            case TYP:
3542                // For types, the computed type equals the symbol's type,
3543                // except for two situations:
3544                owntype = sym.type;
3545                if (owntype.hasTag(CLASS)) {
3546                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3547                    Type ownOuter = owntype.getEnclosingType();
3548
3549                    // (a) If the symbol's type is parameterized, erase it
3550                    // because no type parameters were given.
3551                    // We recover generic outer type later in visitTypeApply.
3552                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3553                        owntype = types.erasure(owntype);
3554                    }
3555
3556                    // (b) If the symbol's type is an inner class, then
3557                    // we have to interpret its outer type as a superclass
3558                    // of the site type. Example:
3559                    //
3560                    // class Tree<A> { class Visitor { ... } }
3561                    // class PointTree extends Tree<Point> { ... }
3562                    // ...PointTree.Visitor...
3563                    //
3564                    // Then the type of the last expression above is
3565                    // Tree<Point>.Visitor.
3566                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3567                        Type normOuter = site;
3568                        if (normOuter.hasTag(CLASS)) {
3569                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3570                        }
3571                        if (normOuter == null) // perhaps from an import
3572                            normOuter = types.erasure(ownOuter);
3573                        if (normOuter != ownOuter)
3574                            owntype = new ClassType(
3575                                normOuter, List.<Type>nil(), owntype.tsym,
3576                                owntype.getMetadata());
3577                    }
3578                }
3579                break;
3580            case VAR:
3581                VarSymbol v = (VarSymbol)sym;
3582                // Test (4): if symbol is an instance field of a raw type,
3583                // which is being assigned to, issue an unchecked warning if
3584                // its type changes under erasure.
3585                if (KindSelector.ASG.subset(pkind()) &&
3586                    v.owner.kind == TYP &&
3587                    (v.flags() & STATIC) == 0 &&
3588                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3589                    Type s = types.asOuterSuper(site, v.owner);
3590                    if (s != null &&
3591                        s.isRaw() &&
3592                        !types.isSameType(v.type, v.erasure(types))) {
3593                        chk.warnUnchecked(tree.pos(),
3594                                          "unchecked.assign.to.var",
3595                                          v, s);
3596                    }
3597                }
3598                // The computed type of a variable is the type of the
3599                // variable symbol, taken as a member of the site type.
3600                owntype = (sym.owner.kind == TYP &&
3601                           sym.name != names._this && sym.name != names._super)
3602                    ? types.memberType(site, sym)
3603                    : sym.type;
3604
3605                // If the variable is a constant, record constant value in
3606                // computed type.
3607                if (v.getConstValue() != null && isStaticReference(tree))
3608                    owntype = owntype.constType(v.getConstValue());
3609
3610                if (resultInfo.pkind == KindSelector.VAL) {
3611                    owntype = capture(owntype); // capture "names as expressions"
3612                }
3613                break;
3614            case MTH: {
3615                owntype = checkMethod(site, sym,
3616                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3617                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3618                        resultInfo.pt.getTypeArguments());
3619                break;
3620            }
3621            case PCK: case ERR:
3622                owntype = sym.type;
3623                break;
3624            default:
3625                throw new AssertionError("unexpected kind: " + sym.kind +
3626                                         " in tree " + tree);
3627            }
3628
3629            // Test (1): emit a `deprecation' warning if symbol is deprecated.
3630            // (for constructors, the error was given when the constructor was
3631            // resolved)
3632
3633            if (sym.name != names.init) {
3634                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3635                chk.checkSunAPI(tree.pos(), sym);
3636                chk.checkProfile(tree.pos(), sym);
3637            }
3638
3639            // Test (3): if symbol is a variable, check that its type and
3640            // kind are compatible with the prototype and protokind.
3641            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3642        }
3643
3644        /** Check that variable is initialized and evaluate the variable's
3645         *  initializer, if not yet done. Also check that variable is not
3646         *  referenced before it is defined.
3647         *  @param tree    The tree making up the variable reference.
3648         *  @param env     The current environment.
3649         *  @param v       The variable's symbol.
3650         */
3651        private void checkInit(JCTree tree,
3652                               Env<AttrContext> env,
3653                               VarSymbol v,
3654                               boolean onlyWarning) {
3655//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3656//                             tree.pos + " " + v.pos + " " +
3657//                             Resolve.isStatic(env));//DEBUG
3658
3659            // A forward reference is diagnosed if the declaration position
3660            // of the variable is greater than the current tree position
3661            // and the tree and variable definition occur in the same class
3662            // definition.  Note that writes don't count as references.
3663            // This check applies only to class and instance
3664            // variables.  Local variables follow different scope rules,
3665            // and are subject to definite assignment checking.
3666            if ((env.info.enclVar == v || v.pos > tree.pos) &&
3667                v.owner.kind == TYP &&
3668                enclosingInitEnv(env) != null &&
3669                v.owner == env.info.scope.owner.enclClass() &&
3670                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3671                (!env.tree.hasTag(ASSIGN) ||
3672                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3673                String suffix = (env.info.enclVar == v) ?
3674                                "self.ref" : "forward.ref";
3675                if (!onlyWarning || isStaticEnumField(v)) {
3676                    log.error(tree.pos(), "illegal." + suffix);
3677                } else if (useBeforeDeclarationWarning) {
3678                    log.warning(tree.pos(), suffix, v);
3679                }
3680            }
3681
3682            v.getConstValue(); // ensure initializer is evaluated
3683
3684            checkEnumInitializer(tree, env, v);
3685        }
3686
3687        /**
3688         * Returns the enclosing init environment associated with this env (if any). An init env
3689         * can be either a field declaration env or a static/instance initializer env.
3690         */
3691        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3692            while (true) {
3693                switch (env.tree.getTag()) {
3694                    case VARDEF:
3695                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3696                        if (vdecl.sym.owner.kind == TYP) {
3697                            //field
3698                            return env;
3699                        }
3700                        break;
3701                    case BLOCK:
3702                        if (env.next.tree.hasTag(CLASSDEF)) {
3703                            //instance/static initializer
3704                            return env;
3705                        }
3706                        break;
3707                    case METHODDEF:
3708                    case CLASSDEF:
3709                    case TOPLEVEL:
3710                        return null;
3711                }
3712                Assert.checkNonNull(env.next);
3713                env = env.next;
3714            }
3715        }
3716
3717        /**
3718         * Check for illegal references to static members of enum.  In
3719         * an enum type, constructors and initializers may not
3720         * reference its static members unless they are constant.
3721         *
3722         * @param tree    The tree making up the variable reference.
3723         * @param env     The current environment.
3724         * @param v       The variable's symbol.
3725         * @jls  section 8.9 Enums
3726         */
3727        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3728            // JLS:
3729            //
3730            // "It is a compile-time error to reference a static field
3731            // of an enum type that is not a compile-time constant
3732            // (15.28) from constructors, instance initializer blocks,
3733            // or instance variable initializer expressions of that
3734            // type. It is a compile-time error for the constructors,
3735            // instance initializer blocks, or instance variable
3736            // initializer expressions of an enum constant e to refer
3737            // to itself or to an enum constant of the same type that
3738            // is declared to the right of e."
3739            if (isStaticEnumField(v)) {
3740                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3741
3742                if (enclClass == null || enclClass.owner == null)
3743                    return;
3744
3745                // See if the enclosing class is the enum (or a
3746                // subclass thereof) declaring v.  If not, this
3747                // reference is OK.
3748                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3749                    return;
3750
3751                // If the reference isn't from an initializer, then
3752                // the reference is OK.
3753                if (!Resolve.isInitializer(env))
3754                    return;
3755
3756                log.error(tree.pos(), "illegal.enum.static.ref");
3757            }
3758        }
3759
3760        /** Is the given symbol a static, non-constant field of an Enum?
3761         *  Note: enum literals should not be regarded as such
3762         */
3763        private boolean isStaticEnumField(VarSymbol v) {
3764            return Flags.isEnum(v.owner) &&
3765                   Flags.isStatic(v) &&
3766                   !Flags.isConstant(v) &&
3767                   v.name != names._class;
3768        }
3769
3770    Warner noteWarner = new Warner();
3771
3772    /**
3773     * Check that method arguments conform to its instantiation.
3774     **/
3775    public Type checkMethod(Type site,
3776                            final Symbol sym,
3777                            ResultInfo resultInfo,
3778                            Env<AttrContext> env,
3779                            final List<JCExpression> argtrees,
3780                            List<Type> argtypes,
3781                            List<Type> typeargtypes) {
3782        // Test (5): if symbol is an instance method of a raw type, issue
3783        // an unchecked warning if its argument types change under erasure.
3784        if ((sym.flags() & STATIC) == 0 &&
3785            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3786            Type s = types.asOuterSuper(site, sym.owner);
3787            if (s != null && s.isRaw() &&
3788                !types.isSameTypes(sym.type.getParameterTypes(),
3789                                   sym.erasure(types).getParameterTypes())) {
3790                chk.warnUnchecked(env.tree.pos(),
3791                                  "unchecked.call.mbr.of.raw.type",
3792                                  sym, s);
3793            }
3794        }
3795
3796        if (env.info.defaultSuperCallSite != null) {
3797            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3798                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3799                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3800                List<MethodSymbol> icand_sup =
3801                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3802                if (icand_sup.nonEmpty() &&
3803                        icand_sup.head != sym &&
3804                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3805                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3806                        diags.fragment("overridden.default", sym, sup));
3807                    break;
3808                }
3809            }
3810            env.info.defaultSuperCallSite = null;
3811        }
3812
3813        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3814            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3815            if (app.meth.hasTag(SELECT) &&
3816                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3817                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3818            }
3819        }
3820
3821        // Compute the identifier's instantiated type.
3822        // For methods, we need to compute the instance type by
3823        // Resolve.instantiate from the symbol's type as well as
3824        // any type arguments and value arguments.
3825        noteWarner.clear();
3826        try {
3827            Type owntype = rs.checkMethod(
3828                    env,
3829                    site,
3830                    sym,
3831                    resultInfo,
3832                    argtypes,
3833                    typeargtypes,
3834                    noteWarner);
3835
3836            DeferredAttr.DeferredTypeMap checkDeferredMap =
3837                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3838
3839            argtypes = argtypes.map(checkDeferredMap);
3840
3841            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3842                chk.warnUnchecked(env.tree.pos(),
3843                        "unchecked.meth.invocation.applied",
3844                        kindName(sym),
3845                        sym.name,
3846                        rs.methodArguments(sym.type.getParameterTypes()),
3847                        rs.methodArguments(argtypes.map(checkDeferredMap)),
3848                        kindName(sym.location()),
3849                        sym.location());
3850               owntype = new MethodType(owntype.getParameterTypes(),
3851                       types.erasure(owntype.getReturnType()),
3852                       types.erasure(owntype.getThrownTypes()),
3853                       syms.methodClass);
3854            }
3855
3856            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3857                    resultInfo.checkContext.inferenceContext());
3858        } catch (Infer.InferenceException ex) {
3859            //invalid target type - propagate exception outwards or report error
3860            //depending on the current check context
3861            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3862            return types.createErrorType(site);
3863        } catch (Resolve.InapplicableMethodException ex) {
3864            final JCDiagnostic diag = ex.getDiagnostic();
3865            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3866                @Override
3867                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3868                    return new Pair<>(sym, diag);
3869                }
3870            };
3871            List<Type> argtypes2 = argtypes.map(
3872                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3873            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3874                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3875            log.report(errDiag);
3876            return types.createErrorType(site);
3877        }
3878    }
3879
3880    public void visitLiteral(JCLiteral tree) {
3881        result = check(tree, litType(tree.typetag).constType(tree.value),
3882                KindSelector.VAL, resultInfo);
3883    }
3884    //where
3885    /** Return the type of a literal with given type tag.
3886     */
3887    Type litType(TypeTag tag) {
3888        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3889    }
3890
3891    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3892        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3893    }
3894
3895    public void visitTypeArray(JCArrayTypeTree tree) {
3896        Type etype = attribType(tree.elemtype, env);
3897        Type type = new ArrayType(etype, syms.arrayClass);
3898        result = check(tree, type, KindSelector.TYP, resultInfo);
3899    }
3900
3901    /** Visitor method for parameterized types.
3902     *  Bound checking is left until later, since types are attributed
3903     *  before supertype structure is completely known
3904     */
3905    public void visitTypeApply(JCTypeApply tree) {
3906        Type owntype = types.createErrorType(tree.type);
3907
3908        // Attribute functor part of application and make sure it's a class.
3909        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3910
3911        // Attribute type parameters
3912        List<Type> actuals = attribTypes(tree.arguments, env);
3913
3914        if (clazztype.hasTag(CLASS)) {
3915            List<Type> formals = clazztype.tsym.type.getTypeArguments();
3916            if (actuals.isEmpty()) //diamond
3917                actuals = formals;
3918
3919            if (actuals.length() == formals.length()) {
3920                List<Type> a = actuals;
3921                List<Type> f = formals;
3922                while (a.nonEmpty()) {
3923                    a.head = a.head.withTypeVar(f.head);
3924                    a = a.tail;
3925                    f = f.tail;
3926                }
3927                // Compute the proper generic outer
3928                Type clazzOuter = clazztype.getEnclosingType();
3929                if (clazzOuter.hasTag(CLASS)) {
3930                    Type site;
3931                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3932                    if (clazz.hasTag(IDENT)) {
3933                        site = env.enclClass.sym.type;
3934                    } else if (clazz.hasTag(SELECT)) {
3935                        site = ((JCFieldAccess) clazz).selected.type;
3936                    } else throw new AssertionError(""+tree);
3937                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3938                        if (site.hasTag(CLASS))
3939                            site = types.asOuterSuper(site, clazzOuter.tsym);
3940                        if (site == null)
3941                            site = types.erasure(clazzOuter);
3942                        clazzOuter = site;
3943                    }
3944                }
3945                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3946                                        clazztype.getMetadata());
3947            } else {
3948                if (formals.length() != 0) {
3949                    log.error(tree.pos(), "wrong.number.type.args",
3950                              Integer.toString(formals.length()));
3951                } else {
3952                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3953                }
3954                owntype = types.createErrorType(tree.type);
3955            }
3956        }
3957        result = check(tree, owntype, KindSelector.TYP, resultInfo);
3958    }
3959
3960    public void visitTypeUnion(JCTypeUnion tree) {
3961        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3962        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3963        for (JCExpression typeTree : tree.alternatives) {
3964            Type ctype = attribType(typeTree, env);
3965            ctype = chk.checkType(typeTree.pos(),
3966                          chk.checkClassType(typeTree.pos(), ctype),
3967                          syms.throwableType);
3968            if (!ctype.isErroneous()) {
3969                //check that alternatives of a union type are pairwise
3970                //unrelated w.r.t. subtyping
3971                if (chk.intersects(ctype,  multicatchTypes.toList())) {
3972                    for (Type t : multicatchTypes) {
3973                        boolean sub = types.isSubtype(ctype, t);
3974                        boolean sup = types.isSubtype(t, ctype);
3975                        if (sub || sup) {
3976                            //assume 'a' <: 'b'
3977                            Type a = sub ? ctype : t;
3978                            Type b = sub ? t : ctype;
3979                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3980                        }
3981                    }
3982                }
3983                multicatchTypes.append(ctype);
3984                if (all_multicatchTypes != null)
3985                    all_multicatchTypes.append(ctype);
3986            } else {
3987                if (all_multicatchTypes == null) {
3988                    all_multicatchTypes = new ListBuffer<>();
3989                    all_multicatchTypes.appendList(multicatchTypes);
3990                }
3991                all_multicatchTypes.append(ctype);
3992            }
3993        }
3994        Type t = check(noCheckTree, types.lub(multicatchTypes.toList()),
3995                KindSelector.TYP, resultInfo);
3996        if (t.hasTag(CLASS)) {
3997            List<Type> alternatives =
3998                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3999            t = new UnionClassType((ClassType) t, alternatives);
4000        }
4001        tree.type = result = t;
4002    }
4003
4004    public void visitTypeIntersection(JCTypeIntersection tree) {
4005        attribTypes(tree.bounds, env);
4006        tree.type = result = checkIntersection(tree, tree.bounds);
4007    }
4008
4009    public void visitTypeParameter(JCTypeParameter tree) {
4010        TypeVar typeVar = (TypeVar) tree.type;
4011
4012        if (tree.annotations != null && tree.annotations.nonEmpty()) {
4013            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4014        }
4015
4016        if (!typeVar.bound.isErroneous()) {
4017            //fixup type-parameter bound computed in 'attribTypeVariables'
4018            typeVar.bound = checkIntersection(tree, tree.bounds);
4019        }
4020    }
4021
4022    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4023        Set<Type> boundSet = new HashSet<>();
4024        if (bounds.nonEmpty()) {
4025            // accept class or interface or typevar as first bound.
4026            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4027            boundSet.add(types.erasure(bounds.head.type));
4028            if (bounds.head.type.isErroneous()) {
4029                return bounds.head.type;
4030            }
4031            else if (bounds.head.type.hasTag(TYPEVAR)) {
4032                // if first bound was a typevar, do not accept further bounds.
4033                if (bounds.tail.nonEmpty()) {
4034                    log.error(bounds.tail.head.pos(),
4035                              "type.var.may.not.be.followed.by.other.bounds");
4036                    return bounds.head.type;
4037                }
4038            } else {
4039                // if first bound was a class or interface, accept only interfaces
4040                // as further bounds.
4041                for (JCExpression bound : bounds.tail) {
4042                    bound.type = checkBase(bound.type, bound, env, false, true, false);
4043                    if (bound.type.isErroneous()) {
4044                        bounds = List.of(bound);
4045                    }
4046                    else if (bound.type.hasTag(CLASS)) {
4047                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4048                    }
4049                }
4050            }
4051        }
4052
4053        if (bounds.length() == 0) {
4054            return syms.objectType;
4055        } else if (bounds.length() == 1) {
4056            return bounds.head.type;
4057        } else {
4058            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4059            // ... the variable's bound is a class type flagged COMPOUND
4060            // (see comment for TypeVar.bound).
4061            // In this case, generate a class tree that represents the
4062            // bound class, ...
4063            JCExpression extending;
4064            List<JCExpression> implementing;
4065            if (!bounds.head.type.isInterface()) {
4066                extending = bounds.head;
4067                implementing = bounds.tail;
4068            } else {
4069                extending = null;
4070                implementing = bounds;
4071            }
4072            JCClassDecl cd = make.at(tree).ClassDef(
4073                make.Modifiers(PUBLIC | ABSTRACT),
4074                names.empty, List.<JCTypeParameter>nil(),
4075                extending, implementing, List.<JCTree>nil());
4076
4077            ClassSymbol c = (ClassSymbol)owntype.tsym;
4078            Assert.check((c.flags() & COMPOUND) != 0);
4079            cd.sym = c;
4080            c.sourcefile = env.toplevel.sourcefile;
4081
4082            // ... and attribute the bound class
4083            c.flags_field |= UNATTRIBUTED;
4084            Env<AttrContext> cenv = enter.classEnv(cd, env);
4085            typeEnvs.put(c, cenv);
4086            attribClass(c);
4087            return owntype;
4088        }
4089    }
4090
4091    public void visitWildcard(JCWildcard tree) {
4092        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4093        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4094            ? syms.objectType
4095            : attribType(tree.inner, env);
4096        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4097                                              tree.kind.kind,
4098                                              syms.boundClass),
4099                KindSelector.TYP, resultInfo);
4100    }
4101
4102    public void visitAnnotation(JCAnnotation tree) {
4103        Assert.error("should be handled in annotate");
4104    }
4105
4106    public void visitAnnotatedType(JCAnnotatedType tree) {
4107        attribAnnotationTypes(tree.annotations, env);
4108        Type underlyingType = attribType(tree.underlyingType, env);
4109        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4110
4111        if (!env.info.isNewClass)
4112            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4113        result = tree.type = annotatedType;
4114    }
4115
4116    public void visitErroneous(JCErroneous tree) {
4117        if (tree.errs != null)
4118            for (JCTree err : tree.errs)
4119                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4120        result = tree.type = syms.errType;
4121    }
4122
4123    /** Default visitor method for all other trees.
4124     */
4125    public void visitTree(JCTree tree) {
4126        throw new AssertionError();
4127    }
4128
4129    /**
4130     * Attribute an env for either a top level tree or class declaration.
4131     */
4132    public void attrib(Env<AttrContext> env) {
4133        if (env.tree.hasTag(TOPLEVEL))
4134            attribTopLevel(env);
4135        else
4136            attribClass(env.tree.pos(), env.enclClass.sym);
4137    }
4138
4139    /**
4140     * Attribute a top level tree. These trees are encountered when the
4141     * package declaration has annotations.
4142     */
4143    public void attribTopLevel(Env<AttrContext> env) {
4144        JCCompilationUnit toplevel = env.toplevel;
4145        try {
4146            annotate.flush();
4147        } catch (CompletionFailure ex) {
4148            chk.completionError(toplevel.pos(), ex);
4149        }
4150    }
4151
4152    /** Main method: attribute class definition associated with given class symbol.
4153     *  reporting completion failures at the given position.
4154     *  @param pos The source position at which completion errors are to be
4155     *             reported.
4156     *  @param c   The class symbol whose definition will be attributed.
4157     */
4158    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4159        try {
4160            annotate.flush();
4161            attribClass(c);
4162        } catch (CompletionFailure ex) {
4163            chk.completionError(pos, ex);
4164        }
4165    }
4166
4167    /** Attribute class definition associated with given class symbol.
4168     *  @param c   The class symbol whose definition will be attributed.
4169     */
4170    void attribClass(ClassSymbol c) throws CompletionFailure {
4171        if (c.type.hasTag(ERROR)) return;
4172
4173        // Check for cycles in the inheritance graph, which can arise from
4174        // ill-formed class files.
4175        chk.checkNonCyclic(null, c.type);
4176
4177        Type st = types.supertype(c.type);
4178        if ((c.flags_field & Flags.COMPOUND) == 0) {
4179            // First, attribute superclass.
4180            if (st.hasTag(CLASS))
4181                attribClass((ClassSymbol)st.tsym);
4182
4183            // Next attribute owner, if it is a class.
4184            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4185                attribClass((ClassSymbol)c.owner);
4186        }
4187
4188        // The previous operations might have attributed the current class
4189        // if there was a cycle. So we test first whether the class is still
4190        // UNATTRIBUTED.
4191        if ((c.flags_field & UNATTRIBUTED) != 0) {
4192            c.flags_field &= ~UNATTRIBUTED;
4193
4194            // Get environment current at the point of class definition.
4195            Env<AttrContext> env = typeEnvs.get(c);
4196
4197            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4198            // because the annotations were not available at the time the env was created. Therefore,
4199            // we look up the environment chain for the first enclosing environment for which the
4200            // lint value is set. Typically, this is the parent env, but might be further if there
4201            // are any envs created as a result of TypeParameter nodes.
4202            Env<AttrContext> lintEnv = env;
4203            while (lintEnv.info.lint == null)
4204                lintEnv = lintEnv.next;
4205
4206            // Having found the enclosing lint value, we can initialize the lint value for this class
4207            env.info.lint = lintEnv.info.lint.augment(c);
4208
4209            Lint prevLint = chk.setLint(env.info.lint);
4210            JavaFileObject prev = log.useSource(c.sourcefile);
4211            ResultInfo prevReturnRes = env.info.returnResult;
4212
4213            try {
4214                deferredLintHandler.flush(env.tree);
4215                env.info.returnResult = null;
4216                // java.lang.Enum may not be subclassed by a non-enum
4217                if (st.tsym == syms.enumSym &&
4218                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4219                    log.error(env.tree.pos(), "enum.no.subclassing");
4220
4221                // Enums may not be extended by source-level classes
4222                if (st.tsym != null &&
4223                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4224                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4225                    log.error(env.tree.pos(), "enum.types.not.extensible");
4226                }
4227
4228                if (isSerializable(c.type)) {
4229                    env.info.isSerializable = true;
4230                }
4231
4232                attribClassBody(env, c);
4233
4234                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4235                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4236                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4237            } finally {
4238                env.info.returnResult = prevReturnRes;
4239                log.useSource(prev);
4240                chk.setLint(prevLint);
4241            }
4242
4243        }
4244    }
4245
4246    public void visitImport(JCImport tree) {
4247        // nothing to do
4248    }
4249
4250    /** Finish the attribution of a class. */
4251    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4252        JCClassDecl tree = (JCClassDecl)env.tree;
4253        Assert.check(c == tree.sym);
4254
4255        // Validate type parameters, supertype and interfaces.
4256        attribStats(tree.typarams, env);
4257        if (!c.isAnonymous()) {
4258            //already checked if anonymous
4259            chk.validate(tree.typarams, env);
4260            chk.validate(tree.extending, env);
4261            chk.validate(tree.implementing, env);
4262        }
4263
4264        c.markAbstractIfNeeded(types);
4265
4266        // If this is a non-abstract class, check that it has no abstract
4267        // methods or unimplemented methods of an implemented interface.
4268        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4269            if (!relax)
4270                chk.checkAllDefined(tree.pos(), c);
4271        }
4272
4273        if ((c.flags() & ANNOTATION) != 0) {
4274            if (tree.implementing.nonEmpty())
4275                log.error(tree.implementing.head.pos(),
4276                          "cant.extend.intf.annotation");
4277            if (tree.typarams.nonEmpty())
4278                log.error(tree.typarams.head.pos(),
4279                          "intf.annotation.cant.have.type.params");
4280
4281            // If this annotation type has a @Repeatable, validate
4282            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4283            // If this annotation type has a @Repeatable, validate
4284            if (repeatable != null) {
4285                // get diagnostic position for error reporting
4286                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4287                Assert.checkNonNull(cbPos);
4288
4289                chk.validateRepeatable(c, repeatable, cbPos);
4290            }
4291        } else {
4292            // Check that all extended classes and interfaces
4293            // are compatible (i.e. no two define methods with same arguments
4294            // yet different return types).  (JLS 8.4.6.3)
4295            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4296            if (allowDefaultMethods) {
4297                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4298            }
4299        }
4300
4301        // Check that class does not import the same parameterized interface
4302        // with two different argument lists.
4303        chk.checkClassBounds(tree.pos(), c.type);
4304
4305        tree.type = c.type;
4306
4307        for (List<JCTypeParameter> l = tree.typarams;
4308             l.nonEmpty(); l = l.tail) {
4309             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4310        }
4311
4312        // Check that a generic class doesn't extend Throwable
4313        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4314            log.error(tree.extending.pos(), "generic.throwable");
4315
4316        // Check that all methods which implement some
4317        // method conform to the method they implement.
4318        chk.checkImplementations(tree);
4319
4320        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4321        checkAutoCloseable(tree.pos(), env, c.type);
4322
4323        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4324            // Attribute declaration
4325            attribStat(l.head, env);
4326            // Check that declarations in inner classes are not static (JLS 8.1.2)
4327            // Make an exception for static constants.
4328            if (c.owner.kind != PCK &&
4329                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4330                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4331                Symbol sym = null;
4332                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4333                if (sym == null ||
4334                    sym.kind != VAR ||
4335                    ((VarSymbol) sym).getConstValue() == null)
4336                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4337            }
4338        }
4339
4340        // Check for cycles among non-initial constructors.
4341        chk.checkCyclicConstructors(tree);
4342
4343        // Check for cycles among annotation elements.
4344        chk.checkNonCyclicElements(tree);
4345
4346        // Check for proper use of serialVersionUID
4347        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4348            isSerializable(c.type) &&
4349            (c.flags() & Flags.ENUM) == 0 &&
4350            checkForSerial(c)) {
4351            checkSerialVersionUID(tree, c);
4352        }
4353        if (allowTypeAnnos) {
4354            // Correctly organize the postions of the type annotations
4355            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4356
4357            // Check type annotations applicability rules
4358            validateTypeAnnotations(tree, false);
4359        }
4360    }
4361        // where
4362        boolean checkForSerial(ClassSymbol c) {
4363            if ((c.flags() & ABSTRACT) == 0) {
4364                return true;
4365            } else {
4366                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4367            }
4368        }
4369
4370        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4371            @Override
4372            public boolean accepts(Symbol s) {
4373                return s.kind == MTH &&
4374                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4375            }
4376        };
4377
4378        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4379        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4380            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4381                if (types.isSameType(al.head.annotationType.type, t))
4382                    return al.head.pos();
4383            }
4384
4385            return null;
4386        }
4387
4388        /** check if a type is a subtype of Serializable, if that is available. */
4389        boolean isSerializable(Type t) {
4390            try {
4391                syms.serializableType.complete();
4392            }
4393            catch (CompletionFailure e) {
4394                return false;
4395            }
4396            return types.isSubtype(t, syms.serializableType);
4397        }
4398
4399        /** Check that an appropriate serialVersionUID member is defined. */
4400        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4401
4402            // check for presence of serialVersionUID
4403            VarSymbol svuid = null;
4404            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4405                if (sym.kind == VAR) {
4406                    svuid = (VarSymbol)sym;
4407                    break;
4408                }
4409            }
4410
4411            if (svuid == null) {
4412                log.warning(LintCategory.SERIAL,
4413                        tree.pos(), "missing.SVUID", c);
4414                return;
4415            }
4416
4417            // check that it is static final
4418            if ((svuid.flags() & (STATIC | FINAL)) !=
4419                (STATIC | FINAL))
4420                log.warning(LintCategory.SERIAL,
4421                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4422
4423            // check that it is long
4424            else if (!svuid.type.hasTag(LONG))
4425                log.warning(LintCategory.SERIAL,
4426                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4427
4428            // check constant
4429            else if (svuid.getConstValue() == null)
4430                log.warning(LintCategory.SERIAL,
4431                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4432        }
4433
4434    private Type capture(Type type) {
4435        return types.capture(type);
4436    }
4437
4438    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4439        tree.accept(new TypeAnnotationsValidator(sigOnly));
4440    }
4441    //where
4442    private final class TypeAnnotationsValidator extends TreeScanner {
4443
4444        private final boolean sigOnly;
4445        public TypeAnnotationsValidator(boolean sigOnly) {
4446            this.sigOnly = sigOnly;
4447        }
4448
4449        public void visitAnnotation(JCAnnotation tree) {
4450            chk.validateTypeAnnotation(tree, false);
4451            super.visitAnnotation(tree);
4452        }
4453        public void visitAnnotatedType(JCAnnotatedType tree) {
4454            if (!tree.underlyingType.type.isErroneous()) {
4455                super.visitAnnotatedType(tree);
4456            }
4457        }
4458        public void visitTypeParameter(JCTypeParameter tree) {
4459            chk.validateTypeAnnotations(tree.annotations, true);
4460            scan(tree.bounds);
4461            // Don't call super.
4462            // This is needed because above we call validateTypeAnnotation with
4463            // false, which would forbid annotations on type parameters.
4464            // super.visitTypeParameter(tree);
4465        }
4466        public void visitMethodDef(JCMethodDecl tree) {
4467            if (tree.recvparam != null &&
4468                    !tree.recvparam.vartype.type.isErroneous()) {
4469                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4470                        tree.recvparam.vartype.type.tsym);
4471            }
4472            if (tree.restype != null && tree.restype.type != null) {
4473                validateAnnotatedType(tree.restype, tree.restype.type);
4474            }
4475            if (sigOnly) {
4476                scan(tree.mods);
4477                scan(tree.restype);
4478                scan(tree.typarams);
4479                scan(tree.recvparam);
4480                scan(tree.params);
4481                scan(tree.thrown);
4482            } else {
4483                scan(tree.defaultValue);
4484                scan(tree.body);
4485            }
4486        }
4487        public void visitVarDef(final JCVariableDecl tree) {
4488            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4489            if (tree.sym != null && tree.sym.type != null)
4490                validateAnnotatedType(tree.vartype, tree.sym.type);
4491            scan(tree.mods);
4492            scan(tree.vartype);
4493            if (!sigOnly) {
4494                scan(tree.init);
4495            }
4496        }
4497        public void visitTypeCast(JCTypeCast tree) {
4498            if (tree.clazz != null && tree.clazz.type != null)
4499                validateAnnotatedType(tree.clazz, tree.clazz.type);
4500            super.visitTypeCast(tree);
4501        }
4502        public void visitTypeTest(JCInstanceOf tree) {
4503            if (tree.clazz != null && tree.clazz.type != null)
4504                validateAnnotatedType(tree.clazz, tree.clazz.type);
4505            super.visitTypeTest(tree);
4506        }
4507        public void visitNewClass(JCNewClass tree) {
4508            if (tree.clazz != null && tree.clazz.type != null) {
4509                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4510                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4511                            tree.clazz.type.tsym);
4512                }
4513                if (tree.def != null) {
4514                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4515                }
4516
4517                validateAnnotatedType(tree.clazz, tree.clazz.type);
4518            }
4519            super.visitNewClass(tree);
4520        }
4521        public void visitNewArray(JCNewArray tree) {
4522            if (tree.elemtype != null && tree.elemtype.type != null) {
4523                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4524                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4525                            tree.elemtype.type.tsym);
4526                }
4527                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4528            }
4529            super.visitNewArray(tree);
4530        }
4531        public void visitClassDef(JCClassDecl tree) {
4532            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4533            if (sigOnly) {
4534                scan(tree.mods);
4535                scan(tree.typarams);
4536                scan(tree.extending);
4537                scan(tree.implementing);
4538            }
4539            for (JCTree member : tree.defs) {
4540                if (member.hasTag(Tag.CLASSDEF)) {
4541                    continue;
4542                }
4543                scan(member);
4544            }
4545        }
4546        public void visitBlock(JCBlock tree) {
4547            if (!sigOnly) {
4548                scan(tree.stats);
4549            }
4550        }
4551
4552        /* I would want to model this after
4553         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4554         * and override visitSelect and visitTypeApply.
4555         * However, we only set the annotated type in the top-level type
4556         * of the symbol.
4557         * Therefore, we need to override each individual location where a type
4558         * can occur.
4559         */
4560        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4561            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4562
4563            if (type.isPrimitiveOrVoid()) {
4564                return;
4565            }
4566
4567            JCTree enclTr = errtree;
4568            Type enclTy = type;
4569
4570            boolean repeat = true;
4571            while (repeat) {
4572                if (enclTr.hasTag(TYPEAPPLY)) {
4573                    List<Type> tyargs = enclTy.getTypeArguments();
4574                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4575                    if (trargs.length() > 0) {
4576                        // Nothing to do for diamonds
4577                        if (tyargs.length() == trargs.length()) {
4578                            for (int i = 0; i < tyargs.length(); ++i) {
4579                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4580                            }
4581                        }
4582                        // If the lengths don't match, it's either a diamond
4583                        // or some nested type that redundantly provides
4584                        // type arguments in the tree.
4585                    }
4586
4587                    // Look at the clazz part of a generic type
4588                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4589                }
4590
4591                if (enclTr.hasTag(SELECT)) {
4592                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4593                    if (enclTy != null &&
4594                            !enclTy.hasTag(NONE)) {
4595                        enclTy = enclTy.getEnclosingType();
4596                    }
4597                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4598                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4599                    if (enclTy == null || enclTy.hasTag(NONE)) {
4600                        if (at.getAnnotations().size() == 1) {
4601                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4602                        } else {
4603                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4604                            for (JCAnnotation an : at.getAnnotations()) {
4605                                comps.add(an.attribute);
4606                            }
4607                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4608                        }
4609                        repeat = false;
4610                    }
4611                    enclTr = at.underlyingType;
4612                    // enclTy doesn't need to be changed
4613                } else if (enclTr.hasTag(IDENT)) {
4614                    repeat = false;
4615                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4616                    JCWildcard wc = (JCWildcard) enclTr;
4617                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4618                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4619                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4620                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4621                    } else {
4622                        // Nothing to do for UNBOUND
4623                    }
4624                    repeat = false;
4625                } else if (enclTr.hasTag(TYPEARRAY)) {
4626                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4627                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4628                    repeat = false;
4629                } else if (enclTr.hasTag(TYPEUNION)) {
4630                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4631                    for (JCTree t : ut.getTypeAlternatives()) {
4632                        validateAnnotatedType(t, t.type);
4633                    }
4634                    repeat = false;
4635                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4636                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4637                    for (JCTree t : it.getBounds()) {
4638                        validateAnnotatedType(t, t.type);
4639                    }
4640                    repeat = false;
4641                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4642                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4643                    repeat = false;
4644                } else {
4645                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4646                            " within: "+ errtree + " with kind: " + errtree.getKind());
4647                }
4648            }
4649        }
4650
4651        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4652                Symbol sym) {
4653            // Ensure that no declaration annotations are present.
4654            // Note that a tree type might be an AnnotatedType with
4655            // empty annotations, if only declaration annotations were given.
4656            // This method will raise an error for such a type.
4657            for (JCAnnotation ai : annotations) {
4658                if (!ai.type.isErroneous() &&
4659                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4660                    log.error(ai.pos(), "annotation.type.not.applicable");
4661                }
4662            }
4663        }
4664    }
4665
4666    // <editor-fold desc="post-attribution visitor">
4667
4668    /**
4669     * Handle missing types/symbols in an AST. This routine is useful when
4670     * the compiler has encountered some errors (which might have ended up
4671     * terminating attribution abruptly); if the compiler is used in fail-over
4672     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4673     * prevents NPE to be progagated during subsequent compilation steps.
4674     */
4675    public void postAttr(JCTree tree) {
4676        new PostAttrAnalyzer().scan(tree);
4677    }
4678
4679    class PostAttrAnalyzer extends TreeScanner {
4680
4681        private void initTypeIfNeeded(JCTree that) {
4682            if (that.type == null) {
4683                if (that.hasTag(METHODDEF)) {
4684                    that.type = dummyMethodType((JCMethodDecl)that);
4685                } else {
4686                    that.type = syms.unknownType;
4687                }
4688            }
4689        }
4690
4691        /* Construct a dummy method type. If we have a method declaration,
4692         * and the declared return type is void, then use that return type
4693         * instead of UNKNOWN to avoid spurious error messages in lambda
4694         * bodies (see:JDK-8041704).
4695         */
4696        private Type dummyMethodType(JCMethodDecl md) {
4697            Type restype = syms.unknownType;
4698            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4699                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4700                if (prim.typetag == VOID)
4701                    restype = syms.voidType;
4702            }
4703            return new MethodType(List.<Type>nil(), restype,
4704                                  List.<Type>nil(), syms.methodClass);
4705        }
4706        private Type dummyMethodType() {
4707            return dummyMethodType(null);
4708        }
4709
4710        @Override
4711        public void scan(JCTree tree) {
4712            if (tree == null) return;
4713            if (tree instanceof JCExpression) {
4714                initTypeIfNeeded(tree);
4715            }
4716            super.scan(tree);
4717        }
4718
4719        @Override
4720        public void visitIdent(JCIdent that) {
4721            if (that.sym == null) {
4722                that.sym = syms.unknownSymbol;
4723            }
4724        }
4725
4726        @Override
4727        public void visitSelect(JCFieldAccess that) {
4728            if (that.sym == null) {
4729                that.sym = syms.unknownSymbol;
4730            }
4731            super.visitSelect(that);
4732        }
4733
4734        @Override
4735        public void visitClassDef(JCClassDecl that) {
4736            initTypeIfNeeded(that);
4737            if (that.sym == null) {
4738                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4739            }
4740            super.visitClassDef(that);
4741        }
4742
4743        @Override
4744        public void visitMethodDef(JCMethodDecl that) {
4745            initTypeIfNeeded(that);
4746            if (that.sym == null) {
4747                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4748            }
4749            super.visitMethodDef(that);
4750        }
4751
4752        @Override
4753        public void visitVarDef(JCVariableDecl that) {
4754            initTypeIfNeeded(that);
4755            if (that.sym == null) {
4756                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4757                that.sym.adr = 0;
4758            }
4759            super.visitVarDef(that);
4760        }
4761
4762        @Override
4763        public void visitNewClass(JCNewClass that) {
4764            if (that.constructor == null) {
4765                that.constructor = new MethodSymbol(0, names.init,
4766                        dummyMethodType(), syms.noSymbol);
4767            }
4768            if (that.constructorType == null) {
4769                that.constructorType = syms.unknownType;
4770            }
4771            super.visitNewClass(that);
4772        }
4773
4774        @Override
4775        public void visitAssignop(JCAssignOp that) {
4776            if (that.operator == null) {
4777                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4778                        -1, syms.noSymbol);
4779            }
4780            super.visitAssignop(that);
4781        }
4782
4783        @Override
4784        public void visitBinary(JCBinary that) {
4785            if (that.operator == null) {
4786                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4787                        -1, syms.noSymbol);
4788            }
4789            super.visitBinary(that);
4790        }
4791
4792        @Override
4793        public void visitUnary(JCUnary that) {
4794            if (that.operator == null) {
4795                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4796                        -1, syms.noSymbol);
4797            }
4798            super.visitUnary(that);
4799        }
4800
4801        @Override
4802        public void visitLambda(JCLambda that) {
4803            super.visitLambda(that);
4804            if (that.targets == null) {
4805                that.targets = List.nil();
4806            }
4807        }
4808
4809        @Override
4810        public void visitReference(JCMemberReference that) {
4811            super.visitReference(that);
4812            if (that.sym == null) {
4813                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4814                        syms.noSymbol);
4815            }
4816            if (that.targets == null) {
4817                that.targets = List.nil();
4818            }
4819        }
4820    }
4821    // </editor-fold>
4822}
4823